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ABSTRACT 

 

 

A modified incorporated snow algorithm in Soil and Water Assessment Tool 

(SWAT) was applied to consider spatial variation of associated snow parameters by 

elevation band for flow simulation of five mountainous river basins with different 

climatic conditions including the Narayani (Nepal), Vakhsh (Central Asia), Rhone 

(Switzerland), Mendoza (Central Andes, Argentina), and Central Dry Andes (Chile) with 

total area of 85,000 km2. The results by modified snow algorithm implied slight to 

noticeable improvement in simulation of flow cycles and volume depend on the 

percentage of glacier area and climatic type of a subbasin.  

The ability of model in simulation of glacier mass balance and Equilibrium Line 

Altitude (ELA) then was evaluated for three reference glaciers and their neighboring 

glacier ranges across the Europe and central Asia. The modified model successfully 

simulated the annual glacier loss, mass balance profile and annual ELAs with light 

calibration efforts and limited data. The results revealed that even very good result in 

monthly runoff simulation alone does not imply the consistency between simulated and 

measured mass balances. Calibrating the model versus flow data in combination with 

data of glaciers considerably reduced the model parameterization uncertainty and 

enhanced mass balance simulation accuracy.  

To assess the range of future climate change impacts on the glacier runoff, we 

used maximum, minimum air temperature and precipitation projections under two RCPs 
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(Representative Concentration Pathway) climate change scenarios and six Coupled 

Model Intercomparison Project-5 (CMIP5) models. Simulations of mean annual and 

monthly runoff, high (Q5) and low (Q95) monthly runoff and flow duration curves 

(FDCs) under baseline (1979–2008) and climate change scenarios are presented for all 

river basins. The variation of ELA related to a moderate climate change scenario then 

was predicted for a test study area. Therefore, the objectives of this study are:  

1. Evaluating SWAT’s snow hydrologic component in glaciered basins,  

2. Improvement of SWAT snow/ice melt processing,  

3. Extending the applied method to macro-scale river basins, 

4. Assessing the effect of future climate change on the streamflow volume and 

seasonal variability with focusing on glaciered areas,  

5. Investigating that the global mountainous glaciers will be vanished by 2100.  
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CHAPTER I 

HYDROLOGICAL MODELING OF HIGHLY GLACIERIZED RIVER BASINS 

 

 

Overview 

In this study the physically based hydrologic model, Soil and Water Assessment 

Tool (SWAT), was used for flow simulation of five river basins that are global in 

coverage and feature contrasts in climatic conditions. The river basins included the 

Narayani (Nepal), Vakhsh (Central Asia), Rhone (Switzerland), Mendoza (Central 

Andes, Argentina), and Central Dry Andes (Chile) with a total area of 85,000 km2. The 

model performance was first evaluated for default, non-adjusted melt parameters in the 

absence of elevation bands. The model took into consideration elevation bands to model 

precipitation and temperature change with altitude, in the presence and elimination of the 

glaciers for some of the river basins.  

The purpose of this evaluation was to assess the influence of orographic 

precipitation and temperature lapse rate plus glaciers on flow simulation of river basins 

under various climatic condition and scale. This also reveals the importance of adjusting 

the melt parameters with consideration to the hydrologic regime of the ungauged basins. 

Adding the elevation bands obviously enhanced the model performance in terms of 

magnitude and variation for Mendoza, Rhone and Nepal, respectively. In absence of 

elevation bands R2 range between 0.68 and 0.91 and NSE range from -1.97 to -0.34 for 

Rhone River Basin, while adding the elevation bands improved the simulation results so 
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that R2 and NSE range between 0.78 to 0.95 and -0.19 to 0.93, respectively. PBIAS 

range also decreased from -62% and -153.6% to -87.7% and -8.2%. The results implied 

that the model performance in simulation of flow was considerably improved in terms of 

variation of flow by adding the glacier for all river basins. 

Three SWAT snow melt algorithms were then evaluated for melt parameter 

distribution based on total basin (Method 1), subbasins (Method 2), and subbasin-

elevation bands (Method 3) for some of the gauged subbasins. The results by Method3 

showed slight to noticeable improvement in simulation of spatial distribution of melt, 

flow cycles and volume in comparison with Method 2. Method 3 was dependent on the 

percentage of glacier area, glacier distribution and climatic type of a subbasin. This 

study is the first to examine the second and third methods of snow melt simulation using 

the SWAT model. 

Introduction 

In mountainous regions, snow and glacier melt significantly affect the runoff 

cycle and volume by storing water over a range of temporal scales (Jansson et al., 2003) 

and releasing it during dry years. Therefore, the ability of hydrological models to 

accurately predict runoff from snowy and glaciered watersheds depends on how well the 

model simulates snow fall, snow/glacier storage and melt. The two basic snow melt 

approaches generally used in hydrologic modeling are categorized into energy balance 

models and temperature-index models (Anderson, 1976). Temperature-index models are 

widely used in hydrological studies due to the models performance, simplicity and 
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availability of temperature data (Schaper et al., 2000; Moore, 1993; Debele and 

Srinivasan, 2005).  

Despite the simplicity, in temperature-index based runoff models such as SWAT, 

melt rates only vary as a function of elevation resulting from an air temperature gradient 

(Hock, 2003). To overcome this weakness, a modified snow process was applied in 

order to consider spatial variation of snow melt and accumulation parameters by 

elevation band across each subbasin. In previous studies using SWAT, snow melt and 

accumulation parameters were held constant for the entire basin (Pradhanang et al., 

2011; Wang and Melesse, 2005; Zhang et al., 2008; Stehr et al., 2009; Ahl et al., 2008). 

Although, this method was successful in simulation of snow melt flow, simulation of 

runoff from glaciered watersheds demands a distributed model for distinguishing of 

seasonal snow from glacier.  

The new approach allows separating seasonal snow from glaciers based on the 

vertical (elevation bands) and horizontal variability (subbasins) of associated melt 

parameters. In this study, three SWAT snow melt algorithms were evaluated based on 

the degree of melt parameter distribution (basin, subbasin, elevation bands) on a  basin 

scale (Method 1), subbasin scale (Method 2), and subbasin-elevation band scale (Method 

3). In Method1, snow melt and accumulation parameters are constant within the basin. In 

Method 2, snow melt and accumulation parameters are allowed to vary on a subbasin 

scale. Separating of seasonal snow from glaciers not allowed in this method and it 

demands very small subbasin divisions to achieve good results. In Method3, snow melt 

and accumulation parameters are allowed to be spatially variable within the elevation 
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bands and subbasins; this allowing differentiation between seasonal snow and glaciers. 

Methods 2 and 3 have not been examined in the previous studies by SWAT.  

The three snow process algorithms were examined for their ability to simulate flow in 

five river basins that provide global assessment and feature contrasts in climatic 

conditions. The river basins included are the Narayani (Nepal), Vakhsh (Central Asia), 

Rhone (Switzerland), Mendoza (Central Andes, Argentina), and Central Dry Andes 

(Chile) with a total area of 85,000 km2. There is widespread evidence that glaciers are 

retreating in these regions (Agrawala et al., 2003; Huss et al., 2008; Schäfli et al., 2007; 

Pellicciotti et al., 2005; Shreshtha and Aryal, 2011; Zemp et al., 2006a; Rafferty, 2011). 

Major fraction of glacial meltwater is temporarily stored in reservoir lakes and help drive 

hydropower turbine during dry summers in Rhone River Basin (Schafli et al., 2007). 

There are some countries, such as Norway and Switzerland that depend almost entirely 

on hydropower for their various electrical energy needs (Rafferty, 2011).  In the Andes, 

glacial meltwater supports river flow and water supply for tens of millions of people 

during the long dry season (Pellicciottu et al., 2008). Chile is one of the most urbanized 

countries in South America and majority of the people lives in central Chile. Increase in 

the meltwater has already taken place and the glaciers are now in a phase of diminishing 

contribution to the northern Chilean basins stream flow (Pellicciottu et al., 2008). Nepal 

also has one of the highest population densities in the world with respect to cultivable 

land (MOPE 2000). Nepal’s economy heavily relies on agricultural products. Nearly 

91% of the nation’s power comes from hydroelectric power (Agrawala et al., 2003). Any 

variation in river flow from glacier melt put at risks both hydro power and agriculture. 
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Therefore, the objectives of this study were to: 1) evaluate SWAT’s snow 

hydrologic component in simulation of streamflow in glaciered basins, 2) improve the 

model’s snow/ice melt processing algorithm, 3) extend the applied method to macro-

scale river basins that are global in coverage and vary in climatic condition.  

Literature Review 

The SWAT model is a semi-distributed, physically based model which was 

developed to predict the impact of land management practices on water, sediment, and 

agricultural chemical yields in large complex watersheds (Neitsch et al., 2002). The 

SWAT model has been applied worldwide, and its hydrologic components have been 

successfully tested where streamflows were predominantly generated from rainfall 

events (Arnold et al., 1999; 2000; Di Luzio et al., 2002; Srinivasan et al., 1998).  

The model less frequently has been applied in mountainous watersheds and a few 

recent studies have been conducted to test and improve SWAT’s snow hydrology 

component. Fontaine et al. (2002) incorporated the elevation bands method with the 

SWAT model’s original snowmelt algorithm (temperature-index model), which 

improved the Nash-Sutcliffe coefficient of monthly runoff simulation from -0.70 to 0.86 

in the 4,999 km2 Rocky Mountain Basin in Wyoming. Debele and Srinivasan (2005) 

incorporated a modified version of SNOW17 into SWAT and compared its performance 

with the temperature-index model in three watersheds (ranging from 22.28 to 7,106.82 

km2), the results of which showed that the temperature-index model performed better 

than the SNOW17 model. Debele et al. (2010) incorporated the distributed process-

based energy budget SNOWEB in the pixel and elevation band scales into SWAT and 
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compared its performance with the temperature-index model. In this method, it was 

assumed that solar radiation varies not only with latitude and altitude of subbasins, 

which is applied in the current version of SWAT, but also with land surface inclinations 

(aspect and slope). The temperature-index based snowmelt computation method had 

overall model efficiency coefficients ranging from 0.49 to 0.73 in simulation of monthly 

streamflow while the energy budget based approach had efficiency coefficients ranging 

from 0.33 to 0.59 only. Zhang et al. (2008) applied SNOW17 in SWAT at the pixel 

scale. The SWAT model with temperature-index plus elevation bands performed as well 

as the SWAT model with SNOW17. 

One simple and common approach that has been widely used in hydrological 

models in order to simulate melt water is the Enhanced Temperature-Index Model 

(ETIM) (Hock, 1999; 2003). This method exhibits significant improvements in model 

performance when compared with the classical temperature-index approach, with a 

minimal increase in data requirements (e.g. Hock, 1999; Huss et al., 2008). While 

distributed, process-based, energy budget models have been tested in SWAT; no studies 

have been done to incorporate the enhanced temperature-index model to SWAT. This 

method is advantageous in simulation of melt water from snow and glacier separately 

when incorporated to a distributed hydrologic model. In this model, spatial and temporal 

distribution of melt depends on the spatial and temporal variations of the melt factor in 

terms controlled by solar radiation variations.  

Both the SWAT melt model and ETIM simulate the temporal variability of the 

melt factor. In SWAT, temporal variation of the melt factor is modelled by a sinusoidal 
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equation and ranges between user defined maximum and minimum melt factor 

parameters, whereas, in ETIM, the melt factor varies based on the solar radiation 

variation, which is updated every day.  

Solar radiation is spatially varied in the pixel and band scales in recent 

hydroglacial models (Hock, 2003; Magnusson et al., 2011). The effect of solar radiation 

variation, with aspect and slope, on snow/glacier driven runoff has been investigated 

comprehensively in previous studies and no significant improvement was detected in the 

results (Debele and Srinivasan, 2005; Debele et al., 2010). However, we focused on 

another component of frequently used glacier/snow melt models. A major difference 

between SWAT melt processes and the melt routine of hydroglacial models arises from 

the associated melt parameter distribution (i.e. melt factor). In previous studies using 

SWAT, associated snow melt parameters were held constant for the entire basin; while, 

in the hydroglacial models melt factors are spatially variable in pixel or band scales. A 

common approach is to assign two different melt factors to ice and snow. This enables 

the user to treat seasonal snow and glaciers separately. It is obvious that there is a range 

of melt factor values throughout a region depending on snow/ice albedo, density, and 

climate. Melt factors are generally reported higher for ice (6 to 8) and lower for snow (3 

to 5) (Braithwaite, 2008). The approach in this study allows discretization of seasonal 

snow from glaciers based on vertical (elevation bands) and horizontal (subbasin) 

variability of the associated melt parameters. The accumulation/melt parameters, 

including maximum and minimum melt factors, melt lag factor, melt temperature and 

snow fall temperature can be set for the elevation bands of each subbasin separately. 
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SWAT’s snow hydrology component has been improved in previous studies but 

no studies have been conducted using macro-scale river basins that are global in 

coverage while focusing on glaciers. In this study, a modified SWAT model was applied 

in order to treat the glaciered and unglaciered areas separately. 

Methodology 

Study Area 

This study focuses on areas where climate change has had a strong impact on 

highly glaciated areas. Five river basins with a total area of 85,000 km2, in the northern 

and southern hemispheres, for which sufficient information is available, were selected 

for this study (Figure 1. 1). These river basins have different spatial scale and climatic 

situations, from extreme maritime to extreme continental climates. They include: 

Vakhsh in Tajikistan, Narayani in Nepal, Upper Rhone in Switzerland, Mendoza in 

Argentina, and five individual glaciated watersheds in the central dry Andes of Chile.  

Vakhsh River Basin 

The Vakhsh, the second largest river in southern Tajikistan, is dominated by the 

peaks of the Pamir-Alay mountain system and contains numerous glaciers. The largest 

glacier, the Fedchenko which is northwest of the Pamir Mountains, covers more than 

700 km2 with a mean thickness of 1 km. This is the largest glacier in the world outside of 

the polar regions. The Vakhsh River Basin contains 2,230 glaciers, according the World 

Glacier Inventory (WGMS, 1989). The area of the Vakhsh River Basin is 39,100 km2, 

located at a height ranging from 1,100 to 7,450 m with a mean elevation of 3,500 m.  



 

9 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. 1. The geographic position of the five river basins used in this study: (a) 
Vakhsh and Narayani, (b) Mendoza (red) and Central Chile (black) ,(c) Upper Rhone  
 
 
 

The climate is continental, with considerable seasonal fluctuations in temperature 

and precipitation. Monthly average air temperature  ranges between -14 °C in January to 

7 °C in July, and annual temperature varies between –10 °C in high altitudes to 4 °C at 

lower altitudes (CFSR/NCEP Reanalysis data from 1979 to 2007). The average annual 

precipitation ranges between 300 mm at 1500 to 2500 m.s.l. and 1600 mm at 3500-4500 

m.s.l. (NCEP, 1979-2007). The heaviest precipitation falls in the south of the river basin 
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where the Fedchenko glacier is located, while the lightest is in the north and northeast on 

the border with Kyrgyzstan. Most precipitation occurs in winter and spring.  

Measurements at Obikhingou-Tavildara, one of the major glacier-fed tributaries 

of Vakhsh, indicate that winter flow rates averaged around 25 m3/s, whereas flow rates 

during the summer months exceeded 400 m3/s for available data period (1981 to1985) 

(Figure 1. 2). The flow rates have great seasonal variability between winter and summer, 

since the Vakhsh is a snow and glacier-fed river. 

 
 
 

 
 

Figure 1. 2. A typical pattern of mean monthly flow (1981-1985), precipitation, 
temperature and snow depth (1979-2007) at Obikhingou-Tavildara, Vakhsh River Basin. 
 
 
 

Narayani River Basin (Nepal) 

The Narayani River Basin is the second largest in Nepal. It lies in center of Nepal 

covering an area of 31,890 km2 and ranges from the higher Himalayas with at an 

elevation of 8,143 m to 181 m in the plains. 

The climate is alpine and the snowline lies at 5,000 m in the east and at 4,000m 

in the west. Monthly average air temperature ranged between -18 °C to -14 °C in high 
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altitudes to 10 °C to 16 °C in low altitudes in January; and 4 °C to 9 °C in high altitudes 

to 23 °C to 31 °C in low altitudes in July (1979-2007). Annual temperature varies 

between -7 °C to 0 °C in high altitudes to 18 °C to 26 °C at lower altitudes (1979-2007).  

Monsoon precipitation occupies 70 to 85 percent of total precipitation depending 

on the location (Singh, 1985; Ives and Messerli, 1989). Mean annual precipitation ranges 

from 2,000-4,000 mm at low altitudes (500-1,500m) and declines to 200-500 mm at high 

altitudes (3,000 m and higher) (Figure 1. 3). The Himalayan mountain range lies to the 

northeast and northwest of the river basin and is therefore restricted to monsoon 

moisture, resulting in a dry climate. Headstreams maintain substantial flows from glacial 

melt through the hot, droughty spring before the summer monsoon (mid-June to late 

September).  

Summer snow fall in the high altitude plays an important role in the nourishment 

of glaciers, most of which are of the summer accumulation type in central and eastern 

Nepal. The timing of maximum runoff coincides closely with the monsoon precipitation 

with the peak in August and minimum runoff occurs in winter season (Figure 1. 3). 

 
 
 

 

Figure 1. 3. A typical pattern of mean monthly flow (1985-1993), precipitation, temperature 
(1979-2007) at Narayani River Basin. 
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Mendoza River Basin (Central Andes - Argentina) 

The Mendoza River Basin is located on the eastern slope of the Andes Mountain 

(-32.2º, -33.4º) and covers 7,090 km2 with a mean elevation of 3,540 m (ranging 

between 1,420 m and 6,930 m). Between -28º and -38°, permanent snow and ice occur 

above 5,500 to 6,000 m. The snow line lies at 4,600 to 4,700 m from higher latitudes and 

gradually lowers southwards to 3,300 m (Rabassa and Clapperton, 1990). Climate 

depends on altitude, corresponding to a Tundra climate between 2,700 and 4,100 m.s.l., 

and to a Polar climate at higher elevations above 4,100 m.s.l. (Moreiras et al., 2012). In 

high altitudes (over 3,000 m), monthly average air temperature ranges between -6 °C in 

August to 6 °C in January (NSFR/NCEP Reanalysis data for 1979-2010). Mean annual 

precipitation reaches about 500 mm in the highest altitudes and less than 200 mm in low 

altitudes.  

Above average winter precipitation anomalies generally coincide with El Niño 

events, and below-average winter precipitation anomalies are more likely to occur 

during La Niña years (Vargas and Compagnucci, 1985). The rivers are fed by the 

melting of snow or glacial ice during the warmer season (December–February) and flow 

increases with snow melting (Figure 1. 4-a, b). In the figure, the mean monthly 

precipitation flow and precipitation at the main outlet of the river basin and one of the 

headwater watersheds (Polvareda) have been presented. These stream flows are sensible 

to variations of El Niño Southern Oscillation (ENSO) linked to above/below average 

snow accumulation (Masiokas et al., 2010). 
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(a) (b) 

Figure 1. 4. a) A pattern of mean monthly flow with snow depth changes at Punta de 
Vacas, Mendoza b) Mean monthly precipitation and flow in Guido in compare of 
Polvareda. 

 
 
 

Central Dry Andes (Chile) 

The fourth study area is a 290-km long section of the Chilean Dry Andes and 

covers 14,342 km2. The river basins are located on the western slope of the Andes 

Mountain in southwestern South America (32.4º S, 35.0º S) (Figure 1. 1) with a mean 

elevation of 2,676 m (ranges between 415 m and 6,560 m). At these latitudes, the 

existence of numerous peaks at 3,000 to 4,000 m and higher altitudes (0 ºC isotherm) 

allow the development of important glaciered areas (Rivera et al., 2000). 

Mean annual temperature is 15 ºC to 18 ºC in low altitude and decreases to -3 °C 

at 4,000 m and higher (NSFR/NCEP Reanalysis data from 1979 to 2010). Mean annual 

precipitation ranges from 200 mm to 600 mm in lower elevations and higher elevations, 

respectively, in the north (32.4° S) to 500 to 1,000 mm further south at around 35° S 

(NSFR/NCEP Reanalysis data from 1979 to 2010). The maximum precipitation occurs 
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in the winter months with a peak in June. In the upper part of the basin above 1,000 m, 

runoff starts to increase from late October when the snow pack starts to melt and reaches 

a peak in the summer (Figure 1. 5-a), the time of maximum water demand. This inverse 

pattern, with maximum runoff corresponding to minimum precipitation is a result of 

glaciers and snow melt (Figure 1. 5-b). 

 
 
 

 
(a) 

 
(b) 

Figure 1. 5. a) Streamflow starts to increase from late October when the snow pack 
starts to melt at high altitudes over 1,000 m b) Maximum flow corresponding to 
minimum precipitation is a result of glaciers and snow melt. 

 
 
 

Rhone River Basin 

The Upper Rhone River Basin is a highly mountainous area located in central 

Alps, south of Switzerland, with the drainage area of 3,728     to the Branson gauge 

station and altitudes between 440 m to 4,550 m with a mean of 2,196 m. The river basin 

has a relatively dry continental climate. The glaciers cover about 10 percent of the area 

and have a significant role in the hydrological regime of the upper Rhone. Mean annual 
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precipitation varies from less than 600 mm on the plains and to more than 2,500 mm in 

mountains. The snow-glacial regime is characterized by low discharge in winter and 

high discharge in summer (Figure 1. 6-a). The importance of the glacier within the basin 

is high, since in over 50% of the basin, precipitation falls in the form of snow. The 

glacier melt water postpones the peak flow to late summer, in comparison with 

maximum peak flow of a glacier free subbasin in late spring (Figure 1. 6-b). 

 
 
 

 
(a) 

 
(b) 

Figure 1. 6. a) A snow-glacial regime b) The glacier meltwater postpones the peak 
flow to the late summer in compare with maximum peak flow of glacier free 
subbasin at late spring. 

 
 
 

Data 

Glacier Data 

Glacier covered areas and thicknesses were extracted from the Global Land Ice 

Measurements from Space (GLIMS) (Raup et al., 2000; Armstrong et al., 2010) dataset 

and World Glacier Inventory (WGI). The inventory entries are based upon a single 

http://iopscience.iop.org/1748-9326/7/3/034029/article#erl433318bib36
http://iopscience.iop.org/1748-9326/7/3/034029/article#erl433318bib2


 

16 

 

observation in time. For a few glaciers, mean thickness values are available from 

extrapolated field measurements. If the GLIMS dataset did not completely cover the 

entire study area it was complemented with glaciated area by the Moderate Resolution 

Imaging Spectroradiometer (MODIS) maximum snow extent product (MOD10A2) with 

8-day composites at 500-m resolution. The minimum snow cover area at the end of the 

melting season, from February 2002 to 2010, was considered to be the glacier/permanent 

snow cover area (Figure 1. 7). Figure 1. 8 a-e show the area of glaciers in this study. The 

calculated areas of glaciers are presented in Table 1. 1. It is assumed that GLIMS glacier 

outlines represent the glacial extent at the end of the reference period, as a starting point 

for the future simulations of glacial extent. From this dataset the thickness of glaciers is 

also extracted if available. 

 
 
 
Table 1. 1. The calculated area of glaciers using GLIMS, MODIS and modeled glaciers 
area in this study. 
 Total area (km2) GLIMS MODIS Modeled area 

(This study) 
Narayani 31698 9.20 7.32 11 
Vakhsh 28907 9.66 13.1 12.3 
Upper Rhone 4513 13.61 13.36 14.2 
Mendoza 7092 - 4.34 4.25 
Central Chile 14342 - 4.35 4.37 
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Figure 1. 7. Eight-day snow cover area variations extracted from MODIS products 
(MOD10A2) from 2000 to 2010 is represented as a percentage of total area of a river 
basin: a) Upper Rhone b) Vakhsh c) Narayani d) Central Chile e) Mendoza. 
 
 

a 
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Figure 1. 8. Contribution of glacier snow depth and area; a,b) Glaciers across the 
Narayani and Rhone River Basins extracted from the GLIMS glacier outlines; c,d,e)The 
minimum snow cover area from MOD10A2 at end of the melting season from February 
2002 to 2010 was considered as glacier/permanent snow cover for Mendoza, Central 
Chile, and part of Vakhsh River Basins. Green dots show the location of glaciers with no 
depth information. 

 

a 
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Figure 1. 8. Continued 
 
 
 

Digital Elevation Model (DEM) 

For this study, 90m Shuttle Radar Topography Mission (SRTM) contributed by 

USGS/NASA was used as a source for DEM to describe topographic conditions such as 

c 

d e 
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slope and slope length, create flow direction, accumulated flow, and delineate watershed 

boundaries and channel networks (Neitsch et al., 2002). 

Land Use 

Land use information was adopted from the USGS Global Land-Cover 

Characteristics (GLCC). GLCC was developed using satellite data collected from 1992 

to 1993 with 1 km spatial resolution for the entire globe (Brown et al., 1993). 

Percentages of each land use for total area of watershed and drainage area of 

gauged subbasins are summarized in Table 1. 2. The dominant land cover in most 

watersheds is rangeland. In the Vakhsh and Mendoza Watersheds bare land, including 

glaciers and rock in the upper subbasins is dominant. Forests, which rank second in the 

Upper Rhone and Narayani, can be found in the mid-altitude areas. 

 
 
 
Table 1. 2. Land use categories in each river basin as determined by the USGS. 

Subbasin# Agricultural Bare land 
/glacier/rock 

Forest 
(Deciduous) 

Forest 
(Evergreen) 

Forest 
(Mixed) 

Rangeland 
(brush) 

Rangeland 
(grass) 

Water  
(river & lake) Pasture Urban 

V
ak

hs
h 72 0.03 75.51 0.00 0.00 0.10 21.62 2.74 0.00 0.00 0.00 

133 12.03 32.66 0.00 0.00 1.46 27.53 26.32 0.00 0.00 0.00 

Basin 12.51 29.95 0.00 0.00 1.07 27.28 29.04 0.15 0.00 0.00 

N
ar

ay
an

i 

123 9.50 19.48 4.87 0.00 11.88 42.75 11.38 0.13 0.00 0.00 

133 11.39 25.21 2.92 0.00 7.70 37.64 14.97 0.17 0.00 0.00 

157 19.69 11.42 8.07 0.00 22.75 29.92 8.08 0.08 0.00 0.00 

159 16.29 14.73 5.28 0.00 19.00 32.68 11.94 0.07 0.00 0.00 

122 3.55 23.52 1.76 0.00 10.08 43.60 17.49 0.00 0.00 0.00 

121 40.28 0.13 8.11 0.00 8.69 22.18 20.61 0.00 0.00 0.00 

96 17.25 17.98 3.61 0.00 6.31 34.45 20.41 0.00 0.00 0.00 

131 40.99 0.00 3.61 0.00 41.02 8.64 5.73 0.00 0.00 0.00 

143 21.43 0.13 11.58 0.00 16.88 25.62 24.36 0.00 0.00 0.00 

Basin 16.29 14.73 5.28 0.00 19.00 32.68 11.94 0.07 0.00 0.00 
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Table 1. 2. Continued 

Subbasin# Agricultural Bare land 
/glacier/rock 

Forest 
(Deciduous) 

Forest 
(Evergreen) 

Forest 
(Mixed) 

Rangeland 
(brush) 

Rangeland 
(grass) 

Water  
(river & lake) Pasture Urban 

R
ho

ne
 

2 0.00 65.59 0.00 0.00 0.00 0.00 16.15 0.00 18.26 0.00 

23 0.00 74.49 0.00 0.32 0.00 0.00 23.66 0.00 1.53 0.00 

14 0.00 51.54 0.93 0.00 0.86 0.00 23.86 0.00 22.81 0.00 

45 0.00 29.22 6.08 13.37 2.12 0.00 23.39 0.34 25.48 0.00 

4 0.00 37.85 0.00 4.41 0.00 0.00 27.24 0.00 30.50 0.00 

78 0.00 36.32 2.31 15.69 0.28 0.00 34.01 0.19 11.20 0.00 

11 0.00 25.68 0.88 6.46 0.29 0.00 24.70 0.00 42.01 0.00 

Basin 0.00 20.76 7.16 21.26 4.10 0.00 24.45 0.27 21.92 0.08 

C
hi

le
 

76 0.00 8.74 0.00 0.00 0.16 35.02 52.71 3.39 0.00 0.00 

66 0.00 15.94 0.00 0.00 0.32 25.53 57.56 0.66 0.00 0.00 

86 0.00 4.25 0.00 0.00 0.32 23.88 68.63 2.91 0.00 0.00 

108 24.27 4.09 0.00 0.00 11.50 40.16 18.45 1.53 0.00 0.00 

59 0.00 7.10 0.00 0.00 0.00 17.23 74.25 1.42 0.00 0.00 

40 1.33 8.29 0.00 0.00 0.27 27.64 61.37 1.10 0.00 0.00 

55 0.59 11.42 0.00 0.00 0.19 25.41 61.53 0.86 0.00 0.00 

37 0.00 1.63 0.00 0.00 0.00 30.80 64.59 2.97 0.00 0.00 

39 0.45 4.40 0.00 0.00 0.24 25.18 68.17 1.56 0.00 0.00 

38 0.00 6.90 0.00 0.00 0.00 14.84 77.68 0.57 0.00 0.00 

25 0.00 0.44 0.00 0.00 0.67 51.57 46.96 0.36 0.00 0.00 

16 0.00 0.00 0.00 0.00 0.10 64.50 34.82 0.58 0.00 0.00 

14 0.00 1.93 0.00 0.00 0.61 35.24 58.63 3.59 0.00 0.00 

9 0.00 1.03 0.00 0.00 0.37 31.54 63.94 3.12 0.00 0.00 

5 0.96 3.01 0.00 0.00 0.65 38.37 55.14 1.87 0.00 0.00 

7 0.00 0.49 0.00 0.00 0.00 30.32 66.42 2.76 0.00 0.00 

6 0.00 4.70 0.00 0.00 0.31 38.07 56.11 0.82 0.00 0.00 

Basin 2.91 4.78 0.00 0.00 1.56 41.44 46.57 2.74 0.00 0.00 

M
en

do
za

 

79 0.00 18.86 0.10 0.00 0.00 12.57 67.56 0.91 0.00 0.00 

82 0.00 17.41 0.00 0.00 0.00 15.67 66.77 0.15 0.00 0.00 

84 0.05 24.06 0.05 0.03 0.00 21.39 53.51 0.91 0.00 0.00 

90 0.00 24.91 0.00 0.00 0.00 13.59 58.40 3.09 0.00 0.00 

Basin 0.05 24.06 0.05 0.03 0.00 21.39 53.51 0.91 0.00 0.00 
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Soil 

The spatial gridded data with 5 arc-minutes resolution (Ver. 1.2) were taken from 

ISRIC-WRS (FAO-UNESCO Soil Map of the World, 1971-1981). The soil properties 

dataset was obtained from the International Soils Reference and Information Center 

(ISRIC). The soil properties obtained from ISRIC include soil drainage class, organic 

carbon content, electrical conductivity, particle size distribution (i.e. content of sand, silt 

and clay), content of coarse fragments (> 2 mm), bulk density, and available water 

capacity. These estimates are presented by FAO soil unit for fixed depth intervals 20 cm 

up to 100 cm depth. Soil texture was derived from USDA soil texture classification and 

particle size distribution information (Baldwin et al., 1938). Saturated soil hydraulic 

conductivity was estimated based on soil texture by first selecting the bulk density class 

of low, medium or high, and then using the corresponding textural triangle to select the 

range of saturated hydraulic conductivity (NRCS/NRCS, 2007). The major soil type in 

the upper areas of the watersheds is Lithosols which are very shallow, occurring mainly 

on steep slopes often with exposed rock debris. 

Climate Data 

Historical weather data for model calibration and validation was obtained from 

the Climate Forecast System Reanalysis (CFSR) global meteorological dataset (Saha, 

2010). CFSR data is available globally since 1979 at a 38-km resolution. Unfortunately, 

weather stations are often sparsely distributed over mountainous and high altitude 

regions. The weather data time series at the remote stations is often not enough for the 

efficient analysis of the entire climate system in a region. In such instances, re-analysis 
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data such as data from the National Center for Environmental Prediction – National 

Center for Atmospheric Research (NCEP-NCAR) Global Reanalysis1; National Centers 

for Environmental Prediction - Climate Forecast System Reanalysis (NCEP-CFSR); and 

European Centre for Medium-Range Weather Forecasts (ECMWF Interim); was 

obtained to overcome the data deficit. CFSR is considerably more accurate than the 

previous global re-analysis made at NCEP in the 1990s. It is more comprehensive 

because it includes analyses of both the ocean and sea ice, and it has higher resolution in 

space and time (Saha, 2010). Regardless of the advantages of NCEP-CFSR climate data 

to other re-analysis datasets, its reliability in watershed modeling should be examined 

before applying the data due to the climate models shortcomings in predicting the data in 

remote areas where observational data are absent or atmospheric condition changes 

abruptly due to the barriers and orography.  

Stream Flow 

Daily discharge records for model calibration were collected from local 

hydrologic administrators and online databases. Eighty-three stations for streamflow and 

their sources are listed in Table 1. 3; although, only 35 stations were used for model 

calibration. The stations with the most complete records located in high altitude areas 

were used and those with short data periods, < 3 permanent snow cover, were located on 

a dammed river were discarded. 
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Table 1. 3. Available flow gauges with drainage area and data period for each river 
basins. 

 Reach# River Station 
name Latitude Longitude Area 

(km2) 
Altitude 

(m) Period Missed 
years 

N
ar

ay
an

i1  

122* BURHI GANDAKI ARUGHAT 28.04 84.82 4270 485 1964-1985 0 

133* MARSYANDI BIMAL NAGAR 27.95 84.43 3850 354 1987-1992 0 

123* KALI GANDAKI SETIBENI 28.01 83.60 6630 410 1964-1993 0 

157 KALI GANDAKI KOTAGAON SHRINGE 27.75 84.35 11400 198 1964-1985 4 

96 SETI PHOOLBARI 28.23 84.00 582 830 1964-1984 5 

159 NARAYANI GANDAK DEVGHAT 27.71 84.43 31100 180 1963-1993 19 

V
ak

hs
h1  

72* MUKSU DAVSEAR 39.13 71.57 6550 2220 1961-1985 9 

133* OBIKHINGOU TAVILDARA 38.70 70.52 5390 1616 1958-1985 0 

109* VAKHSH KOMSOMOLABAD 38.87 69.98 29500 1258 1949-1989 45 

85 VAKHSH GARM 39.00 70.33 20000 1316 1933-1990 8 

40 KIZIL-SU DOMBRACHI 39.27 71.38 8370 1841 1961-1985 0 

R
ho

ne
2  

2* RHONE GLETSCH 46.56 8.36 39 1761 1955-2012  
4* GONERI OBERWALD 46.53 8.36 40 1385 1990-2012  

11* RHONE RECKINGEN 46.47 8.25 215 1311 1975-2012  
23* MASSA BLATTENBEI NATERS 46.39 8.01 195 1446 1965-2012  
60 SALTINA BRIG 46.32 7.99 78 677 1965-2012  

45* RHONE BRIG 46.32 7.98 913 667 1965-2012  
78 VISPA VISP 46.28 7.88 778 659 1903-2012  

14* LONZA BLATTEN 46.42 7.82 78 1520 1955-2012  
77 SIONNE SION 46.23 7.37 28 500 2006-2012  
81 RHONE SION 46.22 7.36 3373 484 1916-2012  
99 RHONE BRANSON 46.13 7.09 3752 457 1967-2012  

120 DRANCE DE BAGNES LE CHABLE VILLETTE 46.08 7.21 254 810 1911-2012  
101 DRANCE MARTIGNY PONTDE 

ROSSETTAN 46.10 7.06 672 474 1991-2012  

C
en

tra
l C

hi
le

3  

7* JUNCAL EN JUNCAL -32.85 -70.17  1800   
14* BLANCO EN RIO BLANCO -32.90 -70.28  1420   
9* ACONCAGUA EN RIO BLANCO -32.90 -70.30  1420   
16 ESTERO POCURO EN EL SIFON -32.90 -70.53  1000   
6* COLORADO EN COLORADO -32.85 -70.40  1062   
5* ACONCAGUA EN CHACABUQUITO -32.85 -70.50  950   
22 ESTERO ARRAYAN EN LA MONTOSA -33.32 -70.45  880   

25* ESTERO YERBA LOCA ANTES J. S. F. -33.33 -70.35  1350   
38* OLIVARES ANTES JUNTA R. COLORADO -33.48 -70.13  1500   
37* COLORADO ANTES JUNTA RIO OLIVARES -33.48 -70.13  1500   
39* COLORADO ANTES JUNTA RIO MAIPO -33.58 -70.37  890   
40* MAIPO EN EL MANZANO -33.58 -70.37  850   
66* MAIPO EN LAS HUALTATAS -33.97 -70.13  1820   
59* VOLCAN EN QUELTEHUES -33.80 -70.20  1365   
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Table 1. 3. Continued 
 Reach

# River Station 
name Latitude Longitude Area 

(km2) 
Altitude 

(m) Period Missed 
years 

C
en

tra
l C

hi
le

3  

55* MAIPO EN SAN ALFONSO -33.73 -70.30  1092   
76* PANGAL EN PANGAL -34.23 -70.32  1500   
77* CACHAPOAL EN PTE TERMAS DE 

CAUQUENES -34.25 -70.57  700   
86* CACHAPOAL AGUAS ABAJO -34.33 -70.37  1127   
93 CLARO EN HACIENDA LAS 

NIEVES J. CORTADERAL -34.48 -70.70  720   
100* TINGUIRIRICA BAJO LOS BRIONES -34.72 -70.82  560   
108* CLARO EN EL VALLE -34.68 -70.87  476   
30 MAPOCHO EN LOS ALMENDROS -33.37 -70.45  966   
61 MAIPO EN LAS MELOSAS -33.83 -70.18  1527   
106 TINGUIRIRICA AGUAS 

ABAJO JUNTA AZUFRE -34.80 -70.55  1024   
94 CORTADERAL ANTE JUNTA CACHAPOAL -34.37 -70.32  1200   

M
en

do
za

4  

90* COLORADO PUNTA DE VACAS -32.83 -69.70     
82* CUEVAS PUNTA DE VACAS -32.87 -69.77     
86* MENDOZA GUIDO -32.92 -69.24     
81 MENDOZA PUNTA DE VACAS -32.85 -69.77     
84* TUPUNGATO PUNTA DE VACAS -32.88 -69.77     
79* VACAS PUNTA DE VACAS -32.85 -69.76     

1) Source: The Global Runoff Data Centre (GRDC) 
2) Source: Switzerland Federal Office for the Environment (FOEN) 
3) Source: National Water Information System of Argentina 

4) Source: Chilean Dirección General de Aguas (DGA) 

 
 
 

Dams 

Seven grand dams were set up as reservoirs in the modelled river basins (Table 1. 

4). Except for the Upper Rhone River Basin, reservoir parameters such as operation 

starting date, surface area, and volume of water at the principle spillway for all river 

basins were obtained from the Global Water System Project (GWSP) (Lehner et al., 

2011). Considering that all of the gauged subbasins are located at high altitudes, no 

reservoir dams exist at those areas. Details about hydraulic structures in the Upper 

Rhone River Basin were collected from the Switzerland Federal Office for the 
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Environment (FOEN) who manages watersheds and dams on the glacial lakes such as 

Gries and Bortelsee. All of the gauged subbasins for model calibration purposes in this 

study were located on upper dam reservoirs. 

 
 
 

Table 1. 4. List of the grand dams were set up as reservoir in the modelled river basins. 
Dam  
name River Country Operation 

year 
Hight 
(m) 

Lengt
h (m) 

Area 
(km2) 

Capacity 
(mcm) 

Depth 
(m) 

Catchment 
area (km2) 

Gries Agene Switzerland 1965 60 400 0.3 18.6 62.0 7 

Zeuzier Lienne Switzerland 1957 156 256 0.3 51.0 170.0 13 

Moiry Gougra Switzerland 1958 148 610 0.7 78.0 111.4 26 

Mattmark Saaser Vispa Switzerland 1967 120 780 0.8 101.0 126.3 34 

Mauvoisin Drance de Baanes Switzerland 1957 250 520 1.1 211.5 192.3 110 

Les Toules Drance d'Entre Switzerland 1963 86 460 0.3 20.1 67.0 37 

Yeso Yeso Chile 1967 61 350 7.6 250.0 32.9 356 

 
 
 

Snow Modeling Components  

Initial Snow Storage 

Initial snow storage at the beginning of the simulation period can be set in the 

model for each individual elevation band. This storage can be permanent snow or 

glaciers at the end of ablation season. The thickness of initial snow is set for each 

elevation band as its volume of equivalent water; while the lower boundary of the 

elevation band represents the mean elevation of the snow boundary. This initial storage 

then is updated on daily basis for accumulation, sublimation and melting of snow.  
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Snow Pack Storage 

SWAT initially stores daily fallen snow in the form of its volume of equivalent 

water in the snow pack, then updates the snowpack storage with decreasing the snow 

melt and sublimation or adding snow fall into the storage. The snow pack mass balance 

for each HRU is 

                (   )      (   )        (   ) Eq. 1. 1 
 

where SNOi is the water content of the snow pack on a given day i (mm    ),      is 

amount of solid precipitation on a given day, (mm    ),      is the amount of 

sublimitation on a given day (mm    ), and        is the amount of snow melt on a 

given day (mm    ). 

Snow Pack Temperature 

The snow pack temperature is a function of the mean daily temperature. The 

equation used to calculate the snow pack temperature is:  

     (  )        (    )  (      )   ̅        Eq. 1. 2 
 

where      (  )  is the snow pack temperature on a given day ( ),       (    )  is the  

snow pack temperature on the previous day ( ),      is the snow temperature lag factor 

(TIMP) and ranges between 0 and 1;  ̅   is the mean air temperature on the current day 

( ). As      approaches 1.0, the mean air temperature on the current day exerts an 

increasingly greater influence on the snow pack temperature and the snow pack 

temperature from the previous day exerts less and less influence.  
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Snow Cover  

Snow cover within a watershed is usually non-uniform due to non-climatic 

factors such as shading, drifting, slope, aspect, shading and land cover. This results in a 

fraction of the subbasin area that is bare of snow. These non-climatic factors are usually 

similar from year to year, making it possible to correlate the areal coverage of snow with 

the amount of snow present in the sub-basin at a given time. This correlation, expressed 

as an aerial depletion curve, is unique for a watershed. In this study, the seasonal growth 

and recession of the snow pack was modeled as a function of the amount of snow 

present in the basin. The areal depletion curve based on a natural logarithm is calculated 

as: 

       
   

      
(
   

      
    (          

   

      
))

  

 
 
Eq. 1. 3 
 

Where        is the fraction of the HRU area covered by snow, SNO is the water 

content of the snow pack on a given day (mm    ),        is the threshold depth of 

snow at 100 percent coverage and is determined during the model calibration (mm    ), 

     and      are coefficients that define the shape of the curve. The values used for 

     and      are determined by solving the equation for two known points: 95 percent 

coverage at 95 percent       ; and 50 percent coverage at a user specified fraction of 

       (       ). 

Areas with a snow depth above SNO100will have permanent snow cover due to 

the non-climatic factors. Smaller values of SNO100 indicate uniform topography and 

vegetation distribution within the basin and consequently the impact of the areal 
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depletion curve on snow melt will be minimal. For highly glaciated subbasins with 

typical permanent snow depths higher than        (SNO100 ranges from 0 to 500 (mm 

   )), the depth of snow over the HRU is assumed to be uniform (i.e.        = 1) and 

the areal depletion curve of snow does not have any influences on melt. 

Snow Accumulation 

SWAT classifies precipitation as liquid or solid precipitation by the mean daily 

air temperature. The user-defined threshold temperature,      (SFTMP), is used to 

categorize precipitation as rain or snow.  

 If           then precipitation = snow fall 

 If           then precipitation = rain fall 

If the precipitation is classified as snow then the water equivalent (w.e.) of the snow fall 

is added to the snow pack in elevation band. The model calculates the temperature and 

precipitation at each elevation band based on the user-defined temperature and 

precipitation gradients at a subbasin scale.  

Snow Melt  

The snowmelt is calculated as a linear function of the difference between the 

average snow-pack maximum air temperature and the base or threshold temperature for 

snowmelt (Neitsch et al., 2011): 

                   [
          

 
     ] 

 
Eq. 1. 4 
 

where        is the amount of snow melt from elevation bands (mm    ), bmlt is the 

melt factor within the basin (mm     /day- ), snocov is the fraction of the HRU area 
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covered by snow,       is the snow pack temperature within the basin ( ),      is the 

maximum air temperature of a day ( ), and      (SMTMP) is the threshold snow melt 

temperature within the basin ( ).  

The melt factors are spatially constant within a basin but seasonally variable by 

sinusoidal interpolation between a minimum value on December 21 and a maximum 

value on June 21: 

     
(            )

 
 
(            )

 
    (

  

   
 (     )) 

 
Eq. 1. 5 
 

where      is the melt factor for the day (mm     /day- ),       (SMFMX) the 

maximum melt rate for snow during a year (June 21 in the northern hemisphere) (mm 

    /day- ),        (SMFMN) is the minimum snowmelt rate during a year (December 

21 in the northern hemisphere) (mm     /day- ), and dn is the Julian day number of the 

year.  

To account for orographic effects on both precipitation and temperature, SWAT allows 

up to 10 elevation bands to be defined in each subbasin. The spatial variation of snow 

melt/accumulation varies as a function of elevation resulting from orographic 

precipitation and air temperature lapse rate. 

The temperature and precipitation at elevation bands is calculated using: 

            (             )        
 

            (             )        

 
Eq. 1. 6 
 

where      , is the elevation band mean temperature ( ),      , is the temperature 

recorded at the gage ( ),        is the mean elevation of the band (m),        is the 
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gage elevation (m),       is the mean precipitation of the band (mm),       is the 

precipitation recorded at the gage (mm    ), plaps is the precipitation lapse rate (mm 

    ⁄ m), and       is the temperature lapse rate (  ⁄ m).  

Once precipitation and temperature values have been calculated for each 

elevation band in the subbasin, new weighted average subbasin precipitation and 

temperature values are calculated using fraction of subbasin within a particular elevation 

band as the weighting factor. 

Modified Snow Hydrology Process 

It is obvious that there is a range of melt factor values throughout a region 

depending on snow/ice albedo, density, and climate. Melt factors are generally reported 

higher for ice (6 mm /day-  to 8 mm /day- ) and lower for snow (3 mm /day-   to 5 

mm /day- ) (Braithwaite, 2008). The lagging factor, λ reflects the influence of snow 

pack density, and snow pack depth on snow pack temperature and consequently is highly 

variable in a basin with shallow seasonal snow cover in lower altitudes, and deep, dense 

firn and ice in the high altitudes. Anderson (1973) comments on typical values for λ 

which can theoretically vary between 0 and 1 but commonly is between 0.1 (deep 

surface layer) and 0.5 (shallow surface layer).  

In previous versions of SWAT, spatial variation of snow melt/accumulation only 

varies as a function of elevation resulting from orographic precipitation and air 

temperature lapse rate; while, snowmelt parameters are constant within the basin. In the 

modified snow hydrologic component of SWAT used in this study, the snow melt 

factors (SMFMX, SMFMN) and other associated parameters, such as temperature lag 
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factor (TIMP), snow fall temperature (SFTMP), and snow melt temperature (SMTMP) 

are allowed to be spatially variable within the subbasins and elevation bands.  

Many temperature-index based runoff models such as SWAT consider a seasonal 

variability of melt factor but roughly ignore the spatial variation of melt factor across the 

basin, which is expected to increase with increasing elevation (Hock, 2003). To 

overcome this weakness, a modified snow hydrology component of SWAT was applied 

in order to consider spatial variation of snow melt parameters by elevation band for each 

subbasin. Hence, not only will melt rates vary as a function of elevation resulting from 

an air temperature lapse rate across each subbasin, but it also will vary based on ice and 

snow distribution. 

In this study, three SWAT snow melt algorithms have been evaluated based on the 

degree of parameter distribution on a basin scale, a subbasin scale, and a 

subbasin/elevation band scale.  

1) In the first method, all associated snow melt/accumulation parameters were 

uniform across the entire basin.  

2) In the second method, snow melt parameters were allowed to vary on a subbasin 

scale. Separation of seasonal snow from permanent snow is not permitted in this 

method and small subbasins are needed to separate glaciered areas from glacier 

free areas and consequently achieve good results.  

3) In the third method, snow melt parameters were varied based on the elevation 

bands for each subbasin. This method allows discretization of seasonal snow 

from glaciers based on vertical (elevation bands) and horizontal (subbasin) 



 

33 

 

variability of model parameters reflecting the physical properties of ice and 

snow. In this method, to reflect the influence of density and depth of ice and 

snow on the vertical temperature profile of the snow pack, the temperature lag 

factor (TIMP) was determined separately for shallow ice and seasonal snow at 

lower elevation bands and deep ice at higher elevation bands for each subbasin. 

Melt factors (SMFMX and SMFMN) were separately determined for glaciered 

and unglaciered bands. 

In general, accumulation depends upon the melt factor for snow and melt depends 

upon the melt factor for ice (Braithwaite and Raper, 2007). During summer months 

when snow has largely melted from the glacier surface, the predominant source of melt 

comes from the ablation of glacier ice; while in winter the snow cover on glaciers and 

glacier free areas is the main source of melted water. Therefore, the spatial and seasonal 

variability of melt factors directly affect the accuracy of runoff simulation in glaciered 

watersheds.  

Glacier Modelling 

The equilibrium line altitude (ELA) is a theoretical line that determines the 

boundary of the accumulation zone and ablation zone on a glacier. The ELA, sometimes 

denoted ELA0 (the balanced-budget ELA), of a glacier with a climatic mass balance is 

equal to zero on average over a number of years. The steady-state ELA is difficult to 

estimate because glaciers are seldom if ever in steady state. It is usually approximated by 

the balanced-budget ELA (Cogley et al., 2010). So, what is referred to here as steady 

state ELA (ELA0) is in fact the balanced-budget ELA assuming that the glacier is in a 

http://link.springer.com/referenceworkentry/10.1007%2F978-90-481-2642-2_104/fulltext.html#CR9_104


 

34 

 

steady state during the simulation period. The ELA is determined by climate and the 

aspect of the glacier. It is not influenced by glacier dynamics, extent and hypsometry, 

and thus reveals a largely unfiltered climatic signal (Huss et al., 2008). Therefore, it can 

be a representation of the lowest boundary of climatic glacierization (Zemp et al., 

2006b).  

Therefore, in this study it was assumed that the ELA0 represent the glacier 

boundary. The physical boundary of glaciers was then corrected based on the glacier 

inventory data, GLIMS glacier outlines and MODIS products. Lower elevation bands 

below the ELA0, were considered to be seasonal snow cover regardless of extended 

glacial tongues to lower elevations.  A schematic diagram of glacier modeling in SWAT 

is presented in Figure 1. 9. 
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Figure 1. 9. Setting up the glaciered area (accumulation and ablation zones) in elevation 
bands. 
 
 
 

Long term regional ELA as climatic 
glacier boundary. Sources: 
Literature 
Measured mass balance-elevation data 
AAR method   

Physical glacier boundary: 
*MODIS (MOD10A2) at the end of 
ablation period 
*GLIMS glacier outlines 

Modeling 10 elevation bands for sub 
basins in high altitudes  
*100m to 250m elevation interval 
*Fraction area of sub basin by each 
elevation bands 

   

The lower boundary of elevation band is 
climatic boundary of glacier (ELA0).  
Accumulation area: elevation bands 
above the ELA0 
Ablation area: elevation bands lower 
than ELA0 

Comparing the modelled glacier area 
with extracted glacier area from MODIS 
and GLIMS 
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Model Setup 

Subbasin Delineation 

Flow direction and accumulation were generated using a sink free DEM. A fully 

connected drainage network was created from flow accumulation grid values higher than 

a drainage area threshold value. The threshold area, or critical source area, defines the 

minimum drainage area required to form the origin of a stream. 

Next the river basin was automatically delineated into subbasins. The subdivision 

was determined by the stream links and the value of the drainage area threshold used. 

Smaller threshold values result in denser networks and larger subbasins.  River basins of 

different sizes can be delineated by applying different threshold values. The watershed 

boundary of the river basins determined using the automatic delineation procedure is 

illustrated in Figure 1. 10 to Figure 1. 14. 

The drainage area threshold for the river basins was set to a minimum value in order 

to generate upper tributaries throughout the glacial valleys. When a gauging station was 

available for calibration, an outlet was inserted manually, splitting the subbasin in two. 

The upper subbasins were also split into smaller divisions by manually adding an outlet 

to divide a subbasin into the narrower elevation bands on glaciated areas while the flat 

subbasins in lower elevations were combined into larger subbasins. 
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Figure 1. 10. Subbasins delineation, glaciers outlines, and locations of dams and flow 
gauge stations in Rhone River Basin. The flow data from colored subbasins is used for 
model calibration. 
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Figure 1. 11. Subbasins delineation, glaciers outlines, and locations of dams and flow 
gauge stations in Narayani River Basin. The flow data from colored subbasins is used for 
model calibration. 
 
 
 

 
Figure 1. 12. Subbasins delineation, glaciers outlines, and locations of dams and flow 
gauge stations in Vakhsh River Basin. The flow data from colored subbasins is used for 
model calibration. 
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Figure 1. 13. Subbasins delineation, glaciers 
outlines, and locations of dams and flow 
gauge stations in Mendoza River Basin. The 
flow data from colored subbasins is used for 
model calibration.  

Figure 1. 14. Subbasins delineation, 
glaciers outlines, and locations of dams 
and flow gauge stations in Cilean River 
Basins. The flow data from colored 
subbasins is used for model calibration. 

 
 
 

Hydrological Response Units 

SWAT divides each subbasin into more detailed sub divisions called 

Hydrological Response Units (HRUs). SWAT delineates HRUs with user-defined 

thresholds represented as percentages of each land use, soil type, and slope.  In this 

study, land use and soil type thresholds were set at 1 percent, meaning that any land use 

covering more than 1 percent of a subbasin was considered an HRU. From that portion 
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of land use, any soil type covering more than 1 percent was considered to be an HRU. 

These thresholds were chosen to avoid creating too many HRUs, which would make 

analyses too complicated and time-consuming for the modeling process. Based these 

thresholds a total of 9,878 HRUs were created in the five river basins (Table 1. 5).  

HRUs in the SWAT model can be defined using an average slope per subbasin or 

multiple slope categories. To better represent the glaciated HRUs, three slope classes 

were defined:  steep, moderate and gentle, since accumulated permanent snow generally 

creates flat surfaces with gentle slopes surrounded by steep mountain valleys. 

 
 
 

Table 1. 5. Number of subbasins and HRUs for the river basins. 
 Subbasins HRUs 

Narayani 159 2913 
Vakhsh 143 1658 
Upper Rhone 149 2413 
Mendoza 114 1224 
Central Chile 110 1670 

 
 
 

Elevation Bands 

Subbasins over 2000 m altitude were divided into 10 elevation bands with 100 to 

200 m intervals depending on the elevation range of subbasin. Smaller elevation band 

intervals enabled SWAT to model the glacier boundaries more accurately. It was 

assumed that the glacier boundary in a subbasin matched the lowest altitude of the 

elevation band if more than 50 percent of the elevation band area is covered by glacier. 
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Glacier Boundary and Thickness 

Glacier boundaries were extracted from MODIS products (MOD10A2) and 

GLIMS. To model the glacier areas, it was assumed that all zones at altitudes higher than 

ELA0 were permanent snow/ice and that seasonal snow was located at lower altitudes by 

default. For all subbasins, the glacier boundaries were modified by MODIS and GLIMS 

data for the glacier free areas at elevations higher than the steady state equilibrium line 

altitude (ELA0), and the areas climatically suited for glacier formation at altitudes lower 

than ELA0.  

Debris-covered area of glaciers, accumulated wind-blown snow and small 

isolated glaciers with an area of 0.1 km2 or less were ignored to estimate the total 

glaciated area of the river basins. The percentage of the glacier covered area of each 

river basin by each model, MODIS and GLIMS is presented in Table 1. 1. 

ELA0 values were derived from literature and observed specific net mass 

balance-ELA data which is only available for benchmark glaciers. The ELA0 across the 

Upper Rhone River Basin was calculated from the regression relationship between the 

specific net balance and the ELA (Østrem, 1975). ELA values outside the glacier altitude 

range were excluded in the regression analysis. Figure 1. 15 shows an example of the 

Findelen Glacier in the Southern Rhone River Basin with an ELA0 of 3,184 m.s.l. 
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Figure 1. 15. Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus 
specific net balance for four glaciers in Rhone River Basin. 

 
 
 
The results from regression analysis of the other three glaciers in the northern 

Rhone River Basin are as follows. Coefficients of determination (R2) ranged from 0.84 

to 0.97, with a mean of 0.83 resulting in an ELA0 of 2,875 m.s.l which is close to the 

estimated regional climatic ELA0 below 2800 m.s.l. in the Rhone River Basin and above 

the 3,100 m.s.l. determined for the southern basin by Zemp et al. (2007). He derived an 

empirical relationship between summer temperature and annual precipitation at the 

ELA0 (1971-1990) using a geographical information system (GIS) and a digital elevation 

model. This relationship was then applied over a spatial domain to model the regional 

climatic ELA0.  

Unfortunately, an observation of the mass balance and ELA from the Nepalese 

Himalayan glaciers was unavailable. Present ELAs rise from south to north across the 

Himalayan Range from 5,200 to 5,800 m, as indicated by the altitudes of the lowest 

cirque glaciers and highest lateral and medial moraines on valley glaciers (Williams 
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1983). The ELA has also been estimated to be 5,470 m across Ganges River Basin 

(Savoskul and Smakhtin, 2013).  

Various methods were suggested in the literature for estimation of regional ELA0 such as 

the Accumulation Area Ratios (AAR) and geodetic method. Braithwaite and Raper 

(2009) also estimated ELA0 with an accuracy of about ±100 m for many thousands of 

glaciers using the median elevation parameter in the World Glacier Inventory. 

The AAR is the ratio of the accumulation area to the total glacier area (Meier and 

Post, 1962). The AAR of a steady-state glacier (AAR0) is around 0.6-0.7 in humid 

climates and 0.5-0.6 in continental climates (Kaser and Osmaston, 2002). Gross et al., 

(1978) suggested an AAR0 of 0.67 for glaciers in the Alps as an approximation of the 

ELA0 and zero mass balance. An AAR0 value of 0.578 was also reported based on 

inventory data from over 24,000 Eurasian glaciers by Bahr (1997). Dyurgerov (2009) 

derived an average value of 58 percent from a sample of 100 glaciers. 

In this study, the AAR0 method was applied to estimate regional ELA0 of the 

Narayani and Vakhsh River Basins (Figure 1. 16). Assuming an AAR0 of 0.58 (Bahr, 

1997; Dyurgerov, 2009) the derived ELA0 values from of 90 m DEM-based hypsometric 

curve and GLIMS outline glaciers was extracted between 5,000 m in the east to 5,600 m 

in west across the Narayani River Basin which is in the reported ELA ranges (Williams, 

1983; Savoskul and Smakhtin, 2013). A glacier distribution in Narayani is presented in 

Figure 1. 17. 

Average ELA0 across the Vakhsh River Basin was obtained between 43,00 m in 

the north to 4,500 m in southern side of the river basin. ELA of glaciers in the central 
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Chile surpasses 5,000 m in 30º S, and drops to 4,300–4,400 m around 32.5º S to 33.0º S 

(Hastenrath, 1971; Kull et al., 2002; Lliboutry, 1986, 1999). A profile of glaciation in 

the Central Andes between 27.0º S and 36° S from Brenning (2005) shows an ELA of 

4,500 m at 32.5° S on the western side of the Andes and 4,300 m at 35º S which is in the 

same elevation of the zero degree isotherm of Central Chile. The ELA value of the 

Mendoza River Basin in the Eastern Andes is 4,800 m at 33º S while  the northern part 

of the river basin at 32º S is glacier free with a high ELA over 5,000 m. 

The mean ice thickness at each elevation band was calculated by averaging the 

ice thickness values at individual points on Figure 1. 8. Ice thickness was assumed to be 

1000 m .w .e when no data was available. 

 
 
 

 

Figure 1. 16. AAR0 method to estimate regional ELA0 of Narayani River Basin. 
 



 

45 

 

 

Figure 1. 17. Glacier area from GLIMS and 90m-DEM extracted elevation bands in 
Narayani River Basin. The thick line shows a boundary of glaciers (ELA0 line) that has 
been extracted by AAR0 method in this study. ELA0 varies between 5000m (yellow 
color band) in east to 5600m (cyan color band) in North West. The lower boundary of 
elevation bands 4 and 7 were considered as a glacier boundary in this study. 
 
 
 

Temperature and Precipitation Gradient  

Temperature lapse rate and orographic precipitation have been discussed in many 

studies and the wide range of estimates derived depends on the climate data source. 

Richard and Tonnel (1985) reported a temperature lapse rate by of -5.3 ºC/km and -5.6 

ºC/km across the Swiss pre-Alps and Valais, respectively, while Braithwaite (2008) 

estimated it as -7 ºC/km for the Upper Rhone. Huss et al. (2008) suggested -5.21 ºC/km 

across Switzerland. Schaper et al. (1999) reported a temperature lapse rate over the 

Mass-Blatten located in Upper Rhone, Switzerland of -6.5 ºC/km. Stehr et al. (2009) 

derived a value of -5 from analyzing the ground station data of Central Chile. Due to the 

variation in reported lapse rate values using different data sources, this study relied on 
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the derived lapse rates from NCEP-CFSR 30-year reanalysis data. The estimated lapse 

rates by temperature-altitude and precipitation-altitude linear regression over a river 

basin was modified over the gauged subbasins during the calibration iterations. 

Gradients per 1,000 m are summarized in Table 1. 6 as along with the number of NCEP-

CFSR data points for each river basin. Seasonal variation of temperature lapse rate was 

ignored in this study and it was assumed unchanged over all seasons. 

 
 
 

Table 1. 6. Applied precipitation and temperature lapse rates in model 
set up calculated from NCEP-CFSR 30-year reanalysis data. 

 # of data points Temperature gradient (C) Precipitation gradient 
(mm) 

Narayani 69 -5.9 -27 
Vakhsh 100 -5.3 166 
Upper Rhone 34 -3.0 455 
Mendoza 30 -4.4 101 
Central Chile 45 -4.3 -17 

 
 
 

Ice/Snow Melt Factors 

A wide range of degree-day factors (DDF) have been reported. In this study, the 

relevant DDF for ice and snow are primarily derived from the literature (Kotlyakov and 

Krenke, 1982; Singh and Kumar 1996; Kayastha et al., 2000, 2003; Immerzeel et al., 

2011; Lang, 1986; Schaper et al., 1999, 2000; Braithwaite and Zhang, 2000; Braithwaite 

2008).  It should mentioned that the DDF are not same as melt factors in the temperature 

index models since the threshold temperature beyond which melt is assumed to occur is 

not always 0 ºC.  However, DDF were used as an initial estimation in model set up. 
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In glaciered basins, the DDF usually exceed 6 towards the end of summer when 

ice becomes exposed (Kotlyakov and Krenke, 1982). DDF changes considerably with 

surface exposure to solar radiation, snow properties such as density and rainfall on snow 

(Singh and Singh, 2001). Several studies have calculated melt factors for glaciers 

throughout the Nepalese Himalayan Mountains and central Asia (Singh and Kumar 

1996; Kayastha et al., 2000, 2003; Immerzeel et al., 2011), Switzerland Alps (Lang, 

1986; Schaper et al., 1999, 2000; Braithwaite and Zhang, 2000; Braithwaite 2008), and 

Central Andes Chile (Kull et al., 2002). No DDF values from the Central Andes around 

the study area were found, therefore, the a DDF value of 4.1 mm /day-  was used, 

which is the mean value for winter snow plus summer precipitation at the ELA of 66 

glaciers reported by Braithwaite (2008). Results from Braithwaite (2008) reflect 

different locations (66 glaciers) but also different methods.  

Krenke and Khodakov (1966) suggest DDF of 4.5 and 7 mm d−1 ºK−1 for snow 

and ice, respectively. Hock (2003) suggests DDF of 5.1±2.2 mm /day-  for snow on 

glaciers (18 sites) and 8.9±3.7 mm /day-  for ice glaciers (32 sites). Schaper et al. 

(1999) estimated a DDF value for seasonal snow ranging from 3.5 mm /day-  to 5.5 

mm /day-  during the melt season and 7.5 mm /day-  to the end of the snow melt 

season when glacier ice is melting for Grand Aletsch in the Upper Rhone River Basin. 

Their method was later extended to the Upper Rhone River Basin and which applied a 

uniform DDF of 7 mm /day-  for exposed ice and gradually substituted new values 

when new snow temporarily covered the ice. Braitwhite and Zhang (2000) suggested 

DDF values of 8 mm /day-   for the Gries Glacier in Upper Rhone and extended this 

http://link.springer.com/referenceworkentry/10.1007%2F978-90-481-2642-2_104/fulltext.html#CR6_104
http://link.springer.com/referenceworkentry/10.1007%2F978-90-481-2642-2_104/fulltext.html#CR30_104
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value to four other glaciers in the basin. A DDF value of 6 mm /day-  has been reported 

for Himalayan glaciers by Immerzeel et al. (2011). Kayastha et al. (2005) used DDF 

values of 7.0 mm /day-  and 8.0 mm /day-   for snow and ice ablations, respectively, 

at altitudes up to 5000 m.s.l., and 10.5 mm /day-  and 9.5 mm /day- , respectively 

above 5000m in the Himalayas. These DDF were preliminarily suggested by Kayastha et 

al. (2000, 2003) from summer values on Glacier AX010, in east Nepal and the Yala 

Glacier in the Langtang Valley. DDF are higher in Himalayan glaciers than alpine 

glaciers in Europe primarily due to ablation attributed to absorbed global radiation at 

high altitudes where the positive DDF is low because of low summer air temperature 

(Kayastha et al., 2005). 

As a result of the reported DDF in the literature, the SMFMX were set to 6 mm 

/day-  to 8 mm /day-  for the elevation bands higher than ELA0 and lower values for 

the snow at lower elevation bands (5 mm /day-  to 6.5 mm /day- ). SMFMN were set 

to lower values for winter melt at higher altitudes (4 mm /day-  to 5 mm /day- ) and 

lower values for the seasonal snow at lower elevation bands (3 mm /day-  to 4.5 mm 

/day- ). These parameters were set to higher boundary limits in the Himalayan glaciers 

and lower boundary limits for the alpine glaciers in the Rhone and Andes.  

Model Calibration and Evaluation 

The model was calibrated using monthly stream flow at the gauge stations in 

Table 1. 7 focusing on glaciated subbasins. The model was validated using the monthly 

stream flow from the Rhone, Mendoza and Chile Watersheds for two periods: recent 

years from 2008 to 2010 and early years from 1982 to 1992. This was to confirm that the 
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model works well for different periods and is independent from the time period. For the 

Vakhsh and Nepal Watersheds model validation periods were selected based on data 

availability. 

Monthly calibration was performed using the SWAT Calibration and Uncertainty 

Program (SWAT_CUP) (Abbaspour et al., 2007). SWAT-CUP is a generic interface to 

provide a link between any automatic calibration/uncertainty or sensitivity program and 

SWAT. Sequential Uncertainty Fitting Version 2 (SUFI2) incorporated in SWAT-CUP 

allows for calibration and validation of the model at multiple gauging stations and 

multiple observed datasets simultaneously.  

SUFI2 calculates a weighted multi-component objective function (weighted 

summation of the square errors) based on simulated variables and observed time series 

of all gauged watersheds, and then minimizes it by searching the Latin Hyperbolic 

(McKay et al., 1979) generated parameters for the best solution. 

In order to perform automatic calibration by SUFI2, the initial parameter values 

and ranges were determined. A list of the parameters and their ranges (Neitsch et al., 

2002) are presented in Table 1. 8. The Groundwater delay (GW-DELAY) and base-flow 

recession constant (ALPHA-BF) were initially set for simulation of low flow during the 

winter months. The parameter values then were optimized during the automatic model 

calibration. The base-flow recession constant is directly proportional to ground-water 

flow response to changes in recharge. 
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Table 1. 7. List of the gauge stations applied in model calibration and validation. 
 Reach# Station 

name 
Area 
(km2) 

Calibration 
period 

Validation 
period 

Warm up 
period 

Glacier 
MODIS 

(GLIMS) 

N
ar

ay
an

i 122 ARUGHAT 4270 1981-1985 - 1979-1980 14.93(10.91) 

133 BIMAL NAGAR 3850 1981-1992 - 1979-1980 16.55(13.16) 

123 SETIBENI 6630 1981-1987 1989-1993 1979-1980 9.77(9.38) 

 159 DEVGHAT 3110
0 1981-1985 1991-1993 1979-1980 9.20 

 96 PHOOLBARI 582 1981-1984 - 1979-1980  

V
ak

hs
h 

72 DAVSEAR 6550 1981-1985 - 1979-1980 31.00(31.00) 

133 TAVILDARA 5390 1981-1985 - 1979-1980 11.10 

109 KOMSOMOLABAD 2950
0 1981-1987 1988-1989 1979-1980 9.66 

R
ho

ne
 

2 Gletsch 39 1993-2007 2008-2010,1982-1992 1990-1992 41.00(46.15) 

4 Oberwald 40 1993-2007 2008-2010 1990-1992  0.00(5.1) 
23 Blattenbei Naters 195 1993-2007 2008-2010,1982-1992 1990-1992  62.34(65.10) 

14 Blatten 78 1993-2007 2008-2010,1982-1992 1990-1992 26.46(26.97) 

C
en

tra
l C

hi
le

 

7 EN JUNCAL  1993-2007 2008-2010,1982-1992 1990-1992 15.47 

14 EN RIO BLANCO  1993-2007 2008-2010,1982-1992 1990-1992 16.00 

9 EN RIO BLANCO  1993-2007 2008-2010,1982-1992 1990-1992 12.73 

6 EN COLORADO  1993-2007 2008-2010,1982-1992 1990-1992 0.17 

5 EN CHACABUQUITO  1993-2007 2008-2010,1982-1992 1990-1992 5.70 

25 LOCA ANTES JUNTA SAN 
FRANCISCO  1993-2007 2008-2010,1982-1992 1990-1992 3.58 

38 JUNTA RIO COLORADO  1993-2007 2008-2010,1982-1992 1990-1992 14.63 

37 JUNTA RIO OLIVARES  1993-2007 2008-2010,1982-1992 1990-1992 27.47 

39 JUNTA RIO MAIPO  1993-2007 2008-2010,1982-1992 1990-1992 15.70 

40 EN EL MANZANO  1993-2007 2008-2010,1982-1992 1990-1992 10.64 

66 EN LAS HUALTATAS  1993-2007 2008-2010,1982-1992 1990-1992 9.68 

59 EN QUELTEHUES  1993-2007 2008-2010,1982-1992 1990-1992 16.89 

55 EN SAN ALFONSO  1993-2007 2008-2010,1982-1992 1990-1992 9.03 

76 EN PANGAL  1993-2007 2008-2010,1982-1992 1990-1992 15.91 

77 EN PTE TERMAS DE CAUQUENES  1993-2007 2008-2010,1982-1992 1990-1992 12.28 

86 AGUAS ABAJO  1993-2007 2008-2010,1982-1992 1990-1992 12.28 

100 BAJO LOS BRIONES  1993-2007 2008-2010,1982-1992 1990-1992 16.35 

108 EN EL VALLE  1993-2007 2008-2010,1982-1992 1990-1992 0.00 

M
en

do
za

 

90 COLORADO -PUNTA DE VACAS  1993-2007 2008-2010,1982-1992 1990-1992 8.75 

82 CUEVAS -PUNTA DE VACAS  1993-2007 2008-2010,1982-1992 1990-1992 3.21 

86 MENDOZA -GUIDO  1993-2007 2008-2010,1982-1992 1990-1992 4.34 

84 TUPUNGATO -PUNTA DE VACAS  1993-2007 2008-2010,1982-1992 1990-1992 15.00 

79 VACAS -PUNTA DE VACAS  1993-2007 2008-2010,1982-1992 1990-1992 6.00 
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Table 1. 8. Parameters Selected for SWAT Model Calibration. 
Parameter Description Default value Range 

TLAPS Temperature lapse rate [°C/km] 0 -50, +50 

PLAPS Precipitation lapse rate [mm H2O/km] 0 -500, +500 

SFTMP Snowfall temperature[°C] 1 -5, +5 

SMTMP Snow melt base temperature [°C] 0.5 -5, +5 
SMFMN Minimum melt factor on December 21 in Northern Hemesphier(mm H2O/day-°C) 4.5 0, 10 

SMFMX Maximum melt factor on June 21 in Northern Hemesphier (mm H2O/day-°C) 4.5 0, 10 

TIMP Snow temperature lag factor 1 0, 1 

SNO50COV Fraction of snow volume represented by SNO100 that corresponds to 50 snow cover 0.5 0-1 

SNOCOVMX Threshold depth of snow at 100 coverage (mm H2O) 0 0-500 

ALPHA-BF Baseflow recession constant 0.048 0, 1 

GW_DELAY Delay time for aquifer recharge (days) 0 0, 500 

 
 
 

After setting the related parameters to adjust low flow, the model was 

automatically calibrated to determine snow melt parameters at the subbasin scale 

(Method 2).  

The parameters resulting from the automatic calibration were modified on a finer 

scale for the elevation bands above the ELA0, as an accumulation zone or glacier, and 

below the ELA0, as an ablation zone with seasonal snow, separately (Method 3). The 

melt parameters for the elevation bands were adjusted in order to match the observed 

and simulated average monthly flow curves and then the parameters were optimized by 

automatic model calibration using SUFI2. Briefly, model calibration consists of three 

main steps. First, parameters were automatically calibrated for an entire basin; so that, 

the snow melt parameters were uniform for all elevation bands and subbasins (Method 

1). In the next step, the parameters related to snow/ice melt such as snow melt 

temperature; maximum melt factor, minimum melt factor, and temperature lag factor 
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were calibrated automatically for each subbasin (Method 2). In the third step, the results 

were improved by calibrating the model for snow melt parameters for elevation bands-

subbasin (Method 3). Model performance was tested in some of the smaller subbasins 

first and then extended into the larger subbasins to test the hypothesis that the hydrologic 

significance of meltwater may be negligible at the macro scale despite the presence of 

large glaciers in the headwaters area (Immerzeel, 2008; Rees and Collins, 2006). 

Calibration and validation were evaluated using the coefficient of determination 

(R2), the Nash Sutcliffe Coefficient of Efficiency (NSE) (Nash and Sutcliffe, 1970) and 

the Percent Bias (PBIAS). R2 represents the percent of the data that is the closest to the 

line of best fit. R2 ranges from 0 to 1.0; higher values indicate better model performance 

in predicting the variations of observed data. R2 is computed as shown in equation 1: 

   (
∑ (    ̅)(    ̅)
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Eq. 1. 7 
 

 

where oi is observed data and pi is simulated variables. 

NSE indicates how well the plot of observed versus simulated data fits the 1:1 

line. NSE ranges from    to 1.0, where 1.0 indicates a perfect fit and negative values 

indicate that average values of observed data is more reliable than the model predictions. 

Positive values show a better match of observed data and predicted values. NSE is 

calculated with equation 1.8: 
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Eq. 1. 8 
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PBIAS measures the average tendency of the simulated data to be larger or 

smaller than their observed counterparts (Gupta et al., 1999). The optimal value of 

PBIAS is 0.0, with low values indicating accurate model simulation in term of 

magnitude. Positive values indicate model underestimation bias, and negative values 

indicate model overestimation bias (Gupta et al., 1999). It is calculated as: 

      [
∑ (     )     
 
   

∑   
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Eq. 1. 9 
 

According to Moriasi et al. (2007), model performance in prediction of monthly 

flow can be classified as satisfactory if 0.5 < NSE ≤ 0.65 and ±15 ≤ PBIAS < ±25;  good 

if 0.65 < NSE ≤ 0.75 and ±10 ≤ PBIAS < ±15; and very good if 0.75 < NSE ≤ 1.00 and 

PBIAS ≤ ±10.  Model performance is unsatisfactory if NSE ≤ 0.5 and PBIAS ≥ ±25.  

Results and Discussion 

Uncalibrated Model 

For an initial evaluation of the model performance and to assess the importance 

of orographic precipitation and temperature in both the presence and absence of glaciers 

in the basin, SWAT was run without calibration for three scenarios: with elevation bands 

and glaciers (U-EB-G), without elevation bands but with glaciers (U-NEB-G), and with 

elevation bands but without glaciers (U-EB-NG) for the Narayani, Rhone, and Mendoza 

River Basins. While there were considerable differences in model performance among 

the different scenarios and regions, different degrees of accuracy in predicting the 
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monthly streamflow were also seen depending on the climate type and hydrologic 

regime of the river basin.  

Overall, U-EB-G showed better results when compared with U-NEB-G with the 

exception of Narayani River Basin. At gage 159, the main outlet from the watershed in 

the Narayani River Basin, the R2 and NSE values dropped from 0.90 and 0.81 for U-

NEB-G, to 0.90 and 0.53, for U-EB-G, respectively. However, varying parameters by 

elevation band improved the prediction of stream flow at the other gauging stations (96, 

122 and 123) which were predominantly in mountainous areas. 

The SWAT model was originally designed to simulate processes in large-scale 

ungauged basins with little or no calibration (Arnold et al., 1998). As expected, the 

uncalibrated model (U-EB-G) showed good performance in simulation of monthly 

streamflow from Rhone and Narayani River Basins with R2 over 0.75 and NSE over 

0.55 (with exception at Reach 2, Rhone River Basin). 

The unsatisfactory monthly flow simulation of Mendoza River Basin could be 

due to high inter-annual seasonal variability of precipitation in South America under the 

influence of the Southern Annular Mode (SAM) and El Nino-Southern Oscillation 

(ENSO) which make it more challenging to predict the monthly streamflow relying on 

the uncalibrated model (Masiokas et al., 2010). 

Higher R2 values under U-EB-G in compare to of U-EB-NG shows adding the 

glaciers improved the model performance in simulation of seasonality of monthly flow 

whereas the volume of monthly flow considerably biased (Table 1. 9). This indicates that 

glacier ablation in high altitudes has an important effect on runoff regime.  
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Finally, it can be seen that the uncalibrated model (U-EB-G) had much better 

performance in simulation of monthly flow from Narayani River Basin in compare to the 

simulated flow from Mendoza and Rhone River Basins with dry summer and 

snow/glacier melt dominant summer flow. A possible reason could be dimming the 

influence of glacier melt on runoff by summer monsoon precipitation in Narayani River 

Basin which leads to predictable seasonal flow by only rainfall-runoff model. 

 
 
 

Table 1. 9. Evaluation coefficients for the default parameters scenarios 

 

Reach# 
U-NEB-G U-EB-NG U-EB-G 

 R2 NSE PBIAS R2 NSE PBIAS R2 NSE PBIAS 

N
ar

ay
an

i 96 0.87 0.35 +58.2 0.76 0.72 -19.2 0.78 0.66 -35.0 
122 0.83 0.00 -19.0 0.77 0.54 +39.4 0.85 0.78 +22.6 
123 0.86 0.18 -44.4 0.87 0.84 +16.9 0.90 0.88 +2.8 
159 0.90 0.81 +29.2 0.86 0.51 +45.9 0.90 0.53 +36.3 

R
ho

ne
 2 0.80 -1.56 -128.5 0. 36 0.32 +12.4 0.87 -0.19 -87.7 

4 0.68 -0.34 -62.0 0.74 0.64 +10.8 0.78 0.55 -15.7 
14 0.82 -0.82 -92.1 0.64 0.61 +0.1 0.89 0.63 -38.3 
23 0.91 -1.97 -153.6 0.87 0.84 +19.9 0.95 0.93 -8.2 

M
en

do
za

 84 0.73 -10.85 -191.8 0.36 0.29 +27.5 0.76 0.07 -51.5 

86 0.30 -14.4 -185.1 0.16 -0.36 -2.5 0.42 -1.41 -67.8 
90 0.51 -25.56 -334.4 0.31 -0.23 -3.4 0.61 -4.57 -146.4 
82 0.54 -6.11 -88.9 0.44 0.29 +14.1 0.53 0.17 -31.4 
79 0.46 -10.87 -207.7 0.26 0.20 +14.3 0.31 -3.55 -140.0 

 
 
 

Model Calibration and Validation 

The calibration process and improvement in model performance under the non-

distributed (Method 1) and distributed snow melt methods (Methods 2 and 3) are 

discussed in detail for gauged subbasins with the largest percentage of glacial area. For 

all the other gauged subbasins only the statistical results are presented. The non-

glaciated and snow free gauged watersheds located at lowlands and glaciated subbasins 
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with insufficient flow data, as well as dammed subbasins, were ignored in the  model 

calibration. Calibration and validation results for all watersheds are given in Table 1. 10. 

 
 
 
Table 1. 10. Evaluation coefficients under the calibration parameters scenario for 
calibration and validation periods. 

  Calibration  Validation   

   R2   NSE   PBIAS  Performance   R2 NSE PBIAS Performance 

 Reach# 1* 2 3 1 2 3 1 2 3 3 3  

N
ar

ay
an

i 

96 0.81  0.83 0.81  0.83 -6.6  +0.5 Very good     
122 0.85 0.83 0.83 0.77 0.72 0.73 +10.5 +27.3 +25.0 Satisfactory     
123 0.88 0.88 0.88 0.85 0.87 0.87 +2.1 +10.1 +8.6 Very good 0.79 0.78 +22.5 Satisfactory 
133   0.80   0.70   +18.0 Good     
159 0.91  0.89 0.69  0.70 +39.5  +33.8 Unsatisfactory 0.78 0.70 +12.9 Good 

V
ak

hs
h 72   0.92   0.80   +2.8 Very good     

109   0.92   0.72   -7.4 Good 0.89 0.73 -8.15 Good 
133   0.91   0.87   +9.1 Very good     

R
ho

ne
 2 0.82 0.88 0.85 0.76 0.75 0.83 -24.7 -20.96 -13.2 Very good 0.86 0.81 -21.6 Satisfactory 

4 0.81 0.81 0.81 0.75 0.74 0.74 2.7 -5.83 +5.5 Very good 0.76 0.61 -9.4 Good 
14 0.86 0.87 0.91 0.85 0.87 0.91 -7.3 -6.61 -1.5 Very good 0.86 0.82 -16.1 Satisfactory 
23 0.95 0.96 0.95 0.86 0.93 0.95 +25.9 -4.61 +2.2 Very good 0.95 0.89 -13.1 Good 

M
en

do
za

 

84 0.76 0.78 0.78 0.70 0.76 0.77 +22.5 +5.3 +5.0 Very good 0.80 0.71 +6.2 Good 
86 0.72  0.70 0.65  0.56 -2.9  -14.3 Satisfactory 0.69 0.24 -21.7 Unsatisfactory 
90 0.66 0.63 0.65 0.32 0.57 0.59 -15.8 +7.2 +3.6 Satisfactory 0.43 -0.24 +5.8 Unsatisfactory 
82 0.60  0.62 0.52  0.58 +7.2  +7.9 Satisfactory 0.61 0.59 +12.5 Satisfactory 
79 0.45  0.54 0.28  0.50 -17.9  +5.5 Satisfactory 0.57 0.46 -2.1 Unsatisfactory 

C
hi

le
 

6  0.67 0.67  0.66 0.66  +4.2 +3.3 Good 0.44 0.34 +50.0 Unsatisfactory 
66  0.58 0.59  0.43 0.47  +15.3 +8.1 Unsatisfactory 0.45 0.21 -18.7 Unsatisfactory 
5   0.75   0.61   +33 Unsatisfactory 0.58 0.38 +41.0 Unsatisfactory 
7   0.72   0.62   +10.7 Satisfactory 0.60 0.22 +4.7 Unsatisfactory 
9   0.62   0.41   -32.4 Unsatisfactory 0.50 0.31 +40.2 Unsatisfactory 

14   0.71   0.70   +6.7 Satisfactory 0.50 0.21 +51.4 Unsatisfactory 
37   0.43   0.42   +4.3 Unsatisfactory 0.35 0.11 +46.3 Unsatisfactory 
38   0.51   0.29   -42.7 Unsatisfactory 0.30 0.15 +44.0 Unsatisfactory 
39   0.70   0.33   +38 Unsatisfactory 0.51 0.00 +41.2 Unsatisfactory 
40   0.63   0.53   +13.7 Satisfactory 0.55 0.50 +11.0 Satisfactory 
55   0.57   0.50   +18.4 Satisfactory 0.48 0.44 -0.2 Unsatisfactory 
59   0.66   0.55   +36.5 Satisfactory 0.57 0.65 +31.0 Unsatisfactory 
76   0.62   0.33   +8.8 Unsatisfactory 0.30 -0.14 -8.3 Unsatisfactory 
77   0.57   0.41   -6.0 Unsatisfactory     
86   0.68   0.66   +6.7 Good 0.64 0.57 +2.6 Satisfactory 
100   0.56   0.53   +3.8 Satisfactory 0.57 0.41 -1.8 Unsatisfactory 
108   0.68   0.56   +34.2 Unsatisfactory 0.44 0.41 +39 Unsatisfactory 

* 1, 2 and 3 indicates Method 1, Method 2 and Method 3.   
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Rhone River Basin 

SWAT was calibrated with observed monthly stream flow from four gauging 

stations at Reaches 2, 4, 14, and 23. Table 1. 11 shows calibration parameter values in 

elevation band scale (Method 3), the value of each parameter at every subbasin, an 

average value for the parameter and the range of the parameter across all subbasins for 

53 calibration parameters, 13 subbasins and 10 elevation bands. 

Figure 1. 18 shows the observed and the flows simulated using the three methods 

described in Section 1.4 at different gauge stations. In the highly glaciated subbasins 2 

and 23, Method 1 (snow melt parameters uniform across the basin and elevation bands) 

resulted in high PBIAS value in compare with the flow from other subbasins. Method 2 

shows considerable improvement in predicted flow from Reach 23 while for Reach 2, 

Method 3 generated the best result (Table 1. 10). It can be justified by different 

distribution of glaciers in the drainage area of Reach 2 and Reach 23.  The glaciers of 

drainage area of Reach 23 have been dominantly discretized by subbasin boundaries but 

it was impossible for Reach 2 due to the extended glacier area to the lower elevations. 

So, it can be concluded that Method2 can be used confidentially while glacier area is 

discretized from glacier free area by subbasins. 

Like Reach 2, Method 3 led to best results for Reach 14 while Method 1 and 

Method 2 showed similar results to each other (R2: 0.86 and 0.87, NSE: 0.85 and 0.87 

and PBIAS: -6.61 and -7.3). Both R2 and NSE of Method 3 were improved to 0.91 from 

0.87 by Method 2. This can be again justified by the distribution of glacier through the 
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subbasin which is undividable by subbasins boundary; so, melt parameter distribution by 

elevation band has a key role in this type of subbasins. 

There is no improvement in the simulated flow by Method 1, Method 2 and 

Method 3 from glacier free drainage area of Reach 4 (R2=0.81 and NSE=0.74 and 

PBIAS range of +2.7 to -5.8 for three methods).  

Figure 1. 18 shows that the observed mean monthly flow curves of Reach 23 and 

14 are matched to the simulated mean monthly flow by Method 3. This degree of 

accuracy in simulation of the seasonal pattern of monthly flow is only achievable by 

adjustment of melt parameters based on elevation bands (Method 3). As an example, the 

variability of monthly flow from Reach 23 (65 percent glaciered area) changes with a 

change in SMFMX from 2 to 8 mm/d-1 ºC-1, in the upper elevation bands. Additionally, 

SMFMX in lower elevation bands had more influence on the rising limb of the flow 

curve whereas the descending limb was more sensitive to SMFMX changes in the higher 

elevation bands (Figure 1. 19). This indicates that the late spring flow is under the 

influence of snow melt at lower elevations and late summer flow is controlled by glacier 

melt at higher elevations. This can also be investigated by analyzing the melting lag time 

at the elevation bands. Seasonal melting from October 1998 to October 1999 from each 

of the elevation bands of Subbasin 12 as an example of a typical subbasin with a wide 

range of elevation and 10 elevation bands is presented in Figure 1. 20-a, for glacier free 

elevation bands with seasonal snow cover; and in Figure 1. 20-b for high elevation bands 

with permanent snow cover or glacier. In Figure 1. 20-a snowpack in the elevation bands 
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1, 2, 3, 4 and 5 is completely vanished by mid-August whereas in Figure 1. 20-b the 

glacier ablation reaches its peak in August and continues through October. 

 
 
 

 

 

 

 

Figure 1. 18. Observed and simulated monthly runoff and mean monthly runoff using 
SWAT with different melt processes for the calibration period at Rhone River Basin.  
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Figure 1. 19. Variability of monthly flow from Reach 23 (65 glaciered area) to SMFMX 
changes (2 to 8 mm/d-1 c-1) in the upper elevation bands and lower elevation bands. 
 
 
 

 
(a) 

 
(b) 

  
Figure 1. 20. Seasonal melting from the elevation bands of Subbasin 12 from October 
1998 to October 1999; a) glacier free elevation bands with seasonal snow cover; b) 
high elevation bands with permanent snow cover or glacier. In (a) a snowpack in the 
elevation bands 1, 2, 3, 4 and 5 is completely vanished by mid-August whereas in (b) 
the glacier ablation reaches the pick at August and continues to October. 
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Table 1. 11. Calibration parameters for subbasins and elevation bans (Method 3), Rhone 
River Basin. 
Rhone  Subbasin #    

Parameter 1 2 4 5 12 14 8 15 16 17 20 21 23 Ave. Min. Max. 

SFTMP1 1 -1 0 0 0 0 2 2 2 2 2 2 2 1.08 -1 2 

SFTMP2 1 -1 0 0 0 0 2 2 2 2 2 2 2 1.08 -1 2 

SFTMP3 1 -1 0 0 0 0 2 2 2 2 2 2 2 1.08 -1 2 

SFTMP4 1 0 0 0 0 0 2 2 2 2 2 2 2 1.15 0 2 

SFTMP5 1 0 0 0 2 2 2 2 2 2 2 2 2 1.46 0 2 

SFTMP6 2 2 1 1 2 2 2 2 2 2 2 2 2 1.85 1 2 

SFTMP7 3 2 1 1 2 2 2 2 2 2 2 2 2 1.92 1 3 

SFTMP8 3 2 1 1 2 2  2 2 2 2 2  1.91 1 3 

SFTMP9 3 2 1 1 2 2   2 2  2  1.89 1 3 

SFTMP10 3 2 1 1 2 2   2 2  2  1.89 1 3 

SMTMP1 2 0 0 0 2 2 0 0 0 0 0 0 0 0.46 0 2 

SMTMP2 2 0 0 0 2 2 0 0 0 0 0 0 0 0.46 0 2 

SMTMP3 2 1 0 0 2 2 0.5 0 0 0 0 0 0 0.58 0 2 

SMTMP4 2 1 0 0 2 2 0.5 0.5 0 0 0 0 0 0.62 0 2 

SMTMP5 2 1 0 0 2 2 0.5 0.5 0 0 0 0 0 0.62 0 2 

SMTMP6 3 1 2 2 2 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.19 0.5 3 

SMTMP7 3 3 2 2 2 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.35 0.5 3 

SMTMP8 3 3 2 2 2 2  0.5 0.5 0.5 0.5 0.5  1.50 0.5 3 

SMTMP9 3 3 2 2 2 2   0.5 0.5  0.5  1.72 0.5 3 

SMTMP10 3 3 2 2 2 2   0.5 0.5  0.5  1.72 0.5 3 

SMFMX1 3 3 3 3 2 2 4 4 4 4 4 4 4 3.38 2 4 

SMFMX2 3 3 3 3 2 2 4 4 4 4 4 4 4 3.38 2 4 

SMFMX3 3 3 3 3 2 2 6 4 4 4 4 4 4 3.54 2 6 

SMFMX4 3 3 3 3 2 2 6 6 4 4 4 4 4 3.69 2 6 

SMFMX5 3 3 3 3 2 2 6 6 4 4 4 4 4 3.54 2 6 

SMFMX6 5 5 4 4 6 6 6 6 6 6 6 6 6 5.54 4 6 

SMFMX7 5 5 4 4 6 6 6 6 6 6 6 6  5.50 4 6 

SMFMX8 5 5 4 4 6 6  6 6 6 6 6  5.45 4 6 

SMFMX9 5 5 4 4 6 6   6 6  6  5.33 4 6 

SMFMX10 5 5 4 4 6 6   6 6  6  5.33 4 6 

SMFMN1 1.5 1.5 2 2 1.5 1.5 4 4 4 4 4 4 4 2.92 1.5 4 

SMFMN2 1.5 1.5 2 2 1.5 1.5 4 4 4 4 4 4 4 2.92 1.5 4 

SMFMN3 1.5 1.5 2 2 1.5 1.5 5 4 4 4 4 4 4 3.00 1.5 5 

SMFMN4 1.5 1.5 2 2 1.5 1.5 5 5 4 4 4 4 4 3.08 1.5 5 

SMFMN5 1.5 1.5 2 2 1.5 1.5 5 5 4 4 4 4 4 3.08 1.5 5 

SMFMN6 2.5 2.5 2.5 2.5 1.5 1.5 5 5 5 5 5 5 5 3.69 1.5 5 
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Table 1. 11. Continued 
Subbasin # 

Parameter 1 2 4 5 12 14 8 15 16 17 20 21 23 Ave. Min. Max. 

SMFMN7 2.5 2.5 2.5 2.5 1.5 1.5 5 5 5 5 5 5  3.58 1.5 5 

SMFMN8 2.5 2.5 2.5 2.5 1.5 1.5  5 5 5 5 5  3.45 1.5 5 

SMFMN9 2.5 2.5 2.5 2.5 1.5 1.5   5 5  5  3.11 1.5 5 

SMFMN10 2.5 2.5 2.5 2.5 1.5 1.5   5 5  5  3.11 1.5 5 

TIMP1 0.6 0.6 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.62 0.5 0.7 

TIMP2 0.6 0.6 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.62 0.5 0.7 

TIMP3 0.6 0.6 0.5 0.5 0.5 0.5 0.05 0.7 0.7 0.7 0.7 0.7 0.7 0.57 0.05 0.7 

TIMP4 0.6 0.6 0.5 0.5 0.5 0.5 0.05 0.05 0.7 0.7 0.7 0.7 0.7 0.52 0.05 0.7 

TIMP5 0.6 0.6 0.1 0.1 0.5 0.5 0.05 0.05 0.7 0.7 0.7 0.7 0.7 0.46 0.05 0.7 

TIMP6 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.01 0.05 

TIMP7 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.05 0.05 0.05  0.03 0.01 0.05 

TIMP8 0.01 0.01 0.01 0.01 0.01 0.01  0.05 0.05 0.05 0.05 0.05  0.03 0.01 0.05 

TIMP9 0.01 0.01 0.01 0.01 0.01 0.01   0.05 0.05  0.05  0.02 0.01 0.05 

TIMP10 0.01 0.01 0.01 0.01 0.01 0.01   0.05 0.05  0.05  0.02 0.01 0.05 

ALPHA_BF 0.048 0.048 0.01 0.01 0.048 0.01 0.01 0.048 0.048 0.048 0.048 0.048 0.048 0.036 0.01 0.48 
PLAPS 300 300 0 0 300 400 100 100 100 100 100 100 100 267 0 400 
TLAPS -7 -7 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -6.69 -5 -7 

 
 
 

Narayani River Basin 

SWAT was calibrated using the observed monthly stream flow from four 

gauging stations at reaches 96, 122, 123, 133 and 159 (main outlet). The data of gauged, 

non-glaciated and snow free watersheds located in the lowlands were ignored for model 

calibration. Table A. 1 (Appendix A) shows calibration parameter values in elevation 

band scale (Method 3) at every subbasin (32 subbasins and 10 elevation bands) for 

drainage area of Reach 123. Table 1. 12 gives an average value and range for all the 

parameters across all subbasins for all of the reaches in the watershed, focusing on the 

calibration reaches. 
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Figure 1. 21 shows the observed and simulated flows at gauging stations 122, 

123 and 133. It can be seen from Table 1. 12 that the average values for SMFMX and 

SMFMN are larger than the obtained values for Rhone River Basin (Table 1. 10). 

 
 
 

 

 

 

Figure 1. 21. Observed and simulated monthly runoff and mean monthly runoff using 
SWAT with different melt processes for the calibration period for some of the 
subbasins of Narayani River Basin. 
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PBIAS and NSE values in Table 1. 10 indicate same model performance by all 

three methods based on PBIAS and NSE values. As mentioned in the previous section, a 

possible reason could be again diminishing the influence of glacier/snow melt on runoff 

by coincident summer monsoon precipitation in Narayani River Basin which leads to 

predictable seasonal flow by rainfall-runoff model rather than snow hydrology process. 

There is although positive biases in predicting the volume of water from all gauge 

stations which means the model has under-predicted the volume of flow. This systematic 

bias might be due to underestimated NCEP reanalysis spring/summer precipitation 

(May-September) in Narayani River basin by 20 percent.  

 
 
 
Table 1. 12. Range and mean values of calibration parameters in subbasin-elevation 
band scale (Method 3), Narayani River Basin 

 123 122 133 96 Rest of 
the basin 

Total  
Basin 

Parameter Ave. Min. Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. Max. Ave. 

SFTMP 2.00 2 2 3.24 2 4 2.04 2 3 1.21 0.28 4 1.98 0.28 4 2.09 

SMTMP 0.74 0 2 0.00 0 0 1.58 0 2 0.80 0.5 0.9 1.06 0 2 0.83 
SMFMX 
(1-6) 5.56 5 7 6.62 6 7 4.33 4 6.7 5.15 5 5.6 5.22 4 7 5.38 

SMFMX 
(7-10) 8.03 8 9 9.00 9 9 7.87 6 9 5.88 5 8.5 7.79 5 9 7.71 

SMFMN 
(1-6) 4.04 3.5 6 5.00 5 5 3.96 3 4 4.33 3.8 4.5 4.15 3 6 4.29 

SMFMN 
(7-10) 6.03 6 7 6.76 6 8 5.42 4 7 4.40 4.1 4.5 5.36 4 7 5.59 

TIMP(1-6) 0.70 0.7 0.7 0.70 0.7 0.7 0.68 0.27 0.7 0.59 0.5 0.87 0.66 0.27 0.87 0.67 

TIMP(7-10) 0.06 0.05 0.06 0.06 0.04 0.2 0.02 0.01 0.04 0.39 0.067 0.5 0.06 0.01 0.5 0.12 

ALPHA_BF 0.048 0.048 0.048 0.010 0.010 0.010 0.077 0.048 0.200 0.080 0.037 0.210 0.050 0.048 0.100 0.053 

TLAPS -6.5  

PLAPS -100 0 -200 -200 -200  
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Vakhsh River Basin 

SWAT was calibrated with observed monthly stream flow from three gauge 

stations at Reaches 72, 133 and 109. The data of the gauges at Reach 40 and 85 were 

ignored during model calibration due to the low quality of the climate data available in 

the northern part of the basin. Table A. 2 (in Appendix A) shows for each parameter and 

elevation band combination (Method 3) in subbasin 133, the value of each parameter at 

every subbasin (26 subbasins and 10 elevation bands). Table 1. 13 gives an average 

value and range for all the parameters across all subbasins for all of the reaches in the 

watershed, focusing on the calibration reaches. 

The parameter values for Reach 109 (main outlet) do not include the calibration 

parameters of draining subbasins to Reaches 72 and 133. show the observed and 

simulated flows at gauges 72, 109 and 133. SMFMX for snow and glacier ranges 

between 2 to 6 and 4 to 8, respectively. SMFMN ranges between 2 to 5 for snow and 3 

to 7 for glaciers. TIMP values were lower in the high elevation bands where the glaciers 

exist and ranges between 0.036 to 1 with average value between 0.06 for high elevation 

bands to 0.65 for low elevation bands.  

The model had very good performance (Moriasi et al., 2007) in simulation of 

monthly flow from the glaciered area of the Vakhsh River Basin with PBIAS smaller 

than 10 percent and NSE greater than 0.72. The major problem in simulation of monthly 

flow from the Vakhsh River Basin was the lack of data for calibration and the low 

quality of the climate data, especially in the northern-half part of the river basin. The 

short calibration period of 2.5 years for Reach 133 was not long enough to capture the 
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long term variability of the monthly flow. The comparison between observed and 

simulated monthly flow from the main outlet of the basin (Reach 109) during the 

validation period indicated that there was good agreement to the observed and simulated 

streamflow which was verified by PBIAS and NSE -8.15 and 0.73, respectively. 

 
 
 

 

 

 

Figure 1. 22. Observed and simulated monthly runoff and mean monthly runoff using 
SWAT with different melt processes for the calibration period at Vakhsh River Basin 
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Table 1. 13. Range and mean values of calibration parameters in subbasin-elevation 
band scale (Method 3), Vakhsh River Basin 
Vakhsh 133 72 109 Basin 

 Ave. Min. Max. Ave. Min. Max. Ave. Min. Max. Ave. 

SFTMP 1.90 1.50 2.00 1.96 1.00 3.00 2.97 1.30 3.00 1.72 

SMTMP(1-4) 0.27 0.00 1.00 1.97 0.50 2.00 2.00 2.00 2.00 1.41 

SMTMP(5-10) 1.04 0.50 1.50 1.97 0.50 2.00 2.00 2.00 2.00 1.67 

SMFMX(1-4) 5.31 5.00 6.00 4.90 4.00 5.00 2.00 2.00 3.00 4.27 

SMFMX(5-10) 7.31 7.00 8.00 5.99 4.50 7.00 4.03 4.00 5.50 5.77 

SMFMN(1-4) 5.00 5.00 5.00 4.05 4.00 6.00 2.04 2.00 4.00 3.68 

SMFMN(5-10) 6.31 6.00 7.00 5.01 4.50 6.00 3.04 3.00 5.00 4.77 

TIMP(1-4) 0.54 0.50 0.70 0.71 0.70 1.00 0.70 0.70 0.70 0.65 

TIMP(5-10) 0.10 0.03 0.20 0.03 0.01 0.12 0.05 0.05 0.05 0.06 

TLAPS -7.50 
  

-7.80 
   

-7.80 
 

-7.70 

PLAPS 500.00 
  

300.00 
   

135.00 
 

312.0 

ALPHA_BF 0.020 
  

0.005 
   

0.004 
 

0.01 

GW_DELAY 31.00     31.00       60.00   40.7 

 
 
 

Mendoza River Basin 

SWAT was calibrated with observed monthly stream flow from five gauge 

stations at reaches 79, 82, 84, 90, and 86. Table A. 3 and Table A. 4 in Appendix A 

show the calibration parameter values in elevation band scale (Method 3) for drainage 

area of Reaches 79 and 84. Table 1. 14 gives an average value and range for all the 

parameters across all subbasins for all of the reaches in the watershed, focusing on the 

calibration reaches. 

SMFMN for snow and glacier ranges between 2 to 3 and 2 to 3.8, respectively. 

SMFMX ranges between 2 to 4.5 for snow and 2 to 5.4 for glaciers. TIMP values was 
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higher in the high elevation bands where the glaciers exist and ranges between 0.036 to 1 

with average value of 0.005 for high elevation bands and 1 for lower elevation bands.  

Model performance for all three snow melt methods are presented in Table 1. 10. 

Figure 1. 23 shows the observed and simulated flows at the four calibration gauges. 

Subbasins 84 and 90 were selected to compare the model performance using snow melt 

Methods 2 and 3. Among the gauged watersheds, the drainage area of Reach 84 has the 

largest percentage in glaciers. Subbasin 90 is a smaller subbasin and is a good option to 

show the streamflow response to melt parameter distribution. 

There was a negligible improvement in the model performance when using 

Method 3 over Method 2 in Reach 84 (Figure 1. 23 and Table 1. 10). For Reach 90, the 

model accuracy was improved 50 percent (PBIAS 3.6 in compare with 7.2) by Method 

3. Figure 1. 23 shows that the simulated peaks by Method 3 are match the observed peak 

flows. This level of accuracy is only achievable by adjusting the melt parameters for 

seasonal snow and permanent snow for each elevation band since Method 2 was not able 

to capture the peaks by calibrating the model for many different sets of melt parameters.  

Comparison between observed and simulated monthly streamflow during the 

validation period indicated that the model performance in simulation of monthly flow is 

unsatisfactory to good by PBIAS values in the range of -2.1 to -12.7 and by NSE values 

in the range of -0.24 to 0.71.  
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Figure 1. 23. Observed and simulated monthly runoff and mean monthly runoff using 
SWAT with different melt processes for the calibration period at Mendoza River Basin. 
 
 
 

The R2 and NSE values are generally lower than the values obtained in the 

Narayani, Vakhsh and Rhone Watersheds.  Forecasts of summer runoff take into account 



 

70 

 

the accumulated snow in the previous winter. Winter precipitation (October to March) 

inter-annual variability in the Andes is linked to ENSO events which consequently 

results in a more complex response of streamflow (Waylen and Caviedes, 1990). A cold 

event of 1996 was linked with scarce snowfall during the winter in the Andes that 

the1996-1997 summer had below average flows (Figure 1. 23). This La Nina event 

ended in March 1997 (Compagnucci and Vargas, 1998). 

 
 
 
Table 1. 14. Range and mean values of calibration parameters in subbasin-elevation 
band scale (Method 3), Mendoza River Basin. 

90  84 82  79 Other subbasins 

   Ave. Min. Max. Ave. Min. Max.  Ave. Min. Max. Ave. Min. Max. 

SFTMP(1-5) 0.00 SFTMP 2.11 1.00 1.00 2.60 2.00 3.00 SFTMP 2.74 2.00 4.00 2.02 2.00 3.00 

SFTMP(3-5) 3.00 SMTMP(1-3) 2.54 2.00 2.00 2.50 2.00 3.00 SMTMP 2.40 1.00 3.80 3.00 2.00 4.00 

SFTMP(6-10) 4.20 SMTMP(4-10) 3.30 3.00 3.00 2.70 2.00 4.00 SMFMN(1-6) 2.48 2.30 2.50 2.02 2.00 3.00 

SMTMP(1-2) -0.50 SMFMN(1-6) 2.59 2.30 2.30 2.60 2.00 3.00 SMFMN(7-
10) 

2.85 2.50 3.00 2.91 2.00 3.00 

SMTMP(3-5) 3.70 SMFMN(7-10) 3.88 3.80 3.80 3.20 2.00 3.50 SMFMX(1-6) 3.00 3.00 3.00 2.71 2.00 3.00 

SMTMP(6-10) 4.70 SMFMX(1-6) 2.87 2.50 3.50 3.55 2.00 4.50 SMFMX(7-
10) 

4.00 4.00 4.00 3.02 3.00 4.00 

SMFMN(1-5) 2.60 SMFMX(7-10) 4.20 3.60 4.60 3.55 2.00 4.50 TIMP(1-6) 0.52 0.40 0.60 0.27 0.20 1.00 

SMFMN(6-
10) 

3.60 TIMP(1-6) 0.44 0.44 0.44 0.05 0.01 0.10 TIMP(7-10) 0.14 0.005 0.30 0.20 0.01 0.20 

SMFMX(1-2) 1.80 TIMP(7-10) 0.14 0.07 0.07 0.05 0.01 0.10        

SMFMX(3-6) 2.10               

SMFMX(7-
10) 

5.40               

TIMP(1-2) 0.30               

TIMP(3-5) 0.25               

TIMP(6-10) 0.005               

TLAPS -6.70   -7.3   -7    -6.9   -7  

PLAPS 635  180 80 365  -150    -300  71 21 123 

ALPHA_BF 0.017   0.006   0.010    0.010   0.009  
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Central Chile  

SWAT was calibrated with the observed monthly stream flow from 16 gauge 

stations at Reaches 5, 6, 7, 9, 14, 37, 38, 39, 40, 55, 59, 66, 76, 86, 100, and 108. Table 

A. 5 and Table A. 6 (Appendix A) show the calibration parameter values in elevation 

band scale (Method 3) for drainage area of Reaches 5 and 66. Table 1. 15 gives an 

average value and range for all the parameters across all subbasins for all of the reaches 

in the watershed, focusing on the calibration reaches. 

SMFMN for snow and glacier ranges between 2 to 7. SMFMX ranges between 2 

to 6.25 for snow and 3 to 8 for glaciers. TIMP ranges between 0.01 to 1 with average 

value of 0.5 for high elevation bands and 0.78 for lower elevation bands. 

Model performance measures for Methods 2 and 3 are presented in Table 1. 10. 

Figure 1. 24 shows the observed and simulated flows at gauges 6, 7, 14, 66, 55, 40, 76 

and 86. Subbasins 6 and 66 were selected to compare the model performance of Methods 

2 and 3.  

Improvement of model performance by Method 3 was negligible when compared 

to Method 2 in simulation of monthly flow from Reach 6 (Figure 1. 24 and Table 1. 10). 

Like subbasin 4 and 5 in Rhone River Basin, subbasin 6 and its drainage area is glacier 

free and melt parameter distribution has no effect on streamflow simulation (Figure 1. 

24). The model accuracy improved 47 percent (PBIAS 8.1 in compare with 15.3) in 

simulation of volume of flow from Reach 66 by Method3. In Figure 1. 24 the simulated 

peaks by Method3 matched the observed peak flows while Method 2 was unsuccessful 

to capture the peaks. 
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Figure 1. 24. Observed and simulated monthly runoff and mean monthly runoff using 
SWAT with different melt processes for the calibration period for some of the 
gauged subbasins of Chilean River Basins. 



 

73 

 

 

 

 

 

Figure 1. 24. Continued 
 
 
 

The comparison between observed and simulated monthly flow during validation 

period indicates poor to satisfactory simulation with R2 between 0.30 and 0.64 and NSE 

between -0.14 and 0.57. The R2 and NSE values are generally lower than those values 
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obtained in simulation of monthly flow from the other river basins in this study. Winter 

precipitation (October to March) inter-annual variability in the Andes is linked to ENSO 

events and consequently reveals a more complex response of streamflow (Waylen and 

Caviedes, 1990) which may explain poor model performance in simulation of seasonal 

flow variability. The major problem in simulation of monthly flows was under prediction 

of flow during the winter whereas simulated summer flow is in better agreement with 

observed flow.  

 
 
 
Table 1. 15. Range and mean values of calibration parameters in subbasin-elevation 
band scale (Method3), Central dry Andes of Chile. 
Gauged  
Reach# 37-38-39 55-66-59 76-86-77  108  100 Total basin 

 Ave. Min. Max. Ave. Min. Max. Ave. Min. Max.    Ave. Min. Max. Ave. Min. Max. 

SFTMP 1.0 1.0 1.0 3.0 3.0 3.0 0.88 0.0 3.0 SFTMP -2.0 SFTMP 
(1-2) 0.0 0.0 0.0 0.77 -4.6 3.0 

SMTMP 
(1-6) 2.44 0.5 4.0 0.83 0.0 1.0 0.65 0.0 1.0 SMTMP 1.0 SFTMP 

(3-6) 1.0 1.0 1.0 1.01 -4.6 3.0 

SMTMP 
(7-10) 3.00 0.5 5.0 2.83 2.0 3.0 1.47 0.5 2.0 SMFMX 4.0 SFTMP 

(7-10) 4.0 4.0 4.0 1.14 -4.6 3.0 

SMFMX 
(1-6) 2.28 2.0 4.5 4.17 4.0 7.0 4.35 4.0 5.0 SMFMN 5.0 SMTMP 

(1-2) 0.0 0.0 0.0 0.42 -3.0 4.0 

SMFMX 
(7-10) 3.39 2.0 4.5 6.06 6.0 7.0 5.47 4.5 6.0 TIMP 0.50 SMTMP 

(3-6) -3.0 -3.0 -3.0 0.90 -1.0 4.0 

SMFMN 
(1-6) 3.06 2.0 4.5 5.83 5.0 6.0 4.82 4.5 5.0   SMTMP 

(7-10) -3.0 -3.0 -3.0 1.66 0.5 5.0 

SMFMN 
(7-10) 4.17 3.0 6.0 7.0 7.0 7.0 5.65 4.5 7.0   SMFMN 

(1-2) 4.0 4.0 4.0 4.07 2.0 6.0 

TIMP 
(1-6) 0.333 0.10 1.0 0.667 0.50 0.70 0.61 0.2 1.0   SMFMN 

(3-6) 5.0 5.0 5.0 4.06 2.0 6.25 

TIMP 
(7-10) 0.147 0.01 1.0 0.012 0.01 0.05 0.36 0.01 1.0   SMFMN 

(7-10) 5.0 5.0 5.0 4.93 2.0 7.0 

            SMFMX 
(1-2) 5.0 5.0 5.0 4.68 2.0 6.0 

            SMFMX 
(3-6) 5.5 5.0 6.0 4.64 2.0 6.25 

            SMFMX 
(7-10) 5.5 5.0 6.0 5.38 3.0 8.0 

            TIMP(1-2) 0.9 0.8 1.0 0.78 0.1 1.0 

            TIMP(3-6) 0.75 0.5 1.0 0.74 0.09 1.0 

            TIMP(7-10) 0.51 0.01 1.0 0.50 0.01 1.0 
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Summary, Conclusions, and Future Works 

Treating the glaciered and un-glaciered areas in the watersheds separately, 

significantly improved the SWAT model performance in simulation of volume and 

seasonality of runoff in glaciered areas. Spatial and temporal variations of melt rates 

mainly depend on the spatial and temporal variations of melt factors in hydro-glacial 

models. While temporal variations of melt factors have been considered in the SWAT 

model in the past, there has been no consideration of spatial variations in melt factors 

and lag time factor which are directly influenced by surface type (i.e. snow and ice). In 

this study, these spatial variations were specifically taken into account. 

SWAT performance was evaluated for accuracy in simulation of runoff from 

glaciated areas with three snow melt algorithms. Different degrees of melt parameter 

distribution across the basin were considered: lumped (Method 1), subbasin scale 

(Method 2), subbasin-elevation band scale (Method 3).  

The results revealed that the performance of the SWAT model was improved 

using Method 3 in comparison with the other methods in terms of simulation of runoff 

seasonality and volume in the five river basins. Method 3 was more advantageous than 

Method 2 where the glaciers contribution was non-uniform across the subbasins. 

Analyzing the melt parameter variation for the same elevation band across the subbasins 

(horizontal variations) showed less variability than the variations across the elevation 

bands of an individual subbasin (vertical variations) which implies the model well 

considers the vertical variation of melt vs. its horizontal variations which is dominantly 
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controlled by solar radiation variations due to aspect and slope. For glacier free areas no 

improvement were considered.  

Model accuracy in simulation of seasonal cycles of runoff was enhanced by 

determining the melt parameters for glaciers (high altitude elevation bands) and seasonal 

snow (low altitude elevation bands) separately (Method 3). This could be of considering 

the late spring flow from melting seasonal snow and late summer flow sources from 

glacier melt at high altitudes explicitly. It can be concluded that the descending limb of 

the flow curve in glaciered subbasins is only under the influence of glacier melt at high 

elevation bands and consequently is adjusted by melt parameters of higher elevation 

bands. Knowing this, the seasonality of flow can be adjusted with high accuracy.  

Model performance using the different melt algorithms also depends on the 

climate of a river basin. Significance of melt water may be negligible when the melt 

season coincides with monsoon precipitation, so there was no significance different in 

the simulation results by the three melt algorithms where monsoons are a factor. For the 

river basins in the central Andes, applying Method 3 considerably improved the model 

performance in simulation of runoff volume in comparison with Methods 1 and 2 while 

seasonality of runoff did not show any improvement. This may be due to high 

interannual and annual variability of flow in these regions which is more dominated by 

rainfall-runoff relationships than the snow melt. As a conclusion, considering the spatial 

variations of associated melt parameters, significantly improves the SWAT performance 

in simulation of runoff volume and its seasonal variation in highly glaciated river basins.  
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While the distributed process-based energy budget models have been tested in 

the SWAT model, no studies have been done to incorporate enhanced temperature-index 

models to SWAT (Hock, 2003). This method is advantageous when incorporated to a 

distributed hydrologic model (Hock, 2003). Therefore, incorporating the enhanced 

temperature-index model to the modified snow algorithm of SWAT can be an objective 

of the future studies on enhancing the SWAT snow hydrologic process.  
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CHAPTER II  

APPLICATION OF THE SWAT MODEL IN MASS BALANCE MODELLING OF 

INDIVIDUAL GLACIERS AT THE CATCHMENT SCALE 

 

 

Overview 

The application of a temperature-index melt model was presented coupled with a 

complex, semi-distributed physically based hydrologic model, Soil and Water 

Assessment Tool (SWAT), for simulation of mass budget and equilibrium line altitude 

(ELA) of three glaciers: Rhone and Gries glaciers in the Alps, Switzerland and Abramov 

glacier in the Pamir Alay in Kyrgyzstan. Generally, there are no data available to 

calibrate and evaluate the model simulations of glaciered catchments, as they are often 

located in remote areas. Therefore, the main purpose of this study is glacier mass 

balance and runoff simulation where limited amount of data is available. Model 

performance was examined in simulation of annual glacier mass balance when 

calibrating the model for combination of ELA and runoff data in comparison with 

applying runoff data alone. The results did not show considerable improvement in runoff 

simulation whereas the simulated annual mass balance was significantly improved. This 

demonstrated that even little known information about the glacier ELA or mass balance 

reduces the uncertainty related to model parameterization significantly while also 

enhancing the accuracy of mass balance simulation. Thus, even good results in monthly 

runoff simulation alone do not imply the consistency between simulated and measured 
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mass balance. The model was then calibrated for only four year mean annual ELAs data 

and validated for the rest of the ELAs and total available data of annual mass balances. 

The results revealed that the SWAT model successfully simulates the annual glacier loss, 

vertical mass balance distribution profile and annual ELAs with light calibration efforts 

for ungauged catchments with limited available information about the glaciers. The 

results also revealed that the modelled area of glaciers by elevation bands is not an 

important source of uncertainty in mass balance simulation. 

Introduction  

In many parts of the world glacier runoff is the primary water supply for 

hydropower reservoirs and irrigation systems. Enhanced warming from greenhouse 

gases can have a significant effect on the water supply from glaciers (Oerlemans, 2001). 

Assessment of glacier mass loss is required to estimate the contribution of glacier runoff 

to streamflow and to plan for the water resources in mountainous areas. Many 

approaches have been applied to estimate the contribution of glacier melt to streamflow 

but one common problem in applying these methods is limited climate data, continuous 

observed discharge and glacier mass balance measurements.  

In-situ mass balance data are available for only a limited number of glaciers and 

over short time periods. Therefore, developing a hydrological model with adequate 

hydrologic components that can be applied to these data scarce catchments has been the 

objective of many studies (Schäfli et al., 2005; 2010; Konz et al., 2007; Konz and 

Seibert, 2010; Moore and Demuth, 2001; Micovic and Quick, 2009; Prajka et al., 2007; 

Martinec and Rango, 1986; Giesen and Oerlemans, 2012; Stahl et al., 2008; 
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Koboltschnig et al., 2008). In ungauged catchments, glacier mass balances and 

equilibrium line altitude (ELA) can be used as an additional source of information in 

glaciered catchments.  

According to Konz et al. (2006, 2007) glacier mass balances contain important 

information that improve the reliability of calibrated model parameters in poorly gauged 

catchments. Konz and Seibert (2010) also indicated that combining mass balance 

observations with a few discharge data improved the internal consistency and 

significantly reduced the uncertainties compared to parameter set selections based on 

discharge measurements alone. Schäfli et al. (2005) constrained their hydrological model 

on discharge and three available annual mass balance observations and showed that the 

resulting model reproduced discharge and the altitudinal mass balance distribution 

reasonably well.  

Stahl et al. (2008) pointed out that including observed mass balance data for 

parameter tuning could greatly reduce the prediction uncertainty in glacier catchments. 

Schäfli and Huss (2010) applied a step-wise modification for parameter selection to 

reproduce the mass balance and discharge using a semi-lumped hydrological model. 

They demonstrated that information on seasonal mass balance is a pre-requisite to 

reliably calibrate a hydrological model.  

ELA is another important characteristic of glaciers which is used in hydrologic 

model calibration. The ELA is a theoretical line on a glacier with zero point mass 

balance at the end of a fixed year (Anonymous, 1969). It separates the ablation area from 

the accumulation area. The correct simulation of the ELA is therefore a major objective 
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for hydrological models that are developed for application in climate change impact 

studies (Schäfli et al., 2005). Ohmura et al. (1992) also indicated that knowledge about 

the ELA is essential for understanding the relationship between climate changes and 

glacier variations.  

In this study, we developed a model to use sparse points of observation to 

calibrate and evaluate a modified snow process incorporated into the SWAT model for 

high mountainous catchments. The reliability of calibration was examined when using 

observed discharge and when incorporating some information about glacier 

characteristics (i.e. ELA) along with observed discharge to reproduce glacier mass 

balances. Using this fact, the model performance was evaluated for its ability to 

reproduce the mass balance and ELA by calibrating the model using a few mass balance 

and ELA data for ungauged catchments.  

Since the mass balance of an individual glacier may not be representative of 

larger areas (Huss, 2012) the method was extrapolated from individual glaciers to their 

neighboring glaciers based on glacier hypsometry and SWAT performance was 

evaluated through simulation of mass balance in ungauged catchments.  

Study Area 

This study focuses on the three reference glaciers (Gries, Rhone, and Abramov) 

in Europe and central Asia where either historical mass balance data by elevation band 

or runoff data are available. Gries Glacier (46°26' N, 8°20' E) is a small valley glacier 

5 km in length (year 2005) situated in the south of the main Alpine crest in Switzerland. 

In 1973 it had an area of 6.23 km2 decreasing to 5.26 km2 in 2008. The glacier has a 
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northeast exposure and stretches from 2,410 to 3,327 m. Length variation measurements 

show 2,151 m of retreat from 1847 to 2013. 

The Rhone Glacier (46°37' N, 8°24' E) is a medium-sized valley glacier with 

high precipitation amounts in the accumulation area, a result of regional advection 

effects and a relatively dry climate at its terminus (Schwarb et al., 2001). The Rhone 

Glacier is a source of the Rhone River and located in the far eastern Rhone River Basin 

in Switzerland. The glacier has a southern exposure and stretches from 2,197 to 3,600 m 

with the area of 16.45 km2 (year 2000). Length variation measurements show 1,336 m of 

retreat from 1879 to 2013. 

The Abramov is a valley glacier in the country of Kirghizstan (39°40’N, 

71°30’E) and located in the north of the Vakhsh River Basin. The glacier is oriented 

north and stretches from 4,960 to 3,620 m. Its surface area is 26.21 km2. The glacier has 

a temperate accumulation zone but cold ice near the surface of the ablation area.  

Data 

The annual mass balance, annual ELA, and mass balance/altitude profile at 

benchmark glaciers was extracted from Glaciological reports by VAW/SCAN (the Swiss 

glacier monitoring network) ‘Glacier Mass Balance Bulletin’ (GMBB) and ‘Fluctuations 

of Glaciers’ (FoG) provided by World Glacier Monitoring Service (WGMS, 2012).  

Annual glacier mass balances and ELAs are available for the Rhone Glacier for 

the years 1979-1980, 1980-1981 and 1981-1982 in FoG reports (version 3) (Zemp et al., 

2012). For the Abramov and Gries glaciers the mass balance data is available from 1968-

1998 and 1979-2010, respectively (Zemp et al., 2012; Dyurgerov, 2002).  Data is 
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presented in Table B. 1in Appendix B. Published mass balance values include only mass 

lost by processes on the glacier surface or in the uppermost annual layer of the snow/ice 

deposited during the hydrological year (October 30-September 1). The annual ELA is 

generally determined, in the context of mass-balance measurements, by fitting a curve to 

data representing point mass balance as a function of altitude (Dyurgerov, 2002). 

Methodology 

Glacier Distribution  

Subbasins were divided into 10 elevation bands with 100 m to 200 m intervals 

depending on the elevation range of the subbasin. Smaller elevation band intervals are 

able to determine glacier boundaries more accurately. It was assumed that the glacier 

boundary at a subbasin matches the lowest altitude of the elevation band if more than 50 

percent of the elevation band area is covered by a glacier. 

To model the glacier areas it was assumed that all zones at altitudes higher than 

the ELA0 are permanent snow/ice and seasonal snow is located at lower altitudes by 

default. According to Ohmura et al. (1992), the equilibrium line represents the lowest 

boundary of the climatic glacierization. The ELA is determined by climate and the 

aspect of the glacier. It is not influenced by glacier dynamics, extent and hypsometry; 

therefore, it can be a representation of the lowest boundary of climatic glacierization 

(Zemp et al., 2006b). The physical boundary of the glaciers was corrected based on the 

glacier inventory data, GLIMS glacier outlines and MODIS products. Elevation bands 

lower than the ELA0 was considered seasonal snow cover regardless of the extension of 
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glacier tongues into lower elevations. In the Figure 2. 1 and Figure 2. 2, the dark blue 

band indicates the ablation zone and higher elevation bands represent the accumulation 

zone. We did not model the tongue of the glaciers extending into lower altitudes, but the 

total modeled glacier area is approximately equal the actual glacier area. The elevation 

band intervals for the Rhone and Gries Glaciers are 200 m and 100 m, respectively. 

These assumptions have negligible influence on the simulated specific mass balance of 

the glaciered area of subbasin (Huss et al., 2008). In Figure 2. 3 the black line shows the 

accumulation boundary of the glaciers at 4,300 m (mean regional ELA0) and the green 

line represents the modelled physical boundary of the glaciers at 4000 m. 

 
 
 

 
 

Figure 2. 1. Rhone glaciers outline (WGI) (Right) with the elevation bands, and 
modelled glacier distribution and elevation bands throughout the catchment area in the 
Rhone River Basin (Left). In left figure dark blue band shows the ablation zone and 
higher elevation bands represent accumulation zone. 
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Figure 2. 2. Gries glaciers outline (WGI) (Right) and modelled glacier distribution and elevation 
bands throughout the catchment area in the Rhone River Basin (Right). In the left figure dark 
blue band shows the ablation zone and higher elevation bands represent accumulation zone. 
 
 
 

 
 

Figure 2. 3. Abramov glaciers outline (WGI) (Left) and modelled glacier distribution and 
elevation bands throughout the catchment area in the Vakhsh River Basin (Right). Black line 
shows the accumulation boundary of the glaciers at 4300m (mean regional ELA0) and green line 
presents the modelled physical boundary of the glaciers at 4,000m altitude.  
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Mass Balance and ELA Calculation for Individual Glacier and Range of Glaciers 

The mass balance of an individual glacier is calculated using data of area 

weighted mass balance versus altitude. This was done by multiplying each mass balance 

versus altitude distribution by the area within the 100m or 200m elevation bands of that 

individual glacier where: 

   (  ⁄ )∑(                      ) 
 
Eq. 2. 1 
 

where    (also   ) are mass balances for the entire glacier,    ,    ,     are point mass 

balances for elevation ( ) with the area   ;  and   is the surface area of the entire glacier. 

Annual (  ) and net (  ) balances (Mayo et al., 1972) may differ from year to year, 

although the difference is not likely to be substantial for longer-term averages 

(Dyurgerov, 2002).  

Elevation is the main parameter affecting change in climate and mass balance in 

mountains (Barry, 1992). That is one of the reasons for dividing a glacier area into 

elevation ranges (usually 100 m, see Appendix B) to make calculations of averages more 

accurate, given that the variables are homogeneous and isotropic inside a certain 

elevation range. 

In the SWAT model, initial snow storage at the beginning of a simulation period 

can be set for each individual elevation band. This storage can be permanent snow or 

glaciers at the end of ablation season. The thickness of initial snow is set for each 

elevation band as the water volume equivalent; while the lower boundary of the 

elevation band represents the mean elevation of the snow boundary. This initial storage 
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is updated on a daily basis for accumulation, sublimation and melting of snow. The mass 

balance for each HRU is: 

                (   )      (   )        (   ) 
 
Eq. 2. 2 
 

where SNO is the water content of the snow pack on a given day i (mm H2O), Rday is 

amount of solid precipitation on a given day, (mm H2O), Esub is the amount of 

sublimation on a given day (mm H2O), and SNOmlt is the amount of snow melt on a 

given day (mm H2O). The melt from each elevation band is the area averaged melt from 

the HRU. 

The simulated annual mass balance is calculated from the snow storage change 

between October 30 and September 1 for glaciered elevation bands. For individual 

glaciers the mass balance was calculated using the hypsometry of the glacier (Eq. 2. 1). 

For calculation of a mass balance across the range of the glaciers, the area 

weighted mass balance for the specific altitude of an individual glacier is extended to the 

same elevation bands over the range of glaciers (Dyurgerov, 2002). To calculate the 

mass balance for the watershed, all of the area weighted mass balances were summed 

over the glaciered elevation bands and divided the surface area of the entire watershed.  

Annual (end of the hydrological year)    s, are measured directly in the field or 

derived from curves of mass balance versus altitude (Table B. 2, Table B. 3, and Table 

B. 4 in Appendix B). Here, we derived annual      values from a regression analysis 

between the simulated specific mass balances on the elevation bands (  ( )) vs. mean 

altitude of the elevation bands ( ).  
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Finally, the ELA0 was calculated from the relationship between the mass balance 

(  ) and annual    s (Østrem, 1975). The ELA0 is usually estimated as the altitude at 

which a curve fitted to an observed relationship between annual     and mass balance 

   crosses the axis   = 0.  

    and the annual      for year  , can be postulated as follows: 

     (         ) 
 
Eq. 2. 3 
 

where      is the balanced-budget    , i.e. the     when the mean specific balance is 

zero, and   is the effective balance gradient representing a time and space average of the 

balance gradient (Braithwaite, 1984). The parameters α and      are assumed to be 

constant for an individual glacier, and are redefined by the equation. These data were 

used for model validation.   

Model Calibration and Validation 

Model calibration was performed using minimal data about the glaciers. The 

model was calibrated first for the watershed of the Rhone Glacier, using monthly flow 

data from 1993 to 2007. Then SWAT was calibrated with a combination of average 

annual ELAs (1980- 1983) and flow data (1993-2007). For the Abramov and Gries 

Glaciers, SWAT was calibrated for mean annual ELA and annual mass balance (1980-

1983) (Rabatel et al., 2005). It was assumed that the model was calibrated when there 

was less than 100 m error between the simulated and measured mean ELA. According to 

Huss (2012), the mass balance within the 100 m elevation band interval exhibits the 
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same value everywhere throughout the mountain range, so the absolute error of 100m in 

ELA is acceptable for mass balance simulation.  

ELAs higher than the glacier peak were excluded. For mass balance, an 

acceptable threshold value of 0.25 for PBIAS was considered (Moriasi et al., 2007). A 

list of the calibration parameters and their optimum values are presented Table 2. 1. The 

parameters are sorted from maximum to minimum sensitivity to mass balance change. 

The model was validated for mass balance data of the test Rhone watershed. For 

the Gries and Abramov Glaciers the rest of the available data including the annual mass 

balance and ELAs were used for model validation (Table B. 1 in Appendix B).  

Results and Discussions 

Model Calibration and Validation for Test Watershed 

SWAT performance in the simulation of glacier mass balance was examined by 

first calibrating the model with monthly flow data. The results indicated that the model 

accurately simulated the monthly flow data (R2=0.83, NSE=0.80). Next, the model was 

validated using the     and mass balance data. The results showed considerably larger 

simulated mass change (Figure 2. 4) and consequently higher ELA altitude in 

comparison with the measured ELA. This indicated that calibrating only the monthly 

flow, regardless of the good results, is not an adequate representation mass balance 

changes. Investigation of the vertical profile of the mass balance-elevation relationship 

showed high values of  simulated ablation at lower altitudes (2,400 m to 2,900 m) and 

lower values of  simulated accumulation at higher altitudes (over 3,000 m) which 
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resulted in higher mass loss and consequently higher ELA across the glacier (Figure 2. 

5).  

To reduce the uncertainty related to glacier change, the average of the mean 

annual     was considered for model calibration along with of monthly flow data. 

TLAPS, SMTMP, PLAPS, and SFTMP were the most sensitive parameters to ELA 

variations. However, the model was not calibrated for TLAPS and was calculated using 

the observed climate data.  

The results also revealed that precipitation lapse rate (PLAPS) and snowfall 

temperature (SFTMP) directly control the amount of accumulation whereas temperature 

lapse rate (TLAPS) and snowmelt temperature (SMTMP) control the amount of ablation 

dominantly at lower altitudes. By setting these parameters for elevation bands the ELA 

was shifted to be matched to the obtained ELA from WGI data sets (Table B. 1 in 

Appendix B). Increasing the PLAPS from 300 mm to 500 mm and SFTMP from 3 to 4  

at higher elevation bands resulted in more accumulation at higher altitudes and 

consequently lowering the ELA. Many researches expressed the relative merits of 

exponential and power-law relations between accumulation (winter precipitation) and 

temperature at the ELA (Kotlyakov and Krenke, 1982; Ohmura et al., 1992; Braithwaite 

and Zhang, 1999, 2000; Braithwaite et al., 2003; Braithwaite and Raper, 2007). 

The melt was decreased at lower altitudes by decreasing the SMTMP (2 to 0 and 

1) and SFTMP (1 to 0) at lower elevation bands, resulting in further lowering of ELA. 

Calibrating the ELA resulted in significant improvement in simulated mass balance so 

that the PBIAS changed from 104 to 9 while the simulated flow did not show 
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considerable improvement (Figure 2. 6 and Table 2. 2). This demonstrated that even 

minimal information about the glacier ELA or mass balance reduces the uncertainty 

related to model parameterization significantly and enhances the accuracy of mass 

balance simulation; while even good results in monthly runoff simulation alone does not 

imply consistency between simulated and measured glacier loss. 

 
 
 
Table 2. 1. Calibration parameters for catchment area of Rhone glacier (test study area). 

 
Flow and ELA calibration Flow calibration 

Below 2900m Over 2900m Below 2900 Over 2900 
TLAPS -7 -7 
SMTMP 0,1 3 2 3 
PLAPS 500 300 
SFTMP 0 4 1 3 
TIMP 1 0.01 0.6 0.01 

SMFMX 2 4 3 5 
SMFMN 2 2 1.5 2.5 

 
 
 
Table 2. 2. Calibration results for simulated monthly flow and ELA and validation 
results for specific mass balance of the test study area. 

 Flow and ELA calibration Flow calibration 
 Calibration Validation Calibration Validation 

R2 0.83 - 0.86 - 
NSE 0.80 - 0.80 - 

ME (ELA m) +74 - +190 - 
PBIAS (Bn) - +9 - +104 
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Figure 2. 4. Simulated specific mass balance for Rhone glacier by calibrating the model 
for monthly flow (green line) and combination of flow and ELA (blue line). 
 
 
 

 
 

Figure 2. 5. Simulated and measured mass balance profile for Rhone glacier, 1980-1981. 
 
 
 

 
 

Figure 2. 6. Average monthly flow for calibration period in Rhone River Basin. 
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Extending the Applied Method to Other Glaciers 

This method was extended for predicting the mass balance of the Gries and 

Abramov Glaciers where there was no observed flow data available. f. In the absence of 

flow data, four years of mass balance data was used along with the ELA for model 

calibration. In the hydrological method for calculation of mass balance, usually a 

combination of ELA with discharge, AAR or mass balance is used for model calibration 

(Schäfli et al., 2005; Hagg et al., 2004). Moreover, given the high uncertainty in the 

climate conditions at ELA, calibrating the model only for ELA may not result in 

accurately simulated mass balance. A period of four years was selected for model 

calibration to be consistent with the calibration period of ELA for the Rhone Glacier. 

This also showed the power of the model in mass balance and ELA prediction with 

minimal data, i.e. four or five years of data is available for model calibration. The same 

calibration method was applied for the simulations of ELA of the test study area. The 

default and adjusted parameter values are presented in Table 2. 3. The results revealed 

that the uncalibrated model generally predicted lower mass loss for both the Gries and 

Abramov Glaciers (Figure 2. 7).  

Calibration and validation results in Table 2. 4 shows for the Gries glacier, the 

ME for ELA reduced from -43m to +16m and PBIAS reduced from 104 to 23 after 

calibrating the model. The validation results also shows the very good PBIAS values of 

4 with ME 34 m for ELA. For the Abramov Glacier, the ME reduced from -70m to 

+15m and PBIAS reduced from156 to 68 after calibrating the model. Negative PBIAS 

indicates the simulated Bn is less than the measured Bn or the model predicts less mass 
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loss for the glacier. A negative ME indicates the mean simulated ELA is lower than the 

measured ELA. 

According to calibration criteria, the simulation results of specific mass balance 

of the Abramov Glacier were unsatisfactory; although the total specific mass loss of the 

glacier (mm w. e.) at the end of the simulation period shows only an 8.4 error (-8.8 m w. 

e. in comparison with -9.6 m w. e.). The good validation result for the mass balance 

simulation is due to compensating errors over a relatively long period.  

For two anomalous years a profile of the altitude/bn relationship was constructed 

for the Gries and Abramov Glaciers. Comparisons of these curves for two years one cold 

(1980) and one warm (1981) show a difference (Figure 2. 8). The shift between these 

two curves is clearly visible. Simulated profiles for the Gries Glacier showed only 

rotation with an increase in ablation below a certain level and an increase in 

accumulation above this level from the cold year to the warm year. The axis of this 

rotation is about 200 meters above the ELA, the same result reported by Dyurgerov 

(2002) for 21 glaciers for two years: 1972, the coldest, and 1990, one of the warmest 

years during the period of consideration. The simulated profiles of the Abramov Glacier 

almost match the observed profiles. The altitude-mass balance profiles of the referenced 

glaciers are transferable to the unmeasured glaciers for estimation of mass balance 

(Kuhn et al., 2009).  

The simulated annual mass balances and ELAs from 1980 to 2007 for Gries and 

Abramov glaciers are presented in Table 2. 5. All ELA series show great variability from 

year to year with differences of several hundred meters between maximum and 



 

95 

 

minimum ELA values corresponding to balance years with highly negative or positive 

mass balance respectively (Table 2. 5). Unlike the annual ELAs, the variation of 

balanced-budget ELA (ELA0) is quite small (Braithwaite and Muller, 1980) and varies 

with climate change conditions during a long period. Figure 2. 9 shows the balanced-

budget ELA at Bn=0 for the Gries and Abramov Glaciers. It was observed that the 

simulated ELA0 remained unchanged before and after model calibration as expected. 

The results show that SWAT constructs the linear relationship between Bn and annual 

ELAs very well. The measured and extrapolated simulated cumulative specific mass 

balances until 2007 for the Rhone, Gries and Abramov Glaciers are presented in Figure 

2. 10. 

 
 
 

Table 2. 3. Calibration parameters for Gries and Abramov glaciers. 
 

 

 

 

 

 

 

 

 
 
 
Table 2. 4. Calibration and validation results for simulated mass balance and ELA of 
Gries and Abramov glaciers. 

 Abramov glacier Gries glacier 
 Uncalibrated Calibration Validation Uncalibrated Calibration Validation 

ME (ΔELA m) -70 +15 +99 -43 +16 -34 
PBIAS (Bn) -156 -68 +12 -104 +23 -4 

 

  Gries glacier Abramov glacier 
 Default value Below 2900m Over 2900m Below 4300m Over 4300m 

TLAPS 0 -7.5 -7 
SMTMP 0.5 -1 0 -1 1 
PLAPS 0 100 100 
SFTMP 1 0 0.5 2 0.5 
TIMP 1 1,0.7 0.1 1,0.5 0.2 

SMFMX 4.5 5 7 6 8 
SMFMN 4.5 4 5 5 5 
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Figure 2. 7. Simulated and measured cumulative specific mass balance for Gries and 
Abramov glaciers for entire data series from 1979.  

 
 
 

  

Figure 2. 8. Simulated and measured mass balance profile for Gries and Abramov 
glaciers, 1980-1981. 
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Figure 2. 9. Linear relationship between Bn and annual ELAs. 
 
 
 

 
 

Figure 2. 10. The measured and extrapolated of simulated cumulative specific mass 
balances until 2007 for Rhone, Gries and Abramov glaciers. 
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Table 2. 5. The simulated annual mass balances and ELAs from 1980 to 2007 for Gries 
and Abramov glaciers. 
 Gries Abramov 
 ELA (m) Bn (mm w. e.) ELA (m) Bn (mm w. e.) 
 Measured Simulated Measured Simulated Measured Simulated Measured Simulated 
1980 2660 2807 663 183 4446 4466 -1081 -554 
1981 2940 2874 -242 1 4290 4304 129 457 
1982 3030 3052 -892 -905 4416 4407 -774 -219 
1983 3000 2961 -559 -395 4391 4429 -507 -387 
1984 2865 2799 -9 253  >4700 -971 -2468 
1985 2878 3118 -261 -1063 4431 4530 -855 -1086 
1986 2946 2924 -530 -260 4269 4567 -1010 -1203 
1987 2985 3012 -658 -715 4301 4316 240 360 
1988 3073 2892 -877 -76 4331 4437 10 -376 
1989 3201 2944 -1062 -371 4369 4281 -230 552 
1990 3401 3095 -1742 -1087 4393 4530 -530 -1130 
1991 3264 3192 -1154 -1481 4304 4517 -488 -937 
1992 3028 3099 -780 -900 4204 4331 448 211 
1993 2839 2978 -114 -467 4219 4295 333 522 
1994 2953 3161 -532 -1243 4353 4546 -859 -954 
1995 2799 2899 78 -94 4360 4345 -896 164 
1996 2884 2921 -268 -194 4310 4240 -410 647 
1997 2893 3018 -323 -714 4460 4701 -1976 -2041 
1998 3401 3074 -1667 -941 4330 4391 219 -78 
1999 2979 2901 -684 -152  4594  -1485 
2000 3009 3022 -958 -827  <3600  178 
2001 2897 2860 -207 8  4827  -3111 
2002 2975 3061 -713 -1134  4807  -3168 
2003 3400 3485 -2649 -2844  4780  -2743 
2004 3400 3193 -1445 -1480  4771  -2584 
2005 3153 3132 -1652 -1510  4619  -1744 
2006 3325 3234 -1880 -1692  4430  -355 
2007 3324 2979 -1505 -829  4741  -2226 

 
 
 

Extrapolating Glaciers Mass Balances to Modelled Glaciers on a Catchment Scale 

The mass balance of glaciers was extrapolated to examine how the mass balance 

of the catchments was affected by the modeled glaciers contribution. Glaciered areas 

were separated from glacier free areas using steady state ELA. For the Gries and 

Abramov Glaciers the steady state ELAs are 2,900 and 4,300m, respectively (Figure 2. 2 

and Figure 2. 3). The glacier tongue was not modeled and it was assumed that the 
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elevation bands with less than 50 glacier cover were glacier free to prevent large amount 

of ablation from the lower elevation bands. The model was calibrated based on the area 

weighted mass balances using the real hypsometry (e.g. distribution of area with 

altitude) of the glaciers. However, the hypsometry and consequently accumulation and 

ablation area of the modeled glaciers is different from the real hypsometry of the 

referenced glaciers. According to previous studies, the specific mass balances of the 

referenced glaciers can be extrapolated to the glaciers range (Huss, 2012; Zhang et al., 

2012; Giesen and Oerlemans, 2012; Kuhn et al., 2009). Huss (2012) showed that 

glaciered surfaces located at a specific range of altitudes exhibit the same mass balance 

everywhere throughout the mountain range.  

The success of a transfer is limited by the local topography (Kuhn et al., 2009).  

Therefore, assuming that the specific mass balance is constant throughout the 

catchments, the specific mass balance for the catchments and referenced glaciers should 

be the same. The topographic data for plotting the modeled glacier hypsometry was 

extracted from the SWAT topography report. The specific mass balance for the glaciered 

elevation bands was calculated by Eq. 2. 1. Figure 2. 11 shows the cumulative specific 

mass balance for the referenced glaciers and catchments. As expected for the small 

catchment of the Gries Glacier, both curves almost match. For the larger catchment of 

the Abramov Glacier, the model showed higher loss for the catchment in comparing with 

the Abramov Glacier loss; its reason is the larger area of the modeled glaciers at lower 

altitudes (ablation zone) through the watershed in comparison with the ablation area of 

the Abramov glacier (Figure 2. 12). When the simulated mass balance profile of the 
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Abramov Glacier is fit to the extracted mass balance profile from the in-situ data one of 

the important factors for accurate estimation of melt volume is using a finer distribution 

than elevation bands for modelling the glaciers area.  

 
 
 

  
Figure 2. 11. Cumulative specific mass balance for Gries and Abramov glaciers in 
compare with of modelled glaciers in the catchments. 

 
 
 

 
 

Figure 2. 12. Hypsometry curved for Abramov glacier and the catchment. 
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Summary, Conclusions, and Future Works  

Application of a temperature-index melt model was coupled with a complex 

semi-distributed physically base hydrologic model, , for simulation of ELA and mass 

balances for three reference glaciers and their neighboring glacier ranges on a catchment 

scale. Four years of ELA observations along with observed discharge data provided 

acceptable mass balance simulations when compared with using only observed discharge 

in model calibration. The results emphasized the importance of combining even minimal 

information about the glaciers along with measured discharge data in model calibration 

for accurate glacier mass balance simulation. This is important for inaccessible glaciers 

with no mass balance data available.  

The model performance in simulation of glacier mass balances of ungauged 

catchments was also examined by calibrating the model with four years of mass balance 

and ELA data. The results revealed that SWAT successfully simulates the annual glacier 

loss, mass balance profile and annual ELAs for ungauged catchments with minimal 

calibration with limited available in-situ data of glaciers. All ELA series showed great 

(several hundred of meters) deviation corresponding to balance years with highly 

negative or positive mass balances, respectively.  

The ability of SWAT to predict ELAs implies the applicability of the model on 

climate change assessment, since ELA is one of the most important indicators of climate 

change. Although, the model showed very good performance in predicting the ELA 

variations, which is independent on topography, applying the model for predicting the 

volume of melt water and consequently the water budget of catchments demands a more 
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highly spatially distributed model of glaciers. Applying the ELA0 as a measure of 

glaciered area is a good representation throughout the catchment in climate change 

studies but in the case of predicting the total glacier mass loss, the model performance 

significantly drops in the catchments with heterogeneous topography.  

This may result in good model performance in simulations of discharge but the 

background hydrologic processes related to glacier melt/accumulation might be highly 

biased relative to the observed data. Therefore, finer discretization between the glaciers 

and glacier free areas based on HRU divisions is recommended rather using the 

elevation bands divisions. Another option could be assigning a glacier area percentage 

for each elevation band. 
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CHAPTER III 

IMPACTS OF CLIMATE CHANGE ON RUNOFF FROM HIGHLY GLACIERIZED 

RIVER BASINS 

 

Overview 

This study assesses the impacts of climate change on river flow from highly 

glaciered river basins using the SWAT model (Soil and Water Assessment Tool). 

Analyses are conducted for five river basins that are global in coverage and feature 

contrasts in climatic and developmental conditions. These include the Narayani (Nepal), 

Vakhsh (Central Asia), Rhone (Switzerland), Mendoza (Central Andes, Argentina), and 

Central Dry Andes (Chile). The predicted future climate change by two RCPs 

(Representative Concentration Pathway) climate change scenarios (RCP4.5 and RCP8.5) 

and six Coupled Model Intercomparison Project-5 (CMIP5) models are presented. 

Simulations of mean annual runoff, mean monthly runoff and high (Q5) and low (Q95) 

monthly runoff and flow duration curves (FDCs) under baseline (1979–2008) and 

climate change scenarios are presented. Mean annual water yield increased 17 and 40 for 

Rhone, 50 and 80 for Narayani, 65 and 116 for Vakhsh, 28 and 55 for Mendoza, 17 and 

30 for Chile under RCP4.5 and RCP8.5. For GCMs ensemble and RCP8.5, all the 

glaciers with 100 m w. e. will be disappeared by 2100 across Rhone, Narayani and 

central Chile River Basins while in Mendoza and Vakhsh at least 41 and 2 of the glaciers 

will be survived.  
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Introduction 

Glaciers are an important reservoir of water and any changes in their 

extent/volume influence long-term, downstream water supply in glaciered regions. 

According to IPCC Fifth Assessment Report (IPCC-AR5), global surface temperature 

changes at the end of 21st century are likely to exceed 2 ºC for RCP6.0 and RCP8.5 and 

not to exceed more than 2  for RCP4.5 relative to 1850 to 1900. Warming will continue 

beyond 2100 and glaciers will continue to shrink worldwide, with regional variations.  

Massive flooding is predicted in areas where glaciers are receding (IPCC-AR5). 

Water flow through glaciers affects the quantity and quality of water delivered to areas 

downstream of glaciered basins. As glacier area is lost, there will be a long term decline 

in glacier runoff and consequently stream flow during the melt season. Hydrologic 

systems are affected by increased runoff and earlier spring peak discharges. In particular 

many glacier- and snow-fed rivers and lakes warm, producing changes in their thermal 

structures and water quality (Rosenzweig et al., 2007). Alpine glacier retreat during the 

last two decades caused a 13 increase over the long term average in glacier contribution 

to August runoff of the four main rivers originating in the Alps (Huss, 2011). Increases 

in extreme river discharge (peak flows) over the past 30 to 50 years have been observed 

in parts of Europe (IPCC-AR5).  

The development of a hydrologic model with adequate components, and the 

spatial and temporal resolution needed for assessment of climate change impacts, is a 

major area of active research. The most common method for assessing the magnitude of 

this impact is to run a hydrologic model driven by various climate projections from 
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general circulation models (GCMs) as input forcing data. The simulations of key 

hydrological indicators, such as river runoff, can then be used to assess the potential 

impact of climate change. The assessment of hydrologic impact of climate change is 

particularly challenging in mountainous watersheds due to their extremely variable 

morphology and topography. Climatic variables such as precipitation and temperature 

are strongly related to altitude.  The presence of glaciers in the watershed will also add to 

the complexity of the hydrologic system due to temporal and spatial variability of melt.  

In this study the Soil and Water Assessment Tool (SWAT) was used to 

investigate the impact of climate change on the hydrologic regime of snow and glacier 

driven runoff. SWAT has been widely used in climate change impact assessment studies 

but few studies have been presented in large complex basins (Mohanty et al., 2012; 

Bharati et al., 2012; Pradhanang et al., 2011; Jha et al., 2006; Park et al., 2011; Siderius 

et al., 2013).  No study has been conducted on the impact of climate change on glacier 

change and runoff in multiple large scale river basins with the focus on glaciered 

catchments.  

Therefore, the objectives of this study were: 1) Assess the effect of projected 

future climate associated with six GCMs and two RCP scenarios on future streamflow 

volume and seasonal variability at the outlet of five river basins and their catchments 

with focus on the degree of glacierization, and 2) Test the hypothesis that global 

mountainous glaciers will vanish by 2100.  

Analyses were conducted using five river basins, Narayani (Nepal), Vakhsh 

(Central Asia), Rhone (Switzerland), Mendoza (Central Andes, Argentina), and Central 
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Dry Andes (Chile) with total area of 85,000 km2 , that are global in coverage and feature 

contrasts in climate and economic development conditions. 

Climate Change Scenarios  

The future radiative force from greenhouse gases is difficult to quantify because 

the emissions of these gases depend on many assumptions and uncertain factors such as 

population growth, the use of carbon fuel as an energy source, technological 

development, economic development, policy and attitudes towards environment 

(Nakićenović, 2000; IPCC-TGICA 2007). For this reason, climate scenarios have been 

developed to investigate the potential consequences of anthropogenic climate change. 

Using five river basins, simulated flow response for the baseline period was compared to 

projected future flows associated with several increases in major climate variables from 

global climate models participating in CMIP5 (Taylor et al., 2012). 

In this study, CMIP5 simulations of climate projection are forced with specified 

concentrations of greenhouse gases and referred to as Representative Concentration 

Pathways (RCPs).RCPs provide a rough estimate of the radiative forcing in the year 

2100 relative to preindustrial conditions (Moss et al., 2010; Taylor et al., 2012). Four 

RCPs have been produced from the integrated assessment modeling (IAM) scenarios 

available in the published literature: one high pathway, RCP8.5 (Riahi et al., 2007; Rao 

and Riahi, 2006), is a business as usual scenario where radiative forcing reaches >8.5 

W/m2 by 2100 and continues to rise for some amount of time; two intermediate 

“stabilization pathways” , RCP4.5 (Smith and Wigley 2006; Clarke et al., 2007; Wise et 

al., 2009, Fujino et al., 2006; Hijioka et al., 2008) in which radiative forcing is stabilized 

http://www.sciencedirect.com/science/article/pii/S0921818113002403#bb0255
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at approximately 6 W/m2 and 4.5 W/m2 after 2100; and one pathway, RCP2.6 (van 

Vuuren et al., 2006, 2007), the lowest RCP which could be considered a moderate 

mitigation scenario with forcing peaks at approximately 3 W/m2 before 2100 and 

declining afterward. In this study, RCP8.5 and RCP4.5 were used to investigate 

potentially large and moderate future changes in the ST (summer temperature) and WP 

(winter precipitation). The RCP4.5 and RCP8.5 scenarios are comparable to the SRES 

B1 and A1F1 scenarios, respectively, used in previous IPCC reports (Taylor et al., 

2012).  

With the RCP4.5 and RCP8.5 scenarios, a set of downscaled projections from six 

GCMs from the 14 GCMs commonly used in previous climate change impact studies on 

hydrologic regimes of a basin (Bradley et al., 2006; Karmacharya et al., 2007; Bharati et 

al., 2012; Shreshtha and Aryal, 2011), were selected to illustrate a range of changes in a 

key climate variable in the basins. These models are listed in Table 3. 1. Downscaled 50 

km projections over the entire globe were obtained from the Bias-Corrected and 

Spatially Downscaled (BCSD) archive developed by Reclamation (2013) and were 

provided through the World Climate Research Programme's Coupled Model 

Intercomparison Project Phase 5 (CMIP5) multi-model dataset. CMIP5 runs include 

projections of monthly precipitation, monthly mean temperature, and monthly minimum 

and maximum temperature. Detailed documentation of the CMIP5model documentation 

can be found at: http://www.earthsystemgrid.org/search?Type=Simulation2bMetadata  

and data can be downloaded at: 

ftp://gdodcp.ucllnl.org/pub/dcp/archive/cmip5/global_mon/BCSD/ 

http://www.sciencedirect.com/science/article/pii/S0921818113002403#bb0255
http://www.sciencedirect.com/science/article/pii/S0921818113002403#bb0255
http://www.earthsystemgrid.org/search?Type=Simulation%2bMetadata
ftp://gdodcp.ucllnl.org/pub/dcp/archive/cmip5/global_mon/BCSD/
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Table 3. 1. List of 14 CMIP5 models. 

Model 
Resolution  
(longitude by latitude) Origin 

BCC-CSM1.1 2.815 × 2.815 Beijing Climate Center, China 

CanESM2 2.815 × 2.815 Canadian Centre for Climate, Canada 

CCSM4 1.25 × 0.9 National Center for Atmospheric Research, USA 

CNRM-CM5 1.40 × 1.40 Centre National de Recherches Meteorologiques, France 

CSIRO-Mk3.6 1.875 × 1.875 Commonwealth Scientific and Industrial Research, Australia 

GFDL-CM3 2.5 × 2.0 Geophysical Fluid Dynamics Laboratory, USA 

GISS-E2-R 2.5 × 2.0 NASA Goddard Institute for Space Studies, USA 

INM-CM4 2.0 × 1.5 Institute for Numerical Mathematics, Russia 

IPSL-CM5A-LR 3.75 × 1.875 Institut Pierre-Simon Laplace, France 

IPSL-CM5A-MR 2.5 × 1.25 Institut Pierre-Simon Laplace, France 

MIROC5 1.40 × 1.40 Atmosphere and Ocean Research Institute, Japan 

MIROC-ESM 2.815 × 2.815 Japan Agency for Marine-Earth Science and Technology, Japan 

MPI-ESM-LR 1.875 × 1.875 Max Planck Institute for Meteorology, Germany 

MRI-CGCM3 1.125 × 1.125 Meteorological Research Institute, Japan 

 
 
 

Projected Climate Change Uncertainty 

Uncertainty in projections of future climate conditions stemming from 

greenhouse gas emissions, are quantified in representative concentration pathways 

(RCPs). Imperfections in climate models arise from coarse resolution and lack of 

knowledge about feedback mechanisms and initial conditions (Barsugli et al., 2009). 

Due to these uncertainties, we selected 12 climate projections (6 GCMs and two 

scenarios) in this study to capture the possible range of changes in temperature and 

precipitation in the future. Having a wide range of plausible future climate scenarios is 

necessary to quantitatively analyze the uncertainty of the results. Techniques of 

ensembles or model inter-comparisons resulting in a range of climate projections, for 

example, can be used to quantify the uncertainties or probabilistic aspect of climate 
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scenarios. Limitation in knowledge and randomness in selection of climate scenarios 

may misrepresent uncertainty of the climate scenarios that may lead to maladaptation 

(Hall, 2007).  

Generally, selection of models is based on how well they simulate the current 

climate. Investigation of trends revealed that there is not significance different between 

the trend of data from GCMs and NCEP/CFSR (National Centers for Environmental 

Prediction (NCEP) Climate Forecast System Reanalysis (CFSR; Saha, 2010) as input of 

climate data to SWAT. Although, the Root Mean Square Error (RMSE) between 

historical GCMs and NCEP/CFSR data was noticeable, it was negligible from one model 

to another. An RMSE criterion was also rejected for model selection. Therefore, the list 

of models was narrowed based on range of changes in projected ST and WP relative to 

the baseline period. The amount and duration of snow accumulation and melt is highly 

correlated with WP and ST. Therefore, to select an appropriate model, the changes of the 

projected climate variables related to average WP and ST for a baseline period were 

analyzed and the models were categorized based on mild, moderate and high increases in 

projected ST and the change (increase or decrease) in WP. 

Climate conditions during the baseline and projection periods are represented as 

an average for the period 1979-2008 and 2070-2099, respectively, to assess the glaciers 

condition by 2100. WP and ST changes from the baseline period are presented in Table 

3. 2, Table 3. 3 and Table 3. 4 for the Rhone, Narayani, Vakhsh, Mendoza and Central 

Andes of Chile Watersheds. For example, for the Rhone River Basin, the models were 

classified into three groups based on a maximum increase in ST of about 7 ºC, a 
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moderate increase of about 3 ºC which is close to the average ST change of ensemble, 

and a mild increase of about 2 ºC. Two models from each category were selected based 

on the percentage of decrease and increase in WP. Therefore, there is a combination of 

GCMs with a potential range of temperature and precipitation changes. 

Future Climate Change 

According to the IPCCs AR5, projected rises in global surface temperature by the 

year 2100 in AR5 should range from about 1.3 ºC for RCP 2.6 to 4.4 ºC for RCP 8.5 and 

the global mean precipitation will increase by 1 to 3 °C. Mid-latitude and subtropical 

arid and semi-arid regions will likely experience less precipitation and many moist mid-

latitude regions will likely experience more precipitation by the end of this century under 

the RCP8.5 scenario.  

Summer temperature is the main driver of melt (Huss, 2008), so it is important to 

understand its changes related to the baseline period in each of the climate change 

scenarios we considered. The greatest increases in ST with a decrease or small increase 

in WP were observed for the RCP8.5 and GFDL-CM3 in Vakhsh, Narayani and Rhone 

River Basins, respectively, followed by the IPSL-CM5A-MR in the Mendoza and 

Chilean River Basins. The predicted temperature changes indicate that the overall 

climate will become warmer for all climate scenarios and conditions while precipitation 

changes show high uncertainty due to various climate change conditions. The model 

ensemble predicts an increase in winter precipitation for the Narayani, Vakhsh and 

Rhone Watershed and decreased precipitation in the Mendoza and Chilean River Basins. 
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Overall, the ensemble of models showed mean increase of +2.6 ºC to +6 ºC in ST 

for the river basins in Northern Hemisphere and increase of +1.8 ºC to +3.4 ºC in ST. It 

is observed that the river basins in the Northern Hemisphere will experience higher 

temperature increase in compare to those located in Southern Hemisphere. Future winter 

precipitation also will be increased +6 to +20 for the river basins in Northern 

Hemisphere whereas it shows decrease of -7 to -17 for the river basins in Southern 

Hemisphere (central Chile and Mendoza). 

 
 
 

Table 3. 2. Projected changes in summer temperature and winter precipitation for a 
period of 2079-2099 relative to baseline for 6 GCMs and two RCPs, Rhone River Basin 

Rhone RCP4.5 RCP8.5 
Model 

Classification GCMs Summer  
ΔT 

Winter  
ΔP 

Summer  
ΔT 

Winter  
ΔP 

bcc-csm1-1 2.26 0.12 5.28 7.24  
CanESM2 3.34 22.70 6.80 11.58  
CCSM4 2.55 7.37 4.55 8.65 Moderate (+ΔP) 

CNRM-CM5 2.45 16.46 4.23 17.63  
CSIRO-Mk3-6-0 3.58 25.71 6.74 19.45 Extreme (+ΔP) 

GFDL-CM3 4.28 -11.19 7.50 7.97 Extreme (-ΔP) 

GISS-E2-R 1.81 10.81 3.17 -2.10 Mild (+ΔP) 

inmcm4 1.48 -3.13 3.37 -1.62 Mild (-ΔP) 

IPSL-CM5A-LR 2.60 9.44 5.77 10.75 Moderate (+ΔP) 

IPSL-CM5A-MR 3.17 19.99 5.71 10.52  
MIROC5 2.80 28.15 4.92 15.04  
MIROC-ESM 2.82 11.09 5.61 14.70  
MPI-ESM-LR 2.10 14.23 4.43 7.09  
MRI-CGCM3 1.39 14.73 3.01 12.91  
Mean 2.61 11.89 5.08 9.99  
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Table 3. 3. Projected changes in summer temperature and winter precipitation for a 
period of 2079-2099 relative to baseline for 6 GCMs and two RCPs, Narayani and 
Vakhsh River Basins. 
  Vakhsh  Narayani   

 
RCP4.5 RCP8.5  RCP4.5 RCP8.5 Model 

Classification GCMs ΔST ΔWP ΔST ΔWP  ΔST ΔWP ΔST ΔWP 
bcc-csm1-1 2.63 13.97 5.30 14.01  2.02 7.78 3.90 13.39 

 CanESM2 4.41 11.60 7.75 26.60  3.26 14.63 5.97 34.26 
 CCSM4 2.38 15.37 4.92 19.76  2.12 1.18 4.30 -0.45 
 CNRM-CM5 3.02 24.43 4.85 29.90  2.79 0.88 4.38 -3.59 
 CSIRO-Mk3-6-0 3.11 24.81 5.26 51.54  2.96 22.33 4.44 26.73 
 GFDL-CM3 7.81 12.84 10.94 5.89 Extreme (+ΔP) 5.07 -0.20 7.25 -3.97 Extreme (-ΔP) 

GISS-E2-R 2.60 22.74 4.37 35.27  2.00 17.67 3.31 13.67 
 inmcm4 2.04 -4.48 3.61 -1.14 Mild (-ΔP) 1.78 13.39 3.47 -13.09 Mild (-ΔP) 

IPSL-CM5A-LR 4.11 3.48 7.40 0.10  3.69 -4.28 6.67 -15.42 
 IPSL-CM5A-MR 4.22 -3.51 7.96 -8.62 Extreme (-ΔP) 4.17 20.35 7.14 4.66 Extreme (+ΔP) 

MIROC5 3.62 16.80 5.98 38.75 Moderate (+ΔP) 2.75 10.15 4.01 34.89 Moderate (+ΔP) 
MIROC-ESM 3.44 6.77 6.86 -0.86 Moderate (-ΔP) 3.00 -5.43 5.37 -28.67 Moderate (-ΔP) 
MPI-ESM-LR 2.55 5.79 5.10 10.84  2.60 -10.68 5.08 -0.80 

 MRI-CGCM3 1.96 35.91 4.14 61.29 Mild (+ΔP) 2.04 -0.62 3.62 15.40 Mild (+ΔP) 
Mean 3.42 13.32 6.03 20.24  2.87 6.23 4.92 5.50   

 
 
 

Table 3. 4. Projected changes in summer temperature and winter precipitation for a 
period of 2079-2099 relative to baseline for 6 GCMs and two RCPs, Mendoza and 
Chilean Andes River Basins. 

 Mendoza Chile  
 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Model 
Classification GCMs Summer  

ΔT 
Winter  

ΔP 
Summer  

ΔT 
Winter  

ΔP 
Summer 

 ΔT 
Winter  

ΔP 
Summer  

ΔT 
Winter  

ΔP 
bcc-csm1-1 1.44 -12.97 2.95 -24.84 1.32 -10.90 2.84 -24.96  
CanESM2 2.47 6.03 4.32 3.62 2.42 -2.04 4.21 -7.48  
CCSM4 1.97 30.67 3.77 63.56 1.97 13.74 3.66 23.22 Moderate (+ΔP) 
CNRM-CM5 3.07 49.62 4.64 37.17 2.92 21.23 4.48 10.51 Extreme (+ΔP) 
CSIRO-Mk3-6-0 2.21 -2.10 3.39 -36.95 1.97 -4.22 2.97 -45.27  
GFDL-CM3 2.35 -14.96 3.95 -5.92 2.21 -23.96 3.78 -9.88  
GISS-E2-R 1.03 37.65 2.34 75.66 1.05 31.27 2.40 67.72 Mild (+ΔP) 
inmcm4 1.02 -19.37 1.83 -22.49 0.98 -15.83 1.70 -17.94  
IPSL-CM5A-LR 1.68 -43.14 3.31 -48.75 1.71 -41.47 3.26 -49.28  
IPSL-CM5A-MR 2.56 -19.50 4.58 -4.69 2.60 -20.43 4.52 -7.80 Extreme (-ΔP) 
MIROC5 1.29 -20.14 2.59 -30.27 1.25 -13.68 2.49 -31.31  
MIROC-ESM 2.04 -36.13 3.75 -51.07 1.95 -38.23 3.63 -55.29 Moderate (-ΔP) 
MPI-ESM-LR 1.88 -23.35 4.11 -38.28 1.78 -25.76 3.83 -49.09  
MRI-CGCM3 1.14 -31.20 2.68 -33.50 1.08 -39.74 2.44 -47.88 Mild (-ΔP) 

Mean 1.87 -7.06 3.44 -8.34 1.80 -12.14 3.30 -17.48  
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Model Setup 

In this study, mean monthly precipitation, maximum temperature and minimum 

temperature from each climate change scenario and the baseline period were 

disaggregated to daily values using the SWAT weather generator over a 30-year period. 

Weather generation is a potential tool (and probably the only tool) to produce the 

synthetic data. Disaggregating temporal data, for example, from annual data to monthly 

data or monthly to daily, is a complex process. The SWAT weather generator needs 

statistical data to generate representative daily climate data for the subbasins. To 

investigate the difference between the simulated flow using the daily NCEP data (i.e. 

input data for model calibration) and generated daily data for the baseline period using 

the SWAT weather generator, the model was first run using daily NCEP data and then 

using the SWAT weather generator.  

The results revealed that the uncertainty that arises from using daily data or the 

SWAT weather generator is negligible in comparison to the uncertainty in the climate 

models. Weather generators have been widely used in climate change impact studies due 

to the unavailability of daily climate data at fine spatial resolutions. Aggregating 

temporal data, from daily to monthly for example, is a straightforward process by 

calculating the average or sum of the fine resolution data over a coarser temporal 

resolution. It should be mentioned that the applied projected mean monthly climate 

variables in the SWAT weather generator including precipitation, maximum and 

minimum temperature, and the other weather statistics were calculated based on NCEP 

data. Each GCMs grid covers between 2 to 4 weather stations; so, the projected mean 
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monthly climates variables were assigned to the nearest NCEP data points (i.e. weather 

stations) or weather station. 

SWAT Responses to Different Climate Change Scenarios 

Mean Annual Water Yield and Snowmelt  

Figure 3. 1 shows the percentage of changes in simulated mean annual water 

yield, snow melt and precipitation relative to the baseline for 6 GCMs. Figure 3. 1 is 

sorted from extreme to mild ST change, and two RCPs and their ensemble. Change of 

mean annual snow fall and surface runoff are presented in Table C. 1 to Table C. 5 

(Appendix C) for all river basins. All are sorted based on predicted extreme to mild 

increase in ST by GCMs. 

Analysis shows an increase in water yield across all 12 climate change scenarios 

for all of the river basins with large projected differences between GCMs. As expected 

maximum increase in water yield from the Vakhsh, Narayani and Rhone Watersheds 

occurred under the projected climate change by RCP8.5/GFDL (+7.25 to +10.94 ΔST 

and -3.97 to 7.97 ΔWP); for Mendoza and Chile the extreme condition occurred under 

the climate change by RCP8.5/IPSL-MR (+4.52 to +4.58 ΔST and -4.96 to -7.8 ΔWP). It 

can be observed that the water yield is highly correlated with snow melt change 

regardless of increase or decrease in annual precipitation. 

An important observation in Figure 3. 1 is a high increase in snowmelt for the 

Narayani and Vakhsh River Basins with 104 and 106 change, respectively; while, it 

shows between 20 and 73 for the other river basins. Possible annual water yield for each 
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river basin respectively are expected to range between +8 to +58 (Rhone), +25 to 129 

(Narayani), 23 to 166 (Vakhsh), 20 to 66 (Mendoza) and 10 to 44 (Chile). Possible 

changes in annual water yield was predicted to be 17 and 40 for Rhone, 50 and 80 for 

Narayani, 65 and 116 for Vakhsh, 28 and 55 for Mendoza, 17 and 30 for Chile under 

RCP4.5 and RCP8.5 and GCMs ensemble. 

 
 
 

  

  
 
Figure 3. 1. Percentage change in mean specific water yield, snow melt and 
precipitation relative to baseline period for 6 GCMs and two RCP scenarios for each 
river basin. 
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Figure 3. 1. Continued 

 
 
 

The Seasonal Cycle 

Figure 3. 2 shows the mean monthly streamflow (expressed as a percentage of 

the mean annual total stremflow) for the five river basin at their main outlets. The 

ensemble mean, calculated from the mean of the six projections from the GCMs under 
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the two RCP4.5 and RCP8.5 scenarios, are shown with the inter-GCM range of 

projections shaded.  

For the Mendoza and Chile River Basins, the inter-GCM range is relatively small 

in comparison to that for other river basins and the ensemble mean for both RCP 

scenarios is very close to baseline, similar to results reported by Gossling et al. (2011) 

for the Rio Grande River Basin in South America. The Narayani River Basin shows high 

inter-GCM ranges only during the summer months which is due to a high increase in 

projected summer precipitation. Approximately 70 and 81 of increase in annual 

precipitation is related to the summer precipitation for RCP4.5 and RCP 8.5, respectively 

while this is not truth for other river basins. For all river basins, the RCP8.5 generated a 

smoother curve with upward shifting during cold seasons and downward shifting during 

warm seasons which indicates less snowfall in the winter and consequently less available 

snow storage for melt in the summer. Also, the ensemble curves show that the peak 

stream flow moves from July to August for the Rhone, Narayani and Vakhsh River 

Basins.  Similar results were reported for the Mekong River Basin for an ensemble of 

seven GCMs by Gosling et al. (2011). This implies the decrease in snow fall and 

consequently reduction or vanishing of the permanent snowpack at lower altitudes and 

melting of glaciers at higher altitudes. This is less obvious for RCP4.5 but a clear shift is 

demonstrated under RCP8.5.  
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Figure 3. 2. Mean monthly runoff (expresses as percentage of the mean annual total 
runoff), for the baseline (red line), GCMs ensemble RCP4.5 (black line) and RCP8.5 
(green line), the GCMs uncertainty band (grey band).  
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The change in the seasonal cycle of flow in finer scales can be observed visually 

in Figure C. 1 to Figure C. 5 in the Appendix C. These figures show the monthly flow 

pattern for baseline and climate change scenarios from the watersheds with different 

percentages of glacier area across the five river basins. In low glaciered or glacier free 

areas, peak summer flow will move from late summer to mid spring (Figure 3. 3-a) with 

the same pattern by RCP4.5. Under the RCP8.5 the pattern of monthly flow curve is 

closed to the hydrograph of the rain-fed rivers. This is due to conversion of snow fall to 

rain fall with warming and consequently rapid increase in stream flow (Figure 3. 3-b and 

c). In highly glaciered watersheds the temporal pattern of flow remains unchanged but 

the maximum flow shows considerable increase due to glacier melt (Figure 3. 3-d and e).  

 
 
 

   

  

----- Baseline 
----- GCMs 
----- Ensemble RCP4.5 
----- Ensemble RCP8.5 
 

Figure 3. 3. Projected monthly runoff for the watersheds with different percentage of 
glaciered area for the baseline (red line), GCMs ensemble RCP4.5 (black line), RCP8.5 
(green line) and GCMs (grey line). 
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High and Low Monthly Flow
 

Figure 3. 4 shows the percentage and magnitude of change from baseline in Q5 

(Q5 are high flows that are exceeded 5 of the time) monthly flow for GCMs ensemble and 

two RCPs for some of the watersheds with different degree of glaciation and whole 

basin. The percentage of change in Q5 and the change in mean monthly flow is also 

presented in Table C. 6 to Table C. 10 (Appendix C). The watersheds located at the 

headwaters were selected based on their percentage of glaciered area and climate type. 

The flow duration curves for GCMs and ensembles are presented in Figure 3. 5 for the 

main outlets. In the Chilean River Basins two northern (Reach 7) and southern (Reach 

109) watersheds were selected as an example. 

The results implied that the projected change of high flow strongly depends on 

the degree of glaciation of watersheds. With the exception of the Narayani, the projected 

high flow decreased across the glacier free watersheds and watersheds with very little 

glaciered area. In the Rhone River Basin, high flow decreased from -17.1 (-29.8) to -1.4 

(0.6) for RCP4.5 (RCP8.5) across the watersheds with 3.5 to 5.0 glacier area (Table C. 8 

and Figure C. 3 in Appendix C). In the Vakhsh River Basin, this projection ranges from -

5.0 (-12.2) to 1.9 (1.0) across the glacier free watersheds for RCP4.4 (RCP8.5). The peak 

flow from the drainage area to Reach 1 with 68 shows a 101percent increase; whereas it 

is -10.6 percent for the adjacent glacier free drainage area to Reach 10 with 

approximately the same size and the same projected climate change (Figure C. 3 in 

Appendix C). The same responses to climate change scenarios were also observed in the 

Mendoza and Chilean River Basins with one exception, the drainage area of Reach 2, 

with only 2 of glacier area, in Chile. Although the percentage change of Q5 shows a 
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significant increase, the specific Q5 increase (in units of area) are very small (Table C. 

10 in Appendix C). This is due to the dry climate of the central Andes; so that, the small 

monthly flow in this area is very sensitive to any changes in glacier melt in the absence 

of or with negligible amounts of summer precipitation. In contrast with other regions, 

peak flow variations across the Narayani River Basin, are not only highly dependent on 

glaciered area percentage but also varies with coincident summer precipitation changes 

in mountainous areas.   

In contrast with low glaciered watersheds, the peak flow shows significant 

increase relative to the baseline across highly glaciered watersheds. High flow increased 

7.2 (35.2) to 20.3 (69.4) across the Rhone, 33.3 (51.3) to 83.6 (140.4) across the Vakhsh, 

22.6 (30.7) to 39.5 (56.1) for the Narayani, 24.2 (43.0) to 41.9 (79.3) across Mendoza, 

17.4 (29.2) to 30.5 (67.7) for Chilean watersheds, for RCP4.5 (RCP8.5), respectively.  

At the main outlets, Q5 increased 14.5 (30.5) and Q95 increased 51.6 (107.1) for 

Rhone, Q5 increased 55.1 (89.5) and Q95 increased 66.1 (117.3) for Vakhsh, Q5 

increased 41.1 (57.4) and Q95 increased 187.2 (371.1), for RCP4.5 (RCP8.5), 

respectively. 

An increase in high flow implies the potential risk of floods in glaciered 

watersheds in the future because of the increase in the rapid melt with high air 

temperatures. Furthermore, because of the increase in the air temperature, the snowfall 

will decrease, and the rainfall will increase in the future. Such changes may result in an 

increase in floods during the early spring and significant changes in the hydrological 

regime in the future. Meanwhile, the risks of droughts may also be increasing during dry 
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seasons because of the decline in snow storage and consequently less contribution by 

melt water to runoff. 

 
 
 

  
  

  
  

  

 
Figure 3. 4. Percentage change in Q5 monthly flow relative to baseline for the 
glaciated and glacier free watersheds across each river basin. 
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Figure 3. 4. Continued 

 
 
 

  
 
Figure 3. 5. Flow duration curves projections for baseline, GCMs ensembles RCP4.5 
and RCP8.5 and 12 climate change scenarios. 
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Figure 3. 5. Continued 

 
 
 

Glaciers Change under Climate Change Scenarios 

The mean specific mass balance for projected climate changes under six GCMs 

and two RCPs scenarios and their ensembles are presented in Table 3. 5 to Table 3. 9 for 

five river basins. Assuming that the area of glaciers is constant, the total loss of glaciers 

thickness by 2100 was calculated as an equivalent of water. The simulated mean annual 

glacier melt (specific mass balance) was obtained from subtracting the total mean annual 

melt and sublimation from total mean annual snow fall. The glaciers were divided based 

on their thicknesses into less than 100 m and greater than 100 m. For the Rhone River 
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Basin, the ensemble of six GCMSs under the RCP4.5 shows 85 of glaciers with 100 m 

w.e. thickness will disappear by 2100 whereas 42 of thicker glaciers will vanish.  Under 

RCP8.5 100 of glaciers with 100 m w.e. thickness and less will be disappear and only 30 

of thicker glaciers will remain by 2100. 

For the Narayani River Basin, all glaciers with 100 m w.e. thickness will vanish 

under RCP4.5 and RCP8.5 while only 42 and 25 of deeper glaciers will remain under 

RCP4.5 and RCP8.5, respectively. For the Vakhsh River Basin, 65 and 98 of the glaciers 

with 100 m w.e. thickness will melt under the projected climate change by RCP4.5 and 

RCP8.5, respectively, whereas 67 and 51 of the deeper glaciers will remain by 2100. For 

the Mendoza River Basin, with 2º C warming in the summer (-7 winter precipitation 

change) under RCP4.5, 46 of the glaciers shallower than 100 m w. e. and 23 of deeper 

glaciers will disappear by 2100. A 1.4 ºC increase under RCP8.5 accelerates the melting 

of shallower glaciers up to 13 and deeper glaciers up to 6. In the Central dry Andes of 

Chile, all shallower glaciers will vanish by 2100 and only 42 and 29 of deeper glaciers 

will remain by 2100 under the projected climate change by RCP4.5 and RCP8.5, 

respectively. 

It can be concluded that, in the Rhone, Narayani and central Chile River Basins 

all the glaciers with 100 m w. e. will disappear by 2100 while in Mendoza and Vakhsh at 

least 41 and 2 of these glaciers will remain under the projected climate changes by 

RCP8.5. Analysis of the results showed all the glaciers with 45 m w. e. and 55 m w. e. 

thickness will also be melted across the Mendoza River Basins by RCP4.5 and RCP8.5. 

This means all the small shallow glaciers in lower altitudes with 5 to 20 m w. e. 
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thickness will be melted by 2100 across the Mendoza River Basin. No shallower glaciers 

than 65 m w. e. and 95 m w. e. will survive by 2100 across Vakhsh River Basin by 

ensemble of GCMs and RCP4.5 and RCP8.5. 

 
 
 
Table 3. 5. Glaciers thickness change by 2100 under the climate change scenarios and 
ensemble of GCMs for Rhone River Basin. 

Rhone 

RCP4.5 RCP8.5 

ΔST ΔWP 
mean annual 
glacier melt 
(mm w. e.) 

Total loss (%) 
ΔST ΔWP 

mean annual 
glacier melt 
(mm w. e.) 

Total loss (%) 

<100m >100m <100m >100m 

CSIRO 3.58 5.71 -1172 100 53 6.74 19.45 -1752 100 79 
GFDL 4.28 -11.19 -1315 100 59 7.5 7.97 -2033 100 92 
IPSL_LR 2.6 9.44 -527 47 24 5.77 10.75 -1887 100 85 
CCSM4 2.55 7.37 -991 89 45 4.55 8.65 -1395 100 63 
INMCM4 1.48 -3.13 -808 73 36 3.37 -1.62 -1128 100 51 
GISS 1.81 10.81 -824 74 37 3.17 -2.1 -1103 99 50 
Base Line -514 mm w. e.         
Ensemble 2.61 11.89 -939 85 42 5.08 9.99 -1550 100 70 

 
 
 
Table 3. 6. Glaciers thickness change by 2100 under the climate change scenarios and 
ensemble of GCMs for Narayani River Basin. 

Narayani 

RCP4.5 RCP8.5 

ΔST ΔWP 
mean annual 
glacier melt 
(mm w. e.) 

Total loss (%) 
ΔST ΔWP 

mean annual 
glacier melt 
(mm w. e.) 

Total loss (%) 

<100m >100m <100m >100m 

GFDL 5.1 -0.2 -1650 100 74 7.3 -4.0 -2167 100 98 
IPSL_MR 2.8 10.2 -1521 100 68 4.0 34.9 -2189 100 98 
MIROC_ESM 3.0 -5.4 -1265 100 57 5.4 -28.7 -1504 100 68 
MIROC5 2.0 -0.6 -1227 100 55 3.6 15.4 -1504 100 68 
CGCM3 4.2 20.4 -1050 95 47 7.1 4.7 -1366 100 61 
INMCM4 1.8 13.4 -1002 90 45 3.5 -13.1 -1331 100 60 
Base Line -713 mm w. e.         
Ensemble 2.9 6.2 -1286 100 58 4.9 5.5 -1677 100 75 
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Table 3. 7. Glaciers thickness change by 2100 under the climate change scenarios and 
ensemble of GCMs for Vakhsh River Basin. 

Vakhsh 

RCP4.5 RCP8.5 

ΔST ΔWP 
mean annual 
glacier melt 
(mm w. e.) 

Total loss (%) 
ΔST ΔWP 

mean annual 
glacier melt 
(mm w. e.) 

Total loss (%) 

<100m >100m <100m >100m 

GFDL 7.8 12.8 -1985 100 66 10.9 5.9 -1985 100 89 
IPSL_MR 4.2 -3.5 -733 66 33 8.0 -8.6 -1245 100 56 
MIROC_ES
M 3.4 6.8 -613 55 28 6.9 -0.9 -1082 97 49 
MIROC5 3.6 16.8 -641 58 29 6.0 38.8 -946 85 43 
CGCM3 2.0 35.9 -415 37 19 4.1 61.3 -639 58 29 
INMCM4 2.0 -4.5 -468 42 21 3.6 -1.1 -666 60 30 
Base Line -283 mm w. e. 

        Ensemble 3.4 13.3 -722 65 33 6.0 20.2 -1094 98 49 

 
 
 
Table 3. 8. Glaciers thickness change by 2100 under the climate change scenarios and 
ensemble of GCMs for Mendoza River Basin. 

Mendoza 

RCP4.5 RCP8.5 

ΔST ΔWP 
mean annual 
glacier melt 
(mm w. e.) 

Total loss (%) 
ΔST ΔWP 

mean annual 
glacier melt 
(mm w. e.) 

Total loss (%) 

<100m >100m <100m >100m 

CCSM4 2.0 30.7 -512 46 23 3.8 63.6 -665 60 30 
CGCM3 1.1 -31.2 -470 42 21 2.7 -33.5 -586 53 26 
CNRM 3.1 49.6 -555 50 25 4.6 37.2 -687 62 31 
GISS 1.0 37.7 -415 37 19 2.3 75.7 -503 45 23 
IPSL_MR 2.6 -19.5 -581 52 26 4.6 -4.7 -772 69 35 
MIROC_ESM 2.0 -36.1 -560 50 25 3.8 -51.1 -720 65 32 
Base Line -375 mm w. e.         
Ensemble 1.9 -7.1 -516 46 23 3.4 -8.3 -656 59 29 

 
 
 
Table 3. 9. Glaciers thickness change by 2100 under the climate change scenarios and 
ensemble of GCMs for central Chile River Basins. 

Chile 

RCP4.5 RCP8.5 

ΔST ΔWP 
Mean annual 
glacier melt 
(mm w. e.) 

Total loss (%) 
ΔST ΔWP 

mean annual 
glacier melt 
(mm w. e.) 

Total loss (%) 

<100m >100m <100m >100m 

CCSM4 2.0 13.7 -1293 100 58 3.7 23.2 -1643 100 74 
CGCM3 1.1 -39.7 -1168 100 53 2.4 -47.9 -1168 100 53 
GISS 1.1 31.3 -1074 97 48 2.4 67.7 -1324 100 60 
IPSL_MR 2.6 -20.4 -1426 100 64 4.5 -7.8 -1821 100 82 
MIROC_ESM 2.0 -38.2 -1402 100 63 3.6 -55.3 -1766 100 79 
CNRM 2.9 21.2 -1419 100 64 4.5 10.5 -1736 100 78 
Base Line -934 mm w. e.         
Ensemble 1.8 -12.1 -1297 100 58 3.3 -17.5 -1577 100 71 
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Projected Equilibrium Line Altitude (Massa Blatten Watershed in Rhone) 

There are many studies available on the glaciers of the Rhone River Basin but almost 

all of them focus on surface mass balance modelling without considering the interactions 

between ground water, lateral flow, and infiltration for a glacial system of the multiple 

watersheds.  

In this section, the SWAT model was applied for assessment of climate change 

impact on the regional equilibrium line altitude changes of the glaciers across the Massa 

Blatten watershed (drainage area of Reach 23, Figure 3. 6) in Rhone, Switzerland. The 

largest European Alps glacier, Grosser Aletschgletscher, is located in the Massa Blatten 

watershed. The glacier has lost approximately 16 of its mass during the 20th century. The 

equilibrium line altitude (ELA) is defined as the altitude where the net mass balance is zero. 

ELA is an also an index of net mass distribution on the glacier. For example, if the ELA 

increases, then more of the glacier is in the ablation zone and the glacier retreats. 

Conversely, if the ELA decreases, all else being equal, the glacier advances. ELA is 

determined by climate and the aspect of the glacier. It is not influenced by glacier dynamics, 

extent and hypsometry, and thus reveals a largely unfiltered climatic signal (Huss, 2008). 

According to previous studies in the Alps (Greene et al., 1999; Maisch, 2000) the ELA 

sensitivity to temperature rise is on the order of 150 m/°C. 

The ELA change relative to a baseline was simulated under the climate change 

scenario by CCSM4, RCP4.5 for a 2.55 ºC increase in summer temperature and 7.37 

increases in winter precipitation. The GCM was selected among 6 GCMs based on the 

prescribed maximum 2 ºC warming by IPCC. 
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Huss et al. (2008) suggested a mean ELA of 3003 m and specific net annual mass 

balance of -460 mm w. e. for Aletschgletscher over the period 1865-2006. For simulation of 

ELA and the mass balance over the glacier, the glaciered subbasins were divided into 10 

elevation bands with 200 m intervals on the glaciers (Figure 3. 6). The elevation bands were 

set narrower around the regional ELA of the river basin. The specific net annual mass 

balance (bn) for each elevation band was calculated for a balance year (1 October and 30 

September).  

Long-term mean ELA was considered as an altitude of zero mass balance over a 

period of 30 years for baseline and climate change scenarios. The years with negative mass 

balance at the highest elevation bands were excluded which means that the ELA is higher 

than the glaciers peak. The results show a 370 m upward shift in long term ELA for 2.5º C 

warming which is approximately compatible with suggested 150 m shift of ELA for 1°C 

warming by Greene et al. (1999) and Maisch (2000). The result implies that the SWAT can 

be used to determine changes in regional ELA due to climate change in future studies. 
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Figure 3. 6. Glaciers outline in Massa Blatten watershed (Drainage area of Reach 23) 
and location in Switzerland. The elevation band interval is 200m.  

 
 
 

Summary, Conclusions, and Future Works 

The study has shown the impact of climate change on glacier change and runoff 

in multiple large-scale river basins with a focus on their glaciered areas. Projected 

climate changes were developed using low representative concentration pathway 

(RCP4.5 and RCP8.5) and six CMIP5 models. Possible change in annual water yield 

was predicted to be 17 and 40 for Rhone, 50 and 80 for Narayani, 65 and 116 for 

Vakhsh, 28 and 55 for Mendoza, 17 and 30 for Chile under RCP4.5 and RCP8.5 and 

GCMs ensemble. The increase in total water yield exceeded or was in range of the 

snowmelt increases in all river basins under all climate change scenarios, which 

indicated that the hydrologic regime of the river basins is highly affected by melt due to 
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warming. Reduction of snow fall in the future and consequently reduction or vanishing 

of the permanent snowpack at lower altitudes and melting of the glaciers at higher 

altitudes postponed peak stream flow from July to August for the Rhone, Narayani and 

Vakhsh River Basins. In low glaciered or glacier free areas, peak summer flow moved 

from late summer to mid spring due to conversion of snow fall to rain fall with warming 

and consequently rapid increase in stream flow. 

The results implied that the projected change of high flow is strongly dependent 

on the degree of glaciation of watersheds. The projected Q5 show decreases across 

glacier free and low glaciered watersheds, whereas in highly glaciered watersheds, the 

maximum flow showed considerable increase due to glacier melt. Increasing in high 

flow implies the potential risk of floods in glaciered watersheds in the future because of 

the increase in the rapid melt with high air temperatures. Furthermore, because of the 

increase in the air temperature, the snowfall will decrease, and the rainfall will increase 

in the future. Such changes may result in an increase in floods during the early spring 

and significant changes in the hydrological regime in the future. The risks of droughts 

may also increase during dry seasons because of declining snow storage and 

consequently less contributed melt water to the runoff in the future. This situation may 

significantly affect the availability of water resources necessary for agriculture, 

industrial water use, and so on in these regions. 

For GCMs ensemble and RCP8.5, all the glaciers with 100 m w. e. will disappear 

by 2100 across the Rhone, Narayani and central Chile River Basins. All of the small and 
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shallow glaciers in lower altitudes with 5 to 20 m w. e. thickness will be melted by 2100 

across the Mendoza River Basin.  

The SWAT model was also applied for assessment of climate change impact on 

regional equilibrium line altitude changes of the glaciers across the Massa-Blatten 

watershed as a test area. The results implied that the SWAT can be used to determine 

regional changes in ELA due to climate change in the future studies. 
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APPENDIX A 

 

 

Table A. 1. Calibration parameters for elevation band of the draining subbasins to Reach 
123 (Method 3), Narayani River Basin.  
Narayani Reach:123 

Subbasin# SFTMP SMTMP SMFMX 
(1-6) 

SMFMX 
(7-10) 

SMFMN 
(1-6) 

SMFMN 
(7-10) 

TIMP 
(1-6) 

TIMP 
(7-10) 

1 2 2 6 8 4.3 6 0.7 0.06 

2 2 2 6 8 4.3 6 0.7 0.06 

3 2 2 6 8 4.3 6 0.7 0.06 

4 2 0.8 6 8 3.5 6 0.7 0.06 

5 2 0.8 6 8 3.5 6 0.7 0.06 

6 2 0.8 6 8 3.5 6 0.7 0.06 

7 2 2 6 8 4.3 6 0.7 0.06 

8 2 0.8 6 8 3.5 6 0.7 0.06 

9 2 2 6 8 4.3 6 0.7 0.06 

10 2 0.8 6 8 3.5 6 0.7 0.06 

11 2 2 6 8 4.3 6 0.7 0.06 

12 2 2 6 8 4.3 6 0.7 0.06 

13 2 2 6 8 4.3 6 0.7 0.06 

14 2 0.8 6 8 3.5 6 0.7 0.06 

15 2 0.8 6 8 3.5 6 0.7 0.06 

17 2 2 6 8 4.3 6 0.7 0.06 

35 2 0 7 9 6 7 0.7 0.05 

47 2 0 5 8 4 6 0.7 0.05 

48 2 0 5 8 4 6 0.7 0.05 

49 2 0 5 8 4 6 0.7 0.05 

56 2 0 5 8 4 6 0.7 0.05 

57 2 0 5 8 4 6 0.7 0.05 

60 2 0 5 8 4 6 0.7 0.05 

71 2 0 5 8 4 6 0.7 0.05 

72 2 0 5 8 4 6 0.7 0.05 

76 2 0 5 8 4 6 0.7 0.05 

77 2 0 5 8 4 6 0.7 0.05 

91 2 0 5 8 4 6 0.7 0.05 

92 2 0 5 8 4 6 0.7 0.05 

97 2 0 5 8 4 6 0.7 0.05 

98 2 0 5 8 4 6 0.7 0.05 

123 2 0 5 8 4 6 0.7 0.05 
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Table A. 2. Calibration parameters for elevation bands of the draining subbasins to 
Reach 133 (Method 3), Vakhsh River Basin 

Vakhsh Reach: 133 

Subbasin# SFTMP SMTMP 
(1-3) 

SMTMP 
(4-10) 

SMFMX 
(1-3) 

SMFMX 
(4-10) 

SMFMN 
(1-3) 

SMFMN 
(4-10) 

TIMP 
(1-3) 

TIMP 
(4-10) 

91 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.20 

101 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.20 

108 1.50 0.00 0.50 5.00 7.00 5.00 6.00 0.70 0.20 

111 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.20 

114 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.20 

115 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.20 

116 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.20 

121 1.50 0.00 0.50 5.00 7.00 5.00 6.00 0.70 0.20 

122 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.20 

123 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.20 

124 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.20 

127 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.04 

128 1.50 0.00 0.50 5.00 7.00 5.00 6.00 0.70 0.04 

129 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.04 

130 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.04 

132 2.00 0.00 1.00 5.00 7.00 5.00 6.00 0.50 0.04 

133 1.50 0.00 0.50 5.00 7.00 5.00 6.00 0.70 0.04 

134 1.50 0.00 0.50 5.00 7.00 5.00 6.00 0.70 0.04 

136 2.00 0.00 1.00 6.00 8.00 5.00 7.00 0.50 0.03 

137 2.00 1.00 1.50 6.00 8.00 5.00 7.00 0.50 0.03 

138 2.00 1.00 1.50 6.00 8.00 5.00 7.00 0.50 0.03 

139 2.00 1.00 1.50 6.00 8.00 5.00 7.00 0.50 0.03 

140 2.00 1.00 1.50 6.00 8.00 5.00 7.00 0.50 0.03 

141 2.00 1.00 1.50 6.00 8.00 5.00 7.00 0.50 0.03 

142 2.00 1.00 1.50 6.00 8.00 5.00 7.00 0.50 0.03 

143 2.00 1.00 1.50 6.00 8.00 5.00 7.00 0.50 0.03 
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Table A. 3. Calibration parameters for elevation bands of the draining subbasins to 
Reach 84 (Method 3), Mendoza River Basin 
Mendoza Reach: 84 

Sbbasin# SFTMP 
SMTMP 
(1-3) 

SMTMP 
(4-10) 

SMFMX 
(1-6) 

SMFMX 
(7-10) 

SMFMN 
(1-6) 

SMFMN 
(7-10) 

TIMP 
(1-6) 

TIMP 
(7-10) 

84 1 2 3 2.3 3.8 2.5 4 0.44 0.3 
87 1 2 3 2.3 3.8 2.5 4 0.44 0.3 
88 2.5 3 3.3 2.3 3.8 2.5 4 0.44 0.1 
89 1 2 3 2.3 3.8 2.5 4 0.44 0.3 
91 2.5 3 3.3 2.3 3.8 2.5 4 0.44 0.1 
92 1 2 3 2.3 3.8 2.5 4 0.44 0.3 
93 2.5 3 3.3 2.3 3.8 2.5 4 0.44 0.1 
94 1 2 3 2.3 3.8 2.5 4 0.44 0.3 
96 2.5 3 3.3 2.3 3.8 2.5 4 0.44 0.1 
97 1 2 3 2.3 3.8 2.5 4 0.44 0.3 
98 2.5 3 3.3 2.3 3.8 2.5 4 0.44 0.1 
99 1 2 3 2.3 3.8 2.5 4 0.44 0.3 

100 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 
101 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 
102 2.5 3 3.3 2.3 3.8 2.5 4 0.44 0.1 
103 2.5 3 3.3 2.3 3.8 2.5 4 0.44 0.1 
104 2.5 3 3.3 2.3 3.8 2.5 4 0.44 0.1 
105 2.5 3 3.3 2.3 3.8 2.5 4 0.44 0.1 
106 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 
107 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 
108 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 
109 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 
110 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 
111 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 
112 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 
113 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 
114 2.5 2.5 3.5 3 4 3.4 4.5 0.44 0.07 

 
 
 
Table A. 4. Calibration parameters for elevation bans of the draining subbasins to Reach 
79 (Method 3), Mendoza River Basin 
Mendoza Reach: 79 

SUBBASIN SFTMP SMTMP 
SMFMX 

(1-5) 
SMFMX 

(6-10) 
SMFMN 

(1-5) 
SMFMN 

(6-10) 
TIMP 
(1-5) 

TIMP 
(6-10) 

28 3.4 3.8 2.5 3 3 4 0.5 0.02 
31 3.4 3.8 2.5 3 3 4 0.5 0.02 
39 3.4 3.8 2.5 2.5 3 4 0.5 0.3 
40 4 1 2.3 3 3 4 0.5 0.3 
41 3.4 3.8 2.5 2.5 3 4 0.6 0.3 
42 4 1 2.5 3 3 4 0.5 0.3 
51 2 2 2.5 3 3 4 0.5 0.3 
52 2 2 2.5 2.5 3 4 0.6 0.3 
56 2 2 2.5 3 3 4 0.4 0.01 
60 2 2 2.5 2.5 3 4 0.6 0.01 
66 2 2 2.5 3 3 4 0.5 0.01 
67 2 2 2.5 3 3 4 0.5 0.01 
79 2 2 2.5 3 3 4 0.5 0.01 
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Table A. 5. Calibration parameters for elevation bans of the draining subbasins to Reach 
5 (Method 3), Central dry Andes in Chile. 

Chile Reach: 5 

Subbasin# SFTMP SMTMP 
(1-2) 

SMTMP 
(3-6) 

SMTMP 
(7-10) 

SMFMN 
(1-6) 

SMFMN 
(7-10) 

SMFMX 
(1-6) 

SMFMX 
(7-10) 

TIMP 
(1-6) 

TIMP 
(7-10) 

1 -4.00 -0.30 1.00 1.00 4.50 6.50 5.00 7.00 0.700 0.010 

2 -4.00 -0.30 1.00 1.00 4.50 6.50 5.00 7.00 0.700 0.010 

5 -4.00 -1.00 -1.00   6.00   6.00   1.000 0.000 

6 -4.00 -0.30 1.00 1.00 5.00 6.00 5.00 6.70 0.700 0.010 

7 -4.60 1.20 2.40 2.40 2.00 5.30 3.00 5.80 0.140 0.014 

8 -2.00 -1.00 -1.00 0.00 3.00 4.00 2.00 3.00 0.500 0.400 

9 -2.00 -1.00 -1.00 0.00 3.00 4.00 2.00 3.00 0.500 0.010 

11 -4.00 -1.00 0.00   4.50   4.50   1.000 0.000 

12 -4.00 -1.00 -1.00   4.50   6.00   1.000 0.000 

13 -4.60 1.20 2.40 2.40 2.00 5.30 3.00 5.80 0.140 0.014 

14 2.00 1.00 1.00 0.00 3.00 4.00 4.00 6.00 0.500 0.500 

15 2.00 1.00 1.00 0.00 3.00 4.00 4.00 6.00 0.500 0.500 

17 -4.00 -1.00 -1.00   5.00   6.00   1.000 0.000 

18 2.00 1.00 1.00 0.00 3.00 4.00 4.00 6.00 0.500 0.500 

19 2.00 1.00 1.00 0.00 3.00 4.00 4.00 6.00 0.300 0.500 

Ave. -2.21 -0.03 0.45 0.71 3.73 4.87 4.23 5.66 0.612 0.165 

Min. -4.60 -1.00 -1.00 0.00 2.00 4.00 2.00 3.00 0.140 0.000 

Max. 2.00 1.20 2.40 2.40 6.00 6.50 6.00 7.00 1.000 0.500 

 
 
 
Table A. 6. Calibration parameters for elevation bans of the draining subbasins to Reach 
66 (Method 3), Central dry Andes in Chile. 

Chile Reach: 66 

Subbasin# SFTMP SMTMP 
(1-6) 

SMTMP 
(7-10) 

SMFMN 
(1-6) 

SMFMN 
(7-10) 

SMFMX 
(1-6) 

SMFMX 
(7-10) 

TIMP 
(1-6) 

TIMP 
(7-10) 

64 3 1 3 4 6 6 7 0.7 0.01 

65 3 1 3 4 6 6 7 0.7 0.01 

66 3 1 3 4 6 6 7 0.7 0.01 

68 3 1 3 4 6 6 7 0.7 0.01 

69 3 1 3 4 6 6 7 0.7 0.01 

70 3 1 3 4 6 6 7 0.7 0.01 
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APPENDIX B 

 

 

Table B. 1. Published ELA and mass balance data used for model calibration and 
validation 

 
Rhone Gries Abramov 

Bn ELA Bn ELA Bn ELA 

1980 888 2715 665 2660 -1081 4366 

1981 87 2875 -123 2940 129 4446 

1982 -375 3035 -890 3030 -774 4290 

1983 -160 2940 -557 3000 -507 4416 

1984   -8 2865 -971 4391 

1985   -259 2878 -855 3684 

1986   -535 2946 -1010 4431 

1987   -659 2985 240 4269 

1988   -878 3073 10 4301 

1989   -1063 3201 -230 4331 

1990   -1743 3401 -530 4369 

1991   -1097 3264 -488 4393 

1992   -724 3028 448 4304 

1993   -32 2839 333 4204 

1994   -494 2953 -859 4219 

1995   158 2799 -896 4353 

1996   -230 2884 -410 4360 

1997   -270 2893 -1976 4310 

1998   -1660 3401 219 4460 

1999   -580 2979  4330 

2000   -874 3009   

2001   -50 2897   

2002   -600 2975   

2003   -2630 3400   

2004   -1330 3400   

2005   -1670 3153   

2006   -1995 3325   

2007   -1473 3324   

2008   -1601 3125   

2009   -883 3134   

2010   -803 3085   

Steady state  2918  2853  4354 
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Table B. 2. Elevation-mass balance data for Rhone glacier 

 
 

 

 

 

 

 

 

 

 

 

 Elevation Area 
km2 1980-81 1981-82 

 

 3500-3629 0.424 3920 3750 

 3400-3500 0.811 3320 3280 

 3300-3400 1.139 2590 2500 

 3200-3300 1.601 2300 2100 

 3100-3200 1.542 1240 1060 

 3000-3100 1.803 430 50 

 2900-3000 2.615 210 -280 

 2800-2900 1.615 -80 -670 

 2700-2800 1.378 -1030 -1640 

 2600-2700 1.902 -1700 -2400 

 2500-2600 1.063 -2130 -2980 

 2400-2500 0.589 -3040 -3900 

 2300-2400 0.704 -3930 -4810 

 2280-2300 0.194 -5680 -6280 

SUMMARY 2280-3629 17.38 90 -380 
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Table B. 3. Elevation-mass balance data for Gries glacier 
Elevation (m) Area (km2) 1979 1980 1981 1982 1983 1984 1985 

3350 0.01 300 1800 1300 300 800 1200 910 
3250 0.13 250 1740 1250 250 750 1250 810 
3150 0.547 120 1550 770 280 640 1000 700 
3050 1.597 -30 1490 610 100 350 780 530 
2950 1.004 -650 1020 60 -370 -360 150 260 
2850 0.726 -840 580 -290 -590 -680 -20 -120 
2750 0.543 -1120 370 -330 -1090 -940 -350 -600 
2650 0.984 -1820 -70 -960 -1970 -1500 -820 -1200 
2550 0.608 -2230 -870 -1640 -2770 -1800 -1260 -1900 
2450 0.184 -2710 -1690 -4440 -5290 -3290 -2110 -2700 

Summary 6.337 -860 720 -230 -880 -550 0 -260 
Elevation (m) Area (km2) 1986 1987 1988 Area (km2) 1989 1990 1991 

3350 0.01 670 550 360 0.01 200 -390 120 
3250 0.09 560 430 240 0.09 70 -540 -20 
3150 0.43 440 310 110 0.43 -70 -700 -150 
3050 1.666 280 160 -50 1.666 -220 -860 -310 
2950 1.061 10 -110 -310 1.061 -480 -1120 -570 
2850 0.727 -370 -490 -700 0.727 -880 -1520 -960 
2750 0.573 -870 -1000 -1220 0.573 -1400 -2080 -1490 
2650 0.85 -1490 -1620 -1860 0.85 -2060 -2790 -2160 
2550 0.678 -2220 -2370 -2630 0.678 -2850 -3660 -2960 
2450 0.164 -3060 -3230 -3520 0.164 -3770 -4670 -3890 

Summary 6.249 -530 -660 -880 6.249 -1060 -1740 -1100 
Elevation (m) Area (km2) 1992 1993 1994 1995 1996 1997 1998 

3350 0.01 450 1080 650 1250 890 860 -380 
3250 0.09 320 970 530 1150 780 750 -530 
3150 0.43 200 860 420 1050 670 630 -680 
3050 1.666 40 690 260 870 510 470 -840 
2950 1.061 -220 420 -10 600 240 200 -1100 
2850 0.727 -610 50 -390 230 -140 -180 -1500 
2750 0.573 -1120 -430 -890 -240 -630 -670 -2060 
2650 0.85 -1750 -1010 -1510 -810 -1220 -1260 -2770 
2550 0.678 -2510 -1690 -2240 -1470 -1920 -1970 -3630 
2450 0.164 -3390 -2470 -3090 -2220 -2740 -2790 -4640 

Summary 6.249 -720 -30 -500 160 -230 -270 -1660 
Elevation (m) Area (km2) 1999 2000 2001 2002 2003 2004 2005 

3350 0.01 570 2416 3070 2630 -1270 -330 1180 
3250 0.206 450 1708 2390 1930 -1300 -450 580 
3150 0.692 330 1000 1710 1230 -1450 -490 -20 
3050 1.6 170 292 1040 530 -1700 -610 -610 
2950 0.994 -90 -416 360 -170 -2080 -850 -1200 
2850 0.658 -480 -1124 -320 -880 -2570 -1220 -1790 
2750 0.457 -980 -1832 -1000 -1580 -3180 -1700 -2370 
2650 0.619 -1610 -2540 -1670 -2280 -3900 -2310 -2940 
2550 0.805 -2350 -3248 -2350 -2980 -4730 -3050 -3510 
2450 0.153 -3210 -3956 -3030 -3680 -5690 -3900 -4080 

Summary 6.194 -580 -847 -50 -600 -2630 -1330 -1670 
Elevation (m) Area (km2) 2006 2007      3350 0.004 604 622      3250 0.081 171 242      3150 0.287 -325 -174      3050 1.454 -805 -549      2950 0.945 -1440 -1047      2850 0.609 -1961 -1438      2750 0.364 -2451 -1786      2650 0.367 -3416 -2586      2550 0.769 -4300 -3370      2450 0.172 -4994 -3906      Summary 5.084 -1995 -1473      
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Table B. 4. Elevation-mass balance data for Abramov glacier 
AREA 0.685 2.092 4.337 5.192 4.067 2.538 1.557 1.05 0.736 0.249 

Altitude 4650 4550 4450 4350 4250 4150 4050 3950 3850 3750 

1979 1510 1160 630 40 -420 -1300 -2070 -2940 -3810 -4000 

1980 700 420 150 -700 -1260 -2010 -2660 -3510 -4630 -4980 

1981 2300 1610 1250 580 50 -720 -1620 -2610 -3560 -3900 

1982 1325 690 390 -280 -900 -1740 -2490 -3380 -4490 -4850 

1983 1090 980 440 -80 -640 -1290 -2020 -2730 -3780 -4170 

1984 2500 2190 1910 1480 1400 1170 850 600 430 330 

1985 850 520 320 -190 -960 -1740 -2600 -3730 -5030 -5330 

1986 160 110 -30 -510 -1190 -1800 -238 -320 -393 -417 

1987 1090 1490 1210 700 170 -650 -1230 -2380 -3580 -3670 

1988 1270 1560 1340 650 -280 -1130 -2000 -3070 -4220 -4210 

1989 990 910 690 200 -380 -1090 -1770 -2570 -3290 -3420 

1990 1070 990 750 170 -700 -1650 -2490 -3560 -4450 -4590 

1991 800 1480 1280 900 300 -630 -1460 -2390 -3430 -4580 

1992 900 1790 1790 1620 1160 320 -460 -1380 -2440 -3640 

1993 940 1550 1580 1460 1040 240 -510 -1420 -2480 -3710 

1994 220 1030 900 590 10 -920 -1760 -2730 -3820 -5020 

1995 700 560 650 630 100 -1090 -1780 -2790 -3770 -5280 

1996 780 860 880 910 440 -690 -1230 -2110 -2750 -4270 

1997 60 480 210 -280 -1080 -2110 -2920 -3780 -4700 -5940 

1998 1580 1820 1750 1550 990 160 -810 -1930 -3310 -4190 

1999 1580 1820 1750 1550 990 160 -810 -1930 -3310 -4190 
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APPENDIX C 

 

 

Table C. 1. Percentage of changes in simulated hydrologic components for a period of 
2070-2099 relative to baseline period (1979-2008) for Rhone River Basin. 

Rhone 
CSIRO GFDL IPSL_LR CCSM4 INMCM4 GISS Ensemble 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

Precipitation -7.93 -9.83 -2.80 -18.93 10.14 -9.02 -3.00 -10.71 -2.80 -17.91 -7.87 -6.98 -3.92 -12.23 

Snow fall -17.39 -28.41 -28.12 -54.52 -4.00 -62.04 -17.04 -30.49 -28.12 -30.51 -23.87 -30.00 -17.86 -39.33 

Snow/glacier melt 50.81 98.00 58.05 109.49 -0.77 92.11 34.41 64.10 58.05 39.50 15.25 37.61 29.25 73.47 

Sublimation 11.56 22.73 12.49 23.20 -6.83 12.08 7.27 12.87 12.49 9.26 3.44 7.05 5.36 14.53 

Surface runoff 37.39 78.06 50.37 90.52 0.22 78.07 28.30 48.90 50.37 23.98 11.23 28.63 22.50 58.03 

Total water yield 25.08 51.30 36.04 57.16 9.95 58.16 20.35 33.37 36.04 15.02 8.47 22.60 17.38 39.60 

 
 
 
Table C. 2. Percentage of changes in simulated hydrologic components for a period of 
2070-2099 relative to baseline period (1979-2008) for Narayani River Basin. 

Narayani 
GFDL IPSL_MR MIROC5 MIROC_ESM CGCM3 INMCM4 Ensemble 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

Precipitation 45.69 53.87 22.33 30.32 14.40 22.48 13.33 22.48 7.24 19.97 17.02 26.95 20.00 29.35 

Snow fall -41.67 -62.36 -42.03 -67.25 -27.04 -30.77 -32.38 -30.77 -19.51 -31.47 -16.23 -37.95 -29.81 -43.43 

Snow melt 101.73 158.40 86.50 159.86 54.87 86.60 58.22 86.60 35.60 70.17 30.79 64.95 61.28 104.43 

Sublimation 14.60 22.54 11.71 22.96 8.45 15.23 9.40 15.23 5.69 12.88 3.40 8.14 8.87 16.16 

Surface runoff 117.62 169.80 84.24 148.07 51.65 81.94 51.75 81.94 31.26 66.14 35.97 71.27 62.08 103.19 

Total water yield 91.48 128.72 65.73 111.85 41.93 64.54 43.42 64.54 25.43 53.89 30.18 57.91 49.70 80.24 
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Table C. 3. Percentage of changes in simulated hydrologic components for a period of 
2070-2099 relative to baseline period (1979-2008) for Vakhsh River Basin. 

Vakhsh 
GFDL IPSL_MR MIROC_ESM MIROC5 CGCM3 INMCM4 Ensemble 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

Precipitation 11.70 7.90 -6.54 -15.90 4.94 -5.50 17.44 30.50 25.75 46.99 -1.31 -3.15 8.66 10.14 

Snow fall -13.91 -29.31 -17.69 -35.27 -12.18 -33.81 0.87 2.49 14.44 20.32 -6.80 -16.06 -5.88 -15.27 

Snow melt 160.95 225.87 52.18 114.12 38.47 90.92 52.38 97.67 29.00 65.38 21.55 43.21 59.09 106.19 

Sublimation 26.85 33.30 10.31 17.79 10.46 18.19 8.83 16.65 7.57 15.37 6.00 11.72 11.67 18.84 

Surface runoff 249.47 361.13 72.41 167.17 56.24 137.39 76.39 144.53 39.02 93.96 29.09 60.22 87.10 160.73 

Total water yield 166.30 232.85 54.51 115.22 47.71 101.49 61.91 113.01 37.99 85.14 23.28 47.81 65.28 115.92 

 
 
 
Table C. 4. Percentage of changes in simulated hydrologic components for a period of 
2070-2099 relative to baseline period (1979-2008) for Mendoza River Basin. 

Mendoza 
CNRM IPSL_MR MIROC_ESM CCSM4 GISS CGCM3 Ensemble 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

Precipitation 9.81 2.55 -37.01 -43.06 -40.45 -55.35 12.67 6.57 27.37 39.35 12.70 4.85 -2.48 -7.52 

Snow fall -26.73 -45.11 -58.51 -77.14 -53.52 -73.24 -12.63 -43.89 8.70 -2.06 7.80 -17.37 -22.48 -43.14 

Snow melt 41.94 73.95 43.53 92.03 38.76 78.86 33.32 67.96 12.71 33.15 27.68 52.85 32.99 66.47 

Sublimation -0.89 -3.83 -14.41 -17.23 -13.48 -17.83 2.31 -3.69 4.75 6.14 5.11 2.26 -2.77 -5.70 

Surface runoff 66.20 121.63 63.11 153.45 54.19 120.66 54.57 115.77 27.47 64.92 45.55 87.86 51.85 110.72 

Total water yield 42.05 66.37 26.25 64.28 19.99 48.27 33.19 61.52 22.39 45.79 26.37 46.51 28.37 55.46 

 
 
 
Table C. 5. Percentage of changes in simulated hydrologic components for a period of 
2070-2099 relative to baseline period (1979-2008) for central Chile River Basins. 

Chile 
CNRM IPSL_MR MIROC_ESM CCSM4 GISS CGCM3 Ensemble 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

Precipitation -4.25 -8.26 -36.51 -49.30 -33.32 -46.16 -7.02 -21.39 5.27 -6.69 4.75  -11.85 -21.17 

Snow fall -33.54 -50.47 -52.18 -72.63 -43.08 -61.77 -25.31 -50.17 -8.18 -33.01 -2.17  -27.41 -45.04 

Snow melt 26.80 45.24 24.41 47.54 24.13 45.52 19.61 39.02 7.99 20.53 15.11  19.68 35.49 

Sublimation 3.35 5.24 1.40 3.46 2.55 4.33 3.70 4.87 1.08 2.95 3.29  2.56 4.02 

Surface runoff 34.14 59.79 23.52 54.24 23.90 51.43 23.27 47.69 11.70 25.85 19.39  22.65 43.07 

Total water yield 26.58 43.64 16.79 35.77 16.14 33.46 18.07 33.73 9.83 20.11 14.73  17.02 30.24 
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Table C. 6. Percentage of changes in simulated high flow, low flow and mean monthly 
flow for a period of 2070-2099 relative to baseline period (1979-2008) for Rhone River 
Basin. 
Rhone 

 

CCSM4 GISS INMCM4 IPSL_LR GFDL CSIRO Ensemble 

Reach# 
RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

2 
Q5 26.6 40.8 11.4 22.8 15.6 31.1 -15.5 51.3 41.7 70.3 34.0 63.7 19.0 46.7 

Mean  34.4 58.5 19.3 40.1 15.8 35.3 -19.2 95.2 56.2 97.4 41.4 81.4 24.6 68.0 

4 
Q5 1.6 -0.4 -4.8 -1.7 -8.9 -7.7 -1.2 0.7 6.7 9.9 -1.7 2.7 -1.4 0.6 

Mean  12.5 17.2 2.5 12.7 -2.3 2.3 18.8 34.2 22.5 28.3 11.5 25.7 10.9 20.1 

10 
Q5 12.9 14.8 -0.4 -0.2 0.1 4.3 -2.1 24.6 19.6 45.8 13.3 32.5 7.2 20.3 

Mean  26.8 44.6 10.0 26.6 5.8 20.8 32.9 74.7 47.5 80.5 33.2 69.8 26.1 52.8 

14 
Q5 28.5 45.5 14.3 27.0 17.1 32.2 -4.2 60.1 48.9 80.5 37.5 68.0 23.7 52.2 

Mean  31.6 53.5 17.1 36.8 13.4 31.3 -6.1 86.7 52.8 88.3 38.4 75.4 24.5 62.0 

23 
Q5 39.3 65.3 16.1 31.5 24.0 47.4 7.3 68.9 64.8 106.7 59.3 96.8 35.2 69.4 

Mean  48.4 86.5 27.3 54.6 25.0 56.8 8.6 128.3 81.1 146.6 66.7 126.8 42.8 99.9 

27 
Q5 -9.7 -19.4 -12.1 -17.6 -17.7 -23.2 -14.1 -16.8 -10.6 -15.5 -17.6 -19.6 -13.7 -18.7 

Mean  7.5 6.4 -1.0 6.1 -5.9 -5.5 7.9 18.6 13.9 9.6 3.5 10.7 4.3 7.6 

144 
Q5 13.8 37.7 -0.2 10.3 3.7 16.9 35.2 52.0 40.1 80.1 27.4 62.5 20.0 43.3 

Mean  33.1 60.4 14.6 36.2 10.4 32.2 74.5 101.0 62.2 112.6 46.9 97.6 40.3 73.3 

149 
Q5 -11.8 -26.0 -15.7 -25.1 -12.1 -27.3 -27.5 -40.3 -20.7 -35.1 -14.6 -25.3 -17.1 -29.8 

Mean  1.7 -0.7 -3.8 -0.5 -8.7 -10.4 20.4 9.4 5.6 0.1 -0.3 4.7 2.5 0.5 

101 

Q5 17.1 26.4 6.3 14.3 3.6 15.4 6.3 34.2 32.4 52.5 21.4 40.3 14.5 30.5 

Q95 46.7 93.9 22.1 84.3 35.0 57.9 67.1 194.3 86.3 94.8 52.7 117.3 51.6 107.1 

Mean  20.0 32.6 8.1 22.1 3.9 14.1 10.3 57.1 35.5 55.7 24.5 50.3 17.0 38.6 
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Table C. 7. Percentage of changes in simulated high flow, low flow and mean monthly 
flow for a period of 2070-2099 relative to baseline period (1979-2008) for Vakhsh River 
Basin. 
Vakhsh 

  

GFDL CGCM3 INMCM MIROC5 MIROC_ESM IPSL_MR Ensemble 

Reach# 
RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

5 
Q5 18.5 16.3 25.0 39.9 -18.2 -19.7 9.2 31.2 -6.8 -18.6 -20.6 -43.2 1.2 1.0 

Mean  27.4 26.7 35.1 64.0 -4.4 -6.1 26.1 37.5 12.2 -6.3 -13.5 -30.3 13.8 14.3 

10 
Q5 -15.2 -27.4 21.6 38.7 -2.1 -27.1 35.2 22.2 -6.6 -31.5 -21.7 -38.4 1.9 -10.6 

Mean  16.6 8.9 35.0 66.6 -0.4 -4.1 27.3 43.7 11.1 -6.8 -12.5 -24.6 12.8 14.0 

14 
Q5 83.7 110.5 30.1 49.8 4.5 6.3 45.2 72.3 17.5 30.0 19.1 39.2 33.3 51.3 

Mean  124.0 165.3 39.5 89.2 15.4 31.2 49.8 90.6 39.9 72.8 39.6 82.5 51.4 88.6 

1 
Q5 181.4 228.0 22.4 63.5 28.9 52.5 39.3 62.6 44.0 96.0 60.7 104.0 62.8 101.1 

Mean  382.6 497.1 144.1 218.9 139.6 185.1 182.1 257.5 182.8 292.4 217.6 343.6 208.1 299.1 

113 
Q5 257.1 337.5 22.9 59.0 36.1 70.6 64.3 107.8 57.0 133.1 64.3 134.2 83.6 140.4 

Mean  404.0 592.5 47.4 126.1 53.8 110.0 121.9 244.9 96.7 247.8 132.5 307.2 142.7 271.4 

134 
Q5 -5.7 -24.6 23.0 25.7 -16.6 -29.3 16.3 19.6 -19.0 -31.1 -27.7 -33.2 -5.0 -12.2 

Mean  1.7 -14.9 30.7 59.8 -8.6 -16.6 23.2 32.9 -4.8 -25.1 -21.9 -38.1 3.4 -0.3 

133 
Q5 130.1 163.6 16.7 34.5 17.6 31.3 30.0 44.6 27.2 54.4 31.3 58.5 42.1 64.5 

Mean  142.9 197.5 30.6 69.6 22.0 45.0 51.9 90.4 42.7 91.1 50.9 103.0 56.8 99.4 

109 

Q5 165.6 215.0 22.1 47.4 22.7 43.9 42.4 66.8 36.4 80.8 41.4 83.0 55.1 89.5 

Q95 168.4 235.7 38.5 86.3 23.5 48.3 62.7 114.3 48.2 102.6 55.0 116.5 66.1 117.3 

Mean  38.6 54.0 8.8 19.8 5.4 11.1 14.4 26.2 11.1 23.5 12.6 26.7 15.1 26.9 

 
 
 
Table C. 8. Percentage of changes in simulated high flow, low flow and mean monthly 
flow for a period of 2070-2099 relative to baseline period (1979-2008) for Narayani 
River Basin. 
Narayani  GFDL CGCM3 INMCM MIROC5 MIROC_ESM IPSL_MR Ensemble 

Reach#  
 RCP 

4.5 
RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

1 
Q5  

212.1 280.6 21.3 47.6 25.7 53.2 39.2 86.0 43.3 86.0 118.6 214.0 76.7 127.9 

Mean   
173.9 280.2 25.6 65.3 34.8 69.1 53.4 118.5 47.5 118.5 118.4 258.3 75.6 151.7 

2 
Q5  

182.4 204.0 18.6 45.0 21.6 49.4 30.8 70.8 38.2 70.8 87.6 135.8 63.2 96.0 

Mean   
160.5 227.6 26.8 65.5 36.5 70.6 54.7 112.5 49.9 112.5 104.8 195.7 72.2 130.7 
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Table C. 8. Continued 
Narayani  GFDL CGCM3 INMCM MIROC5 MIROC_ESM IPSL_MR Ensemble 

Reach#  
 RCP 

4.5 
RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

1 
Q5  

212.1 280.6 21.3 47.6 25.7 53.2 39.2 86.0 43.3 86.0 118.6 214.0 76.7 127.9 

Mean   
173.9 280.2 25.6 65.3 34.8 69.1 53.4 118.5 47.5 118.5 118.4 258.3 75.6 151.7 

2 
Q5  

182.4 204.0 18.6 45.0 21.6 49.4 30.8 70.8 38.2 70.8 87.6 135.8 63.2 96.0 

Mean   
160.5 227.6 26.8 65.5 36.5 70.6 54.7 112.5 49.9 112.5 104.8 195.7 72.2 130.7 

105 
Q5  

63.3 75.7 5.2 17.1 14.8 28.6 8.2 16.6 19.7 16.6 24.2 29.5 22.6 30.7 

Mean   
152.4 254.6 40.3 83.6 38.6 80.9 52.9 92.5 58.6 92.5 117.0 242.7 76.6 141.1 

107 
Q5  

54.5 66.6 -9.8 -0.3 4.0 17.1 -3.6 10.0 6.7 10.0 12.9 10.9 10.8 19.1 

Mean   
81.5 109.5 17.3 40.4 25.9 49.4 30.4 47.5 32.2 47.5 50.7 73.5 39.7 61.3 

133 
Q5  

87.9 106.1 20.3 35.5 20.9 40.2 23.8 38.6 30.2 38.6 53.6 77.6 39.5 56.1 

Mean   
0.7 1.0 0.0 0.2 0.2 0.4 0.1 0.2 0.1 0.2 0.3 0.4 0.2 0.4 

159 

Q5  
90.0 110.6 20.4 39.0 28.1 49.0 25.9 36.0 30.6 36.0 51.4 74.0 41.1 57.4 

Q95  
219.7 546.6 116.0 249.0 117.8 243.4 199.8 342.6 233.9 342.6 236.2 502.2 187.2 371.1 

Mean   
91.9 129.7 25.5 54.1 30.3 58.2 42.1 64.8 43.6 64.8 66.0 112.3 49.9 80.7 

 
 
 
Table C. 9. Percentage of changes in simulated high flow, low flow and mean monthly 
flow for a period of 2070-2099 relative to baseline period (1979-2008) for Mendoza 
River Basin. 
Mendoza 

 

GISS CGCM3 CCSM4 MIROC_ESM CNRM IPSL_MR Ensemble 

Reach# RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

55 
Q5 11.2 31.5 28.8 53.1 33.5 67.4 44.1 79.1 40.8 70.3 47.1 95.6 34.2 66.2 

Mean  18.5 43.0 30.6 61.2 38.6 79.4 42.3 88.0 54.4 92.9 48.8 104.9 38.9 78.2 

59 
Q5 69.5 90.6 5.7 -5.7 25.8 26.6 -71.5 -77.0 11.8 -5.1 -52.4 -37.1 -1.9 -1.3 

Mean  72.0 115.2 16.7 4.9 38.6 34.8 -62.9 -69.7 20.5 6.1 -49.6 -42.8 5.9 8.1 

79 Q5 11.4 28.7 21.3 39.2 28.0 53.1 32.1 54.3 33.9 53.0 37.0 70.3 27.3 49.8 

82 
Q5 34.7 38.4 40.6 41.8 19.8 40.4 12.5 36.1 31.0 47.8 19.1 53.6 26.3 43.0 

Mean  22.2 36.5 26.8 40.6 24.0 42.1 10.1 32.9 34.9 55.7 13.9 44.1 22.0 42.0 

84 
Q5 8.1 25.0 22.5 38.5 28.4 53.2 32.4 55.1 30.4 48.8 36.6 75.0 26.4 49.3 

Mean  15.5 37.0 25.9 51.3 34.0 67.4 33.3 68.4 44.6 74.9 38.8 83.1 32.0 63.7 

90 Q5 20.2 46.3 29.9 60.4 43.9 90.9 45.3 81.6 55.4 80.7 56.7 115.8 41.9 79.3 
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Table C. 9. Continued 
Mendoza 

 

GISS CGCM3 CCSM4 MIROC_ESM CNRM IPSL_MR Ensemble 

Reach# RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

90 Mean  27.7 64.0 40.3 85.3 56.5 120.3 51.8 116.0 78.5 133.4 66.4 154.9 53.5 112.3 

101 
Q5 7.8 26.0 28.5 50.7 31.1 59.9 43.9 72.9 34.9 61.6 45.6 87.6 31.9 59.8 

Mean  14.6 43.3 32.4 68.4 44.2 91.9 55.0 106.3 56.1 100.2 60.9 122.2 43.9 88.7 

114 
Q5 7.0 21.0 19.2 34.4 25.7 47.8 30.4 49.7 28.6 44.8 34.4 67.2 24.2 44.2 

Mean  12.6 31.6 20.9 44.6 30.2 61.3 32.5 63.9 40.4 65.9 38.0 77.6 29.1 57.5 

86 

Q5 13.7 32.5 20.5 36.0 28.3 54.4 24.3 44.5 31.0 47.5 29.2 65.5 24.5 46.7 

Q95 28.8 56.8 30.0 57.3 43.6 76.3 13.3 38.8 59.4 94.1 22.8 63.0 33.0 64.4 

Mean  22.8 46.6 26.9 47.4 33.9 62.7 20.5 49.4 42.8 67.7 26.7 65.6 28.9 56.6 

 
 
 
Table C. 10. Percentage of changes in simulated high flow, low flow and mean monthly 
flow for a period of 2070-2099 relative to baseline period (1979-2008) for central Chile 
River Basins. 
Chile 

 

GISS CGCM3 CCSM4 MIROC_ESM CNRM IPSL_MR Ensemble 

Reach# RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

RCP 
4.5 

RCP 
8.5 

2 
Q5 55.1 81.1 29.8 29.8 49.1 80.5 7.8 42.2 71.4 95.4 23.6 77.1 39.5 67.7 

Mean 40.3 81.3 58.0 58.0 59.3 97.0 15.9 62.2 75.0 123.1 22.7 85.7 45.2 84.5 

7 
Q5 6.4 19.1 17.7 17.7 19.7 39.2 27.7 47.4 25.1 41.3 27.7 54.1 20.7 36.5 

Mean 12.4 28.4 19.4 19.4 26.3 52.2 28.0 55.7 37.2 61.2 30.7 63.3 25.6 46.7 

20 
Q5 6.2 16.5 13.8 13.8 15.6 30.4 24.2 40.6 21.2 36.3 23.1 41.6 17.4 29.9 

Mean 9.9 22.6 14.1 14.1 19.6 38.6 24.5 45.5 26.8 44.1 25.5 47.7 20.1 35.4 

22 
Q5 8.6 4.8 23.4 23.4 9.6 -0.5 -33.3 -46.0 -3.8 -1.4 -35.0 -37.0 -5.1 -9.4 

Mean 10.6 17.9 4.0 4.0 13.8 28.9 -12.5 -6.0 21.2 35.8 -8.4 2.1 4.8 13.8 

68 
Q5 4.8 14.2 13.5 13.5 16.0 31.1 24.4 38.4 23.6 38.4 22.2 39.6 17.4 29.2 

Mean 8.2 20.0 13.4 13.4 19.1 36.9 21.9 39.1 28.2 44.0 23.8 41.7 19.1 32.5 

70 
Q5 5.8 15.4 13.0 13.0 16.7 32.6 23.6 38.8 24.6 39.6 22.1 41.6 17.6 30.2 

Mean 8.0 18.8 12.6 12.6 17.9 34.9 19.2 37.0 26.9 43.8 21.1 39.2 17.6 31.1 

108 
Q5 5.4 -9.7 9.0 9.0 -7.5 -13.8 -15.0 -19.0 -2.6 -6.7 -18.9 -43.4 -4.9 -13.9 

Mean 4.3 -18.6 12.1 12.1 -14.7 -30.7 -36.5 -44.5 -12.5 -18.3 -40.7 -57.5 -14.7 -26.2 

109 
Q5 4.6 20.0 20.0 20.0 22.2 40.9 31.1 49.9 27.1 47.5 27.7 53.1 22.1 38.6 

Mean 11.9 29.6 19.4 19.4 26.5 52.3 31.4 59.7 38.5 65.8 32.4 62.6 26.7 48.2 
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Figure C. 1. Projected monthly runoff and CDF for the watersheds across the Rhone 
River Basin with different percentage of glacierized area for the baseline (red line), 
GCMs ensemble RCP4.5 (black line), RCP8.5 (green line) and GCMs. 
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Figure C. 2. Projected monthly runoff and CDF for the watersheds across the Vakhsh 
River Basin with different percentage of glaciered area for the baseline (red line), 
GCMs ensemble RCP4.5 (black line), RCP8.5 (green line) and GCMs. 
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Figure C. 3. Projected monthly runoff and CDF for the watersheds across the 
Narayani River Basin with different percentage of glaciered area for the baseline (red 
line), GCMs ensemble RCP4.5 (black line), RCP8.5 (green line) and GCMs. 
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Figure C. 4. Projected monthly runoff and CDF for the watersheds across the 
Mendoza River Basin with different percentage of glaciered area for the baseline (red 
line), GCMs ensemble RCP4.5 (black line), RCP8.5 (green line) and GCMs. 
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Figure C. 5. Projected monthly runoff and CDF for the watersheds across the Dry 
Andes at Central Chile with different percentage of glaciered area for the baseline 
(red line), GCMs ensemble RCP4.5 (black line), RCP8.5 (green line) and GCMs. 

 




