

A NEW DESIGN METHOD FRAMEWORK FOR OPEN ORIGAMI DESIGN

PROBLEMS

A Dissertation

by

WEI LI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Daniel A. McAdams
Committee Members, Nancy M. Amato
 Richard J. Malak
 Sivakumar Rathinam
Head of Department, Andres A. Polycarpou

August 2014

Major Subject: Mechanical Engineering

Copyright 2014 Wei Li

 ii

ABSTRACT

With the development of computer science and manufacturing techniques,

modern origami is no longer just used for making artistic shapes as its traditional

counterpart was many centuries ago. Instead, the outstanding lightweight and high

flexibility of origami structures has expanded their engineering application in aerospace,

medical devices, and architecture. In order to support the automatic design of more

complex modern origami structures, several computational origami design methods have

been established. However these methods still focus on the problem of determining a

crease pattern to fold into an exact pre-determined shape. And these methods apply

deductive logic and function for only one type of topological origami structure.

In order to drop the topological constraints on the shapes, this dissertation

introduces the research on the development and implementation of the abductive

evolutionary design methods to open origami design problems, which is asking for their

designs to achieve geometric and functional requirements instead of an exact shape. This

type of open origami design problem has no formal computational solutions yet.

Since the open origami design problem requires searching for solutions among

arbitrary candidates without fixing to a certain topological formation, it is NP-complete

in computational complexity. Therefore, this research selects the genetic algorithm (GA)

and one of its variations – the computational evolutionary embryogeny (CEE) – to solve

origami problems.

 iii

The dissertation made two major contributions. One contribution is on creating

the GA-based/abstract design method framework on open origami design problems. The

other contribution is on the geometric representation of origami designs that directs the

definition and mapping of their genetic representation and physical representation. This

research introduced two novel geometric representations, which are the “ice-cracking”

and the pixelated multicellular representation (PMR). The proposed design methods and

the adapted evolutionary operators have been testified by two open origami design

problems of making flat-foldable shapes with desired profile area and rigid-foldable 3D

water containers with desired volume. The results have proved the proposed methods

widely applicable and highly effective in solving the open origami design problems.

 iv

ACKNOWLEDGEMENTS

At first, I would like to thank my advisor and my committee chair, Dr. McAdams,

for his instruction and support during these three years, and for providing me the

opportunity to work on this research about origami. I am also grateful to my committee,

Dr. Amato, Dr. Malak, and Dr. Rathinam, for their guidance and suggestions on this

research.

Thanks also go to my friends and colleagues – Shraddha Sangelkar, Michael

Glier, Jonathan Arendt, Madison Burns, Sooyeon Lee, Joanna Tsenn, Elissa Morris,

Wesley Jones, Aeriel Corey, and William Tanner Parten – making my time at Texas

A&M University a fantastic experience.

I also want to extend my gratitude to the National Education Foundation, which

provided financial support for this research project.

Finally, I thank my parents for their encouragement and understanding on both

my study and my life in the United States.

 v

NOMENCLATURE

CEE Computational Evolutionary Embryogeny

CEEFOOD CEE for Optimal Origami Design

CRA Crease Restoration Algorithm

GA Genetic algorithm

MV-assignment Mountain Valley Assignment

PMR Pixelated Multicellular Representation

 vi

TABLE OF CONTENTS

 Page

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iv

NOMENCLATURE .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. viii

LIST OF TABLES ... xiv

CHAPTER I INTRODUCTION .. 1

Design Problem Statement .. 6
Computational Complexity ... 9
Dissertation Formation .. 10

CHAPTER II LITERATURE REVIEW .. 12

Origami Foldability in Mathematics and Geometry ... 14
Flat-foldability ... 15
Rigid-foldability .. 22

Origami Design Methods .. 22
Intelligent Origami Structures ... 29
Evolutionary Algorithm: Applications and Key Issues ... 32
Genetic Algorithm and Computational Evolutionary Embryogeny 35

CHAPTER III GENOTYPE-PHENOTYPE MAPPING ... 39

Established Geometric Representations of Origami Crease Patterns 41
Ice-cracking – A Direct Representation .. 45

The “Ice-cracking” Representation of the Pinwheel Base .. 48
A Formal Instruction of the “Ice-cracking” Representation and the Syntax for
Genotype-Phenotype Mapping .. 53
Summary of “Ice-cracking” Representation and Its Encoding 63

The Pixelated Multicellular Representation – An Indirect Representation 64
Origami Sheet Pixelization .. 66
Setup of the Cell Properties ... 68
Understanding a PMR and Extracting the Crease Pattern Information 71
Summary of PMR Representation and Its Encoding ... 83

 vii

Summary on Two Designs of Geometric Representations ... 84

CHAPTER IV GENETIC ALGORITHM AND COMPUTATIONAL
EVOLUTIONARY EMBRYOGENY .. 86

Interpreting the Genetic Representation .. 90
Individual Development According to the Generative Genetic Rules 92
Evaluate the Fitness With Respect to Requirements ... 95

Algorithm for Locally Flat-foldable Mountain-Valley Assignment 95
Algorithm for Global Flat-foldability Inspection .. 98
Calculating the Flat-folded State Profile Area .. 106

Design the Evolutionary Operators and Complementary Mechanisms 108
Operators for Elitism ... 108
Operators for Diversity .. 110
Elitism and Diversity ... 114

CHAPTER V ORIGAMI DESIGN RESULTS AND DISCUSSION 116

Design Results by Genetic Algorithm with “Ice-cracking” .. 116
Discussion ... 121

Design Results by Genetic Algorithm with PMR (CEEFOOD) 124
Discussion ... 129

Summary ... 133

CHAPTER VI EXTENSIVE APPLICATION ON ORIGAMI LIQUID
CONTAINER DESIGN .. 135

Problem Statement .. 135
Modified “Ice-cracking” for 3D Folding .. 136
Rigid-foldability and the Dihedral Folding Angles ... 138
Algorithms for Calculating the Volume .. 144
Design Results and Discussion ... 147

Computational Designs by GA .. 149
Discussion ... 152

Summary ... 156

CHAPTER VII CONCLUSION AND FUTURE WORK ... 158

Contributions to Origami Engineering and Design ... 158
Conclusions ... 160
Future Work .. 164

REFERENCES .. 167

 viii

LIST OF FIGURES

 Page

Figure 1 Terminologies for origami crease pattern. (a) A pinwheel base crease

pattern; (b) The folded pinwheel. ... 2

Figure 2 The research fields, applications, and the GA and CEE methods that are
studied in this dissertation ... 5

Figure 3 The sub-problems under origami design. ... 15

Figure 4 The procedure of TreeMaker for deriving an origami shape design from
a hypothetical tree graph. (a) To design an origami scorpion, the
TreeMaker starts with a manual design of a hypothetical tree graph,
where each branch will roughly correspond to one limb in the final
shape; (b) A crease pattern will be derived by TreeMaker algorithm for
the tree graph; (c) Fold the crease pattern and make modification, an
origami scorpion is finished. ... 24

Figure 5 Origamizer. (a) The surface of a rabbit shape has been divided into
triangles; (b) Origamizer derives a crease pattern for the triangular
meshed surface of the rabbit; (c) A surface with 12 triangular facets; (d)
The triangular facets are flattened and rearranged in a plane, and tuck
molecules are inserted to connect them and form a foldable crease
pattern; (e) The folded shape of the crease pattern in (d). The tuck
molecules are folded underneath the triangular facets to the ribs. 25

Figure 6 The workflow diagrams of deductive origami design methods (a) and
abductive origami design methods (b). ... 27

Figure 7 Intelligent origami robots. (a) Origami folding robot by Devin et al. (b)
Programmable matter robot by Hawkes et al. ... 30

Figure 8 Self-regulated “epidermal” multicellular origami sheet and the stages
for determining a fold by Nagpal et al. (a) Non-exited; (b) “Morphogen”
propagation; (c) Identification of the cells with certain levels of
morphogen density at the crease; (d) Folding the sheet along the crease. 31

Figure 9 (a) A crease pattern represented by the locations of the vertices and the
creases that link in between; (b) The mutation on one bit in the genetic
code for the embedded representation of (a) results in disconnection of
creases; (c) The mutation on the last bit in the genetic code for the

 ix

alternative representation of (a) results in crease overlapping; (d) The
mutation on the fifth bit from the last in the genetic code for the
alternative representation of (a) results in crease intersection. 44

Figure 10 (a) The crease pattern of a fish base variation can be described as a tree
graph; (b) The crease pattern of a pinwheel base is not a tree since there
is a closed loop of creases. .. 46

Figure 11 The steps taken by “ice-cracking” to derive the vertices and creases
through a systematic sequence. (a) The full crease pattern with circled
numbers labeling the vertices and diamonded numbers labeling the
creases; (b) The initialization step that locates the first vertex; (c) The
first forking step that gets the #2 vertex as well as the #1 crease; (d) The
second forking step that gets the #3 vertex and the #6 crease; (e) The
resolution step that gets the #4 vertex and two creases; (f) The resultant
crease pattern without the MV-assignment after the finalization step. 51

Figure 12 The four steps – initialization, forking, resolution and finalization – of
“ice-cracking”. The arrows show how the different steps can be
arranged, with initialization being the first step and finalization the last
step. ... 53

Figure 13 Illustrative crease patterns for “ice-cracking”. (a) Initialization step; (b)
Forking step; (c) The second forking step for getting a pinwheel pattern;
(d) Resolution step; (e) The resolution step for getting the #4 vertex in a
pinwheel pattern. ... 58

Figure 14 Embryo in CEE. (a) An example pixelated multicellular pattern with 41
cells being arranged evenly; (b) A 2-color flat-foldable pattern with one
diagonal crease; (c) A possible way to represent the crease pattern (b)
with the pixelated pattern (a); (d) A crease pattern that cannot be
represented by pixelated pattern in (a), because of too close creases. 67

Figure 15 (a) A pixelated multicellular pattern; (b) Resampled data points and
their clustering in crease pattern restoration algorithm; (c) The
corresponding starting crease pattern with its vertices, creases and faces
being numbered respectively by circular, diamond and square marks; (d)
The final updated crease pattern with one flat-foldable MV-assignment. 77

Figure 16 (a) A pixelated multicellular pattern, which has only two relatively
larger red cells that are surrounded by blue cells; (b) Resampled data
points according to (a); (c) Another pixelated multicellular pattern,

 x

which has only two relatively smaller red cells that are surrounded by
larger blue cells; (d) Resampled data points according to (c). 79

Figure 17 An operational period cycle of GA ... 87

Figure 18 Workflow diagram of GA ... 88

Figure 19 The individual development of a PMR with 3 by 3 cells. (a) the
embryonic state of the PMR has 5 blue cells and 4 red cells; (b) the rule
directs two cells to change their colors and guilds the PMR to an
intermediate state; (c) The rules directs the PMR to develop into the
mature state, which also has 5 blue cells and 4 red cells. 94

Figure 20 (a) An example crease pattern with 6 creases. Creases are indexed by
numbers in diamonds. The angles αଶ and αହ are local min, thus creases
#2 and #3 must be one mountain and one valley, and so do creases #5
and #6; (b) This displays one possible flat-foldable MV-assignment for
(a). ... 96

Figure 21 A crease pattern with two parallel valley creases and its folding
sequences. (a) The crease pattern with indexed creases and faces; (b)
Sequence 1 - crease #1 → #2: flat-foldable; (c) Sequence 2 - crease #2
→ #1: not flat-foldable due to face intersection (collision, or pierce). 99

Figure 22 A pinwheel base and its flat-folded state. ... 101

Figure 23 A single vertex crease pattern and two ways of flat-folding it. 102

Figure 24 An altered crease pattern from Figure 12. It has only one way to be flat-
folded as in (b). Using the way shown in (c) would cause the face
highlighted to bend within the limited space closed by the two faces
adjacent to crease #2. .. 102

Figure 25 A crease pattern and tree structure of its faces ... 107

Figure 26 The illustration of captive breeding (a) and atavism (b). 109

Figure 27 The individual development of four equivalent instances. For having a
switch-off rule, (c) and (d) are both non-aging instances. 113

Figure 28 The code assimilation expands the search region ... 115

 xi

Figure 29 The synthesis among the measures that strengthen the elitism and the
ones that increase the diversity. .. 115

Figure 30 (a) A crease pattern design (normalized fitness of 0.0208) found
through the GA for the problem in Section 4, where vertices are labeled
by numbers in circles, and creases by numbers in diamonds; (b) The
intermediate folded state; (c) The corresponding flat-folded state profile
that has an area of about 0.2501. Five vertices are still on the boundary
of the profile. ... 118

Figure 31 (a) A second crease pattern design (normalized fitness of 0.0209),
which is very similar to Figure 30; (b) The intermediate folded status; (c)
The corresponding flat-folded state profile that has an area of about
0.2499. .. 120

Figure 32 (a) A third crease pattern design (normalized fitness of 0.0035, and
fitness vector of {0.0013, 0.0077, 0, 0}), which is almost an ideally
optimal design; (b) The intermediate folded status; (c) The
corresponding flat-folded state profile that has an area of about 0.2577. 120

Figure 33 The fitness values of the topmost elites in the family of design Figure
30. F indicates the normalized fitness, the fitness component evaluating
the flat-folded state profile area, and the fitness component evaluating
the overlap of a crease with the center of mass. ... 121

Figure 34 The fitness values of the topmost elites in the family of design Figure
31. F indicates the normalized fitness, the fitness component evaluating
the flat-folded state profile area, and the fitness component evaluating
the overlap of a crease with the center of mass. ... 122

Figure 35 The fitness values of the topmost elites in the family of design Figure
32. F indicates the normalized fitness, the fitness component evaluating
the flat-folded state profile area, and the fitness component evaluating
the overlap of a crease with the center of mass. ... 122

Figure 36 Initial guess pattern used for the first experiment group. (a) The initial
guess has five creases; (b) Fill the faces of initial guess with blue and
red; (c) A replica of the initial guess that will be used by CEEFOOD to
initiate the evolution; (d) The design #1 with the crease numbers from 1
to 8; (e) Manual folding model of the design; (f) The flat-folded profile
of the design #1 according to the folding of (e) .. 126

 xii

Figure 37 Folding procedure for deriving the folded shape in Figure 36(e) from its
crease pattern Figure 36(d). (a) Print out the crease pattern; (b) Fold the
lower right corner inward along crease #5; (c) Creases other than #5 are
linked, thus must be folded simultaneously. (d) The creases are further
folded, and the right half portion of the origami sheet will be folding
underneath the left half portion. When all the creases are folded to
േ180°, the shape will become to the state shown in Figure 36(e). 128

Figure 38 Two crease pattern designs from the second exercise group, which uses
randomly generated initial generation of candidate solutions. (a), (b)
and (c) present the design #2 and its flat-folded profile; (d), (e) and (f)
present the design #3 and its flat-folded profile. .. 128

Figure 39 The overall fitness value of the topmost elite through generations 131

Figure 40 The rigid-folding of a long strip with 7 parallel creases. (a) The crease
pattern; (b) The side view of the folded shape. ... 141

Figure 41 A simple single vertex crease pattern showing the definition of angles.
The double-line arrow is the vector of the baseline, which in this case
overlaps with the Cartesian x-axis .. 142

Figure 42 Two hand-make origami shapes that can be used as water containers. (a)
A shape uses the triangular face in the middle as it bottom. (b) A shape
uses its two consecutive creases as its bottom. ... 145

Figure 43 An intuitive manual design of an “ash-tray” style water container. (a)
The crease pattern design with an a-by-a square in the middle. (b) The
folded shape. ... 148

Figure 44 Design #1 for an origami water container with a volume of 0.02. This
design has 12 faces, 15 creases, and 14 vertices. (a) The crease pattern;
(b) The folded shape (the grey face is used as the bottom). 149

Figure 45 Design #2 for an origami water container with a volume of 0.02. This
design has 17 faces, 22 creases, and 20 vertices. (a) The crease pattern;
(b) The folded shape (the grey face is used as the bottom). 149

Figure 46 Design #3 for an origami water container with a volume of 0.02. This
design has 17 faces, 21 creases, and 19 vertices. (a) The crease pattern;
(b) The folded shape (the grey face is used as the bottom). 150

 xiii

Figure 47 Design #4 for an origami water container with a volume of 0.02. This
design has 14 faces, 17 creases, and 16 vertices. (a) The crease pattern;
(b) The folded shape (the grey face is used as the bottom). 150

Figure 48 Design #5 for an origami water container with a volume of 0.02. This
design has 18 faces, 23 creases, and 20 vertices. (a) The crease pattern;
(b) The folded shape (the grey face is used as the bottom). 151

Figure 49 Design #6 for an origami water container with a volume of 0.02. This
design has 17 faces, 21 creases, and 19 vertices. (a) The crease pattern;
(b) The folded shape (the grey face is used as the bottom). 151

Figure 50 The volume of the topmost elite across generation of the 6 designs
produced by the GA. ... 154

 xiv

LIST OF TABLES

 Page

Table 1 The operations in each step, and the arguments defining the operations 54

Table 2 Generative genetic rules for PMR’s genetic representation 92

Table 3 The fitness evaluation of the listed designs by the GA with PMR 130

Table 4 Folding efforts of the origami water container designs 153

 1

CHAPTER I

INTRODUCTION

Popular since the 17th century, origami design is traditionally a handcrafted art

form (Harbin 1997). Ever since the 1700s, many origami artists have created and

published their hand-made origami works (Fuse 1990, Harbin 1997, Hull 2006, Lang

2003, Montroll 1979). More recently, researchers have discovered origami’s connections

with, and applications in, engineering (Gantes 2001). The field of origami engineering is

growing with the development of formal mathematical and computational methods for

designing folded shapes. Additionally, origami-style geometries have found multiple

applications in engineered systems. Within the last three decades, origami engineering

has advanced into several branches including origami art design (Lang 2003), origami

mathematics (Demaine and Demaine 2001), and computational origami (Fastag 2006,

Tachi 2006). Nevertheless, the two fundamental origami problems - origami design and

foldability (Demaine and Demaine 2001) – remain only partially solved. Folding pattern

design refers to the design of a crease pattern for a flat sheet. If a flat sheet is folded

along the specified creases a specific shape is formed. In the foldability problem, the

crease pattern has been given. The question that remains for foldability is - whether there

exists a valid mountain-valley assignment for this pattern to achieve the intended shape.

In geometry, origami structures are made up of a series of folds in a sheet of

paper (Figure 1). The locations of the folds are formally called “creases”. The various

locations, folding directions and folding sequence of the creases determine the ultimate

sha

gen

is c

als

dir

typ

fol

pap

ori

201

ape of the str

nerally “vert

called an “ex

o consider th

ection of a f

pically used.

ded to the ba

per is folded

Figure 1 Te

This dis

gami design

11, Demaine

ructure. Crea

tices”. In thi

xterior verte

he spaces be

fold along a c

With a mou

ack of itself.

d to the front

erminologie

ssertation wi

n automation

e and O'Rour

ases can be d

is dissertatio

ex”; otherwis

etween the cr

crease, a mo

untain fold, t

. But with a

.

(a)

es for origam
pattern; (b)

ill focus on o

n, several com

rke 2007, Hu

2

described by

on, any verte

se, the vertex

reases, know

ountain-valle

he crease is

valley fold, t

mi crease pa
) The folded

origami desi

mputational

ull 2006, La

y their length

ex that falls o

x is called an

wn as “faces

ey assignmen

at the top, a

the crease is

 (b)

attern. (a) A
d pinwheel.

ign automati

methods (D

ang 1996, La

hs, or by thei

on the margi

n “interior v

”. To determ

nt (MV-assig

and the paper

s at the botto

A pinwheel b

ion. On the s

Demaine, Dem

ang 2003, Ta

ir endpoints

ins of the she

vertex”. We

mine the

gnment) is

r will be

om, and the

base crease

study of

maine and K

achi 2006,

–

eet

Ku

 3

Tachi 2010) have been developed by other researchers. Those methods, such as

TreeMethod (Lang 1996), Origamizer (Tachi 2006, Tachi 2010), and etc., generally set

up the laws for mapping the desired folds in the origami shapes back to the local crease

pattern molecules, as well as the means for connecting these molecules to form the

whole crease pattern. However, most of the above computational methods are focusing

on deriving crease patterns for given final folded origami shapes, but leaving the

sculpturing of the folded shapes to the origami artists or engineers.

To synthesize the folded shape design into computational origami design and

optimization process, this dissertation will present evolutionary methods that design

origami structures including geometric, functional, and foldability properties. Without a

clear definition of the required folded origami shape, the formation of vertices and

creases is not definitive either. Thus the origami topological structures with

undetermined crease patterns would cause the design search space to have high non-

linearity, unpredictable dimensionality, and non-convexity. Moreover, the origami

design problems that synthesize the folded shape design often involve multiple

objectives. For multi-objective design and optimization problems, most of the

conventional solution search methods have limitations in dealing with non-convex

design space, disconnected Pareto frontier, or non-differential objective functions.

Evolutionary algorithms, in contrast, have proved to be less susceptible to the shape or

continuity of the Pareto frontiers, and more effective with little a priori understanding of

the search space (Coello 2009, Kicinger, Arciszewski and De Jong 2005). As a result,

the genetic algorithm, which is a widely applied evolutionary algorithm on system

 4

design and optimization, will be used for this research. This dissertation will adapt

genetic algorithms through solving two key problems prior to applying GA to the design

problems. One problem is on how to use binary genetic codes to encode any candidate

solution, while the other is on how to accelerate and regulate the evolution process.

Studies on origami folding often assume that the shape can be folded flat (Mitani

2011). Flat-foldability is not only an important property that makes industrial origami

structures more compact and portable, but also fits most of the traditional origami

artworks that are made only by folding and unfolding (Mitani 2011). To be a flat-

foldable origami, the crease folds must be locally flat-foldable everywhere, which means

each vertex and its connected creases needs to satisfy the Maekawa-Justin theorem, the

Kawasaki-Justin theorem, and the local min theorem (Demaine and O'Rourke 2007).

Also, as a whole, the origami structure cannot collide with itself during the folding

procedure. Since this dissertation is on new applications of GA and GA-based meta-

heuristics, I will restrict my study to flat-foldable origami structures, on which we have

more comprehensive understanding. This dissertation will also present a heuristic for

flat-foldability identification of a known crease arrangement. The basic idea of the

heuristic is to tree-search all the MV-assignments and face overlapping orders, while

immediately pruning the “branches” of solutions as they violate the local flat-foldability

(Theorem 1(1)) or the non-collision criteria (Theorem 1(3)). Since the flat-foldability

problem is proved NP-hard, the above tree-search heuristic has to go through a “brute

force” process with clear guidance and simplification.

 5

In summary, the research topics that will be covered in this dissertation are given

in Figure 2. The main topics are the two major research fields on origami design

automation and self-folding origami control, the three specific applications, as well as

the GA-based methods. Several subordinate research topics that support the main topics

are also listed in the figure. The subordinate topics of the GA-based methods include the

individual encoding methods, the fitness ranking approaches, and the evolutionary

operators design, which are boxed by dotted lines. The octagons mark three subsidiary

research topics – origami flat-foldability, data clustering, and linear classification – that

will be introduced and adapted as the mathematical tools to support the main research

topics.

Figure 2 The research fields, applications, and the GA and CEE methods that are
studied in this dissertation

 6

Design Problem Statement

Origami engineers and artists have successfully found viable computational

methods (Demaine, Demaine and Ku 2011, Lang 1996, Lang 2005, Tachi 2010) to

develop ways of deriving crease patterns for desired folded origami shapes, but few of

these existing methods actually design the folded shape of an origami structure. An

example origami design problem that considers the finished folded shape design is given

below.

Objective:

Design a flat-foldable origami structure that has a minimal change on the center

of mass between its spread state and folded state. We assume that at the spread state, the

origami sheet lies in a horizontal plane P୦; while at the folded state, all the faces stand in

a vertical plane P୴. During the folding procedure, one of the creases must be anchored

steady, so that the two planes P୦ and P୴ will intersect at this anchored crease.

Constraints:

1. The spread state origami sheet has a given shape ܵ௧;

2. The number of creases falls within a certain range ሺܯ௅,ܯ௎ሻ;

3. The flat-folded state profile has a certain area ܣ௧.

The constraints S୲, M୐,M୙, and A୲ are four to-be-determined arguments (TBD

arguments) for specific problems. The spread state shape S୲ defines the shape of the

unfolded sheet that will be folded. For traditional origami works, S୲ is usually a square, a

1:2 rectangle, or an isosceles right triangle. In the research cases of cube folding (Amato,

Dill and Song 2003, Amato and Song 2002) and shopping bag folding (Balkcom,

 7

Demaine and Demaine 2004), S୲ will need to define some irregular but continuous 3D

surfaces. The area of flat-folded state profile A୲ is a unique property possessed only by

flat-foldable origami. For instance, the shopping bags need to be able to fold flat for the

convenience on mass storage and transportation. Therefore, the flat-folded profile of a

shopping bag must be smaller and less distorted. The range of the number of creases

ሺM୐,M୙ሻ is not as directly related with the physical performance of the origami

structures as S୲ and A୲, but it is a factor that defines the complexity of the origami crease

pattern (another factor is how the creases are linked). More creases in the crease pattern

result in more complexity, while fewer creases mean less complexity. Less complexity

in the origami crease pattern with as few creases as possible is intuitively preferred for

either artistic or engineering applications, since origami structures with fewer creases

will be much easier to manufacture and fold. However, a crease pattern with too few

creases will be less able to satisfy some of the design objectives. For instance, it is

impossible to fold a container for holding water using a crease pattern with only two

creases. In practice, the lower limit M୐	is always set to 1, unless the designer knows the

minimum number of creases that is enough for realizing the design requirements. The

upper limit M୙ is determined according to the limitation of manufacturing or manual

crafting skill. The function of M୐ and M୙ is to confine the design search space. As a rule

of thumb, narrowing down the range of ሺM୐,M୙ሻ speeds the optimization method.

Toward the objective and constraints of the design problem, I use the following

objective function:

 8

,෡ࢂ൫ܪ ݈, ,݉,෡࡯ ,෡ࡲ ݊൯ ൌ෍ܪపതതത൫ࢉଵ, ⋯,ଶࢉ , ௣൯ࢉ ൈ ௜ݓ ൅ ܲ൫ࢉଵ, ⋯,ଶࢉ , ௣൯ࢉ

ൌ ,ଵࢉ௘തതതത൫ܪ ⋯,ଶࢉ , ௣൯ࢉ ൈ ௘ݓ ൅ ,ଵࢉ௔തതതത൫ܪ ⋯,ଶࢉ , ௣൯ࢉ ൈ ௔ݓ ൅

,ଵࢉ௙തതത൫ܪ ⋯,ଶࢉ , ௣൯ࢉ ൈ ௙ݓ ൅ ܲ൫ࢉଵ, ⋯,ଶࢉ , ௣൯ࢉ

ൌ ,෡ࢂ௘෢൫ܪ ݈, ,݉,෡࡯ ,෡ࡲ ݊൯ ൈ ௘ݓ ൅ ܣ௔෢ሺ̅ܪ െ ௧ሻܣ ൈ ௔ݓ ൅

௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬൯ݎݎܧ௙෢൫ܪ ൈ ௙ݓ ൅ ෠ܲሺ݉ሻ

	:࢙࢚࢔࢏ࢇ࢚࢙࢘࢔࢕ࢉ	࢚ࢌ࢕ࡿ

ە
ۖ
۔

ۖ
ۓ ݐ݈݂ܽ	ݏ݅	݊ݎ݁ݐݐܽ݌	݁ݏܽ݁ݎܥ െ ݈ܾ݈݁ܽ݀݋݂

݉ ൏ ௎ܯ

ܵ൫ࢂ෡, ݈, ,݉,෡࡯ ,෡ࡲ ݊൯ ൌ ܵ̅൫ࢉଵ, ⋯,ଶࢉ , ௣൯ࢉ ൌ ௧ࡿ
,෡ࢂ൫ܣ ݈, ,݉,෡࡯ ,෡ࡲ ݊൯ ൌ ,ଵࢉ൫ܣ̅ ⋯,ଶࢉ , ௣൯ࢉ ൌ ௧ܣ

where ܪ௘തതതത is the evaluation of the potential energy (which equivalently measures the

location of center of mass) at the flat-folded state, ܪ௔തതതത represents how different the folded

state profile area and the target value of 5/18 are, ܪ௙തതത represents the evaluation of global

flat-foldability error (as defined in (Li and McAdams 2013)), ܲ is the penalty term due

to the disagreement with soft constraints, ܵ is the spread state profile, and ܣ is the flat-

folded state profile area. The overall fitness value ܪ is formulated as a weighted sum of

its components of ܪ௘തതതത, ܪ௔തതതത, and ܪ௙തതത that are related to the properties of the candidate

solution and the soft constraints as well. If the number of creases exceeds the restricted

range defined by ܯ௅ and ܯ௎, an extra “penalty” term ܲ൫ࢉଵ, ⋯,ଶࢉ , .௣൯ will also be addedࢉ

In addition, since the origami design problem won’t constrain the exact shape of

the origami, this research will define the type of such problems as open origami design

problems.

 9

Computational Complexity

The computational complexity is a measurement for the inherent difficulty of a

problem or an algorithm (approach). The computational complexity of a problem is the

minimum of the computational complexity of all of its possible approaches.

However, some of the algorithm will convert or simplify its problem. TreeMaker

converts the desired shape design problem to the design of a uniaxial base. Origamizer

simplifies the shape surface design problem to the realization of a triangular mesh. The

computational complexity of these methods depends on their converted problems. The

design of a uniaxial base has been proven to be equivalent to a disk packing problem

(Lang 2003). Thus the complexity of TreeMaker is that of the corresponding disk

packing algorithm that it applies. The realization of a triangular mesh is equivalent to the

rearrangement of the triangular facets in a plane without overlapping and the insertion of

tuck molecules. So the complexity of Origamizer is that of seeking facet arrangement

and tuck molecule assignment.

For a design problem as described in the prior section, the crease pattern designs

are arbitrary. So the solution search space is theoretically infinite. For simplification, we

only allow the vertices to be chosen from the nodes of a square lattice with a resolution

of ݎ-by-	ݎ. There will be about ݎଶ available positions for each vertex to locate. Under the

simplification, if the search for the crease pattern design has to try every planar graph

(Trudeau 1994), in which any vertex within the square origami paper has at least four

linked creases (edges). Without using faster algorithms, this solution-search procedure

can further be decomposed to three stages:

 10

Stage 1: Determine the number of vertices (n୚) and the number of creases (nେ).

Stage 2: Place the vertices (V ൌ ሼv୧, i ൌ 1,2, … , n୚ሽ) on the available locations

within and on the border of the origami paper.

Stage 3: Connect the vertices by the creases (C ൌ ሼc୧, i ൌ 1,2, … , nେሽ) that have

no intersections with each other.

When we apply restrictions on n୚, nେ, as well as on the available locations for

placing the vertices, stages 1 and 2 are combinatorial search problems. Upon the

completion of stages 1 and 2, stage 3 can be converted to a basic NP-complete problem

(Garey and Johnson 1979). Here I use E ൌ ൛e୨ ൌ ൛v୨ଵ, v୨ଶൟ ⊆ Vൟ to represent the union of

all the edges, whose two end points are from the vertices V. Then the crease must be a

chosen as a subset of the edges, which means C ⊆ E. In this case, I build a dual graph

G ൌ ൫V, E൯, where V ൌ E and E ൌ R ൌ ሼ∀r୩ ൌ ሼe୩ଵ, e୩ଶሽ ⊆ E, e୩ଵ	doesnᇱt	intersect	

with	e୩ଶሽ. As a result, stage 3 is no simpler than the NP-complete problem of looking

for a clique of size nେ or more within the dual graph G (Garey and Johnson 1979).

Through the problem decomposition and analysis, I conclude that the crease

pattern design problem is an NP-complete problem. In order to solve such a problem, a

heuristic is necessary to avoid any form of exhaustive search and accelerate the solution

derivation process.

Dissertation Formation

In the following chapters of this dissertation, I will illustrate my research

methodology on solving the NP-complete origami design problem. The heuristic that I

 11

select is an evolutionary algorithm. My research topic is to implement evolutionary

algorithms to design a generic origami design method, which solves problems that

request for a broad range of geometric and functional requirements.

In chapter II, I will go through some established research that is either related to

my research topic or essential for inspiring my research methodology. This research

includes widely studied origami design methods, and the study on variations of

evolutionary algorithms.

In this chapter I have defined the objective function of the design problem. In

chapters III and IV, I will introduce my solutions for the other two key aspects of

applying evolutionary algorithms – the geometric representation of candidate designs

and the evolutionary operators.

In chapter V, I present designs derived by the evolutionary algorithms. And I will

make a discussion through the comparison of the designs and through analyzing the

whole solution derivation procedure. The discussion will reveal the advantages and

limitations of the evolutionary algorithms that I will propose for the design problem.

In chapter VI, I implement and adapt the same evolutionary algorithm for another

origami design problem. The new problem asks for the design of an origami water

container that has a desired volume. The results of the evolutionary algorithm will be

used to shown the extensiveness and the applicability of the method for variations of

open origami design problem.

 12

CHAPTER II

LITERATURE REVIEW

The earliest record of traditional origami can be dated back to the 17th century.

But modern origami study has only a few decades’ history. Modern origami designers

emphasize designing models, which have not only good final shapes but also good

sequences. The two most significant symbols that mark modern origami are wet-folding

and the standard Yoshizawa-Randlett system (Wikipedia 2014). Wet-folding was first

introduced by Akira Yoshizawa - a prolific origami grandmaster, who was inspired by

modern renaissance art. Wet-folding makes the manipulation of paper easier and results

in origami works with a more sculpted look. The Yoshizawa-Randlett system is a

diagramming system used to describe the folds of origami models. Such description of

basic origami techniques for constructing origami models is widely used in present

origami textbooks.

Then since the 1960s, a larger amount of artists and engineers have started to pay

extra attention to origami and the remarkable structural advantages of origami

mechanisms. As a general term for origami research and study, origami engineering

includes five major foci – mathematics in origami, origami design automation,

computational simulation & visualization, origami structures in engineering, and origami

in education. Based on the design problem description given in the last chapter, this

dissertation will mostly present my work on two core topics about mathematics in

origami and origami design automation. The computational simulation & visualization is

 13

somewhat relevant, but I will use it as a tool to support the study on the two core

research topics.

In this chapter, I will mainly go through the established research and results of

origami engineering that are closely relative with my dissertation study. The content of

this chapter will be partitioned into five sections: origami foldability, origami design

methods, intelligent origami, evolutionary design, and genetic algorithm.

In the section of origami foldability, I will introduce the mathematical and

geometric theorem and results that will be applied in my research. And the introduction

mainly covers the results on flat-foldability and rigid-foldability of origami structures, as

these two features are requested in my research problem.

The next section will list and introduce some of the most studied origami design

methods. I will also provide a summary of these methods and reveal why they cannot be

adapted to my research problem.

The third section on intelligent origami is an extension of the fundamental

research. I will introduce the studies that make the origami folding or designing

automated by innovative approaches. These studies have inspired some of my ideas in

realizing origami design automation.

The fourth and the fifth sections are about the research methodology that I use

for solving my design problem. Since the design problem has been proven NP-complete,

and we are seeking for a generic approach, the evolutionary design applying an

abductive measure for generating designs is one suitable choice. The two sections will

 14

present the studies on the basic evolutionary algorithms, as well as some new founding

on the applications of novel evolutionary algorithm variations.

Origami Foldability in Mathematics and Geometry

Origami design can be decomposed into three major sub-problems, which are

crease pattern design, MV-assignment, and final shape design Figure 3. Crease pattern

design involves the crease arrangement design, as well as the mountain-valley-

assignment (MV-assignment) of all the creases. The creases arrangement design tells

where in the origami sheet the creases (folds) will be placed, while the MV-assignment

determines each crease to be either a mountain or a valley that constrains the direction of

crease folding. The folding angle design is an extension of the MV-assignment design.

The folding angles of all the creases are required for uniquely defining the folded state of

an origami structure as long as the folding is not flat. The folding sequence is literally

the sequence of making the folds. For many of the cases, some creases have to be folded

at the same time; but simple folds usually can be folded separately. The final shape

design needs to derive the proper folding angles and folding sequence of the creases to

transform the origami sheet into the desired shape. Although not a part of origami design,

the design of a geometric representation is also an essential component, since it defines

the language and the syntax that are used by designers and computers to describe an

origami structure.

 15

Figure 3 The sub-problems under origami design.

Origami foldability is an element of origami engineering different than general

origami design. And it is closely related with and required by all the sub-problems of

origami design. Though the foldability serves as one of the performance criteria for

general origami design (in most cases). However, foldability can be studied

independently based on some existing origami mathematics results. Based on the

mathematics and geometry in origami, the most studied and used foldability

requirements are flat-foldability and rigid-foldability.

Flat-foldability

For the flat-foldability of origami structures, several origami researchers have

created similar theorems to identify it. According to Demaine, O’Rourke (Demaine and

O'Rourke 2007), Poma (Poma 2009), and Schneider (Schneider 2004), flat-foldability

can be defined by local and global scopes. The local flat-foldability, which considers

 16

only the small region around each vertex, has already been mathematically defined as

the union of three basic origami theorems, which are the Maekawa-Justin theorem, the

Kawasaki-Justin theorem, and the local min theorem (Demaine and O'Rourke 2007).

Global flat-foldability implies the local flat-foldability on every vertex and a non-

collision condition. Justin (Esquivel, Xing, Collier, Tomaso et al. 2011) and Konjevod

(Konjevod 2006) listed three possible situations that breaks the non-collision condition.

Poma (Poma 2009) and Schneider (Schneider 2004) have also presented their

mathematical interpretations of non-collision condition in their manuscripts. However,

the inspection of the global flat-foldability, or say the inspection of the global non-

collision condition, is known to be NP-hard (Bern and Hayes 1996), no matter what

method has been used. Besides the studies given above, Hull (Hull 1994, Hull 2006) has

also studied flat-foldability. He has proved the edge-2-colorability of flat-foldable crease

patterns. As a summarization, (Li and McAdams 2013) reformulates the check of three

face surface crossings (Esquivel, Xing, Collier, Tomaso et al. 2011) to the identification

of two penetration conditions, and provides a practicable tree-search heuristic to check

the global flat-foldability for crease patterns with known MV-assignments.

According to the research of Demaine, O’Rourke (Demaine and O'Rourke 2007),

Poma (Poma 2009), and Schneider (Schneider 2004), globally flat-foldability must

satisfy the following theorem.

Global flat-foldability theorem: An origami structure is globally flat-foldable, if

and only if its crease pattern satisfies:

(1) (Necessary condition) Locally flat-foldable everywhere;

 17

(2) (Lemma of condition 1) 2-colorable; and

(3) (Sufficient condition) Capable of stacking all faces flat without causing

collision or penetration between faces and creases.

In Theorem 1, condition (1) is the requirement for the creases. It says the creases

that intersects on any vertex, needs to satisfy the Maekawa-Justin theorem, the

Kawasaki-Justin theorem, and the local min theorem for origami (Demaine and

O'Rourke 2007). The third Theorems say:

Maekawa-Justin theorem: If one looks inside a flat origami without unfolding it,

one sees a zigzagged profile, determined by an alternation of "mountain creases" and

"valley creases". The numbers of mountains and valleys always differ by 2, which means

|m୑ െm୚| ൌ 2, where m୑ሺ൐ 0ሻ is the number of mountain creases, and m୚ሺ൐ 0ሻ is

the number of valley creases.

Kawasaki-Justin theorem: A given crease pattern can be folded to a flat origami

if all the sequences of angles ሼaଵ, aଶ, … , aଶ୬ሽ surrounding each (interior) vertex fulfill

the following condition

ܽଵ ൅ ܽଷ ൅ ⋯൅ ܽ௡ିଵ ൌ ܽଶ ൅ ܽସ ൅ ⋯൅ ܽ௡ ൌ ߨ

or

ܽଵ െ ܽଶ ൅ ܽଷ െ ܽସ ൅ ⋯൅ ܽ௡ିଵ െ ܽ௡ ൌ 0

Local Min theorem: In any flat folding, any wedge whose angle is a local min

(smaller than the angles of its two adjacent wedges) must be delimited by one mountain

and one valley fold.

 18

Condition (2) is for the faces. In a flat-foldable origami structure, using only two

colors must be enough for dyeing the faces, so that no adjacent faces will share a same

color. This condition stands a lemma of the three theorems in condition 1. And it is also

a necessary condition for global flat-foldability.

The condition (3) declares the geometric relation of faces and creases during the

dynamic folding process. A mathematical expression for condition (3) is specifically

explained in Schneider’s manuscript (Schneider 2004).

Throughout the origami design procedure, the flat-foldability identification needs

to start with a single given crease arrangement. To complete the crease pattern, all MV-

assignments that are locally flat-foldable must be derived first. Then, for each MV-

assignment, we also need to provide its folding sequence to reveal its global flat-

foldability. For origami structures with simple folds only, the order for creases to be

folded one by one is enough to define the folding sequence; otherwise multiple creases

may need to fold simultaneously. In the latter situation, the order of face overlapping at

the flat folded state is sufficient for defining how the origami structure is folded than a

folding sequence. Any occurrence of face penetration (collision) indicates that the crease

pattern is not foldable by using the current face overlapping order.

In a crease arrangement, only the location and angle of each crease are given. An

MV-assignment is required to further define which directions these creases will be

folded to with respect to its adjacent faces. Therefore, to determine whether an MV-

assignment is invalid for flat-foldability, we check if it violates Theorem 1(1). I apply an

exhaustive tree search algorithm to get all the locally flat-foldable MV-assignments from

 19

the crease arrangement. With a given arrangement of m creases, the exhaustive tree

search algorithm for deriving all locally flat-foldability MV-assignments theoretically

has a Oሺ2୫ሻ step bound. However, when we practically perform the exhaustive tree

search, any newly grown leaf that will later develop into a sub-tree of candidate MV-

assignments will be immediately pruned, as long as the leaf has violations on Theorem 1

condition (a).

Face overlapping orders will then be based on locally flat-foldable MV-

assignments. For any given crease arrangement, either there is more than one locally

flat-foldable MV-assignment (at least two with one being a reverse of the other), or no

locally flat-foldable MV-Assignments are possible. For each MV-assignment there are

many possible and distinct folding sequences, so faces in flat-folded state could thus be

stacked in a different order as well. Here, I again use a similar exhaustive tree search

algorithm to determine face overlapping orders. In accordance with the third condition of

Theorem 1, we exhaustively search the existence of face penetration for each possible

face overlapping order. The definition of face penetration and the algorithm of checking

penetration are explained as follows.

The penetration check algorithm requires us to firstly calculate the semifolding of

an origami structure μ: Rଶ → Rଶ, which is adapted from Schneider’s method (Schneider

2004). The semifolding procedure is physically processed through the following 3 steps.

1) Have the crease pattern ready on a sheet of paper, whose thickness is small

enough to be ignored during any folding procedure, and place it in an horizontal

ܴଶ plane;

 20

2) Cut the paper along all the creases to derive the separated origami faces;

3) Rearrange and stack the faces parallel in the same horizontal ܴଶ plane, where the

uncut sheet was in, then flip some of them if necessary, until all the conditions

below satisfy:

a) If two faces are adjacent in the crease pattern, the edges that used to be their

common crease must coincide;

b) For every face that hasn’t been flipped, its adjacent face, which was linked by

a valley crease, must have been flipped and stacked above;

c) For every face that hasn’t been flipped, its adjacent face, which was linked by

a mountain crease, must have been flipped and stacked below.

Following the semifolding procedure, I give the equivalent mathematical

expressions for the semifolded origami structure. As a convention for our notation, a bar

is used to distinguish between the features such as vertices, creases and faces and the

semifolding remaps of those features. For instance, the i-th crease C୧ to Cത୧(i.e. Cത୧ ൌ

μሺC୧ሻ). For convenience of explanation, at the semifolded state, we call the two adjacent

faces of any crease Cത୧ as the “cover faces” of the crease Cത୧. Since we have a definite

order of face overlapping, we further name the cover face that stacks above another to be

the upper cover face Fത୧,ୡ୭୴ୣ୰,୙. The one below is consequently named the lower cover

face Fത୧,ୡ୭୴ୣ୰,୐. The faces stacking between two cover faces are called the content faces

Fത୧,ୡ୭୬୲ୣ୬୲ of crease Cത୧. All the content faces are thus above the lower cover face, but

below the upper cover face.

 21

The face penetration check algorithm implements an exhaustive search sequence,

which goes through every crease. For the crease Cത୧, its two adjacent faces will be the

cover faces. The content faces can also be determined.

At the semifolded state of the crease pattern, I simplify the three collision cases

in (Schneider 2004) down to the following two situations of face penetration. The first

situation is when a crease Cത୨,୩ of one content face Fത୧,ୡ୭୬୲ୣ୬୲,୨ intersects with the crease Cത୧;

ഥ௝,௞࡯ ∩ ഥ௜࡯ ് ∅, ഥ௜,௖௢௡௧௘௡௧,௝. (1)ࡲ	݂݋	݁ݏܽ݁ݎܿ	ܽ	ݏ݅	ഥ௝,௞࡯

The second situation is when the crease ࡯ഥ௜is totally within the region of a content face

 ;ഥ௜,௖௢௡௧௘௡௧,௝, but has no intersection with any of the creases of that content faceࡲ

ഥ௜࡯ ∩ ഥ௜,௖௢௡௧௘௡௧,௝ࡲ ൌ ഥ௖௢௠௠௢௡࡯	݀݊ܽ	ഥ௜࡯ ∩ ષࡲഥ௜,௖௢௡௧௘௡௧,௝ ൌ ∅ (2)

or

ഥ௝,௞࡯ ∩ ഥ௜,௖௢௡௧௘௡௧,௝ࡲ ൌ ഥ௜࡯	݀݊ܽ	ഥ௜࡯ ∩ ഥ௝,௞࡯ ൌ ∅, ഥ௜,௖௢௡௧௘௡௧,௝. (3)ࡲ	݂݋	݁ݏܽ݁ݎഥ௝,௞ܿ࡯∀

Every possible MV-assignment and face overlapping order for a given crease

pattern is tested with the penetration check algorithm. As soon as face penetration is

found, the penetration check stops and labels the tested combination of MV-assignment

and face overlapping order as not flat-foldable. Again, the exhaustive tree search for face

overlapping order based on one crease pattern has a theoretical Ο൫ሺn െ 1ሻ!൯ step bound,

where n is the number of faces. But the occurrence of face penetration will cause the

search tree to be pruned early thus in practice narrowing the search space.

If no face penetration is spotted after a thorough search that has considered all

the creases as the common crease for the penetration check, the crease pattern with the

given combination of MV-assignment and face overlapping order is found to be flat-

 22

foldable. Finally, if a crease pattern has no flat-foldable combination of MV-assignment

and face overlapping order, it is defined as not flat-foldable.

More details about the approaches for detecting the flat-foldability of an origami

design will be described in following chapters.

Rigid-foldability

Rigid-foldability requires each face of an origami shape to stay non-deformed

throughout the entire folding procedure. The rigid-foldability has been studied by D. A.

Huffman (Huffman 1976), T. Hull (Hull 2006), T. Tachi (Tachi 2006, Tachi 2010), etc.

The fundamental methodology for inspecting rigid-foldability is to simulate the entire

folding procedure. For arbitrary crease pattern design, the folding of the shape is

unpredictable. Thus it is also impossible to tell when and where there will be face

collision without actually calculating the folded shape and searching for possible

conflicts among the non-penetrable faces at every moment from the initial state to the

final state. The simulation of folding will partition the entire procedure into intervals.

And after each time interval, I re-calculate all of the folding angles and check face

collision. In chapter VI, I will provide the algorithm for inspecting rigid-foldability in

detail.

Origami Design Methods

Several effective computational methods have been developed to achieve crease

pattern designs for origami structures. Though these methods don’t explicitly consider

 23

the folding sequence design, their resultant crease patterns always implies a valid folding

sequence. In this section, I will introduce the three most well-formed origami design

methods, and summarize their common limitation when encountering an open design

problem as the one given in the first chapter.

The TreeMaker algorithm (Lang 1996, Lang 2005) requires the designer to first

simplify his desired origami shape into an approximate tree graph. If at all possible, this

method then automatically generates a crease pattern that can be folded into a shape with

a projection of the tree graph. Though TreeMaker usually generates a “fiendishly”

complex crease pattern that is difficult to fold by hand, it is a great tool for any origami

artist or engineer to get a rough prototype for a design. To make the compositions look

more artistic, designers have to do additional manual operations, like squeezing, bending,

or tucking, on the final shapes. Figure 4 shows the products at the end of the three steps

of TreeMaker . The design procedure starts with a desired subject to realize. In this case,

the subject is a scorpion. Then the designer has to manually make a hypothetical tree

graph Figure 4(a), where each branch roughly corresponds to one limb of the finished

design. The tree graph will be sent to the TreeMaker software to derive a crease pattern

like Figure 4(b). Since the arrangement of nodes is equivalent to the disk packing

problem, the algorithm is able to produce different crease patterns instead of the global

optimal one. The designer has to interact with the computer to derive a favorable crease

pattern design. After that, the last step is to print the crease pattern out, and fold it.

Directly folding the crease pattern, we can only obtain a base with uniaxial flaps. So in

order to “volumize” the shape, we need to – again - manually squeeze or crumple the

flap

bas

sof

cap

ori

Fig
h

wi
c

5. U

she

sur

200

mo

ps to form a

se into a desi

ftware to ma

pable of gene

gami design

gure 4 The
hypothetical
ith a manua
orrespond t
TreeMaker

Tachi, D

Unlike TreeM

eet to form th

rface mesh b

06)). Then it

olecules that

shape like F

ired shape, t

ake some mo

erating artist

n from the de

 (a)

procedure o
tree graph.

al design of
to one limb
r algorithm

modif

Demaine, et

Maker, whic

he surfaces o

being divided

t tries to arra

connect them

Figure 4(c). I

the designer

odifications.

tic designs, b

esigners.

of TreeMak
. (a) To desi
a hypotheti
in the final
for the tree

fication, an

al. presente

ch builds the

of a shape (T

d into flat tri

ange these fa

m. This met

24

If it is impos

has to go ba

In all, TreeM

but it also re

 (b)

ker for deriv
ign an origa
ical tree gra
shape; (b) A

e graph; (c)
origami sco

d a method t

e body of an

Tachi 2006).

iangular face

acets into a p

hod has goo

ssible or diff

ack to the tre

Maker is a po

equires lots o

ving an orig
ami scorpio
aph, where e
A crease pa
Fold the cr

orpion is fin

to “origamiz

origami sha

. The method

ets at first (a

planar sheet,

od efficiency

ficult to fold

ee graph or t

owerful tool

of experience

 (c)

gami shape
n, the TreeM
each branch
attern will b
ease pattern

nished.

ze” 3-D poly

ape, “Origam

d requires a

as described i

 by adding j

y and usually

d the uniaxia

the TreeMak

l that is

e of manual

design from
Maker start
h will rough
be derived b
n and make

yhedral Figur

mizer” uses th

model’s

in (Tachi

ointed tucki

y succeeds

l

ker

m a
ts

hly
by
e

re

he

ng

afte

det

tria
of

f
the
in

ma

sim

er several fa

termines the

Figure 5 O
angles; (b) O
f the rabbit;
flattened an
em and form
n (d). The tu

Demain

azes (Demain

mple univers

ailed trials. T

success of “

(c)

Origamizer.
Origamizer
; (c) A surfa

nd rearrang
m a foldable
uck molecul

ne et al. has

ne, Demaine

al hinge patt

The surface d

“Origamizer

(a)

(a) The sur
r derives a c
ace with 12
ged in a plan
e crease pat
les are folde

developed m

e and Ku 201

terns. Their m

25

division is th

r”.

 (d)

rface of a ra
crease patter
triangular f

ne, and tuck
ttern; (e) Th
ed undernea

methods for m

11) and “cub

method divi

hus the most

 (b)

abbit shape
rn for the tr
facets; (d) T

k molecules
he folded sh
ath the trian

making orth

be gadgets” (

des the who

important fa

 (e)

has been di
riangular m
The triangu
are inserted

hape of the c
ngular facet

ogonal struc

(Ovadya 201

ole flat sheet

actor that

ivided into
meshed surfa

lar facets ar
d to connect
crease patte
ts to the rib

ctures, such a

10), from

into square

ace
re
t

ern
s.

as

 26

grids. Then they design a set of crease pattern molecules, so that each square block in the

grid can be assigned one of the molecules. A proper assignment scheme will result in a

full crease pattern for the desired orthogonal structure. Although the design is

constrained to a highly modularized origami consisting of orthogonal origami gadgets

with fixed sizes, the method is very efficient in deriving the crease pattern.

There are three common features of the three computational origami design

methods listed above. One feature is that they require the design objective to satisfy

some specific geometric constraints. TreeMaker can only design shapes based on

uniaxial origami shapes; Origamizer is constrained to realize meshed surfaces; and the

orthogonal maze/cube folding is only for shapes made of orthogonal surfaces. Another

feature is that these methods need the final folded shape of the origami design to be

given in a problem. Therefore, if the final folded shape is not explicitly defined in a

design problem, the above methods are not applicable. Finally, the third common feature

is that these design methods are deductive. They directly build crease patterns based on

the geometric analysis of desired shapes. The workflow of a deductive origami design

method is shown as Figure 6(a). Starting with the design problem, a deductive method

generally requires that the final shape design can be hypothetically framed out based on

the geometric requirements. According to the geometric formation, a proper design

method or algorithm will be selected to directly derive the crease pattern as well as the

folding sequence that lead to the final design. In summary, deductive design methods are

more like delicately designed mapping algorithm between particular origami shapes and

their crease patterns. The advantage of deductive methods is the high accuracy and high

 27

efficiency in achieving desired shapes. Thus they are great tools for artists to assist the

manual origami design and sculpturing. The limitation of the deductive methods is also

quite obvious that they lack a generic solution for arbitrary origami designs.

(a)

(b)

Figure 6 The workflow diagrams of deductive origami design methods (a) and
abductive origami design methods (b).

The abductive origami design methods, on the other hand, will make logical

guesses and improve the guesses progressively until they meet the design requirements.

The abductive methods emerge under the need for designing origami structures to satisfy

geometric and functional requirements instead of accurately defined folded shapes. An

Desgin problem
Final shape

design
Crease pattern

design
Folding

sequence design

Verification,
validation and
post-process

Instructs

Final design

O rigam i design m ethod

Desgin problem
Final shape

design
Crease pattern

design
Folding

sequence design

Verification,
validation and
post-process

Instructs

Quality
inspection

Repeat

Final design

FAIL

PASS

O rigam i design m ethod

 28

example of such design problems is the design problem proposed in the first chapter. As

shown in Figure 6(b), the typical abductive design methods have to go through iteration

before the derivation of the final design. In each iteration, an abductive method adapts,

simulates and rates each candidate solution. The advantages of the abductive design

methods include:

1) They enable the search of a solution space, in which designers have no clear

domain knowledge.

2) They broaden the types of design requirements to any one that can be

computationally assessed and rated.

3) They are compatible for structure design considerations. So in the abductive

methods, the material and 3D dimensions can also be designed if required.

The limitations of the deductive design methods are from the difficulty of simulating a

complex origami structure and the time cost of search solutions in a large and nonlinear

design space, which is very common for origami design problem. In this dissertation, I

will study applicable abductive origami design methods for a problem as stated in

chapter I. My research will mainly focus on the geometric representation, the algorithm

of emulating and evaluating an arbitrary design candidate, and the measures of

accelerating the solution search.

Nevertheless, for both type of origami design methods, if the crease pattern

includes tessellations, the complexity of design problem will be mitigated. The design

will re-target at each tessellated tile that can be defined by only a few design parameters.

The study of tessellation pattern design is mainly on identifying the geometric influence

 29

on specific properties, such as mechanical performance, feasibility, efficiency, cost and a

host of application dependent secondary functionality. Some of the studies on

tessellation design are written in (Bateman 2001, Stroble, Nagel, Stone and McAdams

2010, Tachi 2010, Wang and Chen 2010). The lesson for this dissertation from the

tessellation design research is its methodology of using geometric modularization to

reduce the number of design parameters, thus simplifying the problem.

Intelligent Origami Structures

With the development of machines and robotics, automation has also been

introduced into origami folding within the last few decades. With current technology,

two realizable measures have emerged for automatically making physical folding of

origami, which are robotic origami folding and self-folding origami. Robotic origami

folding (Balkcom and Mason 2008, Van Den Berg, Miller, Goldberg and Abbeel 2011,

Yukokoji, Tanaka and Kamotani 2006) is not the focus here. Robotic origami indicates

the use of a robot or intelligent machine to fold origami sheets (Figure 7(a)). Although

the origami engineers ultimately pursue a highly intelligent material that could achieve

spontaneous folding motions by itself while being made into a sheet, with state-of-the-art

self-folding origami systems still have to be integrations of several subsystems. These

subsystems might include the folding actuators, a motion controller, the surface material,

folding joints (creases), and a power supply.

The actual composition of any self-folding origami system differs according to

its potential application. To realize repeatable folding and deployment motions on pre-

det

Mi

Tan

join

the

pro

als

ach

ma

con

F

termined cre

iura 2009) an

naka et al. 2

nts. For sola

ey are usually

ogrammable

o serve as th

hieved by co

aterial’s mart

ntroller is ge

Figure 7 Int

eases as for d

nd the progra

010), the sur

ar panels or a

y motors or

matter self-

he folding ac

ontrolling its

tensite phase

enerally requ

(a)

telligent orig
Progr

deployable s

ammable ma

rface is parti

antenna defle

springs that

folding shee

ctuators, and

temperature

e and austen

uired to regul

gami robots
ammable m

30

olar panels,

atter self-fol

itioned into p

ectors, the ac

are attached

et shown in F

d the folding

e change, wh

ite phase. In

late the fold

s. (a) Origam
matter robot

antenna defl

lding sheet (H

polygons tha

ctuators mus

d to the joint

Figure 7(b),

motion of e

hich will cau

n both cases,

ding.

mi folding r
t by Hawkes

flectors (Miu

Hawkes, An

at are connec

st have enou

ts. For the sm

the SMA cr

ach crease jo

use the transi

 an external

 (b)

robot by De
s et al.

ura 2006,

n, Benbernou

cted by crea

ugh power, s

maller scaled

rease joints

oint is

ition of the

motion

evin et al. (b

u,

ase

so

d

b)

per

bec

201

the

mo

wa

Fi
de
(c)

ma

oth

app

Neverth

rmanent curv

come redund

12) proposed

e fourth dime

otion is phys

ater is expect

(

igure 8 Self-
etermining a
) Identificat

If we sa

aterial are ex

her hand, pre

plied random

heless, if the

vature on the

dant. In this

d a solution

ension of pro

ically resulte

ted to act as

a)

-regulated “
a fold by Na
tion of the c

(d

ay that both

xamples of se

esented their

mly distribute

e folding mot

e material, th

situation, Sk

called 4D pr

ogrammed fo

ed to the exp

an energy so

 (b)

“epidermal”
agpal et al.

cells with cer
d) Folding th

the program

elf-folding o

theoretical s

ed self-regul

31

tion is desig

he external m

kylar Tibbits

rinting. Base

folding motio

pansion of so

ource.

” multicellu
(a) Non-exit
rtain levels
he sheet alon

mmable matte

on pre-determ

solution for

lating “epide

gned to serve

motion contr

s (Tibbits 20

ed on 3D pri

on onto the p

ome part of t

 (c)

ular origami
ted; (b) “M
of morphog
ng the creas

er folding sh

mined crease

realizing arb

ermal cells”

e the manufa

roller and po

12, Tibbits a

inting, 4D pr

product. The

the smart ma

 (d

i sheet and t
Morphogen”

gen density
se.

heet and the 4

es, Nagpal et

bitrary simpl

on an origam

acturing of a

ower supply

and Cheung

rinting appen

e folding

aterial, while

d)

the stages fo
propagatio
at the creas

4D printed

t al., on the

le folds. The

mi sheet

nds

e

for
n;
se;

ey

 32

(Figure 8) to determine creases (Nagpal 2002, Nagpal, Kondacs and Chang 2003, Stoy

2004). In the multicellular origami sheet, every cell dynamically emits and transfers

types of chemicals. The cells that satisfy criteria on the concentrations of chemicals will

be used to mark a fold (Huzita and Mitchell 1989). The cells that mark a desired crease

will then taper themselves to form the fold. Although their research enables arbitrary

creases to be realized in an artificial origami sheet, they didn’t proceed to physically

build their “epidermal” multicellular origami sheet to test their self-folding control.

The research on automated origami structure and folding has revealed new

perspectives for origami design. The programmable matter origami innovates an origami

design approach, which sets up pre-defined creases in an origami sheet and simplifies

the problem to determining which pre-creases will be used in the final design. Moreover,

The origami paper folding robot and the folding controlled by self-regulating cells are

good instances for designing the designer. Instead of directly looking for creases, they

design the systems that determine the folding.

Evolutionary Algorithm: Applications and Key Issues

Variations of evolutionary algorithms have been successfully implemented on

system design problems. The application of EAs covers three stages of design procedure,

including conceptual design, embodiment design and detailed design. Some recent

applications that serve the conceptual design stage include automated design of room

automation systems (Oezluek, Dibowski and Kabitzsch 2009), minimum weight

compliant mechanism design (Sharma, Deb and Kishore 2013), MEMS bandpass filter

 33

design (Farnsworth, Benkhelifa, Tiwari and Zhu 2010), shelter design represented by the

graphic grammar (O'Neill, McDermott, Mark Swafford, Byrne et al. 2010), multi-stage

logistic network design (Lin, Gen and Wang 2009), building structure and floor

blueprint design (Bollinger, Grohmann and Tessmann 2010), etc. The applications that

serve the embodiment and detailed design stages include an iron-making system design

for a blast furnace (Pettersson, Saxen and Deb 2009), a multiple-disk clutch design (Deb

and Srinivasan 2006), the optimization of a leg mechanism (Deb and Tiwari 2005),

sidelobe level reduction of a concentric circular antenna array (Mandal, Bhattacharjee

and Ghoshal 2009), etc. The above structure design applications of EAs have already

encompassed the industrial and research fields on manufacturing, robotics, architecture,

as well as system management. Evolutionary algorithms are exceptional for their

iterative solution search technic that is adapted for problems with non-linear and non-

convex design search space.

To apply an evolutionary algorithm, there are three issues that must be solved

with respect to the subject, objective and constraints of the specific design problem:

1) Choose a proper representation for the system;

2) Define an adequate objective function for estimating the performance of

the candidate solutions;

3) Develop a set of efficient evolutionary operators (Kicinger, Arciszewski

and De Jong 2005).

The representation for the system is mostly relevant to the computational issues

including search efficiency and the mapping between a search space (genotypic space)

 34

and a space of actual designs (phenotypic space). A few criteria can be used to evaluate a

representation. Primarily, the representation must ensure the mapping between the

genotype and phenotype of a candidate solution is 1-to-1, which means that any

genotypic encoding must correspond to a candidate solution, while any candidate

solution must possess one genotypic encoding. Occasionally, an n-to-1 mapping is also

acceptable, but the n-to-1 mapping may cause multiple global optima in the design

search space. The second characteristic of a proper representation is continuity.

Continuity requires that slight mutations on the encoding only cause small variations on

the phenotypic features of the corresponding candidate solution. It is also recommended

that the representation may not have a genetic code that represents an illegal candidate

solution (illegal solution means that a genotype does not represent any phenotype for a

given problem (Kicinger, Arciszewski and De Jong 2005)). The continuity does not need

to be perfectly realized. Instead, reducing the number of bits in the genetic code, whose

mutations will result in a significant change in the performance of the phenotype, is still

a rule of thumb while we design the representation.

After forming a proper representation for the candidate solutions, it is necessary

to formulate an objective function that adequately defines the mathematical model of the

problem. The adequacy not only requires that the objective function must be able to

comprehensively assess the candidate solutions according to the objective and

constraints, but also implicates that the objective function must be an effective one

resulting in apparent difference in fitness evaluations between good and bad candidate

solutions.

 35

The efficiency of an evolutionary method is directly controlled by the

evolutionary operators. The evolutionary operators include selection, mutation,

crossover (Schmitt 2001), and other complementary mechanisms. Usually mutation and

crossover are also called genetic operators. The three basic operators - selection,

mutation and crossover, which maintain the fundamental evolutionary procedure,

emulate the survival, elimination, and reproduction of natural species. The design of

basic evolutionary operators generally means choosing the proper variant for each of

them and adapting the parameters. If the problem has a non-convex design space or

multiple objectives, or if the evolution encounters slow finishing or pre-mature

convergence, the evolutionary operators also need complementary mechanisms to

guarantee the derivation of optimal solutions. Under the circumstance, researchers

introduced co-evolution (Potter and De Jong 1994, Potter and De Jong 2000), external

populations (Zitzler and Thiele 1999), Pareto ranking (Goldberg 1989), etc., to the

evolutionary algorithms so as to preserve and balance the elitism and diversity within the

evolving population.

Genetic Algorithm and Computational Evolutionary Embryogeny

Based on the desire of an abductive method to solve the design problem given in

chapter I, this dissertation will implement genetic algorithm and another GA-base meta-

heuristic, named computational evolutionary embryogeny, on the origami structure

design.

 36

GA, as a bio-inspired method, has been adapted and applied to many scientific

and engineering areas. However, the studies have not come to a “panacea” version of

GA. Instead, the users usually modify the GA parameters and add extra evolutionary

operations in accordance with their own particular applications, so as to achieve both the

elitism and diversity within the population of the candidate solutions.

Under the requirements of multiple properties of the design subject, the generic

GA usually takes the weighted sum of the numerical estimations with respect to all the

properties as the normalized fitness value for each individual (candidate solution in GA).

The normalized fitness values are scalar, thus they can be easily used to compare and

rank the individuals. The multi-objective GA, however, directly applies the vector of the

evaluations on different properties without summing them up. The advantage of multi-

objective GA is that it doesn’t require the users to clarify the priority ranking or weight

factors on multiple properties. Lots of variations of multi-objective GAs have been

proposed. Generally, these variations differ based on their fitness evaluation, elitism, and

diversity preservation approaches (Konak, Coit and Smith 2006). Several other survey

papers (Coello 1999, Fonseca and Fleming 1993, Fonseca and Fleming 1998, Lei and

Shi 2004, Zitzler and Thiele 1999) have given summarizations of the multi-objective

GAs on other perspectives. Multi-objective GAs usually apply the Pareto ranking

(Goldberg 1989). To make sure that the multi-objective GA is able to perform more

comprehensive searches through thorough exploration and exploitation within the

solution space, several complementary measures are introduced to balance the elitism

and diversity among candidate solutions. These measures include crowding distance

 37

(Deb, Pratap, Agarwal and Meyarivan 2002), fitness sharing (Goldberg and Richardson

1987), pure elitist strategy (Konak and Smith 2002), and external population (Fieldsend,

Everson and Singh 2003).

Computational evolutionary embryogeny (CEE) is a special case of genetic

algorithm. The aspects that CEE is different from GA are the genetic representations for

the candidate solutions, as well as how the genetic representation (a.k.a. genetic code,

genotype) and physical representation (a.k.a. physical appearance, phenotype) of one

solution candidate are related. In GA, an individual’s physical representation is

described explicitly by numerating and encoding its properties into a genetic code string

(usually in binary), which is the individual’s genetic representation. In CEE, an

individual’s genetic representation is also a string of genetic code, but the genetic code

encrypts the set of genetic rules that instructs how its physical representation is

constructed. The genetic rules play a similar instructive function as the DNA sequences

in most living organisms. More clearly, in CEE, the genetic rules provide the guidelines

for an individual to develop from an initial state (defined as the embryo) to its mature

state, so as to disclose its physical representation. The way that the GA’s genetic code

describes an individual is defined as explicit coding, and the way that CEE’s genetic

code encrypting the instructive genetic rules as implicit coding. Nevertheless, for both

CEE and GA, the design subject must be able to be fully parameterized, so that it can be

described by a genetic code in either an explicit or an implicit way.

Several researchers have already attempted to introduce CEE into industrial

design. Currently, most of them use this method in a classical manner to design simple

 38

and static structures, such as a planar pattern, or a support base. Peter Bentley, and

Sanjeev Kumar were among the first ones providing a summarization of varieties of

CEE (Bentley and Kumar 1999). They pointed out the features, advantages, and

drawbacks of this method. They also attested that CEE provides benefits such as the

reduction of search space, repetition, adaptation, and etc., while suffering higher

difficulty to design and evolve. Chris Bowers used CEE method to generate 2D

structures that duplicate or approximate colored patterns (Bowers 2005). He has also

investigated the modularity of CEE (Bowers 2008), and further extended CEE to

optimize artificial neural network structure . Or Yogev, Andrew A. Shapiro, and Erik K.

Antonsson extended CEE for designing a 3D continuous inhomogeneous structure,

which is essentially a simple support column (Yogev, Shapiro and Antonsson 2010).

They formalized the artificial genetic codes that have the “if-conditional then-action”

structure.

 39

CHAPTER III

GENOTYPE-PHENOTYPE MAPPING*

In GA, any candidate solution is represented by the combination of its genotype

and its phenotype. The genotype is also called the genetic representation in GA. The

genotype of a candidate solution is usually defined by a binary string of 0s and 1s. For

origami design, in order that a slight perturbation on the code won’t result in significant

change in the encoded features, Gray code replaces binary code. Gray code is an

alternative binary numeral system where two successive values differ in only one bit

(binary digit). The phenotype is the physical appearance of a candidate solution. It

carries the geometric, topologic, and functional properties of an origami structure. For

origami crease patterns, the phenotype is basically the geometric representation of all the

vertices and creases. For 3D origami shapes, the phenotype needs to contain more

information, such as the dihedral fold angles, the orientation, and the folding sequence,

other than the crease pattern. Since the physical representation of a shape can be

generalized and defined by a set of numerical parameters, the corresponding genotype –

*Part of this chapter is reprinted with permission from ASME, Journal of Journal of Computing
and Information Science in Engineering, and IDETC/CIE 2013. Refer to: (1) McAdams, D. A.
and Li, W. (2014). “A Novel Method to Design and Optimize Flat-Foldable Origami Structures
Through a Genetic Algorithm.” Journal of Computing and Information Science in Engineering
14(3). To be printed in September 2014; (2) Li, W. and McAdams, D. A. (2013). "A Novel
Pixelated Multicellular Representation for Origami Structures That Innovates Computational
Design and Control." ASME 2013 International Design Engineering Technical Conferences
(IDETC) and Computers and Information in Engineering Conference (CIE), Portland, OR.

 40

the genetic code – can be easily determined by converting those parameters into Gray

code by a desired sequence.

Therefore, the prerequisite condition of applying GA on origami design problems

is to establish a suitable geometric representation, which includes the genotype, the

phenotype, and a mapping between. A key requirement for a suitable geometric

representation is that as the genotype mutates, the corresponding phenotype should not

become invalid. In other words, any arbitrary sequence of 0s and 1s that consolidates

into a genetic representation must be able to be mapped to a legal physical representation.

In established studies on origami engineering, the most applied geometric

representation for computational methods is to use the two end points to denote the

creases that define a crease pattern. And in most of the cases, the researchers focused

more on the mathematics or the physical appearance of origami. Prior work has not

emphasized on how a crease pattern or a folded shape is geometrically defined. However,

for GA, the geometric representation and its syntax for genotypic encoding must be

carefully designed.

In general, a suitable representation for GA method must satisfy the following

minimal criteria:

1. Non-redundancy. Any representation points to only one crease pattern.

2. Completeness. Any arbitrary crease pattern possesses one representation.

3. Continuity & legality. A small perturbation in the representation results in a

small change in the crease pattern (and won’t cause the crease pattern to

become illegal).

 41

Established Geometric Representations of Origami Crease Patterns

The intuitive solution for forming a geometric representation of origami crease

pattern is to list and define all the creases. Toward this direction, the mission of seeking

for a geometric representation is simplified to deriving a method to define every crease.

The typical embedded representation for origami crease patterns defines all the

creases by listing by their end points. For instance, a crease pattern shown in Figure 9(a)

has four creases, thus can be represented by the set of 16 (4*4) arguments (A1)

A1 = {0.5, 0.6, 0, 0.4, 0.5, 0.6, 0.2, 0, 0.5, 0.6, 1, 0.3, 0.5, 0.6, 0.4, 1}

Among the set A1, every four arguments define one crease, e.g. the first four arguments

“0.5, 0.6, 0, 0.4” are the X and Y coordinates of the two end points of one crease. The

corresponding genetic representation is derived by converting the argument set A1 to

Gray code. The genetic representation of the crease pattern based on the argument set A1

is

C1 = “0111-0101-0000-0110-0111-0101-0011-0000-0111-0101-1111-0010-0111-0101-

0110-1111”.

The embedded representation is complete for any arbitrary crease pattern, but it

is extremely “fragile”. Here, “fragile” means low non-redundancy, low continuity, and

low legality, or say, any single bit of mutation in the genetic code will have a high

possibility of causing the corresponding crease pattern to become invalid. When its

genetic code for the crease pattern in Figure 9(a) mutates on the fourth bit, the first

argument will change from 0.5 to 0.4, and the corresponding crease pattern will become

invalid as shown in Figure 9(b). In Figure 9(b), the crease through the vertex (0, 0.4),

 42

which used to intersect with the other three creases at the vertex (0.5, 0.6), is now

detached. Other than being practically fragile, the embedded representation has another

problem, if it is applied for GA. In a crease pattern, an interior vertex is the common end

point of several creases, or say, an interior vertex links several creases. But in the

embedded representation, the linking relationship of the creases is not considered. This

results in the definition of an interior vertices appearing in the representation several

times. Therefore, if only one instance of an interior vertex changes, it will no longer

match the other instances of the same vertex, and a crease will become detached to make

the crease pattern illegal.

An alternative geometric representation, which is abstracted from Mitani’s

method of generating random crease patterns (Mitani 2011), eliminates the redundancy

of interior vertex definition, so as to avoid the mutation on genetic coding resulting in

the detachment among connected creases. In Mitani’s research, he introduced an

approach to generate random flat-foldable crease patterns. The approach creates a crease

pattern in three steps – placing vertices, connecting pairs of vertices with creases, and

then updating the vertices and creases to make the pattern flat-foldable. The alternative

representation adopts the same procedure. But if the flat-foldability is not asked, the

third step can be dropped. To define a same crease pattern as Figure 9(a), the alternative

representation uses another set of arguments (A2)

A2 = {0.5, 0.6, 0, 0.4, 0.2, 0, 1, 0.3, 0.4, 1, 1, 2, 1, 3, 1, 4, 1, 5}

In A2, the starting five pairs of arguments list the locations of the five vertices that are

implicitly numbered by #1 to #5. Here, the #1 vertex is at (0.5, 0.6), #2 at (0, 0.4), #3 at

 43

(0.2, 0), #4 at (1, 0.3), and #5 at (0.4, 1). The following eight arguments can be

partitioned into four pairs (“1, 2”, “1, 3”, “1, 4” and “1, 5”), each of which indicates the

two end points of a crease. With the four pairs of arguments, the topological formation

of the crease pattern is uniquely determined. The equivalent genetic representation for

the crease pattern that is defined by the argument set A2 is

C2 = “0111-0111-0101-0000-0110-0011-0000-1111-0010-0110-1111-001-011-001-010-

001-110-001-111”.

In the alternative representation, mutations on the bits that define the coordinates

of the vertices in the genetic code C2 will only result in the dislocation of the vertices,

thus won’t cause the invalidity of the crease pattern. However, the mutation of the bits

that define the topological linking of the creases will cause the loss of creases or

unwanted intersections. For example, mutation of the last bit of C2 will alter the last

argument in A2 from 5 to 4. Therefore, the corresponding crease pattern Figure 9(c) of

the mutated C2 has two overlapping creases between the vertex #1 (0.5, 0.6) and vertex

#4 (1, 0.3). It therefore becomes invalid, because a crease pattern may not have

overlapping creases. Even if the two overlapping creases are treated as one, the crease

pattern Figure 9(c) is not foldable, as it has a vertex (#1) that is connected with only

three creases. If the mutation happens on the fifth bit from the last bit, the second

argument to the last argument will change from 1 to 3. The resultant crease pattern

Figure 9(d) is also invalid, because the original crease (“1, 5”) changes to (“3, 5”), and it

intersects with the crease (“1, 2”).

 44

(a) (b)

(c) (d)

Figure 9 (a) A crease pattern represented by the locations of the vertices and the
creases that link in between; (b) The mutation on one bit in the genetic code for the

embedded representation of (a) results in disconnection of creases; (c) The
mutation on the last bit in the genetic code for the alternative representation of (a)
results in crease overlapping; (d) The mutation on the fifth bit from the last in the
genetic code for the alternative representation of (a) results in crease intersection.

A common problem of the embedded and the alternative geometric

representations is that arbitrary genetic codes do not always define a valid crease pattern.

Compared to the embedded representation, the alternative representation is less “fragile”.

 45

But the second group of arguments in the alternative representation is still very sensitive

to genetic mutation. Thus, neither of the two representations is well suited for GA

application. Therefore, it is necessary to develop new geometric representations, so that

any random genetic representation can reflect a valid crease pattern, and any valid crease

pattern doesn’t become invalid as its genetic representation mutates.

Ice-cracking – A Direct Representation0F

The embedded and alternative representations are probably the most intuitive

ways for people with different levels of knowledge on origami to exchange or visualize

well-designed crease patterns. According to the introduction so far, the alternative

representation differs from the embedded representation by the removal of redundant

definition of the shared vertices of multiple creases. However, it still failed to ensure the

placement of creases being valid. The common shortcoming of the embedded

representation and the alternative representation is their lack of concern on the sequence

of vertices and creases being defined. What either of these two representations achieves

is no more than generating a collection of points and links that ultimately represent

vertices and creases. But they don’t include the mechanism to guarantee the legality of

the placement of each origami topological component (vertex or crease).

If there is a GA-friendly geometric representation that defines a crease pattern by

the vertices and creases, just as the embedded representation and the alternative

representation do, it must ensure that there is no redundancy of origami element

 46

definition, and it must be able to preserve the legality of the crease pattern’s topological

structure under perturbations in the presentation.

At first glance, an origami crease pattern is topologically similar to a tree graph,

where interior vertices are the nodes, border vertices are the leaves, and creases are the

links. This analogous relation stands true for some of the crease patterns, such as the fish

base variant in Figure 10(a). The representations of trees in GA has been studied in

(Palmer and Kershenbaum 1994). Although the definition of a crease pattern is more

than just about the topological structure, based on the results in (Palmer and

Kershenbaum 1994), it is not very difficult to develop a way to also include the vertices’

locations in the representation.

(a) (b)

Figure 10 (a) The crease pattern of a fish base variation can be described as a tree
graph; (b) The crease pattern of a pinwheel base is not a tree since there is a closed

loop of creases.

 47

But unfortunately, most of crease patterns are not trees. They will have closed

loops of creases, such as the pinwheel base in Figure 10(b) that has four valleys forming

a cycle. Another potential problem of using the tree graph representation for crease

patterns is the same as the embedded representation and the alternative representation

that the legality of the representation cannot be assured.

Based on the discussion of the three existing representations above, I develop a

new geometric representation that can not only provide the completeness, but also satisfy

non-redundancy and continuity. The basic idea to achieve it is to introduce the sequence

of the vertices and creases, and to implicitly assign indices to each topological

component defined in the representations.

Recall the traditional procedure of manually making an origami shape, we don’t

fold all the creases at once, even if we have the complete crease pattern. Instead, we

partition the pattern into pieces and work on one of them at a time. For making each

crease pattern piece, which is usually a single vertex fold or a simple fold, we still need

to make some auxiliary folds to derive the real creases. Some of them are then

completely or partially flattened in the completed crease pattern.

Another idea is to use a natural analogy of an origami crease pattern. If a blank

and flat origami sheet can be taken as an untouched icy water surface, the creases and

vertices can also be viewed as the cracks and crack forkings on it. Then with a heavy

knock that will generate a break point on the surface, the initial cracks will propagate,

and form new forkings and new cracks. In addition, combining the “divide & conquer”

strategy used by traditional origami folding and the development of cracks in an icy

 48

water surface, I create a sequence that a new representation can apply to arrange and

index the vertices and creases. Unlike the embedded representation placing creases

without a specified sequence, or the alternative representation allocating all vertices

prior to creases, the new representation defines one vertex in each step. And with the

definition of each vertex, several dummy creases that intersect at the vertex will also be

created in the same step. The dummy creases have a very similar function as the

auxiliary folds in traditional origami folding procedure. They act as placeholders for real

creases. The dummy creases must be placed at the right positions, so that every real

crease must be the full length or a section of dummy crease, and each dummy crease is

the placeholder for one and only one real crease. Based on this idea, the geometric

representation is named “ice-cracking”.

The “Ice-cracking” Representation of the Pinwheel Base

To form a pinwheel crease pattern as shown in Figure 11(a), where the 4 vertices

are indexed by numbers in circles and the 12 creases by numbers in diamonds, without

loss of generality, we (arbitrarily) choose the #1 vertex as the initial vertex to start the

generation of the crease pattern by “ice-cracking”. For the #1 vertex, the number of

creases (݊୒୓େ) is four according to Figure 11(a). Four direction vectors then emanate

from the #1 vertex. Here, the direction vectors are the dummy creases as mentioned

earlier, and the #1 vertex is the origin vertex of the dummy creases. The number of

direction vectors is equal to the number of creases that are supposed to intersect at the

origin vertex #1. One crease will later coincide with each dummy crease, but the second

 49

end point (the first being the origin vertex #1) of each crease cannot be determined yet.

In Figure 11(b), the existing dummy creases are displayed by dashed lines and labeled

by numbers (1-4) in squares. The actions of specifying the starting vertex and dummy

creases form the initialization step of the ice-cracking.

The next step is to establish a second vertex located on one of the existing

dummy creases. Comparing Figure 11(a) and Figure 11(b), we find the #2 vertex on the

#1 dummy crease, and the #4 vertex on the #2 dummy crease. The #2 and #4 vertices are

both available to be the second vertex. In this case, I select the #2 vertex. As we locate

the #2 vertex at the 2/3-distance point of the #1 dummy crease, the #1 crease that

connects the #1 and #2 vertices is also determined. The ݊୒୓େ of #2 is also four, thus

besides the known #1 crease, three other dummy creases are then created from the #2

vertex. These new dummy creases are numbered (5-7). The entire current pattern thus

becomes Figure 11(c). The process of locating a new vertex on an existing dummy

crease, together with the fixation of a new crease and the creation of new dummy creases,

is called the forking step. If the dummy crease that the new vertex is supposed to be

placed on during a forking step has intersections with other dummy creases, the new

vertex cannot be placed beyond any of these intersections.

To form a pinwheel crease pattern as shown in Figure 11(a), where the 4 vertices

are labeled by numbers in circles and the 12 creases by numbers in diamonds, without

loss of generality, we (arbitrarily) choose the #1 vertex as the initial vertex to start the

generation of the crease pattern by “ice-cracking”. For the #1 vertex, the number of

creases (݊୒୓େ) is four according to Figure 11(a). Four direction vectors then emanate

 50

from the #1 vertex. Here, the direction vectors are the dummy creases as mentioned

earlier, and the #1 vertex the origin vertex of the dummy creases. The number of

direction vectors is equal to the number of creases that are supposed to intersect at the

origin vertex #1. One crease will later coincide with each dummy crease, but the second

end point (the first being the origin vertex #1) of each crease cannot be determined yet.

In Figure 11(b), the existing dummy creases are displayed by dashed lines and labeled

by numbers (1-4) in squares. The actions of specifying the starting vertex and dummy

creases form the initialization step of the ice-cracking sequence.

The next step is to establish a second vertex located on one of the existing

dummy creases. Comparing Figure 11(a) and Figure 11(b), we find the #2 vertex on the

#1 dummy crease, and the #4 vertex on the #2 dummy crease. The #2 and #4 vertices are

both available to be the second vertex. In this case, I select the #2 vertex. As we locate

the #2 vertex at the 2/3-distance point of the #1 dummy crease, the #1 crease that

connects the #1 and #2 vertices is also determined. The ݊୒୓େ of #2 is also four, thus

besides the known #1 crease, three other dummy creases are then created from #2 vertex.

These new dummy creases are numbered (5-7). The entire current pattern thus becomes

Figure 11(c). The process of locating a new vertex on an existing dummy crease,

together with the fixation of a new crease and the creation of new dummy creases, is

called the forking step. If the dummy crease that the new vertex will be placed on during

a forking step has intersections with other dummy creases, the new vertex cannot be

placed beyond any of the intersections.

 51

(a) (b) (c)

(d) (e) (f)

Figure 11 The steps taken by “ice-cracking” to derive the vertices and creases
through a systematic sequence. (a) The full crease pattern with circled numbers

labeling the vertices and diamonded numbers labeling the creases; (b) The
initialization step that locates the first vertex; (c) The first forking step that gets the

#2 vertex as well as the #1 crease; (d) The second forking step that gets the #3
vertex and the #6 crease; (e) The resolution step that gets the #4 vertex and two
creases; (f) The resultant crease pattern without the MV-assignment after the

finalization step.

At this stage, either the #3 or #4 vertex can be determined through a second

forking step. We thus choose to create the #3 vertex, and convert the #6 dummy crease

to the #6 crease. The ݊୒୓େ of #3 vertex is four, and its dummy creases #8 through #10

are created as well. Hence, we have derived the pattern as shown in Figure 11(d).

 52

In Figure 11(d), #2 and #10 dummy creases have an intersection. In this step, we

will locate the #4 vertex at this intersection. With the allocation of the new vertex #4,

two creases are also determined simultaneously. The #2 crease is established as the

section of the #2 dummy crease between the #1 and #4 vertices, and the #10 crease is

established as the section of the #10 dummy crease between the #3 and #4 vertices. The

݊୒୓େof the #4 vertex is four. Since the #4 vertex has already had two definitive creases

(#2 and #10), we only need to create two more dummy creases. The process of

generating a new vertex at an intersection of dummy creases, together with the final

fixation of two new creases and the creation of the new vertex’s dummy creases, is

named the resolution step. The resultant pattern of this resolution step is shown in

Figure 11(e).

All the vertices have been created through one initialization step, two forking

steps, and one resolution step. We finalize the pattern by converting all of the remaining

dummy creases to creases. This last step for obtaining a complete crease pattern is called

the finalization step. In the example case of the crease pattern in Figure 11, the

finalization step will derive all the creases of Figure 11(f) without MV-assignment.

To determine the MV-assignment of the crease arrangement as shown in Figure

11(f), we need to first clarify the foldability requirements. As for the flat-foldability, we

are able to use the method given in (Li and McAdams 2013). However, for other specific

foldability requirements, such as orthogonal folding, we need to refine the mathematical

and geometric rules and restrictions for arranging the vertices and creases, and the MV-

assignment.

A F

dev

cra

as

firs

sec

arr

cra

init

can

afte

F
“

Formal Instr

The exa

veloping all

acking”. For

shown in Fig

st vertex. Th

cond vertex.

anged in arb

acking” proc

tialization st

nnot be arran

er the initial

Figure 12 Th
“ice-crackin

ini

ruction of the

ample of the

the vertices

any arbitrary

gure 12. “Ice

he initializati

After the fir

bitrary order,

edure. Howe

tep will be im

nged right af

ization step

he four step
ng”. The ar
itialization b

e “Ice-crack

Phen

e pinwheel b

and creases

y crease patt

e-cracking”

ion step is of

rst forking st

, until the ve

ever, if the c

mmediately

fter the initia

have no inte

ps – initializ
rows show h
being the fir

53

king” Repres

notype Mapp

ase illustrate

of the pinwh

tern, the “ice

starts with a

ften followed

tep, other for

ery last finali

crease pattern

followed by

alization step

ersection oth

zation, forki
how the diff
rst step and

sentation an

ping

es one possib

heel crease p

e-cracking”

an initializati

d by the first

rking steps a

ization step

n has only o

y the finaliza

p, since the d

her than the f

ing, resoluti
fferent steps
d finalization

nd the Syntax

ble sequence

pattern throu

procedure c

ion step that

t forking ste

and resolutio

terminates th

one vertex, th

ation step. A

dummy crea

first vertex.

ion and fina
s can be arr
n the last ste

x for Genotyp

e of

ugh “ice-

an be plotted

t locates the

ep to get the

on steps can

he “ice-

he

resolution s

ases determin

alization – o
anged, with
ep.

pe-

d

be

tep

ned

of
h

 54

Table 1 shows the details of the four steps of “ice-cracking”, together with the

means that are used to encode the operations of each step into Gray binary code for the

GA. In general, each step starts with a distinctive two-bit starting code as shown in Table

1. The following Gray code bits will encode the operations of the step in a fixed format.

Table 1 The operations in each step, and the arguments defining the operations

Step / starting code Operations
Arguments for each

operation

Initialization Step / 00

1. Locate the first vertex;
The x and y coordinate of

the vertex - (x1, y1)

2. Determine the vertex’s ݊୒୓େ; ݊୒୓େ

3. Provide the absolute angle of

one dummy crease;
θ

4. Draw the other dummy

creases.
௜ሺ݅ߢ ൌ 1,⋯ , ݊୒୓େሻ

Forking Step / 01

1. Pick the dummy crease for the

new vertex;
݊஽஼

2. Locate the new vertex; ߣ

3. Fix a new crease;

4. Determine the vertex’s ݊୒୓େ; ݊୒୓େ

5. Draw the dummy creases. ߢ௜ሺ݅ ൌ 1,⋯ , ݊୒୓େሻ

Resolution Step / 10

1. Locate the new vertex at the

location of one intersection of

two dummy creases;

݊௏ூ

2. Fix two new creases;

3. Determine the vertex’s ݊୒୓େ; ݊୒୓େ

4. Draw the dummy creases. ߢ௜ሺ݅ ൌ 1,⋯ , ݊୒୓େሻ

Finalization Step / 11

1. Eliminate the intersections of

dummy creases;

Fixed implicit argument set

{݊௏ூ=1, ݊୒୓େ=4, ߢଵ=255,

 {ଷ=255ߢ ,ଶ=255ߢ

2. Convert dummy creases to

creases;

3. Terminate the “ice-cracking”.

 55

In the rest of this section, the four steps of “ice-cracking” are explained in detail

along with the operations that are done in each step. The approach of encoding each step

into genetic code is presented as well. In this research, the Gray code uses the M-QAM

modulation, which has the same features with but is different from the natural Gray code

translation (MathWorks 2014). The conversion between the Gray code, which is the

genetic representation, and the parameters that defines a crease pattern is called the

genotype-phenotype mapping.

Initialization Step. Using “ice-cracking”, any crease pattern must have one and

only one initialization step. Two main operations are performed in the initialization step:

locating the first vertex and determining the subsequent dummy creases. As shown in

Table 1, the allocation of the first vertex requires specification of the x and y-coordinates.

The arguments that define the n୒୓େ and the angles of the dummy creases follow the

allocation of the vertex. In general, if the first vertex has a n୒୓େ of n, the initialization

step will require n+3 arguments to define. The number of bits of Gray code for each

argument is determined according to the required precision of the corresponding

argument.

The initialization step for the pinwheel pattern Figure 11(b) serves to illustrate

the encoding. Using a 1-by-1 square origami sheet, we set up a Cartesian coordinate

system with the origin at the lower left corner of the sheet. Thus the #1 vertex is at (ݔଵ =

 ଵ= 0.25). If we define the resolution of the blank origami sheet to be 256×256ݕ ,0.25

(28×28), both arguments representing the x-coordinate and the y-coordinate require 8

 56

bits of Gray code. Therefore, ݔଵ=0.25 is represented by ‘01110000’, while ݕଵ=0.25 is

also represented by ‘01110000’.

Then, several bits are used to represent the ݊୒୓େ. For instance, we could have a

range of 4≤݊୒୓େ≤11. In this case, 3 bits are needed to define the ݊୒୓େ among the 8(=23)

possible values. However, if the crease pattern is constrained to be flat-foldable, the

number of ݊୒୓େ for each vertex must be even according to Maekawa-Justin Theorem

(Demaine and O'Rourke 2007). However, the ݊୒୓େ doesn’t have to be restricted to a

range of consecutive integer values. A flat-foldable vertex cannot have odd ݊୒୓େ, thus

we can use a pool of even numbers to give the available values of its ݊୒୓େ, such as

{4,6,8 or 12} that requires only 2 bits in the genetic representation.

If the ݊୒୓େ is determined to be 4, 4 or 5(=4+1) additional arguments represent

the direction vector angles of the dummy creases with respect to its foldability. In most

situations, we set the x-positive direction of the Cartesian coordinate system to be the 0-

rads line. Then we pick one of the dummy creases to be the baseline, and an argument θ

is used to define the absolute angle of the baseline w.r.t. the 0-rad line. Here, the #1

dummy crease becomes the baseline, and its absolute angle w.r.t. the 0-rad line is 0. The

following 3 or 4 arguments will be used to define all 4 of the dummy creases. If the

vertex has no foldability requirements, 3 arguments are enough to represent the absolute

angles for the remaining 3 dummy creases in the same manner that the baseline dummy

crease is defined. On the other hand, if the vertex needs to be flat-foldable, 4 more

arguments are required. The one extra argument does not cause redundancy, but

provides additional constraint for the three dummy creases due to the flat-foldability.

 57

According to the Kawasaki-Justin theorem, the angles ߙ௜ between dummy creases

should satisfy

∑ ௜௜∈௢ௗௗߙ ൌ ∑ ௜௜∈௘௩௘௡ߙ ൌ (4) ߨ

Hence for Figure 13(a), ߙଵ ൅ ଷߙ ൌ ଶߙ ൅ ସߙ ൌ ௜ሺ݅ߢ Then if the 4 arguments are .ߨ ൌ

1,2,3,4ሻ, each of which is the decimal value of an 8-bit Gray code, the angles ߙ௜ are

௜ߙ ൌ ቐ
ߨ ൈ ఑೔

∑ ఑ೕೕ∈೚೏೏
			ሺ݅	݅ݏ	݀݀݋ሻ

ߨ ൈ ఑೔
∑ ఑ೕೕ∈೐ೡ೐೙

			ሺ݅	݅ݏ	݊݁ݒ݁ሻ
 (5)

In the end of the initialization step, all the newly created vertex and dummy creases are

implicitly indexed for the following “ice-cracking” steps. In all, the entire initialization

step for the flat-foldable #1 vertex of pinwheel pattern could use one possible argument

set {ݔଵ=0.25, ݕଵ=0.25, ݊୒୓େ=4, θ=0, ߢଵ=255, ߢଶ=255, ߢଷ=255, ߢସ=85}, which is then

encoded by: ‘00 01110000 01110000 00 00000000 10101010 10101010 10101010

01100110’.

 58

(a) (b) (c)

(d) (e)

Figure 13 Illustrative crease patterns for “ice-cracking”. (a) Initialization step; (b)
Forking step; (c) The second forking step for getting a pinwheel pattern; (d)

Resolution step; (e) The resolution step for getting the #4 vertex in a pinwheel
pattern.

 59

Forking Step. In each forking step, a new vertex is located on an existing dummy

crease. Two arguments are used to give the location of this new vertex. The first

argument nୈେ indicates that the new vertex is on the nୈେ-th dummy crease within an

ordered list of all existing ones. We use an 8-bit Gray code that is translated from the

value of the argument nୈେ. If nୈେ exceeds the total number Nୈେ of the existing dummy

creases, we instead use the remainder of nୈେ divided by Nୈେ. The second argument λ,

which also takes 8 bits in this study, defines the location of the new vertex on the

dummy crease. If the distance from the origin vertex of the dummy crease and the

dummy crease’s nearest intersection with other existing dummy creases or with the

origami sheet margin to the origin vertex is l, the distance d from the origin vertex to the

new vertex can be derived as

݀ ൌ ݈ ൈ ఒ

ଶఴ
 (6)

After defining the new vertex, a new #3 crease linking the origin vertex and the new

vertex is also fixed.

A third argument represents the ݊୒୓େ of the new vertex in the same way as in the

initialization step. Suppose that in Figure 13(b) the #4 vertex is the new vertex

determined in a prior forking step. If we already know that the ݊୒୓େ of the #4 vertex is 4,

we will need another 3 or 4 arguments to define the 3 dummy creases. For any arbitrary

origami crease pattern without foldability requirements (such as flat-foldability, rigid-

foldability, orthogonal folding, etc.), 3 arguments are sufficient to define the angles of

the 3 dummy creases; otherwise, extra arguments are needed to describe the constraints

 60

among the angle values of dummy creases that were introduced by the foldability

requirement.

For a flat-foldable crease pattern, 4 arguments are required. As shown in Figure

13(b), a baseline vector and a topline vector that both start from the new vertex are

needed. The baseline and the topline are determined, so that if a vector starts rotating

from the position of the baseline around the new vertex counter-clockwise, it won’t have

any intersection with existing creases until it overlaps with the topline. If the vector

rotates from the position of the topline counter-clockwise, however, it will have

intersections with existing creases until it touches the baseline. We then define β1 as the

angle between the #3 crease and the baseline, while β2 is the angle between the #3

crease and the topline. Next, we locate the dummy creases. Again, the newly created

dummy may not have an intersection with any existing creases. Let α1 to α4 represent

the angles among the baseline, topline and new dummy creases as shown in Figure 13(b).

According to Kawasaki-Justin theorem, we have

ଵߚ ൅ ∑ ௜௜∈௢ௗௗߙ ൌ ଶߚ ൅ ∑ ௜௜∈௘௩௘௡ߙ ൌ (7) ߨ

Thus if the 4 arguments are also ߢ௜ሺ݅ ൌ 1,2,3,4ሻ, each of which is the decimal value of

an 8-bit Gray code, the angles ߙ௜ are thus

௜ߙ ൌ ቐ
ሺߨ െ ଵሻߚ ൈ

఑೔
∑ ఑ೕೕ∈೚೏೏

			ሺ݅	݅ݏ	݀݀݋ሻ

ሺߨ െ ଶሻߚ ൈ
఑೔

∑ ఑ೕೕ∈೐ೡ೐೙
			ሺ݅	݅ݏ	݊݁ݒ݁ሻ

 (8)

In the end of the initialization step, all the newly created vertex, creases and dummy

creases are implicitly indexed respectively. New indices follow the ones that indicate the

existing topological components. In the same way, if we consider the derivation of the

 61

#3 vertex in the pinwheel pattern (Figure 13(c)), the whole forking step could use one

possible argument set of {݊஽஼=6, 0.6667= ߣ, ݊୒୓େ=4, ߢଵ=255, ߢଶ=254, ߢଷ=85, ߢସ=127},

and the Gray code thus is: ‘01 00000100 01100110 00 10101010 10101011 01100110

01011010’.

Resolution Step. The resolution step is similar to the forking step except for

where the new vertex is located. In the resolution step, the new vertex must be created at

an intersection between n୍ሺ൒ 2ሻ existing dummy creases. The first argument n୚୍

indicates which intersection is used. One implicit operation should be done initially to

get a list of all the valid intersections between all dummy creases. A valid intersection is

identified so that within any of the n୍ intersecting dummy creases, this intersection is the

nearest one from the corresponding origin vertex. To determine the argument nୈେ in

forking step, we pick the n୚୍-th valid intersection for the new vertex. Similarly, if n୚୍ is

larger than the total number N୚୍ of valid intersections, we use the residue of n୚୍ divided

by N୚୍. Right after the allocation of the new vertex, n୍ new creases can also be fixed in

this resolution step.

The second argument for resolution step is the ݊୒୓େ. In the example case of

Figure 13(d), the #5 vertex is the new vertex based on creases #4 and #5. If we set the

݊୒୓େ to be 4, only two more dummy creases for this vertex need to be determined.

Therefore, we will need 2 or 3(=2+1) more arguments. If the crease pattern has no

explicit foldability requirements, 2 more arguments are used to define the dummy

creases. However, if the crease pattern needs to be flat-foldable, we are going to need 3

more arguments. After defining the baseline and the topline in the same way as used in

 62

forking step, we define the angles β1 (the angle between #4 crease and the baseline), β2

(the angle between #5 crease and the topline), and ϕ (the angle between #4 crease and

#5 crease). Then we let α1 to α3 represent the angles between the baseline, topline and

new dummy creases as shown in Figure 13(d). According to the Kawasaki-Justin

theorem, we have

ଵߚ ൅ ଶߚ ൅ ∑ ௜௜∈௢ௗௗߙ ൌ ϕ ൅ ∑ ௜௜∈௘௩௘௡ߙ ൌ (9) ߨ

Thus the if the 4 arguments are also ߢ௜ሺ݅ ൌ 1,2,3,4ሻ, each of which is the decimal value

of an 8-bit Gray code, the angles ߙ௜ are

௜ߙ ൌ ቐ
ሺߨ െ ଵߚ െ ଶሻߚ ൈ

఑೔
∑ ఑ೕೕ∈೚೏೏

			ሺ݅	݅ݏ	݀݀݋ሻ

ሺߨ െ ϕሻ ൈ ఑೔
∑ ఑ೕೕ∈೐ೡ೐೙

			ሺ݅	݅ݏ	݊݁ݒ݁ሻ
 (10)

At the end of the initialization step, all the newly created vertex, creases and dummy

creases are implicitly indexed respectively. New indices follow the ones that indicate the

existing topological components. In the same way, if we consider the derivation of the

#4 vertex of the pinwheel pattern as in Figure 13(e), the whole resolution step could use

one possible arguments set of {݊௏ூ=1, ݊୒୓େ=4, ߢଵ=255, ߢଶ=255, ߢଷ=85}, and the code

will be: ’10 00 10101010 10101010 01100110’.

In some situations, n୍ is larger than 2, which means the new vertex is located at

the intersection point of 3 or more dummy creases. Hence, the number of new dummy

creases is ݊୒୓େ െ n୍, but not ݊୒୓େ െ 2.

Finalization Step. The finalization step is the last step of “ice-cracking”. There

are two different cases for the finalization step. One case is when there is no intersection

left among the existing dummy creases. In this case the finalization converts the

 63

remaining dummy creases to final creases to terminate “ice-cracking”. The second case

occurs when the existing dummy creases still have intersection(s). Since the creases in

an origami crease pattern cannot have intersections, before converting the dummy

creases, we repeatedly run resolution steps using a constant argument set of {n୚୍=1,

n୒୓େ=4, κଵ=255, κଶ=255, κଷ=255}, until no more intersections exist. The argument set

is a default setting. If there are some special design requirements, such as “the n୒୓େ at

each vertex must be 8”, other values for the argument set can be chosen accordingly, as

long as they do not change throughout the entire finalization step.

Summary of “Ice-cracking” Representation and Its Encoding

The “ice-cracking” method provides a systematic sequence to define the vertices

and creases in a crease pattern. In “ice-cracking”, a crease pattern can be formed with an

arrangement of the four different steps, which are all encoded naturally in the GA

formalism. The genetic code of a crease pattern is thus the combination of the Gray

codes of all the “ice-cracking” steps.

An important advantage of the “ice-cracking” crease pattern representation

scheme and its encoding is the non-redundancy, so that any randomly generated code

can be decoded into a valid crease pattern. This feature benefits the implementation of

GA in such a way that even after unpredictable GA operations (i.e., crossover and

mutation), the Gray code for one crease pattern will not become un-decodable to an

origami crease pattern. Referring to Table 1, mutation on genetic code bits, which

represents the arguments other than the starting codes of different “ice-cracking” steps

 64

and the ݊୒୓େ, will only result in small displacements of the locations of vertices or the

orientations of creases. Even if the genetic code mutation causes the starting codes or

݊୒୓େ’s to change, the result will be a big change on the corresponding crease pattern, but

not the nullification of the genetic code.

Also keep in mind that the mapping between Gray code strings and (flat-foldable)

origami crease patterns is n-to-1. Rearranging the order of vertices and creases

developed through “ice-cracking” could result in a different Gray code. For instance, if

the crease pattern has two vertices, say #1 and #2, we can either generate the #1 vertex in

the initialization step and create the #2 vertex by a following forking step, or

alternatively generate the #2 vertex in the initialization step and create the #1 vertex by

the following forking step. For GA, the n-to-1 genotype-phenotype mapping acceptable

but not desired. One measure to improve it to a 1-to-1 mapping is by guaranteeing that in

each step of “ice-cracking” steps, the new vertex can only be on the right of existing

vertices.

In addition, appending more bits to the complete Gray code of an origami crease

pattern will not cause any change to its corresponding crease pattern, since all the bits

that follow the genetic code piece that defines the finalization step are not translated.

The Pixelated Multicellular Representation – An Indirect Representation1F

The existing geometric representations – the embedded representation and the

alternative representation – and the “ice-cracking” representation have one feature in

common that they all describe the vertices and creases in the crease pattern. Other than

 65

the vertices and creases, the third topological component of origami is the faces, which

fill in the blank spaces that are partitioned by the creases and the borders of the origami

sheet. In rigid and flat folding, the creases are straight, thus the faces are polygons. We

can also prove that the face polygons are convex if no cuts or bends are allowed (Tachi

2009). For an origami sheet with a legal crease pattern, the faces can be treated as the

inverse of the creases. Therefore, defining the creases is equivalent to defining the faces,

and is sufficient for defining the entire crease pattern. However, since the easiest way to

define a face polygon is by its edges, which are just the creases in origami crease pattern,

most of the research on origami geometry and mathematics so far only implement the

creases to define a crease pattern.

Is there a way to describe the faces without involving the definition of the creases?

Nagpal’s study on bio-inspired self-assembling systems has given an primitive idea

(Nagpal 2002, Nagpal, Kondacs and Chang 2003). It is possible to describe a polygon

through fine partitioning of the sheet into tiny pieces and marking the pieces that belong

to the polygon. This approach is similar to the basic idea of finite element analysis

(FEA). FEA has three major stages, which are discretizing the structure into finite

elements, solving each element, and assembling the solutions (Reddy 2005). For

describing a convex face polygon, we can also start with partitioning, then define each

element, and finally put elements together to derive the polygon. If this idea leads to a

geometric presentation of an origami crease pattern, which is no more than a union of

origami faces, we have answered three questions:

1. How to discretize or partition an origami sheet?

 66

2. How do we parameterize the elements?

3. How do we relate a swarm of elements to face polygons?

In the following sections, I will introduce my solutions for these three questions,

as well as how I link them to derive a geometric representation that is compatible with

GA.

Origami Sheet Pixelization

As mentioned above, Nagpal’s research has given a possible direction for

discretizing an origami sheet. But in this research, I will make further considerations.

Here, let’s first introduce two concepts – hard discretization and soft (fuzzy)

discretization. The hard discretization is used to partition the structure into fixed

elements that have clear boundaries with their adjacent peers. On the other hand, soft

(fuzzy) discretization derives elements that can dynamically change their size. Just like

soap bubbles, if one bubble expands, it will push its neighbors away or cause them to

shrink in girth. FEA applies hard discretization, since the governing equation of each

element requires unambiguous boundary conditions. For representing a polygon region,

the soft (fuzzy) discretization is more applicable. The most important reason is that, with

retractable boundaries, it is possible to minimize the resultant phenotypic change caused

by mutation or perturbation on the representation.

Based on the soft (fuzzy) discretization, we don’t simply cut the origami sheet

into tiny elements. Instead, we scatter cellular elements over this entire region. We call

the

mu

var

exa

is s

ess

Na

acc

uni

Fi
c
c

pa

e representati

ulticellular r

In the P

riant square

ample varian

shown in Fig

sential for th

agpal’s repre

ceptable, but

iform and re

(

igure 14 Em
ells being a
crease; (c) A
attern (a); (d

ion that will

representatio

PMR that wi

grid, which

nt square gri

gure 14(a). T

e pixelated r

sentation (N

t an even dis

eady for arbit

(a)

mbryo in CE
rranged eve

A possible w
d) A crease

l be develope

on (PMR).

ll be studied

is obtained t

d that has ni

The way in w

representatio

Nagpal 2002,

stribution is a

trary crease

 (b)

EE. (a) An e
enly; (b) A 2

way to repre
pattern tha
(a), becaus

67

ed based on

d and used fo

through rota

ine cells alon

which the cel

on. A random

 Nagpal, Ko

advantageou

patterns.

example pix
2-color flat-
esent the cre
at cannot be
se of too clo

such type of

or this resear

ating the squa

ng the diago

lls are arrang

m distributio

ondacs and C

us in keeping

 (c)

xelated mult
-foldable pa
ease pattern
e represente
ose creases.

f pixelization

rch, we arran

are grid by 4

nal line of a

ged is, howe

on of cells as

Chang 2003)

g the whole p

 (d

ticellular pa
attern with o
n (b) with th
ed by pixelat

n the pixelat

nge cells in a

45°. An

a square shee

ever, not

s used in

) is also

pattern

)

attern with 4
one diagona
he pixelated
ted pattern

ted

a

et

41
al
d
in

 68

The pixelated multicellular representation is structurally similar to putting an

image on a LED matrix screen.

A cell can be thought of as one LED that sheds light on one soft (fuzzy) region

that is located around the cell’s center position. Each cell will possess three properties -

cell type, cell size, and cell position. The cell position is determined by cell arrangement

and resolution used for pixelization. The cell type indicates the cell’s color property. The

cell size is analogous to light intensity of an LED. The larger the cell size is, the higher

light intensity the cell could “emit” onto its adjacent region. Meanwhile, the light

intensity from a cell will gradually diminish along any direction that radiates from the

cell’s position.

Setup of the Cell Properties

For a pixelated multicellular representation, the three cell properties will

determine the space of crease patterns that can be defined. We define the origami sheet

to be 1 unit high and 1 unit wide.

Because of the 2-colorability of flat-foldable origami patterns, the number of cell

types is two (additional cell types can be used to describe flat foldable structures, but

Theorem 1 proves that two types are sufficient). The cell type of the i-th cell in the

pattern is defined as c୧.

ܿ݅ ∈ ൛1,െ1ൟ (11)

where ܿ݅ ൌ 1 means the i-th cell belongs to type 1 (blue), while ܿ݅ ൌ െ1 means the i-th

cell belongs to type 2 (read).

 69

Having specified the variant square grid used to arrange cells, the resolution of

the grid determines the positions of the cells within the 1 by 1 origami sheet. The cell

position of the i-th cell can always be expressed as

ܲi ൌ ൫xi, yi൯ 		∈ 		 ൛Variant	square	grid	on	a	1	by	1	sheetൟ, i ൌ 0,1,⋯ ,p (12)

where p is the total number of cells.

In theory, the cell size can be any arbitrary value. Thus, to express the crease

pattern in Figure 14(b) by the pixelated multicellular pattern Figure 14(a), the cell types

and sizes are chosen as shown in Figure 14(c). In Figure 14(c), the two types of cells are

visualized as blue and red circles. The blue cells suggest the region of the lower right

face, and the red cells suggest the region of the upper left face. Each circle indicates the

area of light illumination.

We define any cell that is positioned exactly on a crease to be an on-crease cell

of the crease; and any cell whose distance to the crease is no more than the distance

between two nearest cells to be a support cell of the crease. As a result, to specify the

diagonal crease that separates the two faces in Figure 14(b), the on-crease cells will

diminish to a size of 0, and the support cells will all be assigned to the size so that the

corresponding circles could be tangent with the crease. Other cells in the sheet could

have arbitrary size as long as their corresponding area of influence does not cross the

crease. Figure 14(c) thus only provides one of the infinitely many ways to represent the

crease pattern Figure 14(c) using the pixelated representation.

However the properties of the cells are assigned, the crease pattern shown in

Figure 14(d) could not be represented based on the pixelated multicellular pattern Figure

 70

14(a). The space between the two creases is too narrow, so no cell is located there. In the

pixelated multicellular pattern, any face must contain at least one cell. Thus, we define

the narrowest or smallest face the pixelated multicellular pattern can represent as the

effective resolution of the pattern. Thus, if we wish the pixelated multicellular pattern to

show crease pattern with tiny faces, we must increase the resolution of cells accordingly.

We discretize the cell sizes to facilitate computation. Valid cell sizes are evenly

distributed discrete values between minimum and maximum admissible values. Thus the

cell size s୧ of i-th cell is

݅ݏ ൌ ݊݅݉ݏ ൅
݊݅݉ݏെݔܽ݉ݏ

݌݊
ൈ݊݅		, 			݊݅ ∈ ሼ0,1,2,⋯ ሽ (13)݌݊,

where ݊݅݉ݏ is the minimum size, ݔܽ݉ݏ is the maximum size, and ݊݌ ∈ ܰ is the number of

possible values. Generally for variant square grid pixelated representation, ݊݅݉ݏ is

usually chosen to be 0, and ݔܽ݉ݏ is chosen to be equal to or a little bit larger than the

distance between any cell and its second nearest neighbor.

Because of its discretization, the pixelated representation is not capable of

defining the infinite space of arbitrary crease patterns. The theoretical number of patterns

that can be defined is ሺn୮ ൈ 2ሻ୮.

A new problem arises when we want to define the two creases shown in Figure

14(d) separately. The creases are located so close to one another, the discrete pixelated

representation may be the same for both creases. The effective precision is defined by

the minimal change on determining the origami border, while tuning the cell sizes

without changing their colors. The larger n୮ is, the higher the effective precision will be.

 71

The effective resolution and the effective precision determine the total

representativeness of the pixelated multicellular pattern. Adding details in the pixelated

pattern by increasing the resolution of cells and number of possible cell size values can

result in the improvement on the effective resolution and the effective precision

generally resulting in higher computational cost.

Understanding a PMR and Extracting the Crease Pattern Information

For the PMR as an equivalent representation for the crease pattern, we implement

a so-called crease restoration algorithm (CRA) to extract the crease pattern. The outputs

of the CRA should minimally include the crease arrangement, all possible MV-

assignments, and all possible face overlapping orders.

The fundamental procedure of the CRA is to partition the whole sheet into

different regions, and then to generate straight line-segments to divide the regions. We

thus partition the sheet according to the distributions of the types of the cells. Ideally, we

wish that each partitioned region on the sheet contains only cells of one type with as few

outliers as possible. Because we also need the line segments to finally form an origami

crease pattern, the lines ought to connect with each other end point by end point, and

may not have any other intersections. Therefore, like the pixelated multicellular pattern

intending to represent an origami crease pattern by coloring the faces, the essence of

CRA is to identify the faces and their borders with regard to the coloration.

In mathematical expression, the CRA tries to solve a multi-objective

optimization problem. We represent the 2D space that defines the flat sheet as S, and its

 72

border as Ωୗ. The creases are C୧	ሺi ൌ 1, 2,⋯ ,mሻ, where m is the number of creases. The

vertices are V୨	ሺj ൌ 1, 2,⋯ , lሻ, where l is the number of vertices. The cells in the

pixelated representation are c୧ ൌ ሼc୧, P୧, s୧ሽሺi ൌ 1,2,⋯ , pሻ, which are defined by their

types, positions, and sizes. Thus the optimization problem is a search for a configuration

of crease pattern that satisfies

 ࢋ࢜࢏࢚ࢉࢋ࢐࢈ࡻ

ሼ࡯ଵ, ⋯,ଶ࡯ , ,݉,௠࡯ ,ଵࢂ ⋯,ଶࢂ , ,௟ࢂ ݈ሽ

ൌ ݊݅݉݃ݎܽ ቊ
,ଵࢉ௖௟௔௦௦௜௙௜௖௔௧௜௢௡ሺݎݎܧ ⋯,ଶࢉ , ,௣ࢉ ,ଵ࡯ ⋯,ଶ࡯ , ௠,݉ሻ࡯

,ଵ࡯௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬ሺݎݎܧ ⋯,ଶ࡯ , ,݉,௠࡯ ,ଵࢂ ⋯,ଶࢂ , ,௟ࢂ ݈ሻ

 ࢙࢚࢔࢏ࢇ࢚࢙࢘࢔࢕࡯

ە
ۖ
۔

ۖ
ۓ

,ଵ࡯ ⋯,ଶ࡯ , ௠࡯ ⊂ ࡿ
,ଵࢂ ⋯,ଶࢂ , ௟ࢂ ∈ ࡿ

௜࡯ ∩ ௝࡯ ൌ ,ሺ݅	௞ࢂ	ݎ݋	∅ ݆ ൌ 1, 2,⋯ ,݉	; ݇ ൌ 1, 2,⋯ , ݈ሻ

௞ܰ ൒ 1, ௞ࢂ	݂݅ ∈ ષࡿ

௞ܰ ൌ ݐ2 ൅ 2, ௞ࢂ	݂݅ ∉ ષ܁, ݐ ൌ 1, 2,⋯

 (14)

where ௞ܰ is the number of creases that intersect at a vertex ࢂ௞ (called interior vertex

݂݅	 ௞ܰ ∉ ષࡿ, or exterior vertex ݂݅	 ௞ܰ ∈ ષݎݎܧ ;(ࡿ௖௟௔௦௦௜௙௜௖௔௧௜௢௡ is the classification error

according to the multicellular pattern and creases; ݎݎܧ௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬ is a quantified

evaluation of the flat-foldability error, and its definition will be explained later in this

section.

CRA has four stages - resampling, clustering, creasing, and finalization.

(1) Resampling. In some cases, cell resolution remains low based on

computational restrictions. Therefore, we re-pick some data points as the proxies for the

cells to facilitate the application of the algorithm used in the following clustering stage

 73

of the CRA. The resampled data points need to be more densely distributed than the cells

over the entire region. The reason why we require resampled data points will be

explained as we introduce the clustering algorithm in Section 4.2.

Each resampled data point has three major properties, which are position, color,

and color reliability. The positions of data points are already known as we resampled

them. The color O୧ and color reliability R୧ of the i-th data point o୧ are determined by the

accumulated light intensity from its neighboring cells. The light intensity on data

point	o୧ from its j-th neighboring cell is expressed as I୧,୨. In practice, we assume that the

distribution of light intensity from any cell obeys either a triangular distribution or a

normal distribution, which is parameterized by the cell size s୨ and constants that describe

the distribution.

For triangular distribution of cell’s influence strength, we have

 ܴ௜ ൌ ∑ ሺെ1ሻ௧ܫ௜,௝௝ୀଵ,⋯,௣

ൌ ∑ ሺെ1ሻ௧ max ൬0,
ு

ீ
൫ݏܩ௝ െ ݀௜,௝൯൰௝ୀଵ,⋯,௣ , ݐ ൌ ൜

0, ݂݅	 ௝ܿ ൌ 1
1, ݂݅	 ௝ܿ ൌ െ1 (15)

For normal distribution of cell’s influence strength, we have

 ܴ௜ ൌ ∑ ሺെ1ሻ௧ܫ௜,௝௝ୀଵ,⋯,௣

ൌ ∑ ሺെ1ሻ௧ݏܪ௝݁
ି௄ௗ೔,ೕ, ݐ ൌ ൜

0, ݂݅	 ௝ܿ ൌ 1
1, ݂݅	 ௝ܿ ൌ െ1௝ୀଵ,⋯,௣ (16)

where G, H and K are constant coefficients that describe the distributions, ݏ௝ is the size

of j-th cell, and ݀௜,௝ is the distance from the center of j-th cell to the data point ݋௜. We

can determine that the color property of each data point to be

 74

௜ܱ ൌ ሺܴ௜ሻ݊݃݅ݏ ൌ ൜
1	ሺܾ݈݁ݑሻ
െ1	ሺ݀݁ݎሻ (17)

 (2) Clustering. After resampling data points, we coarsely partition the regions

for origami faces by clustering the data points. A region with a convex border that

covers data points of a same color will come to a cluster, which will later represent a

face in the crease pattern. Prior to clustering, we don’t have the number of clusters. In

this situation, density-based clustering could effectively detect the clusters, as well as the

natural number of clusters (El-Sonbaty, Ismail and Farouk 2004). Ester et al. proposed

an algorithm called DBSCAN (Density-Based Spatial Clustering of Applications with

Noise) that can discover arbitrarily shaped clusters and handle noise (Ester, Kriegel,

Sander and Xu 1996).

DBSCAN is a density-based clustering approach. Thus, for each point of a

cluster within its “ϵ-neighborhood” for a given ϵ ൐ 0, the “density” has to exceed a

certain threshold. DBSCAN can apply any different definitions of “neighborhood” and

“density”, as long that the “neighborhood” is a symmetric and reflexive binary predict,

and the “density” calculation method can represent the “cardinality” of the defined

neighborhood (Ester, Kriegel, Sander and Xu 1997). CRA applies DBSCAN, whose “ϵ-

neighborhood” is simply distance based, that

ఢܰሺ݋ሻ ൌ ሼ݋′ ∈ ,݋ሺ݁ܿ݊ܽݐݏ݅݀|ܦ ሻ′݋ ൑ ߳, ߳ ൐ 0ሽ (18)

where	݋	and	݋′	are	two	data	points, ܦ is the union of all data points, and “density” of a

target data point is the summed count of its ߳-neighbor data points (including the target

data point) that also satisfy the cluster’s criteria.

 75

We define the cluster’s criteria by a function

ሻ݋ሺܴܥ ൌ ,݁ݑݎݐ ݋	݄ݐ݅ݓ ∈ ܦ

Several basic definitions are given below.

Definition 1. (Core Data Point) A data point ݋௜ is defined as a core data point, if the

union of its ߳-neighbor data points, ఢܰሺ݋௜ሻ (including ݋௜), satisfies a certain set of

cluster’s criteria ܴܥ. Therefore,

,	ݐ݊݅݋݌	ܽݐܽ݀	݁ݎ݋ܿ	ܽ	ݏ݅	௜݋ ݂݂݅. ௝൯݋൫ܴܥ ൌ ,݁ݑݎݐ ௝݋∀ ∈ ఢܰሺ݋௜ሻ

Definition 2. (Directly Density-Reachability Matrix)

,ሺܴ݅ܦܦ ݆ሻ ൌ ቐ
1	, ௜݋	݂݅ ∈ ఢܰ൫݋௝൯, ௜ሻ݋ሺܴܥ ൌ ݁ݑݎݐ
, ݐ݊݅݋݌	ܽݐܽ݀	݁ݎ݋ܿ	ܽ	ݏ݅	௝݋	݀݊ܽ

0, .݁ݏ݅ݓݎ݄݁ݐ݋
 (19)

,ሺܴ݅ܦܦ ݆ሻ ൌ 1 means that data point ݋௝ is directly density-reachable from data point ݋௜.

Definition 3. (Reversible Directly Density-Reachability Matrix)

,ሺܴ݅ܦܦܴ ݆ሻ ൌ ൜
1	, ,ሺܴ݅ܦܦ	݂݅ ݆ሻ ൌ ,ሺ݆ܴܦܦ ݅ሻ ൌ 1

0, .݁ݏ݅ݓݎ݄݁ݐ݋
 (20)

,ሺܴ݅ܦܦܴ ݆ሻ ൌ 1 means that data point ݋௜ and data point ݋௝ are directly density-reachable

with each other.

 76

Definition 4. (Density-Reachability Matrix)

,ሺܴ݅ܦ ݆ሻ ൌ

ە
ۖ
۔

ۖ
,	1ۓ ,௜݋	݁ܿ݊݁ݑݍ݁ݏ	ܽ	ݏ݅	݁ݎ݄݁ݐ	݂݅ ௞భ݋

ᇱ , ௞మ݋
ᇱ ,⋯ , ௞೛݋

ᇱ , ,௝݋ ݌ ൌ 0,1,⋯	

,ሺܴ݅ܦܦ	݁ݎ݄݁ݓ ݇ଵሻ ൌ ,ሺ݇ଵܴܦܦ ݇ଶሻ ൌ
⋯ ൌ ,ሺ݇௣ିଵܴܦܦ ݇௣ሻ ൌ ,ሺ݇௣ܴܦܦ ݆ሻ ൌ 1

0, .݁ݏ݅ݓݎ݄݁ݐ݋

 (21)

,ሺܴ݅ܦ ݆ሻ ൌ 1 means that data point ݋௝ is density-reachable from data point ݋௜.

Definition 5. (Reversible Density-Reachability Matrix)

,ሺܴ݅ܦܴ ݆ሻ ൌ ൜
1	, ,ሺܴ݅ܦ	݂݅ ݆ሻ ൌ ,ሺ݆ܴܦ ݅ሻ ൌ 1

0, .݁ݏ݅ݓݎ݄݁ݐ݋
 (22)

,ሺܴ݅ܦܴ ݆ሻ ൌ 1 means that data point ݋௜ and data point ݋௝ are density-reachable with each

other.

Definition 6. (Density-Connectivity Matrix)

,ሺ݅ܥܦ ݆ሻ ൌ ൝
1	, 	௞݋	ݐ݊݅݋݌	ܽݐܽ݀	ܽ	ݏݐݏ݅ݔ݁	݁ݎ݄݁ݐ	݂݅
,ሺܴ݇ܦ	ݐ݄ܽݐ ݅ሻ ൌ ,ሺܴ݇ܦ ݆ሻ ൌ 1

0, .݁ݏ݅ݓݎ݄݁ݐ݋
 (23)

,ሺ݅ܥܦ ݆ሻ ൌ 1 means that data point ݋௜ and data point ݋௝ are density-connected.

Definition 7. (Clustering and noise) A clustering ܩܰܫܴܧܷܶܵܮܥ஽ of ܦ w.r.t. ఢܰ and

 ஼஽௉ that can be found inܴܥ ஼஽௉ is the union of all density-connected sets w.r.t. ఢܰ andܴܥ

஽ܩܰܫܴܧܷܶܵܮܥ ,ܦ ൌ ሼܮܥଵ,⋯ , ஽ܧܵܫܱܰ ௡ሽ. The noise is defined asܮܥ ൌ ଵܮܥሺ\ܦ ∪ ⋯∪

 .௡ሻܮܥ

re

set

blu

dat

dur

be

Figure 15 (a
their cluste

starting c
espectively b

Since th

s up a small

ue cluster ܮܥ

ta point, who

ring clusterin

obtained acc

a) A pixelat
ring in crea

crease patte
by circular,

pattern

he CRA clus

threshold va

௝ܮ
௕ if ܴ௜ ൒ ,ߦ

ose color reli

ng. With pro

cording to D

(a)

 (c)

ted multicel
ase pattern r
ern with its v
 diamond a
n with one f

sters the resa

alue of ߦ ൐

or will fall t

iability has a

oper setting o

Definition 7.

77

lular patter
restoration
vertices, cre
nd square m
flat-foldable

ampled data

0, so that a d

to some red

an absolute v

of ఢܰ and ܴܥ

For the case

 (b)

 (d)

rn; (b) Resa
algorithm;

eases and fa
marks; (d) T
e MV-assign

points by th

data point ݋௜

cluster ܮܥ௞
௥

value of sma

ܴ஼஽௉, the clu

e of resample

ampled data
(c) The cor

aces being n
The final up
nment.

heir color rel

௜ will either

if ܴ௜ ൑ െߦ.

aller than ߦ,

usters ܷܵܮܥ

ed data point

a points and
rresponding
numbered
pdated crea

iabilities, it

fall to some

Any other

won’t be us

஽ wܩܰܫܴܧܶܵ

ts in Figure

d
g

se

ed

will

 78

15(b) according to the pixelated multicellular pattern in Figure 15(a), blue and red

circles are data points that are clustered into red and blue clusters, while grey ones are

data points that are not clustered. In the entire sheet, there are totally two blue clusters

(square marks 1 and 2), and three red clusters (square marks 3, 4 and 5).

Here, we need to explain the reason why we use the resampled data instead of the

cells for clustering. Clustering is required before we proceed to the next stage of creasing,

since the core problem that the DBSCAN clustering stage resolves is to dig out the

natural number of clusters that is implicated in the pixelated multicellular pattern. But

since we use LED matrix screen as the analogy of the pixelated multicellular pattern, the

data points that represent what the whole colored pattern really look like are more proper

for clustering than the cells that represent the light sources (LEDs). If the resolution of

the cells is equivalent to the resolution of the LEDs, we can understand the resolution of

the resampled data points as the resolution of eyes for perceiving the picture shown on

the LED matrix screen. Moreover, data points of a higher resolution can more sensitively

and accurately deal with the suspicious noises. In Figure 16, (a) is a pixelated

multicellular pattern with two red cells that are surrounded by blue cells. According to

most density-based clustering algorithms including DBSCAN, the two red cells will

inevitably be identified as noise. But due to their relatively larger sizes, the two red cells

should have the probability to stand out as a sole cluster.

 79

(a) (b)

 (c) (d)

Figure 16 (a) A pixelated multicellular pattern, which has only two relatively larger
red cells that are surrounded by blue cells; (b) Resampled data points according to

(a); (c) Another pixelated multicellular pattern, which has only two relatively
smaller red cells that are surrounded by larger blue cells; (d) Resampled data

points according to (c).

Therefore, we get the resampled data points as shown Figure 16(b). The larger

resolution of the resampling result in an enough number of red data points that approve

the local region of the red cells being a cluster. Similarly, Figure 16(c) also has two red

cells surrounded by blue cells, but sizes of the red cells are significantly smaller. The

resampling of pattern Figure 16(c) results in Figure 16(d), that has only one red data

 80

point. Then the two red cells in Figure 16(c) cannot be a cluster, and must be identified

as noises. It is also true that by further improving the resolution of the resampled data,

we can anticipate the two red cells in Figure 16(c) to result in enough number of red data

points to be a cluster. However, as our eyes having limited resolution, we must set up a

resolution limit for resampling as well.

(3) Creasing. The next step is to place linear classifiers among clusters to

separate them into the faces of the crease pattern. The region of a cluster and its

surrounding linear classifiers become a face and its creases. The color of the face is the

same as the color property of its corresponding data cluster.

There are several rigid demands on the classification. Firstly, every small sub-

region in the origami sheet ought to be assigned to one of the faces. Secondly, each

interior vertex must be placed within a constrained distance from the intersection of 4 or

more clusters.

During classification, we need to minimize both the classification error and the

flat-foldability error within the entire pattern. The classification error function

Errୡ୪ୟୱୱ୧୤୧ୡୟ୲୧୭୬ applies the same definition used by most classification problems. With

the color reliability acting as a weight for each data point, a more reliably blue or red cell

that is misclassified will contribute more to the classification error.

௖௟௔௦௦௙௜௖௔௧௜௢௡ݎݎܧ ൌ ሼ∑ܴ௜ , (24)	ሽ݂݀݁݅݅ݏ݈݈ܽܿݏ݅݉	ݏ݅	݅݋݂݅

The flat-foldability error function Err୤୪ୟ୲ି୤୭୪ୢୟୠ୧୪୧୲୷ measures the least flat-

foldable interior vertex in the pattern.

 81

According to Kawasaki-Justin Theorem, we define and normalize the local flat-

foldability error of each vertex as

௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬,௜ݎݎܧ ൌ
ቚఈ೔,భିఈ೔,మା⋯ାఈ೔,ೖ೔షభିఈ೔,ೖ೔ቚ

ߨ2
 (25)

where ߙ௜,ଵ, ,௜,ଶߙ ⋯ , ,௜,௞೔ିଵߙ ௜,௞೔ are the consecutive angles between the creases aroundߙ

interior vertex ࢂ௜, and ݇௜ is the number of those angles. ݎݎܧ௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬,௜ is 0 for

perfectly flat-foldable vertex, and it can get a maximum value of 1. The flat-foldability

error function will be

௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬ݎݎܧ ൌ maxሺݎݎܧ௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬,௜		|	V୧	݅ݏ	ݎ݋݅ݎ݁ݐ݊݅	ݔ݁ݐݎ݁ݒሻ	 (26)

The multi-objective minimization problem is non-linear. Therefore, an iterative

search method could either periodically update the crease pattern as a whole, or only

update one of the components in each cycle. Because both the error functions are

formulated basing the local error function, it would make the problem easier if we

optimize the local error function of one vertex at each time. We thus apply a cascade

direct search method. The method is defined as a cascade because we apply a high level

random search method that periodically updates the crease pattern, while in each period,

we apply a low level random jump search to update only one vertex.

We must first give a definition of saddle region before we define the initial guess

of the cascade search. A saddle region is the region where multiple blue clusters and

multiple red clusters intersect. When getting the crease pattern, one interior vertex will

take place in each saddle region. In Figure 15(b), the blue squares and red stars are data

points that indicate suspect saddle regions. The actual saddle regions are those where

 82

blue squares and red stars aggregate together. Thus in this case, there is only one saddle

region, which is located near the center of the sheet, and the only interior vertex will be

placed in this saddle region.

To define a starting crease pattern of cascade direct search, we set one interior

vertex at the center of every saddle region, and one crease to be the optimal classifier for

each pair of neighboring data clusters. The exterior vertices will be sequentially decided

as the intersection points of the creases with sheet margins. In Figure 15(c), which shows

the corresponding starting crease pattern for Figure 15(b), vertices, creases and faces are

numbered by circular, diamond and square marks respectively. As previously stated, the

only interior vertex 1 is initially placed at the center of the saddle region. Creases 1-4 are

the linear classifiers, which go through a fixed point at vertex 1, for cluster pairs among

clusters 1-4. Crease 5 doesn’t go through any interior vertices, so it only needs to

optimally separate the two clusters 2 and 5. Exterior vertices 2-7 could then be attained

as the intersection of creases and sheet margins. Be notified that if the origami structure

is not confined by flat-foldability, the crease restoration algorithm shall terminate at this

point.

Under the consideration of flat-foldability, the cascade direct search will tune the

creases stepwise, until the minimization on both global classification error and global

flat-foldability error is achieved. In the example, Figure 15(c) is finally updated to the

one in Figure 15(d). This resulting crease pattern balances the two error functions

globally for the whole pattern.

 83

(4) Finalization. The finalization step mainly deals with optimizing values of the

two error evaluations in equation (3.13) and (3.15). CRA also derives all the MV-

assignments and face overlapping orders that pass the flat-foldability check through the

procedure given in in Section 2.2.

The outcome of finalization is thus the crease pattern with its flat-foldable

combinations of MV-assignment and face overlapping order. To favor broader

applications, we could also calculate the flat-folded state profile, and number of

overlapping face layers according to the crease pattern on demand as well. For the crease

pattern in Figure 15(d), the flat-folded profile has an area of 0.3006 compared to the total

area of 1 of the 1 by 1 origami sheet and a maximum of 3 layers of face overlaps.

Summary of PMR Representation and Its Encoding

In this section, I proposed a novel pixelated multicellular representation for

origami structures. The PMR defines an origami structure by distributed cells. The cells

fundamentally work as conceptual indicators, which directly define the origami by

coloring the faces in the same way that LEDs in a LED matrix screen display a picture.

Equivalent to an LED, each cell will have three key properties – cell type that shows the

color, cell size that indicates the light intensity, and cell position that implies the

resolution of cells. Every collection of cells with the same type (color) will define an

origami face. The creases are linear classifiers generated to separate faces. I proposed a

crease restoration algorithm to extract the equivalent crease pattern from a pixelated

 84

multicellular representation. I applied a special type of origamis that are flat-foldable to

demonstrate CRA comprehensively.

The PMR is advantageous for its availability of expressing any arbitrary simple

or non-simple crease, without losing the non-redundancy in representation. But after

discretizing the cell properties for the computational applications, the representativeness

of a pixelated multicellular pattern depend on the effective resolution and effective

precision, which are the metrics relative to the setting of two of the cell properties – cell

position and cell size. A third cell property is the cell color. In this research, the 2-

colorability feature of flat-foldable origami has enabled the cell color to be chosen

between minimally two colors.

The application of the PMR is more theoretically complicated and more

computationally complex than ice-cracking, but it opens an interface for structural

analysis techniques, such as FEA. To support such technique, the PMR can append the

material properties or thickness value for each cell.

Summary on Two Designs of Geometric Representations

The two geometric applications (genotype–phenotype mappings) apply similar

evolutionary algorithms, but they differ on the representation of candidate solutions. The

quality of the representations can be assessed by how well they satisfy the four major

requirements for designing good representations (Gen and Cheng 1999). The four major

requirements include non-redundancy, completeness, legality, and continuity. In general,

non-redundancy, completeness and legality demand the genotype-phenotype mapping

 85

(G-to-P mapping) not to be 1-to-n, 0-to-1, or 1-to-0. Accordingly, the theoretically

favorable G-to-P mapping is 1-to-1. However, an n-to-1 mapping is also acceptable,

though it may cause one optimum in the phenotype space being mapped to multiple

optima in the genotype space. Continuity requires that small variations in the genotype

space due to mutation only cause small variations in the phenotype space.

In this research, the three applications invoke two types of genotype

representations. The ice-cracking method applies the generative descriptions to define a

crease pattern directly, while the PMR implements an indirect representation that

equalizes a crease pattern and the equivalent artificial embryo form.

According to the comparison, the ice-cracking representation and the

computational embryogeny both have good non-redundancy and completeness. However,

computational embryogeny could not guarantee perfect legality, and the ice-cracking

include a few bits (no more than 3%), whose mutation will cause substantial

permutations on the crease pattern.

 86

CHAPTER IV

GENETIC ALGORITHM AND COMPUTATIONAL EVOLUTIONARY

EMBRYOGENY

The goal of this research is to solve the origami structure design problem that

was described in Chapter I. The type of problem doesn’t ask for achieving specific

folded shape, but it will indirectly provide descriptions on geometric and functional

features to help designers frame out their designs. In this type of design problem,

without a clear target shape, it is impossible to make an assertion on the topological

structure of the desirable design. Thus it is impossible to tell which deductive design

method should be selected, since deductive methods mostly only serve one type of

origami topology. As a result, it is inevitable that we have to expand the search space to

include any arbitrary crease pattern, regardless its topological structure. And because of

the fact that this type of design problem is NP-complete, an abductive design method,

which features the procedure of first proposing and then proving, is necessary. This

research selects the genetic algorithm and one of its variations, both of which implement

the abductive problem solving logic.

Genetic algorithm (GA) is one search heuristic that is inspired by the process of

natural evolution. It is generally used to derive an optimized solution through iteratively

proposing, adapting, and selecting candidate solutions. The most noteworthy advantage

of the genetic algorithm is that it avoids formulating an explicit model for the embedded

design search space by constructing a substitutive search space defined by the genetic

cod

the

des

de. The fund

e workflow c

scription of t

damental fram

chart based o

the same pro

Figur

mework of t

on the stages

ocedure in Fi

re 17 An ope

87

he genetic a

s in each GA

igure 18.

erational pe

algorithm is s

A epoch prov

eriod cycle o

shown in Fig

vides an alter

of GA

gure 17. And

rnative

d

 88

Figure 18 Workflow diagram of GA

 89

The GA requires an initial generation of candidate solutions to start the

evolutionary search. Then as in Figure 17, the method is recurrently run through the four

main stages, which are “genetic code translation”, “individual development”, “fitness

evaluation”, and “generation evolution”.

The “genetic code translation” stage implicitly converts the Gray code genetic

representations of the candidate solutions into the descriptions or instructions for

generating their physical representations. And in the “individual development” stage, the

physical representations of the candidate solutions are explicitly formed and recorded by

the GA.

After the first two stages, all the individuals in the current generation are

physically realized. In the “fitness evaluation” stage, the GA assesses how well the

physical representation, as well as genetic representation in several cases, of each

candidate solution meets the design objective and constraints. Then the GA will derive a

set of fitness values for the current generation according to the assessment.

Finally, in the “generation evolution” stage, the GA applies the evolutionary

operators of crossover, mutation, and selection that are used to obtain a new generation

from the current generation. The new generation will consist of the same number of

individuals as the current generation. Then, the current epoch ends, and the next epoch

starts. The evolution will be terminated as soon as we get the desirable solution or when

the fitness value of the best individual in the generation converges.

 90

Interpreting the Genetic Representation

For GA, the genetic representation of a candidate solution is a piece of genetic

code in Gray code. The genetic code is usually the combination of segments, each of

which represents an argument. Therefore the full genetic code can be understood as

equivalent to a set of arguments that uniquely define the corresponding physical

representation.

The format of partitioning the genetic code into segments, the way of converting

each segment into the argument value, as well as the approach of using the arguments to

describe the physical representation consists of the three key stages of interpreting the

genetic representation. For each specific application of GA, there is always an implicit

interpreter that manages the three stages to achieve the mapping between the genetic

representation and the physical representation of each candidate solution.

For the “ice-cracking” representation, the mapping between the genetic

representation and the physical representation has been clearly explained through Table

1. “Ice-cracking” implements the analogous procedure of ice cracks to develop the

crease pattern that the genetic representation encodes. The encoded arguments in “ice-

cracking” directly describe the vertices and creases, though in an unconventional way.

The PMR has the genetic representation to actually encode the arguments that

define its cells. And it also requires an additional CRA to extract the implicit information

of crease pattern. For this representation, the interpretation from the genetic

representation to the physical representation is indirect through the intermediate PMR,

which is defined as an equivalent representation of the crease pattern that it expresses.

 91

Compared to “ice-cracking”, the PMR can also adopt some features from

generative design. The genetic code has a hybrid structure that is the concatenation of

two parts. The first part is an explicit code that encodes the embryonic state - the initial

state of a PMR, and the second part is an implicit code that encrypts a set of generative

genetic rules that guide cells to change in size or color accordingly, so as to make the

entire embryonic PMR develope to its mature state. Since the PMR was inspired by the

existing research on the CEE, the genetic algorithm combining the PMR is named

computational evolutionary embryogeny for optimal origami design (CEEFOOD) in the

rest of this paper.

The generative genetic rules adopt the same “if-conditionals-then-actions” format

from CEE. In this study, three rules are designed as shown in Table 2, where ௕ܰ is the

number of neighboring blue cells, ௥ܰ is the number of neighboring red cells, ௧ܰ is an

integer argument defined in the rule, ܵ௕ is the total size of neighboring blue cells, and ܵ௥

is the total size of neighboring red cells, ܵ௧ is a real number defined in the rule.

Therefore, two arguments defining each rule are the rule’s type number (1~3), and ௧ܰ or

ܵ௧ for the conditional. According to Table 2, the essence of the three types of rules is to

assimilate a cell’s color with its surroundings. Thus with these rules, a genetic code has a

lower chance of resulting in an extremely random distribution of blue and red cell in the

PMR.

 92

Table 2 Generative genetic rules for PMR’s genetic representation
Type # Conditional Action

1 ܰ	 ൌ ሺݔܽ݉	 ௕ܰ, ௥ܰሻ 	൐ ௧ܰ Convert the cell color to blue, if ௕ܰ> ௥ܰ; to red, otherwise

2 ܵ	 ൌ ,ሺܵ௕ݔܽ݉	 ܵ௥ሻ 	൐ ܵ௧ Convert the cell color to blue, if ܵ௕>ܵ௥; to red, otherwise

	ܦ 3 ൌ ሺܵ௕ݏܾܽ 	െ ܵ௥ሻ 	൐ ܵ௧ Convert the cell color to blue, if ܵ௕>ܵ௥; to red, otherwise

The encoding of the genetic codes is very intuitive. For the explicit code part, we

sequentially list all the arguments that define the cells in the embryo of a PMR and

convert the arguments into Gray code. For the implicit code part, we extract the

arguments (rule type #, ௧ܰ, and ܵ௧) that define the generative genetic rules and convert

the arguments into Gray code. The implicit code part also has several additional bits –

called rule switches, each of which controls whether one of rules is active or not. If the

rule switch bit of a rule is 1, the rule will be executed; if the rule switch bit is 0, the rule

will be ignored in the individual development stage.

Individual Development According to the Generative Genetic Rules

Based on the embryo state and the generative genetic rules, the PMR of each

individual will start developing from its embryonic state and update the sizes and colors

of cells periodically. In each development period, every cell in the individual will go

through all the generative genetic rules. If the present size or color of any cell satisfies

the conditionals in a piece of generative genetic rule, the cell will execute the

corresponding actions. For example, if a red cell is about to execute a rule - saying “if

 93

there are 2 more blue cells around than red cells, convert the cell to blue”, we need to

inspect the adjacent cells of this red cell first. If we find that the adjacent cells include 6

blue cells and 2 red cells, which satisfy the conditional of the rule, we take the

corresponding action to recolor the red cell to blue.

A maturity check is set up as a criterion to decide when an individual’s

development stage terminates. Normally the development terminates if none of the cells

will change in its size or color. The maturity check also sets a limit for the maximum

development cycle. Any individual that doesn’t stabilize within the limited number of

cycles is terminated and labeled as “abnormal”.

Here is an explanatory example of how a genetic rule leads a PMR to develop

from its embryonic state to its mature state. The embryonic PMR defined by the explicit

part of the hybrid genetic code is given by Figure 19(a). The individual has one

generative genetic rule defined by the implicit part of the hybrid genetic code. The rule

says “if a cell has more than 2 adjacent blue/red cells, convert the cell to blue/red”. By

definition, only the cells right above, right below, to the left of or to the right of a cell are

its adjacent cells. So in the embryonic state of PMR, only the two cells highlighted by

with green radiance satisfy the conditional of the genetic rule. Thus the two cells will

execute the corresponding actions – the red cell in the middle converts to blue for having

more than 2 adjacent blue cells, and the bottom middle blue cell converts to red for

having more than 2 adjacent red cells. After the color change of the two cells, the PMR

develops into a new state as shown in Figure 19(b). The maturity check will compare the

two consecutive states in Figure 19(a) and (b). Finding that Figure 19(a) and (b) are not

 94

identical, the maturity check fails and the individual development will continue. So the

state in Figure 19(b) is not the mature state, and we name it as an intermediate state.

Then the next cycle of individual development starts with the intermediate state Figure

19(b) and run the rule on all the cells again. This time, the top middle cell is the only one

that satisfies the conditional of the rule. Since this cell has more than 2 adjacent blue

cells, its color will be assigned to blue, though the color doesn’t change in fact. After

deriving another new state as shown in Figure 19(c), the maturity check compares the

states of Figure 19(b) and (c). Finding that the two states of the PMR are identical, the

maturity check passes. Therefore, we mark the state Figure 19(c) as the mature state and

terminate the individual development stage.

(a) (b) (c)

Figure 19 The individual development of a PMR with 3 by 3 cells. (a) the
embryonic state of the PMR has 5 blue cells and 4 red cells; (b) the rule directs two

cells to change their colors and guilds the PMR to an intermediate state; (c) The
rules directs the PMR to develop into the mature state, which also has 5 blue cells

and 4 red cells.

Embryonic State Mature State

Rule Rule

Maturity Check - Fails Maturity Check - Passes

Intermediate State

 95

Evaluate the Fitness With Respect to Requirements

The automatic evaluation of every candidate solution is another essential

component of GA. The definition of the objective function has been presented in the first

chapter with the problem statement. In this section, the algorithms for deriving the

fitness/objective components will be discussed.

Algorithm for Locally Flat-foldable Mountain-Valley Assignment

The validation of the flat-foldability of an origami crease pattern is equivalent to

checking the existence of a mountain-valley assignment (MV-assignment) of the creases,

according to which the faces won’t collide with or pierce through each other as the shape

is folded flat. Since every crease can be either a mountain of a valley, for a given crease

arrangement with m creases, there are at most 2m possible MV-assignments. For instance,

the single vertex crease pattern with 6 creases (Figure 20) will have 26 MV-assignments

theoretically. However, as we are looking for flat-foldable MV-assignments, some of the

26 MV-assignments are not qualified. The simplest non-flat-foldable case is when the 6

creases are all mountains, and all faces must be bent.

 96

(a) (b)

Figure 20 (a) An example crease pattern with 6 creases. Creases are indexed by
numbers in diamonds. The angles ࢻ૛ and ࢻ૞ are local min, thus creases #2 and #3

must be one mountain and one valley, and so do creases #5 and #6; (b) This
displays one possible flat-foldable MV-assignment for (a).

Suppose that for each interior vertex, the angles among its linked creases are

already designed to satisfy Kawasaki’s theorem, so that the local flat-foldability will

only depend on the satisfaction of Maekawa’s theorem and the local min theorem.

Unlike Kawasaki’s theorem that is concerned about the angles of creases, Maekawa’s

theorem and the local min theorem define the requirements of the MV-assignment. Let’s

recall what the two theorems say. Maekawa’s theorem asks that the difference of the

numbers of mountains and valleys around a vertex must be 2. Therefore, for the same

crease pattern in Figure 20, there are either 4 mountains and 2 valleys, or 2 mountains

and 4 valleys. As a result, the maximal possible number of MV-assignments due to the

request of flat-foldability will drastically decrease to

଺ܥ
ସ ൅ ଺ܥ

ଶ ൌ 2 ൈ ଺ܥ
ଶ (27)

Then the local min theorem will further decrease this limit. For the crease pattern Figure

20, there are two local minimal angles, so the crease #2 must have the opposite MV with

 97

the crease #3, and the same for the pair of creases #5 and #6. In this case, the flat-

foldable MV-assignment choices need to exclude the cases, in which any of the local

min crease pairs have the same MV. It would be much easier if we separately consider

those local min crease pairs from the very beginning. In general, a single vertex crease

pattern has ݉ creases, where ݉	 ൌ 	2 ൈ ܯ ൅ 2ሺܯ	 ൌ 	1, 2, 3, … ሻ, and ܰ local min crease

pairs, where 1 ൑ ܰ ൑ Each of the N pairs has two possible MV-assignments. And .ܯ

among the other 2 ൈ ሺܯ െ ܰሻ ൅ 2 creases, there are either ܯ െܰ ൅ 2 mountains and

ܯ െܰ valleys, or ܯ െܰ ൅ 2 valleys and ܯ െܰ mountains. The total number of flat-

foldable MV-assignments will be

ܷ௏ሺܯ,ܰሻ ൌ 2ே ൈ ൫ܥଶൈሺெିேሻାଶ
ெିேାଶ ൅ ଶൈሺெିேሻାଶܥ

ெିே ൯ ൌ 2ேାଵ ൈ ଶൈሺெିேሻାଶܥ
ெିே (28)

The value above can still become very large as ܯ and/or ܰ increase. Adding

more vertices will make the situation more complex. Given a crease pattern has l interior

vertices, we can derive the upper limit of the number of local flat-foldable MV-

assignment for the i-th vertex is ܷ௏௜ሺܯ௜, ௜ܰሻ. And if there are ݉௖ creases that are the

ones connecting two vertices, the theoretical maximal number of possible flat-foldable

NV-assignments of the full crease pattern will be

ܷ஼௉ሺܯ,ܰ,݉,݉௖ሻ ൌ ሺ∏ ܷ௏௜ሺܯ௜, ௜ܰሻ
௠
௜ୀଵ ሻ/2௠೎ (29)

For a crease pattern, we can use the following algorithm to derive the full set of

flat-foldable MV-assignments.

Algorithm: Deriving all the locally flat-foldable MV-assignments:

1 From a given crease arrangement, keep vertices indexed by numbers of 1 to ݈,

and creases by 1 to ݉.

 98

2 Create a library of existing MV-assignments – ܮெ௏

3 Create a set of Boolean variables	 ௝ܻ ൌ 	0	ሺj	 ൌ 	1, 2,mሻ	to mark whether the

algorithm has already assigned the direction for each crease.

4 For i = 1 to l

4.1 Create an empty temporary library of MV-assignments – ܮெ௏

4.2 For each existing MV-assignment ܽெ௏ in ܮெ௏

4.2.1.1 Inspect the creases around vertex #i that has already been given

a MV in ܽெ௏;

4.2.1.2 Find out all the possible MV-assignments for the creases

around vertex #i that ௝ܻ ൌ 	0, and store theses MV-assignments

in ܮெ௏

ெ௏ܮ 4.3 ൌ ெ௏ܮ

4.4 For each crease #j that is connected with vertex #i

4.4.1 ௝ܻ ൌ 	1.

 ெ௏ contains all the locally flat-foldable MV-assignments.Since the size of theܮ

solution is large, the computational complexity cannot be reduced. At this stage, the

computer isn’t able to make the judgment about whether a crease pattern is flat-foldable

without trying each possible MV-assignment until reaching a flat-foldable one.

Algorithm for Global Flat-foldability Inspection

In the last section, I have given a discussion about flat-foldable MV-assignments.

But the resultant flat-foldable MV-assignment can only guarantee the local flat-

 99

foldability everywhere. To inspect the global flat-foldability, it is necessary to exclude

the MV-assignments that will cause face collision as all the creases are folded to േߨ.

Therefore, the question becomes - having a crease pattern and a locally flat-foldable

MV-assignment, how to check for the existence of face collisions.

Now, let’s start with the simplest case, where a crease pattern has two parallel

valley creases Figure 21. If we fold the crease #1 first, and then the crease #2, the shape

is nicely flat-foldable. But as we reverse the sequence of folding, and start form the

crease #2, the folding motion route of the crease #1 will be blocked by the folded face #3.

For this example, we state that the crease pattern is globally flat-foldable, because the

folding sequence given in Figure 21(b) folds the shape flat without causing face collision.

But it is also true that not all the folding sequences for this globally flat-foldable shape

can fold the shape flat.

(a) (b) (c)

Figure 21 A crease pattern with two parallel valley creases and its folding
sequences. (a) The crease pattern with indexed creases and faces; (b) Sequence 1 -
crease #1 → #2: flat-foldable; (c) Sequence 2 - crease #2 → #1: not flat-foldable due

to face intersection (collision, or pierce).

 100

Now we proceed to a more complex example as shown in Figure 22(a), which

has interior vertices. The pinwheel base has 12 creases, which include 4 mountains

(dash-dot lines) and 8 valleys (solid lines). The MV-assignment presented in Figure 22(a)

is locally flat-foldable everywhere. Figure 22(b) shows what the flat-folded shape looks

like over the top, and it also proves that the pinwheel base is globally flat-foldable.

Let’s think about how to prove global flat-foldability of this pinwheel base crease

pattern. Recall the crease pattern in Figure 21. It has only simple folds that don’t have

intersections with each other. For a simple fold in a folding sequence, it is valid or flat-

foldable, if and only if at the current state, all the faces have no intersection with the

crease from the top view. In Figure 22(a), the creases of the pinwheel base crease pattern

are all linked through interior vertices, which means these linked creases must be folded

simultaneously. Thus in this case, we cannot use the same approach for Figure 21.

In theory, the flat-foldability only talks about the static properties of the shape

when all the creases are folded to േߨ, regardless of how difficult the shape folds

physically, or how many auxiliary folds the user has to make during the procedure to

reach the final shape. Therefore, we will look for an approach that doesn’t track the

folding sequence, but only investigates whether the faces can be arranged in a certain

order from bottom to top without causing intersections.

 101

(a) (b)

(c) (d)

Figure 22 A pinwheel base and its flat-folded state.

For the crease pattern shown in Figure 20(b), we can fold it flat in two ways.

Using the face between creases #4 and #5 as the bottom one, we can either fold the flap

of crease #3 below the flap of crease #6 (Figure 23(b)), or fold the flap of crease #6

below the flap of crease #3 (Figure 23(c)). To testify the global flat-foldability of the

crease pattern, we need to at least seek out one of the two flat-folding ways. As an

extensive study, we rotate creases #2 and #3 in Figure 23(a) clockwise to derive the

crease pattern in Figure 24(a), so that ߙଵ becomes smaller and ߙଷ larger. Folding the

altered crease pattern flat, we can only place the flap of crease #3 above the flap of

crease #6 Figure 24(b). If we try to push the flap of crease #6 into the limited space

 102

between the two faces adjacent to crease #2 (Figure 24(c)), the face between creases #1

and #6 will have to bend to fit in. However, the crease pattern in Figure 24(a) is still

globally flat-foldable, since it has at least one legal way to fold flat.

(a) (b) (c)

Figure 23 A single vertex crease pattern and two ways of flat-folding it.

(a) (b) (c)

Figure 24 An altered crease pattern from Figure 12. It has only one way to be flat-
folded as in (b). Using the way shown in (c) would cause the face highlighted to

bend within the limited space closed by the two faces adjacent to crease #2.

From the last two examples, especially the one of Figure 24, we see that the order

of faces overlapping with each other is crucial for determining whether the way of

 103

folding results in a flat-folded shape. Therefore, finding out the way of flat folding a

shape is equivalent to finding out a face overlapping order, according to which none of

the faces will have to crumple or bend, while the creases are folded to േߨ.

The most straightforward approach to detect the existence of a flat-foldable face

overlapping order is to go through every possibility until we find one out. This brute

force method is computationally complex. But since the problem of validating a crease

pattern flat-foldable has been proved NP-complete, a brute force method doesn’t sound

worse.

But for such a brute force search, the difficult part is in how to verify if a face

overlapping order directs the faces to fold flat. My solution is to assume that the faces

have zero thickness and collision size. So the faces can fold freely in the space and

piercing is also allowed. Then after calculating the ultimate position and orientation of

each face at the flat-semifolded state, we check whether there exist some instances of

face piercing according to each face overlapping order. The following criterion provides

the sufficient condition for the existence of face penetration. Criterion: At the flat-

semifolded state, if there is a crease #j partially or fully falling inside the region of a face

#k, then the face #k cannot be placed between the two faces adjacent to crease #j in the

face overlapping order. Otherwise, face #k will pierce through crease #j.

The computational complexity of applying this criterion is Οሺ݉݊݌ሻ, where ݉ is

the number of creases, ݊ is the number of faces, and ݌ is the average number of creases

that each face has. And the application of this criterion will return a table ிܶ௉ with ݉

rows and ݊ columns. The contents are Boolean values telling whether a face can be

 104

placed between the two flaps of a crease. After being fully filled, this table can be

repetitively referred to by every candidate face overlapping order.

Then go up one level to review the brute force search of all possible face

overlapping orders. The ordering of n faces should be Οሺ݊!ሻ. But if we also put the MV-

assignment into consideration, we will find that from the standpoint of any arbitrary face,

its adjacent faces that are linked by mountain creases can only be folded below, and its

adjacent faces that are linked by valley creases can only be folded above. Thus, the face

overlapping orders that break this pattern should be ruled out. As a result, the brute force

search can be simplified to a tree-search featuring branch-trimming. The algorithm of the

tree search can be described as:

Algorithm: Tree search of face overlapping orders (with respect to a crease

pattern and a given MV-assignment)

1 Select the face #݇௥ to be the root that is fixed. The root face is also expressed as

௥݂

2 Create a queue of faces ܳி and a queue of creases ܳ௖

2.1 For each crease ܿ௜
௥ that is on the boundary of ௥݂

2.1.1 Push ܿ௜
௥ into the back of ܳ௖

2.1.2 Push ௜݂
௥ into the back of ܳ௙, where ௜݂

௥ is the face that is linked with

௥݂ over the crease ܿ௜
௥

3 Create an empty library of creases ܮ஼

4 Create a library of currently found face overlapping orders. The library is

named ܮிை, and the i-th face overlapping order in this library is expressed as ݋௜.

 105

4.1 Initialize the library ܮிை ൌ ሼ݋ଵሽ with only one member of face

overlapping order ݋ଵ ൌ ሼ ௥݂ሽ.

4.2 A face overlapping order variable ݋௜ is a sequence of faces, where the

order of the faces in the sequence is the order of the faces in the

corresponding face overlapping order from bottom to top.

5 Create and initialize a Boolean vector ܤிை of ݊ െ 1 “false”s, and one “true” at

the ݇௥-th element

6 While ܳ௖ is not empty

6.1 In this iteration, we look for all the possible placements of the first

element ଵ݂
ொ in the queue ܳ௙ in each currently found face overlapping

order in the library ܮிை.

6.2 Create an empty temporary library of face overlapping orders ܮிை

6.3 For each ݋௜ in ܮிை

6.3.1 For each place that we can insert ଵ݂
ொ in ݋௜, including the beginning,

the end or the position between any two faces in the sequence, if the

placement isn’t in conflict with the criterion expressed by the table

ிܶ௉, then push the new face overlapping order ݋௜ (݋௜ with ଵ݂
ொ inserted)

to the back of ܮிை

ிைܮ 6.4 ൌ ிைܮ

6.5 For each crease ܿ௜
ொଵ that is on the boundary of ଵ݂

ொ but not a member of ܮ஼

6.5.1 Push ܿ௜
ொଵ into the back of ܳ௖

 106

6.6 Push ௜݂
ொଵ into the back of ܳ௙, where ௜݂

ொଵ is the face that is linked with ଵ݂
ொ

over the crease ܿ௜
ொଵ

6.7 Pop the ଵ݂
ொ out of ܳ௙

6.8 Pop the first element ܿଵ
ொ of ܳ௖ out, and push it to the back of ܮ஼

7 L୊୓ stores all the globally flat-foldable face overlapping orders. And if L୊୓ is

empty, the crease pattern with the corresponding MV-assignment is not globally

flat-foldable.

The algorithm above gives a systematic approach to thoroughly seek out all the

possible face overlapping orders of a crease pattern to be folded flat. The computational

complexity of this algorithm depends on the number of mountains and valleys. For the

best situation, the complexity would be expected to be Οሺ݊!/2௡ሻ.

Calculating the Flat-folded State Profile Area

The flat-folded state profile area is the key objective of the design problem given

in the chapter I. However, it is not difficult as long as the design has been proved flat-

foldable. And of course, if the shape is not flat-foldable, there is no need or no way to

calculate the profile area.

The method of calculating the profile area has two steps:

Step 1: Simulate the folding and calculate the orientation of the faces. A very

basic method can be used for this step.

Step 1.1 – Fix one face onto a Cartesian CS.

gra

rep

for

(th

cre

wh

ori

Th

Step 1.2

aph, each chi

presenting fa

r faces in the

e stationary

ease that con

Step 1.3

hich form the

entations of

Step 2:

e area of the

F

2 – Use the s

ild node is a

ace must be m

e crease patte

face) is mar

nnects its two

3 – Flip each

e path from t

the flipped f

 Compute th

e union shap

(a)

Figure 25 A

stationary fa

face connec

minimized in

ern Figure 25

rked by a bla

o nodes (two

h face severa

this face up t

faces.

he Boolean u

e is the flat-f

A crease pat

107

ace as the roo

cted to its pa

n the tree gra

5(a) is given

ack dot. In th

o faces).

al times alon

to the root fa

union of the

folded state

tern and tre

ot to build a

arent. And th

aph. One of

n as Figure 2

he tree graph

ng the crease

ace, sequent

flipped face

profile area.

ee structure

tree graph. I

he depth of e

the possible

25(b), where

h, each edge

es represente

tially. Record

es as well as

.

 (b)

e of its faces

In the tree

each child no

e tree graphs

the root nod

represents th

ed by the edg

d the

the root face

s

ode

de

he

ges,

e.

 108

Design the Evolutionary Operators and Complementary Mechanisms

The GA is a search heuristic inspired by the process of natural evolution. It is

generally used to derive an optimized solution through iteratively proposing, adapting,

and selecting candidate solutions. The most noteworthy advantage of GA methods is that

it avoids formulating an explicit model for the embedded design search space by

constructing a substitutive search space defined by the genetic code. Thus GA methods

generally provide an effective approach for a random search in both a well-defined

design space as well as the design space that the designers do not intentionally seek.

To derive optimal solutions, the GA methods must possess the capability of

performing both broad exploration and deep exploitation. The broad exploration

guarantees the diversity of the coming candidate solutions, while the deep exploitation

preserves the once-emerged elite solutions. This balance between exploration and

exploitation, which is also a balance between diversity and elitism, is the cardinal

objective of making modifications on GA’s basic evolutionary operators.

Operators for Elitism

In this research, the measures of elitism preservation are scheduled in accordance

with two considerations: to prevent the elites’ extinction and to restore the extinct elites.

The extinction of the emerged elites is usually caused by faulty selection or unexpected

mutation. The simplest but most reliable way to prevent the extinction of the elites is to

ensure that the elites are always selected into the next generation or to diminish the

probability of mutating elites. On the other hand, restoring the extinct elites requires

som

com

bre

elit

Par

199

me complem

mplementary

eeding; while

Figur

In capti

te individual

reto archive

99). Sometim

mentary mech

y mechanism

e if it backs

re 26 The il

ive breeding

ls once they

used in (Jen

mes, we alter

hanisms to m

m backs up th

up the elites

lustration o

g (Figure 26(

emerge. Thi

nsenm 2003,

rnatively res

109

make backup

he elites in a

s in an “inter

(a)

(b)

of captive br

(a)), an exter

is mechanism

Knowles an

strict the cap

ps of candida

an external s

rnal” storage

reeding (a)

rnal crowd w

m is develop

nd Corne 199

ptive breedin

ate solutions

storage, it is

e, it is called

and atavism

will be create

ped based on

99, Zitzler a

ng storage siz

s. If the

called captiv

d atavism.

m (b).

ed to store th

n the externa

and Thiele

ze by only

ve

he

al

 110

allowing non-dominated individuals. When a newly captured individual comes to the

captive breeding storage, it is compared with all the current members in the crowd.

While the external Pareto archives only store elites, the external storage of captive

breeding allows crossover operations among its members. The children members have

the chance to inherit the advantages from both their parents, and thus become the elites

among elites. Thereon when the GA is executed in each generation, nୠሺ൏ Nୠሻ randomly

chosen members will be released from the captive breeding crowd into the evolving

population to compete with the entire current generation of individuals.

Another complementary mechanism called atavism stores the evolving

population (Figure 26(b)). Atavism functions by directly introducing the elite individuals

from the generation of ௔ܰ epochs back into the current generation. Atavism essentially

regulates the evolution direction from deterioration due to unwanted mutation of an elite

individual.

Operators for Diversity

Although captive breeding and atavism work well to maintain the elite

individuals in the population, they also cause severe pre-mature convergence toward the

early-emerged elites. If the fitness evaluation is scalar, a higher mutation rate, the

stochastic universal sampling (SUS) selection, and injection of random candidate

solutions can be applied to increase the diversity within the population so as to neutralize

the extreme elitism. A higher mutation rate, which extends the search step size, not only

prevents the search from being trapped into a local optimum, but also enables a greater

 111

variety of solutions. Nevertheless, SUS selection permits some of the less fit candidates

to be selected. Using SUS selection has the non-negligible risk of causing elites to be

eliminated accidentally. If the captive breeding and atavism mechanisms are used,

however, the lost elites are returned to the population. Injecting randomly generated

candidate solutions into each generation to take part in the crossover and selection

processes also broadens the solution search region.

Another diversity metric that will be considered in this research is the use of a

multi-objective fitness evaluation, as the origami design or self-folding control problems

usually involves more than one requirement. Under multi-objective GA, the fitness of

each candidate solution is represented by a fitness vector, which is formed by the unified

fitness evaluation components. The individuals are ranked through multi-objective

Pareto ranking (Goldberg 1989, Konak, Coit and Smith 2006). A candidate solution

from a higher frontier is always more preferable than any one from a lower frontier. The

candidate solutions from the non-dominated Pareto frontier are the elites. Unlike a

weighted single objective fitness ranking relying on a sort of “overall” performance, the

multi-objective ranking and multi-objective GA is fundamentally open to more

“specialized” elites rather than just the “all-around” elites found by a normalized fitness

ranking, and thus increases the diversity among the elite class of the population.

However, the non-dominated Pareto frontier will sometimes contain more candidate

solutions than are wanted for selection. Under such circumstances, normalized fitness

evaluation is applied to give a ranking inside each frontier.

 112

During CEEFOOD evolution, in addition to the GA operators of selection,

mutation and crossover, we also apply another special operator called code assimilation.

In this research, we use the term solution space to name the domain of the physical

representation; and use the term search space to name the domain of the genetic

representation. As defined in prior sections, the physical representation is generally the

crease pattern, but in this research it directly represents the PMR that is described by the

genetic representation, and indirectly indicates the crease pattern that is derived by using

the CRA on the PMR.

Here, we need to clarify that appending the generative genetic rules (the implicit

code part) in the genetic representation of the candidate solutions doesn’t expand the

scope of the solution space. The setup of the cell sizes and colors in the PMR doesn’t

change, so the total number of possible PMRs doesn’t change either. But the implicit

code will increase the original design search space by creating multiple instances for

each possible solution. These instances share the same physical representation, but

different genetic representation. They are different genetic code and rule routes to get to

the same candidate solution.

Among the instances of one physical representation, there is always at least one,

whose explicit genetic code part defines the embryonic PMR having the exact identical

physical representation as the mature PMR of the other instances, while its implicit code

part has all the rule switch bits to be 0. We name these instances with their genetic rules

switched off the non-aging instances. With all the rules turned off, the embryonic PMR

will remain unchanged during the individual development stage, so its mature state will

 113

be exactly the same. For example, consider a simplified setting of PMR, which has only

four cells with only color being customizable. In the hybrid encoding, the explicit part

has four bits, the first defines the color of the upper-left cell, the second the upper-right

cell, the third the lower-left cell, and the fourth the lower-right cell. A bit of 0 indicates

blue and 1 indicates red. For the four candidate solutions, whose individual development

procedures are shown in Figure 27, their rules and rule switch states are all listed.

Though the explicit code parts of the four candidate solutions define different embryonic

PMRs, their rules guild them to develop into the same mature PMR. Since the candidate

solutions in Figure 27(c) and (d) have their rules switched off, they are the non-aging

instances of Figure 27(a) and (b).

Figure 27 The individual development of four equivalent instances. For having a
switch-off rule, (c) and (d) are both non-aging instances.

Code assimilation is an operator that introduces the non-aging instance

equivalents of some existing candidate solutions into the current generation. If our PMR

 114

setting is as that of the candidate solutions in Figure 27, and we have instance Figure

27(a) in the current generation, code assimilation is to introduce either or both of Figure

27(c) and (d).

Code assimilation accelerates the evolution by expanding the search region based

on the existing individuals in each epoch. And because the appendage of the implicit

code part enlarges the search space and lowers the solution search efficiency, the code

assimilation is necessary for neutralizing these drawbacks. For instance, suppose that the

big box in Figure 28(a) defines the entire search space, and the “solid star” shows the

location of a candidate solution. The solid circle is the current search region, where the

evolved solutions - the products of the “solid star” solution through evolutionary

operators – will locate. With the code assimilation, the non-aging equivalent of the

“solid star” solution is introduced in. Its location in the search space is shown by a

“hollow star” in Figure 28(b). The dashed circle represents the region, where the evolved

solution based on the “hollow star” will locate. After applying code assimilation, new

candidate solutions will be found in the union search region of the two circles instead

only in the solid circle.

Elitism and Diversity

Elitism and diversity seem to be two contrasted concepts just like the white and

black color shown in Figure 29. But in fact, the measures proposed for strengthening the

elitism and for expanding the diversity need to cooperate in the frame of GA and CEE

very well, because they are designed to utilize the elitism and diversity as the centripetal

for

une

thr

wil

F

rces that prev

expectedly g

ough captive

ll also be mo

F

Figure 29 T

vent each oth

got lost durin

e breeding a

oderated by t

Figure 28 Th

he synthesis

her from esc

ng pursuing

and atavism;

the multi-obj

(a)

he code assi

s among the
ones that i

115

caping to ext

diversity am

while the pr

bjective rank

milation exp

e measures t
increase the

tremity. For

mong solution

re-mature co

king.

 (b)

pands the s

that strengt
e diversity.

instance, the

ns will even

onverge caus

earch regio

then the elit

e elites that

tually return

sed by elitism

on

tism and the

n

m

e

 116

CHAPTER V

ORIGAMI DESIGN RESULTS AND DISCUSSION

In this chapter, the results from the two prior chapters will be applied to the open

origami design problem stated in the first chapter. I will present the designs that are

derived by the genetic algorithm with the direct “ice-cracking” representation and the

genetic algorithm with indirect PMR respectively. As the PMR was inspired by the

existing research on the CEE, so the genetic algorithm combining the PMR is also an

application of CEE, and it is, therefore, named computational evolutionary embryogeny

for optimal origami design (CEEFOOD).

Then the designs, as well as the procedure of how the method arriving at the

designs, will be put into comparison. This chapter will make discussions about these

designs, so as to display the advantages of the abductive design method for open origami

design problems.

Design Results by Genetic Algorithm with “Ice-cracking”

In this application, the GA applies the hybrid ranking approach, which includes

the multi-objective ranking for separating candidate solutions into tiers and the

normalized objective ranking for assessing the quality of the candidate solutions within

the same tier. In hybrid ranking, the ones from a higher tier are always treated as more

favorable solutions than those from a lower tier, no matter what their normalized fitness

values are.

 117

The desired flat-folded shape profile area ܣ௧ is set to 0.25. Since the “ice-

cracking” representation implicates the guarantee of flat-foldability, thus the

 ௙෢ in the original objectiveܪ ௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬ – that is required for calculating the termݎݎܧ

function – is always 0, I add another two terms for this application, which request the

system DOF to be lower than 5 and the shortest crease to be longer than 0.2. So the

normalized fitness function (objective function) is

ܨ ൌ ௔തതതതܪ௔ݓ	 ൅ ௘തതതതܪ௘ݓ ൅ ௗ௢௙തതതതതതܪௗ௢௙ݓ ൅ ௖തതത (31)ܪ௖ݓ

where

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ ௔തതതതܪ ൌ หܣ௙௙ െ 0.25ห

௘തതതതܪ ൌ หܧ௣ห

ௗ௢௙തതതതതതܪ ൌ ൝
1, ݂݅	݊஽ைி ൐ 6

݊஽ைி െ 1
5 , ݂݅	݊஽ைி ൑ 6

௖തതതܪ ൌ ൝
0, ௠௜௡௖ܮ	݂݅ ൐ 0.2

0.2 െ ௠௜௡௖ܮ
0.2 , ௠௜௡௖ܮ	݂݅ ൑ 0.2

 ௠௜௡௖ isܮ ௣ is the displacement of the CoM, andܧ ,௙௙ is the flat-folded state profile areaܣ

the length of the shortest crease. The penalty term ෠ܲሺ݉ሻ is 0 when the number of creases

݉ is in the range of ሼܯ௅,ܯ௎ሽ ൌ ሼ1, 25ሽ; otherwise, ෠ܲሺ݉ሻ is 1. The weight vector is

assigned to ൛ݓ௔, ,௘ݓ ,ௗ௢௙ݓ ௖ൟݓ ൌ ሼ0.28, 0.41, 0.1, 0.21ሽ in this application.

Then for the multi-objective ranking, the fitness vector is Fሬറ ൌ ሼfଵ, fଶ, fଷ, fସሽ,

where

ە
ۖ
۔

ۖ
ۓ ଵ݂ ൌ ௔തതതതܪ

ଶ݂ ൌ ௘തതതതܪ

ଷ݂ ൌ ௗ௢௙തതതതതതܪ

ସ݂ ൌ ௖തതതܪ

 118

Using the hybrid fitness ranking with the four above components, the GA derives a

design with 2 vertices, 9 creases and 8 faces as in Figure 30. This design fits the problem

objective and constraints very closely. Due to the fact that the design has ܣ௙௙ of

௣ of 9.6957ܧ ,0.25013353 ൈ 10ିହ, DOF of 2, and ܮ௠௜௡௖ of 0.2119, its fitness vector is

ሼ1.3353 ൈ 10ିସ, 9.6957 ൈ 10ିହ, 0.2, 0.0595ሽ.

 (a) (b) (c)

Figure 30 (a) A crease pattern design (normalized fitness of 0.0208) found through
the GA for the problem in Section 4, where vertices are labeled by numbers in

circles, and creases by numbers in diamonds; (b) The intermediate folded state; (c)
The corresponding flat-folded state profile that has an area of about 0.2501. Five

vertices are still on the boundary of the profile.

The design shown in Figure 30 has excellent performance based on the fitness

criteria of a flat-folded profile, change on center of mass, and the shortest crease. The

1

2

1

2

34

5

6

7

8

9

3

4
5

6

7

8

9 10

1

2
5

3

7

Fold

 119

number of DOF still has the potential to be further optimized to 1, as the current ݊஽ைி is

2.

However, at this stage there are several open questions for this design problem

that the GA could not yet give solutions to:

1) Is this design the global optimum, as there do exist other designs, such as Figure

31 that have very similar performances to the design shown in Figure 30 on all

considered measures?

2) Before the genetic algorithm actually generates a solution as in Figure 32 with a

nearly 0 fitness value, can we conclude whether a perfect design (a design with

all its fitness vector components being 0) exists or not.

Nevertheless both the designs in Figure 30 and Figure 31 have already solved the

problem approximately. Of course, the theoretically ultimate target is to get a design like

Figure 32.

The essence of the NP-completeness of the open origami design problem

determines that it is extremely difficult to precisely locate the global optima even by

intelligent heuristics. Therefore, it can be stated that the three designs shown above are

all acceptable and produce good results.

 120

 (a) (b) (c)

Figure 31 (a) A second crease pattern design (normalized fitness of 0.0209), which is
very similar to Figure 30; (b) The intermediate folded status; (c) The corresponding

flat-folded state profile that has an area of about 0.2499.

 (a) (b) (c)

Figure 32 (a) A third crease pattern design (normalized fitness of 0.0035, and
fitness vector of {0.0013, 0.0077, 0, 0}), which is almost an ideally optimal design; (b)
The intermediate folded status; (c) The corresponding flat-folded state profile that

has an area of about 0.2577.

Fold

Fold

 121

Discussion

The plots below will entail how the three designs evolve over generations under

the control of the GA. Figure 33, Figure 34 and Figure 35 are respectively for the

designs Figure 30, Figure 31 and Figure 32. In the three plots, the blue solid lines show

the normalized fitness value of the best candidate solution in each evolutionary

generation. Such best candidate solution must be in the non-dominated tier (highest tier)

according to the multi-objective ranking, and must be with the least normalized fitness

value within its tier.

Figure 33 The fitness values of the topmost elites in the family of design Figure 30.
 indicates the normalized fitness, the fitness component evaluating the flat-folded ࡲ
state profile area, and the fitness component evaluating the overlap of a crease with

the center of mass.

 122

Figure 34 The fitness values of the topmost elites in the family of design Figure 31.
 indicates the normalized fitness, the fitness component evaluating the flat-folded ࡲ
state profile area, and the fitness component evaluating the overlap of a crease with

the center of mass.

Figure 35 The fitness values of the topmost elites in the family of design Figure 32.
 indicates the normalized fitness, the fitness component evaluating the flat-folded ࡲ
state profile area, and the fitness component evaluating the overlap of a crease with

the center of mass.

 123

For the plots, we can have a conclusion about one common feature of the curves.

As the normalized fitness generally decreases constantly, ܪ௔തതതത and ܪ௘തതതത curves will have

spikes upward or downward, especially during the early generations. This feature tells

that the evolution of the GA starts with greater diversity, and will gradually converge to

the optimal results. When there is greater diversity, the fitness components will have

large differences among the candidate solutions in a generation. As the method proceeds,

the non-dominate tier will shrink toward the region of the optima, thus the difference

among candidate solutions will be less obvious. And the candidate solutions within the

non-dominated tier will tend to develop into very close performance based on the four

fitness components.

One particular thing in Figure 35 that is different from Figure 33 and Figure 34 is

that though the normalized fitness of design Figure 32 is better than the other two, the

 ௘തതതത evaluations are in fact less optimized. This tells that the designs Figure 30ܪ ௔തതതത andܪ

and Figure 31 both have ܪ௔തതതത and ܪ௘തതതത evaluations extremely close to the theoretical

minimum of 0. But the two designs have ݊஽ைி of 2, which greatly degrades their

normalized fitness. If we review the normalized fitness function, we can find that one

extra ݊஽ைி is equivalent to about 0.07 of increase in ܪ௔തതതത. Considering a difference of 0.07

in ܪ௔തതതത is significant for a desired flat-folded area of 0.25, the current normalized fitness

functions implicates that the problem has a greater preference on looking for a design

with ݊஽ைி ൌ 1.

 124

However, the three designs can all be accepted as the solution of the problem. To

make a decision on the one to take as the final solution depends on the designer’s

preference on the performance indices.

The GA with “ice-cracking” representation is a useful tool to help designers

search for possibilities within the design space when they don’t have full information.

And the GA also accelerates the solution search for such a problem featuring NP-

completeness and a nonlinear design space.

Design Results by Genetic Algorithm with PMR (CEEFOOD)

In this application, I will use the PMR of crease patterns with cells that are

arranged in a variant square lattice (Li and McAdams 2013) as shown in Figure 14(a),

which is derived by rotating a square lattice by 45°. The variant square lattice applied in

the experiment will have a higher resolution so that the nearest distance among nodes is

0.0707. The whole square sheet region is defined by the desired shape ࡿ௧. The size ݏ௜ of

i-th cell varies from 0.01 to 0.08 with an interval of 0.01, so that ݏ௜ ൌ 0.01 ൈ ݊௜, 	݊௜ ∈

ሼ0,1,2,⋯ ,8ሽ. The cell color ܿ௜ is either blue or red

(ܿ௜ ∈ ሼ1,2	|	1	݉݁ܽ݊ݏ	݁ݑ݈ܾ, ሽ). The respective fitness evaluation formula݀݁ݎ	ݏ݊ܽ݁݉	2

(4.1) uses a weight vector of ݓሬሬറ ൌ ൛ݓ௘, ,௔ݓ ௙ൟݓ ൌ ሼ0.5,0.3,0.2ሽ. The values of the weight

factors are determined according to the preferred fitness function components (ܪ௘തതതത, ܪ௔തതതത,

and ܪ௙തതത). The component representing the feature given higher priority or preference will

be assigned a larger weight.

 125

Unlike the application of the GA with “ice-cracking”, this application won’t

implement the hybrid ranking. But as the indirect PMR is more complicated in

representing an origami, I focus on studying how some initial guesses can affect the

solution search. Therefore, I separate the different trial runs of solution generation into

two groups.

The first exercise group starts the evolution with an initial guess given manually

and intuitively. The initial guess as shown in Figure 36(a) has 5 creases.

The initial guess doesn’t have a genetic representation, thus one must be

extracted to start the CEEFOOD process. Two methods can be used to get the genetic

code for a given crease pattern. In the first method, we color the faces in the original

initial guess by two colors as shown in Figure 36(b), and use the classical CEE to

replicate this pattern in the same manner as the CEE generating colored maps (Bowers

2005). Then we pick the genetic code of the optimal replica as the genetic of the crease

pattern. The second method will also require us to color the crease pattern as in Figure

36(b). In the next step, we manually design a PMR of the crease pattern based on the

coloration. In this empirically determined PMR, each cell is assigned to the color of the

face, in which this cell is located. The size of a cell can be randomly given, but if a cell’s

distance to its nearest crease is shorter than the maximum allowable size of the cells

(0.08 according to the experiment setting), the size of this cell is set to the closest value

(cell size can only be 0.01 ൈ n୧, 	n୧ ∈ ሼ0,1,2,⋯ ,8ሽ) to the distance. The same setting of

the PMR will be used by the second exercise group that will be introduced in the

remainder of this section. Although the first method can generate a more precise replica

of a

sea

Fig

act

cre

pro

F

re
(d)
th

a given initi

arching proc

gure 36(c), w

tual initial gu

ease pattern o

ofile area of

Figure 36 In
guess has fi

eplica of the
) The design
e design; (f)

3

6

al guess, the

ess of the CE

which is a clo

uess that is u

of Figure 36

=௔തതതതܪ) 0.3517

(a)

(d)

itial guess p
ive creases;
 initial gues

n #1 with th
) The flat-fo

1

2

4

7

8

e second met

EE. In this a

ose replica o

used by the C

6(c) has an ov

=0.0739) and

pattern used
(b) Fill the

ss that will b
he crease nu
olded profile

5

126

thod is much

application, w

of Figure 36(

CEEFOOD t

verall fitness

d a potential

 (b)

 (e)

d for the firs
faces of init

be used by C
umbers from
e of the desi

h faster by av

we apply the

(a). And the

to start the e

s value ܨ of

l energy eval

st experime
tial guess w
CEEFOOD

m 1 to 8; (e)
ign #1 accor

voiding the p

e second met

Figure 36(c

volutionary

f 0.1795, with

luation ܪ௘തതതത o

 (c)

 (f)

ent group. (a
with blue and

 to initiate t
Manual fol
rding to the

progressive

thod to obtai

) will be an

design. The

h a flat-folde

f 0.2147.

a) The initia
d red; (c) A
the evolutio
lding model
e folding of (

in

ed

al
A
on;
l of
(e)

 127

Based on the initial guess, CEEFOOD lead the family to evolve into a final

design of Figure 36(d), whose flat-folded state profile shape is shown in Figure 36(f).

Figure 36(e) is the manually folded model of Figure 36(d). Figure 37 illustrates the step-

by-step procedure of folding the crease pattern Figure 36(d) into the flat-folded state in

Figure 36(e). Figure 36(f) is the outline of the shape in Figure 36(e). Compared to the

initial guess, the design has three more creases that split from the number 4 crease. And

one of the branches (the number 8 crease) will be connected with the number 5 crease,

which was originally disconnected with others in the initial guess. The three new creases

partition the two largest origami faces into four divisions, so that the flat-folded state

profile will become closer to 5/18. In all, this design has an overall fitness value of

0.0014, with a flat-folded profile area of 0.2803 and a potential energy evaluation of

0.0011. These evaluations have been improved based on the initial guess Figure 36(c)

through CEEFOOD.

Compared to the first group, the second group doesn’t apply any initial guesses,

just as in the solution generation by the GA with “ice-cracking” presented in the last

section. Here, the GA initializes the evolution by using a randomly generated first

generation. Therefore, the evolved designs will also be arbitrary. Two of the designs

derived are listed in Figure 38.

 128

 (a) (b) (c) (d)

Figure 37 Folding procedure for deriving the folded shape in Figure 36(e) from its
crease pattern Figure 36(d). (a) Print out the crease pattern; (b) Fold the lower
right corner inward along crease #5; (c) Creases other than #5 are linked, thus
must be folded simultaneously. (d) The creases are further folded, and the right
half portion of the origami sheet will be folding underneath the left half portion.

When all the creases are folded to േ૚ૡ૙°, the shape will become to the state shown
in Figure 36(e).

(a) (b) (c)

(d) (e) (f)

Figure 38 Two crease pattern designs from the second exercise group, which uses
randomly generated initial generation of candidate solutions. (a), (b) and (c)

present the design #2 and its flat-folded profile; (d), (e) and (f) present the design #3
and its flat-folded profile.

 129

The design Figure 38(a) has 2 interior vertices, 9 creases, and 8 faces. The crease

arrangement is made up by 6 longer creases intersecting at one interior vertex, and three

shorter creases that branch out from one of the longer creases. Figure 38(b) is a hand-

made folded model according to the crease pattern. The flat-folded state profile shape is

shown in Figure 38(c), which is also the outline of the shape in Figure 38(b). This

design’s fitness value is 0.0026, with a flat-folded state profile area of 0.2712 and

potential energy evaluation of 0.0010.

The design Figure 38(d) has two connected interior vertices as well, and each of

the vertices has four creases. One more crease cuts the largest lower-left face. Figure

38(e) is a hand-made folded model according to the crease pattern. The flat-folded state

profile shape is shown in Figure 38(f), which is also the outline of the shape in Figure

38(e). This design has a fitness value of 0.0073, with a flat-folded state profile area of

0.2962 and potential energy evaluation of 0.0035.

Discussion

The fitness evaluations of the three designs are listed in the following Table 3.

The table shows the flat-folded state profile area (FFA), the potential energy evaluation

(PE), and the overall fitness value (OFV) of each design. Smaller PE and OFV values

and the FFA values closer to 5/18 (0.2778) characterize a more fit design with respect to

the requirements defined by the problem statements in Table 3. Among the designs, the

design #1 has the best FFA and OFV, as well as the second best PE. Aside from the

design #1, the design #2 has the smallest PE, and the second best FFA and OFV.

 130

Table 3 The fitness evaluation of the listed designs by the GA with PMR
Design # FFA PE OFV

1 (Figure 36(d)) 0.2803 0.0011 0.0014

2 (Figure 38(a)) 0.2712 0.0010 0.0026

3 (Figure 38(d)) 0.2962 0.0035 0.0073

The overall fitness values of the best candidate solutions (topmost elites) through

generations for three designs are plotted in Figure 39. We have used the same

CEEFOOD parameter settings (the mutation rate, the crossover approach used, and the

proportion of candidate solutions that involve crossover). According to Figure 39, the

rates, in which the overall fitness value of the topmost elite decreases along the timeline

through evolutionary generations, are different across the three runs. But it is true for the

three cases that if the evolution starts with a first generation of lower overall fitness

values, it will be more likely that the CEEFOOD evolution will converge faster.

Comparison of the designs reveals the features of CEEFOOD method, which

might include both the advantages and shortcomings.

The origami design problem has been proved NP-complete, thus it is impossible

to testify the existence of an ideal optimum, or to confirm how many optima exist in the

constrained search space. So, in this research, the CEEFOOD won’t be designed to

derive “the optimum”. It accelerates the solution search for the origami design problem

that synthesizes the finished shape design. With an initial guess, CEEFOOD generally

 131

tends to search for optima close to that initial guess; while without initial guesses,

CEEFOOD will finish obtaining arbitrary optima.

Figure 39 The overall fitness value of the topmost elite through generations

For CEEFOOD, repeated runs may be used to give a more suitable result. As the

problem given in this study, the CEEFOOD has derived several designs that can all

satisfy the same design requirements. And according to Table 3, design #1 outperforms

the others in overall fitness value. If we only trust in raw numbers, design #1 is no doubt

the best choice. But it is not always true for the designers to select design #1 in all

situations. For instance, if the designer has the preference of a flat-folded state profile

shape approximating a triangle, design #2 is better. Nevertheless, we can hold one

certain conclusion that, in most cases, the designers have to repeat the CEEFOOD using

 132

different initial guesses so as to obtain a pool of candidate designs to choose his most

favorable design from.

In many cases, the origami designer doesn’t have the complete understanding of

the entire search space of a design problem, thus at the beginning he cannot always

formulate a “perfect” objective (fitness) function so as to direct the CEEFOOD to derive

“the solution”. But he can make several runs of CEEFOOD to generate large varieties of

solutions, even through his requirements are not ultimately defined. Then through the

analysis of the derived designs so far, the designer is able to gradually refine the

objective function or form new requirements. An example is as mentioned in the last

paragraph. After comparing the designs #1~#3, the designer found the triangular folded

state profile advantageous for his applications. In this circumstance, he can add to the

objective function (4.1) a new component, which provides an estimation of how similar

the folded state profile is with a quadrilateral triangle. Then build a new initial

generation including the design #2, and let the CEEFOOD search for finer designs with

the newly defined objective function.

Another one of the most effective ways that enables the CEEFOOD to directly

regulate the trend of evolution – other than to modify the objective (fitness) function - is

to import initial guesses. The analysis Figure 39 shows that a better starting point that

initialized the evolution will shorten the number of generations before the CEEFOOD

converges. And compared to a randomly generated first generation, some pre-defined

initial guesses can be controlled by the users and are more likely to have better fitness

values. One more thing to mention here is that the import of initial guesses doesn’t have

 133

to happen in the first generation of CEEFOOD evolution. Good designs can be

introduced into the family at any generation to replace some existing individuals.

Summary

According to the design results and discussions provided above, the GA with

“ice-cracking” and the CEEFOOD have both shown their ability to solve the open

origami design problem. But they have two essential differences other than the different

geometric representations applied.

One difference is in their efficiency of interpreting the genetic representation of

each candidate solution. The mapping from the genetic representation to the physical

representation of an “ice-cracking” solution cost time proportional to the number of the

vertices and creases. On the other hand, the mapping from the genetic representation to

the physical representation of a PMR solution requires the density-based clustering and

progressive crease update during the clustering and finalization stages of the CRA.

Therefore, the time cost will be at least proportional to the product of the number of cells

in the PMR and the number of updates on creases. Therefore the CEEFOOD will cost

much more time than the GA with “ice-cracking”. If the design problems don’t require

flat-foldability in final designs, the time cost of the GA with “ice-cracking” won’t

change much, but the time cost of the CEEFOOD will decrease greatly, because the

most time-consuming finalization stage of the CRA is omitted for crease patterns

without foldability requirements.

 134

Another difference is about their specialization on different classes of design

requirements. As the “ice-cracking” representation seamlessly includes the same basic

foldability features that can be mathematically defined, the GA using “ice-cracking” is

better suited for origami design problems with foldability requirements. The PMR is

compatible with structure design tools, thus the CEEFOOD can also include the design

of material, the determination of 3D dimensions, and the inspection of structural strength;

on the contrary, the GA with “ice-cracking” is more competent as a computational

geometric design method.

 135

CHAPTER VI

EXTENSIVE APPLICATION ON ORIGAMI LIQUID CONTAINER DESIGN

In this chapter, the GA adapted for origami design will be applied for a problem

of deriving an origami water container. With all the considerations that have been

discussed in previous chapters, the water container design problem also requires the

design of the crease folding angles and the exclusion of any 3D face intersections,

though the upper level of the GA method doesn’t change much. This demonstrative

problem is presented to support the broad applicability of the GA on origami design.

Problem Statement

The design problem asks for a folding of a non-leaking water container. The

description is as below.

Objective: Given a 1-by-1 square origami sheet, design the crease pattern and the

folding angles of the creases to get a water container with a volume of 0.02.

Conditions / constraints:

1. The origami folding is rigid. Faces should not be bended, crumpled, cut, or

torn during and after the folding procedure.

2. The origami sheet is very thin. The thickness of the material doesn’t need to be

considered during the calculation of container volume.

 136

3. When calculating the volume, one must place the folded origami container on

a flat plane. And with locked crease angles, the folded shape must be able to stand. This

requires that the container cannot be a cone or an upside-down pyramid.

4. In addition to the requirement on the volume, a lower degree-of-freedom

(DOF) and shape complexity are also preferred. The DOF here means the DOF of the

origami structure as a multi-sheet mechanism. The shape complexity measures the

number of creases and faces. More creases or faces indicate higher shape complexity.

Therefore, as the volume is the only primary factor that affects the quality of a

design, the objective function – which is also the fitness function - is simply the

difference between the actual volume and the desired volume. And the GA will be

applied to minimize this objective function.

ݏݏ݁݊ݐ݅ܨ ൌ ݁݉ݑ݈݋ݒ| െ 0.02| (32)

Constraint #4 also requires the minimization of the DOF and shape complexity.

But for this problem, we temporarily put the two factors aside from the objective

function. To incorporate them into the GA solution searching and evaluating, we put

penalty only on the designs, which have more than 3 DOFs or 25 creases.

Modified “Ice-cracking” for 3D Folding

The introduction of the “ice-cracking” in Chapter III has fully defined how the

representation directs the development of creases in an origami crease pattern. But for

this application, the GA has to synthesize the folding angle design with the original

 137

crease pattern design. Therefore, it’s required that the “ice-cracking” representation can

also include the information of the candidate folding angle design as well.

In fact, if an origami structure has a known ݊ୈ୓୊, the number of the dihedral

folding angles that we can freely decide is equal to the ݊ୈ୓୊. Defining less or more than

݊ୈ୓୊ folding angles will result in the mechanism to be under-constrained or over-

constrained. And the ݊ୈ୓୊ folding angles cannot be assigned to any arbitrary ݊ୈ୓୊

creases. For an interior vertex with ݊୒୓େ creases linked, the number of defined creases

should not exceed ݊୒୓େ െ 3. In this research, we call the set of ݊୒୓େ creases, whose

folding angles can be freely determined and can also work together to determine the

folding angles of all the other creases, the set of actuator creases.

The “ice-cracking” representation is advantageous in making the selection of

actuator creases very easy. We only need to make sure that after each “ice-cracking” step,

the resultant crease pattern has just enough actuator creases, so that the folding angles of

all the existing creases are defined. In the initialization step, an interior vertex with ݊୒୓େ

creases is created. There are ݊୒୓େ െ 3 actuator creases that can be arbitrarily chosen

among the ݊୒୓େ new dummy creases. In a forking step, an interior vertex with ݊୒୓େ

creases is located on an existing dummy crease. Since the dummy crease can either be an

actuator crease, or be passively actuated, it can be treated as a local actuator crease for

the new vertex. So the other ݊୒୓େ െ 4 actuator creases can be arbitrarily chosen among

the ݊୒୓େ െ 1 new dummy creases. In a resolution step, an interior vertex with ݊୒୓େ

creases is located on the intersection of ݉௜௡௧௘௥ existing dummy creases. Since the ݉௜௡௧௘௥

dummy creases can either be actuator creases, or be passively actuated, they can be

 138

treated as local actuator creases for the new vertex. So the other ݊୒୓େ െ 3 െ݉௜௡௧௘௥

actuator creases can be arbitrarily chosen among the ݊୒୓େ െ ݉௜௡௧௘௥ new dummy creases.

Otherwise, the mechanism will be over-constrained. For this research, without causing

confusion, we generally select the first few dummy creases that are created in each step

as the new actuator creases.

To include the candidate folding angles of the actuator creases into the “ice-

cracking” representation, we need to append additional bits of the code for each step. For

instance, the initialization step for the flat-foldable vertex #1 of pinwheel pattern in

Figure 13(a) used to apply the argument set {ݔଵ=0.25, ݕଵ=0.25, ݊୒୓େ=4, θ=0, ߢଵ=255,

 ସ=85}, and the corresponding genetic representation: ‘00 01110000ߢ ,ଷ=255ߢ ,ଶ=255ߢ

01110000 00 00000000 10101010 10101010 10101010 01100110’. Now since we need

to define the angles of
௡ొోి
ଶ

 actuator creases, we append new arguments ߮௜	ሺ݅ ൌ

1,… , ݊୒୓େ െ 3ሻ. Because the vertex #1 needs only one actuator crease, the new

argument set for this step becomes {ݔଵ=0.25, ݕଵ=0.25, ݊୒୓େ=4, θ=0, ߢଵ=255, ߢଶ=255,

 and the equivalent genetic representation is ‘00 01110000 {12/ߨ=ସ=85, ߮ଵߢ ,ଷ=255ߢ

01110000 00 00000000 10101010 10101010 10101010 01100110 01011010’. If more

than one new actuator creases are needed in one step, there will be more ߮௜’s appended

to the argument set, and thus more bits added to the genetic representation.

Rigid-foldability and the Dihedral Folding Angles

Rigid-foldability is the key feature of rigid origami. It requires all flexure in the

shape to take place only along the creases (Watanabe and Kawaguchi 2006). Comparing

 139

to flat-foldability, rigid-foldability has one criterion in common in that every face must

keep flat at the unfolded and folded states. But while flat-foldability of an origami shape

is only concerned when all the creases are folded to േߨ, the rigid-foldability deals with

the entire procedure of a shape being folded from the initial state (unnecessarily the

fully-spread state) to the folded state with desired crease folding angles. Therefore,

unlike the flat-foldability, rigid-foldability won’t need the folding angles to reach േߨ in

all the cases, but it requires the existence of a continuous route from the initial state to

the folded state, where at any arbitrary timepoint the faces must always keep flat. The

rigid-foldability has been studied by many predecessors, including D. A. Huffman

(Huffman 1976), T. Hull (Hull 2006), N. Watanabe (Watanabe and Kawaguchi 2006),

and T. Tachi (Tachi 2006, Tachi 2010). Tachi has given a thorough solution for checking

the rigid-foldability, as well as an incremental approach of calculating the crease angles

in his research on a rigid origami simulator (Tachi 2006).

The computational complexity of numerically testifying the rigid-foldability thus

has to go through the following recursive stages:

Algorithm: Inspect the rigid-foldability of a crease pattern with pre-defined

folding angles

1. For each possible folding sequence:

1.1. Partition the folding procedure into motion frames separated by time

intervals

1.2. For each motion frame:

1.2.1. Simulate the semifolded shape

 140

1.2.2. For each pair of non-linked faces:

1.2.2.1. For each crease in one of the two faces:

1.2.2.1.1. Check whether the crease intersects with the other face

1.2.2.1.2. If there exist intersections, the shape is not rigid-foldable

with the current folding sequence. Then go to stage 1.

The computational complexity of the prior algorithm depends on the number of possible

folding sequence (݊ிௌ), the number of motion frames (݊ெி), the number of faces (݊),

and the average number of creases bounding each face (݉ி). And the estimation of the

complexity would be Οሺ݊ிௌ ∙ ݊ெி ∙ ݊ሺ݊ െ ݊ிሻ ∙ ݉ிሻ, where ݊ி is the average number of

linked faces for each face.

The number of possible folding sequences can be large. We define fully folding a

crease or a set of creases as folding the crease from flat to their final angles, and partially

folding a crease as folding the creases from flat to angles larger than 0 but smaller than

the final angles. For an origami shape with ݊஽ைி degrees of freedom, the shape has

ሺ݊஽ைி!) possible folding sequence, if the creases are fully folded consecutively.

Therefore, given the crease pattern Figure 40(a) with 7 parallel creases and its desired

folding angles (not specified here), we can derive a folded shape of Figure 40(b).

Suppose that the folding sequences can only be formed of stages of fully folding the

crease sequentially. So the folding sequence of the 7 simple folds must follow a rule that

the creases marked by larger numbers can only fold after all the creases with smaller

numbers are folded. Therefore, the shape defined in Figure 40 has 7! ൌ 5040 possible

folding sequences, among which there are 6 ൈ 4! ൌ 144 legal ones. To prove rigid-

fol

arr

fol

tha

F

arb

sha

inte

fol

cre

all

dability, one

ives at a leg

ded creases

at need to be

Figure 40 Th

In this r

bitrary design

ape can be fo

ersections to

The sta

ding angles

eases have be

the other cre

e needs to try

al one. In ad

in intermedi

simulated a

he rigid-fold
patter

research, we

ns. So as a c

olded accord

o tell if the d

arting step of

at the folded

een assigned

eases using a

y the 5040 p

ddition, if we

iate stages, t

and tested so

 (a)

ding of a lon
rn; (b) The s

e aren’t able

compromise,

ding to the fo

design is not

f inspecting r

d state. In ea

d folding ang

an equation

141

possible foldi

e allow a fol

here will be

as to prove

ng strip wit
side view of

to afford an

 in this appli

olding angles

rigid-foldab

rigid-foldabi

ach design ge

gles. So we n

given in (Ta

ing sequence

ding sequen

infinitely m

the rigid-fol

th 7 parallel
f the folded

n attempt at e

ication, we d

s, and use th

ble.

ility of a des

enerated by

need to calcu

achi 2006):

es one by on

nce to includ

many folding

ldability of t

 (b

l creases. (a
shape.

every folding

directly insp

he existence

sign is to cal

GA, only ݊஽

ulate the fold

ne until he

e partially

 sequences

the shape.

b)

) The creas

g sequence f

pect if the

of face

lculate the

஽ைி of the

ding angles o

e

for

of

 142

Figure 41 A simple single vertex crease pattern showing the definition of angles.
The double-line arrow is the vector of the baseline, which in this case overlaps with

the Cartesian x-axis

∏:ݔ݁ݐݎ݁ݒ	ݎ݋݅ݎ݁ݐ݊݅	݄ܿܽ݁	ݎ݋ܨ ߯௜
௡ొోి
௜ୀଵ ൌ (33) ܫ

߯௜ ൌ ቎
௜ߠଶݏ݋ܿ ൅ ௜ߩݏ݋ܿ ∙ ௜ߠଶ݊݅ݏ ሺ1 െ ௜ߠ݊݅ݏ௜ߠݏ݋௜ሻܿߩݏ݋ܿ ௜ߠ݊݅ݏ௜ߩ݊݅ݏ
ሺ1 െ ௜ߠ݊݅ݏ௜ߠݏ݋௜ሻܿߩݏ݋ܿ ௜ߠଶ݊݅ݏ ൅ ௜ߩݏ݋ܿ ∙ ௜ߠଶݏ݋ܿ െߩ݊݅ݏ௜ܿߠݏ݋௜

െߩ݊݅ݏ௜ߠ݊݅ݏ௜ ௜ߠݏ݋௜ܿߩ݊݅ݏ ௜ߩݏ݋ܿ

቏

where ߯௜ is the transformation matrix with respect to the i-th crease of the vertex, ݊୒୓େ

is total number of creases of the vertex, ߠ௜ defines the orientation of the i-th crease with

respect to the vertex (as shown in Figure 41), and ߩ௜ is the folding angles of the i-th

crease. In the equation, all of the ߠs and some of the ߩs are known. And we use

numerical methods to compute the values of all the unknown ߩs in the non-linear

equation. In order not to cause any confusion between the definitions of folding angle ߩ௜

and the dihedral angle ߮௜ of the two faces sharing the i-th crease, we define

௜ߩ ൌ ൜
ߨ െ ߮௜		, ݅	݄݁ݐ	݂݅ െ ݕ݈݈݁ܽݒ	ܽ	ݏ݅	ݏ݁ݏܽ݁ݎܿ	݄ݐ

߮௜ െ ,		ߨ ݅	݄݁ݐ	݂݅ െ (34) .݊݅ܽݐ݊ݑ݋݉	ܽ	ݏ݅	ݏ݁ݏܽ݁ݎܿ	݄ݐ

We will solve the equation for every interior vertex until the folding angles of all

the creases are derived. Then we can confirm the final orientation of the faces and then

inspect if there are intersections among them. If there are intersections, the shape is not

 143

rigid-foldable, and its fitness value is set to 1, which indicates an illegal candidate

solution.

Without the incremental calculation of the crease folding angles from the initial

state to the folded state, we have saved lots of computational efforts, but we have also

left the rigid-foldability partially proved. This results that even if there is no face

intersection found through the process described above, the shape is still possibly not

rigid-foldable. If the total DOF of the design is 1, we can simulate the whole deployment

procedure from the folded state to the initial state, or simulate the whole folding

procedure from the initial state to the folded state. But as the number of DOF increases,

the computational complexity rockets exponentially. Even if we only simulate for the

candidate designs without face intersection at the folded state, it’s still not a practical

solution.

Nevertheless, since this is a demonstrative problem, we temporarily avoid the

proof of the theoretical rigid-foldability, and leave it to future discussion and research.

As we don’t want to restrict the DOF of the designs, we decrease the search space by

setting an upper limit of 30° for the folding angle value of each actuator crease. The

actuator creases are the set of creases, whose folding angles can determine the folding

angles of all the other creases. The number of actuator creases are equal to ݊ୈ୓୊. With

small final folding angles, the shapes are less likely to have collision among faces during

the folding procedure, if we can prove a priori that the shape has no face intersection at

the folded state. A “small” folding angle is only quantifiable for an explicitly defined

shape. In general, it means the corresponding angle won’t be folded too sharp to cause

 144

any faces to get very close to each other either at the final folded state or during the

folding procedure. Such simplification on rigid-foldability inspection doesn’t really

guarantee every design that the GA generates to be rigid-foldable, but it considerably

lowers the probability of deriving non-rigid-foldable shapes.

Having the folded shape, the computational complexity of checking the

intersections between faces is Οሺ݊ଶሻ. The algorithm examines each pair of faces that are

not directly linked by a crease. If any crease of one face intersects with the other face,

then the two faces also intersect with each other.

Algorithms for Calculating the Volume

Other than the encoding of actuator crease folding angles and the inspection of

rigid-foldability, the third new function the GA needs to include is the calculation of the

volume of each candidate solution it generates.

At the first step, the volume calculation algorithm should have to confirm the

existence of a flat bottom that was requested in the problem constraint #3. In theory, we

can always find a way for the shape to stand, as long as there are three vertices on the

convex hull of the folded shape (no matter whether any of the three vertices are directly

linked by creases or not), and the three vertices form a 3D triangle that have no

intersection with other faces. But including such situations would make the problem

complicated. Therefore, for my research so far, I only consider two types of container

bottoms. One type uses a face as the container’s bottom as Figure 42(a); the other

applies two linked creases that form a V-shape bottom support to let the whole shape

 145

stand on it as Figure 42(b). As shown in the two figures, the yellow origami container

has a flat bottom, while the green one with the V-shape also has a V-groove as its

internal space.

Now, let’s think about which portions of the folded shape contribute to the

container’s volume. Here, suppose that we can inject water to every location inside the

folded container. We define the amount of water held in the container - if we use the

above way to inject water over an infinitely long duration – as the volume of the

container.

(a) (b)

Figure 42 Two hand-make origami shapes that can be used as water containers. (a)
A shape uses the triangular face in the middle as it bottom. (b) A shape uses its two

consecutive creases as its bottom.

The most widely used algorithm for calculating the volume of a polyhedron is to

partition the shape into tetrahedrons or pyramids. The sum of the volumes of the

 146

tetrahedrons or pyramids will be the volume of the whole shape. But in this research, it

is not easy to confirm the actual shape of the water held within. Therefore, we turn to the

algorithm of calculating the volume as described below. It applies a numerical approach

to derive an approximation of the volume value we want.

Algorithm: calculate the volume of a folded container

1 Derive the plane ଴ܲ where the bottom is in. Make sure that the normal of ଴ܲ is

upward.

2 If the bottom is a face, then ܣ଴ is the area of the face; else, ܣ଴ ൌ 0.

3 Create and initialize ܸ = 0

4 Define the precision of volume calculation as ௣ܸ

5 While ௜ܲ has intersection(s) with the shape

5.1 If ܣ௜ିଵ ് 0, ݄௜ିଵ ൌ ௣ܸ/ܣ௜ିଵ; else, ݄௜ିଵ ൌ ௣ܸ/max	ሺܣ଴, ,ଵܣ … , ௜ିଵሻܣ

5.2 ௜ܲ is a parallel displacement of ௜ܲିଵ with distance ݄௜ିଵ

5.3 Look for the intersection segment ௝݁
௜ of ௜ܲ with all the faces

5.4 Look for closed loops formed by ௝݁
௜

5.5 Create and initialize ܣ௜ ൌ 0

5.6 If there are closed loops

5.6.1 For each closed loop, ܣ௜ = ܣ௜ + area of the polygon defined by the

closed loop

5.7 ܸ	 ൌ 	ܸ	 ൅	ሺܣ௜ ൅ ඥܣ௜ ∙ ௜ିଵܣ ൅ ௜ିଵሻܣ ൈ ݄௜ିଵ/3

5.8 The resultant V is an approximation of the container’s volume.

 147

In the algorithms above, the shape of the folded container is partitioned into

slices. If a slice is a complete ring or if it has several rings, the volumes of the rings will

contribute to the total volume. The computational complexity of this algorithm depends

on the nominal volume of the shape. Larger volumes result in more slices. For the i-th

slice with ݊௘௜ intersection segments between the section plane and the origami faces, the

computational complexity of deriving its volume is Ο൫݊௘௜ ൯ ൅ Ο൫݊௘௜ ௘௜݊݃݋݈ ൯, which is

Ο൫݊௘௜ ௘௜݊݃݋݈ ൯. The linear component Ο൫݊௘௜ ൯ of the complexity is for the derivation of

closed loops (the formation of section polygons) from ݊௘௜ segments. The other

component Ο൫݊௘௜ ௘௜݊݃݋݈ ൯ is for the triangulation of the section polygon(s) and the

calculation of the area of each triangular.

Design Results and Discussion

After confirming the way for the genetic representation of candidate solutions,

the algorithms to calculate the volume of a rigid-foldable shape, as well as the fitness

function, the GA could be applied directly on the problem.

At first, we give a fundamental analysis of this problem. We want to know

whether the target volume is achievable by a folding of the 1-by-1 origami sheet. Using

intuitive guess, we can manually derive a crease pattern as the one shown in Figure 43(a).

In this manual design, the creases are arranged symmetrically. The dimensions are given

in Figure 43(a). When folded, the container develops into an “ash-tray” build, which has

a square bottom of an a-by-a, and a height of ሺ1 െ ܽሻ/2. The volume of the container is

thus ܽଶሺ1 െ ܽሻ/2, where 0 ൏ ܽ ൏ 1. For this design, the maximum volume 2/27 =

 148

0.0741 can be obtained when ܽ ൌ 2/3. Therefore, the target container volume falls

within (0, 0.0741], thus is attainable by a folding of this 1-by-1 origami sheet. Then if

the target volume is 0.02, the length of the bottom edge can be ܽ ൌ .0.9563	ݎ݋	0.2276

(a) (b)

Figure 43 An intuitive manual design of an “ash-tray” style water container. (a)
The crease pattern design with an a-by-a square in the middle. (b) The folded shape.

However, the above design is a trivial one. This solution only satisfies one type

of container bottom. If the problem prefers the container having no surface contact with

the plane where it stands, the trivial solution would not be qualified.

Now in order to have a generic method that works for the type of design problem

with more varieties of requirements, we choose the same metaheuristic – the genetic

algorithm, which has been testified for flat-foldable origami design problems. The way

of incorporating the folding angles into the “ice-cracking” representation has been

developed in a prior section. In the next section, I will present some of the designs

generated by the GA, and make some comments on them.

 149

Computational Designs by GA

In this section, the GA with “ice-cracking” is applied to generate several diverse

designs. These designs all reach a volume of 0.02 with errors of lower than 0.5%. The

crease patterns and the folded shape of 6 designs are listed in Figures 44-49.

(a) (b)

Figure 44 Design #1 for an origami water container with a volume of 0.02. This
design has 12 faces, 15 creases, and 14 vertices. (a) The crease pattern; (b) The

folded shape (the grey face is used as the bottom).

(a) (b)

Figure 45 Design #2 for an origami water container with a volume of 0.02. This
design has 17 faces, 22 creases, and 20 vertices. (a) The crease pattern; (b) The

folded shape (the grey face is used as the bottom).

 150

(a) (b)

Figure 46 Design #3 for an origami water container with a volume of 0.02. This
design has 17 faces, 21 creases, and 19 vertices. (a) The crease pattern; (b) The

folded shape (the grey face is used as the bottom).

(a) (b)

Figure 47 Design #4 for an origami water container with a volume of 0.02. This
design has 14 faces, 17 creases, and 16 vertices. (a) The crease pattern; (b) The

folded shape (the grey face is used as the bottom).

 151

(a) (b)

Figure 48 Design #5 for an origami water container with a volume of 0.02. This
design has 18 faces, 23 creases, and 20 vertices. (a) The crease pattern; (b) The

folded shape (the grey face is used as the bottom).

(a) (b)

Figure 49 Design #6 for an origami water container with a volume of 0.02. This
design has 17 faces, 21 creases, and 19 vertices. (a) The crease pattern; (b) The

folded shape (the grey face is used as the bottom).

In the above folded shapes of the designs, the faces colored in light grey are the

bottom faces of the corresponding origami water containers. The numbers of faces vary

from 12 to 18. The numbers of creases vary from 15 to 23, which don’t exceed the upper

 152

bound of 25 creases set in prior section. The numbers of vertices, including interior and

border vertices, vary from 14 to 20.

Discussion

Without a specific engineering application of the origami water container, we

don’t have the determined criteria to judge which of the above 6 designs and the trivial

“ash-tray” design in Figure 43 is the best. But in topological formation, design #1 in

Figure 44 has the least number of creases, thus has the least shape complexity. And the

design #4 in Figure 47 is also a nice one, since it has a pot-styled folded shape, while

others are more shallow and saucer-styled. And in the design #4, the three faces around

the lower left corner of the crease pattern (Figure 47(a)) forms a narrowing spout to

make pouring out the water from the container more easy.

From the computational designs, we can find another common feature. They all

feature small crease folding angles. Let’s use a numerical index to evaluate the folding

angles. Define a concept named folding effort ܷ, so that

ܷ ൌ ∑ |௜ߩ|௜ܮ݇
௠
௜ୀଵ (35)

where ݉ is the number of creases, ݇ is a scalar coefficient, ܮ௜ is the length of i-th crease,

and ߩ௜ is the folding angle of the i-th crease. The folding effort is a linear approximation

of total material strain generated by folding along the creases. Of course, the real internal

strain is not simply linear to the folding angle, and it depends on at least the material, the

thickness of the origami sheet, and the folding radius. But as this research mainly

 153

focuses on the origami design metaheuristic, we leave the estimation of the actual strain

to future work.

Using the equation with k ൌ 1, the folding efforts of the 7 obtained designs are

shown in Table 4. According to Table 4, designs #1 and #6 have the least folding efforts,

while the “ash-tray” has the greatest folding effort. For achieving the same volume,

different designs have large differences in their folding efforts. We can also make a

reasonable prediction that if using the actual structural strain to replace the folding effort,

designs will still have highly diverse values of strain generated through bending of the

material.

Table 4 Folding efforts of the origami water container designs
Design Folding Effort

“Ash-tray” Figure 43
12.1500 (ܽ ൌ 0.2276)

12.5428 (ܽ ൌ 0.9563)

#1 Figure 44 4.9213

#2 Figure 45 5.9785

#3 Figure 46 6.1743

#4 Figure 47 8.5889

#5 Figure 48 5.3367

#6 Figure 49 4.8035

The folding effort can be simply calculated based on the geometry. But the

structural strain may require finite element analysis tools that generate more cost on

 154

computing. However, the FEA is realizable computationally, thus it makes the structural

strain by folding a compatible performance index of the genetic algorithm. This specific

extension remains future work.

Aside from comparing the designs on their performance, it is also necessary to

inspect the progress of how they are developed by the GA. I have made a plot below to

display the topmost designs that are optimized through generations in the families of the

6 designs.

Figure 50 The volume of the topmost elite across generation of the 6 designs
produced by the GA.

 155

The 6 different runs of the GA apply the same set of parameters for the GA

evolutionary operators: the size of the family is constantly kept at 30 for each generation;

the length of the genetic representation is 700 bits; 18 new candidate solutions will be

generated in each generation by 4-point crossover; each bit of the genetic representation

of the candidate solutions has a probability of 6% to get flipped; 6 new random

candidate solutions will be added to the pool; the captive breeding’s external crowd has

a size of 20; 3 of the best captured elites solutions will be brought back into the current

generation; the atavism will look back 20 generations for 1 ancestor elite.

However, with the same setting of the evolutionary operators described as above,

several runs of the GA converges to very different solutions through different numbers

of evolutionary generations. Among the 6 designs, design #1 takes more than 450

generations; design #5 takes more than 250 generations; design #6 takes more than 50

generations; but the designs #2, #3, and #4 take only about 25 generations.

One reason that the time cost of the convergence of the GA is firstly extended

due to the highly nonlinear solution space of the origami problem. The actual n-to-1

genotype-phenotype mapping defined by the “ice-cracking” also expands and deforms

the solution space into a more complex design space. In addition, the randomly

generated first generation of candidate solutions that initializes the GA may be located

far from an optimum in search space, thus making the evolutionary optimization

procedure longer.

Nevertheless, a common feature revealed by the generation of the 6 designs is

that a better first generation will generally result in faster convergence. The families of

 156

the designs #2, #3, and #4 converge to their corresponding final designs faster, because

the topmost elites in their first generations are more optimal than those from the families

of the designs #1 and #5. The same conclusion can also be found in chapter 5, when I

compared the flat-foldable origami designs derived by the GA with PMR.

Summary

This chapter has presented an extensive application of the GA with “ice-cracking”

on origami design problems that ask for geometric and functional requirements at the 3D

folded state of the origami.

As the application synthesizes the folding angles of the creases, the “ice-cracking”

representation needs to include the declaration of the folding angles of the actuator

creases. Moreover, this chapter also makes some discussion about the rigid-foldability

and the calculation of the volume of a folded origami container.

Since an arbitrary origami design has unpredictable degrees-of-freedom and

infinitely many possible folding sequences to reach the desired folded state, the

inspection of rigid-foldability has to be simplified. My solution is to limit the maximum

folding angles and just confirm the legality of the final folded state. For folding a water

container, using smaller folding angles is reasonable, since we don’t anticipate a design,

where faces intertwine with each other very closely. Then with smaller folding angles, a

legal rigid folding procedure is more likely to exist for a design as long as its final

folding state is legal. The legality of a folded state depends on the crease pattern design

and the assignment of crease folding angles. For a given crease pattern and crease

 157

folding angles, we can simulate the semi-folded state of it. If face intersections exist in

the semi-folded state, then the design is not rigid-foldability.

When calculating the volume of the origami container, the classic polyhedron

volume calculation algorithm is not applicable, since the shape of the water that is held

by an arbitrary origami container is not explicitly defined. In this chapter, I have

introduced my algorithm of deriving the volume. The algorithm uses a plane parallel to

the bottom to sweep the folded container. The sweep planes section the container shape

into slices. If a slice includes rings, which are circumference by fillets of sectioned faces,

and the rings have the water-contacting side inside, then the volume of the rings adding

their two caps will be counted as a portion of the container’s volume.

 158

CHAPTER VII

CONCLUSION AND FUTURE WORK

Contributions to Origami Engineering and Design

This research creates and applies abductive methods for origami design. This

dissertation runs through three applications of genetic algorithms on the design of flat-

foldable origami structure and rigid-foldable containers. The research has made the

following contributions to origami engineering and origami design:

1. This research has created a design method framework for solving the open

origami design problems. In this dissertation, the genetic algorithm and its

variation – the evolutionary computational embryogeny – are used as the

prototype for constructing and adapting the design method framework. The

capability of searching in space that is hard to be explicitly and fully

modeled makes the GA-based meta-heuristics especially advantageous for

the open origami design problems, which has been proven NP-complete in

this dissertation. Unlike the traditional origami design problems that look for

the paper-made replications of some desired shapes, the open origami design

problem won’t define the exact desired shape or the specific topological

structure that the desired shape will have. The open origami design problems

ask for the achievement and/or the optimization of geometric and functional

requirements on the crease pattern, the folding procedure, and the folded

state of the origami designs. Since open origami problems theoretically

 159

accept any arbitrary designs, the search space should ideally cover any

design as well. This fact also causes the open origami problems NP-complete.

2. This research creates a direct geometric representation – “ice-cracking” – to

relate the encoding of the genetic representation and the definition of the

physical representation of origami designs processed by GA. The genetic

algorithm with direct “ice-cracking” representation is also testified on an

origami design for folding a water container. The application has proven that

the crease folding angle design is also achievable. Thus 3D shape design is

available for GA with “ice-cracking”.

3. Computational evolutionary embryogeny (CEE) is a variation of GA that

applies encoded generative rule sets as the genotype of an origami design.

This research adapts CEE for open origami design problem by defining an

indirect geometric representation – pixelated multicellular representation

(PMR) – for origami designs. PMR is defined as a third equivalent

representation to the genetic code (genetic representation) and the crease

pattern (physical representation) of an origami design.

4. The crease restoration algorithm (CRA) is created to extract the origami

crease pattern from a pixelated image. The CRA is applied to relate the PMR

and its crease pattern.

5. As a part of fitness evaluation, new algorithms that are compatible with GA

are developed to solve the MV-assignment, global flat-foldability, and rigid-

foldability problems for a given crease pattern.

 160

Conclusions

In this dissertation, I have created a design method framework for the open

origami design problems that requests the creation of origami shapes with anticipated

geometric and functional requirements. The type of problem is described as “open”,

because the problem statements don’t strictly define the final folded shape of an origami.

Instead, these open problems have design objectives and constraints on the geometric

and functional performance, such as the flat-folded state shape area, the location of the

center of mass, or the volume. Without a known shape or at least a deterministic

topological formation of the desired origami designs, the methods have to search over

the design space that cover all arbitrary origami shapes. As the design space including

any arbitrary crease pattern is large and nonlinear, and the origami design problem has

been proven NP-complete, I instead turn to the abductive methods.

In this dissertation, I implemented two specific abductive methods that are the

genetic algorithm and its variation – the computational evolutionary embryogeny. The

two methods both feature a specifically designed geometric representation for candidate

origami designs. There are three key aspects that are needed to clarify prior to the

implementation of the genetic algorithm. Except for the fitness function, this research

focused on the design of a geometric representation that provides the framework of

defining both the genetic representation and the physical representation of an origami

candidate design, and on the development of basic and complementary genetic operators

to accommodate the properties of the design space.

 161

One geometric representation I designed for the GA is the “ice-cracking”. The

“ice-cracking” representation is used to generate, encode, and describe origami crease

patterns. The “ice-cracking” essentially presents a systematic sequence for ordering all

the vertices and creases in a growing manner similar to the natural process of ice-cracks

emerging and developing on an icy surface.

The “ice-cracking” is executed through a procedure consisting of an initialization

step (locating the first vertex), forking steps (locating a vertex along one existing dummy

crease), resolution steps (defining a vertex at the location of the intersection of two

existing dummy creases), and a finalization step (converting all the remaining dummy

creases to creases). Each step involves three basic operations: creating a new vertex,

fixing creases, and placing dummy creases. The static formation of the “ice-cracking”

representation enables its steps or operations to be defined by sets of arguments with

fixed formats. The sets of arguments could then be converted to Gray code strings,

which are used to encode the entire “ice-cracking” for any crease pattern. In this chapter,

I have focused on flat-foldable origami, and set up a grammar for encoding “ice-

cracking” so that any Gray code string is capable of being translated to the “ice-cracking”

that defines a flat-foldable crease pattern.

Another geometric representation is called pixelated multicellular representation

(PMR). The PMR defines an origami structure by distributed cells. The cells

fundamentally work as conceptual indicators, which directly define the origami by

coloring the faces in the same way that LEDs in a LED matrix screen display a picture.

Equivalent to an LED, each cell will have three key properties – cell type that shows the

 162

color, cell size that indicates the light intensity, and cell position that implies the

resolution of cells. Every collection of cells with the same type (color) will define an

origami face. The creases are linear classifiers generated to separate faces. I proposed a

crease restoration algorithm to extract the equivalent crease pattern from a pixelated

multicellular representation. The PMR is advantageous for its availability of expressing

any arbitrary simple or non-simple creases. But after discretizing the cell properties for

the computational applications, the representativeness of a pixelated multicellular pattern

depends on the effective resolution and effective precision, which are the metrics relative

to the setting of two of the cell properties – cell position and cell size. A third cell

property is the cell color. In this research, the 2-colorability feature of flat-foldable

origami has enabled the cell color to be chosen between minimally two colors.

As the two geometric representations combined with the GA, they will form two

effective abductive design methods for solving open origami problems.

For GA with “ice-cracking”, the genetic algorithm (GA) could consequently take

advantage of the feature of “ice-cracking” that any single network flat-foldable crease

pattern can be encoded and any arbitrary Gray code can represent one crease pattern. In

order to cope with the large and non-linear design space of origami design problems, I

adapted the GA through balancing the preservation of the elitism and diversity. On one

hand, to protect the elite individuals, I directly lower their probability of getting mutated.

Moreover, I also introduced two mechanisms called captive breeding and atavism. The

captive breeding mechanism captures and archives good individuals from the evolving

generations, and occasionally releases some back to a later generation. The atavism lets

 163

the time flash back, so that some of the elite individuals from an earlier generation can

be introduced into the current generation. For diversity, on the other hand, I raise the

mutation rate for every individual, and apply hybrid fitness ranking, in order to prevent

the premature convergence of extreme elitism. The adapted GA with “ice-cracking” has

been implemented and testified on an origami design problem that optimized several

geometric and functional properties simultaneously.

Compared with the GA with “ice-cracking”, the CEEFOOD method utilizes a

hybrid coding method to define the alternative PMR of each candidate solution. The

hybrid code is composed of an explicit coding part describing a PMR embryo and an

implicit part encrypting a set of generative genetic rules, which are used to guide the

embryo to develop into a mature state. The CEEFOOD also combines the attainment of

MV-assignments and face overlapping orders in its fitness evaluation stages. During the

evolution stage, CEEFOOD cooperates with the elite preservation mechanism and code

assimilation to support the progressive adaptations among proposed candidate solutions.

The synergy of these mechanisms allows CEEFOOD to employ a high mutation rate

without frequently eliminating already emerged good results.

In addition, by introducing initial guesses, the evolutionary trend of CEEFOOD

will converge close to a good initial. On the contrary, using a totally random first

generation, the CEEFOOD will end with arbitrary designs that highly depend on early-

emerged elites. If the user has some preference on some properties or features of the

final design, it is always better to frame out and implement an initial guess than to let the

CEEFOOD to search randomly.

 164

Aside from the fundamental study on the design methods, I applied them on two

open origami design problems, including the design of a flat-foldable shape with a

desired folded profile area and the design of a rigid-foldable water container with a

desired volume. The applications have proved that the GA with a proper geometric

representation for origami structure can be a great tool for searching solutions for NP-

complete origami design problems.

The primary advantage of the GA-based meta-heuristics on the open origami

design problem is their capability of realizing the design objectives that are not

achievable by existing origami design methods, such as “making the flat-folded shape’s

center of mass overlap with one of its creases”. But the proposed GA-based meta-

heuristics are also great tools for exploiting new and novel features that are not initially

expected by the designers or the design problems. And if these new features fit for the

design problem, the designers can then formulate the new features found into a new

fitness evaluation component and update the design fitness function.

Future Work

There are two major directions for planning future studies. One direction is about

the mathematics, geometry and algorithms in origami. This direction can be specified

into the following specifications:

1) The inspection of flat-foldability and rigid-foldability of an origami is left

partially solved. Although both of them are NP-complete problems, the research

can proceed on the improvement of the current algorithms.

 165

2) The current algorithm for extracting the creases from a PMR uses density-based

clustering and LDA. Future study can be invested in the two algorithms to

improve the efficiency of the entire CRA.

The other direction is about the application of the GA on more types of open

origami design problems.

1) In this dissertation, the GA and its variation have proved their effectiveness on

open origami design problems requesting both geometric and functional

problems. But the applications of the method that has been presented so far only

discussed about realizing functional requirements heavily relying on geometry.

In future study, I plan to expand the method by achieving the realization of

functional requirements related with structural properties. For instance, one of

the problems I am interested in is to synthesize the FEA of the structure into both

the GA with “ice-cracking” and the CEEFOOD. So the methods would be

available for designing origami shapes and their material that have enough

strength for supporting a load. Another extension would be targeted at some

practical origami design problems, such as an origami tent with desired space

inside, and a paper plane with desired aerodynamic properties.

2) The research has been focusing on the mathematic and geometric foundations of

the abductive design method. The future study is on extending the method on

practical engineering problems. One possible application is realizing crease

pattern designs on an intelligent SMA origami sheet based on the research of the

Texas A&M University ODISSEI group (Hartl, Lane and Malak 2012, Oehler,

 166

Hartl, Lopez, Malak et al. 2012, Peraza-Hernandez, Hartl and Malak 2013,

Peraza-Hernandez, Hartl and Malak 2013). The SMA origami sheet features the

capability of bending along arbitrary creases while keeping the original shape of

the sheet unchanged. But the SMA origami sheet won’t allow sharp folding

angles, it is more suitable to be used for making foldable structures to achieve

static or dynamic functional properties than to be used for building exact artistic

shape designs. Therefore, after interfacing with structural analysis tools, the

method developed in this research will be a great tool for deriving shape designs

for the SMA origami sheet.

3) The complementary mechanisms (captive breeding and atavism) and the hybrid

ranking are applied to support the basic evolutionary operators in keeping the

balance between elitism and diversity among the candidate solutions through the

evolution of the GA and CEE. But I plan to make the statistical analysis of how

these measures, as well as the parameter settings for these evolutionary operators

and mechanisms, would affect the convergence speed and the quality of designs.

 167

REFERENCES

Amato, N. M., Dill, K. A. and Song, G. (2003). "Using Motion Planning to Map Protein
Folding Landscapes and Analyze Folding Kinetics of Known Native
Structures." Journal of Computational Biology 10(3-4): 239-255.

Amato, N. M. and Song, G. (2002). "Using Motion Planning to Study Protein Folding
Pathways." Journal of Computational Biology 9(2): 149-168.

Balkcom, D. J., Demaine, E. D. and Demaine, M. L. (2004). "Folding Paper Shopping
Bags." 14th Annual Fall Workshop on Computational Geometry, MIT,
Cambridge, MA.

Balkcom, D. J. and Mason, M. T. (2008). "Robotic Origami Folding." The International
Journal of Robotics Research 27(5): 613-630.

Bateman, A. (2001). "Computer Tools and Algorithms for Origami Tessellation Design."
The 3rd International Meeting of Origami Science, Math, and Education, Pacific
Grove, CA.

Bentley, P. and Kumar, S. (1999). "Three Ways to Grow Designs: A Comparison of
Evolved Embryogenies for a Design Problem." Genetic and Evolutionary
Computation Conference, Orlando, FL.

Bern, M. and Hayes, B. (1996). "The Complexity of Flat Origami." 7th Annual ACM-
SIAM Symposium on Discrete Algorithms, Atlanta, GA.

Bollinger, K., Grohmann, M. and Tessmann, O. (2010). "Structured Becoming:
Evolutionary Processes in Design Engineering." Archetectural Design 1(206):
34-39.

Bowers, C. P. (2005). "Simulating Evolution with a Computational Model of
Embryogeny: Obtaining Robustness from Evolved Individuals." In Advances in
Artificial Life, Proceeding of the 8th European Conference on Artificial Life,
Canterbury, United Kingdom.

Bowers, C. P. (2008). "Modularity in a Computational Model of Embryogeny." Design
by Evolution. 3: 243-263.

Coello, C. A. C. (1999). "A Comprehensive Survey of Evolutionary Algorithm:
Objective Optimization Techniques." Knowledge Information Systems 1(3):
269-308.

 168

Coello, C. A. C. (2009). "Evolutionary Multi-objective Optimization: Some Current
Research Trends and Topics that Remain to be Explored." Frontiers of
Computer Science in China 3(1): 18-30.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). "A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II." IEEE Transactions on
Evolutionary Computation 6(2): 182-197.

Deb, K. and Srinivasan, A. (2006). "Innovization: Innovating Design Principles through
Optimization." Genetic and Evolutionary Computation Conference, Seattle, WA.

Deb, K. and Tiwari, S. (2005). "Multi-objective Optimization of a Leg Mechanism
Using Genetic Algorithms." Engineering Optimization 37(4): 325-350.

Demaine, E. D. and Demaine, M. L. (2001). "Recent Results in Computational
Origami." The 3rd International Meeting of Origami Science, Math, and
Education, Pacific Grove, CA.

Demaine, E. D., Demaine, M. L. and Ku, J. (2011). "Folding Any Orthogonal Maze."
Fifth International Meeting of Origami Science, Mathematics, and Education,
Singapore.

Demaine, E. D. and O'Rourke, J. (2007). "Geometric Folding Algorithms: Linkages,
Origami, Polyhedra." Cambridge, United Kingdom, Cambridge University Press.

El-Sonbaty, Y., Ismail, M. and Farouk, M. (2004). "An Efficient Density Based
Clustering Algorithm for Large Databases." 16th IEEE International Conference
on Tools with Artificial Intelligence, Boca Raton, FL.

Esquivel, G., Xing, Q., Collier, R., Tomaso, M. and Akleman, E. (2011). "Weaving
Methods in Architectural Design." Bridges 2011 (Connections between
mathematics, art, and scsience), Combria, Portugal.

Ester, M., Kriegel, H., Sander, J. and Xu, X. (1996). "A Density-based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise." 2nd International
Conference on Knowledge Discovery and Data Mining, Portland, OR.

Ester, M., Kriegel, H., Sander, J. and Xu, X. (1997). "Density-connected Sets and Their
Application for Trend Detection in Spatial Databases." In Third International
Conference on Knowledge Discovery and Data Mining, Menlo Park, CA.

 169

Farnsworth, M., Benkhelifa, E., Tiwari, A. and Zhu, M. (2010). "A Novel Approach to
Multi-level Evolutionary Design Optimization of a MEMS Device." Lecture
Notes in Computer Science 6274: 322-334.

Fastag, J. (2006). "eGame: Virtual Paperfolding and Diagramming Software." Fourth
International Meeting of Origami Science, Mathematics, and Education,
Pasadena, CA.

Fieldsend, J. E., Everson, R. M. and Singh, S. (2003). "Using Unconstrained Elite
Archives for Multiobjective Optimization." IEEE Transactions on Evolutionary
Computation 7(3): 305-323.

Fonseca, C. M. and Fleming, P. J. (1993). "Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization." Genetic Algorithms:
Proceedings of the Fifth International Conference, San Mateo, CA.

Fonseca, C. M. and Fleming, P. J. (1998). "Multiobjective Optimization and Multiple
Constraint Handling with Evolutionary Algorithms. I. A Unified Formulation."
Systems, Man and Cybernetics, Part A: Systems and Humans 28(1): 26-37.

Fuse, T. (1990). "Unit Origami: Multidimensional Transformations." Tokyo, Japan,
Japan Publications : U.S. Distributor Kodansha America through Farrar, Straus
& Giroux.

Gantes, C. J. (2001). "Deployable Structures: Analysis and Design." Ashurst, United
Kingdom, WIT Press.

Garey, M. R. and Johnson, D. S. (1979). "Computers and Intractability: A Guide to the
Theory of NP-Completeness." London, United Kingdom, W. H. Freeman.

Gen, M. and Cheng, R. (1999). "Genetic Algorithms and Engineering Optimization."
Hoboken, NJ, Wiley-Interscience.

Goldberg, D. E. (1989). "Genetic Algorithms in Search, Optimization, and Machine
Learning." Boston, MA, Addison-Wesley Professional.

Goldberg, D. E. and Richardson, J. (1987). "Genetic Algorithms with Sharing for
Multimodal Function Optimization." Proceedings of the Second International
Conference on Genetic Algorithms on Genetic algorithms and Their Application,
Cambridge, MA.

Harbin, R. (1997). "Secrets of Origami: the Japanese Art of Paper Folding." Mineola,
NY, Courier Dover Publications.

 170

Hartl, D., Lane, K. and Malak, R. (2012). "Computational Design of a Reconfigurable
Origami Space Structure Incorporating Shape Memory Alloy Thin Films."
ASME 2012 Conference on Smart Materials, Adaptive Structures and
Intelligent Systems, Snowbird, UT.

Hawkes, E., An, B., Benbernou, N. M., Tanaka, H., Kim, S., Demaine, E. D., Rus, D.
and Wood, R. J. (2010). "Programmable Matter by Folding." Proceedings of the
National Acadamies of Science 107(28): 12441-12445.

Huffman, D. A. (1976). "Curvature and Creases: A Primer on Paper." IEEE Transactions
on Computers 25(10): 1010-1019.

Hull, T. (1994). "On the Mathematics of Flat Origamis." Congressus Numerantium 100:
215-224.

Hull, T. (2006). "Project Origami: Activities for Exploring Mathematics." Boca Raton,
FL, A.K. Peters/CRC Press.

Huzita, H. and Mitchell, M. (1989). "The Algebra of Paper-folding." First International
Meeting of Origami Science and Technology, Ferrara, Italy.

Jensenm, M. T. (2003). "Reducing the Run-Time Complexity of Multiobjective EAs:
The NSGA-II and Other Algorithms." IEEE Transactionson Evolutionary
Computation 7: 503-515.

Kicinger, R., Arciszewski, T. and De Jong, K. (2005). "Evolutionary Computation and
Structural Design: A Survey of the State-of-the-art." Computers & Structures
83(23-24): 1943-1978.

Knowles, J. and Corne, D. (1999). "The Pareto Archived Evolution Strategy : A New
Baseline Algorithm for Pareto Multiobjective Optimisation " CEC 99.
Proceedings of the 1999 Congress on Evolutionary Computation, Washington,
DC.

Konak, A., Coit, D. W. and Smith, A. E. (2006). "Multi-objective Optimization Using
Genetic Algorithms: A Tutorial." Reliability Engineering and System Safety
91(9): 992-1007.

Konak, A. and Smith, A. E. (2002). "Multiobjective Optimization of Survivable
Networks Considering Reliability." Proceedings of the 10th International
Conference on Telecommunication Systems, Monterey, CA.

 171

Konjevod, G. (2006). "Integer Programming Models for Flat Origami." Fourth
International Meeting of Origami Science, Mathematics, and Education,
Pasadena, CA.

Lang, R. J. (1996). "A Computational Algorithm for Origami Design." 12th Annual
ACM Symposium on Computational Geometry, Philadelphia, PA.

Lang, R. J. (2003). "Origami Design Secrets: Mathematical Methods for an Ancient
Art." Boca Raton, FL, A. K. Peters/CRS Press.

Lang, R. J. (2005). "Origami Design Secrets: Mathematical Methods for an Ancient
Art." Mathematics And Statistics, The Mathematical Intelligencer 27(2): 92-95.

Lei, X. and Shi, Z. (2004). "Overview of Multi-objective Optimization Methods."
Journal of Systems Engineering and Electronics 15(2): 142-146.

Li, W. and McAdams, D. A. (2013). "A Novel Pixelated Multicellular Representation
for Origami Structures That Innovates Computational Design and Control."
ASME 2013 International Design Engineering Technical Conferences (IDETC)
and Computers and Information in Engineering Conference (CIE), Portland, OR.

Lin, L., Gen, M. and Wang, X. (2009). "Integrated Multistage Logistics Network Design
by Using Hybrid Evolutionary Algorithm." Computers and Industrial
Engineering 56(3): 854-873.

Mandal, D., Bhattacharjee, A. K. and Ghoshal, S. P. (2009). "Comparative Optimal
Designs of Non-uniformly Excited Concentric Circular Antenna Array Using
Evolutionary Optimization Techniques." 2nd International Conference on
Emerging Trends in Engineering and Technology, London, United Kingdom.

MathWorks. (2014). "Digital Modulation." MatLab Documentation Center, 2014, from
http://www.mathworks.com/help/comm/ug/digital-modulation.html.

Mitani, J. (2011). "A Method for Designing Crease Patterns for Flat-Foldable Origami
with Numerical Optimization." Journal for Geometry and Graphics 15(2): 195-
201.

Miura, K. (2006). "The Science of Miura-Ori: A Review." Fourth International Meeting
of Origami Science, Mathematics, and Education, Pasadena, CA.

Miura, K. (2009). "Triangles and Quadrangles in Space." the International Association
for Shell and Spatial Structures (IASS) Valencia, Spain.

 172

Montroll, J. (1979). "Origami for the Enthusiast: Step-By-Step Instructions in over 700
Diagrams." Mineola, NY, Courier Dover Publications.

Nagpal, R. (2002). "Programmable Self-Assembly Using Biologically-Inspired
Multiagent Control." 1st International Joint Conference on Autonomous Agents
and Multiagent Systems, Bologna, Italy.

Nagpal, R., Kondacs, A. and Chang, C. (2003). "Programming Methodology for
Biologically-Inspired Self-Assembling Systems." AAAI Spring Symposium on
Computational Synthesis, Menlo Park, CA.

O'Neill, M., McDermott, J., Mark Swafford, J., Byrne, J., Hemberg, E., Brabazon, A.,
Shotton, E., McNally, C. and Hemberg, M. (2010). "Evolutionary Design Using
Grammatical Evolution and Shape Grammars: Designing a Shelter."
International Journal of Design Engineering 3(1): 4-24.

Oehler, S., Hartl, D., Lopez, R., Malak, R. and Lagoudas, D. (2012). "Design
Optimization and Uncertainty Analysis of SMA Morphing Structures." Smart
Materials and Structures 21(9): 1-16.

Oezluek, A. C., Dibowski, H. and Kabitzsch, K. (2009). "Automated Design of Room
Automation Systems by Using an Evolutionary Optimization Method." IEEE
Conference on Emerging Technologies and Factory Automation, Mallorca,
Spain.

Ovadya, A. (2010). "Origami Transformers: Folding Orthogonal Structures from
Universal Hinge Patterns." M. Eng, Massachusetts Institute of Technology.

Palmer, C. C. and Kershenbaum, A. (1994). "Representing Trees in Genetic
Algorithms." Evolutionary Computation, 1994. IEEE World Congress on
Computational Intelligence., Proceedings of the First IEEE Conference on,
Orlando, FL.

Peraza-Hernandez, E., Hartl, D. and Malak, R. (2013). "Simulation-based Design of a
Self-folding Smart Material System." ASME 2013 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, Portland, OR.

Peraza-Hernandez, E. A., Hartl, D. J. and Malak, R. J. (2013). "Design and Numerical
Analysis of an SMA Mesh-based Self-folding Sheet." Smart Materials and
Structures 22.

 173

Pettersson, F., Saxen, H. and Deb, K. (2009). "Genetic Algorithm-Based Multicriteria
Optimization of Ironmaking in the Blast Furnace." Materials And
Manufacturing Processes 24(3): 343-349.

Poma, F. (2009). "On the Flat-Foldability of a Crease Pattern." from
http://poisson.phc.unipi.it/~poma/Ffcp.pdf.

Potter, M. A. and De Jong, K. A. (1994). "A Cooperative Coevolutionary Approach to
Function Optimization." Parallel Problem Solving from Nature - PPSN III: 249-
257.

Potter, M. A. and De Jong, K. A. (2000). "Cooperative Coevolution: An Architecture for
Evolving Coadapted Subcomponents." Evolutionary Computation 8(1): 1-29.

Reddy, J. N. (2005). "An Introduction to the Finite Element Method." New York City,
McGraw-Hill Science/Engineering/Math.

Schmitt, L. M. (2001). "Theory of Genetic Algorithms." Theoretical Computer Science
259: 1-61.

Schneider, J. (2004). "Flat-Foldability of Origami Crease Patterns." from
http://www.sccs.swarthmore.edu/users/05/jschnei3/origami.pdf.

Sharma, D., Deb, K. and Kishore, N. N. (2013). "Customized Evolutionary Optimization
Procedure for Generating Minimum Weight Compliant Mechanisms."
Engineering Optimization: 39-60.

Stoy, K. (2004). "Self-Repair Through Scale Independent Self-Reconfiguration."
Proceedings of IEEE/RSJ International Conference on Robots and Systems,
Sendai, Japan.

Stroble, J. K., Nagel, R. L., Stone, R. B. and McAdams, D. A. (2010). "Function-Based
Biology Inspired Concept Generation." Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 24(4): 521-535.

Tachi, T. (2006). "3D Origami Design based on Tucking Molecule." Fourth International
Meeting of Origami Science, Mathematics, and Education, Pasadena, CA.

Tachi, T. (2006). "Simulation of Rigid Origami." Fourth International Meeting of
Origami Science, Mathematics, and Education, Pasadena, CA.

 174

Tachi, T. (2009). "Generalization of Rigid Foldable Quadrilateral Mesh Origami." the
International Association for Shell and Spatial Structures (IASS), Valencia,
Spain.

Tachi, T. (2010). "Origamizing Polyhedral Surfaces." IEEE Transactions on
Visualization and Computer Graphics 16(2): 298-311.

Tachi, T. (2010). "Rigid-foldable Thick Origami." Fifth International Meeting of
Origami Science, Mathematics, and Education, Singapore.

Tibbits, S. (2012). "Design to Self-Assembly." Architectural Design 82(2): 68-73.

Tibbits, S. and Cheung, K. (2012). "Programmable Materials for Architectural Assembly
and Automation." Assembly Automation 32(3): 216-225.

Trudeau, R. J. (1994). "Introduction to Graph Theory." Mineola, NY, Courier Dover
Publications.

Van Den Berg, J., Miller, S., Goldberg, K. and Abbeel, P. (2011). "Gravity-Based
Robotic Cloth Folding." Algorithmic Foundations of Robotics IX. Berlin,
Germany, Springer Berlin Heidelberg: 409-424.

Wang, K. and Chen, Y. (2010). "Folding a Patterned Cylinder by Rigid Origami." Fifth
International Meeting of Origami Science, Mathematics, and Education,
Singapore.

Watanabe, N. and Kawaguchi, K.-i. (2006). "The Method for Judging Rigid Foldability."
Fourth International Meeting of Origami Science, Mathematics, and Education,
Pasadena, CA.

Wikipedia. (2014). "History of Origami." from
http://en.wikipedia.org/wiki/History_of_origami.

Yogev, O., Shapiro, A. A. and Antonsson, E. K. (2010). "Computational Evolutionary
Embryogeny." Evolutionary Computation 14(2): 301-325.

Yukokoji, Y., Tanaka, K. and Kamotani, Y. (2006). "Origami Folding by a Robotic
Hand." IEIC Technical Report (Institute of Electronics, Information and
Communication Engineers) 106: 113-118.

Zitzler, E. and Thiele, L. (1999). "Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach." IEEE Transactions
on Evolutionary Computation 3(4): 257-271.

