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ABSTRACT

In the dissertation, we apply classical potential theory to study Property (Pq)

and its relation with the compactness of the ∂-Neumann operator Nq.

The main results in the dissertation consist of four parts. In the first part, we

discuss the invariance property of Property (Pq) under holomorphic maps on any

compact subset K in Cn.

In the second part, we show that if a compact subset K ⊂ Cn has Property

(Pq) (q ≥ 1), then for any q-dimensional affine subspace E in Cn, K ∩ E has empty

interior with respect to the fine topology in Cq. We also discuss a special case of the

converse statement on a smooth pseudoconvex domain when q = 1.

In the third part, we give two concrete examples of smooth complete Hartogs

domains in C3 regarding the smallness of the set of weakly pseudoconvex points on

the boundary. Both examples conclude that if the Hausdorff 4-dimensional measure

of the set of weakly pseudoconvex points is zero then the boundary has Property

(P2).

In the fourth part, we introduce a variant of Property (Pn−1) on smooth pseu-

doconvex domains in Cn (n > 2) which implies the compactness of the ∂-Neumann

operator Nn−1.
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1. INTRODUCTION

The dissertation concerns the analysis of Property (Pq) in the ∂-Neumann prob-

lem and the compactness of the ∂-Neumann operator Nq on L2-integrable forms.

Given a bounded pseudoconvex domain Ω in Cn, the central problem in the ∂-

Neumann theory is to study whether there exists a bounded inverse of the complex

Laplacian �q on the L2-integrable forms of the domain Ω and if there exists such a

bounded inverse operator, what the regularity property it has. We call the (bounded)

inverse of �q as the ∂-Neumann operator and denote it as Nq.

Hörmander ([27, 28]) showed that �q has a bounded inverse Nq on L2
(0,q)(Ω)

for bounded pseudoconvex domains. Kohn([31, 32, 33]) showed that Nq gains one

derivative when the domain Ω is strictly pseudoconvex, hence has global regularity

under above case. Catlin([7, 8, 10]) and D’Angelo([13, 14, 15]) introduced the finite

type notion and connected the boundary geometry properties with the regularity

property of the ∂-Neumann operator: Let Ω be a smooth bounded pseudoconvex

domain in Cn, then there exists a subelliptic estimate at a boundary point P if and

only if P is a point of finite type.

We are interested in the case when Nq is compact but does not gain deriva-

tives (the absence of subelliptic estimates). By [4] and [18], on any smooth convex

domains, Nq is globally regular but can fail the compactness if the boundary con-

tains a q-dimensional analytic variety. The compactness of Nq is also concerned in a

number of useful consequences, which include the compactness of the commutators

between the Bergman projection and multiplication operators ([11, 19]) regarding

the Fredholm theory of Toeplitz operators ([26, 47]), existence or non-existence of

Henkin-Ramirez type kernels ([24]) and certain C∗ algebra results ([40]).
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Based on Catlin’s work ([9]), Property (Pq) implies compactness of Nq on smooth

pseudoconvex domains. Within the framework of Choquet theory, Sibony ([41])

characterizes Property (Pq) by using potential theoretic tools. However, the gap

between Property (Pq) of the boundary and the compactness of Nq is not clear

on general pseudoconvex domains. Christ and Fu ([12]) showed that on a smooth

complete pseudoconvex domain in C2, N1 is compact if and only if bΩ has Property

(P1). Fu and Straube ([18]) showed that on any smooth convex domains, Nq is

compact if and only if bΩ has Property (Pq).

In the first part of the dissertation, we study the invariance property of Property

(Pq) on any compact subset K in Cn. It is well known that biholomorphic map-

pings (smooth up to boundaries) preserve the compactness of Nq between smooth

pseudoconvex domains on all levels of L2-integrable forms (see for example in [39]).

However, biholomorphic mappings are not known to preserve Property (Pq) of a com-

pact subset in Cn when q > 1. We hope to stimulate further research in the same type

of problems by our study in the first part of the dissertation, which would partially

demonstrate the gap between Property (Pq) of the boundary and the compactness

of Nq on pseudoconvex domains. By introducing a “twisted” type of Property (Pq)

in the Cq subspace induced by a certain holomorphic map π : Cn → Cq, we utilize

the idea in [41] and obtain the following results:

Theorem 1. Let K be a compact subset in Cn and X = π(K) ⊂ Cq. Suppose

Jnew
q (X) = X and for any point x ∈ X, each fiber K ∩ π−1(x) has Property (Pq),

then K has Property (Pq) in Cn.

We also obtain the following special result regarding the invariance property of

Property (P1) on the complex plane:

Proposition 1. Let K be a compact subset in C, and assume K has Property (P1),
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then given any holomorphic mapping F : C→ C, F (K) has Property (P1).

It is well known that containing a q-dimensional analytic polydisc in the boundary

is an obstruction to Property (Pq). Based on Sibony’s work ([41]), it is known that

picking up Pq-hull is an obstruction to Property (Pq) of the boundary. In the second

part of the dissertation, we apply classical potential theory results and associate

the obstruction to Property (Pq) with the fine topology on the boundary, which

generalizes Sibony’s result ([41]) in the case of complex plane.

Theorem 2. Let K be a compact subset of Cn, let 1 ≤ q ≤ n, and assume K has

Property (Pq). Then for any q-dimensional affine subspace E in Cn, K ∩ E has

empty fine interior with respect to the fine topology in Cq.

We naturally ask whether the converse is true. Denote πP : Cn → Cn−1 the

projection map from Cn onto the complex tangent space defined locally at a boundary

point P on Ω. We have the following partial result regarding the case of q = 1 on

smooth pseudoconvex domains:

Theorem 3. Let Ω be a smooth pseudoconvex domain in Cn and K be the weakly

pseudoconvex points in the boundary bΩ. Assume that for any boundary point P and

any complex line E in the complex tangent space at P , E ∩ πP (K) has empty fine

interior with respect to the fine topology in C. Then K has Property (P1) and hence

the boundary bΩ has Property (P1).

In [41], Sibony showed that given a smooth pseudoconvex domain Ω in Cn, if

the set of the weakly pseudoconvex points on the boundary bΩ has Hausdorff 2-

dimensional measure zero in Cn, then the boundary bΩ has Property (P1). In the

third part of the dissertation, we explore two examples of smooth complete Har-

togs domains in C3 regarding the smallness of weakly pseudoconvex points on the

boundary.

3



Proposition 2. Define a smooth complete Hartogs domain Ω ⊂ C3 by:

Ω = {(z1, z2, z3)
∣∣ |z2|2 + |z3|2 < e−ϕ(z1), z1 ∈ D(0, 1)}.

Assume ϕ ∈ C∞(D(0, 1)), ϕ is subharmonic on D(0, 1) and ϕ has extra regularity

property such that boundary points (z1, z2, z3) are strictly pseudoconvex when |z1| is

close to 1. If the Hausdorff 4-dimensional measure of the weakly pseudoconvex points

of bΩ is zero, then bΩ has Property (P1) and the ∂-Neumann operator N1 is compact.

Proposition 3. Define a smooth complete Hartogs domain Ω ⊂ C3 by:

Ω = {(z1, z2, z3)| |z3|2 < e−ϕ(z1)−ψ(z2), z1 ∈ D(0, 1), z2 ∈ D(0, 1)}.

Assume that ϕ, ψ ∈ C∞(D(0, 1)) and subharmonic on D(0, 1) in the respective com-

plex plane. Assume further that the boundary points (z1, z2, z3) are strictly pseudo-

convex when (z1, z2) is close to b(D(0, 1) × D(0, 1)). If the Hausdorff 4-dimensional

measure of the weakly pseudoconvex points of bΩ is zero, then bΩ has Property (P2)

and the ∂-Neumann operator N2 is compact.

In the first example, the result is unexpected in the sense that the set of weakly

pseudoconvex points would be expected to only have Property (P2) when we assume

its Hausdorff 4-dimensional measure is zero. This result indicates that Hausdorff

measure is a crude tool to completely capture the information of Property (Pq) on

higher levels of forms. In second example, we develop an approach to control second

derivatives of the function λ occurring in the definition of Property (Pq) and we also

utilize Boas’s ([3]) idea of summing functions in the proof. The general case is still

open as Sibony’s approach ([41]) in the case of q = 1 cannot be carried over to the

cases of higher level forms.
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Besides Property (Pq), McNeal’s ([37]) Property (P̃q) implies the compactness of

Nq on smooth pseudoconvex domains in Cn and Straube’s ([44]) “short time flow”

condition implies the compactness of N1 on smooth pseudoconvex domains in C2. In

the fourth part of the dissertation, we develop a variant of Property (Pn−1) (denoted

as Property (P#
n−1)) on any smooth pseudoconvex domain in Cn (n > 2) which implies

the compactness of Nn−1 on the domain. Our work is based on a Hörmander-Kohn-

Morrey type formula developed by Ahn ([1]) and Zampieri ([46]). Our main theorem

is the following:

Theorem 4. Let Ω ⊂ Cn (n > 2) be a smooth bounded pseudoconvex domain. If bΩ

has Property (P#
n−1), then the ∂-Neumann operator Nn−1 is compact on L2

(0,n−1)(Ω).

It is clear that Property (Pn−2) implies Property (P#
n−1), but it is still unclear

what the relation is between Property (Pn−1) and Property (P#
n−1). Our definition

of Property (P#
n−1) does not depend on the eigenvalues of the complex Hessian of λ

in the definition of the original Property (Pn−1), indeed only the diagonal entries in

the complex Hessian of λ are involved in our definition of Property (P#
n−1).
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2. BACKGROUND AND PRELIMINARY RESULTS

Let Ω be a bounded domain in Cn. Ω has a Ck smooth boundary (1 ≤ k ≤ ∞)

if there exist an open neighborhood U of Ω and a Ck smooth function ρ defined

on U such that: Ω = {z ∈ U |ρ(z) < 0}, the boundary bΩ = {z ∈ U |ρ(z) = 0},

U\Ω = {z ∈ U |ρ(z) > 0} and |∇ρ| > 0 on bΩ. ρ is called the defining function of Ω.

2.1 Levi pseudoconvexity and special boundary chart

We briefly discuss the Levi pseudoconvexity for a C2 smooth domain Ω. Let Ω

be a domain with C2 smooth boundary, Ω is called pseudoconvex if:

n∑
j,k=1

∂2ρ

∂zj∂zk
(z)wjwk ≥ 0, z ∈ bΩ, w ∈ Cn, with

n∑
j=1

∂ρ

∂zj
(z)wj = 0. (2.1)

We define the complex tangent space to bΩ at z by:

TC
z (bΩ) = {w ∈ Cn|

n∑
j=1

∂ρ

∂zj
(z)wj = 0}.

Given a C2 smooth pseudoconvex domain, if the inequality (2.1) is strict at the

boundary point P (for all w 6= 0), we say the boundary point P is a strictly pseu-

doconvex boundary point of bΩ. We say the boundary point P is a weakly pseudo-

convex point of bΩ if the left side of the inequality (2.1) equal to 0 at P for some

w 6= 0 ∈ TC
P (bΩ). If each boundary point is a strictly pseudoconvex point, then we

say the domain Ω is a strictly pseudoconvex domain. The quadratic form in (2.1),

i.e., the restriction to TC
z (bΩ) of the complex Hessian of ρ, is called the Levi form of

bΩ at z.
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In general, we define a bounded domain Ω to be pseudoconvex if it can be ex-

hausted by an increasing sequence of C2 smooth strictly pseudoconvex subdomains.

This definition agrees with our definition when the boundary is C2 smooth. For

equivalence of various definitions of pseudoconvexity, we refer the reader to [38].

For a C2 smooth domain Ω, near a boundary point P , we choose vector fields

L1, · · · , Ln−1 of type (1, 0) which are orthonormal and span TC
z (bΩε) for z near P ,

where Ωε = {z ∈ Ω|ρ(z) < −ε}. Ln is defined to be the complex normal and we can

normalize the length of Ln to be 1. Note that {Lj}nj=1 locally induces an orthonormal

coordinate system near the boundary point P .

Define (1, 0)-forms {ωj}nj=1 to be the dual basis of {Lj}nj=1 near P . By taking

wedge products of ωj’s, we have a local orthonormal bases for (0, q)-forms (q ≥ 1)

near P . We say {ωj}nj=1, {Lj}nj=1 and their induced coordinates form a special

boundary chart near P . The definition of special boundary chart is introduced in

[16], we also refer the reader there for further details.

2.2 The ∂-Neumann Problem

Spencer ([42]) and Garabedian ([22]) formulated the ∂-Neumann problem to gen-

eralize Hodge theory to non-compact complex manifolds. One of the most important

application of ∂-Neumann Problem is to study the ∂-problem. We refer the reader

to [29] and [34] for a history of the ∂-Neumann Problem.

We briefly discuss the set up of the ∂-Neumann problem in this section. Let

Ω be a bounded domain in Cn (n ≥ 2). Let L2
(0,q)(Ω) be the space of (0, q)-forms

(1 ≤ q ≤ n) with L2-integrable coefficients. Given any (0, q)-form u, we can write

u =
∑′

J uJdzJ , and the L2-norm is defined as ‖
∑′

J uJdz̄J‖2 =
∑′

J

∫
Ω
|uJ |2dV (z),

where the summation is over an increasing multi-index J = (j1, . . . , jq). L
2
(0,q)(Ω) is

a Hilbert space with above norm and induced inner product. Define ∂ : L2
(0,q)(Ω)→

7



L2
(0,q+1)(Ω) by:

∂(
∑′

J

uJdzJ) =
n∑
j=1

∑′

J

∂uJ
∂zj

dzj ∧ dzJ ,

where the derivatives are viewed as distributions. We denote the domain of ∂ by

dom(∂) = {u ∈ L2
(0,q)(Ω)|∂u ∈ L2

(0,q+1)(Ω)}. By functional analysis results, ∂ is a

linear, closed, densely defined operator on L2
(0,q)(Ω) and hence has a Hilbert adjoint

∂
∗
. We denote the domain of ∂

∗
by dom(∂

∗
) = {v ∈ L2

(0,q+1)(Ω)|∃C > 0, |(v, ∂u)| ≤

C||u||,∀u ∈ dom(∂)}. When Ω has a C2 smooth boundary, by using integration

by parts, we know that given any u ∈ C1
(0,q+1)(Ω), u ∈ dom(∂

∗
) if and only if∑n

j=1 ujK
∂ρ
∂zj

= 0 on bΩ for all multi-indices K of length q.

In a special boundary chart near any boundary point P of a C2 smooth domain Ω,

we have a simple expression for dom(∂
∗
): given any u ∈ C1

(0,q)(Ω) and u is supported

in a special boundary chart, u ∈ dom(∂
∗
) if and only if uJ = 0 on bΩ when n ∈ J .

If u =
∑′

J uJωJ in a special boundary chart, the tangential part of u is defined as

uTan =
∑′

n/∈J uJωJ and the normal part of u is defined as uNorm =
∑′

n∈J uJωJ .

Now we define the complex Laplacian as �qu := ∂
∗
∂u + ∂∂

∗
u on L2

(0,q) forms.

For any u ∈ L2
(0,q)(Ω), we denote the domain of �q as dom(�q) := {u ∈ dom(∂) ∩

dom(∂
∗
)| ∂u ∈ dom(∂

∗
), ∂

∗
u ∈ dom(∂)}. Here we suppress the subscript of the level

of the form in ∂ and ∂
∗

for simplicity.

�q is a densely defined, closed and unbounded linear operator on L2
(0,q)(Ω). The

∂-Neumann problem is to find a solution to �qu = f on Ω for u ∈ dom(�q). Whether

�q has an bounded inverse on L2
(0,q)(Ω) is the central question in the ∂-Neumann

problem. We call the (bounded) inverse operator of �q as the ∂-Neumann operator,

and denote it as Nq.

In early 1960s, Kohn ([30]) proved that �q does have a bounded inverse Nq on

L2
(0,q)(Ω) for strictly pseudoconvex domains. Hörmander ([27, 28]) went further and
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showed that �q has a bounded inverse Nq on L2
(0,q)(Ω) for bounded pseudoconvex

domains.

2.3 Compactness and global regularity of the ∂-Neumann operator Nq

From a partial differential equations perspective, it is natural to study the global

regularity property of Nq. We say the ∂-Neumann operator Nq is globally regular

on Ω if for any u ∈ C∞(0,q)(Ω), Nqu ∈ C∞(0,q)(Ω). Starting from the early 1960s,

plenty of important results have been obtained regarding the global regularity of

the ∂-Neumann operator Nq in the perspective of geometric analysis and partial

differential equations. Kohn([31, 32, 33]) showed that Nq gains one derivative when

the domain Ω is strictly pseudoconvex, hence has global regularity under above case.

Catlin([7, 8, 10]) and D’Angelo([13, 14, 15]) introduced the finite type notion and

characterized the existence of a subelliptic estimate (with a fractional gain of less than

one derivative) at a boundary point P : let Ω be a smooth bounded pseudoconvex

domain in Cn, then there exists a subelliptic estimate at a boundary point P if and

only if P is a point of finite type. In particular for any strictly pseudoconvex point

P on a C2 smooth pseudoconvex domain, P is a point of finite type. It is then

clear that if a smooth pseudoconvex domain is a domain of finite type (all boundary

points are of finite type), the ∂-Neumann operator N1 is global regular on Ω. We

refer the reader to [5] for a more comprehensive survey of the global regularity of the

∂-Neumann problem.

We are interested in the case when Nq is compact but does not gain derivatives

(the absence of subelliptic estimates). In the perspective of functional analysis, Nq is

said to be compact on L2
(0,q)(Ω) if the image of the unit ball in L2

(0,q)(Ω) under Nq is

relatively compact in L2
(0,q)(Ω). In the perspective of partial differential equations, it

is known that the compactness of Nq can be characterized by compactness estimates:

9



Proposition 4 ([35]). Let Ω be a bounded pseudoconvex domain in Cn, 1 ≤ q ≤ n.

Then the following are equivalent:

(i) Nq is compact as an operator on L2
(0,q)(Ω).

(ii) For every ε > 0, there exists a constant Cε such that we have the compactness

estimate:

||u||2 ≤ ε(||∂u||2 + ||∂∗u||2) + Cε||u||2−1 for u ∈ dom(∂) ∩ dom(∂
∗
).

|| · ||−1 is the Sobolev W−1-norm defined coefficientwise for any (0, q)-form u,

i.e., a form u =
∑′

J uJdzJ is in W−1(Ω) if and only if uJ ∈ W−1(Ω) for all J . In

general, we define the Sobolev W s-norm (s ∈ R) for any (0, q)-form u in the same

way as above: a form u =
∑′

J uJdzJ is in W s(Ω) if and only if uJ ∈ W s(Ω) for all

J . Proposition 4 is essentially folklore but see for example [35].

Kohn and Nirenberg ([35]) showed that on smooth bounded pseudoconvex do-

mains, the compactness of Nq on L2
(0,q)(Ω) implies global regularity of Nq. It has

become clear in recent years that that global regularity of Nq is subtle, while the

compactness of Nq is stronger, for these results we refer to [4, 18, 19, 45].

It is well known that compactness of Nq is a local property, the following propo-

sition is taken from [45].

Proposition 5 ([45]). Let Ω be a bounded pseudoconvex domain in Cn, 1 ≤ q ≤ n.

If for every boundary point P there exists a pseudoconvex domain U such that P ∈ U

and U ∩ Ω is a domain and Nq on U ∩ Ω is compact, then Nq on Ω is compact.

Catlin ([9]) introduced the notion of Property (P ) which implies the compactness

of N1 on smooth pseudoconvex domains and the assumption of smoothness can be

removed by Straube’s result ([43]). A natural generalization of the notion above to

10



Property (Pq) regarding the ∂-Neumann operator Nq (1 ≤ q ≤ n) can be carried

out and Catlin’s work still shows that Property (Pq) of the boundary bΩ implies the

compactness of Nq.

Theorem 5 ([9]). Let Ω be a bounded pseudoconvex domain in Cn. Let 1 ≤ q ≤ n.

If bΩ satisfies Property (Pq), then Nq is compact.

We postpone the definition of Property (Pq) to the next section and list the

following two propositions which have been frequently used in the literature and in

our dissertation when proving the compactness estimate of Nq. The first proposition

below appears for example in [9] and [35] or more recently in [45].

Proposition 6 (Sobolev Interpolation). Let Ω be a bounded domain in Cn with

smooth boundary. Given any real number s1 > s > s2, for any ε > 0, we have the

following interpolation estimates on any (0, q)-form u ∈ W s1(Ω):

||u||2s ≤ ε||u||2s1 + Cε||u||2s2 .

Here Cε is independent of u.

The following density lemma in [27] is useful when passing estimates from smooth

forms in dom(∂
∗
) to general forms in dom(∂) ∩ dom(∂

∗
).

Proposition 7 ([27]). Let Ω be a Ck+1 (1 ≤ k ≤ ∞) smooth domain, then Ck
(0,q)(Ω)∩

dom(∂
∗
) is dense in dom(∂) ∩ dom(∂

∗
) in the graph norm u 7→ (||u||2 + ||∂u||2 +

||∂∗u||2)
1
2 .

2.4 Property (Pq) and its analysis property

By Sibony’s ([41]) work, Property (Pq) can be studied by classical Choquet theory

with respect to the function family Pq(K). The analysis property of Property (Pq)
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is closely related with various results in classical potential theory. We introduce

the definition of Property (Pq) and present the results in [41] which we need in the

dissertation.

Definition 1. A compact set K ⊂ Cn has Property (Pq) (1 ≤ q ≤ n) if for any

M > 0, there exists an open neighborhood U of K and a C2 smooth function λ on U

such that 0 ≤ λ ≤ 1 on U and ∀z ∈ U , the sum of any q eigenvalues of the complex

Hessian
(

∂2λ
∂zj∂z̄k

)
j,k

is at least M .

The following linear algebra result is useful when proving Property (Pq). See for

example in [9] for its application in proving Property (Pq), here we follow [45].

Lemma 1 ([45]). Let λ be a C2 smooth function in Cn. Fix any z ∈ Cn, 1 ≤ q ≤ n

and let u be any (0, q)-form at z. The following are equivalent:

(i) The sum of any q eigenvalues of
(

∂2λ
∂zj∂z̄k

)
j,k

is at least M .

(ii)
∑′

|K|=q−1

n∑
j,k=1

∂2λ(z)
∂zj∂zk

ujKukK ≥M |u|2.

(iii)
q∑
s=1

n∑
j,k=1

∂2λ(z)
∂zj∂zk

(es)j(es)k ≥ M , whenever e1, e2, · · · , eq are orthonormal vectors

in Cn.

By Lemma 1, it is clear that Property (Pq) is preserved under unitary coordinates

change.

Definition 2. Let K be a compact subset in Cn.

(1) Let U be an open neighborhood containing K. Define the function family

Pq(U) on U by: Pq(U) = {f ∈ C(U)| f is subharmonic on E ∩ U for any complex

q-dimensional affine subspace E}.
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(2) Define the function family Pq(K) on K to be the closure in C(K) of the

functions that belong to Pq(U) for some open neighborhood U of K (U is allowed to

depend on the function).

(3) Define a probability measure µ on K to be a q-Jensen measure for z ∈ K

with respect to Pq(K) if h(z) ≤
∫
K
h dµ for ∀h ∈ Pq(K) and define the associated

Choquet boundary Jq(K) as Jq(K) = {z ∈ K| µ is the unit point mass at z if µ is a

q-Jensen measure at z with respect to Pq(K)}.

The following theorem in [41] shows that if a compact subset K has Property

(Pq), the function family Pq(K) has a good approximation property in C(K).

Theorem 6 ([41]). Let K be a compact subset of Cn. The following are equivalent:

(i) K satisfies property (Pq).

(ii) Pq(K) = C(K).

(iii) Jq(K) = K.

(iv) The function −|z|2 belongs to Pq(K).

By the maximum principle for subharmonic functions and the equivalence be-

tween (i) and (ii) in above theorem, analytic discs in the boundary of a domain Ω in

Cn are obstructions to Property (P1) of the boundary.

The following two propositions in [41] show that Property (Pq) is a local property

and is preserved by countable unions.

Proposition 8 ([41]). Let K be a compact subset of Cn. Assume that for every

z ∈ K, there exists r > 0 such that K ∩B(z, r) satisfies Property (Pq). Then K has

Property (Pq).
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Proposition 9 ([41]). Let K =
⋃∞
m=1 Km with Km compact for all m. Assume that

K is compact, if all Km satisfy Property (Pq), then so does K.

2.5 Fine topology, basic potential theory and Property (Pq)

We will introduce some basic notions and results in potential theory, and then

relate them with the analysis property of Property (Pq).

The fine topology in Cn is the weakest topology in which all subharmonic func-

tions are continuous. The fine topology is strictly stronger than the usual Euclidean

topology in Rn (see examples in [41]) and any Euclidean open set in Rn is finely open.

Finely open sets are still massive near a point in the sense of Lebesgue measure. We

have the following result (see Corollary 7.2.4 in [2], or Corollary 10.5 in [25]):

Lemma 2. Let M be a compact subset in Rn and if z is a fine interior point of M ,

then we have:

lim
r→0

σ(M ∩ ∂B(z, r))

σ(∂B(z, r))
= 1, (2.2)

where σ is the surface measure on the sphere ∂B(z, r) and B(z, r) = {|z| < r} ⊂ Rn.

The following theorem from [6] connects the fine boundary of a compact set K

and the Choquet boundary K with respect to a special class of harmonic functions.

Theorem 7 ([6]). In a Green space Ω0, consider a compact set K and the set F of

functions on K such that each one is the restriction on K of a harmonic function

on an open neighborhood of K. Then the Choquet boundary of K with respect to F

is the fine boundary of K.

For more basic background of fine topology and its application in classical poten-

tial theory, we refer the reader to [2] and [25].

For a Euclidean open subset U in Rn, denote λ1(U) the smallest eigenvalue of

the Dirichlet problem for the (real) Laplacian on U . It is well known that λ1(U) =
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inf{
∫
|∇u|2| u ∈ C∞0 (U),

∫
|u|2 = 1} (see for example in [23]). Li and Yau ([36])

showed that the eigenvalues of the Dirichlet problem has lower bounds regarding the

volume measure of the open set U :

Theorem 8 ([36]). Let U be a Euclidean open set in Rn, and assume the eigenvalues

of the Dirichlet problem for the (real) Laplacian on U are monotonically ordered by

λ1 < λ2 ≤ · · · ≤ λk ≤ · · · . Then we have the following estimate for the lower bound

of each λk (k ≥ 1):

λk ≥
nCn
n+ 2

(
k

vol(U)

) 2
n

.

Cn is a constant only depend on n and vol(U) is the volume measure of U .

On the other hand, the Dirichlet problem can be formulated regarding the Dirich-

let Laplacian on a bounded finely open set V in Rn. Most of the results thereafter

are similar as the classical Dirichlet problem case (in particular the eigenvalues co-

incide when considering both problems on a Euclidean open set in Rn), but have

some extra stability of eigenvalues (with respect to the bounded finely open set case)

under unions or intersections of sequences of domains. We refer the reader to [17]

for the set up of the Dirichlet problem on a bounded finely open set and we only list

the following proposition from [17] which we will use in the dissertation. Assume

the eigenvalues of the Dirichlet problem on a finely open set V are monotonically

ordered by λ1(V ) < λ2(V ) ≤ · · · ≤ λk(V ) ≤ · · · .

Proposition 10 ([17]). Let Di (i ≥ 1) be a monotonically decreasing sequence of

uniformly bounded finely open subsets of Rn such that Di converges to a finely open

set D in Rn: intf
⋂
iDi = D. Here intf denotes the fine interior. Then for all k ≥ 1,

λk(Di)→ λk(D) as i→∞.

The following proposition is formulated in [20], but the equivalence of (i) and (ii)
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is credited to Sibony ([41]).

Proposition 11 ([20, 41]). Let K be a compact subset of C. The following are

equivalent:

(i) K satisfies Property (P1).

(ii) K has empty fine interior in C.

(iii) K supports no nonzero function in W 1
0 (C).

(iv) For any sequence of Euclidean open sets {Uj}∞j=1 such that K ⊂ Uj+1 ⊂ Uj and⋂∞
j=1 Uj = K, the smallest eigenvalue λ1(Uj) of the Dirichlet problem on Uj

satisfies: λ1(Uj)→∞ as j →∞.

Corollary 1 ([41]). Let K be a compact subset in C and K has Lebesgue measure

zero in C. Then K has Property (P1).

We point out that since most of the classical potential results which were used

in Proposition 11 and Corollary 1 are formulated in Rn, hence a part of Proposition

11 can be generalized verbatim to the case of Cn regarding Property (Pn). We list

the following generalization of Corollary 1 and prove it due to the importance of its

application in the dissertation.

Proposition 12. Let K be a compact subset in Cn and K has Lebesgue measure

zero in Cn. Then K has Property (Pn) in Cn.

Proof. Assume we have any sequence of Euclidean open sets {Uj}∞j=1 such that K ⊂

Uj+1 ⊂ Uj and
⋂∞
j=1 Uj = K. Apply Theorem 8, we have λ1(Uj) → ∞ as j → ∞.

Here λ1(Uj) is the smallest eigenvalue of the Dirichlet problem for the (real) Laplacian

on (Euclidean open set) Uj.
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Now apply Proposition 10, we have:

lim
j→∞

λ1(Uj) = λ1(intf
⋂
j

Uj) = λ1(intfK). (2.3)

Here, λ1 in equation (2.3) is the smallest eigenvalue of the Dirichlet problem on a

finely open set. But in the left hand side of (2.3), each λ1(Uj) is equal to the smallest

eigenvalue of the Dirichlet problem on the Euclidean open set Uj. Now using our

conclusion in the first paragraph of our proof and by equation (2.3) we conclude that

λ1(intfK) =∞. This forces intfK = ∅, K has empty fine interior in Cn.

Now we will show that given K has empty fine interior in Cn, K has Property

(Pn). For any z0 ∈ K, since K has empty fine interior, z0 is a fine boundary point of

K. Assume µ is an n-Jensen measure for z0 with respect to Pn(K), then in particular

for any f which is harmonic in a neighborhood of K, we have: f |K ∈ Pn(K) and

f |K(z0) ≤
∫
K
f |K dµ. Now apply Theorem 7, we conclude that z0 is in the Choquet

boundary of K with respect to the function family F in Theorem 7. Note that

Theorem 7 requires K be a compact subset of a Green space, but in our case we

know that the fine interior of K with respect to any bounded open subset V ⊃ K in

Cn is the same as the fine interior of K with respect to Cn, and hence Theorem 7 still

applies in our case. We conclude that µ is a point mass measure at z0. Therefore,

z0 ∈ Jn(K). Since z0 is arbitrary, K = Jn(K) and K has Property (Pn) by Theorem

6.

One of the most interesting applications of above results is that we can construct

a smooth pseudoconvex complete Hartogs domain Ω in C2 such that the set of weakly

pseudoconvex boundary points has positive surface measure on bΩ, but the boundary

bΩ still has Property (P1) and hence the ∂-Neumann operator N1 is compact. We

refer the reader to [41] for the construction.
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3. INVARIANCE PROPERTY OF PROPERTY (Pq)

In this section, we will study the invariance property of Property (Pq) based on

Sibony’s ([41]) work. Our motivation is originated from studying the gap between

Property (Pq) on the boundary of a given smooth pseudoconvex domain Ω ⊂ Cn

and the compactness of Nq on L2
(0,q)(Ω). It is well known that biholomorphic map-

pings (smooth up to boundaries) preserve the compactness of Nq between smooth

pseudoconvex domains on all levels of L2-integrable forms (see for example in [39]).

However, biholomorphic mappings are not known to preserve Property (Pq) of a com-

pact subset in Cn when q > 1. Therefore the difference in the invariance property

would partially demonstrate the gap between Property (Pq) and the compactness

of Nq. By studying the invariance property of Property (Pq) (q > 1), we hope to

stimulate further research in the same types of problems.

3.1 Invariance property of Property (P1) in C

We start with a special invariance property of Property (P1) on the complex

plane.

Proposition 13. Let K be a compact subset in C, and assume K has Property (P1),

then given any holomorphic mapping F : C→ C, F (K) has Property (P1).

Proof. Our first observation is the following fact: If F is biholomorphic on an open

set U ⊂ C, then for any subharmonic function f on U , f ◦ F−1 is also subharmonic

on F (U). Hence for any compact subset M ⊂ U which has Property (P1), F (M)

has Property (P1).

Define Km = {z ∈ K
∣∣|F ′(z)| ≥ 1

m
}, and K0 = {z ∈ K | F ′(z) = 0}, where F ′(z)
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is the first derivatives of F at z. We have:

F (K) = F (K0) ∪
⋃
m≥1

F (Km). (3.1)

For each Km ⊂ K, Km has Property (P1). Since F is biholomorphic in a neigh-

borhood of each point in Km, and Property (P1) is a local property, by using the

fact at the beginning of our proof, we conclude that F (Km) has Property (P1).

By Sard’s theorem, F (K0) has Lebesgue measure 0 in C and hence by Corollary

1, F (K0) has Property (P1).

Since by Proposition 9 Property (P1) is preserved by countable unions of compact

subset, by (3.1), F (K) has Property (P1).

Remark 1. (1) One of the difficulties in proving such type of invariance property

is that the pullback F−1 is not known to be holomorphic. Hence given any f ∈

P1(K) (or in general Pq(K) for 1 ≤ q ≤ n), it is not known whether f ◦ F−1 is

in P1(K) (or Pq(K) for 1 ≤ q ≤ n).

(2) It is not known whether we can generalize Proposition 13 to higher dimension

case regarding Property (Pq) in Cn for 1 ≤ q ≤ n. When q > 1, f ◦ F−1 is not

necessarily in Pq(K) even F is biholomorphic. When q = 1 and by Proposition

12, we only know that F (K0) has Property (Pn) which is insufficient for the case

of n > 1.

3.2 Invariance property of Property (Pq) (q ≥ 2)

Now we study the invariance property of Property (Pq) (q ≥ 2) of a compact

subset K ⊂ Cm under holomorphic mappings π : Cm → Cn. Our main question is

the following: Given a holomorphic mapping π : Cm → Cn (n ≤ m) and a compact
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subset K ⊂ Cm, assume the image set π(K) ⊂ Cn has Property (Pq), does the set

K have Property (Pq) in Cm?

When q = 1, Sibony ([41]) proved the following result:

Theorem 9 ([41]). Let K ⊂ Cm and π : Cm → Cn be a holomorphic mapping.

Denote X ⊂ Cn as the image set π(K). If X has Property (P1) and for all x ∈ X

the fiber π−1(x) ∩K has Property (P1), then K has Property (P1).

When q ≥ 2, we can find some nontrivial holomorphic mapping π, which the

image set π(K) has a “twisted” Property (Pq), and Sibony’s result can be generalized

to the case q > 1.

Let K be a compact subset in Cn and define the holomorphic mapping π : Cn →

Cq as π(z1, · · · , zn) = (
∑n−1

j=1 zj+g1(zn), · · · ,
∑n−1

j=1 zj+gk(zn), · · · ,
∑n−1

j=1 zj+gq(zn)),

where gk (k = 1, · · · , q) is holomorphic on zn-plane and ∂g1
∂zn

= · · · = ∂gk
∂zn

= · · · = ∂gq
∂zn

on the projection set of K onto zn-plane. By our definition, if the projection set of

K onto zn-plane has an accumulation point, then gk is different from each other by

a constant.

Definition 3. (a) Let U be an open subset in Cq, define the function family P new
q (U)

on U as:

P new
q (U) =

{
f ∈ C2(U)

∣∣∣∣ q∑
j,k=1

∂2f

∂ξj∂ξk
≥ 0 on U

}
.

Note that the function family P new
q (U) is a convex cone in C2(U).

(b) For any compact subset X in Cq, define the function family P new
q (X) on X

by: P new
q (X) is the closure in C(X) of the functions that belong to P new

q (U) for some

open set U ⊂ Cq containing X, where U is allowed to depend on the function. Note

that the function family P new
q (X) is still a convex cone in C(X).

(c) Define a probability measure µ on X to be a q-Jensen measure for z ∈ X with

respect to P new
q (X) if h(z) ≤

∫
X
h dµ for ∀h ∈ P new

q (X) and define the associated
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Choquet boundary Jnew
q (X) as Jnew

q (X) = {z ∈ X| µ is the unit point mass at z if µ

is a q-Jensen measure at z with respect to P new
q (X)}.

Proposition 14. Let π be defined as above and assume K is a compact set in Cn.

Denote X ⊂ Cq as the image set π(K). If f ∈ P new
q (X), then f ◦ π ∈ P1(K) and

hence f ◦ π ∈ Pq(K).

Proof. We first show that if f ∈ P new
q (U), where U is an open neighborhood of X,

then f ◦ π defined on V has nonnegative complex Hessian on K, where V = π−1(U)

is an open neighborhood of K. This is done by calculating the eigenvalues of the

complex Hessian of f ◦ π on V ⊂ Cn and then restricting to K. We have:

∂2(f ◦ π)

∂zj∂zk
(z1, · · · , zn) =

q∑
s,t=1

∂2f

∂ξs∂ξt
(π(z1, · · · , zn)) on V, j, k = 1, · · · , n− 1;

∂2(f ◦ π)

∂zn∂zk
(z1, · · · , zn) =

q∑
s,t=1

∂gt
∂zn

∂2f

∂ξs∂ξt
(π(z1, · · · , zn)) on V, k = 1, · · · , n− 1;

∂2(f ◦ π)

∂zn∂zn
(z1, · · · , zn) =

q∑
s,t=1

∂gs
∂zn

∂gt
∂zn

∂2f

∂ξs∂ξt
(π(z1, · · · , zn)) on V.

Consider z ∈ K and put in the condition ∂g1
∂zn

= · · · = ∂gk
∂zn

= · · · = ∂gq
∂zn

, then the

complex Hessian of f ◦ π is:

∂2(f ◦ π)

∂zj∂zk
(z1, · · · , zn) =

q∑
s,t=1

∂2f

∂ξs∂ξt
(π(z1, · · · , zn)) on K, j, k = 1, · · · , n− 1;

∂2(f ◦ π)

∂zn∂zk
(z1, · · · , zn) =

∂g1

∂zn
·

q∑
s,t=1

∂2f

∂ξs∂ξt
(π(z1, · · · , zn)) on K, k = 1, · · · , n− 1;

∂2(f ◦ π)

∂zn∂zn
(z1, · · · , zn) =

∣∣∣∣∂g1

∂zn

∣∣∣∣2 q∑
s,t=1

∂2f

∂ξs∂ξt
(π(z1, · · · , zn)) on K.

The rank of the complex Hessian of f ◦ π is at most 1 on K, therefore there are

n − 1 eigenvalues of 0. By calculating the coefficient of (n − 1)-th power term
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in the characteristic polynomial of the complex Hessian, the nonzero eigenvalue is
q∑

j,k=1

∂2f

∂ξj∂ξk

(
| ∂g1
∂zn
|2 + n− 1

)
≥ 0 on K. Therefore, the complex Hessian of f ◦ π is

nonnegative on K.

On V , we take ε > 0 such that the complex Hessian of f ◦π+ ε|z|2 is nonnegative

on V , i.e., f ◦ π + ε|z|2 ∈ P1(V ). The choice of ε depends on f and V , and when V

shrinks down to K, ε→ 0.

Now take any f ∈ P new
q (X). By definition, there exists a sequence {fn}∞n=1 such

that fn ∈ P new
q (Un) and lim

n→∞
||fn − f ||∞,X = 0, where Un is an open neighborhood

of X. We can arrange Un such that Un+1 ⊂ Un and
⋂∞
n=1 Un = X, hence Un shrinks

down to X. Since ||fn◦π−f ◦π||∞,K ≤ ||fn−f ||∞,X , lim
n→∞

||fn◦π+εn|z|2−f ◦π||∞,K =

0. Each fn◦π+εn|z|2 ∈ P1(Vn) by above argument, where Vn = π−1(Un) ⊃ K and εn

is defined in the last paragraph, therefore f ◦π ∈ P1(K) and hence f ◦π ∈ Pq(K).

Remark 2. (1) We proved that the pullback f ◦π ∈ P1(K) in the above proposition,

however in the main theorem below, we only need f ◦ π ∈ Pq(K). Hence it is

interesting to see whether one can construct a holomorphic mapping π such that

f ◦ π ∈ Pq(K) but f ◦ π 6∈ Pq−1(K) under our context.

(2) When q = 1, consider a projection map π : (z1, · · · , zn) 7→ z1. It is trivially

true that if f ∈ P1(X) then f ◦ π ∈ P1(K). However this is no longer true

when we consider a projection map π : (z1, · · · , zn) 7→ (z1, · · · , zq) for q > 1: let

f = |z1|2 − |z2|2 ∈ P2(U) for an open set U ⊂ C2, but f ◦ π /∈ P2(U × C), where

π : (z1, z2, z3) 7→ (z1, z2). Hence Proposition 14 partially overcomes the difficulty

which is not detected in the case of q = 1.

To prove the main theorem, we need one density lemma and the idea of such

density lemma is implicit in [41].
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Lemma 3. Let π, K, X be defined as above. For any x ∈ K, Pq(K) is dense in

Pq(π
−1(π(x)) ∩K) with respect to the || · ||∞ topology.

Proof. Let ϕ be a strictly positive function on an open neighborhood V of π−1(π(x))∩

K such that ϕ ∈ Pq(V ). We will find a function θ such that θ ∈ Pq(K) and θ = ϕ

on π−1(π(x)) ∩ K. Then the lemma follows by taking approximation as we did in

the proof of Proposition 14.

We claim that there exists a function ψ defined on a neighborhood of K such

that ψ ∈ Pq(K), ψ < 0 on π−1(π(x)) ∩K and ψ ≥ δ > 0 on ∂V ∩K, where δ is a

positive constant.

Assume our claim first, then we can take a large constant C > 0 such that

C · ψ > ϕ in an neighborhood of ∂V ∩K and C · ψ < 0 on π−1(π(x)) ∩K. Define

θ = max(ϕ,Cψ) on V ∩K and Cψ on K\V . By our construction, θ ∈ Pq(K) and

θ = ϕ on π−1(π(x)) ∩K. Therefore the lemma follows.

Finally, to prove our claim above, consider h(ξ) = |ξ−π(x)|2 on X. By calculating

the complex Hessian of h,
∑q

j,k=1
∂2h

∂ξj∂ξk
= q > 0. Hence h ∈ P new

q (X), and by

observation, h(π(x)) = 0 and h |∂V ′∩X ≥ δ′ > 0, where V ′ is some neighborhood of

π(x). By taking h to be h − δ′

2
, we can assume h < 0 on π(x) and h ≥ δ′ > 0 on

∂V ′ ∩X.

Now take ψ = h ◦ π. Since h ∈ P new
q (X), by Proposition 14, ψ ∈ Pq(K). By the

construction of h, ψ < 0 on π−1(π(x)) ∩K and ψ ≥ δ > 0 on ∂V ∩K, where V is a

neighborhood of π−1(π(x)) ∩K. Therefore our claim is proved.

Theorem 10. Let π, K, X be defined as above. Suppose Jnew
q (X) = X and for any

point x ∈ X, each fiber K ∩ π−1(x) has Property (Pq), then K has Property (Pq) in

Cn.

Proof. Our proof relies on Sibony’s ([41]) argument in the case of q = 1. Suppose µ is
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a q-Jensen measure for z ∈ K with respect to Pq(K). The pushforward measure π∗µ

on X is defined as π∗µ(B) = µ(π−1(B)) for B ⊆ X and
∫
X
f d(π∗µ) =

∫
K
f ◦ π dµ

for any measurable function f on X.

If f ∈ P new
q (X), by Proposition 14, f ◦ π ∈ Pq(K) and we have the following:

f(π(z)) = f ◦ π(z) ≤
∫
K

f ◦ π dµ =

∫
X

f d(π∗µ). (3.2)

Hence π∗(µ) is a q-Jensen measure for π(z) with respect to P new
q (X). Since

Jnew
q (X) = X, π∗(µ) = δπ(z), where δπ(z) is the point mass measure at π(z). There-

fore, µ has support only on π−1(π(z)) ∩K.

Claim: µ
∣∣
π−1(π(z))∩K is a q-Jensen measure for z with respect to Pq(π

−1(π(z))∩

K).

Assume our claim true first. Since each fiber K ∩ π−1(x) has Property (Pq) for

any x ∈ X, Jq(π
−1(π(z)) ∩K) = π−1(π(z)) ∩K with respect to Pq(π

−1(π(z)) ∩K).

Now apply our claim above, µ
∣∣
π−1(π(z))∩K is a point mass measure at z and hence

µ = δz.

We showed that for any q-Jensen measure µ for z ∈ K with respect to Pq(K), µ

is a point mass measure. Therefore Jq(K) = K with respect to Pq(K), and hence

the theorem follows.

To prove our claim, since the q-Jensen measure µ has support only on π−1(π(z))∩

K, we have the following:

h(z) ≤
∫
K

h dµ =

∫
π−1(π(z))∩K

h dµ, ∀h ∈ Pq(K). (3.3)

By Lemma 3, Pq(K) is dense in Pq(π
−1(π(z)) ∩ K) with respect to the || · ||∞
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topology, hence by approximation we have:

h(z) ≤
∫
π−1(π(z))∩K

h dµ, ∀h ∈ Pq(π−1(π(z)) ∩K). (3.4)

The claim is proved.

Remark 3. (1) The condition Jnew
q (X) = X can be interpreted as a twisted version

of Property (Pq) in Cq. It is interesting to see whether this twisted Property (Pq)

still has a similar analysis property as Property (Pq) has. We briefly discuss the

relation between P new
q (X) = C(X) and Jnew

q (X) = X here.

On the one hand, it is straightforward to see that given any compact subset

X ⊂ Cq, if P new
q (X) = C(X), then Jnew

q (X) = X. Because P new
q (X) = C(X)

implies that the subaveraging inequality in the definition of q-Jensen measures

holds for all continuous functions, we have the desired conclusion.

On the other hand, the opposite implication is not necessarily true. In [41], the

opposite implication relies on a result of Edwards ([21], Theorem 1.2), which

is not necessarily true in our case. Although the function family P new
q (X) is

a convex cone, it is not necessarily preserved by the maximum function. More

precisely, the differential operator
∑q

j,k=1
∂2

∂ξj∂ξk
in the definition of P new

q (X) does

not have maximum principle.

(2) The intersection of P new
q (X) and Pq(X) is nonempty: it contains C2 smooth sub-

harmonic functions defined on some neighborhood of X whose complex Hessians

are diagonal. In particular, |z|2 belongs to the intersection.

(3) Take q = 1 in our main theorem, our result reduces to a special case of Theorem

9.
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4. OBSTRUCTIONS TO PROPERTY (Pq)

In [41], Sibony characterized Property (P1) of the boundary of a hyperconvex

domain in Cn (in particular true for any smooth pseudoconvex domain) with the

existence of a peak function ψ ∈ P1(Ω). Generalizing Sibony’s result to Property

(Pq), it is known that picking up Pq-hull is an obstruction to Property (Pq) of the

boundary. (Compare the remarks in [45], section 4.8.)

We are interested in the study of obstructions to Property (Pq) in terms of the

geometry or topology of complex q-dimensional varieties in the boundary of the

domain. In particular, we want to generalize the following theorem of Sibony ([41])

(which is contained in Proposition 11) to the case of q > 1 in higher dimensions:

Theorem 11 ([41]). Let K be a compact subset of C. Then K has Property (P1) if

and only if K has empty fine interior.

4.1 Main Theorem 12

We have the following main theorem:

Theorem 12. Let K be a compact subset of Cn, let 1 ≤ q ≤ n, and assume K

has Property (Pq). Then for any q-dimensional affine subspace E in Cn, K ∩E has

empty fine interior with respect to the fine topology in Cq.

Proof. Claim 1: K ∩ E has Property (Pq) in E.

Denote {e1, · · · , eq} the q orthonormal vectors in Cn which span E. For any

ξ ∈ E, we write ξ =
∑q

i=1 ξie
i.

Fix any z0 ∈ K, given a function f on Cn, we defined the following function f̃

on E by:

f̃(ξ1, · · · , ξq) = f(z0 + ξ1e
1 + · · ·+ ξqe

q).
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For any C2 smooth function f on Cn, we have the following:

∆f̃ =
n∑
i=1

∂2f̃

∂ξi∂ξi
=

n∑
j,k=1

∂2f

∂zj∂zk
(e1)j(e1)k

+ · · ·+
n∑

j,k=1

∂2f

∂zj∂zk
(es)j(es)k

+ · · ·+
n∑

j,k=1

∂2f

∂zj∂zk
(en)j(en)k

=

q∑
s=1

n∑
j,k=1

∂2f

∂zj∂zk
(es)j(es)k. (4.1)

Since K has Property (Pq) in Cn, for any M > 0, there exists an open neighborhood

U of K in Cn and a C2 smooth function 0 ≤ λM ≤ 1 on U such that the sum of any

q eigenvalues of the complex Hessian of λM is at least M on U . By Lemma 1 and

(4.1), we conclude that ∆λ̃M ≥ M and 0 ≤ λ̃M ≤ 1 on a neighborhood of K ∩ E in

E (as a copy of Cq). Claim 1 follows.

Claim 2: Let Q be a compact subset in Cm (m ≥ 1), if Q has Property (Pm)

then Q has empty fine interior in Cm.

We denote δ(V ) be the smallest eigenvalue of Dirichlet problem on a Euclidean

open set V .

Since Q has Property (Pm), for any j > 0, there exists an open neighborhood

Vj of Q and a C2 smooth λj on Vj such that 0 ≤ λj ≤ 1, ∆λj ≥ j on Vj. We can

shrink each Vj such that we further assume Vj has smooth boundary, Vj+1 ⊂ Vj and

λj ∈ C∞(Vj). Fix j now.

On Vj, consider the solution h to ∆h = 0 on Vj and h|∂Vj = λj|∂Vj . Replacing

λj by λj − h, we can assume that λj ∈ W 1
0 (Vj) ∩ C∞(Vj), −1 ≤ λj ≤ 1 on Vj and

∆λj ≥ j on Vj.

On Vj, let wj ∈ W 1
0 (Vj) be the eigenfunction of −∆ to the eigenvalue δ(Vj), i.e.,
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∆wj = −δ(Vj)wj on Vj and wj|∂Vj = 0. By Theorem 8.38 in [23], we can assume

that wj is nonnegative on Vj.

We have the following inequality:

j

∫
Vj

wj ≤
∫
Vj

(∆λj)wj

=

∫
Vj

λj∆wj

= −δ(Vj)
∫
Vj

λjwj

≤ δ(Vj)

∫
Vj

wj. (4.2)

Note that since λj ∈ W 1
0 (Vj) ∩ C∞(Vj) and wj ∈ W 1

0 (Vj), we can use integration by

parts to switch the Laplacian in the second equation of (4.2). And the last estimate

in (4.2) follows by taking absolute values and using the fact that −1 ≤ λj ≤ 1 on Vj.

Now since wj is an eigenfunction,
∫
Vj
wj > 0, so by (4.2) δ(Vj) ≥ j. Hence we

have:

+∞ = lim
j→∞

δ(Vj) = δ(fine interior of
∞⋂
j=1

Vj)

= δ(fine interior of Q). (4.3)

The second equality in (4.3) follows from Proposition 10. Note that we abuse the

notation in (4.3), the three δ in (4.3) are defined as the smallest eigenvalue of the

Dirichlet problem on a finely open set. δ agrees with the usual definition on Euclidean

open sets ([17]), so the left hand side of (4.3) is valid.

By (4.3), Q has empty fine interior in Cm. Claim 2 is proved.

Now apply claim 2 to K ∩ E and take m = q, the theorem follows.

Remark 4. It is well known (see [45] for example) that if bΩ contains a q-dimensional
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affine (or even analytic) polydisc where Ω is a bounded pseudoconvex domain, then

bΩ does not satisfy Property (Pq). Now notice that a Euclidean open set in Cn is

finely open in Cn, so the condition in Theorem 12 is more general than the absence

of complex q-dimensional affine varieties in the boundary.

4.2 A partial result on the converse of Theorem 12

Now let Ω be a smooth bounded pseudoconvex domain and K be the weakly

pseudoconvex points of bΩ, we also wish to address that whether the converse of

Theorem 12 is true. To be precise, Given Ω and K as above, if for any q-dimensional

affine subspace E in Cn, K ∩ E has empty fine interior with respect to the fine

topology in Cq, is it true that K has Property (Pq)? We obtained the following

partial result when q = 1:

Denote πP : Cn → Cn−1 the projection map from Cn onto the complex tangent

space defined locally at a boundary point P on Ω.

Theorem 13. Given Ω and K above, assume that for any boundary point P and

any complex line E in the complex tangent space at P , E ∩ πP (K) has empty fine

interior with respect to the fine topology in C. Then K has Property (P1) and hence

the boundary bΩ has Property (P1).

Proof. Take a neighborhood U ⊂ Cn of P such that the local complex tangent system

is well-defined. We will prove K ∩ V has Property (P1) for any open set V ⊂ U .

Denote {ξj}n−1
j=1 the orthonormal coordinates which span the complex tangent

space at P and ξn the complex normal at P . Denote Ej (j = 1, · · · , n − 1) the

complex line spanned by each ξj (j = 1, · · · , n− 1) passing through P .

By assumption, Ej ∩ πP (K) has empty fine interior with respect to the fine

topology in C, therefore for any M > 0, there exists an open neighborhood Uj ⊂ Ej
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of Ej ∩ πP (K), and a C2 smooth function (of one variable) λj(ξj) on Uj such that

0 ≤ λj ≤ 1 and
∂2λj
∂ξj∂ξj

≥M on Uj.

Define the linear projection map ηj from U ⊂ Cn to Ej by ηj(ξ1, · · · , ξn) = ξj,

j = 1, · · · , n − 1. We can now define a function λ on a neighborhood of K ∩ V by:

λ =
∑n−1

j=1 λj ◦ ηj +Mρ2, where ρ is the defining function of Ω.

Notice that λj ◦ ηj(ξ1, · · · , ξn) = λj(ξj), we can calculate the complex Hessian A

of
∑n−1

j=1 λj ◦ ηj on a neighborhood of K ∩V with respect to the coordinates {ξj}nj=1:

A =



∂2λ1
∂ξ1∂ξ1

0 · · · 0 0

0 ∂2λ2
∂ξ2∂ξ2

· · · 0 0

...
...

. . .
...

...

0 0 · · · ∂2λn−1

∂ξn−1∂ξn−1
0

0 0 · · · 0 0


.

We calculate the complex Hessian B of ρ2 on bΩ with respect to the coordinates

{ξj}nj=1:

B =



0 · · · 0 0

...
. . .

...
...

0 · · · 0 0

0 · · · 0 1


.

Hence for any ε > 0 (ε is independent of M and λ), we can choose a neighborhood

W of bΩ such that the eigenvalues of the complex Hessian Bε of ρ2 onW are η1, · · · , ηn

with |ηj| < ε for j = 1, · · · , n− 1 and |ηn − 1| < ε. Denote B0 = B when ε = 0.

Summing A and Bε on a neighborhood of K ∩ V . When ε = 0, the smallest

eigenvalue of the complex Hessian of λ is at least M on K ∩ V . Use the continuity

of the eigenvalues of the complex Hessian of ρ2 and notice that ε is independent of
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M , therefore the smallest eigenvalue of the complex Hessian of λ is at least M
2

on

a neighborhood of K ∩ V . Since ρ = 0 on bΩ, by the construction of λ, we also

conclude that 0 ≤ λ ≤ n on a neighborhood of K ∩ V . Since Property (P1) (or

generally Property (Pq)) is preserved by unitary change of coordinate systems, we

conclude that K ∩ V has Property (P1). Since Property (P1) is a local property by

Proposition 8, our theorem follows.

Remark 5. In [3], the idea of summing functions in each zj-plane (j = 1, · · · , n) is

used to create the function in the definition of Property (P1). We adapted this idea

in our proof of the theorem, however, we only need to sum n−1 functions in our case

and the last function Mρ2 comes for free. The key observation is that the function

Mρ2 only has positive eigenvalue in the complex normal direction on the boundary,

and such property can be used to produce an arbitrarily big eigenvalue in the complex

normal direction.
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5. THE SMALLNESS OF THE WEAKLY PSEUDOCONVEX POINTS ON

SMOOTH HARTOGS DOMAINS

Our study in the smallness of the weakly pseudoconvex points on the boundary of

a smooth bounded pseudoconvex Hartogs domain Ω in terms of Hausdorff measure

is motivated by the results of Sibony ([41]) and Boas ([3]) on general pseudoconvex

domains: Let q = 1 and assume that the set K of the weakly pseudoconvex points on

the boundary bΩ has Hausdorff 2-dimensional measure zero in Cn, then the boundary

bΩ has Property (P1) and hence the ∂-Neumann operator N1 is compact on L2
(0,1)(Ω).

(Boas ([3]) has an explicit construction of the function λ involved in the definition

of Property (P1).)

The general case is the following: Given a smooth bounded pseudoconvex domain

Ω ⊂ Cn, assume the set K of the weakly pseudoconvex points on the boundary bΩ

has Hausdorff 2q-dimensional measure zero in Cn, then is it true that the boundary

bΩ has Property (Pq) in Cn and the ∂-Neumann operator Nq is compact on L2
(0,q)(Ω)?

Sibony’s approach can not be generalized to the case q > 1 (see remarks after

Proposition 14). Therefore it is not clear (or unknown) that whether K(or bΩ)

always has Property (Pq). In this section, we give two examples of smooth complete

pseudoconvex Hartogs domains in C3 which have the desired property.

5.1 First example

Let Ω = {(z1, z2, z3)
∣∣ |z2|2 + |z3|2 < e−ϕ(z1), z1 ∈ D(0, 1)} and we assume ϕ ∈

C∞(D(0, 1)) and ϕ is subharmonic on D(0, 1). We assume further that ϕ has extra

regularity property such that bΩ is C∞ smooth and boundary points (z1, z2, z3) are

strictly pseudoconvex when |z1| is close to 1.

Denote the defining function ρ(z1, z2, z3) = |z2|2 + |z3|2 − e−ϕ(z1), the complex
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Hessian of ρ is:

(
∂2ρ

∂zj∂zk

)
j,k=1,2,3

=


−eϕ| ∂ϕ

∂z1
|2 + e−ϕ∆ϕ 0 0

0 1 0

0 0 1

 . (5.1)

The complex tangent space TC
(z1,z2,z3)(bΩ) = {(ξ1, ξ2, ξ3)| e−ϕ(z1) ∂ϕ

∂z1
ξ1+z2ξ2+z3ξ3 =

0}. We discuss three types of boundary points as follows:

Type I: On the boundary points of {(z1, z2, z3) ∈ bΩ| z2 = 0}.

The complex tangent space TC
(z1,z2,z3)(bΩ) can be expressed as: TC

(z1,z2,z3)(bΩ) =

(a, b,−a e−ϕ(z1)
z3

∂ϕ
∂z1

), where a, b ∈ C. Calculate the Levi form on Type I points (and

put in the boundary condition |z2|2 + |z3|2 = e−ϕ(z1)):

Levi form = |b|2 + e−ϕ(z1) ∂2ϕ

∂z1∂z1

|a|2 ≥ 0. (5.2)

We refer the reader to section 2.1 for the definition of Levi form. By (5.2), the

Levi form on Type I points is nonnegative. By taking b = 0, the weakly pseudoconvex

points of Type I points are precisely {(z1, z2, z3) ∈ bΩ| ∆ϕ(z1) = 0, z2 = 0}.

Type II: On the boundary points of {(z1, z2, z3) ∈ bΩ| z3 = 0}.

Similar as Type I points, we conclude that the Levi form is nonnegative on

Type II points and the weakly pseudoconvex points of Type II points are precisely

{(z1, z2, z3) ∈ bΩ| ∆ϕ(z1) = 0, z3 = 0}.

Type III: On the boundary points of {(z1, z2, z3) ∈ bΩ| z2 6= 0, z3 6= 0, ∂ϕ
∂z1

= 0}.

The complex tangent space TC
(z1,z2,z3)(bΩ) can be expressed as: TC

(z1,z2,z3)(bΩ) =

(a, b,− z2
z3
b), where a, b ∈ C.

Calculate the Levi form on Type III points (and put in the boundary condition

|z2|2 + |z3|2 = e−ϕ(z1)):
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Levi form = e−ϕ(|a|2∆ϕ+
|b|2

|z3|2
) ≥ 0. (5.3)

We conclude that the Levi form is nonnegative on Type III points and the weakly

pseudoconvex points of Type III points are precisely {(z1, z2, z3) ∈ bΩ| ∆ϕ(z1) =

0, ∂ϕ
∂z1

= 0, z2 6= 0, z3 6= 0}.

Type IV: On the boundary points {(z1, z2, z3) ∈ bΩ| z2 6= 0, z3 6= 0, ∂ϕ
∂z1
6= 0}.

The complex tangent space is spanned by (1,− e−ϕ

z2

∂ϕ
∂z1
, 0) and (1, 0,− e−ϕ

z3

∂ϕ
∂z1

). We

express any complex tangent at Type IV points as (a+b,−a e−ϕ
z2

∂ϕ
∂z1
,−b e−ϕ

z3

∂ϕ
∂z1

), where

a, b ∈ C. We calculate the Levi form at Type IV points (and put in the boundary

condition |z2|2 + |z3|2 = e−ϕ(z1)):

Levi form

= e−ϕ(z1)

[
∆ϕ · |a+ b|2 +

∣∣∣∣ ∂ϕ∂z1

∣∣∣∣2(|a|2 + |b|2 − |a+ b|2 + |a|2 |z3|2

|z2|2
+ |b|2 |z2|2

|z3|2

)]

≥ e−ϕ(z1)

[
∆ϕ · |a+ b|2 +

∣∣∣∣ ∂ϕ∂z1

∣∣∣∣2(|a| |z3|
|z2|
− |b| |z2|

|z3|

)2
]

≥ 0.

Therefore the Levi form is nonnegative on Type IV points. By setting the first

equality to zero in above calculation, the Levi form vanishes exactly when a = |z2|2
|z3|2 b

on points {(z1, z2, z3) ∈ bΩ| ∆ϕ(z1) = 0, ∂ϕ
∂z1
6= 0, z2 6= 0, z3 6= 0}. Note that

taking a = −b in the calculation above does not produce any weakly pseudoconvex

points. Therefore, the weakly pseudoconvex points of Type IV points are precisely

{(z1, z2, z3) ∈ bΩ| ∆ϕ(z1) = 0, ∂ϕ
∂z1
6= 0, z2 6= 0, z3 6= 0}.

Now take the union of all weakly pseudoconvex points of each type points,

we conclude that the weakly pseudoconvex points of bΩ are exactly {(z1, z2, z3) ∈

bΩ| ∆ϕ(z1) = 0, z1 ∈ D(0, 1)}.
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We have proved the following lemma:

Lemma 4. Define a smooth complete Hartogs domain Ω ⊂ C3 by:

Ω = {(z1, z2, z3)
∣∣ |z2|2 + |z3|2 < e−ϕ(z1), z1 ∈ D(0, 1)}.

Assume ϕ ∈ C∞(D(0, 1)), ϕ is subharmonic on D(0, 1) and ϕ has extra regularity

property such that boundary points (z1, z2, z3) are strictly pseudoconvex when |z1| is

close to 1. Then Ω is pseudoconvex and the weakly pseudoconvex set of bΩ is precisely

W = {(z1, z2, z3) ∈ bΩ| ∆ϕ(z1) = 0, z1 ∈ D(0, 1)}.

Lemma 5. Let Ω be as above in Lemma 4. If the weakly pseudoconvex points of bΩ

has Hausdorff 4-dimensional measure zero in C3, then {z1| ∆ϕ(z1) = 0} has Lebesgue

measure zero in C.

Proof. Denote the projection set of W (defined in Lemma 4) onto z1 − z2 plane as

A. Since W has Hausdorff 4-dim measure zero in C3, the Hausdorff 4-dim measure

of A in z1 − z2 plane is zero. Since Hausdorff 2q-dim measure is equal to a constant

multiplying Lebesgue measure in Cq (q ≥ 1), we conclude that the set A has Lebesgue

measure zero in C2.

Since W = {(z1, z2, z3) ∈ C3| ∆ϕ(z1) = 0, z1 ∈ D(0, 1), |z2|2 + |z3|2 = e−ϕ(z1)}, we

have: A = {(z1, z2)| ∆ϕ(z1) = 0, z1 ∈ D(0, 1), |z2|2 ≤ e−ϕ(z1)}.

For each fixed ξ1 ∈ C, Aξ1 := {z2| (ξ1, z2) ∈ A} contains a disk D(0, r) with

0 < r < e−ϕ(ξ1). Define δ = min
ξ1∈{∆ϕ=0}

e−ϕ(ξ1) > 0.

Since A has Lebesgue measure zero in C2 and by Fubini Theorem we have:

0 = m(A) =

∫
{(z1,z2)∈A}

dm(z1, z2)

=

∫
{∆ϕ=0}

dm(z1)

∫
z2∈Az1

dm(z2),
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m is the Lebesgue measure on each space respectively. By above discussion, for each

z1 ∈ {∆ϕ = 0},
∫
z2∈Az1

dm(z2) ≥ πδ2 > 0, hence m({∆ϕ = 0}) = 0 and the lemma

follows.

Proposition 15. Ω is defined as in Lemma 4. If the Hausdorff 4-dimensional mea-

sure of the weakly pseudoconvex points of bΩ is zero, then bΩ has Property (P1) and

the ∂-Neumann operator N1 is compact.

Proof. Any strictly pseudoconvex points of bΩ is of finite type and hence any compact

subsets of strictly pseudoconvex points of bΩ has Property (P1) ([9]). Therefore

it suffices to prove that the weakly pseudoconvex points W of bΩ has Property

(P1) and apply Proposition 9 to conclude our claim. Define the projection map

π(z1, z2, z3) = z1. By Lemma 5, π(W ) has Lebesgue measure zero in z1-plane. By

Corollary 1, π(W ) has Property (P1).

On W , the function −|z|2 = −|z1|2−e−ϕ(z1), which becomes a function of z1 alone.

Since π(W ) has Property (P1), −|z1|2− e−ϕ(z1) ∈ P1(π(W )). We can find a sequence

of function {λm(z1)}∞m=1 such that limm→∞ ||λm(z1) − (−|z1|2 − e−ϕ(z1))||∞,π(W ) =

0, and each λm(z1) ∈ P1(Um) for some open neighborhood Um ⊃ π(W ). Since

λm ◦ π(z1, z2, z3) = λm(z1), we have:

lim
m→∞

||λm ◦ π − (−|z|2)||∞,W

= lim
m→∞

||λm ◦ π − (−|z1|2 − e−ϕ(z1))||∞,W

≤ lim
m→∞

||λm(z1)− (−|z1|2 − e−ϕ(z1))||∞,π(W )

= 0.

Therefore −|z|2 ∈ P1(W ) by above inequality together with the fact that each λm ◦π

∈ P1(π−1(Um)) ⊂ P1(Vm), where each Vm ⊂ C3 is an open neighborhood of W .
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Therefore W has Property (P1) and our proposition follows.

Remark 6. Our result on Ω is unexpected in the sense that W would be expected

to only have Property (P2) when we assume the Hausdorff 4-dimensional measure of

W is zero. Hence this example suggests that Hausdorff measure is a crude tool to

characterize Property (Pq) of the boundary for the case of q > 1.

5.2 Second example

We look at another smooth complete Hartogs domain in C3, although most cal-

culation procedure remains the same, our result demonstrates an approach to control

second derivatives when proving Property (Pq) for q > 1.

Let Ω = {(z1, z2, z3)| |z3|2 < e−ϕ(z1)−ψ(z2), z1 ∈ D(0, 1), z2 ∈ D(0, 1)}. We assume

that ϕ, ψ ∈ C∞(D(0, 1)) and subharmonic on D(0, 1) in the respective complex plane.

Assume further that the boundary points (z1, z2, z3) are strictly pseudoconvex when

(z1, z2) is close to b(D(0, 1) × D(0, 1)). By replacing the distinguished boundary of

D(0, 1)×D(0, 1) with some smooth boundary (for example the boundary of any ball),

we may assume Ω has a smooth boundary.

Denote the defining function ρ(z1, z2, z3) = |z3|2− e−ϕ(z1)−ψ(z2), the complex Hes-

sian of ρ is:

(
∂2ρ

∂zj∂zk

)
j,k=1,2,3

=


−eϕ−ψ(∆z1ϕ−

∣∣∣ ∂ϕ∂z1 ∣∣∣2) − ∂ϕ
∂z1

∂ψ
∂z2
e−ϕ−ψ 0

− ∂ϕ
∂z1

∂ψ
∂z2
e−ϕ−ψ −eϕ−ψ(∆z2ϕ−

∣∣∣ ∂ψ∂z2 ∣∣∣2) 0

0 0 1

 .

The complex tangent space at a boundary point (z1, z2, z3) is:

TC
(z1,z2,z3)(bΩ) =

{
(ξ1, ξ2, ξ3)

∣∣∣∣ e−ϕ(z1)−ψ(z2) ∂ϕ

∂z1

ξ1 + e−ϕ(z1)−ψ(z2) ∂ψ

∂z2

ξ2 + z3ξ3 = 0

}
.
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The complex tangent space is spanned by (0, 1,−
∂ψ
∂z2

z3
e−ϕ−ψ) and (1, 0,−

∂ϕ
∂z1

z3
e−ϕ−ψ),

hence we have:

TC
(z1,z2,z3)(bΩ) =

(
b, a,−e

−ϕ−ψ

z3

(a
∂ψ

∂z2

+ b
∂ϕ

∂z1

)

)
,

where a, b ∈ C. Now calculate the Levi form (and put in the boundary condition

|z3|2 = e−ϕ(z1)−ψ(z2)):

Levi form = e−ϕ−ψ(∆z1ϕ · |b|2 + ∆z2ψ · |a|2) ≥ 0.

Therefore Ω is pseudoconvex and by taking a = 0 and b = 0 in above equation

respectively, the weakly pseudoconvex points on Ω are precisely the union of the

following two sets (I) and (II):

(I): {(z1, z2, z3) ∈ bΩ| ∂2ϕ
∂z1∂z1

= 0; z2 ∈ D(0, 1)}.

(II): {(z1, z2, z3) ∈ bΩ| ∂2ψ
∂z2∂z2

= 0; z1 ∈ D(0, 1)}.

Notice that neither (I) nor (II) has Property (P1) in C3, since each of them

contains a copy of D(0, 1).

Proposition 16. Define the smooth complete Hartogs domain Ω as above. Ω is

pseudoconvex. If the Hausdorff 4-dimensional measure of the weakly pseudoconvex

points of bΩ is zero, then bΩ has Property (P2) and the ∂-Neumann operator N2 is

compact.

Proof. We first prove that the set (I) above has Property (P2) in C3. Denote A1 as the

projection set of (I) onto z1−z2 plane. Then A1 = {(z1, z2)|∆z1ϕ = 0; z2 ∈ D(0, 1)},

and by the same argument in Proposition 15, A1 has Lebesgue measure zero in C2.
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Apply Fubini Theorem, we have:

0 = m(A1) =

∫
{∆z1ϕ=0}

dm(z1)

∫
D(0,1)

dm(z2),

where m is the Lebesgue measure in the respective complex plane. Hence m({∆z1ϕ =

0}) = 0, and by Corollary 1, {z1 ∈ D(0, 1)| ∂2ϕ
∂z1∂z1

= 0} has Property (P1).

Denote A2 as the projection set of (I) onto z2 − z3 plane, again we conclude

that A2 has Lebesgue measure zero in C2. Hence A2 has Property (P2) in C2 by

Proposition 12.

Fix any M > 0, there exists an open neighborhood U ⊂ C2 of A2 and a C2

smooth function η(z2, z3) such that 0 ≤ η ≤ 1 and ∂2η
∂z2∂z2

+ ∂2η
∂z3∂z3

≥M on U .

Now define M ′ = sup
(z2,z3)∈A2

(
2

2∑
j,k=1

∣∣∣ ∂2η
∂zj∂zk

(z2, z3)
∣∣∣) > 2M .

Given M ′, there exists an open neighborhood V ⊂ C of {z1 ∈ D(0, 1)| ∂2ϕ
∂z1∂z1

= 0}

and a C2 smooth function γ(z1) such that 0 ≤ γ ≤ 1 and ∂2γ
∂z1∂z1

> M ′ on V .

We define λ(z1, z2, z3) = 1
2

(γ(z1) + η(z2, z3)), by our construction, λ is well-

defined on a neighborhood S of the set (I), and 0 ≤ λ ≤ 1 on S.

For all (0, 2)-forms u at z ∈ S, we have:

2
∑
|K|=1

3∑
j,k=1

∂2λ

∂zj∂zk
(z1, z2, z3)ujKukK

= |u12|2
(

∂2γ

∂z1∂z1

+
∂2η

∂z2∂z2

)
+ |u13|2

(
∂2γ

∂z1∂z1

+
∂2η

∂z3∂z3

)
+|u23|2

(
∂2η

∂z2∂z2

+
∂2η

∂z3∂z3

)
+ 2Re

(
∂2η

∂z2∂z3

u12u13

)
≥ |u12|2

(
∂2γ

∂z1∂z1

+
∂2η

∂z2∂z2

−
∣∣∣∣ ∂2η

∂z2∂z3

∣∣∣∣)
+|u13|2

(
∂2γ

∂z1∂z1

+
∂2η

∂z3∂z3

−
∣∣∣∣ ∂2η

∂z2∂z3

∣∣∣∣)
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+|u23|2
(

∂2η

∂z2∂z2

+
∂2η

∂z3∂z3

)
> M(|u12|2 + |u13|2 + |u23|2)

= M |u|2.

Hence the set (I) has Property (P2) in C3 by Lemma 1. Similarly, the set (II) has

Property (P2) in C3. The rest of boundary points are strictly pseudoconvex points, by

the same argument at the beginning of Proposition 15, our proposition follows.
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6. A VARIANT OF PROPERTY (Pn−1) ON SMOOTH PSEUDOCONVEX

DOMAINS

In this section, we study a different variant of Property (Pn−1) on smooth pseu-

doconvex domains in Cn, which implies the compactness of Nn−1 on L2
(0,n−1)(Ω).

Besides Property (Pq), McNeal’s ([37]) Property (P̃q) implies the compactness of

Nq on smooth pseudoconvex domains in Cn and Straube’s ([44]) “short time flow”

condition implies the compactness of N1 on smooth pseudoconvex domains in C2.

However, the relation between both conditions and Property (Pq) on the respective

level of forms is not fully understood.

Let U be a neighborhood of any boundary point of Ω, {ω1, · · · , ωn} be (1, 0)-

forms on U which form a special boundary frame and {L1, · · · , Ln} be the dual

basis of {ω1, · · · , ωn}, where Li (i = 1, · · · , n − 1) are complex tangents and Ln is

the complex normal. We refer the reader to section 2.1 for the definition of special

boundary chart and the notations there. Given a function f ∈ C2(U), define {fjk}

as the coefficients in the following summation: ∂∂f =
∑n

j,k=1 fjkω
j ∧ ωk. Define

u =
∑′

J uJωJ ∈ C∞(0,n−1)(Ω)∩dom(∂
∗
) with supp(u) ∈ Ω∩U and ϕ ∈ C2(Ω). Denote

ρ as the defining function of Ω. Our start point is a variant Hörmander-Kohn-Morrey

type formula which is due to Ahn ([1]) and Zampieri ([46]).

Proposition 17 ([1, 46]). For every integer s with 1 ≤ s ≤ n− 1:

C(||∂u||2ϕ + ||∂∗ϕu||2ϕ) + C||u||2ϕ (6.1)

≥
∑′

|K|=n−2

n∑
j,k=1

∫
Ω

ϕjkujKukKe
−ϕ dV −

∑′

|J |=n−1

∑
j≤s

∫
Ω

ϕjj|uJ |2e−ϕ dV

+
∑′

|K|=n−2

n∑
j,k=1

∫
bΩ

ρjkujKukKe
−ϕ dσ −

∑′

|J |=n−1

∑
j≤s

∫
bΩ

ρjj|uJ |2e−ϕ dσ.
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Here u, ϕ, Ω and ρ are defined as above.

To apply above estimate in our case, notice that since we work with (0, n − 1)

form u, the only tangential part of u is u1,2,··· ,n−1 ω1∧ω2∧ · · · ∧ωn−1 (see section 2.2

for the definition of the tangential part of u), therefore if we control the regularity

estimate of u1,2,··· ,n−1, we can derive the desired compactness estimate.

Proposition 18. Let Ω be a smooth pseudoconvex domain, u =
∑

J uJωJ ∈ C∞(0,n−1)(Ω)

∩dom(∂
∗
) with supp(u) ∈ Ω∩U , where U and {ωj}nj=1 forms a special boundary chart

defined as above. Let ϕ ∈ C2(Ω) and denote ρ as the defining function of Ω. We

have the following estimates:

∫
Ω

(
n−1∑
s=1

ϕss − ϕtt)|u1,2,··· ,n−1|2e−ϕ dV

≤ C(||∂u||2ϕ + ||∂∗ϕu||2ϕ + ||u||2ϕ) + Cϕ||e−
ϕ
2 u||2−1, ∀1 ≤ t ≤ n− 1. (6.2)

Proof. We make use of the estimate in Proposition 17 in our proof. Take s = 1 in

Proposition 17.

We start with the last two terms in the estimate (6.1) and put in the condition

unK = 0 on bΩ (since u ∈ dom(∂
∗
)):

∑′

|K|=n−2

n∑
j,k=1

∫
bΩ

ρjkujKukKe
−ϕ dσ =

∫
bΩ

(
n−1∑
j=1

ρjj)|u1,2,··· ,n−1|2e−ϕ dσ,

∑′

|J |=n−1

∑
j≤s

∫
bΩ

ρjj|uJ |2e−ϕ dσ =

∫
bΩ

ρ11|u1,2,··· ,n−1|2e−ϕ dσ.

Therefore, the last line in the estimate (6.1) becomes:

∑′

|K|=n−2

n∑
j,k=1

∫
bΩ

ρjkujKukKe
−ϕ dσ −

∑′

|J |=n−1

∑
j≤s

∫
bΩ

ρjj|uJ |2e−ϕ dσ
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=

∫
bΩ

(
n−1∑
j=2

ρjj)|u1,2,··· ,n−1|2e−ϕ dσ ≥ 0. (6.3)

Notice that we use the fact ρjj ≥ 0 for all j ≥ 1 by pseudoconvexity of Ω.

To estimate the second line in the estimate (6.1), we first take the two sums

running over the indices of the tangential part of u:

∑′

|K̃|=n−2

n∑
j,k=1

∫
Ω

ϕjkujK̃ukK̃e
−ϕ dV −

∑′

|J̃ |=n−1

∑
j≤s

∫
Ω

ϕjj|uJ̃ |
2e−ϕ dV

=

∫
Ω

(
n−1∑
j=1

ϕjj)|u1,2,··· ,n−1|2e−ϕ dV −
∫

Ω

ϕ11|u1,2,··· ,n−1|2e−ϕ dV

=

∫
Ω

(
n−1∑
j=2

ϕjj)|u1,2,··· ,n−1|2e−ϕ dV, (6.4)

where K̃ is the set of (n − 2)-tuples of K which do not contain n and J̃ is the of

(n− 1)-tuples of J which do not contain n.

To estimate the error terms from the difference of indices, we notice that the

error terms only involve (coefficients of) the normal parts of u. These terms can be

estimated in a standard argument: Let I be an increasing (n − 1)-tuple fixed. By

the classical Sobolev estimates of ∆ (see [23] for example), we have:

||(uNorm)I · e−
ϕ
2 ||1 ≤ ||∆((uNorm)I · e−

ϕ
2 )||−1

≤ Cϕ(||u · e−
ϕ
2 ||+ ||∂u · e−

ϕ
2 ||+ ||∂∗ϕu · e−

ϕ
2 ||). (6.5)

The second inequality of (6.5) follows from the fact that ∂ϑ+ϑ∂ acts coefficientwise

as −1
4
∆ on domains in Cn (see for example in [45], lemma 2.11), where ϑ is formal

adjoint of ∂. Since we only need to estimate the L2 norm of the normal parts of

u, applying Proposition 6, we can use the interpolation of Sobolev norms (from
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W 1-norm to W−1-norm) to make the constant Cϕ in (6.5) be independent of ϕ:

||(uNorm)I · e−
ϕ
2 ||0

≤ ε||(uNorm)I · e−
ϕ
2 ||1 + Cε||(uNorm)I · e−

ϕ
2 ||−1

≤ εCϕ||u||0,ϕ + εCϕ||∂u||0,ϕ + εCϕ||∂
∗
ϕu||0,ϕ + Cϕ,ε||ue−

ϕ
2 ||−1. (6.6)

Take ε < 1
Cϕ

, and hence we have:

||(uNorm)I ||0,ϕ ≤ C(||u||0,ϕ + ||∂u||0,ϕ + ||∂∗ϕu||0,ϕ) + Cϕ||ue−
ϕ
2 ||2−1. (6.7)

Now first apply Cauchy inequality to all normal parts of u in the second line of

the estimate (6.1), use (6.7) (the coefficients ϕjk can be absorbed by ε in (6.6)) to

estimate the normal parts of u, then use (6.4) to estimate the tangential parts of u

in the second line of the estimate (6.1) and apply Proposition 17, we have:

∫
Ω

(
n−1∑
s=2

ϕss)|u1,2,··· ,n−1|2e−ϕ dV

≤ C(||∂u||2ϕ + ||∂∗ϕu||2ϕ + ||u||2ϕ) + Cϕ||e−
ϕ
2 u||2−1. (6.8)

We proved the proposition for t = 1, for the rest cases we just need to permute the

basis in the special boundary chart and by symmetry, our proposition follows.

Now cover bΩ by finitely many special boundary charts {Vj}Nj=1.

Definition 4. For a smooth bounded pseudoconvex domain Ω ⊂ Cn (n > 2), bΩ

has Property (P#
n−1) if the following holds on each chart Vj: For any M > 0, there

exists a neighborhood U of bΩ and a C2 smooth function λ on U ∩ Vj, such that

0 ≤ λ(z) ≤ 1 and there exists t (1 ≤ t ≤ n − 1) such that
∑n−1

s=1 λss − λtt ≥ M on

U ∩ Vj.
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Remark 7. (1) Our definition of Property (P#
n−1) does not depend on the eigenval-

ues of the complex Hessian of λ in the definition of the original Property (Pn−1),

indeed only the diagonal entries in the complex Hessian of λ are involved in

our definition of Property (P#
n−1). However such Property (P#

n−1) can only be

formulated within the special boundary charts.

(2) By Schur majorization theorem, Property (Pn−2) implies Property (P#
n−1), but it

is still unclear what the relation is between Property (Pn−1) and Property (P#
n−1).

6.1 Main Theorem 14

Now we prove the main theorem in this section:

Theorem 14. Let Ω ⊂ Cn (n > 2) be a smooth bounded pseudoconvex domain. If bΩ

has Property (P#
n−1), then the ∂-Neumann operator Nn−1 is compact on L2

(0,n−1)(Ω).

Proof. Fix M > 0, by Proposition 4 we need to prove the following compactness

estimate for (0, n− 1) forms u ∈ dom(∂) ∩ dom(∂
∗
):

||u||2 ≤ C

M
(||∂u||2 + ||∂∗u||2) + CM ||u||2−1. (6.9)

It suffices to establish (6.9) for u ∈ C∞(0,n−1)(Ω)∩ dom(∂
∗
) by using the density of

these forms in dom(∂) ∩ dom(∂
∗
) (See Proposition 7).

Since bΩ has Property (P#
n−1), on each special boundary chart Vj, there exists an

open neighborhood UM of bΩ and a C2 smooth function λM on UM ∩ Vj such that

0 ≤ λM ≤ 1 and ∃t (1 ≤ t ≤ n−1) such that
∑n−1

s=1 λMss−λMtt ≥M on UM ∩Vj. By

choosing a function η in C2(Ω) which agrees near UM ∩ Vj with λM and 0 ≤ η ≤ 1

on Ω, we can further assume λ ∈ C2(Ω) and 0 ≤ λ ≤ 1.

Now assume first that u is supported near the boundary and by a partition

of unity, we may assume that u is supported in Vj ∩ UM for some j. We apply
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Proposition 18 with ϕ = λM and notice that the weighted norm is comparable to the

usual unweighted L2-norm since 0 ≤ λM ≤ 1, hence we have:

∫
Ω

|u1,2,··· ,n−1|2 dV ≤
C

M
(||∂u||2 + ||∂∗u||2 + ||u||2) + CM ||u||2−1. (6.10)

By estimate (6.10), we only need to estimate the normal part of u, but this can be

done exactly the same as we did in the proof of Proposition 18. Hence estimate (6.10)

holds when we replace the left side with normal components of u. Now absorbing

the the C
M
||u||2 into the left side, we have:

||u||2 ≤ C

M
(||∂u||2 + ||∂∗u||2) + CM ||u||2−1. (6.11)

Hence the compactness estimate is established when u is supported near the bound-

ary.

When u has compact support in Ω, the desired compactness estimate follows

from the interior elliptic regularity of ∂⊕ ∂∗ with the constant C independent of the

support: Let V contains the support of U and by the interior elliptic regularity:

||u||21,V ≤ CV (||∂u||20,V + ||∂∗u||20,V + ||u||2W−1(Ω)). (6.12)

We refer the reader to [23] for general discussions of interior elliptic regularity

and see also [45] under the context of ∂-Neumann problem. Note that in above

estimate we also use the fact that || · ||W−1(V ) . || · ||W−1(Ω) by duality. Since we only

need to estimate the L2-norm of u, we can again use interpolation of Sobolev norms

(between W 1-norm and W−1-norm) in the same way as we did in Proposition 18 to

make the constant CV before the terms ||∂u|| and ||∂∗u|| independent of V . Hence

the compactness estimate follows for u compactly supported in Ω.
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Finally when u ∈ C∞(0,n−1)(Ω) ∩ dom(∂
∗
), choose a partition of unity of Ω, say

χ0 and χ1, such that χ0 is supported in Ω and χ1 is supported near bΩ. We have

established the compactness estimates for χ0u and χ1u. Notice that ∂ or ∂
∗

produces

derivatives of χ0 and χ1 which contain no derivatives of u. Hence these terms are

compactly supported in Ω and can be estimated in the same way as in the last two

paragraphs. Therefore our compactness estimate holds and the theorem follows.
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7. SUMMARY

In section 1, we briefly discussed the significance of studying Property (Pq) and

the compactness of the ∂-Neumann operator Nq. We also discuss the motivation of

our research on the analysis of Property (Pq), related with the main results in the

dissertation.

In the first part of section 2, we gave the set up of the ∂-Neumann problem and

introduced various regularity properties of the ∂-Neumann operator Nq. We also

introduced the definition of Property (Pq) and its basic properties. In the second

part of section 2, we discussed preliminary results from classical potential theory and

their applications in the study of Property (Pq).

In section 3, we first gave a special result regarding the invariance property of

Property (P1) for a compact subset in C. Then we introduced a twisted Property

(Pq) induced by a certain holomorphic mapping π : Cn → Cq and show that if given

a compact subset K in Cn, the image set π(K) has the twisted Property (Pq) in the

Cq subspace and each fiber of K∩π−1(x) has Property (Pq) in Cn for every x ∈ π(K),

then K has Property (Pq) in Cn. This invariance property is a partial generalization

of Sibony’s ([41]) result. Our proof partially overcome the difficulty in the case of

q > 1 which is not detected in the case of q = 1.

In section 4, we first studied the obstruction to Property (Pq) for a compact set

K in Cn. We proved that if K has Property (Pq), then for any q-dimensional affine

subspace E in Cn, K ∩ E has empty fine interior with respect to the fine topology

in Cq. Our proof utilized several results in the classical potential theory. Our result

generalizes Sibony’s ([41]) result on the complex plane. We then proved a special

case regarding the converse of the previous result on a smooth pseudoconvex domain.
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In the proof of this special case, we utilized Boas’s ([3]) idea of summing functions.

In section 5, we gave two concrete examples of smooth complete Hartogs domains

in C3 concerning the smallness of weakly pseudoconvex points on the boundary.

While both examples conclude that if the Hausdorff 4-dimensional measure of the

set of weakly pseudoconvex points is zero then the boundary has Property (P2), the

first example suggested that Hausdorff measure is a crude tool to completely capture

the information of Property (Pq) (q > 1) on higher levels of forms, which was not

detected in the case of q = 1 in Sibony’s ([41]) results. In the second example we

developed an approach to control second derivatives of the function λ occurring in

the definition of Property (Pq) and we also utilized Boas’s ([3]) idea of summing

functions in the proof.

In section 6, we introduced a variant of Property (Pn−1) on smooth pseudoconvex

domains in Cn (n > 2) which implies the compactness of the ∂-Neumann operator

Nn−1. Our new Property (P#
n−1) does not depend on the eigenvalues of the complex

Hessian of λ in the definition of the original Property (Pn−1), indeed only the diagonal

entries in the complex Hessian of λ are involved in our definition of Property (P#
n−1).

However, whether such definition can be generalized to the other level of forms is

still unclear.
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