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ABSTRACT 

 

With the development of computer science and manufacturing techniques, 

modern origami is no longer just used for making artistic shapes as its traditional 

counterpart was many centuries ago. Instead, the outstanding lightweight and high 

flexibility of origami structures has expanded their engineering application in aerospace, 

medical devices, and architecture. In order to support the automatic design of more 

complex modern origami structures, several computational origami design methods have 

been established. However these methods still focus on the problem of determining a 

crease pattern to fold into an exact pre-determined shape. And these methods apply 

deductive logic and function for only one type of topological origami structure. 

In order to drop the topological constraints on the shapes, this dissertation 

introduces the research on the development and implementation of the abductive 

evolutionary design methods to open origami design problems, which is asking for their 

designs to achieve geometric and functional requirements instead of an exact shape. This 

type of open origami design problem has no formal computational solutions yet. 

Since the open origami design problem requires searching for solutions among 

arbitrary candidates without fixing to a certain topological formation, it is NP-complete 

in computational complexity. Therefore, this research selects the genetic algorithm (GA) 

and one of its variations – the computational evolutionary embryogeny (CEE) – to solve 

origami problems. 
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The dissertation made two major contributions. One contribution is on creating 

the GA-based/abstract design method framework on open origami design problems. The 

other contribution is on the geometric representation of origami designs that directs the 

definition and mapping of their genetic representation and physical representation. This 

research introduced two novel geometric representations, which are the “ice-cracking” 

and the pixelated multicellular representation (PMR). The proposed design methods and 

the adapted evolutionary operators have been testified by two open origami design 

problems of making flat-foldable shapes with desired profile area and rigid-foldable 3D 

water containers with desired volume. The results have proved the proposed methods 

widely applicable and highly effective in solving the open origami design problems. 
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CHAPTER I  

INTRODUCTION 

 

Popular since the 17th century, origami design is traditionally a handcrafted art 

form (Harbin 1997). Ever since the 1700s, many origami artists have created and 

published their hand-made origami works (Fuse 1990, Harbin 1997, Hull 2006, Lang 

2003, Montroll 1979). More recently, researchers have discovered origami’s connections 

with, and applications in, engineering (Gantes 2001). The field of origami engineering is 

growing with the development of formal mathematical and computational methods for 

designing folded shapes. Additionally, origami-style geometries have found multiple 

applications in engineered systems. Within the last three decades, origami engineering 

has advanced into several branches including origami art design (Lang 2003), origami 

mathematics (Demaine and Demaine 2001), and computational origami (Fastag 2006, 

Tachi 2006). Nevertheless, the two fundamental origami problems - origami design and 

foldability (Demaine and Demaine 2001) – remain only partially solved. Folding pattern 

design refers to the design of a crease pattern for a flat sheet. If a flat sheet is folded 

along the specified creases a specific shape is formed. In the foldability problem, the 

crease pattern has been given. The question that remains for foldability is - whether there 

exists a valid mountain-valley assignment for this pattern to achieve the intended shape. 

In geometry, origami structures are made up of a series of folds in a sheet of 

paper (Figure 1). The locations of the folds are formally called “creases”. The various 

locations, folding directions and folding sequence of the creases determine the ultimate 
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Tachi 2010) have been developed by other researchers. Those methods, such as 

TreeMethod (Lang 1996), Origamizer (Tachi 2006, Tachi 2010), and etc., generally set 

up the laws for mapping the desired folds in the origami shapes back to the local crease 

pattern molecules, as well as the means for connecting these molecules to form the 

whole crease pattern. However, most of the above computational methods are focusing 

on deriving crease patterns for given final folded origami shapes, but leaving the 

sculpturing of the folded shapes to the origami artists or engineers. 

To synthesize the folded shape design into computational origami design and 

optimization process, this dissertation will present evolutionary methods that design 

origami structures including geometric, functional, and foldability properties. Without a 

clear definition of the required folded origami shape, the formation of vertices and 

creases is not definitive either. Thus the origami topological structures with 

undetermined crease patterns would cause the design search space to have high non-

linearity, unpredictable dimensionality, and non-convexity. Moreover, the origami 

design problems that synthesize the folded shape design often involve multiple 

objectives. For multi-objective design and optimization problems, most of the 

conventional solution search methods have limitations in dealing with non-convex 

design space, disconnected Pareto frontier, or non-differential objective functions. 

Evolutionary algorithms, in contrast, have proved to be less susceptible to the shape or 

continuity of the Pareto frontiers, and more effective with little a priori understanding of 

the search space (Coello 2009, Kicinger, Arciszewski and De Jong 2005). As a result, 

the genetic algorithm, which is a widely applied evolutionary algorithm on system 
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design and optimization, will be used for this research. This dissertation will adapt 

genetic algorithms through solving two key problems prior to applying GA to the design 

problems. One problem is on how to use binary genetic codes to encode any candidate 

solution, while the other is on how to accelerate and regulate the evolution process. 

Studies on origami folding often assume that the shape can be folded flat (Mitani 

2011). Flat-foldability is not only an important property that makes industrial origami 

structures more compact and portable, but also fits most of the traditional origami 

artworks that are made only by folding and unfolding (Mitani 2011). To be a flat-

foldable origami, the crease folds must be locally flat-foldable everywhere, which means 

each vertex and its connected creases needs to satisfy the Maekawa-Justin theorem, the 

Kawasaki-Justin theorem, and the local min theorem (Demaine and O'Rourke 2007). 

Also, as a whole, the origami structure cannot collide with itself during the folding 

procedure. Since this dissertation is on new applications of GA and GA-based meta-

heuristics, I will restrict my study to flat-foldable origami structures, on which we have 

more comprehensive understanding. This dissertation will also present a heuristic for 

flat-foldability identification of a known crease arrangement. The basic idea of the 

heuristic is to tree-search all the MV-assignments and face overlapping orders, while 

immediately pruning the “branches” of solutions as they violate the local flat-foldability 

(Theorem 1(1)) or the non-collision criteria (Theorem 1(3)). Since the flat-foldability 

problem is proved NP-hard, the above tree-search heuristic has to go through a “brute 

force” process with clear guidance and simplification. 
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In summary, the research topics that will be covered in this dissertation are given 

in Figure 2. The main topics are the two major research fields on origami design 

automation and self-folding origami control, the three specific applications, as well as 

the GA-based methods. Several subordinate research topics that support the main topics 

are also listed in the figure. The subordinate topics of the GA-based methods include the 

individual encoding methods, the fitness ranking approaches, and the evolutionary 

operators design, which are boxed by dotted lines. The octagons mark three subsidiary 

research topics – origami flat-foldability, data clustering, and linear classification – that 

will be introduced and adapted as the mathematical tools to support the main research 

topics. 

 

 

 

Figure 2 The research fields, applications, and the GA and CEE methods that are 
studied in this dissertation 
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Design Problem Statement 

Origami engineers and artists have successfully found viable computational 

methods (Demaine, Demaine and Ku 2011, Lang 1996, Lang 2005, Tachi 2010) to 

develop ways of deriving crease patterns for desired folded origami shapes, but few of 

these existing methods actually design the folded shape of an origami structure. An 

example origami design problem that considers the finished folded shape design is given 

below. 

Objective:  

Design a flat-foldable origami structure that has a minimal change on the center 

of mass between its spread state and folded state. We assume that at the spread state, the 

origami sheet lies in a horizontal plane P୦; while at the folded state, all the faces stand in 

a vertical plane P୴. During the folding procedure, one of the creases must be anchored 

steady, so that the two planes P୦ and P୴ will intersect at this anchored crease. 

Constraints: 

1. The spread state origami sheet has a given shape ܵ௧; 

2. The number of creases falls within a certain range ሺܯ௅,ܯ௎ሻ; 

3. The flat-folded state profile has a certain area ܣ௧. 

The constraints S୲, M୐,M୙, and A୲ are four to-be-determined arguments (TBD 

arguments) for specific problems. The spread state shape S୲ defines the shape of the 

unfolded sheet that will be folded. For traditional origami works, S୲ is usually a square, a 

1:2 rectangle, or an isosceles right triangle. In the research cases of cube folding (Amato, 

Dill and Song 2003, Amato and Song 2002) and shopping bag folding (Balkcom, 
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Demaine and Demaine 2004), S୲ will need to define some irregular but continuous 3D 

surfaces. The area of flat-folded state profile A୲ is a unique property possessed only by 

flat-foldable origami. For instance, the shopping bags need to be able to fold flat for the 

convenience on mass storage and transportation. Therefore, the flat-folded profile of a 

shopping bag must be smaller and less distorted. The range of the number of creases 

ሺM୐,M୙ሻ is not as directly related with the physical performance of the origami 

structures as S୲ and A୲, but it is a factor that defines the complexity of the origami crease 

pattern (another factor is how the creases are linked). More creases in the crease pattern 

result in more complexity, while fewer creases mean less complexity. Less complexity 

in the origami crease pattern with as few creases as possible is intuitively preferred for 

either artistic or engineering applications, since origami structures with fewer creases 

will be much easier to manufacture and fold. However, a crease pattern with too few 

creases will be less able to satisfy some of the design objectives. For instance, it is 

impossible to fold a container for holding water using a crease pattern with only two 

creases. In practice, the lower limit M୐	is always set to 1, unless the designer knows the 

minimum number of creases that is enough for realizing the design requirements. The 

upper limit M୙ is determined according to the limitation of manufacturing or manual 

crafting skill. The function of M୐ and M୙ is to confine the design search space. As a rule 

of thumb, narrowing down the range of ሺM୐,M୙ሻ speeds the optimization method. 

Toward the objective and constraints of the design problem, I use the following 

objective function: 
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,෡ࢂ൫ܪ ݈, ,݉,෡࡯ ,෡ࡲ ݊൯ ൌ෍ܪపതതത൫ࢉଵ, ⋯,ଶࢉ , ௣൯ࢉ ൈ ௜ݓ ൅ ܲ൫ࢉଵ, ⋯,ଶࢉ ,  ௣൯ࢉ

ൌ ,ଵࢉ௘തതതത൫ܪ ⋯,ଶࢉ , ௣൯ࢉ ൈ ௘ݓ ൅ ,ଵࢉ௔തതതത൫ܪ ⋯,ଶࢉ , ௣൯ࢉ ൈ ௔ݓ ൅ 

,ଵࢉ௙തതത൫ܪ ⋯,ଶࢉ , ௣൯ࢉ ൈ ௙ݓ ൅ ܲ൫ࢉଵ, ⋯,ଶࢉ ,  ௣൯ࢉ

ൌ ,෡ࢂ௘෢൫ܪ ݈, ,݉,෡࡯ ,෡ࡲ ݊൯ ൈ ௘ݓ ൅ ܣ௔෢ሺ̅ܪ െ ௧ሻܣ ൈ ௔ݓ ൅ 

௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬൯ݎݎܧ௙෢൫ܪ ൈ ௙ݓ ൅ ෠ܲሺ݉ሻ 

	:࢙࢚࢔࢏ࢇ࢚࢙࢘࢔࢕ࢉ	࢚ࢌ࢕ࡿ 

ە
ۖ
۔

ۖ
ۓ ݐ݈݂ܽ	ݏ݅	݊ݎ݁ݐݐܽ݌	݁ݏܽ݁ݎܥ െ ݈ܾ݈݁ܽ݀݋݂

݉ ൏ ௎ܯ

ܵ൫ࢂ෡, ݈, ,݉,෡࡯ ,෡ࡲ ݊൯ ൌ ܵ̅൫ࢉଵ, ⋯,ଶࢉ , ௣൯ࢉ ൌ ௧ࡿ
,෡ࢂ൫ܣ ݈, ,݉,෡࡯ ,෡ࡲ ݊൯ ൌ ,ଵࢉ൫ܣ̅ ⋯,ଶࢉ , ௣൯ࢉ ൌ ௧ܣ

 

where ܪ௘തതതത is the evaluation of the potential energy (which equivalently measures the 

location of center of mass) at the flat-folded state, ܪ௔തതതത represents how different the folded 

state profile area and the target value of 5/18 are, ܪ௙തതത represents the evaluation of global 

flat-foldability error (as defined in (Li and McAdams 2013)), ܲ is the penalty term due 

to the disagreement with soft constraints, ܵ is the spread state profile, and ܣ is the flat-

folded state profile area. The overall fitness value ܪ is formulated as a weighted sum of 

its components of ܪ௘തതതത, ܪ௔തതതത, and ܪ௙തതത that are related to the properties of the candidate 

solution and the soft constraints as well. If the number of creases exceeds the restricted 

range defined by ܯ௅ and ܯ௎, an extra “penalty” term ܲ൫ࢉଵ, ⋯,ଶࢉ ,  .௣൯ will also be addedࢉ

In addition, since the origami design problem won’t constrain the exact shape of 

the origami, this research will define the type of such problems as open origami design 

problems. 
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Computational Complexity 

The computational complexity is a measurement for the inherent difficulty of a 

problem or an algorithm (approach). The computational complexity of a problem is the 

minimum of the computational complexity of all of its possible approaches. 

However, some of the algorithm will convert or simplify its problem. TreeMaker 

converts the desired shape design problem to the design of a uniaxial base. Origamizer 

simplifies the shape surface design problem to the realization of a triangular mesh. The 

computational complexity of these methods depends on their converted problems. The 

design of a uniaxial base has been proven to be equivalent to a disk packing problem 

(Lang 2003). Thus the complexity of TreeMaker is that of the corresponding disk 

packing algorithm that it applies. The realization of a triangular mesh is equivalent to the 

rearrangement of the triangular facets in a plane without overlapping and the insertion of 

tuck molecules. So the complexity of Origamizer is that of seeking facet arrangement 

and tuck molecule assignment. 

For a design problem as described in the prior section, the crease pattern designs 

are arbitrary. So the solution search space is theoretically infinite. For simplification, we 

only allow the vertices to be chosen from the nodes of a square lattice with a resolution 

of ݎ-by-	ݎ. There will be about ݎଶ available positions for each vertex to locate. Under the 

simplification, if the search for the crease pattern design has to try every planar graph 

(Trudeau 1994), in which any vertex within the square origami paper has at least four 

linked creases (edges). Without using faster algorithms, this solution-search procedure 

can further be decomposed to three stages: 
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Stage 1: Determine the number of vertices (n୚) and the number of creases (nେ). 

Stage 2: Place the vertices (V ൌ ሼv୧, i ൌ 1,2, … , n୚ሽ) on the available locations 

within and on the border of the origami paper. 

Stage 3: Connect the vertices by the creases (C ൌ ሼc୧, i ൌ 1,2, … , nେሽ) that have 

no intersections with each other. 

When we apply restrictions on n୚, nେ, as well as on the available locations for 

placing the vertices, stages 1 and 2 are combinatorial search problems. Upon the 

completion of stages 1 and 2, stage 3 can be converted to a basic NP-complete problem 

(Garey and Johnson 1979). Here I use E ൌ ൛e୨ ൌ ൛v୨ଵ, v୨ଶൟ ⊆ Vൟ to represent the union of 

all the edges, whose two end points are from the vertices V. Then the crease must be a 

chosen as a subset of the edges, which means C ⊆ E. In this case, I build a dual graph 

G ൌ ൫V, E൯, where V ൌ E and E ൌ R ൌ ሼ∀r୩ ൌ ሼe୩ଵ, e୩ଶሽ ⊆ E, e୩ଵ	doesnᇱt	intersect	 

with	e୩ଶሽ. As a result, stage 3 is no simpler than the NP-complete problem of looking 

for a clique of size nେ or more within the dual graph G (Garey and Johnson 1979). 

Through the problem decomposition and analysis, I conclude that the crease 

pattern design problem is an NP-complete problem. In order to solve such a problem, a 

heuristic is necessary to avoid any form of exhaustive search and accelerate the solution 

derivation process. 

 

Dissertation Formation 

In the following chapters of this dissertation, I will illustrate my research 

methodology on solving the NP-complete origami design problem. The heuristic that I 
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select is an evolutionary algorithm. My research topic is to implement evolutionary 

algorithms to design a generic origami design method, which solves problems that 

request for a broad range of geometric and functional requirements. 

In chapter II, I will go through some established research that is either related to 

my research topic or essential for inspiring my research methodology. This research 

includes widely studied origami design methods, and the study on variations of 

evolutionary algorithms. 

In this chapter I have defined the objective function of the design problem. In 

chapters III and IV, I will introduce my solutions for the other two key aspects of 

applying evolutionary algorithms – the geometric representation of candidate designs 

and the evolutionary operators.  

In chapter V, I present designs derived by the evolutionary algorithms. And I will 

make a discussion through the comparison of the designs and through analyzing the 

whole solution derivation procedure. The discussion will reveal the advantages and 

limitations of the evolutionary algorithms that I will propose for the design problem. 

In chapter VI, I implement and adapt the same evolutionary algorithm for another 

origami design problem. The new problem asks for the design of an origami water 

container that has a desired volume. The results of the evolutionary algorithm will be 

used to shown the extensiveness and the applicability of the method for variations of 

open origami design problem. 
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CHAPTER II  

LITERATURE REVIEW 

 

The earliest record of traditional origami can be dated back to the 17th century. 

But modern origami study has only a few decades’ history. Modern origami designers 

emphasize designing models, which have not only good final shapes but also good 

sequences. The two most significant symbols that mark modern origami are wet-folding 

and the standard Yoshizawa-Randlett system (Wikipedia 2014). Wet-folding was first 

introduced by Akira Yoshizawa - a prolific origami grandmaster, who was inspired by 

modern renaissance art. Wet-folding makes the manipulation of paper easier and results 

in origami works with a more sculpted look. The Yoshizawa-Randlett system is a 

diagramming system used to describe the folds of origami models. Such description of 

basic origami techniques for constructing origami models is widely used in present 

origami textbooks. 

Then since the 1960s, a larger amount of artists and engineers have started to pay 

extra attention to origami and the remarkable structural advantages of origami 

mechanisms. As a general term for origami research and study, origami engineering 

includes five major foci – mathematics in origami, origami design automation, 

computational simulation & visualization, origami structures in engineering, and origami 

in education. Based on the design problem description given in the last chapter, this 

dissertation will mostly present my work on two core topics about mathematics in 

origami and origami design automation. The computational simulation & visualization is 
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somewhat relevant, but I will use it as a tool to support the study on the two core 

research topics. 

In this chapter, I will mainly go through the established research and results of 

origami engineering that are closely relative with my dissertation study. The content of 

this chapter will be partitioned into five sections: origami foldability, origami design 

methods, intelligent origami, evolutionary design, and genetic algorithm.  

In the section of origami foldability, I will introduce the mathematical and 

geometric theorem and results that will be applied in my research. And the introduction 

mainly covers the results on flat-foldability and rigid-foldability of origami structures, as 

these two features are requested in my research problem. 

The next section will list and introduce some of the most studied origami design 

methods. I will also provide a summary of these methods and reveal why they cannot be 

adapted to my research problem. 

The third section on intelligent origami is an extension of the fundamental 

research. I will introduce the studies that make the origami folding or designing 

automated by innovative approaches. These studies have inspired some of my ideas in 

realizing origami design automation. 

The fourth and the fifth sections are about the research methodology that I use 

for solving my design problem. Since the design problem has been proven NP-complete, 

and we are seeking for a generic approach, the evolutionary design applying an 

abductive measure for generating designs is one suitable choice. The two sections will 
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present the studies on the basic evolutionary algorithms, as well as some new founding 

on the applications of novel evolutionary algorithm variations. 

 

Origami Foldability in Mathematics and Geometry 

Origami design can be decomposed into three major sub-problems, which are 

crease pattern design, MV-assignment, and final shape design Figure 3. Crease pattern 

design involves the crease arrangement design, as well as the mountain-valley-

assignment (MV-assignment) of all the creases. The creases arrangement design tells 

where in the origami sheet the creases (folds) will be placed, while the MV-assignment 

determines each crease to be either a mountain or a valley that constrains the direction of 

crease folding. The folding angle design is an extension of the MV-assignment design. 

The folding angles of all the creases are required for uniquely defining the folded state of 

an origami structure as long as the folding is not flat. The folding sequence is literally 

the sequence of making the folds. For many of the cases, some creases have to be folded 

at the same time; but simple folds usually can be folded separately. The final shape 

design needs to derive the proper folding angles and folding sequence of the creases to 

transform the origami sheet into the desired shape. Although not a part of origami design, 

the design of a geometric representation is also an essential component, since it defines 

the language and the syntax that are used by designers and computers to describe an 

origami structure. 
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Figure 3 The sub-problems under origami design.  
 

 

Origami foldability is an element of origami engineering different than general 

origami design. And it is closely related with and required by all the sub-problems of 

origami design. Though the foldability serves as one of the performance criteria for 

general origami design (in most cases). However, foldability can be studied 

independently based on some existing origami mathematics results. Based on the 

mathematics and geometry in origami, the most studied and used foldability 

requirements are flat-foldability and rigid-foldability. 

 

Flat-foldability 

For the flat-foldability of origami structures, several origami researchers have 

created similar theorems to identify it. According to Demaine, O’Rourke (Demaine and 

O'Rourke 2007), Poma (Poma 2009), and Schneider (Schneider 2004), flat-foldability 

can be defined by local and global scopes. The local flat-foldability, which considers 
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only the small region around each vertex, has already been mathematically defined as 

the union of three basic origami theorems, which are the Maekawa-Justin theorem, the 

Kawasaki-Justin theorem, and the local min theorem (Demaine and O'Rourke 2007). 

Global flat-foldability implies the local flat-foldability on every vertex and a non-

collision condition. Justin (Esquivel, Xing, Collier, Tomaso et al. 2011) and Konjevod 

(Konjevod 2006) listed three possible situations that breaks the non-collision condition. 

Poma (Poma 2009) and Schneider (Schneider 2004) have also presented their 

mathematical interpretations of non-collision condition in their manuscripts. However, 

the inspection of the global flat-foldability, or say the inspection of the global non-

collision condition, is known to be NP-hard (Bern and Hayes 1996), no matter what 

method has been used. Besides the studies given above, Hull (Hull 1994, Hull 2006) has 

also studied flat-foldability. He has proved the edge-2-colorability of flat-foldable crease 

patterns. As a summarization, (Li and McAdams 2013) reformulates the check of three 

face surface crossings (Esquivel, Xing, Collier, Tomaso et al. 2011) to the identification 

of two penetration conditions, and provides a practicable tree-search heuristic to check 

the global flat-foldability for crease patterns with known MV-assignments. 

According to the research of Demaine, O’Rourke (Demaine and O'Rourke 2007), 

Poma (Poma 2009), and Schneider (Schneider 2004), globally flat-foldability must 

satisfy the following theorem. 

Global flat-foldability theorem: An origami structure is globally flat-foldable, if 

and only if its crease pattern satisfies: 

(1) (Necessary condition) Locally flat-foldable everywhere; 
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(2) (Lemma of condition 1) 2-colorable; and 

(3) (Sufficient condition) Capable of stacking all faces flat without causing 

collision or penetration between faces and creases. 

In Theorem 1, condition (1) is the requirement for the creases. It says the creases 

that intersects on any vertex, needs to satisfy the Maekawa-Justin theorem, the 

Kawasaki-Justin theorem, and the local min theorem for origami (Demaine and 

O'Rourke 2007). The third Theorems say: 

Maekawa-Justin theorem: If one looks inside a flat origami without unfolding it, 

one sees a zigzagged profile, determined by an alternation of "mountain creases" and 

"valley creases". The numbers of mountains and valleys always differ by 2, which means 

|m୑ െm୚| ൌ 2, where m୑ሺ൐ 0ሻ is the number of mountain creases, and m୚ሺ൐ 0ሻ is 

the number of valley creases. 

Kawasaki-Justin theorem: A given crease pattern can be folded to a flat origami 

if all the sequences of angles ሼaଵ, aଶ, … , aଶ୬ሽ  surrounding each (interior) vertex fulfill 

the following condition 

ܽଵ ൅ ܽଷ ൅ ⋯൅ ܽ௡ିଵ ൌ ܽଶ ൅ ܽସ ൅ ⋯൅ ܽ௡ ൌ  ߨ

or 

ܽଵ െ ܽଶ ൅ ܽଷ െ ܽସ ൅ ⋯൅ ܽ௡ିଵ െ ܽ௡ ൌ 0 

Local Min theorem: In any flat folding, any wedge whose angle is a local min 

(smaller than the angles of its two adjacent wedges) must be delimited by one mountain 

and one valley fold. 
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Condition (2) is for the faces. In a flat-foldable origami structure, using only two 

colors must be enough for dyeing the faces, so that no adjacent faces will share a same 

color. This condition stands a lemma of the three theorems in condition 1. And it is also 

a necessary condition for global flat-foldability. 

The condition (3) declares the geometric relation of faces and creases during the 

dynamic folding process. A mathematical expression for condition (3) is specifically 

explained in Schneider’s manuscript (Schneider 2004). 

Throughout the origami design procedure, the flat-foldability identification needs 

to start with a single given crease arrangement. To complete the crease pattern, all MV-

assignments that are locally flat-foldable must be derived first. Then, for each MV-

assignment, we also need to provide its folding sequence to reveal its global flat-

foldability. For origami structures with simple folds only, the order for creases to be 

folded one by one is enough to define the folding sequence; otherwise multiple creases 

may need to fold simultaneously. In the latter situation, the order of face overlapping at 

the flat folded state is sufficient for defining how the origami structure is folded than a 

folding sequence. Any occurrence of face penetration (collision) indicates that the crease 

pattern is not foldable by using the current face overlapping order. 

In a crease arrangement, only the location and angle of each crease are given. An 

MV-assignment is required to further define which directions these creases will be 

folded to with respect to its adjacent faces. Therefore, to determine whether an MV-

assignment is invalid for flat-foldability, we check if it violates Theorem 1(1). I apply an 

exhaustive tree search algorithm to get all the locally flat-foldable MV-assignments from 
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the crease arrangement. With a given arrangement of m creases, the exhaustive tree 

search algorithm for deriving all locally flat-foldability MV-assignments theoretically 

has a Oሺ2୫ሻ step bound. However, when we practically perform the exhaustive tree 

search, any newly grown leaf that will later develop into a sub-tree of candidate MV-

assignments will be immediately pruned, as long as the leaf has violations on Theorem 1 

condition (a). 

Face overlapping orders will then be based on locally flat-foldable MV-

assignments. For any given crease arrangement, either there is more than one locally 

flat-foldable MV-assignment (at least two with one being a reverse of the other), or no 

locally flat-foldable MV-Assignments are possible. For each MV-assignment there are 

many possible and distinct folding sequences, so faces in flat-folded state could thus be 

stacked in a different order as well. Here, I again use a similar exhaustive tree search 

algorithm to determine face overlapping orders. In accordance with the third condition of 

Theorem 1, we exhaustively search the existence of face penetration for each possible 

face overlapping order. The definition of face penetration and the algorithm of checking 

penetration are explained as follows.  

The penetration check algorithm requires us to firstly calculate the semifolding of 

an origami structure μ: Rଶ → Rଶ, which is adapted from Schneider’s method (Schneider 

2004). The semifolding procedure is physically processed through the following 3 steps. 

1) Have the crease pattern ready on a sheet of paper, whose thickness is small 

enough to be ignored during any folding procedure, and place it in an horizontal 

ܴଶ plane; 
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2) Cut the paper along all the creases to derive the separated origami faces; 

3) Rearrange and stack the faces parallel in the same horizontal ܴଶ plane, where the 

uncut sheet was in, then flip some of them if necessary, until all the conditions 

below satisfy: 

a) If two faces are adjacent in the crease pattern, the edges that used to be their 

common crease must coincide; 

b) For every face that hasn’t been flipped, its adjacent face, which was linked by 

a valley crease, must have been flipped and stacked above; 

c) For every face that hasn’t been flipped, its adjacent face, which was linked by 

a mountain crease, must have been flipped and stacked below. 

Following the semifolding procedure, I give the equivalent mathematical 

expressions for the semifolded origami structure. As a convention for our notation, a bar 

is used to distinguish between the features such as vertices, creases and faces and the 

semifolding remaps of those features. For instance, the i-th crease C୧ to Cത୧(i.e. Cത୧ ൌ

μሺC୧ሻ). For convenience of explanation, at the semifolded state, we call the two adjacent 

faces of any crease Cത୧ as the “cover faces” of the crease Cത୧. Since we have a definite 

order of face overlapping, we further name the cover face that stacks above another to be 

the upper cover face Fത୧,ୡ୭୴ୣ୰,୙. The one below is consequently named the lower cover 

face Fത୧,ୡ୭୴ୣ୰,୐. The faces stacking between two cover faces are called the content faces 

Fത୧,ୡ୭୬୲ୣ୬୲ of crease Cത୧. All the content faces are thus above the lower cover face, but 

below the upper cover face. 
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The face penetration check algorithm implements an exhaustive search sequence, 

which goes through every crease. For the crease Cത୧, its two adjacent faces will be the 

cover faces. The content faces can also be determined. 

At the semifolded state of the crease pattern, I simplify the three collision cases 

in (Schneider 2004) down to the following two situations of face penetration. The first 

situation is when a crease Cത୨,୩ of one content face Fത୧,ୡ୭୬୲ୣ୬୲,୨ intersects with the crease Cത୧; 

ഥ௝,௞࡯ ∩ ഥ௜࡯ ് ∅,  ഥ௜,௖௢௡௧௘௡௧,௝.                    (1)ࡲ	݂݋	݁ݏܽ݁ݎܿ	ܽ	ݏ݅	ഥ௝,௞࡯

The second situation is when the crease ࡯ഥ௜is totally within the region of a content face 

 ;ഥ௜,௖௢௡௧௘௡௧,௝, but has no intersection with any of the creases of that content faceࡲ

ഥ௜࡯ ∩ ഥ௜,௖௢௡௧௘௡௧,௝ࡲ ൌ ഥ௖௢௠௠௢௡࡯	݀݊ܽ	ഥ௜࡯ ∩ ષࡲഥ௜,௖௢௡௧௘௡௧,௝ ൌ ∅                           (2) 

or 

ഥ௝,௞࡯ ∩ ഥ௜,௖௢௡௧௘௡௧,௝ࡲ ൌ ഥ௜࡯	݀݊ܽ	ഥ௜࡯ ∩ ഥ௝,௞࡯ ൌ ∅,  ഥ௜,௖௢௡௧௘௡௧,௝.       (3)ࡲ	݂݋	݁ݏܽ݁ݎഥ௝,௞ܿ࡯∀

Every possible MV-assignment and face overlapping order for a given crease 

pattern is tested with the penetration check algorithm. As soon as face penetration is 

found, the penetration check stops and labels the tested combination of MV-assignment 

and face overlapping order as not flat-foldable. Again, the exhaustive tree search for face 

overlapping order based on one crease pattern has a theoretical Ο൫ሺn െ 1ሻ!൯ step bound, 

where n is the number of faces. But the occurrence of face penetration will cause the 

search tree to be pruned early thus in practice narrowing the search space.  

If no face penetration is spotted after a thorough search that has considered all 

the creases as the common crease for the penetration check, the crease pattern with the 

given combination of MV-assignment and face overlapping order is found to be flat-
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foldable. Finally, if a crease pattern has no flat-foldable combination of MV-assignment 

and face overlapping order, it is defined as not flat-foldable. 

More details about the approaches for detecting the flat-foldability of an origami 

design will be described in following chapters. 

 

Rigid-foldability 

Rigid-foldability requires each face of an origami shape to stay non-deformed 

throughout the entire folding procedure. The rigid-foldability has been studied by D. A. 

Huffman (Huffman 1976), T. Hull (Hull 2006), T. Tachi (Tachi 2006, Tachi 2010), etc. 

The fundamental methodology for inspecting rigid-foldability is to simulate the entire 

folding procedure. For arbitrary crease pattern design, the folding of the shape is 

unpredictable. Thus it is also impossible to tell when and where there will be face 

collision without actually calculating the folded shape and searching for possible 

conflicts among the non-penetrable faces at every moment from the initial state to the 

final state. The simulation of folding will partition the entire procedure into intervals. 

And after each time interval, I re-calculate all of the folding angles and check face 

collision. In chapter VI, I will provide the algorithm for inspecting rigid-foldability in 

detail. 

 

Origami Design Methods 

Several effective computational methods have been developed to achieve crease 

pattern designs for origami structures. Though these methods don’t explicitly consider 
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the folding sequence design, their resultant crease patterns always implies a valid folding 

sequence. In this section, I will introduce the three most well-formed origami design 

methods, and summarize their common limitation when encountering an open design 

problem as the one given in the first chapter. 

The TreeMaker algorithm (Lang 1996, Lang 2005) requires the designer to first 

simplify his desired origami shape into an approximate tree graph. If at all possible, this 

method then automatically generates a crease pattern that can be folded into a shape with 

a projection of the tree graph. Though TreeMaker usually generates a “fiendishly” 

complex crease pattern that is difficult to fold by hand, it is a great tool for any origami 

artist or engineer to get a rough prototype for a design. To make the compositions look 

more artistic, designers have to do additional manual operations, like squeezing, bending, 

or tucking, on the final shapes. Figure 4 shows the products at the end of the three steps 

of TreeMaker . The design procedure starts with a desired subject to realize. In this case, 

the subject is a scorpion. Then the designer has to manually make a hypothetical tree 

graph Figure 4(a), where each branch roughly corresponds to one limb of the finished 

design. The tree graph will be sent to the TreeMaker software to derive a crease pattern 

like Figure 4(b). Since the arrangement of nodes is equivalent to the disk packing 

problem, the algorithm is able to produce different crease patterns instead of the global 

optimal one. The designer has to interact with the computer to derive a favorable crease 

pattern design. After that, the last step is to print the crease pattern out, and fold it. 

Directly folding the crease pattern, we can only obtain a base with uniaxial flaps. So in 

order to “volumize” the shape, we need to – again - manually squeeze or crumple the 
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grids. Then they design a set of crease pattern molecules, so that each square block in the 

grid can be assigned one of the molecules. A proper assignment scheme will result in a 

full crease pattern for the desired orthogonal structure. Although the design is 

constrained to a highly modularized origami consisting of orthogonal origami gadgets 

with fixed sizes, the method is very efficient in deriving the crease pattern. 

There are three common features of the three computational origami design 

methods listed above. One feature is that they require the design objective to satisfy 

some specific geometric constraints. TreeMaker can only design shapes based on 

uniaxial origami shapes; Origamizer is constrained to realize meshed surfaces; and the 

orthogonal maze/cube folding is only for shapes made of orthogonal surfaces. Another 

feature is that these methods need the final folded shape of the origami design to be 

given in a problem. Therefore, if the final folded shape is not explicitly defined in a 

design problem, the above methods are not applicable. Finally, the third common feature 

is that these design methods are deductive. They directly build crease patterns based on 

the geometric analysis of desired shapes. The workflow of a deductive origami design 

method is shown as Figure 6(a). Starting with the design problem, a deductive method 

generally requires that the final shape design can be hypothetically framed out based on 

the geometric requirements. According to the geometric formation, a proper design 

method or algorithm will be selected to directly derive the crease pattern as well as the 

folding sequence that lead to the final design. In summary, deductive design methods are 

more like delicately designed mapping algorithm between particular origami shapes and 

their crease patterns. The advantage of deductive methods is the high accuracy and high 
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efficiency in achieving desired shapes. Thus they are great tools for artists to assist the 

manual origami design and sculpturing. The limitation of the deductive methods is also 

quite obvious that they lack a generic solution for arbitrary origami designs. 

 

 

(a) 

(b) 

Figure 6 The workflow diagrams of deductive origami design methods (a) and 
abductive origami design methods (b). 

 

 

The abductive origami design methods, on the other hand, will make logical 

guesses and improve the guesses progressively until they meet the design requirements. 

The abductive methods emerge under the need for designing origami structures to satisfy 

geometric and functional requirements instead of accurately defined folded shapes. An 
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example of such design problems is the design problem proposed in the first chapter. As 

shown in Figure 6(b), the typical abductive design methods have to go through iteration 

before the derivation of the final design. In each iteration, an abductive method adapts, 

simulates and rates each candidate solution. The advantages of the abductive design 

methods include: 

1) They enable the search of a solution space, in which designers have no clear 

domain knowledge. 

2) They broaden the types of design requirements to any one that can be 

computationally assessed and rated. 

3) They are compatible for structure design considerations. So in the abductive 

methods, the material and 3D dimensions can also be designed if required. 

The limitations of the deductive design methods are from the difficulty of simulating a 

complex origami structure and the time cost of search solutions in a large and nonlinear 

design space, which is very common for origami design problem. In this dissertation, I 

will study applicable abductive origami design methods for a problem as stated in 

chapter I. My research will mainly focus on the geometric representation, the algorithm 

of emulating and evaluating an arbitrary design candidate, and the measures of 

accelerating the solution search. 

Nevertheless, for both type of origami design methods, if the crease pattern 

includes tessellations, the complexity of design problem will be mitigated. The design 

will re-target at each tessellated tile that can be defined by only a few design parameters. 

The study of tessellation pattern design is mainly on identifying the geometric influence 
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on specific properties, such as mechanical performance, feasibility, efficiency, cost and a 

host of application dependent secondary functionality. Some of the studies on 

tessellation design are written in (Bateman 2001, Stroble, Nagel, Stone and McAdams 

2010, Tachi 2010, Wang and Chen 2010). The lesson for this dissertation from the 

tessellation design research is its methodology of using geometric modularization to 

reduce the number of design parameters, thus simplifying the problem. 

 

Intelligent Origami Structures 

With the development of machines and robotics, automation has also been 

introduced into origami folding within the last few decades. With current technology, 

two realizable measures have emerged for automatically making physical folding of 

origami, which are robotic origami folding and self-folding origami. Robotic origami 

folding (Balkcom and Mason 2008, Van Den Berg, Miller, Goldberg and Abbeel 2011, 

Yukokoji, Tanaka and Kamotani 2006) is not the focus here. Robotic origami indicates 

the use of a robot or intelligent machine to fold origami sheets (Figure 7(a)). Although 

the origami engineers ultimately pursue a highly intelligent material that could achieve 

spontaneous folding motions by itself while being made into a sheet, with state-of-the-art 

self-folding origami systems still have to be integrations of several subsystems. These 

subsystems might include the folding actuators, a motion controller, the surface material, 

folding joints (creases), and a power supply. 

The actual composition of any self-folding origami system differs according to 

its potential application. To realize repeatable folding and deployment motions on pre-
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(Figure 8) to determine creases (Nagpal 2002, Nagpal, Kondacs and Chang 2003, Stoy 

2004). In the multicellular origami sheet, every cell dynamically emits and transfers 

types of chemicals. The cells that satisfy criteria on the concentrations of chemicals will 

be used to mark a fold (Huzita and Mitchell 1989). The cells that mark a desired crease 

will then taper themselves to form the fold.  Although their research enables arbitrary 

creases to be realized in an artificial origami sheet, they didn’t proceed to physically 

build their “epidermal” multicellular origami sheet to test their self-folding control. 

The research on automated origami structure and folding has revealed new 

perspectives for origami design. The programmable matter origami innovates an origami 

design approach, which sets up pre-defined creases in an origami sheet and simplifies 

the problem to determining which pre-creases will be used in the final design. Moreover, 

The origami paper folding robot and the folding controlled by self-regulating cells are 

good instances for designing the designer. Instead of directly looking for creases, they 

design the systems that determine the folding.  

 

Evolutionary Algorithm: Applications and Key Issues 

Variations of evolutionary algorithms have been successfully implemented on 

system design problems. The application of EAs covers three stages of design procedure, 

including conceptual design, embodiment design and detailed design. Some recent 

applications that serve the conceptual design stage include automated design of room 

automation systems (Oezluek, Dibowski and Kabitzsch 2009), minimum weight 

compliant mechanism design (Sharma, Deb and Kishore 2013), MEMS bandpass filter 
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design (Farnsworth, Benkhelifa, Tiwari and Zhu 2010), shelter design represented by the 

graphic grammar (O'Neill, McDermott, Mark Swafford, Byrne et al. 2010), multi-stage 

logistic network design (Lin, Gen and Wang 2009), building structure and floor 

blueprint design (Bollinger, Grohmann and Tessmann 2010), etc. The applications that 

serve the embodiment and detailed design stages include an iron-making system design 

for a blast furnace (Pettersson, Saxen and Deb 2009), a multiple-disk clutch design (Deb 

and Srinivasan 2006), the optimization of a leg mechanism (Deb and Tiwari 2005), 

sidelobe level reduction of a concentric circular antenna array (Mandal, Bhattacharjee 

and Ghoshal 2009), etc. The above structure design applications of EAs have already 

encompassed the industrial and research fields on manufacturing, robotics, architecture, 

as well as system management. Evolutionary algorithms are exceptional for their 

iterative solution search technic that is adapted for problems with non-linear and non-

convex design search space. 

To apply an evolutionary algorithm, there are three issues that must be solved 

with respect to the subject, objective and constraints of the specific design problem: 

1) Choose a proper representation for the system; 

2) Define an adequate objective function for estimating the performance of 

the candidate solutions; 

3) Develop a set of efficient evolutionary operators (Kicinger, Arciszewski 

and De Jong 2005). 

The representation for the system is mostly relevant to the computational issues 

including search efficiency and the mapping between a search space (genotypic space) 
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and a space of actual designs (phenotypic space). A few criteria can be used to evaluate a 

representation. Primarily, the representation must ensure the mapping between the 

genotype and phenotype of a candidate solution is 1-to-1, which means that any 

genotypic encoding must correspond to a candidate solution, while any candidate 

solution must possess one genotypic encoding. Occasionally, an n-to-1 mapping is also 

acceptable, but the n-to-1 mapping may cause multiple global optima in the design 

search space. The second characteristic of a proper representation is continuity. 

Continuity requires that slight mutations on the encoding only cause small variations on 

the phenotypic features of the corresponding candidate solution. It is also recommended 

that the representation may not have a genetic code that represents an illegal candidate 

solution (illegal solution means that a genotype does not represent any phenotype for a 

given problem (Kicinger, Arciszewski and De Jong 2005)). The continuity does not need 

to be perfectly realized. Instead, reducing the number of bits in the genetic code, whose 

mutations will result in a significant change in the performance of the phenotype, is still 

a rule of thumb while we design the representation. 

After forming a proper representation for the candidate solutions, it is necessary 

to formulate an objective function that adequately defines the mathematical model of the 

problem. The adequacy not only requires that the objective function must be able to 

comprehensively assess the candidate solutions according to the objective and 

constraints, but also implicates that the objective function must be an effective one 

resulting in apparent difference in fitness evaluations between good and bad candidate 

solutions. 
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The efficiency of an evolutionary method is directly controlled by the 

evolutionary operators. The evolutionary operators include selection, mutation, 

crossover (Schmitt 2001), and other complementary mechanisms. Usually mutation and 

crossover are also called genetic operators. The three basic operators - selection, 

mutation and crossover, which maintain the fundamental evolutionary procedure, 

emulate the survival, elimination, and reproduction of natural species. The design of 

basic evolutionary operators generally means choosing the proper variant for each of 

them and adapting the parameters. If the problem has a non-convex design space or 

multiple objectives, or if the evolution encounters slow finishing or pre-mature 

convergence, the evolutionary operators also need complementary mechanisms to 

guarantee the derivation of optimal solutions. Under the circumstance, researchers 

introduced co-evolution (Potter and De Jong 1994, Potter and De Jong 2000), external 

populations (Zitzler and Thiele 1999), Pareto ranking (Goldberg 1989), etc., to the 

evolutionary algorithms so as to preserve and balance the elitism and diversity within the 

evolving population. 

 

Genetic Algorithm and Computational Evolutionary Embryogeny 

Based on the desire of an abductive method to solve the design problem given in 

chapter I, this dissertation will implement genetic algorithm and another GA-base meta-

heuristic, named computational evolutionary embryogeny, on the origami structure 

design. 
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GA, as a bio-inspired method, has been adapted and applied to many scientific 

and engineering areas. However, the studies have not come to a “panacea” version of 

GA. Instead, the users usually modify the GA parameters and add extra evolutionary 

operations in accordance with their own particular applications, so as to achieve both the 

elitism and diversity within the population of the candidate solutions. 

Under the requirements of multiple properties of the design subject, the generic 

GA usually takes the weighted sum of the numerical estimations with respect to all the 

properties as the normalized fitness value for each individual (candidate solution in GA). 

The normalized fitness values are scalar, thus they can be easily used to compare and 

rank the individuals. The multi-objective GA, however, directly applies the vector of the 

evaluations on different properties without summing them up. The advantage of multi-

objective GA is that it doesn’t require the users to clarify the priority ranking or weight 

factors on multiple properties. Lots of variations of multi-objective GAs have been 

proposed. Generally, these variations differ based on their fitness evaluation, elitism, and 

diversity preservation approaches (Konak, Coit and Smith 2006). Several other survey 

papers (Coello 1999, Fonseca and Fleming 1993, Fonseca and Fleming 1998, Lei and 

Shi 2004, Zitzler and Thiele 1999) have given summarizations of the multi-objective 

GAs on other perspectives. Multi-objective GAs usually apply the Pareto ranking 

(Goldberg 1989). To make sure that the multi-objective GA is able to perform more 

comprehensive searches through thorough exploration and exploitation within the 

solution space, several complementary measures are introduced to balance the elitism 

and diversity among candidate solutions. These measures include crowding distance 
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(Deb, Pratap, Agarwal and Meyarivan 2002), fitness sharing (Goldberg and Richardson 

1987), pure elitist strategy (Konak and Smith 2002), and external population (Fieldsend, 

Everson and Singh 2003).  

Computational evolutionary embryogeny (CEE) is a special case of genetic 

algorithm. The aspects that CEE is different from GA are the genetic representations for 

the candidate solutions, as well as how the genetic representation (a.k.a. genetic code, 

genotype) and physical representation (a.k.a. physical appearance, phenotype) of one 

solution candidate are related. In GA, an individual’s physical representation is 

described explicitly by numerating and encoding its properties into a genetic code string 

(usually in binary), which is the individual’s genetic representation. In CEE, an 

individual’s genetic representation is also a string of genetic code, but the genetic code 

encrypts the set of genetic rules that instructs how its physical representation is 

constructed. The genetic rules play a similar instructive function as the DNA sequences 

in most living organisms. More clearly, in CEE, the genetic rules provide the guidelines 

for an individual to develop from an initial state (defined as the embryo) to its mature 

state, so as to disclose its physical representation. The way that the GA’s genetic code 

describes an individual is defined as explicit coding, and the way that CEE’s genetic 

code encrypting the instructive genetic rules as implicit coding. Nevertheless, for both 

CEE and GA, the design subject must be able to be fully parameterized, so that it can be 

described by a genetic code in either an explicit or an implicit way. 

Several researchers have already attempted to introduce CEE into industrial 

design. Currently, most of them use this method in a classical manner to design simple 
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and static structures, such as a planar pattern, or a support base. Peter Bentley, and 

Sanjeev Kumar were among the first ones providing a summarization of varieties of 

CEE (Bentley and Kumar 1999). They pointed out the features, advantages, and 

drawbacks of this method. They also attested that CEE provides benefits such as the 

reduction of search space, repetition, adaptation, and etc., while suffering higher 

difficulty to design and evolve. Chris Bowers used CEE method to generate 2D 

structures that duplicate or approximate colored patterns (Bowers 2005). He has also 

investigated the modularity of CEE (Bowers 2008), and further extended CEE to 

optimize artificial neural network structure . Or Yogev, Andrew A. Shapiro, and Erik K. 

Antonsson extended CEE for designing a 3D continuous inhomogeneous structure, 

which is essentially a simple support column (Yogev, Shapiro and Antonsson 2010). 

They formalized the artificial genetic codes that have the “if-conditional then-action” 

structure. 
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CHAPTER III  

GENOTYPE-PHENOTYPE MAPPING* 

 

In GA, any candidate solution is represented by the combination of its genotype 

and its phenotype. The genotype is also called the genetic representation in GA. The 

genotype of a candidate solution is usually defined by a binary string of 0s and 1s. For 

origami design, in order that a slight perturbation on the code won’t result in significant 

change in the encoded features, Gray code replaces binary code. Gray code is an 

alternative binary numeral system where two successive values differ in only one bit 

(binary digit). The phenotype is the physical appearance of a candidate solution. It 

carries the geometric, topologic, and functional properties of an origami structure. For 

origami crease patterns, the phenotype is basically the geometric representation of all the 

vertices and creases. For 3D origami shapes, the phenotype needs to contain more 

information, such as the dihedral fold angles, the orientation, and the folding sequence, 

other than the crease pattern. Since the physical representation of a shape can be 

generalized and defined by a set of numerical parameters, the corresponding genotype – 

                                                 

*Part of this chapter is reprinted with permission from ASME, Journal of Journal of Computing 
and Information Science in Engineering, and IDETC/CIE 2013. Refer to: (1) McAdams, D. A. 
and Li, W. (2014). “A Novel Method to Design and Optimize Flat-Foldable Origami Structures 
Through a Genetic Algorithm.” Journal of Computing and Information Science in Engineering 
14(3). To be printed in September 2014; (2) Li, W. and McAdams, D. A. (2013). "A Novel 
Pixelated Multicellular Representation for Origami Structures That Innovates Computational 
Design and Control." ASME 2013 International Design Engineering Technical Conferences 
(IDETC) and Computers and Information in Engineering Conference (CIE), Portland, OR. 
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the genetic code – can be easily determined by converting those parameters into Gray 

code by a desired sequence. 

Therefore, the prerequisite condition of applying GA on origami design problems 

is to establish a suitable geometric representation, which includes the genotype, the 

phenotype, and a mapping between. A key requirement for a suitable geometric 

representation is that as the genotype mutates, the corresponding phenotype should not 

become invalid. In other words, any arbitrary sequence of 0s and 1s that consolidates 

into a genetic representation must be able to be mapped to a legal physical representation. 

In established studies on origami engineering, the most applied geometric 

representation for computational methods is to use the two end points to denote the 

creases that define a crease pattern. And in most of the cases, the researchers focused 

more on the mathematics or the physical appearance of origami. Prior work has not 

emphasized on how a crease pattern or a folded shape is geometrically defined. However, 

for GA, the geometric representation and its syntax for genotypic encoding must be 

carefully designed. 

In general, a suitable representation for GA method must satisfy the following 

minimal criteria: 

1. Non-redundancy. Any representation points to only one crease pattern. 

2. Completeness. Any arbitrary crease pattern possesses one representation. 

3. Continuity & legality. A small perturbation in the representation results in a 

small change in the crease pattern (and won’t cause the crease pattern to 

become illegal). 
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Established Geometric Representations of Origami Crease Patterns 

The intuitive solution for forming a geometric representation of origami crease 

pattern is to list and define all the creases. Toward this direction, the mission of seeking 

for a geometric representation is simplified to deriving a method to define every crease. 

The typical embedded representation for origami crease patterns defines all the 

creases by listing by their end points. For instance, a crease pattern shown in Figure 9(a) 

has four creases, thus can be represented by the set of 16 (4*4) arguments (A1) 

A1 = {0.5, 0.6, 0, 0.4, 0.5, 0.6, 0.2, 0, 0.5, 0.6, 1, 0.3, 0.5, 0.6, 0.4, 1} 

Among the set A1, every four arguments define one crease, e.g. the first four arguments 

“0.5, 0.6, 0, 0.4” are the X and Y coordinates of the two end points of one crease. The 

corresponding genetic representation is derived by converting the argument set A1 to 

Gray code. The genetic representation of the crease pattern based on the argument set A1 

is 

C1 = “0111-0101-0000-0110-0111-0101-0011-0000-0111-0101-1111-0010-0111-0101-

0110-1111”. 

The embedded representation is complete for any arbitrary crease pattern, but it 

is extremely “fragile”. Here, “fragile” means low non-redundancy, low continuity, and 

low legality, or say, any single bit of mutation in the genetic code will have a high 

possibility of causing the corresponding crease pattern to become invalid. When its 

genetic code for the crease pattern in Figure 9(a) mutates on the fourth bit, the first 

argument will change from 0.5 to 0.4, and the corresponding crease pattern will become 

invalid as shown in Figure 9(b). In Figure 9(b), the crease through the vertex (0, 0.4), 
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which used to intersect with the other three creases at the vertex (0.5, 0.6), is now 

detached. Other than being practically fragile, the embedded representation has another 

problem, if it is applied for GA. In a crease pattern, an interior vertex is the common end 

point of several creases, or say, an interior vertex links several creases. But in the 

embedded representation, the linking relationship of the creases is not considered. This 

results in the definition of an interior vertices appearing in the representation several 

times. Therefore, if only one instance of an interior vertex changes, it will no longer 

match the other instances of the same vertex, and a crease will become detached to make 

the crease pattern illegal. 

An alternative geometric representation, which is abstracted from Mitani’s 

method of generating random crease patterns (Mitani 2011), eliminates the redundancy 

of interior vertex definition, so as to avoid the mutation on genetic coding resulting in 

the detachment among connected creases. In Mitani’s research, he introduced an 

approach to generate random flat-foldable crease patterns. The approach creates a crease 

pattern in three steps – placing vertices, connecting pairs of vertices with creases, and 

then updating the vertices and creases to make the pattern flat-foldable. The alternative 

representation adopts the same procedure. But if the flat-foldability is not asked, the 

third step can be dropped. To define a same crease pattern as Figure 9(a), the alternative 

representation uses another set of arguments (A2) 

A2 = {0.5, 0.6, 0, 0.4, 0.2, 0, 1, 0.3, 0.4, 1, 1, 2, 1, 3, 1, 4, 1, 5} 

In A2, the starting five pairs of arguments list the locations of the five vertices that are 

implicitly numbered by #1 to #5. Here, the #1 vertex is at (0.5, 0.6), #2 at (0, 0.4), #3 at 
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(0.2, 0), #4 at (1, 0.3), and #5 at (0.4, 1). The following eight arguments can be 

partitioned into four pairs (“1, 2”, “1, 3”, “1, 4” and “1, 5”), each of which indicates the 

two end points of a crease. With the four pairs of arguments, the topological formation 

of the crease pattern is uniquely determined. The equivalent genetic representation for 

the crease pattern that is defined by the argument set A2 is 

C2 = “0111-0111-0101-0000-0110-0011-0000-1111-0010-0110-1111-001-011-001-010-

001-110-001-111”. 

In the alternative representation, mutations on the bits that define the coordinates 

of the vertices in the genetic code C2 will only result in the dislocation of the vertices, 

thus won’t cause the invalidity of the crease pattern. However, the mutation of the bits 

that define the topological linking of the creases will cause the loss of creases or 

unwanted intersections. For example, mutation of the last bit of C2 will alter the last 

argument in A2 from 5 to 4. Therefore, the corresponding crease pattern Figure 9(c) of 

the mutated C2 has two overlapping creases between the vertex #1 (0.5, 0.6) and vertex 

#4 (1, 0.3). It therefore becomes invalid, because a crease pattern may not have 

overlapping creases. Even if the two overlapping creases are treated as one, the crease 

pattern Figure 9(c) is not foldable, as it has a vertex (#1) that is connected with only 

three creases. If the mutation happens on the fifth bit from the last bit, the second 

argument to the last argument will change from 1 to 3. The resultant crease pattern 

Figure 9(d) is also invalid, because the original crease (“1, 5”) changes to (“3, 5”), and it 

intersects with the crease (“1, 2”). 
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(a)                                                      (b) 

 

(c)                                                       (d) 

Figure 9 (a) A crease pattern represented by the locations of the vertices and the 
creases that link in between; (b) The mutation on one bit in the genetic code for the 

embedded representation of (a) results in disconnection of creases; (c) The 
mutation on the last bit in the genetic code for the alternative representation of (a) 
results in crease overlapping; (d) The mutation on the fifth bit from the last in the 
genetic code for the alternative representation of (a) results in crease intersection. 

 

 

A common problem of the embedded and the alternative geometric 

representations is that arbitrary genetic codes do not always define a valid crease pattern. 

Compared to the embedded representation, the alternative representation is less “fragile”. 
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But the second group of arguments in the alternative representation is still very sensitive 

to genetic mutation. Thus, neither of the two representations is well suited for GA 

application. Therefore, it is necessary to develop new geometric representations, so that 

any random genetic representation can reflect a valid crease pattern, and any valid crease 

pattern doesn’t become invalid as its genetic representation mutates. 

 

Ice-cracking – A Direct Representation0F 

The embedded and alternative representations are probably the most intuitive 

ways for people with different levels of knowledge on origami to exchange or visualize 

well-designed crease patterns. According to the introduction so far, the alternative 

representation differs from the embedded representation by the removal of redundant 

definition of the shared vertices of multiple creases. However, it still failed to ensure the 

placement of creases being valid. The common shortcoming of the embedded 

representation and the alternative representation is their lack of concern on the sequence 

of vertices and creases being defined. What either of these two representations achieves 

is no more than generating a collection of points and links that ultimately represent 

vertices and creases. But they don’t include the mechanism to guarantee the legality of 

the placement of each origami topological component (vertex or crease). 

If there is a GA-friendly geometric representation that defines a crease pattern by 

the vertices and creases, just as the embedded representation and the alternative 

representation do, it must ensure that there is no redundancy of origami element 



 

 46

definition, and it must be able to preserve the legality of the crease pattern’s topological 

structure under perturbations in the presentation. 

At first glance, an origami crease pattern is topologically similar to a tree graph, 

where interior vertices are the nodes, border vertices are the leaves, and creases are the 

links. This analogous relation stands true for some of the crease patterns, such as the fish 

base variant in Figure 10(a). The representations of trees in GA has been studied in 

(Palmer and Kershenbaum 1994). Although the definition of a crease pattern is more 

than just about the topological structure, based on the results in (Palmer and 

Kershenbaum 1994), it is not very difficult to develop a way to also include the vertices’ 

locations in the representation. 

 

 

            

(a)                                         (b) 

Figure 10 (a) The crease pattern of a fish base variation can be described as a tree 
graph; (b) The crease pattern of a pinwheel base is not a tree since there is a closed 

loop of creases.  
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But unfortunately, most of crease patterns are not trees. They will have closed 

loops of creases, such as the pinwheel base in Figure 10(b) that has four valleys forming 

a cycle. Another potential problem of using the tree graph representation for crease 

patterns is the same as the embedded representation and the alternative representation 

that the legality of the representation cannot be assured. 

Based on the discussion of the three existing representations above, I develop a 

new geometric representation that can not only provide the completeness, but also satisfy 

non-redundancy and continuity. The basic idea to achieve it is to introduce the sequence 

of the vertices and creases, and to implicitly assign indices to each topological 

component defined in the representations. 

Recall the traditional procedure of manually making an origami shape, we don’t 

fold all the creases at once, even if we have the complete crease pattern. Instead, we 

partition the pattern into pieces and work on one of them at a time. For making each 

crease pattern piece, which is usually a single vertex fold or a simple fold, we still need 

to make some auxiliary folds to derive the real creases. Some of them are then 

completely or partially flattened in the completed crease pattern.  

Another idea is to use a natural analogy of an origami crease pattern. If a blank 

and flat origami sheet can be taken as an untouched icy water surface, the creases and 

vertices can also be viewed as the cracks and crack forkings on it. Then with a heavy 

knock that will generate a break point on the surface, the initial cracks will propagate, 

and form new forkings and new cracks. In addition, combining the “divide & conquer” 

strategy used by traditional origami folding and the development of cracks in an icy 
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water surface, I create a sequence that a new representation can apply to arrange and 

index the vertices and creases. Unlike the embedded representation placing creases 

without a specified sequence, or the alternative representation allocating all vertices 

prior to creases, the new representation defines one vertex in each step. And with the 

definition of each vertex, several dummy creases that intersect at the vertex will also be 

created in the same step. The dummy creases have a very similar function as the 

auxiliary folds in traditional origami folding procedure. They act as placeholders for real 

creases. The dummy creases must be placed at the right positions, so that every real 

crease must be the full length or a section of dummy crease, and each dummy crease is 

the placeholder for one and only one real crease. Based on this idea, the geometric 

representation is named “ice-cracking”. 

 

The “Ice-cracking” Representation of the Pinwheel Base 

To form a pinwheel crease pattern as shown in Figure 11(a), where the 4 vertices 

are indexed by numbers in circles and the 12 creases by numbers in diamonds, without 

loss of generality, we (arbitrarily) choose the #1 vertex as the initial vertex to start the 

generation of the crease pattern by “ice-cracking”. For the #1 vertex, the number of 

creases (݊୒୓େ) is four according to Figure 11(a). Four direction vectors then emanate 

from the #1 vertex. Here, the direction vectors are the dummy creases as mentioned 

earlier, and the #1 vertex is the origin vertex of the dummy creases. The number of 

direction vectors is equal to the number of creases that are supposed to intersect at the 

origin vertex #1. One crease will later coincide with each dummy crease, but the second 
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end point (the first being the origin vertex #1) of each crease cannot be determined yet. 

In Figure 11(b), the existing dummy creases are displayed by dashed lines and labeled 

by numbers (1-4) in squares. The actions of specifying the starting vertex and dummy 

creases form the initialization step of the ice-cracking. 

The next step is to establish a second vertex located on one of the existing 

dummy creases. Comparing Figure 11(a) and Figure 11(b), we find the #2 vertex on the 

#1 dummy crease, and the #4 vertex on the #2 dummy crease. The #2 and #4 vertices are 

both available to be the second vertex. In this case, I select the #2 vertex. As we locate 

the #2 vertex at the 2/3-distance point of the #1 dummy crease, the #1 crease that 

connects the #1 and #2 vertices is also determined. The ݊୒୓େ of #2 is also four, thus 

besides the known #1 crease, three other dummy creases are then created from the #2 

vertex. These new dummy creases are numbered (5-7). The entire current pattern thus 

becomes Figure 11(c). The process of locating a new vertex on an existing dummy 

crease, together with the fixation of a new crease and the creation of new dummy creases, 

is called the forking step. If the dummy crease that the new vertex is supposed to be 

placed on during a forking step has intersections with other dummy creases, the new 

vertex cannot be placed beyond any of these intersections. 

To form a pinwheel crease pattern as shown in Figure 11(a), where the 4 vertices 

are labeled by numbers in circles and the 12 creases by numbers in diamonds, without 

loss of generality, we (arbitrarily) choose the #1 vertex as the initial vertex to start the 

generation of the crease pattern by “ice-cracking”. For the #1 vertex, the number of 

creases (݊୒୓େ) is four according to Figure 11(a). Four direction vectors then emanate 
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from the #1 vertex. Here, the direction vectors are the dummy creases as mentioned 

earlier, and the #1 vertex the origin vertex of the dummy creases. The number of 

direction vectors is equal to the number of creases that are supposed to intersect at the 

origin vertex #1. One crease will later coincide with each dummy crease, but the second 

end point (the first being the origin vertex #1) of each crease cannot be determined yet. 

In Figure 11(b), the existing dummy creases are displayed by dashed lines and labeled 

by numbers (1-4) in squares. The actions of specifying the starting vertex and dummy 

creases form the initialization step of the ice-cracking sequence. 

The next step is to establish a second vertex located on one of the existing 

dummy creases. Comparing Figure 11(a) and Figure 11(b), we find the #2 vertex on the 

#1 dummy crease, and the #4 vertex on the #2 dummy crease. The #2 and #4 vertices are 

both available to be the second vertex. In this case, I select the #2 vertex. As we locate 

the #2 vertex at the 2/3-distance point of the #1 dummy crease, the #1 crease that 

connects the #1 and #2 vertices is also determined. The ݊୒୓େ of #2 is also four, thus 

besides the known #1 crease, three other dummy creases are then created from #2 vertex. 

These new dummy creases are numbered (5-7). The entire current pattern thus becomes 

Figure 11(c). The process of locating a new vertex on an existing dummy crease, 

together with the fixation of a new crease and the creation of new dummy creases, is 

called the forking step. If the dummy crease that the new vertex will be placed on during 

a forking step has intersections with other dummy creases, the new vertex cannot be 

placed beyond any of the intersections. 
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(a)                                     (b)                                    (c) 

 

(d)                                     (e)                                     (f) 

Figure 11 The steps taken by “ice-cracking” to derive the vertices and creases 
through a systematic sequence. (a) The full crease pattern with circled numbers 

labeling the vertices and diamonded numbers labeling the creases; (b) The 
initialization step that locates the first vertex; (c) The first forking step that gets the 

#2 vertex as well as the #1 crease; (d) The second forking step that gets the #3 
vertex and the #6 crease; (e) The resolution step that gets the #4 vertex and two 
creases; (f) The resultant crease pattern without the MV-assignment after the 

finalization step. 
 

 

At this stage, either the #3 or #4 vertex can be determined through a second 

forking step. We thus choose to create the #3 vertex, and convert the #6 dummy crease 

to the #6 crease. The ݊୒୓େ of #3 vertex is four, and its dummy creases #8 through #10 

are created as well. Hence, we have derived the pattern as shown in Figure 11(d). 
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In Figure 11(d), #2 and #10 dummy creases have an intersection. In this step, we 

will locate the #4 vertex at this intersection. With the allocation of the new vertex #4, 

two creases are also determined simultaneously. The #2 crease is established as the 

section of the #2 dummy crease between the #1 and #4 vertices, and the #10 crease is 

established as the section of the #10 dummy crease between the #3 and #4 vertices. The 

݊୒୓େof the #4 vertex is four. Since the #4 vertex has already had two definitive creases 

(#2 and #10), we only need to create two more dummy creases. The process of 

generating a new vertex at an intersection of dummy creases, together with the final 

fixation of two new creases and the creation of the new vertex’s dummy creases, is 

named the resolution step. The resultant pattern of this resolution step is shown in 

Figure 11(e). 

All the vertices have been created through one initialization step, two forking 

steps, and one resolution step. We finalize the pattern by converting all of the remaining 

dummy creases to creases. This last step for obtaining a complete crease pattern is called 

the finalization step. In the example case of the crease pattern in Figure 11, the 

finalization step will derive all the creases of Figure 11(f) without MV-assignment. 

To determine the MV-assignment of the crease arrangement as shown in Figure 

11(f), we need to first clarify the foldability requirements. As for the flat-foldability, we 

are able to use the method given in (Li and McAdams 2013). However, for other specific 

foldability requirements, such as orthogonal folding, we need to refine the mathematical 

and geometric rules and restrictions for arranging the vertices and creases, and the MV-

assignment. 
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Table 1 shows the details of the four steps of “ice-cracking”, together with the 

means that are used to encode the operations of each step into Gray binary code for the 

GA. In general, each step starts with a distinctive two-bit starting code as shown in Table 

1. The following Gray code bits will encode the operations of the step in a fixed format. 

 

 

Table 1 The operations in each step, and the arguments defining the operations 

Step / starting code Operations 
Arguments for each 

operation 

Initialization Step / 00 

1. Locate the first vertex; 
The x and y coordinate of 

the vertex - (x1, y1) 

2. Determine the vertex’s ݊୒୓େ; ݊୒୓େ 

3. Provide the absolute angle of 

one dummy crease; 
θ 

4. Draw the other dummy 

creases. 
௜ሺ݅ߢ ൌ 1,⋯ , ݊୒୓େሻ 

Forking Step / 01 

1. Pick the dummy crease for the 

new vertex; 
݊஽஼  

2. Locate the new vertex; ߣ 

3. Fix a new crease;  

4. Determine the vertex’s ݊୒୓େ; ݊୒୓େ 

5. Draw the dummy creases. ߢ௜ሺ݅ ൌ 1,⋯ , ݊୒୓େሻ 

Resolution Step / 10 

1. Locate the new vertex at the 

location of one intersection of 

two dummy creases; 

݊௏ூ 

2. Fix two new creases;  

3. Determine the vertex’s ݊୒୓େ; ݊୒୓େ 

4. Draw the dummy creases. ߢ௜ሺ݅ ൌ 1,⋯ , ݊୒୓େሻ 

Finalization Step / 11 

1. Eliminate the intersections of 

dummy creases; 

Fixed implicit argument set 

{݊௏ூ=1, ݊୒୓େ=4, ߢଵ=255, 

 {ଷ=255ߢ ,ଶ=255ߢ

2. Convert dummy creases to 

creases; 
 

3. Terminate the “ice-cracking”.  
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In the rest of this section, the four steps of “ice-cracking” are explained in detail 

along with the operations that are done in each step. The approach of encoding each step 

into genetic code is presented as well. In this research, the Gray code uses the M-QAM 

modulation, which has the same features with but is different from the natural Gray code 

translation (MathWorks 2014). The conversion between the Gray code, which is the 

genetic representation, and the parameters that defines a crease pattern is called the 

genotype-phenotype mapping. 

Initialization Step. Using “ice-cracking”, any crease pattern must have one and 

only one initialization step. Two main operations are performed in the initialization step: 

locating the first vertex and determining the subsequent dummy creases. As shown in 

Table 1, the allocation of the first vertex requires specification of the x and y-coordinates. 

The arguments that define the n୒୓େ and the angles of the dummy creases follow the 

allocation of the vertex. In general, if the first vertex has a n୒୓େ of n, the initialization 

step will require n+3 arguments to define. The number of bits of Gray code for each 

argument is determined according to the required precision of the corresponding 

argument. 

The initialization step for the pinwheel pattern Figure 11(b) serves to illustrate 

the encoding. Using a 1-by-1 square origami sheet, we set up a Cartesian coordinate 

system with the origin at the lower left corner of the sheet. Thus the #1 vertex is at (ݔଵ = 

 ଵ= 0.25). If we define the resolution of the blank origami sheet to be 256×256ݕ ,0.25

(28×28), both arguments representing the x-coordinate and the y-coordinate require 8 
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bits of Gray code. Therefore, ݔଵ=0.25 is represented by ‘01110000’, while ݕଵ=0.25 is 

also represented by ‘01110000’. 

Then, several bits are used to represent the ݊୒୓େ. For instance, we could have a 

range of 4≤݊୒୓େ≤11. In this case, 3 bits are needed to define the ݊୒୓େ among the 8(=23) 

possible values. However, if the crease pattern is constrained to be flat-foldable, the 

number of ݊୒୓େ for each vertex must be even according to Maekawa-Justin Theorem 

(Demaine and O'Rourke 2007). However, the ݊୒୓େ doesn’t have to be restricted to a 

range of consecutive integer values. A flat-foldable vertex cannot have odd ݊୒୓େ, thus 

we can use a pool of even numbers to give the available values of its ݊୒୓େ, such as 

{4,6,8 or 12} that requires only 2 bits in the genetic representation. 

If the ݊୒୓େ is determined to be 4, 4 or 5(=4+1) additional arguments represent 

the direction vector angles of the dummy creases with respect to its foldability. In most 

situations, we set the x-positive direction of the Cartesian coordinate system to be the 0-

rads line. Then we pick one of the dummy creases to be the baseline, and an argument θ 

is used to define the absolute angle of the baseline w.r.t. the 0-rad line. Here, the #1 

dummy crease becomes the baseline, and its absolute angle w.r.t. the 0-rad line is 0. The 

following 3 or 4 arguments will be used to define all 4 of the dummy creases. If the 

vertex has no foldability requirements, 3 arguments are enough to represent the absolute 

angles for the remaining 3 dummy creases in the same manner that the baseline dummy 

crease is defined. On the other hand, if the vertex needs to be flat-foldable, 4 more 

arguments are required. The one extra argument does not cause redundancy, but 

provides additional constraint for the three dummy creases due to the flat-foldability. 
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According to the Kawasaki-Justin theorem, the angles ߙ௜ between dummy creases 

should satisfy 

∑ ௜௜∈௢ௗௗߙ ൌ ∑ ௜௜∈௘௩௘௡ߙ ൌ  (4)                                         ߨ

Hence for Figure 13(a), ߙଵ ൅ ଷߙ ൌ ଶߙ ൅ ସߙ ൌ ௜ሺ݅ߢ Then if the 4 arguments are .ߨ ൌ

1,2,3,4ሻ, each of which is the decimal value of an 8-bit Gray code, the angles ߙ௜ are  

௜ߙ ൌ ቐ
ߨ ൈ ఑೔

∑ ఑ೕೕ∈೚೏೏
			ሺ݅	݅ݏ	݀݀݋ሻ

ߨ ൈ ఑೔
∑ ఑ೕೕ∈೐ೡ೐೙

			ሺ݅	݅ݏ	݊݁ݒ݁ሻ
                                     (5) 

In the end of the initialization step, all the newly created vertex and dummy creases are 

implicitly indexed for the following “ice-cracking” steps. In all, the entire initialization 

step for the flat-foldable #1 vertex of pinwheel pattern could use one possible argument 

set {ݔଵ=0.25, ݕଵ=0.25, ݊୒୓େ=4, θ=0, ߢଵ=255, ߢଶ=255, ߢଷ=255, ߢସ=85}, which is then 

encoded by: ‘00 01110000 01110000 00 00000000 10101010 10101010 10101010 

01100110’. 
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(a)                                         (b)                                          (c) 

 

(d)                                          (e) 

Figure 13 Illustrative crease patterns for “ice-cracking”. (a) Initialization step; (b) 
Forking step; (c) The second forking step for getting a pinwheel pattern; (d) 

Resolution step; (e) The resolution step for getting the #4 vertex in a pinwheel 
pattern. 
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Forking Step. In each forking step, a new vertex is located on an existing dummy 

crease. Two arguments are used to give the location of this new vertex. The first 

argument nୈେ indicates that the new vertex is on the nୈେ-th dummy crease within an 

ordered list of all existing ones. We use an 8-bit Gray code that is translated from the 

value of the argument nୈେ. If nୈେ exceeds the total number Nୈେ of the existing dummy 

creases, we instead use the remainder of nୈେ divided by Nୈେ. The second argument λ, 

which also takes 8 bits in this study, defines the location of the new vertex on the 

dummy crease. If the distance from the origin vertex of the dummy crease and the 

dummy crease’s nearest intersection with other existing dummy creases or with the 

origami sheet margin to the origin vertex is l, the distance d from the origin vertex to the 

new vertex can be derived as 

݀ ൌ ݈ ൈ ఒ

ଶఴ
                                                          (6) 

After defining the new vertex, a new #3 crease linking the origin vertex and the new 

vertex is also fixed. 

A third argument represents the ݊୒୓େ of the new vertex in the same way as in the 

initialization step. Suppose that in Figure 13(b) the #4 vertex is the new vertex 

determined in a prior forking step. If we already know that the ݊୒୓େ of the #4 vertex is 4, 

we will need another 3 or 4 arguments to define the 3 dummy creases. For any arbitrary 

origami crease pattern without foldability requirements (such as flat-foldability, rigid-

foldability, orthogonal folding, etc.), 3 arguments are sufficient to define the angles of 

the 3 dummy creases; otherwise, extra arguments are needed to describe the constraints 
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among the angle values of dummy creases that were introduced by the foldability 

requirement. 

For a flat-foldable crease pattern, 4 arguments are required. As shown in Figure 

13(b), a baseline vector and a topline vector that both start from the new vertex are 

needed. The baseline and the topline are determined, so that if a vector starts rotating 

from the position of the baseline around the new vertex counter-clockwise, it won’t have 

any intersection with existing creases until it overlaps with the topline. If the vector 

rotates from the position of the topline counter-clockwise, however, it will have 

intersections with existing creases until it touches the baseline. We then define β1 as the 

angle between the #3 crease and the baseline, while β2 is the angle between the #3 

crease and the topline. Next, we locate the dummy creases. Again, the newly created 

dummy may not have an intersection with any existing creases. Let α1 to α4 represent 

the angles among the baseline, topline and new dummy creases as shown in Figure 13(b). 

According to Kawasaki-Justin theorem, we have 

ଵߚ ൅ ∑ ௜௜∈௢ௗௗߙ ൌ ଶߚ ൅ ∑ ௜௜∈௘௩௘௡ߙ ൌ  (7)                                 ߨ

Thus if the 4 arguments are also ߢ௜ሺ݅ ൌ 1,2,3,4ሻ, each of which is the decimal value of 

an 8-bit Gray code, the angles ߙ௜ are thus 

௜ߙ ൌ ቐ
ሺߨ െ ଵሻߚ ൈ

఑೔
∑ ఑ೕೕ∈೚೏೏

			ሺ݅	݅ݏ	݀݀݋ሻ

ሺߨ െ ଶሻߚ ൈ
఑೔

∑ ఑ೕೕ∈೐ೡ೐೙
			ሺ݅	݅ݏ	݊݁ݒ݁ሻ

                                (8) 

In the end of the initialization step, all the newly created vertex, creases and dummy 

creases are implicitly indexed respectively. New indices follow the ones that indicate the 

existing topological components. In the same way, if we consider the derivation of the 
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#3 vertex in the pinwheel pattern (Figure 13(c)), the whole forking step could use one 

possible argument set of {݊஽஼=6, 0.6667= ߣ, ݊୒୓େ=4, ߢଵ=255, ߢଶ=254, ߢଷ=85, ߢସ=127}, 

and the Gray code thus is: ‘01 00000100 01100110 00 10101010 10101011 01100110 

01011010’. 

Resolution Step. The resolution step is similar to the forking step except for 

where the new vertex is located. In the resolution step, the new vertex must be created at 

an intersection between n୍ሺ൒ 2ሻ existing dummy creases. The first argument n୚୍ 

indicates which intersection is used. One implicit operation should be done initially to 

get a list of all the valid intersections between all dummy creases. A valid intersection is 

identified so that within any of the n୍ intersecting dummy creases, this intersection is the 

nearest one from the corresponding origin vertex. To determine the argument nୈେ in 

forking step, we pick the n୚୍-th valid intersection for the new vertex. Similarly, if n୚୍ is 

larger than the total number N୚୍ of valid intersections, we use the residue of n୚୍ divided 

by N୚୍. Right after the allocation of the new vertex, n୍ new creases can also be fixed in 

this resolution step. 

The second argument for resolution step is the ݊୒୓େ. In the example case of 

Figure 13(d), the #5 vertex is the new vertex based on creases #4 and #5. If we set the 

݊୒୓େ to be 4, only two more dummy creases for this vertex need to be determined. 

Therefore, we will need 2 or 3(=2+1) more arguments. If the crease pattern has no 

explicit foldability requirements, 2 more arguments are used to define the dummy 

creases. However, if the crease pattern needs to be flat-foldable, we are going to need 3 

more arguments. After defining the baseline and the topline in the same way as used in 
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forking step, we define the angles β1 (the angle between #4 crease and the baseline), β2 

(the angle between #5 crease and the topline), and ϕ (the angle between #4 crease and 

#5 crease). Then we let α1 to α3 represent the angles between the baseline, topline and 

new dummy creases as shown in Figure 13(d). According to the Kawasaki-Justin 

theorem, we have 

ଵߚ ൅ ଶߚ ൅ ∑ ௜௜∈௢ௗௗߙ ൌ ϕ ൅ ∑ ௜௜∈௘௩௘௡ߙ ൌ  (9)                            ߨ

Thus the if the 4 arguments are also ߢ௜ሺ݅ ൌ 1,2,3,4ሻ, each of which is the decimal value 

of an 8-bit Gray code, the angles ߙ௜ are 

௜ߙ ൌ ቐ
ሺߨ െ ଵߚ െ ଶሻߚ ൈ

఑೔
∑ ఑ೕೕ∈೚೏೏

			ሺ݅	݅ݏ	݀݀݋ሻ

ሺߨ െ ϕሻ ൈ ఑೔
∑ ఑ೕೕ∈೐ೡ೐೙

			ሺ݅	݅ݏ	݊݁ݒ݁ሻ
                           (10) 

At the end of the initialization step, all the newly created vertex, creases and dummy 

creases are implicitly indexed respectively. New indices follow the ones that indicate the 

existing topological components. In the same way, if we consider the derivation of the 

#4 vertex of the pinwheel pattern as in Figure 13(e), the whole resolution step could use 

one possible arguments set of {݊௏ூ=1, ݊୒୓େ=4, ߢଵ=255, ߢଶ=255, ߢଷ=85}, and the code 

will be: ’10 00 10101010 10101010 01100110’. 

In some situations, n୍ is larger than 2, which means the new vertex is located at 

the intersection point of 3 or more dummy creases. Hence, the number of new dummy 

creases is ݊୒୓େ െ n୍, but not ݊୒୓େ െ 2. 

Finalization Step. The finalization step is the last step of “ice-cracking”. There 

are two different cases for the finalization step. One case is when there is no intersection 

left among the existing dummy creases. In this case the finalization converts the 
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remaining dummy creases to final creases to terminate “ice-cracking”. The second case 

occurs when the existing dummy creases still have intersection(s). Since the creases in 

an origami crease pattern cannot have intersections, before converting the dummy 

creases, we repeatedly run resolution steps using a constant argument set of {n୚୍=1, 

n୒୓େ=4, κଵ=255, κଶ=255, κଷ=255}, until no more intersections exist. The argument set 

is a default setting. If there are some special design requirements, such as “the n୒୓େ at 

each vertex must be 8”, other values for the argument set can be chosen accordingly, as 

long as they do not change throughout the entire finalization step. 

 

Summary of “Ice-cracking” Representation and Its Encoding 

The “ice-cracking” method provides a systematic sequence to define the vertices 

and creases in a crease pattern. In “ice-cracking”, a crease pattern can be formed with an 

arrangement of the four different steps, which are all encoded naturally in the GA 

formalism. The genetic code of a crease pattern is thus the combination of the Gray 

codes of all the “ice-cracking” steps. 

An important advantage of the “ice-cracking” crease pattern representation 

scheme and its encoding is the non-redundancy, so that any randomly generated code 

can be decoded into a valid crease pattern. This feature benefits the implementation of 

GA in such a way that even after unpredictable GA operations (i.e., crossover and 

mutation), the Gray code for one crease pattern will not become un-decodable to an 

origami crease pattern. Referring to Table 1, mutation on genetic code bits, which 

represents the arguments other than the starting codes of different “ice-cracking” steps 
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and the ݊୒୓େ, will only result in small displacements of the locations of vertices or the 

orientations of creases. Even if the genetic code mutation causes the starting codes or 

݊୒୓େ’s to change, the result will be a big change on the corresponding crease pattern, but 

not the nullification of the genetic code. 

Also keep in mind that the mapping between Gray code strings and (flat-foldable) 

origami crease patterns is n-to-1. Rearranging the order of vertices and creases 

developed through “ice-cracking” could result in a different Gray code. For instance, if 

the crease pattern has two vertices, say #1 and #2, we can either generate the #1 vertex in 

the initialization step and create the #2 vertex by a following forking step, or 

alternatively generate the #2 vertex in the initialization step and create the #1 vertex by 

the following forking step. For GA, the n-to-1 genotype-phenotype mapping acceptable 

but not desired. One measure to improve it to a 1-to-1 mapping is by guaranteeing that in 

each step of “ice-cracking” steps, the new vertex can only be on the right of existing 

vertices. 

In addition, appending more bits to the complete Gray code of an origami crease 

pattern will not cause any change to its corresponding crease pattern, since all the bits 

that follow the genetic code piece that defines the finalization step are not translated. 

 

The Pixelated Multicellular Representation – An Indirect Representation1F 

The existing geometric representations – the embedded representation and the 

alternative representation – and the “ice-cracking” representation have one feature in 

common that they all describe the vertices and creases in the crease pattern. Other than 
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the vertices and creases, the third topological component of origami is the faces, which 

fill in the blank spaces that are partitioned by the creases and the borders of the origami 

sheet. In rigid and flat folding, the creases are straight, thus the faces are polygons. We 

can also prove that the face polygons are convex if no cuts or bends are allowed (Tachi 

2009). For an origami sheet with a legal crease pattern, the faces can be treated as the 

inverse of the creases. Therefore, defining the creases is equivalent to defining the faces, 

and is sufficient for defining the entire crease pattern. However, since the easiest way to 

define a face polygon is by its edges, which are just the creases in origami crease pattern, 

most of the research on origami geometry and mathematics so far only implement the 

creases to define a crease pattern. 

Is there a way to describe the faces without involving the definition of the creases? 

Nagpal’s study on bio-inspired self-assembling systems has given an primitive idea 

(Nagpal 2002, Nagpal, Kondacs and Chang 2003). It is possible to describe a polygon 

through fine partitioning of the sheet into tiny pieces and marking the pieces that belong 

to the polygon. This approach is similar to the basic idea of finite element analysis 

(FEA). FEA has three major stages, which are discretizing the structure into finite 

elements, solving each element, and assembling the solutions (Reddy 2005). For 

describing a convex face polygon, we can also start with partitioning, then define each 

element, and finally put elements together to derive the polygon. If this idea leads to a 

geometric presentation of an origami crease pattern, which is no more than a union of 

origami faces, we have answered three questions: 

1. How to discretize or partition an origami sheet?  
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2. How do we parameterize the elements?  

3. How do we relate a swarm of elements to face polygons? 

In the following sections, I will introduce my solutions for these three questions, 

as well as how I link them to derive a geometric representation that is compatible with 

GA. 

 

Origami Sheet Pixelization 

As mentioned above, Nagpal’s research has given a possible direction for 

discretizing an origami sheet. But in this research, I will make further considerations. 

Here, let’s first introduce two concepts – hard discretization and soft (fuzzy) 

discretization. The hard discretization is used to partition the structure into fixed 

elements that have clear boundaries with their adjacent peers. On the other hand, soft 

(fuzzy) discretization derives elements that can dynamically change their size. Just like 

soap bubbles, if one bubble expands, it will push its neighbors away or cause them to 

shrink in girth. FEA applies hard discretization, since the governing equation of each 

element requires unambiguous boundary conditions. For representing a polygon region, 

the soft (fuzzy) discretization is more applicable. The most important reason is that, with 

retractable boundaries, it is possible to minimize the resultant phenotypic change caused 

by mutation or perturbation on the representation. 

Based on the soft (fuzzy) discretization, we don’t simply cut the origami sheet 

into tiny elements. Instead, we scatter cellular elements over this entire region. We call 
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The pixelated multicellular representation is structurally similar to putting an 

image on a LED matrix screen. 

A cell can be thought of as one LED that sheds light on one soft (fuzzy) region 

that is located around the cell’s center position. Each cell will possess three properties - 

cell type, cell size, and cell position. The cell position is determined by cell arrangement 

and resolution used for pixelization. The cell type indicates the cell’s color property. The 

cell size is analogous to light intensity of an LED. The larger the cell size is, the higher 

light intensity the cell could “emit” onto its adjacent region. Meanwhile, the light 

intensity from a cell will gradually diminish along any direction that radiates from the 

cell’s position. 

 

Setup of the Cell Properties 

For a pixelated multicellular representation, the three cell properties will 

determine the space of crease patterns that can be defined. We define the origami sheet 

to be 1 unit high and 1 unit wide. 

Because of the 2-colorability of flat-foldable origami patterns, the number of cell 

types is two (additional cell types can be used to describe flat foldable structures, but 

Theorem 1 proves that two types are sufficient). The cell type of the i-th cell in the 

pattern is defined as c୧. 

ܿ݅ ∈ ൛1,െ1ൟ     (11) 

where ܿ݅ ൌ 1 means the i-th cell belongs to type 1 (blue), while ܿ݅ ൌ െ1 means the i-th 

cell belongs to type 2 (read).  
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Having specified the variant square grid used to arrange cells, the resolution of 

the grid determines the positions of the cells within the 1 by 1 origami sheet. The cell 

position of the i-th cell can always be expressed as 

ܲi ൌ ൫xi, yi൯ 		∈ 		 ൛Variant	square	grid	on	a	1	by	1	sheetൟ, i ൌ 0,1,⋯ ,p      (12) 

where p is the total number of cells. 

In theory, the cell size can be any arbitrary value. Thus, to express the crease 

pattern in Figure 14(b) by the pixelated multicellular pattern Figure 14(a), the cell types 

and sizes are chosen as shown in Figure 14(c). In Figure 14(c), the two types of cells are 

visualized as blue and red circles. The blue cells suggest the region of the lower right 

face, and the red cells suggest the region of the upper left face. Each circle indicates the 

area of light illumination. 

We define any cell that is positioned exactly on a crease to be an on-crease cell 

of the crease; and any cell whose distance to the crease is no more than the distance 

between two nearest cells to be a support cell of the crease. As a result, to specify the 

diagonal crease that separates the two faces in Figure 14(b), the on-crease cells will 

diminish to a size of 0, and the support cells will all be assigned to the size so that the 

corresponding circles could be tangent with the crease. Other cells in the sheet could 

have arbitrary size as long as their corresponding area of influence does not cross the 

crease. Figure 14(c) thus only provides one of the infinitely many ways to represent the 

crease pattern Figure 14(c) using the pixelated representation. 

However the properties of the cells are assigned, the crease pattern shown in 

Figure 14(d) could not be represented based on the pixelated multicellular pattern Figure 
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14(a). The space between the two creases is too narrow, so no cell is located there. In the 

pixelated multicellular pattern, any face must contain at least one cell. Thus, we define 

the narrowest or smallest face the pixelated multicellular pattern can represent as the 

effective resolution of the pattern. Thus, if we wish the pixelated multicellular pattern to 

show crease pattern with tiny faces, we must increase the resolution of cells accordingly. 

We discretize the cell sizes to facilitate computation. Valid cell sizes are evenly 

distributed discrete values between minimum and maximum admissible values. Thus the 

cell size s୧ of i-th cell is 

݅ݏ ൌ ݊݅݉ݏ ൅
݊݅݉ݏെݔܽ݉ݏ

݌݊
ൈ݊݅		, 			݊݅ ∈ ሼ0,1,2,⋯  ሽ                          (13)݌݊,

where ݊݅݉ݏ is the minimum size, ݔܽ݉ݏ is the maximum size, and ݊݌ ∈ ܰ is the number of 

possible values. Generally for variant square grid pixelated representation, ݊݅݉ݏ is 

usually chosen to be 0, and ݔܽ݉ݏ is chosen to be equal to or a little bit larger than the 

distance between any cell and its second nearest neighbor. 

Because of its discretization, the pixelated representation is not capable of 

defining the infinite space of arbitrary crease patterns. The theoretical number of patterns 

that can be defined is ሺn୮ ൈ 2ሻ୮.  

A new problem arises when we want to define the two creases shown in Figure 

14(d) separately. The creases are located so close to one another, the discrete pixelated 

representation may be the same for both creases. The effective precision is defined by 

the minimal change on determining the origami border, while tuning the cell sizes 

without changing their colors. The larger n୮ is, the higher the effective precision will be. 
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The effective resolution and the effective precision determine the total 

representativeness of the pixelated multicellular pattern. Adding details in the pixelated 

pattern by increasing the resolution of cells and number of possible cell size values can 

result in the improvement on the effective resolution and the effective precision 

generally resulting in higher computational cost. 

 

Understanding a PMR and Extracting the Crease Pattern Information 

For the PMR as an equivalent representation for the crease pattern, we implement 

a so-called crease restoration algorithm (CRA) to extract the crease pattern. The outputs 

of the CRA should minimally include the crease arrangement, all possible MV-

assignments, and all possible face overlapping orders. 

The fundamental procedure of the CRA is to partition the whole sheet into 

different regions, and then to generate straight line-segments to divide the regions. We 

thus partition the sheet according to the distributions of the types of the cells. Ideally, we 

wish that each partitioned region on the sheet contains only cells of one type with as few 

outliers as possible.  Because we also need the line segments to finally form an origami 

crease pattern, the lines ought to connect with each other end point by end point, and 

may not have any other intersections. Therefore, like the pixelated multicellular pattern 

intending to represent an origami crease pattern by coloring the faces, the essence of 

CRA is to identify the faces and their borders with regard to the coloration. 

In mathematical expression, the CRA tries to solve a multi-objective 

optimization problem. We represent the 2D space that defines the flat sheet as S, and its 
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border as Ωୗ. The creases are C୧	ሺi ൌ 1, 2,⋯ ,mሻ, where m is the number of creases. The 

vertices are V୨	ሺj ൌ 1, 2,⋯ , lሻ, where l is the number of vertices. The cells in the 

pixelated representation are c୧ ൌ ሼc୧, P୧, s୧ሽሺi ൌ 1,2,⋯ , pሻ, which are defined by their 

types, positions, and sizes. Thus the optimization problem is a search for a configuration 

of crease pattern that satisfies 

 ࢋ࢜࢏࢚ࢉࢋ࢐࢈ࡻ

ሼ࡯ଵ, ⋯,ଶ࡯ , ,݉,௠࡯ ,ଵࢂ ⋯,ଶࢂ , ,௟ࢂ ݈ሽ

ൌ ݊݅݉݃ݎܽ ቊ
,ଵࢉ௖௟௔௦௦௜௙௜௖௔௧௜௢௡ሺݎݎܧ ⋯,ଶࢉ , ,௣ࢉ ,ଵ࡯ ⋯,ଶ࡯ , ௠,݉ሻ࡯

,ଵ࡯௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬ሺݎݎܧ ⋯,ଶ࡯ , ,݉,௠࡯ ,ଵࢂ ⋯,ଶࢂ , ,௟ࢂ ݈ሻ
 

 ࢙࢚࢔࢏ࢇ࢚࢙࢘࢔࢕࡯

ە
ۖ
۔

ۖ
ۓ

,ଵ࡯ ⋯,ଶ࡯ , ௠࡯ ⊂ ࡿ
,ଵࢂ ⋯,ଶࢂ , ௟ࢂ ∈ ࡿ

௜࡯ ∩ ௝࡯ ൌ ,ሺ݅	௞ࢂ	ݎ݋	∅ ݆ ൌ 1, 2,⋯ ,݉	; ݇ ൌ 1, 2,⋯ , ݈ሻ

௞ܰ ൒ 1, ௞ࢂ	݂݅ ∈ ષࡿ

௞ܰ ൌ ݐ2 ൅ 2, ௞ࢂ	݂݅ ∉ ષ܁, ݐ ൌ 1, 2,⋯

                       (14) 

where ௞ܰ is the number of creases that intersect at a vertex ࢂ௞ (called interior vertex 

݂݅	 ௞ܰ ∉ ષࡿ, or exterior vertex ݂݅	 ௞ܰ ∈ ષݎݎܧ ;(ࡿ௖௟௔௦௦௜௙௜௖௔௧௜௢௡ is the classification error 

according to the multicellular pattern and creases; ݎݎܧ௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬ is a quantified 

evaluation of the flat-foldability error, and its definition will be explained later in this 

section. 

CRA has four stages - resampling, clustering, creasing, and finalization. 

(1) Resampling. In some cases, cell resolution remains low based on 

computational restrictions. Therefore, we re-pick some data points as the proxies for the 

cells to facilitate the application of the algorithm used in the following clustering stage 
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of the CRA. The resampled data points need to be more densely distributed than the cells 

over the entire region. The reason why we require resampled data points will be 

explained as we introduce the clustering algorithm in Section 4.2. 

Each resampled data point has three major properties, which are position, color, 

and color reliability. The positions of data points are already known as we resampled 

them. The color O୧ and color reliability R୧ of the i-th data point o୧ are determined by the 

accumulated light intensity from its neighboring cells. The light intensity on data 

point	o୧ from its j-th neighboring cell is expressed as I୧,୨. In practice, we assume that the 

distribution of light intensity from any cell obeys either a triangular distribution or a 

normal distribution, which is parameterized by the cell size s୨ and constants that describe 

the distribution. 

For triangular distribution of cell’s influence strength, we have 

               ܴ௜ ൌ ∑ ሺെ1ሻ௧ܫ௜,௝௝ୀଵ,⋯,௣  

ൌ ∑ ሺെ1ሻ௧ max ൬0,
ு

ீ
൫ݏܩ௝ െ ݀௜,௝൯൰௝ୀଵ,⋯,௣ , ݐ ൌ ൜

0, ݂݅	 ௝ܿ ൌ 1
1, ݂݅	 ௝ܿ ൌ െ1              (15) 

For normal distribution of cell’s influence strength, we have 

                 ܴ௜ ൌ ∑ ሺെ1ሻ௧ܫ௜,௝௝ୀଵ,⋯,௣  

ൌ ∑ ሺെ1ሻ௧ݏܪ௝݁
ି௄ௗ೔,ೕ, ݐ ൌ ൜

0, ݂݅	 ௝ܿ ൌ 1
1, ݂݅	 ௝ܿ ൌ െ1௝ୀଵ,⋯,௣            (16) 

where G, H and K are constant coefficients that describe the distributions, ݏ௝ is the size 

of j-th cell, and ݀௜,௝ is the distance from the center of j-th cell to the data point ݋௜. We 

can determine that the color property of each data point to be 
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௜ܱ ൌ ሺܴ௜ሻ݊݃݅ݏ ൌ ൜
1	ሺܾ݈݁ݑሻ
െ1	ሺ݀݁ݎሻ    (17) 

 (2) Clustering. After resampling data points, we coarsely partition the regions 

for origami faces by clustering the data points. A region with a convex border that 

covers data points of a same color will come to a cluster, which will later represent a 

face in the crease pattern. Prior to clustering, we don’t have the number of clusters. In 

this situation, density-based clustering could effectively detect the clusters, as well as the 

natural number of clusters (El-Sonbaty, Ismail and Farouk 2004). Ester et al. proposed 

an algorithm called DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise) that can discover arbitrarily shaped clusters and handle noise (Ester, Kriegel, 

Sander and Xu 1996). 

DBSCAN is a density-based clustering approach. Thus, for each point of a 

cluster within its “ϵ-neighborhood” for a given ϵ ൐ 0, the “density” has to exceed a 

certain threshold. DBSCAN can apply any different definitions of “neighborhood” and 

“density”, as long that the “neighborhood” is a symmetric and reflexive binary predict, 

and the “density” calculation method can represent the “cardinality” of the defined 

neighborhood (Ester, Kriegel, Sander and Xu 1997). CRA applies DBSCAN, whose “ϵ-

neighborhood” is simply distance based, that 

ఢܰሺ݋ሻ ൌ ሼ݋′ ∈ ,݋ሺ݁ܿ݊ܽݐݏ݅݀|ܦ ሻ′݋ ൑ ߳, ߳ ൐ 0ሽ            (18) 

where	݋	and	݋′	are	two	data	points, ܦ is the union of all data points, and “density” of a 

target data point is the summed count of its ߳-neighbor data points (including the target 

data point) that also satisfy the cluster’s criteria. 
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We define the cluster’s criteria by a function 

ሻ݋ሺܴܥ ൌ ,݁ݑݎݐ ݋	݄ݐ݅ݓ ∈  ܦ

Several basic definitions are given below. 

 

Definition 1. (Core Data Point) A data point ݋௜ is defined as a core data point, if the 

union of its ߳-neighbor data points, ఢܰሺ݋௜ሻ (including ݋௜), satisfies a certain set of 

cluster’s criteria ܴܥ. Therefore, 

,	ݐ݊݅݋݌	ܽݐܽ݀	݁ݎ݋ܿ	ܽ	ݏ݅	௜݋ ݂݂݅. ௝൯݋൫ܴܥ ൌ ,݁ݑݎݐ ௝݋∀ ∈ ఢܰሺ݋௜ሻ 

 

Definition 2. (Directly Density-Reachability Matrix)  

,ሺܴ݅ܦܦ ݆ሻ ൌ ቐ
1	, ௜݋	݂݅ ∈ ఢܰ൫݋௝൯, ௜ሻ݋ሺܴܥ ൌ ݁ݑݎݐ
, ݐ݊݅݋݌	ܽݐܽ݀	݁ݎ݋ܿ	ܽ	ݏ݅	௝݋	݀݊ܽ

0, .݁ݏ݅ݓݎ݄݁ݐ݋
   (19) 

,ሺܴ݅ܦܦ ݆ሻ ൌ 1 means that data point ݋௝ is directly density-reachable from data point ݋௜. 

 

Definition 3. (Reversible Directly Density-Reachability Matrix) 

,ሺܴ݅ܦܦܴ ݆ሻ ൌ ൜
1	, ,ሺܴ݅ܦܦ	݂݅ ݆ሻ ൌ ,ሺ݆ܴܦܦ ݅ሻ ൌ 1

0, .݁ݏ݅ݓݎ݄݁ݐ݋
   (20) 

,ሺܴ݅ܦܦܴ ݆ሻ ൌ 1 means that data point ݋௜ and data point ݋௝ are directly density-reachable 

with each other. 
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Definition 4. (Density-Reachability Matrix) 

,ሺܴ݅ܦ ݆ሻ ൌ

ە
ۖ
۔

ۖ
,	1ۓ ,௜݋	݁ܿ݊݁ݑݍ݁ݏ	ܽ	ݏ݅	݁ݎ݄݁ݐ	݂݅ ௞భ݋

ᇱ , ௞మ݋
ᇱ ,⋯ , ௞೛݋

ᇱ , ,௝݋ ݌ ൌ 0,1,⋯	

,ሺܴ݅ܦܦ	݁ݎ݄݁ݓ ݇ଵሻ ൌ ,ሺ݇ଵܴܦܦ ݇ଶሻ ൌ
⋯ ൌ ,ሺ݇௣ିଵܴܦܦ ݇௣ሻ ൌ ,ሺ݇௣ܴܦܦ ݆ሻ ൌ 1

0, .݁ݏ݅ݓݎ݄݁ݐ݋

     (21) 

,ሺܴ݅ܦ ݆ሻ ൌ 1 means that data point ݋௝ is density-reachable from data point ݋௜. 

 

Definition 5. (Reversible Density-Reachability Matrix) 

,ሺܴ݅ܦܴ ݆ሻ ൌ ൜
1	, ,ሺܴ݅ܦ	݂݅ ݆ሻ ൌ ,ሺ݆ܴܦ ݅ሻ ൌ 1

0, .݁ݏ݅ݓݎ݄݁ݐ݋
    (22) 

,ሺܴ݅ܦܴ ݆ሻ ൌ 1 means that data point ݋௜ and data point ݋௝ are density-reachable with each 

other. 

 

Definition 6. (Density-Connectivity Matrix) 

,ሺ݅ܥܦ ݆ሻ ൌ ൝
1	, 	௞݋	ݐ݊݅݋݌	ܽݐܽ݀	ܽ	ݏݐݏ݅ݔ݁	݁ݎ݄݁ݐ	݂݅
,ሺܴ݇ܦ	ݐ݄ܽݐ ݅ሻ ൌ ,ሺܴ݇ܦ ݆ሻ ൌ 1

0, .݁ݏ݅ݓݎ݄݁ݐ݋
   (23) 

,ሺ݅ܥܦ ݆ሻ ൌ 1 means that data point ݋௜ and data point ݋௝ are density-connected. 

 

Definition 7. (Clustering and noise) A clustering ܩܰܫܴܧܷܶܵܮܥ஽ of ܦ w.r.t. ఢܰ and 

 ஼஽௉ that can be found inܴܥ ஼஽௉ is the union of all density-connected sets w.r.t. ఢܰ andܴܥ

஽ܩܰܫܴܧܷܶܵܮܥ ,ܦ ൌ ሼܮܥଵ,⋯ , ஽ܧܵܫܱܰ ௡ሽ. The noise is defined asܮܥ ൌ ଵܮܥሺ\ܦ ∪ ⋯∪

 .௡ሻܮܥ
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15(b) according to the pixelated multicellular pattern in Figure 15(a), blue and red 

circles are data points that are clustered into red and blue clusters, while grey ones are 

data points that are not clustered. In the entire sheet, there are totally two blue clusters 

(square marks 1 and 2), and three red clusters (square marks 3, 4 and 5). 

Here, we need to explain the reason why we use the resampled data instead of the 

cells for clustering. Clustering is required before we proceed to the next stage of creasing, 

since the core problem that the DBSCAN clustering stage resolves is to dig out the 

natural number of clusters that is implicated in the pixelated multicellular pattern. But 

since we use LED matrix screen as the analogy of the pixelated multicellular pattern, the 

data points that represent what the whole colored pattern really look like are more proper 

for clustering than the cells that represent the light sources (LEDs). If the resolution of 

the cells is equivalent to the resolution of the LEDs, we can understand the resolution of 

the resampled data points as the resolution of eyes for perceiving the picture shown on 

the LED matrix screen. Moreover, data points of a higher resolution can more sensitively 

and accurately deal with the suspicious noises. In Figure 16, (a) is a pixelated 

multicellular pattern with two red cells that are surrounded by blue cells. According to 

most density-based clustering algorithms including DBSCAN, the two red cells will 

inevitably be identified as noise. But due to their relatively larger sizes, the two red cells 

should have the probability to stand out as a sole cluster.  
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(a)                                             (b) 

    

 (c)                                             (d) 

Figure 16 (a) A pixelated multicellular pattern, which has only two relatively larger 
red cells that are surrounded by blue cells; (b) Resampled data points according to 

(a); (c) Another pixelated multicellular pattern, which has only two relatively 
smaller red cells that are surrounded by larger blue cells; (d) Resampled data 

points according to (c). 
 

 

Therefore, we get the resampled data points as shown Figure 16(b). The larger 

resolution of the resampling result in an enough number of red data points that approve 

the local region of the red cells being a cluster. Similarly, Figure 16(c) also has two red 

cells surrounded by blue cells, but sizes of the red cells are significantly smaller. The 

resampling of pattern Figure 16(c) results in Figure 16(d), that has only one red data 
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point. Then the two red cells in Figure 16(c) cannot be a cluster, and must be identified 

as noises. It is also true that by further improving the resolution of the resampled data, 

we can anticipate the two red cells in Figure 16(c) to result in enough number of red data 

points to be a cluster. However, as our eyes having limited resolution, we must set up a 

resolution limit for resampling as well.  

(3) Creasing. The next step is to place linear classifiers among clusters to 

separate them into the faces of the crease pattern. The region of a cluster and its 

surrounding linear classifiers become a face and its creases. The color of the face is the 

same as the color property of its corresponding data cluster.  

There are several rigid demands on the classification. Firstly, every small sub-

region in the origami sheet ought to be assigned to one of the faces. Secondly, each 

interior vertex must be placed within a constrained distance from the intersection of 4 or 

more clusters.  

During classification, we need to minimize both the classification error and the 

flat-foldability error within the entire pattern. The classification error function 

Errୡ୪ୟୱୱ୧୤୧ୡୟ୲୧୭୬ applies the same definition used by most classification problems. With 

the color reliability acting as a weight for each data point, a more reliably blue or red cell 

that is misclassified will contribute more to the classification error. 

௖௟௔௦௦௙௜௖௔௧௜௢௡ݎݎܧ ൌ ሼ∑ܴ௜ ,                      (24)	ሽ݂݀݁݅݅ݏ݈݈ܽܿݏ݅݉	ݏ݅	݅݋݂݅

The flat-foldability error function Err୤୪ୟ୲ି୤୭୪ୢୟୠ୧୪୧୲୷ measures the least flat-

foldable interior vertex in the pattern.  
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According to Kawasaki-Justin Theorem, we define and normalize the local flat-

foldability error of each vertex as 

௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬,௜ݎݎܧ ൌ
ቚఈ೔,భିఈ೔,మା⋯ାఈ೔,ೖ೔షభିఈ೔,ೖ೔ቚ

ߨ2
                          (25) 

where ߙ௜,ଵ, ,௜,ଶߙ ⋯ , ,௜,௞೔ିଵߙ  ௜,௞೔ are the consecutive angles between the creases aroundߙ

interior vertex  ࢂ௜, and ݇௜ is the number of those angles. ݎݎܧ௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬,௜ is 0 for 

perfectly flat-foldable vertex, and it can get a maximum value of 1. The flat-foldability 

error function will be 

௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬ݎݎܧ ൌ maxሺݎݎܧ௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬,௜		|	V୧	݅ݏ	ݎ݋݅ݎ݁ݐ݊݅	ݔ݁ݐݎ݁ݒሻ	       (26) 

The multi-objective minimization problem is non-linear. Therefore, an iterative 

search method could either periodically update the crease pattern as a whole, or only 

update one of the components in each cycle. Because both the error functions are 

formulated basing the local error function, it would make the problem easier if we 

optimize the local error function of one vertex at each time. We thus apply a cascade 

direct search method. The method is defined as a cascade because we apply a high level 

random search method that periodically updates the crease pattern, while in each period, 

we apply a low level random jump search to update only one vertex. 

We must first give a definition of saddle region before we define the initial guess 

of the cascade search. A saddle region is the region where multiple blue clusters and 

multiple red clusters intersect. When getting the crease pattern, one interior vertex will 

take place in each saddle region. In Figure 15(b), the blue squares and red stars are data 

points that indicate suspect saddle regions. The actual saddle regions are those where 
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blue squares and red stars aggregate together. Thus in this case, there is only one saddle 

region, which is located near the center of the sheet, and the only interior vertex will be 

placed in this saddle region. 

To define a starting crease pattern of cascade direct search, we set one interior 

vertex at the center of every saddle region, and one crease to be the optimal classifier for 

each pair of neighboring data clusters. The exterior vertices will be sequentially decided 

as the intersection points of the creases with sheet margins. In Figure 15(c), which shows 

the corresponding starting crease pattern for Figure 15(b), vertices, creases and faces are 

numbered by circular, diamond and square marks respectively. As previously stated, the 

only interior vertex 1 is initially placed at the center of the saddle region. Creases 1-4 are 

the linear classifiers, which go through a fixed point at vertex 1, for cluster pairs among 

clusters 1-4. Crease 5 doesn’t go through any interior vertices, so it only needs to 

optimally separate the two clusters 2 and 5. Exterior vertices 2-7 could then be attained 

as the intersection of creases and sheet margins. Be notified that if the origami structure 

is not confined by flat-foldability, the crease restoration algorithm shall terminate at this 

point. 

Under the consideration of flat-foldability, the cascade direct search will tune the 

creases stepwise, until the minimization on both global classification error and global 

flat-foldability error is achieved. In the example, Figure 15(c) is finally updated to the 

one in Figure 15(d). This resulting crease pattern balances the two error functions 

globally for the whole pattern. 
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(4) Finalization. The finalization step mainly deals with optimizing values of the 

two error evaluations in equation (3.13) and (3.15). CRA also derives all the MV-

assignments and face overlapping orders that pass the flat-foldability check through the 

procedure given in in Section 2.2. 

The outcome of finalization is thus the crease pattern with its flat-foldable 

combinations of MV-assignment and face overlapping order. To favor broader 

applications, we could also calculate the flat-folded state profile, and number of 

overlapping face layers according to the crease pattern on demand as well. For the crease 

pattern in Figure 15(d), the flat-folded profile has an area of 0.3006 compared to the total 

area of 1 of the 1 by 1 origami sheet and a maximum of 3 layers of face overlaps. 

 

Summary of PMR Representation and Its Encoding 

In this section, I proposed a novel pixelated multicellular representation for 

origami structures. The PMR defines an origami structure by distributed cells. The cells 

fundamentally work as conceptual indicators, which directly define the origami by 

coloring the faces in the same way that LEDs in a LED matrix screen display a picture. 

Equivalent to an LED, each cell will have three key properties – cell type that shows the 

color, cell size that indicates the light intensity, and cell position that implies the 

resolution of cells. Every collection of cells with the same type (color) will define an 

origami face. The creases are linear classifiers generated to separate faces. I proposed a 

crease restoration algorithm to extract the equivalent crease pattern from a pixelated 
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multicellular representation. I applied a special type of origamis that are flat-foldable to 

demonstrate CRA comprehensively. 

The PMR is advantageous for its availability of expressing any arbitrary simple 

or non-simple crease, without losing the non-redundancy in representation. But after 

discretizing the cell properties for the computational applications, the representativeness 

of a pixelated multicellular pattern depend on the effective resolution and effective 

precision, which are the metrics relative to the setting of two of the cell properties – cell 

position and cell size. A third cell property is the cell color. In this research, the 2-

colorability feature of flat-foldable origami has enabled the cell color to be chosen 

between minimally two colors. 

The application of the PMR is more theoretically complicated and more 

computationally complex than ice-cracking, but it opens an interface for structural 

analysis techniques, such as FEA. To support such technique, the PMR can append the 

material properties or thickness value for each cell. 

 

Summary on Two Designs of Geometric Representations 

The two geometric applications (genotype–phenotype mappings) apply similar 

evolutionary algorithms, but they differ on the representation of candidate solutions. The 

quality of the representations can be assessed by how well they satisfy the four major 

requirements for designing good representations (Gen and Cheng 1999). The four major 

requirements include non-redundancy, completeness, legality, and continuity. In general, 

non-redundancy, completeness and legality demand the genotype-phenotype mapping 
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(G-to-P mapping) not to be 1-to-n, 0-to-1, or 1-to-0. Accordingly, the theoretically 

favorable G-to-P mapping is 1-to-1. However, an n-to-1 mapping is also acceptable, 

though it may cause one optimum in the phenotype space being mapped to multiple 

optima in the genotype space. Continuity requires that small variations in the genotype 

space due to mutation only cause small variations in the phenotype space. 

In this research, the three applications invoke two types of genotype 

representations. The ice-cracking method applies the generative descriptions to define a 

crease pattern directly, while the PMR implements an indirect representation that 

equalizes a crease pattern and the equivalent artificial embryo form.  

According to the comparison, the ice-cracking representation and the 

computational embryogeny both have good non-redundancy and completeness. However, 

computational embryogeny could not guarantee perfect legality, and the ice-cracking 

include a few bits (no more than 3%), whose mutation will cause substantial 

permutations on the crease pattern. 
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CHAPTER IV  

GENETIC ALGORITHM AND COMPUTATIONAL EVOLUTIONARY 

EMBRYOGENY 

 

The goal of this research is to solve the origami structure design problem that 

was described in Chapter I. The type of problem doesn’t ask for achieving specific 

folded shape, but it will indirectly provide descriptions on geometric and functional 

features to help designers frame out their designs. In this type of design problem, 

without a clear target shape, it is impossible to make an assertion on the topological 

structure of the desirable design. Thus it is impossible to tell which deductive design 

method should be selected, since deductive methods mostly only serve one type of 

origami topology. As a result, it is inevitable that we have to expand the search space to 

include any arbitrary crease pattern, regardless its topological structure. And because of 

the fact that this type of design problem is NP-complete, an abductive design method, 

which features the procedure of first proposing and then proving, is necessary. This 

research selects the genetic algorithm and one of its variations, both of which implement 

the abductive problem solving logic. 

Genetic algorithm (GA) is one search heuristic that is inspired by the process of 

natural evolution. It is generally used to derive an optimized solution through iteratively 

proposing, adapting, and selecting candidate solutions. The most noteworthy advantage 

of the genetic algorithm is that it avoids formulating an explicit model for the embedded 

design search space by constructing a substitutive search space defined by the genetic 
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Figure 18 Workflow diagram of GA 
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The GA requires an initial generation of candidate solutions to start the 

evolutionary search. Then as in Figure 17, the method is recurrently run through the four 

main stages, which are “genetic code translation”, “individual development”, “fitness 

evaluation”, and “generation evolution”. 

The “genetic code translation” stage implicitly converts the Gray code genetic 

representations of the candidate solutions into the descriptions or instructions for 

generating their physical representations. And in the “individual development” stage, the 

physical representations of the candidate solutions are explicitly formed and recorded by 

the GA. 

After the first two stages, all the individuals in the current generation are 

physically realized. In the “fitness evaluation” stage, the GA assesses how well the 

physical representation, as well as genetic representation in several cases, of each 

candidate solution meets the design objective and constraints. Then the GA will derive a 

set of fitness values for the current generation according to the assessment. 

Finally, in the “generation evolution” stage, the GA applies the evolutionary 

operators of crossover, mutation, and selection that are used to obtain a new generation 

from the current generation. The new generation will consist of the same number of 

individuals as the current generation. Then, the current epoch ends, and the next epoch 

starts. The evolution will be terminated as soon as we get the desirable solution or when 

the fitness value of the best individual in the generation converges. 
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Interpreting the Genetic Representation 

For GA, the genetic representation of a candidate solution is a piece of genetic 

code in Gray code. The genetic code is usually the combination of segments, each of 

which represents an argument. Therefore the full genetic code can be understood as 

equivalent to a set of arguments that uniquely define the corresponding physical 

representation. 

The format of partitioning the genetic code into segments, the way of converting 

each segment into the argument value, as well as the approach of using the arguments to 

describe the physical representation consists of the three key stages of interpreting the 

genetic representation. For each specific application of GA, there is always an implicit 

interpreter that manages the three stages to achieve the mapping between the genetic 

representation and the physical representation of each candidate solution. 

For the “ice-cracking” representation, the mapping between the genetic 

representation and the physical representation has been clearly explained through Table 

1. “Ice-cracking” implements the analogous procedure of ice cracks to develop the 

crease pattern that the genetic representation encodes. The encoded arguments in “ice-

cracking” directly describe the vertices and creases, though in an unconventional way. 

The PMR has the genetic representation to actually encode the arguments that 

define its cells. And it also requires an additional CRA to extract the implicit information 

of crease pattern. For this representation, the interpretation from the genetic 

representation to the physical representation is indirect through the intermediate PMR, 

which is defined as an equivalent representation of the crease pattern that it expresses.  
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Compared to “ice-cracking”, the PMR can also adopt some features from 

generative design. The genetic code has a hybrid structure that is the concatenation of 

two parts. The first part is an explicit code that encodes the embryonic state - the initial 

state of a PMR, and the second part is an implicit code that encrypts a set of generative 

genetic rules that guide cells to change in size or color accordingly, so as to make the 

entire embryonic PMR develope to its mature state. Since the PMR was inspired by the 

existing research on the CEE, the genetic algorithm combining the PMR is named 

computational evolutionary embryogeny for optimal origami design (CEEFOOD) in the 

rest of this paper. 

The generative genetic rules adopt the same “if-conditionals-then-actions” format 

from CEE. In this study, three rules are designed as shown in Table 2, where ௕ܰ is the 

number of neighboring blue cells, ௥ܰ is the number of neighboring red cells, ௧ܰ is an 

integer argument defined in the rule, ܵ௕ is the total size of neighboring blue cells, and ܵ௥ 

is the total size of neighboring red cells, ܵ௧ is a real number defined in the rule. 

Therefore, two arguments defining each rule are the rule’s type number (1~3), and ௧ܰ or 

ܵ௧ for the conditional. According to Table 2, the essence of the three types of rules is to 

assimilate a cell’s color with its surroundings. Thus with these rules, a genetic code has a 

lower chance of resulting in an extremely random distribution of blue and red cell in the 

PMR. 
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Table 2 Generative genetic rules for PMR’s genetic representation 
Type # Conditional Action 

1 ܰ	 ൌ ሺݔܽ݉	 ௕ܰ, ௥ܰሻ 	൐ ௧ܰ Convert the cell color to blue, if ௕ܰ> ௥ܰ; to red, otherwise 

2 ܵ	 ൌ ,ሺܵ௕ݔܽ݉	 ܵ௥ሻ 	൐ ܵ௧ Convert the cell color to blue, if ܵ௕>ܵ௥; to red, otherwise 

	ܦ 3 ൌ ሺܵ௕ݏܾܽ 	െ ܵ௥ሻ 	൐ ܵ௧ Convert the cell color to blue, if ܵ௕>ܵ௥; to red, otherwise 

 

 

The encoding of the genetic codes is very intuitive. For the explicit code part, we 

sequentially list all the arguments that define the cells in the embryo of a PMR and 

convert the arguments into Gray code. For the implicit code part, we extract the 

arguments (rule type #, ௧ܰ, and ܵ௧) that define the generative genetic rules and convert 

the arguments into Gray code. The implicit code part also has several additional bits – 

called rule switches, each of which controls whether one of rules is active or not. If the 

rule switch bit of a rule is 1, the rule will be executed; if the rule switch bit is 0, the rule 

will be ignored in the individual development stage. 

 

Individual Development According to the Generative Genetic Rules 

Based on the embryo state and the generative genetic rules, the PMR of each 

individual will start developing from its embryonic state and update the sizes and colors 

of cells periodically. In each development period, every cell in the individual will go 

through all the generative genetic rules. If the present size or color of any cell satisfies 

the conditionals in a piece of generative genetic rule, the cell will execute the 

corresponding actions. For example, if a red cell is about to execute a rule - saying “if 
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there are 2 more blue cells around than red cells, convert the cell to blue”, we need to 

inspect the adjacent cells of this red cell first. If we find that the adjacent cells include 6 

blue cells and 2 red cells, which satisfy the conditional of the rule, we take the 

corresponding action to recolor the red cell to blue. 

A maturity check is set up as a criterion to decide when an individual’s 

development stage terminates. Normally the development terminates if none of the cells 

will change in its size or color. The maturity check also sets a limit for the maximum 

development cycle. Any individual that doesn’t stabilize within the limited number of 

cycles is terminated and labeled as “abnormal”. 

Here is an explanatory example of how a genetic rule leads a PMR to develop 

from its embryonic state to its mature state. The embryonic PMR defined by the explicit 

part of the hybrid genetic code is given by Figure 19(a). The individual has one 

generative genetic rule defined by the implicit part of the hybrid genetic code. The rule 

says “if a cell has more than 2 adjacent blue/red cells, convert the cell to blue/red”. By 

definition, only the cells right above, right below, to the left of or to the right of a cell are 

its adjacent cells. So in the embryonic state of PMR, only the two cells highlighted by 

with green radiance satisfy the conditional of the genetic rule. Thus the two cells will 

execute the corresponding actions – the red cell in the middle converts to blue for having 

more than 2 adjacent blue cells, and the bottom middle blue cell converts to red for 

having more than 2 adjacent red cells. After the color change of the two cells, the PMR 

develops into a new state as shown in Figure 19(b). The maturity check will compare the 

two consecutive states in Figure 19(a) and (b). Finding that Figure 19(a) and (b) are not 
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identical, the maturity check fails and the individual development will continue. So the 

state in Figure 19(b) is not the mature state, and we name it as an intermediate state. 

Then the next cycle of individual development starts with the intermediate state Figure 

19(b) and run the rule on all the cells again. This time, the top middle cell is the only one 

that satisfies the conditional of the rule. Since this cell has more than 2 adjacent blue 

cells, its color will be assigned to blue, though the color doesn’t change in fact. After 

deriving another new state as shown in Figure 19(c), the maturity check compares the 

states of Figure 19(b) and (c). Finding that the two states of the PMR are identical, the 

maturity check passes. Therefore, we mark the state Figure 19(c) as the mature state and 

terminate the individual development stage. 

 

 

 

(a)                           (b)                            (c) 

Figure 19 The individual development of a PMR with 3 by 3 cells. (a) the 
embryonic state of the PMR has 5 blue cells and 4 red cells; (b) the rule directs two 

cells to change their colors and guilds the PMR to an intermediate state; (c) The 
rules directs the PMR to develop into the mature state, which also has 5 blue cells 

and 4 red cells. 
 

 

 

Embryonic State Mature State

Rule Rule

Maturity Check - Fails Maturity Check - Passes

Intermediate State
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Evaluate the Fitness With Respect to Requirements 

The automatic evaluation of every candidate solution is another essential 

component of GA. The definition of the objective function has been presented in the first 

chapter with the problem statement. In this section, the algorithms for deriving the 

fitness/objective components will be discussed. 

 

Algorithm for Locally Flat-foldable Mountain-Valley Assignment 

The validation of the flat-foldability of an origami crease pattern is equivalent to 

checking the existence of a mountain-valley assignment (MV-assignment) of the creases, 

according to which the faces won’t collide with or pierce through each other as the shape 

is folded flat. Since every crease can be either a mountain of a valley, for a given crease 

arrangement with m creases, there are at most 2m possible MV-assignments. For instance, 

the single vertex crease pattern with 6 creases (Figure 20) will have 26 MV-assignments 

theoretically. However, as we are looking for flat-foldable MV-assignments, some of the 

26 MV-assignments are not qualified. The simplest non-flat-foldable case is when the 6 

creases are all mountains, and all faces must be bent. 

 



 

 96

    

(a)                          (b) 

Figure 20 (a) An example crease pattern with 6 creases. Creases are indexed by 
numbers in diamonds. The angles ࢻ૛ and ࢻ૞ are local min, thus creases #2 and #3 

must be one mountain and one valley, and so do creases #5 and #6; (b) This 
displays one possible flat-foldable MV-assignment for (a).  

 

 

Suppose that for each interior vertex, the angles among its linked creases are 

already designed to satisfy Kawasaki’s theorem, so that the local flat-foldability will 

only depend on the satisfaction of Maekawa’s theorem and the local min theorem. 

Unlike Kawasaki’s theorem that is concerned about the angles of creases, Maekawa’s 

theorem and the local min theorem define the requirements of the MV-assignment. Let’s 

recall what the two theorems say. Maekawa’s theorem asks that the difference of the 

numbers of mountains and valleys around a vertex must be 2. Therefore, for the same 

crease pattern in Figure 20, there are either 4 mountains and 2 valleys, or 2 mountains 

and 4 valleys. As a result, the maximal possible number of MV-assignments due to the 

request of flat-foldability will drastically decrease to 

଺ܥ
ସ ൅ ଺ܥ

ଶ ൌ 2 ൈ ଺ܥ
ଶ        (27) 

Then the local min theorem will further decrease this limit. For the crease pattern Figure 

20, there are two local minimal angles, so the crease #2 must have the opposite MV with 
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the crease #3, and the same for the pair of creases #5 and #6. In this case, the flat-

foldable MV-assignment choices need to exclude the cases, in which any of the local 

min crease pairs have the same MV. It would be much easier if we separately consider 

those local min crease pairs from the very beginning. In general, a single vertex crease 

pattern has ݉ creases, where ݉	 ൌ 	2 ൈ ܯ ൅ 2ሺܯ	 ൌ 	1, 2, 3, … ሻ, and ܰ local min crease 

pairs, where 1 ൑ ܰ ൑  Each of the N pairs has two possible MV-assignments. And .ܯ

among the other 2 ൈ ሺܯ െ ܰሻ ൅ 2 creases, there are either ܯ െܰ ൅ 2 mountains and 

ܯ െܰ valleys, or ܯ െܰ ൅ 2 valleys and ܯ െܰ mountains. The total number of flat-

foldable MV-assignments will be 

ܷ௏ሺܯ,ܰሻ ൌ 2ே ൈ ൫ܥଶൈሺெିேሻାଶ
ெିேାଶ ൅ ଶൈሺெିேሻାଶܥ

ெିே ൯ ൌ 2ேାଵ ൈ ଶൈሺெିேሻାଶܥ
ெିே         (28) 

The value above can still become very large as ܯ and/or ܰ increase. Adding 

more vertices will make the situation more complex. Given a crease pattern has l interior 

vertices, we can derive the upper limit of the number of local flat-foldable MV-

assignment for the i-th vertex is ܷ௏௜ሺܯ௜, ௜ܰሻ. And if there are ݉௖ creases that are the 

ones connecting two vertices, the theoretical maximal number of possible flat-foldable 

NV-assignments of the full crease pattern will be 

ܷ஼௉ሺܯ,ܰ,݉,݉௖ሻ ൌ ሺ∏ ܷ௏௜ሺܯ௜, ௜ܰሻ
௠
௜ୀଵ ሻ/2௠೎                        (29) 

For a crease pattern, we can use the following algorithm to derive the full set of 

flat-foldable MV-assignments. 

Algorithm: Deriving all the locally flat-foldable MV-assignments: 

1 From a given crease arrangement, keep vertices indexed by numbers of 1 to ݈, 

and creases by 1 to ݉. 
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2 Create a library of existing MV-assignments – ܮெ௏ 

3 Create a set of Boolean variables	 ௝ܻ ൌ 	0	ሺj	 ൌ 	1, 2,mሻ	to mark whether the 

algorithm has already assigned the direction for each crease. 

4 For i = 1 to l 

4.1 Create an empty temporary library of MV-assignments – ܮெ௏ 

4.2 For each existing MV-assignment ܽெ௏ in ܮெ௏ 

4.2.1.1 Inspect the creases around vertex #i that has already been given 

a MV in ܽெ௏; 

4.2.1.2 Find out all the possible MV-assignments for the creases 

around vertex #i that ௝ܻ ൌ 	0, and store theses MV-assignments 

in ܮெ௏ 

ெ௏ܮ 4.3 ൌ  ெ௏ܮ

4.4 For each crease #j that is connected with vertex #i 

4.4.1 ௝ܻ ൌ 	1. 

 ெ௏ contains all the locally flat-foldable MV-assignments.Since the size of theܮ

solution is large, the computational complexity cannot be reduced. At this stage, the 

computer isn’t able to make the judgment about whether a crease pattern is flat-foldable 

without trying each possible MV-assignment until reaching a flat-foldable one. 

 

Algorithm for Global Flat-foldability Inspection 

In the last section, I have given a discussion about flat-foldable MV-assignments. 

But the resultant flat-foldable MV-assignment can only guarantee the local flat-
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foldability everywhere. To inspect the global flat-foldability, it is necessary to exclude 

the MV-assignments that will cause face collision as all the creases are folded to േߨ. 

Therefore, the question becomes - having a crease pattern and a locally flat-foldable 

MV-assignment, how to check for the existence of face collisions. 

Now, let’s start with the simplest case, where a crease pattern has two parallel 

valley creases Figure 21. If we fold the crease #1 first, and then the crease #2, the shape 

is nicely flat-foldable. But as we reverse the sequence of folding, and start form the 

crease #2, the folding motion route of the crease #1 will be blocked by the folded face #3. 

For this example, we state that the crease pattern is globally flat-foldable, because the 

folding sequence given in Figure 21(b) folds the shape flat without causing face collision. 

But it is also true that not all the folding sequences for this globally flat-foldable shape 

can fold the shape flat. 

 

 

       

(a)                                 (b)                                (c) 

Figure 21 A crease pattern with two parallel valley creases and its folding 
sequences. (a) The crease pattern with indexed creases and faces; (b) Sequence 1 - 
crease #1 → #2: flat-foldable; (c) Sequence 2 - crease #2 → #1: not flat-foldable due 

to face intersection (collision, or pierce). 
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Now we proceed to a more complex example as shown in Figure 22(a), which 

has interior vertices. The pinwheel base has 12 creases, which include 4 mountains 

(dash-dot lines) and 8 valleys (solid lines). The MV-assignment presented in Figure 22(a) 

is locally flat-foldable everywhere. Figure 22(b) shows what the flat-folded shape looks 

like over the top, and it also proves that the pinwheel base is globally flat-foldable. 

Let’s think about how to prove global flat-foldability of this pinwheel base crease 

pattern. Recall the crease pattern in Figure 21. It has only simple folds that don’t have 

intersections with each other. For a simple fold in a folding sequence, it is valid or flat-

foldable, if and only if at the current state, all the faces have no intersection with the 

crease from the top view. In Figure 22(a), the creases of the pinwheel base crease pattern 

are all linked through interior vertices, which means these linked creases must be folded 

simultaneously. Thus in this case, we cannot use the same approach for Figure 21. 

In theory, the flat-foldability only talks about the static properties of the shape 

when all the creases are folded to േߨ, regardless of how difficult the shape folds 

physically, or how many auxiliary folds the user has to make during the procedure to 

reach the final shape. Therefore, we will look for an approach that doesn’t track the 

folding sequence, but only investigates whether the faces can be arranged in a certain 

order from bottom to top without causing intersections. 
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(a)                                 (b) 

    

(c)                                 (d) 

Figure 22 A pinwheel base and its flat-folded state. 
 

 

For the crease pattern shown in Figure 20(b), we can fold it flat in two ways. 

Using the face between creases #4 and #5 as the bottom one, we can either fold the flap 

of crease #3 below the flap of crease #6 (Figure 23(b)), or fold the flap of crease #6 

below the flap of crease #3 (Figure 23(c)). To testify the global flat-foldability of the 

crease pattern, we need to at least seek out one of the two flat-folding ways. As an 

extensive study, we rotate creases #2 and #3 in Figure 23(a) clockwise to derive the 

crease pattern in Figure 24(a), so that ߙଵ becomes smaller and ߙଷ larger. Folding the 

altered crease pattern flat, we can only place the flap of crease #3 above the flap of 

crease #6 Figure 24(b). If we try to push the flap of crease #6 into the limited space 
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between the two faces adjacent to crease #2 (Figure 24(c)), the face between creases #1 

and #6 will have to bend to fit in. However, the crease pattern in Figure 24(a) is still 

globally flat-foldable, since it has at least one legal way to fold flat. 

 

 

       

(a)                                 (b)                                 (c) 

Figure 23 A single vertex crease pattern and two ways of flat-folding it. 
 

       

(a)                                 (b)                                 (c) 

Figure 24 An altered crease pattern from Figure 12. It has only one way to be flat-
folded as in (b). Using the way shown in (c) would cause the face highlighted to 

bend within the limited space closed by the two faces adjacent to crease #2. 
 

 

From the last two examples, especially the one of Figure 24, we see that the order 

of faces overlapping with each other is crucial for determining whether the way of 
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folding results in a flat-folded shape. Therefore, finding out the way of flat folding a 

shape is equivalent to finding out a face overlapping order, according to which none of 

the faces will have to crumple or bend, while the creases are folded to േߨ. 

The most straightforward approach to detect the existence of a flat-foldable face 

overlapping order is to go through every possibility until we find one out. This brute 

force method is computationally complex. But since the problem of validating a crease 

pattern flat-foldable has been proved NP-complete, a brute force method doesn’t sound 

worse. 

But for such a brute force search, the difficult part is in how to verify if a face 

overlapping order directs the faces to fold flat. My solution is to assume that the faces 

have zero thickness and collision size. So the faces can fold freely in the space and 

piercing is also allowed. Then after calculating the ultimate position and orientation of 

each face at the flat-semifolded state, we check whether there exist some instances of 

face piercing according to each face overlapping order. The following criterion provides 

the sufficient condition for the existence of face penetration. Criterion: At the flat-

semifolded state, if there is a crease #j partially or fully falling inside the region of a face 

#k, then the face #k cannot be placed between the two faces adjacent to crease #j in the 

face overlapping order. Otherwise, face #k will pierce through crease #j. 

The computational complexity of applying this criterion is Οሺ݉݊݌ሻ, where ݉ is 

the number of creases, ݊ is the number of faces, and ݌ is the average number of creases 

that each face has. And the application of this criterion will return a table ிܶ௉ with ݉ 

rows and ݊ columns. The contents are Boolean values telling whether a face can be 
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placed between the two flaps of a crease. After being fully filled, this table can be 

repetitively referred to by every candidate face overlapping order. 

Then go up one level to review the brute force search of all possible face 

overlapping orders. The ordering of n faces should be Οሺ݊!ሻ. But if we also put the MV-

assignment into consideration, we will find that from the standpoint of any arbitrary face, 

its adjacent faces that are linked by mountain creases can only be folded below, and its 

adjacent faces that are linked by valley creases can only be folded above. Thus, the face 

overlapping orders that break this pattern should be ruled out. As a result, the brute force 

search can be simplified to a tree-search featuring branch-trimming. The algorithm of the 

tree search can be described as: 

Algorithm: Tree search of face overlapping orders (with respect to a crease 

pattern and a given MV-assignment) 

1 Select the face #݇௥ to be the root that is fixed. The root face is also expressed as 

௥݂ 

2 Create a queue of faces ܳி and a queue of creases ܳ௖ 

2.1 For each crease ܿ௜
௥ that is on the boundary of ௥݂ 

2.1.1 Push ܿ௜
௥ into the back of ܳ௖ 

2.1.2 Push ௜݂
௥ into the back of ܳ௙, where ௜݂

௥ is the face that is linked with 

௥݂ over the crease ܿ௜
௥ 

3 Create an empty library of creases ܮ஼ 

4 Create a library of currently found face overlapping orders. The library is 

named ܮிை, and the i-th face overlapping order in this library is expressed as ݋௜. 
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4.1 Initialize the library ܮிை ൌ ሼ݋ଵሽ with only one member of face 

overlapping order ݋ଵ ൌ ሼ ௥݂ሽ. 

4.2 A face overlapping order variable ݋௜ is a sequence of faces, where the 

order of the faces in the sequence is the order of the faces in the 

corresponding face overlapping order from bottom to top. 

5 Create and initialize a Boolean vector ܤிை of ݊ െ 1 “false”s, and one “true” at 

the ݇௥-th element 

6 While ܳ௖ is not empty 

6.1 In this iteration, we look for all the possible placements of the first 

element ଵ݂
ொ in the queue ܳ௙ in each currently found face overlapping 

order in the library ܮிை. 

6.2 Create an empty temporary library of face overlapping orders ܮிை 

6.3 For each ݋௜ in ܮிை 

6.3.1 For each place that we can insert ଵ݂
ொ in ݋௜, including the beginning, 

the end or the position between any two faces in the sequence, if the 

placement isn’t in conflict with the criterion expressed by the table 

ிܶ௉, then push the new face overlapping order ݋௜ (݋௜ with ଵ݂
ொ inserted) 

to the back of ܮிை 

ிைܮ 6.4 ൌ  ிைܮ

6.5 For each crease ܿ௜
ொଵ that is on the boundary of ଵ݂

ொ but not a member of ܮ஼ 

6.5.1 Push ܿ௜
ொଵ into the back of ܳ௖ 
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6.6 Push ௜݂
ொଵ into the back of ܳ௙, where ௜݂

ொଵ is the face that is linked with ଵ݂
ொ 

over the crease ܿ௜
ொଵ  

6.7 Pop the ଵ݂
ொ out of ܳ௙ 

6.8 Pop the first element ܿଵ
ொ of ܳ௖ out, and push it to the back of ܮ஼ 

7 L୊୓ stores all the globally flat-foldable face overlapping orders. And if L୊୓ is 

empty, the crease pattern with the corresponding MV-assignment is not globally 

flat-foldable. 

The algorithm above gives a systematic approach to thoroughly seek out all the 

possible face overlapping orders of a crease pattern to be folded flat. The computational 

complexity of this algorithm depends on the number of mountains and valleys. For the 

best situation, the complexity would be expected to be Οሺ݊!/2௡ሻ. 

 

Calculating the Flat-folded State Profile Area 

The flat-folded state profile area is the key objective of the design problem given 

in the chapter I. However, it is not difficult as long as the design has been proved flat-

foldable. And of course, if the shape is not flat-foldable, there is no need or no way to 

calculate the profile area. 

The method of calculating the profile area has two steps: 

Step 1: Simulate the folding and calculate the orientation of the faces. A very 

basic method can be used for this step.  

Step 1.1 – Fix one face onto a Cartesian CS. 
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Design the Evolutionary Operators and Complementary Mechanisms 

The GA is a search heuristic inspired by the process of natural evolution. It is 

generally used to derive an optimized solution through iteratively proposing, adapting, 

and selecting candidate solutions. The most noteworthy advantage of GA methods is that 

it avoids formulating an explicit model for the embedded design search space by 

constructing a substitutive search space defined by the genetic code. Thus GA methods 

generally provide an effective approach for a random search in both a well-defined 

design space as well as the design space that the designers do not intentionally seek. 

To derive optimal solutions, the GA methods must possess the capability of 

performing both broad exploration and deep exploitation. The broad exploration 

guarantees the diversity of the coming candidate solutions, while the deep exploitation 

preserves the once-emerged elite solutions. This balance between exploration and 

exploitation, which is also a balance between diversity and elitism, is the cardinal 

objective of making modifications on GA’s basic evolutionary operators. 

 

Operators for Elitism 

In this research, the measures of elitism preservation are scheduled in accordance 

with two considerations: to prevent the elites’ extinction and to restore the extinct elites. 

The extinction of the emerged elites is usually caused by faulty selection or unexpected 

mutation. The simplest but most reliable way to prevent the extinction of the elites is to 

ensure that the elites are always selected into the next generation or to diminish the 

probability of mutating elites. On the other hand, restoring the extinct elites requires 
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allowing non-dominated individuals. When a newly captured individual comes to the 

captive breeding storage, it is compared with all the current members in the crowd. 

While the external Pareto archives only store elites, the external storage of captive 

breeding allows crossover operations among its members. The children members have 

the chance to inherit the advantages from both their parents, and thus become the elites 

among elites. Thereon when the GA is executed in each generation, nୠሺ൏ Nୠሻ randomly 

chosen members will be released from the captive breeding crowd into the evolving 

population to compete with the entire current generation of individuals.  

Another complementary mechanism called atavism stores the evolving 

population (Figure 26(b)). Atavism functions by directly introducing the elite individuals 

from the generation of ௔ܰ epochs back into the current generation. Atavism essentially 

regulates the evolution direction from deterioration due to unwanted mutation of an elite 

individual.  

 

Operators for Diversity 

Although captive breeding and atavism work well to maintain the elite 

individuals in the population, they also cause severe pre-mature convergence toward the 

early-emerged elites. If the fitness evaluation is scalar, a higher mutation rate, the 

stochastic universal sampling (SUS) selection, and injection of random candidate 

solutions can be applied to increase the diversity within the population so as to neutralize 

the extreme elitism. A higher mutation rate, which extends the search step size, not only 

prevents the search from being trapped into a local optimum, but also enables a greater 
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variety of solutions. Nevertheless, SUS selection permits some of the less fit candidates 

to be selected. Using SUS selection has the non-negligible risk of causing elites to be 

eliminated accidentally. If the captive breeding and atavism mechanisms are used, 

however, the lost elites are returned to the population. Injecting randomly generated 

candidate solutions into each generation to take part in the crossover and selection 

processes also broadens the solution search region. 

Another diversity metric that will be considered in this research is the use of a 

multi-objective fitness evaluation, as the origami design or self-folding control problems 

usually involves more than one requirement. Under multi-objective GA, the fitness of 

each candidate solution is represented by a fitness vector, which is formed by the unified 

fitness evaluation components. The individuals are ranked through multi-objective 

Pareto ranking (Goldberg 1989, Konak, Coit and Smith 2006). A candidate solution 

from a higher frontier is always more preferable than any one from a lower frontier. The 

candidate solutions from the non-dominated Pareto frontier are the elites. Unlike a 

weighted single objective fitness ranking relying on a sort of “overall” performance, the 

multi-objective ranking and multi-objective GA is fundamentally open to more 

“specialized” elites rather than just the “all-around” elites found by a normalized fitness 

ranking, and thus increases the diversity among the elite class of the population. 

However, the non-dominated Pareto frontier will sometimes contain more candidate 

solutions than are wanted for selection. Under such circumstances, normalized fitness 

evaluation is applied to give a ranking inside each frontier. 
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During CEEFOOD evolution, in addition to the GA operators of selection, 

mutation and crossover, we also apply another special operator called code assimilation. 

In this research, we use the term solution space to name the domain of the physical 

representation; and use the term search space to name the domain of the genetic 

representation. As defined in prior sections, the physical representation is generally the 

crease pattern, but in this research it directly represents the PMR that is described by the 

genetic representation, and indirectly indicates the crease pattern that is derived by using 

the CRA on the PMR.  

Here, we need to clarify that appending the generative genetic rules (the implicit 

code part) in the genetic representation of the candidate solutions doesn’t expand the 

scope of the solution space. The setup of the cell sizes and colors in the PMR doesn’t 

change, so the total number of possible PMRs doesn’t change either. But the implicit 

code will increase the original design search space by creating multiple instances for 

each possible solution. These instances share the same physical representation, but 

different genetic representation. They are different genetic code and rule routes to get to 

the same candidate solution. 

Among the instances of one physical representation, there is always at least one, 

whose explicit genetic code part defines the embryonic PMR having the exact identical 

physical representation as the mature PMR of the other instances, while its implicit code 

part has all the rule switch bits to be 0. We name these instances with their genetic rules 

switched off the non-aging instances. With all the rules turned off, the embryonic PMR 

will remain unchanged during the individual development stage, so its mature state will 
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be exactly the same. For example, consider a simplified setting of PMR, which has only 

four cells with only color being customizable. In the hybrid encoding, the explicit part 

has four bits, the first defines the color of the upper-left cell, the second the upper-right 

cell, the third the lower-left cell, and the fourth the lower-right cell. A bit of 0 indicates 

blue and 1 indicates red. For the four candidate solutions, whose individual development 

procedures are shown in Figure 27, their rules and rule switch states are all listed. 

Though the explicit code parts of the four candidate solutions define different embryonic 

PMRs, their rules guild them to develop into the same mature PMR. Since the candidate 

solutions in Figure 27(c) and (d) have their rules switched off, they are the non-aging 

instances of Figure 27(a) and (b). 

 

 

    

    

Figure 27 The individual development of four equivalent instances. For having a 
switch-off rule, (c) and (d) are both non-aging instances. 

 

 

Code assimilation is an operator that introduces the non-aging instance 

equivalents of some existing candidate solutions into the current generation. If our PMR 
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setting is as that of the candidate solutions in Figure 27, and we have instance Figure 

27(a) in the current generation, code assimilation is to introduce either or both of Figure 

27(c) and (d). 

Code assimilation accelerates the evolution by expanding the search region based 

on the existing individuals in each epoch. And because the appendage of the implicit 

code part enlarges the search space and lowers the solution search efficiency, the code 

assimilation is necessary for neutralizing these drawbacks. For instance, suppose that the 

big box in Figure 28(a) defines the entire search space, and the “solid star” shows the 

location of a candidate solution. The solid circle is the current search region, where the 

evolved solutions - the products of the “solid star” solution through evolutionary 

operators – will locate. With the code assimilation, the non-aging equivalent of the 

“solid star” solution is introduced in. Its location in the search space is shown by a 

“hollow star” in Figure 28(b). The dashed circle represents the region, where the evolved 

solution based on the “hollow star” will locate. After applying code assimilation, new 

candidate solutions will be found in the union search region of the two circles instead 

only in the solid circle. 

 

Elitism and Diversity 

Elitism and diversity seem to be two contrasted concepts just like the white and 

black color shown in Figure 29. But in fact, the measures proposed for strengthening the 

elitism and for expanding the diversity need to cooperate in the frame of GA and CEE 

very well, because they are designed to utilize the elitism and diversity as the centripetal 
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CHAPTER V  

ORIGAMI DESIGN RESULTS AND DISCUSSION 

 

In this chapter, the results from the two prior chapters will be applied to the open 

origami design problem stated in the first chapter. I will present the designs that are 

derived by the genetic algorithm with the direct “ice-cracking” representation and the 

genetic algorithm with indirect PMR respectively. As the PMR was inspired by the 

existing research on the CEE, so the genetic algorithm combining the PMR is also an 

application of CEE, and it is, therefore, named computational evolutionary embryogeny 

for optimal origami design (CEEFOOD). 

Then the designs, as well as the procedure of how the method arriving at the 

designs, will be put into comparison. This chapter will make discussions about these 

designs, so as to display the advantages of the abductive design method for open origami 

design problems. 

 

Design Results by Genetic Algorithm with “Ice-cracking” 

In this application, the GA applies the hybrid ranking approach, which includes 

the multi-objective ranking for separating candidate solutions into tiers and the 

normalized objective ranking for assessing the quality of the candidate solutions within 

the same tier. In hybrid ranking, the ones from a higher tier are always treated as more 

favorable solutions than those from a lower tier, no matter what their normalized fitness 

values are. 
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The desired flat-folded shape profile area ܣ௧ is set to 0.25. Since the “ice-

cracking” representation implicates the guarantee of flat-foldability, thus the 

 ௙෢ in the original objectiveܪ ௙௟௔௧ି௙௢௟ௗ௔௕௜௟௜௧௬ – that is required for calculating the termݎݎܧ

function – is always 0, I add another two terms for this application, which request the 

system DOF to be lower than 5 and the shortest crease to be longer than 0.2. So the 

normalized fitness function (objective function) is 

ܨ ൌ ௔തതതതܪ௔ݓ	 ൅ ௘തതതതܪ௘ݓ ൅ ௗ௢௙തതതതതതܪௗ௢௙ݓ ൅  ௖തതത   (31)ܪ௖ݓ

where 

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ ௔തതതതܪ ൌ หܣ௙௙ െ 0.25ห

௘തതതതܪ ൌ หܧ௣ห

ௗ௢௙തതതതതതܪ ൌ ൝
1, ݂݅	݊஽ைி ൐ 6

݊஽ைி െ 1
5 , ݂݅	݊஽ைி ൑ 6

௖തതതܪ ൌ ൝
0, ௠௜௡௖ܮ	݂݅ ൐ 0.2

0.2 െ ௠௜௡௖ܮ
0.2 , ௠௜௡௖ܮ	݂݅ ൑ 0.2

 

 ௠௜௡௖ isܮ ௣ is the displacement of the CoM, andܧ ,௙௙ is the flat-folded state profile areaܣ

the length of the shortest crease. The penalty term ෠ܲሺ݉ሻ is 0 when the number of creases 

݉ is in the range of ሼܯ௅,ܯ௎ሽ ൌ ሼ1, 25ሽ; otherwise, ෠ܲሺ݉ሻ is 1. The weight vector is 

assigned to ൛ݓ௔, ,௘ݓ ,ௗ௢௙ݓ ௖ൟݓ ൌ ሼ0.28, 0.41, 0.1, 0.21ሽ in this application. 

Then for the multi-objective ranking, the fitness vector is Fሬറ ൌ ሼfଵ, fଶ, fଷ, fସሽ, 

where 

ە
ۖ
۔

ۖ
ۓ ଵ݂ ൌ ௔തതതതܪ

ଶ݂ ൌ ௘തതതതܪ

ଷ݂ ൌ ௗ௢௙തതതതതതܪ

ସ݂ ൌ ௖തതതܪ
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Using the hybrid fitness ranking with the four above components, the GA derives a 

design with 2 vertices, 9 creases and 8 faces as in Figure 30. This design fits the problem 

objective and constraints very closely. Due to the fact that the design has ܣ௙௙ of 

௣ of 9.6957ܧ ,0.25013353 ൈ 10ିହ, DOF of 2, and ܮ௠௜௡௖ of 0.2119, its fitness vector is 

ሼ1.3353 ൈ 10ିସ, 9.6957 ൈ 10ିହ, 0.2, 0.0595ሽ. 

 

 

 

       (a)                                 (b)                              (c) 

Figure 30 (a) A crease pattern design (normalized fitness of 0.0208) found through 
the GA for the problem in Section 4, where vertices are labeled by numbers in 

circles, and creases by numbers in diamonds; (b) The intermediate folded state; (c) 
The corresponding flat-folded state profile that has an area of about 0.2501. Five 

vertices are still on the boundary of the profile. 
 

 

The design shown in Figure 30 has excellent performance based on the fitness 

criteria of a flat-folded profile, change on center of mass, and the shortest crease. The 
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number of DOF still has the potential to be further optimized to 1, as the current ݊஽ைி is 

2. 

However, at this stage there are several open questions for this design problem 

that the GA could not yet give solutions to: 

1) Is this design the global optimum, as there do exist other designs, such as Figure 

31 that have very similar performances to the design shown in Figure 30 on all 

considered measures? 

2) Before the genetic algorithm actually generates a solution as in Figure 32 with a 

nearly 0 fitness value, can we conclude whether a perfect design (a design with 

all its fitness vector components being 0) exists or not. 

Nevertheless both the designs in Figure 30 and Figure 31 have already solved the 

problem approximately. Of course, the theoretically ultimate target is to get a design like 

Figure 32. 

The essence of the NP-completeness of the open origami design problem 

determines that it is extremely difficult to precisely locate the global optima even by 

intelligent heuristics. Therefore, it can be stated that the three designs shown above are 

all acceptable and produce good results. 
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       (a)                                 (b)                              (c) 

Figure 31 (a) A second crease pattern design (normalized fitness of 0.0209), which is 
very similar to Figure 30; (b) The intermediate folded status; (c) The corresponding 

flat-folded state profile that has an area of about 0.2499. 
 

 

         (a)                                   (b)                              (c) 

Figure 32 (a) A third crease pattern design (normalized fitness of 0.0035, and 
fitness vector of {0.0013, 0.0077, 0, 0}), which is almost an ideally optimal design; (b) 
The intermediate folded status; (c) The corresponding flat-folded state profile that 

has an area of about 0.2577. 
 

 

 

 

Fold

Fold
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Discussion 

The plots below will entail how the three designs evolve over generations under 

the control of the GA. Figure 33, Figure 34 and Figure 35 are respectively for the 

designs Figure 30, Figure 31 and Figure 32. In the three plots, the blue solid lines show 

the normalized fitness value of the best candidate solution in each evolutionary 

generation. Such best candidate solution must be in the non-dominated tier (highest tier) 

according to the multi-objective ranking, and must be with the least normalized fitness 

value within its tier. 

 

 

 

Figure 33 The fitness values of the topmost elites in the family of design Figure 30. 
 indicates the normalized fitness, the fitness component evaluating the flat-folded ࡲ
state profile area, and the fitness component evaluating the overlap of a crease with 

the center of mass. 
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Figure 34 The fitness values of the topmost elites in the family of design Figure 31. 
 indicates the normalized fitness, the fitness component evaluating the flat-folded ࡲ
state profile area, and the fitness component evaluating the overlap of a crease with 

the center of mass. 
 

 

Figure 35 The fitness values of the topmost elites in the family of design Figure 32. 
 indicates the normalized fitness, the fitness component evaluating the flat-folded ࡲ
state profile area, and the fitness component evaluating the overlap of a crease with 

the center of mass. 
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For the plots, we can have a conclusion about one common feature of the curves. 

As the normalized fitness generally decreases constantly, ܪ௔തതതത and ܪ௘തതതത curves will have 

spikes upward or downward, especially during the early generations. This feature tells 

that the evolution of the GA starts with greater diversity, and will gradually converge to 

the optimal results. When there is greater diversity, the fitness components will have 

large differences among the candidate solutions in a generation. As the method proceeds, 

the non-dominate tier will shrink toward the region of the optima, thus the difference 

among candidate solutions will be less obvious. And the candidate solutions within the 

non-dominated tier will tend to develop into very close performance based on the four 

fitness components. 

One particular thing in Figure 35 that is different from Figure 33 and Figure 34 is 

that though the normalized fitness of design Figure 32 is better than the other two, the 

 ௘തതതത evaluations are in fact less optimized. This tells that the designs Figure 30ܪ ௔തതതത andܪ

and Figure 31 both have ܪ௔തതതത and ܪ௘തതതത evaluations extremely close to the theoretical 

minimum of 0. But the two designs have ݊஽ைி of 2, which greatly degrades their 

normalized fitness. If we review the normalized fitness function, we can find that one 

extra ݊஽ைி is equivalent to about 0.07 of increase in ܪ௔തതതത. Considering a difference of 0.07 

in ܪ௔തതതത is significant for a desired flat-folded area of 0.25, the current normalized fitness 

functions implicates that the problem has a greater preference on looking for a design 

with ݊஽ைி ൌ 1. 
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However, the three designs can all be accepted as the solution of the problem. To 

make a decision on the one to take as the final solution depends on the designer’s 

preference on the performance indices.  

The GA with “ice-cracking” representation is a useful tool to help designers 

search for possibilities within the design space when they don’t have full information. 

And the GA also accelerates the solution search for such a problem featuring NP-

completeness and a nonlinear design space. 

 

Design Results by Genetic Algorithm with PMR (CEEFOOD) 

In this application, I will use the PMR of crease patterns with cells that are 

arranged in a variant square lattice (Li and McAdams 2013) as shown in Figure 14(a), 

which is derived by rotating a square lattice by 45°. The variant square lattice applied in 

the experiment will have a higher resolution so that the nearest distance among nodes is 

0.0707. The whole square sheet region is defined by the desired shape ࡿ௧. The size ݏ௜ of 

i-th cell varies from 0.01 to 0.08 with an interval of 0.01, so that ݏ௜ ൌ 0.01 ൈ ݊௜, 	݊௜ ∈

ሼ0,1,2,⋯ ,8ሽ. The cell color ܿ௜ is either blue or red 

(ܿ௜ ∈ ሼ1,2	|	1	݉݁ܽ݊ݏ	݁ݑ݈ܾ,  ሽ). The respective fitness evaluation formula݀݁ݎ	ݏ݊ܽ݁݉	2

(4.1) uses a weight vector of ݓሬሬറ ൌ ൛ݓ௘, ,௔ݓ ௙ൟݓ ൌ ሼ0.5,0.3,0.2ሽ. The values of the weight 

factors are determined according to the preferred fitness function components (ܪ௘തതതത, ܪ௔തതതത, 

and ܪ௙തതത). The component representing the feature given higher priority or preference will 

be assigned a larger weight. 



 

 125

Unlike the application of the GA with “ice-cracking”, this application won’t 

implement the hybrid ranking. But as the indirect PMR is more complicated in 

representing an origami, I focus on studying how some initial guesses can affect the 

solution search. Therefore, I separate the different trial runs of solution generation into 

two groups.  

The first exercise group starts the evolution with an initial guess given manually 

and intuitively. The initial guess as shown in Figure 36(a) has 5 creases. 

The initial guess doesn’t have a genetic representation, thus one must be 

extracted to start the CEEFOOD process. Two methods can be used to get the genetic 

code for a given crease pattern. In the first method, we color the faces in the original 

initial guess by two colors as shown in Figure 36(b), and use the classical CEE to 

replicate this pattern in the same manner as the CEE generating colored maps (Bowers 

2005). Then we pick the genetic code of the optimal replica as the genetic of the crease 

pattern. The second method will also require us to color the crease pattern as in Figure 

36(b). In the next step, we manually design a PMR of the crease pattern based on the 

coloration. In this empirically determined PMR, each cell is assigned to the color of the 

face, in which this cell is located. The size of a cell can be randomly given, but if a cell’s 

distance to its nearest crease is shorter than the maximum allowable size of the cells 

(0.08 according to the experiment setting), the size of this cell is set to the closest value 

(cell size can only be 0.01 ൈ n୧, 	n୧ ∈ ሼ0,1,2,⋯ ,8ሽ) to the distance. The same setting of 

the PMR will be used by the second exercise group that will be introduced in the 

remainder of this section. Although the first method can generate a more precise replica 
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Based on the initial guess, CEEFOOD lead the family to evolve into a final 

design of Figure 36(d), whose flat-folded state profile shape is shown in Figure 36(f). 

Figure 36(e) is the manually folded model of Figure 36(d). Figure 37 illustrates the step-

by-step procedure of folding the crease pattern Figure 36(d) into the flat-folded state in 

Figure 36(e). Figure 36(f) is the outline of the shape in Figure 36(e). Compared to the 

initial guess, the design has three more creases that split from the number 4 crease. And 

one of the branches (the number 8 crease) will be connected with the number 5 crease, 

which was originally disconnected with others in the initial guess. The three new creases 

partition the two largest origami faces into four divisions, so that the flat-folded state 

profile will become closer to 5/18. In all, this design has an overall fitness value of 

0.0014, with a flat-folded profile area of 0.2803 and a potential energy evaluation of 

0.0011. These evaluations have been improved based on the initial guess Figure 36(c) 

through CEEFOOD. 

Compared to the first group, the second group doesn’t apply any initial guesses, 

just as in the solution generation by the GA with “ice-cracking” presented in the last 

section. Here, the GA initializes the evolution by using a randomly generated first 

generation. Therefore, the evolved designs will also be arbitrary. Two of the designs 

derived are listed in Figure 38. 
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       (a)                          (b)                              (c)                               (d) 

Figure 37 Folding procedure for deriving the folded shape in Figure 36(e) from its 
crease pattern Figure 36(d). (a) Print out the crease pattern; (b) Fold the lower 
right corner inward along crease #5; (c) Creases other than #5 are linked, thus 
must be folded simultaneously. (d) The creases are further folded, and the right 
half portion of the origami sheet will be folding underneath the left half portion. 

When all the creases are folded to േ૚ૡ૙°, the shape will become to the state shown 
in Figure 36(e). 

 

       

(a)                                    (b)                                    (c) 

       

(d)                                    (e)                                    (f) 

Figure 38 Two crease pattern designs from the second exercise group, which uses 
randomly generated initial generation of candidate solutions. (a), (b) and (c) 

present the design #2 and its flat-folded profile; (d), (e) and (f) present the design #3 
and its flat-folded profile. 
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The design Figure 38(a) has 2 interior vertices, 9 creases, and 8 faces. The crease 

arrangement is made up by 6 longer creases intersecting at one interior vertex, and three 

shorter creases that branch out from one of the longer creases. Figure 38(b) is a hand-

made folded model according to the crease pattern. The flat-folded state profile shape is 

shown in Figure 38(c), which is also the outline of the shape in Figure 38(b). This 

design’s fitness value is 0.0026, with a flat-folded state profile area of 0.2712 and 

potential energy evaluation of 0.0010. 

The design Figure 38(d) has two connected interior vertices as well, and each of 

the vertices has four creases. One more crease cuts the largest lower-left face. Figure 

38(e) is a hand-made folded model according to the crease pattern. The flat-folded state 

profile shape is shown in Figure 38(f), which is also the outline of the shape in Figure 

38(e). This design has a fitness value of 0.0073, with a flat-folded state profile area of 

0.2962 and potential energy evaluation of 0.0035. 

 

Discussion 

The fitness evaluations of the three designs are listed in the following Table 3. 

The table shows the flat-folded state profile area (FFA), the potential energy evaluation 

(PE), and the overall fitness value (OFV) of each design. Smaller PE and OFV values 

and the FFA values closer to 5/18 (0.2778) characterize a more fit design with respect to 

the requirements defined by the problem statements in Table 3. Among the designs, the 

design #1 has the best FFA and OFV, as well as the second best PE. Aside from the 

design #1, the design #2 has the smallest PE, and the second best FFA and OFV. 
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Table 3 The fitness evaluation of the listed designs by the GA with PMR 
Design # FFA PE OFV 

1 (Figure 36(d)) 0.2803 0.0011 0.0014 

2 (Figure 38(a)) 0.2712 0.0010 0.0026 

3 (Figure 38(d)) 0.2962 0.0035 0.0073 

 

 

The overall fitness values of the best candidate solutions (topmost elites) through 

generations for three designs are plotted in Figure 39. We have used the same 

CEEFOOD parameter settings (the mutation rate, the crossover approach used, and the 

proportion of candidate solutions that involve crossover). According to Figure 39, the 

rates, in which the overall fitness value of the topmost elite decreases along the timeline 

through evolutionary generations, are different across the three runs. But it is true for the 

three cases that if the evolution starts with a first generation of lower overall fitness 

values, it will be more likely that the CEEFOOD evolution will converge faster. 

Comparison of the designs reveals the features of CEEFOOD method, which 

might include both the advantages and shortcomings. 

The origami design problem has been proved NP-complete, thus it is impossible 

to testify the existence of an ideal optimum, or to confirm how many optima exist in the 

constrained search space. So, in this research, the CEEFOOD won’t be designed to 

derive “the optimum”. It accelerates the solution search for the origami design problem 

that synthesizes the finished shape design. With an initial guess, CEEFOOD generally 
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tends to search for optima close to that initial guess; while without initial guesses, 

CEEFOOD will finish obtaining arbitrary optima.  

 

 

 

Figure 39 The overall fitness value of the topmost elite through generations 
 

 

For CEEFOOD, repeated runs may be used to give a more suitable result. As the 

problem given in this study, the CEEFOOD has derived several designs that can all 

satisfy the same design requirements. And according to Table 3, design #1 outperforms 

the others in overall fitness value. If we only trust in raw numbers, design #1 is no doubt 

the best choice. But it is not always true for the designers to select design #1 in all 

situations. For instance, if the designer has the preference of a flat-folded state profile 

shape approximating a triangle, design #2 is better. Nevertheless, we can hold one 

certain conclusion that, in most cases, the designers have to repeat the CEEFOOD using 
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different initial guesses so as to obtain a pool of candidate designs to choose his most 

favorable design from. 

In many cases, the origami designer doesn’t have the complete understanding of 

the entire search space of a design problem, thus at the beginning he cannot always 

formulate a “perfect” objective (fitness) function so as to direct the CEEFOOD to derive 

“the solution”. But he can make several runs of CEEFOOD to generate large varieties of 

solutions, even through his requirements are not ultimately defined. Then through the 

analysis of the derived designs so far, the designer is able to gradually refine the 

objective function or form new requirements. An example is as mentioned in the last 

paragraph. After comparing the designs #1~#3, the designer found the triangular folded 

state profile advantageous for his applications. In this circumstance, he can add to the 

objective function (4.1) a new component, which provides an estimation of how similar 

the folded state profile is with a quadrilateral triangle. Then build a new initial 

generation including the design #2, and let the CEEFOOD search for finer designs with 

the newly defined objective function. 

Another one of the most effective ways that enables the CEEFOOD to directly 

regulate the trend of evolution – other than to modify the objective (fitness) function - is 

to import initial guesses. The analysis Figure 39 shows that a better starting point that 

initialized the evolution will shorten the number of generations before the CEEFOOD 

converges. And compared to a randomly generated first generation, some pre-defined 

initial guesses can be controlled by the users and are more likely to have better fitness 

values. One more thing to mention here is that the import of initial guesses doesn’t have 
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to happen in the first generation of CEEFOOD evolution. Good designs can be 

introduced into the family at any generation to replace some existing individuals. 

 

Summary 

According to the design results and discussions provided above, the GA with 

“ice-cracking” and the CEEFOOD have both shown their ability to solve the open 

origami design problem. But they have two essential differences other than the different 

geometric representations applied. 

One difference is in their efficiency of interpreting the genetic representation of 

each candidate solution. The mapping from the genetic representation to the physical 

representation of an “ice-cracking” solution cost time proportional to the number of the 

vertices and creases. On the other hand, the mapping from the genetic representation to 

the physical representation of a PMR solution requires the density-based clustering and 

progressive crease update during the clustering and finalization stages of the CRA. 

Therefore, the time cost will be at least proportional to the product of the number of cells 

in the PMR and the number of updates on creases. Therefore the CEEFOOD will cost 

much more time than the GA with “ice-cracking”. If the design problems don’t require 

flat-foldability in final designs, the time cost of the GA with “ice-cracking” won’t 

change much, but the time cost of the CEEFOOD will decrease greatly, because the 

most time-consuming finalization stage of the CRA is omitted for crease patterns 

without foldability requirements. 
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Another difference is about their specialization on different classes of design 

requirements. As the “ice-cracking” representation seamlessly includes the same basic 

foldability features that can be mathematically defined, the GA using “ice-cracking” is 

better suited for origami design problems with foldability requirements. The PMR is 

compatible with structure design tools, thus the CEEFOOD can also include the design 

of material, the determination of 3D dimensions, and the inspection of structural strength; 

on the contrary, the GA with “ice-cracking” is more competent as a computational 

geometric design method. 
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CHAPTER VI  

EXTENSIVE APPLICATION ON ORIGAMI LIQUID CONTAINER DESIGN 

 

In this chapter, the GA adapted for origami design will be applied for a problem 

of deriving an origami water container. With all the considerations that have been 

discussed in previous chapters, the water container design problem also requires the 

design of the crease folding angles and the exclusion of any 3D face intersections, 

though the upper level of the GA method doesn’t change much. This demonstrative 

problem is presented to support the broad applicability of the GA on origami design. 

 

Problem Statement 

The design problem asks for a folding of a non-leaking water container. The 

description is as below. 

Objective: Given a 1-by-1 square origami sheet, design the crease pattern and the 

folding angles of the creases to get a water container with a volume of 0.02. 

Conditions / constraints:  

1. The origami folding is rigid. Faces should not be bended, crumpled, cut, or 

torn during and after the folding procedure. 

2. The origami sheet is very thin. The thickness of the material doesn’t need to be 

considered during the calculation of container volume. 
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3. When calculating the volume, one must place the folded origami container on 

a flat plane. And with locked crease angles, the folded shape must be able to stand. This 

requires that the container cannot be a cone or an upside-down pyramid. 

4. In addition to the requirement on the volume, a lower degree-of-freedom 

(DOF) and shape complexity are also preferred. The DOF here means the DOF of the 

origami structure as a multi-sheet mechanism. The shape complexity measures the 

number of creases and faces. More creases or faces indicate higher shape complexity. 

Therefore, as the volume is the only primary factor that affects the quality of a 

design, the objective function – which is also the fitness function - is simply the 

difference between the actual volume and the desired volume. And the GA will be 

applied to minimize this objective function. 

ݏݏ݁݊ݐ݅ܨ ൌ ݁݉ݑ݈݋ݒ| െ 0.02|     (32) 

Constraint #4 also requires the minimization of the DOF and shape complexity. 

But for this problem, we temporarily put the two factors aside from the objective 

function. To incorporate them into the GA solution searching and evaluating, we put 

penalty only on the designs, which have more than 3 DOFs or 25 creases. 

 

Modified “Ice-cracking” for 3D Folding 

The introduction of the “ice-cracking” in Chapter III has fully defined how the 

representation directs the development of creases in an origami crease pattern. But for 

this application, the GA has to synthesize the folding angle design with the original 
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crease pattern design. Therefore, it’s required that the “ice-cracking” representation can 

also include the information of the candidate folding angle design as well. 

In fact, if an origami structure has a known ݊ୈ୓୊, the number of the dihedral 

folding angles that we can freely decide is equal to the ݊ୈ୓୊. Defining less or more than 

݊ୈ୓୊ folding angles will result in the mechanism to be under-constrained or over-

constrained. And the ݊ୈ୓୊ folding angles cannot be assigned to any arbitrary ݊ୈ୓୊ 

creases. For an interior vertex with ݊୒୓େ creases linked, the number of defined creases 

should not exceed ݊୒୓େ െ 3. In this research, we call the set of ݊୒୓େ creases, whose 

folding angles can be freely determined and can also work together to determine the 

folding angles of all the other creases, the set of actuator creases. 

The “ice-cracking” representation is advantageous in making the selection of 

actuator creases very easy. We only need to make sure that after each “ice-cracking” step, 

the resultant crease pattern has just enough actuator creases, so that the folding angles of 

all the existing creases are defined. In the initialization step, an interior vertex with ݊୒୓େ 

creases is created. There are ݊୒୓େ െ 3 actuator creases that can be arbitrarily chosen 

among the ݊୒୓େ new dummy creases. In a forking step, an interior vertex with ݊୒୓େ 

creases is located on an existing dummy crease. Since the dummy crease can either be an 

actuator crease, or be passively actuated, it can be treated as a local actuator crease for 

the new vertex. So the other ݊୒୓େ െ 4 actuator creases can be arbitrarily chosen among 

the ݊୒୓େ െ 1 new dummy creases. In a resolution step, an interior vertex with ݊୒୓େ 

creases is located on the intersection of ݉௜௡௧௘௥ existing dummy creases. Since the ݉௜௡௧௘௥ 

dummy creases can either be actuator creases, or be passively actuated, they can be 
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treated as local actuator creases for the new vertex. So the other ݊୒୓େ െ 3 െ݉௜௡௧௘௥ 

actuator creases can be arbitrarily chosen among the ݊୒୓େ െ ݉௜௡௧௘௥ new dummy creases. 

Otherwise, the mechanism will be over-constrained. For this research, without causing 

confusion, we generally select the first few dummy creases that are created in each step 

as the new actuator creases. 

To include the candidate folding angles of the actuator creases into the “ice-

cracking” representation, we need to append additional bits of the code for each step. For 

instance, the initialization step for the flat-foldable vertex #1 of pinwheel pattern in 

Figure 13(a) used to apply the argument set {ݔଵ=0.25, ݕଵ=0.25, ݊୒୓େ=4, θ=0, ߢଵ=255, 

 ସ=85}, and the corresponding genetic representation: ‘00 01110000ߢ ,ଷ=255ߢ ,ଶ=255ߢ

01110000 00 00000000 10101010 10101010 10101010 01100110’. Now since we need 

to define the angles of  
௡ొోి
ଶ

 actuator creases, we append new arguments ߮௜	ሺ݅ ൌ

1,… , ݊୒୓େ െ 3ሻ. Because the vertex #1 needs only one actuator crease, the new 

argument set for this step becomes {ݔଵ=0.25, ݕଵ=0.25, ݊୒୓େ=4, θ=0, ߢଵ=255, ߢଶ=255, 

 and the equivalent genetic representation is ‘00 01110000 {12/ߨ=ସ=85, ߮ଵߢ ,ଷ=255ߢ

01110000 00 00000000 10101010 10101010 10101010 01100110 01011010’. If more 

than one new actuator creases are needed in one step, there will be more ߮௜’s appended 

to the argument set, and thus more bits added to the genetic representation. 

 

Rigid-foldability and the Dihedral Folding Angles 

Rigid-foldability is the key feature of rigid origami. It requires all flexure in the 

shape to take place only along the creases (Watanabe and Kawaguchi 2006). Comparing 
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to flat-foldability, rigid-foldability has one criterion in common in that every face must 

keep flat at the unfolded and folded states. But while flat-foldability of an origami shape 

is only concerned when all the creases are folded to േߨ, the rigid-foldability deals with 

the entire procedure of a shape being folded from the initial state (unnecessarily the 

fully-spread state) to the folded state with desired crease folding angles. Therefore, 

unlike the flat-foldability, rigid-foldability won’t need the folding angles to reach േߨ in 

all the cases, but it requires the existence of a continuous route from the initial state to 

the folded state, where at any arbitrary timepoint the faces must always keep flat. The 

rigid-foldability has been studied by many predecessors, including D. A. Huffman 

(Huffman 1976), T. Hull (Hull 2006), N. Watanabe (Watanabe and Kawaguchi 2006), 

and T. Tachi (Tachi 2006, Tachi 2010). Tachi has given a thorough solution for checking 

the rigid-foldability, as well as an incremental approach of calculating the crease angles 

in his research on a rigid origami simulator (Tachi 2006). 

The computational complexity of numerically testifying the rigid-foldability thus 

has to go through the following recursive stages: 

Algorithm: Inspect the rigid-foldability of a crease pattern with pre-defined 

folding angles 

1. For each possible folding sequence: 

1.1. Partition the folding procedure into motion frames separated by time 

intervals 

1.2. For each motion frame: 

1.2.1. Simulate the semifolded shape 
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1.2.2. For each pair of non-linked faces: 

1.2.2.1. For each crease in one of the two faces: 

1.2.2.1.1. Check whether the crease intersects with the other face 

1.2.2.1.2. If there exist intersections, the shape is not rigid-foldable 

with the current folding sequence. Then go to stage 1. 

The computational complexity of the prior algorithm depends on the number of possible 

folding sequence (݊ிௌ), the number of motion frames (݊ெி), the number of faces (݊), 

and the average number of creases bounding each face (݉ி). And the estimation of the 

complexity would be Οሺ݊ிௌ ∙ ݊ெி ∙ ݊ሺ݊ െ ݊ிሻ ∙ ݉ிሻ, where ݊ி is the average number of 

linked faces for each face. 

The number of possible folding sequences can be large. We define fully folding a 

crease or a set of creases as folding the crease from flat to their final angles, and partially 

folding a crease as folding the creases from flat to angles larger than 0 but smaller than 

the final angles. For an origami shape with ݊஽ைி degrees of freedom, the shape has 

ሺ݊஽ைி!) possible folding sequence, if the creases are fully folded consecutively. 

Therefore, given the crease pattern Figure 40(a) with 7 parallel creases and its desired 

folding angles (not specified here), we can derive a folded shape of Figure 40(b). 

Suppose that the folding sequences can only be formed of stages of fully folding the 

crease sequentially. So the folding sequence of the 7 simple folds must follow a rule that 

the creases marked by larger numbers can only fold after all the creases with smaller 

numbers are folded. Therefore, the shape defined in Figure 40 has 7! ൌ 5040 possible 

folding sequences, among which there are 6 ൈ 4! ൌ 144 legal ones. To prove rigid-
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Figure 41 A simple single vertex crease pattern showing the definition of angles. 
The double-line arrow is the vector of the baseline, which in this case overlaps with 

the Cartesian x-axis 
 

 

∏:ݔ݁ݐݎ݁ݒ	ݎ݋݅ݎ݁ݐ݊݅	݄ܿܽ݁	ݎ݋ܨ ߯௜
௡ొోి
௜ୀଵ ൌ  (33)    ܫ

߯௜ ൌ ቎
௜ߠଶݏ݋ܿ ൅ ௜ߩݏ݋ܿ ∙ ௜ߠଶ݊݅ݏ ሺ1 െ ௜ߠ݊݅ݏ௜ߠݏ݋௜ሻܿߩݏ݋ܿ ௜ߠ݊݅ݏ௜ߩ݊݅ݏ
ሺ1 െ ௜ߠ݊݅ݏ௜ߠݏ݋௜ሻܿߩݏ݋ܿ ௜ߠଶ݊݅ݏ ൅ ௜ߩݏ݋ܿ ∙ ௜ߠଶݏ݋ܿ െߩ݊݅ݏ௜ܿߠݏ݋௜

െߩ݊݅ݏ௜ߠ݊݅ݏ௜ ௜ߠݏ݋௜ܿߩ݊݅ݏ ௜ߩݏ݋ܿ

቏ 

where ߯௜ is the transformation matrix with respect to the i-th crease of the vertex, ݊୒୓େ 

is total number of creases of the vertex, ߠ௜ defines the orientation of the i-th crease with 

respect to the vertex (as shown in Figure 41), and ߩ௜ is the folding angles of the i-th 

crease. In the equation, all of the ߠs and some of the ߩs are known. And we use 

numerical methods to compute the values of all the unknown ߩs in the non-linear 

equation. In order not to cause any confusion between the definitions of folding angle ߩ௜ 

and the dihedral angle ߮௜ of the two faces sharing the i-th crease, we define 

௜ߩ ൌ ൜
ߨ െ ߮௜		, ݅	݄݁ݐ	݂݅ െ ݕ݈݈݁ܽݒ	ܽ	ݏ݅	ݏ݁ݏܽ݁ݎܿ	݄ݐ

߮௜ െ ,		ߨ ݅	݄݁ݐ	݂݅ െ  (34)  .݊݅ܽݐ݊ݑ݋݉	ܽ	ݏ݅	ݏ݁ݏܽ݁ݎܿ	݄ݐ

We will solve the equation for every interior vertex until the folding angles of all 

the creases are derived. Then we can confirm the final orientation of the faces and then 

inspect if there are intersections among them. If there are intersections, the shape is not 
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rigid-foldable, and its fitness value is set to 1, which indicates an illegal candidate 

solution. 

Without the incremental calculation of the crease folding angles from the initial 

state to the folded state, we have saved lots of computational efforts, but we have also 

left the rigid-foldability partially proved. This results that even if there is no face 

intersection found through the process described above, the shape is still possibly not 

rigid-foldable. If the total DOF of the design is 1, we can simulate the whole deployment 

procedure from the folded state to the initial state, or simulate the whole folding 

procedure from the initial state to the folded state. But as the number of DOF increases, 

the computational complexity rockets exponentially. Even if we only simulate for the 

candidate designs without face intersection at the folded state, it’s still not a practical 

solution. 

Nevertheless, since this is a demonstrative problem, we temporarily avoid the 

proof of the theoretical rigid-foldability, and leave it to future discussion and research. 

As we don’t want to restrict the DOF of the designs, we decrease the search space by 

setting an upper limit of 30° for the folding angle value of each actuator crease. The 

actuator creases are the set of creases, whose folding angles can determine the folding 

angles of all the other creases. The number of actuator creases are equal to ݊ୈ୓୊. With 

small final folding angles, the shapes are less likely to have collision among faces during 

the folding procedure, if we can prove a priori that the shape has no face intersection at 

the folded state. A “small” folding angle is only quantifiable for an explicitly defined 

shape. In general, it means the corresponding angle won’t be folded too sharp to cause 
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any faces to get very close to each other either at the final folded state or during the 

folding procedure. Such simplification on rigid-foldability inspection doesn’t really 

guarantee every design that the GA generates to be rigid-foldable, but it considerably 

lowers the probability of deriving non-rigid-foldable shapes. 

Having the folded shape, the computational complexity of checking the 

intersections between faces is Οሺ݊ଶሻ. The algorithm examines each pair of faces that are 

not directly linked by a crease. If any crease of one face intersects with the other face, 

then the two faces also intersect with each other. 

 

Algorithms for Calculating the Volume 

Other than the encoding of actuator crease folding angles and the inspection of 

rigid-foldability, the third new function the GA needs to include is the calculation of the 

volume of each candidate solution it generates. 

At the first step, the volume calculation algorithm should have to confirm the 

existence of a flat bottom that was requested in the problem constraint #3. In theory, we 

can always find a way for the shape to stand, as long as there are three vertices on the 

convex hull of the folded shape (no matter whether any of the three vertices are directly 

linked by creases or not), and the three vertices form a 3D triangle that have no 

intersection with other faces. But including such situations would make the problem 

complicated. Therefore, for my research so far, I only consider two types of container 

bottoms. One type uses a face as the container’s bottom as Figure 42(a); the other 

applies two linked creases that form a V-shape bottom support to let the whole shape 
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stand on it as Figure 42(b). As shown in the two figures, the yellow origami container 

has a flat bottom, while the green one with the V-shape also has a V-groove as its 

internal space. 

Now, let’s think about which portions of the folded shape contribute to the 

container’s volume. Here, suppose that we can inject water to every location inside the 

folded container. We define the amount of water held in the container - if we use the 

above way to inject water over an infinitely long duration – as the volume of the 

container. 

 

 

    

(a)                                                         (b) 

Figure 42 Two hand-make origami shapes that can be used as water containers. (a) 
A shape uses the triangular face in the middle as it bottom. (b) A shape uses its two 

consecutive creases as its bottom. 
 

 

The most widely used algorithm for calculating the volume of a polyhedron is to 

partition the shape into tetrahedrons or pyramids. The sum of the volumes of the 
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tetrahedrons or pyramids will be the volume of the whole shape. But in this research, it 

is not easy to confirm the actual shape of the water held within. Therefore, we turn to the 

algorithm of calculating the volume as described below. It applies a numerical approach 

to derive an approximation of the volume value we want. 

Algorithm: calculate the volume of a folded container 

1 Derive the plane ଴ܲ where the bottom is in. Make sure that the normal of ଴ܲ is 

upward. 

2 If the bottom is a face, then ܣ଴ is the area of the face; else, ܣ଴ ൌ 0. 

3 Create and initialize ܸ = 0 

4 Define the precision of volume calculation as ௣ܸ 

5 While ௜ܲ has intersection(s) with the shape 

5.1 If ܣ௜ିଵ ് 0, ݄௜ିଵ ൌ ௣ܸ/ܣ௜ିଵ; else, ݄௜ିଵ ൌ ௣ܸ/max	ሺܣ଴, ,ଵܣ … ,  ௜ିଵሻܣ

5.2 ௜ܲ is a parallel displacement of ௜ܲିଵ with distance ݄௜ିଵ 

5.3 Look for the intersection segment ௝݁
௜ of ௜ܲ with all the faces 

5.4 Look for closed loops formed by ௝݁
௜ 

5.5 Create and initialize ܣ௜ ൌ 0 

5.6 If there are closed loops 

5.6.1 For each closed loop, ܣ௜ = ܣ௜ + area of the polygon defined by the 

closed loop 

5.7 ܸ	 ൌ 	ܸ	 ൅	ሺܣ௜ ൅ ඥܣ௜ ∙ ௜ିଵܣ ൅ ௜ିଵሻܣ ൈ ݄௜ିଵ/3 

5.8 The resultant V is an approximation of the container’s volume. 
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In the algorithms above, the shape of the folded container is partitioned into 

slices. If a slice is a complete ring or if it has several rings, the volumes of the rings will 

contribute to the total volume. The computational complexity of this algorithm depends 

on the nominal volume of the shape. Larger volumes result in more slices. For the i-th 

slice with ݊௘௜  intersection segments between the section plane and the origami faces, the 

computational complexity of deriving its volume is Ο൫݊௘௜ ൯ ൅ Ο൫݊௘௜ ௘௜݊݃݋݈ ൯, which is 

Ο൫݊௘௜ ௘௜݊݃݋݈ ൯. The linear component Ο൫݊௘௜ ൯ of the complexity is for the derivation of 

closed loops (the formation of section polygons) from ݊௘௜  segments. The other 

component Ο൫݊௘௜ ௘௜݊݃݋݈ ൯ is for the triangulation of the section polygon(s) and the 

calculation of the area of each triangular. 

 

Design Results and Discussion 

After confirming the way for the genetic representation of candidate solutions, 

the algorithms to calculate the volume of a rigid-foldable shape, as well as the fitness 

function, the GA could be applied directly on the problem. 

At first, we give a fundamental analysis of this problem. We want to know 

whether the target volume is achievable by a folding of the 1-by-1 origami sheet. Using 

intuitive guess, we can manually derive a crease pattern as the one shown in Figure 43(a). 

In this manual design, the creases are arranged symmetrically. The dimensions are given 

in Figure 43(a). When folded, the container develops into an “ash-tray” build, which has 

a square bottom of an a-by-a, and a height of ሺ1 െ ܽሻ/2. The volume of the container is 

thus ܽଶሺ1 െ ܽሻ/2, where 0 ൏ ܽ ൏ 1. For this design, the maximum volume 2/27 = 
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0.0741 can be obtained when ܽ ൌ 2/3. Therefore, the target container volume falls 

within (0, 0.0741], thus is attainable by a folding of this 1-by-1 origami sheet. Then if 

the target volume is 0.02, the length of the bottom edge can be ܽ ൌ  .0.9563	ݎ݋	0.2276

 

 

    

(a)                                           (b) 

Figure 43 An intuitive manual design of an “ash-tray” style water container. (a) 
The crease pattern design with an a-by-a square in the middle. (b) The folded shape. 

 

 

However, the above design is a trivial one. This solution only satisfies one type 

of container bottom. If the problem prefers the container having no surface contact with 

the plane where it stands, the trivial solution would not be qualified. 

Now in order to have a generic method that works for the type of design problem 

with more varieties of requirements, we choose the same metaheuristic – the genetic 

algorithm, which has been testified for flat-foldable origami design problems. The way 

of incorporating the folding angles into the “ice-cracking” representation has been 

developed in a prior section. In the next section, I will present some of the designs 

generated by the GA, and make some comments on them. 
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Computational Designs by GA 

In this section, the GA with “ice-cracking” is applied to generate several diverse 

designs. These designs all reach a volume of 0.02 with errors of lower than 0.5%. The 

crease patterns and the folded shape of 6 designs are listed in Figures 44-49. 

 

 

 

(a)                                               (b) 

Figure 44 Design #1 for an origami water container with a volume of 0.02. This 
design has 12 faces, 15 creases, and 14 vertices. (a) The crease pattern; (b) The 

folded shape (the grey face is used as the bottom). 
 

 

(a)                                               (b) 

Figure 45 Design #2 for an origami water container with a volume of 0.02. This 
design has 17 faces, 22 creases, and 20 vertices. (a) The crease pattern; (b) The 

folded shape (the grey face is used as the bottom). 
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(a)                                               (b) 

Figure 46 Design #3 for an origami water container with a volume of 0.02. This 
design has 17 faces, 21 creases, and 19 vertices. (a) The crease pattern; (b) The 

folded shape (the grey face is used as the bottom). 
 

 

(a)                                               (b) 

Figure 47 Design #4 for an origami water container with a volume of 0.02. This 
design has 14 faces, 17 creases, and 16 vertices. (a) The crease pattern; (b) The 

folded shape (the grey face is used as the bottom). 
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(a)                                               (b) 

Figure 48 Design #5 for an origami water container with a volume of 0.02. This 
design has 18 faces, 23 creases, and 20 vertices. (a) The crease pattern; (b) The 

folded shape (the grey face is used as the bottom). 
 

 

(a)                                               (b) 

Figure 49 Design #6 for an origami water container with a volume of 0.02. This 
design has 17 faces, 21 creases, and 19 vertices. (a) The crease pattern; (b) The 

folded shape (the grey face is used as the bottom). 
 

 

In the above folded shapes of the designs, the faces colored in light grey are the 

bottom faces of the corresponding origami water containers. The numbers of faces vary 

from 12 to 18. The numbers of creases vary from 15 to 23, which don’t exceed the upper 
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bound of 25 creases set in prior section. The numbers of vertices, including interior and 

border vertices, vary from 14 to 20. 

 

Discussion 

Without a specific engineering application of the origami water container, we 

don’t have the determined criteria to judge which of the above 6 designs and the trivial 

“ash-tray” design in Figure 43 is the best. But in topological formation, design #1 in 

Figure 44 has the least number of creases, thus has the least shape complexity. And the 

design #4 in Figure 47 is also a nice one, since it has a pot-styled folded shape, while 

others are more shallow and saucer-styled. And in the design #4, the three faces around 

the lower left corner of the crease pattern (Figure 47(a)) forms a narrowing spout to 

make pouring out the water from the container more easy. 

From the computational designs, we can find another common feature. They all 

feature small crease folding angles. Let’s use a numerical index to evaluate the folding 

angles. Define a concept named folding effort ܷ, so that 

ܷ ൌ ∑ |௜ߩ|௜ܮ݇
௠
௜ୀଵ      (35) 

where ݉ is the number of creases, ݇ is a scalar coefficient, ܮ௜ is the length of i-th crease, 

and ߩ௜ is the folding angle of the i-th crease. The folding effort is a linear approximation 

of total material strain generated by folding along the creases. Of course, the real internal 

strain is not simply linear to the folding angle, and it depends on at least the material, the 

thickness of the origami sheet, and the folding radius. But as this research mainly 
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focuses on the origami design metaheuristic, we leave the estimation of the actual strain 

to future work. 

Using the equation with k ൌ 1, the folding efforts of the 7 obtained designs are 

shown in Table 4. According to Table 4, designs #1 and #6 have the least folding efforts, 

while the “ash-tray” has the greatest folding effort. For achieving the same volume, 

different designs have large differences in their folding efforts. We can also make a 

reasonable prediction that if using the actual structural strain to replace the folding effort, 

designs will still have highly diverse values of strain generated through bending of the 

material. 

 

 

Table 4 Folding efforts of the origami water container designs 
Design Folding Effort 

“Ash-tray” Figure 43 
12.1500 (ܽ ൌ 0.2276) 

12.5428 (ܽ ൌ 0.9563) 

#1 Figure 44 4.9213 

#2 Figure 45 5.9785 

#3 Figure 46 6.1743 

#4 Figure 47 8.5889 

#5 Figure 48 5.3367 

#6 Figure 49 4.8035 

 

 

The folding effort can be simply calculated based on the geometry. But the 

structural strain may require finite element analysis tools that generate more cost on 
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computing. However, the FEA is realizable computationally, thus it makes the structural 

strain by folding a compatible performance index of the genetic algorithm. This specific 

extension remains future work. 

Aside from comparing the designs on their performance, it is also necessary to 

inspect the progress of how they are developed by the GA. I have made a plot below to 

display the topmost designs that are optimized through generations in the families of the 

6 designs. 

 

 

 

Figure 50 The volume of the topmost elite across generation of the 6 designs 
produced by the GA. 
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The 6 different runs of the GA apply the same set of parameters for the GA 

evolutionary operators: the size of the family is constantly kept at 30 for each generation; 

the length of the genetic representation is 700 bits; 18 new candidate solutions will be 

generated in each generation by 4-point crossover; each bit of the genetic representation 

of the candidate solutions has a probability of 6% to get flipped; 6 new random 

candidate solutions will be added to the pool; the captive breeding’s external crowd has 

a size of 20; 3 of the best captured elites solutions will be brought back into the current 

generation; the atavism will look back 20 generations for 1 ancestor elite. 

However, with the same setting of the evolutionary operators described as above, 

several runs of the GA converges to very different solutions through different numbers 

of evolutionary generations. Among the 6 designs, design #1 takes more than 450 

generations; design #5 takes more than 250 generations; design #6 takes more than 50 

generations; but the designs #2, #3, and #4 take only about 25 generations. 

One reason that the time cost of the convergence of the GA is firstly extended 

due to the highly nonlinear solution space of the origami problem. The actual n-to-1 

genotype-phenotype mapping defined by the “ice-cracking” also expands and deforms 

the solution space into a more complex design space. In addition, the randomly 

generated first generation of candidate solutions that initializes the GA may be located 

far from an optimum in search space, thus making the evolutionary optimization 

procedure longer. 

Nevertheless, a common feature revealed by the generation of the 6 designs is 

that a better first generation will generally result in faster convergence. The families of 
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the designs #2, #3, and #4 converge to their corresponding final designs faster, because 

the topmost elites in their first generations are more optimal than those from the families 

of the designs #1 and #5. The same conclusion can also be found in chapter 5, when I 

compared the flat-foldable origami designs derived by the GA with PMR. 

 

Summary 

This chapter has presented an extensive application of the GA with “ice-cracking” 

on origami design problems that ask for geometric and functional requirements at the 3D 

folded state of the origami. 

As the application synthesizes the folding angles of the creases, the “ice-cracking” 

representation needs to include the declaration of the folding angles of the actuator 

creases. Moreover, this chapter also makes some discussion about the rigid-foldability 

and the calculation of the volume of a folded origami container. 

Since an arbitrary origami design has unpredictable degrees-of-freedom and 

infinitely many possible folding sequences to reach the desired folded state, the 

inspection of rigid-foldability has to be simplified. My solution is to limit the maximum 

folding angles and just confirm the legality of the final folded state. For folding a water 

container, using smaller folding angles is reasonable, since we don’t anticipate a design, 

where faces intertwine with each other very closely. Then with smaller folding angles, a 

legal rigid folding procedure is more likely to exist for a design as long as its final 

folding state is legal. The legality of a folded state depends on the crease pattern design 

and the assignment of crease folding angles. For a given crease pattern and crease 
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folding angles, we can simulate the semi-folded state of it. If face intersections exist in 

the semi-folded state, then the design is not rigid-foldability. 

When calculating the volume of the origami container, the classic polyhedron 

volume calculation algorithm is not applicable, since the shape of the water that is held 

by an arbitrary origami container is not explicitly defined. In this chapter, I have 

introduced my algorithm of deriving the volume. The algorithm uses a plane parallel to 

the bottom to sweep the folded container. The sweep planes section the container shape 

into slices. If a slice includes rings, which are circumference by fillets of sectioned faces, 

and the rings have the water-contacting side inside, then the volume of the rings adding 

their two caps will be counted as a portion of the container’s volume. 
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CHAPTER VII  

CONCLUSION AND FUTURE WORK 

 

Contributions to Origami Engineering and Design 

This research creates and applies abductive methods for origami design. This 

dissertation runs through three applications of genetic algorithms on the design of flat-

foldable origami structure and rigid-foldable containers. The research has made the 

following contributions to origami engineering and origami design: 

1. This research has created a design method framework for solving the open 

origami design problems. In this dissertation, the genetic algorithm and its 

variation – the evolutionary computational embryogeny – are used as the 

prototype for constructing and adapting the design method framework. The 

capability of searching in space that is hard to be explicitly and fully 

modeled makes the GA-based meta-heuristics especially advantageous for 

the open origami design problems, which has been proven NP-complete in 

this dissertation. Unlike the traditional origami design problems that look for 

the paper-made replications of some desired shapes, the open origami design 

problem won’t define the exact desired shape or the specific topological 

structure that the desired shape will have. The open origami design problems 

ask for the achievement and/or the optimization of geometric and functional 

requirements on the crease pattern, the folding procedure, and the folded 

state of the origami designs. Since open origami problems theoretically 
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accept any arbitrary designs, the search space should ideally cover any 

design as well. This fact also causes the open origami problems NP-complete. 

2. This research creates a direct geometric representation – “ice-cracking” – to 

relate the encoding of the genetic representation and the definition of the 

physical representation of origami designs processed by GA. The genetic 

algorithm with direct “ice-cracking” representation is also testified on an 

origami design for folding a water container. The application has proven that 

the crease folding angle design is also achievable. Thus 3D shape design is 

available for GA with “ice-cracking”. 

3. Computational evolutionary embryogeny (CEE) is a variation of GA that 

applies encoded generative rule sets as the genotype of an origami design. 

This research adapts CEE for open origami design problem by defining an 

indirect geometric representation – pixelated multicellular representation 

(PMR) – for origami designs. PMR is defined as a third equivalent 

representation to the genetic code (genetic representation) and the crease 

pattern (physical representation) of an origami design. 

4. The crease restoration algorithm (CRA) is created to extract the origami 

crease pattern from a pixelated image. The CRA is applied to relate the PMR 

and its crease pattern. 

5. As a part of fitness evaluation, new algorithms that are compatible with GA 

are developed to solve the MV-assignment, global flat-foldability, and rigid-

foldability problems for a given crease pattern. 
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Conclusions 

In this dissertation, I have created a design method framework for the open 

origami design problems that requests the creation of origami shapes with anticipated 

geometric and functional requirements. The type of problem is described as “open”, 

because the problem statements don’t strictly define the final folded shape of an origami. 

Instead, these open problems have design objectives and constraints on the geometric 

and functional performance, such as the flat-folded state shape area, the location of the 

center of mass, or the volume. Without a known shape or at least a deterministic 

topological formation of the desired origami designs, the methods have to search over 

the design space that cover all arbitrary origami shapes. As the design space including 

any arbitrary crease pattern is large and nonlinear, and the origami design problem has 

been proven NP-complete, I instead turn to the abductive methods. 

In this dissertation, I implemented two specific abductive methods that are the 

genetic algorithm and its variation – the computational evolutionary embryogeny. The 

two methods both feature a specifically designed geometric representation for candidate 

origami designs. There are three key aspects that are needed to clarify prior to the 

implementation of the genetic algorithm. Except for the fitness function, this research 

focused on the design of a geometric representation that provides the framework of 

defining both the genetic representation and the physical representation of an origami 

candidate design, and on the development of basic and complementary genetic operators 

to accommodate the properties of the design space. 
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One geometric representation I designed for the GA is the “ice-cracking”. The 

“ice-cracking” representation is used to generate, encode, and describe origami crease 

patterns. The “ice-cracking” essentially presents a systematic sequence for ordering all 

the vertices and creases in a growing manner similar to the natural process of ice-cracks 

emerging and developing on an icy surface. 

The “ice-cracking” is executed through a procedure consisting of an initialization 

step (locating the first vertex), forking steps (locating a vertex along one existing dummy 

crease), resolution steps (defining a vertex at the location of the intersection of two 

existing dummy creases), and a finalization step (converting all the remaining dummy 

creases to creases). Each step involves three basic operations: creating a new vertex, 

fixing creases, and placing dummy creases. The static formation of the “ice-cracking” 

representation enables its steps or operations to be defined by sets of arguments with 

fixed formats. The sets of arguments could then be converted to Gray code strings, 

which are used to encode the entire “ice-cracking” for any crease pattern. In this chapter, 

I have focused on flat-foldable origami, and set up a grammar for encoding “ice-

cracking” so that any Gray code string is capable of being translated to the “ice-cracking” 

that defines a flat-foldable crease pattern. 

Another geometric representation is called pixelated multicellular representation 

(PMR). The PMR defines an origami structure by distributed cells. The cells 

fundamentally work as conceptual indicators, which directly define the origami by 

coloring the faces in the same way that LEDs in a LED matrix screen display a picture. 

Equivalent to an LED, each cell will have three key properties – cell type that shows the 
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color, cell size that indicates the light intensity, and cell position that implies the 

resolution of cells. Every collection of cells with the same type (color) will define an 

origami face. The creases are linear classifiers generated to separate faces. I proposed a 

crease restoration algorithm to extract the equivalent crease pattern from a pixelated 

multicellular representation. The PMR is advantageous for its availability of expressing 

any arbitrary simple or non-simple creases. But after discretizing the cell properties for 

the computational applications, the representativeness of a pixelated multicellular pattern 

depends on the effective resolution and effective precision, which are the metrics relative 

to the setting of two of the cell properties – cell position and cell size. A third cell 

property is the cell color. In this research, the 2-colorability feature of flat-foldable 

origami has enabled the cell color to be chosen between minimally two colors. 

As the two geometric representations combined with the GA, they will form two 

effective abductive design methods for solving open origami problems.  

For GA with “ice-cracking”, the genetic algorithm (GA) could consequently take 

advantage of the feature of “ice-cracking” that any single network flat-foldable crease 

pattern can be encoded and any arbitrary Gray code can represent one crease pattern. In 

order to cope with the large and non-linear design space of origami design problems, I 

adapted the GA through balancing the preservation of the elitism and diversity. On one 

hand, to protect the elite individuals, I directly lower their probability of getting mutated. 

Moreover, I also introduced two mechanisms called captive breeding and atavism. The 

captive breeding mechanism captures and archives good individuals from the evolving 

generations, and occasionally releases some back to a later generation. The atavism lets 
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the time flash back, so that some of the elite individuals from an earlier generation can 

be introduced into the current generation. For diversity, on the other hand, I raise the 

mutation rate for every individual, and apply hybrid fitness ranking, in order to prevent 

the premature convergence of extreme elitism. The adapted GA with “ice-cracking” has 

been implemented and testified on an origami design problem that optimized several 

geometric and functional properties simultaneously. 

Compared with the GA with “ice-cracking”, the CEEFOOD method utilizes a 

hybrid coding method to define the alternative PMR of each candidate solution. The 

hybrid code is composed of an explicit coding part describing a PMR embryo and an 

implicit part encrypting a set of generative genetic rules, which are used to guide the 

embryo to develop into a mature state. The CEEFOOD also combines the attainment of 

MV-assignments and face overlapping orders in its fitness evaluation stages. During the 

evolution stage, CEEFOOD cooperates with the elite preservation mechanism and code 

assimilation to support the progressive adaptations among proposed candidate solutions. 

The synergy of these mechanisms allows CEEFOOD to employ a high mutation rate 

without frequently eliminating already emerged good results. 

In addition, by introducing initial guesses, the evolutionary trend of CEEFOOD 

will converge close to a good initial. On the contrary, using a totally random first 

generation, the CEEFOOD will end with arbitrary designs that highly depend on early-

emerged elites. If the user has some preference on some properties or features of the 

final design, it is always better to frame out and implement an initial guess than to let the 

CEEFOOD to search randomly. 
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Aside from the fundamental study on the design methods, I applied them on two 

open origami design problems, including the design of a flat-foldable shape with a 

desired folded profile area and the design of a rigid-foldable water container with a 

desired volume. The applications have proved that the GA with a proper geometric 

representation for origami structure can be a great tool for searching solutions for NP-

complete origami design problems. 

The primary advantage of the GA-based meta-heuristics on the open origami 

design problem is their capability of realizing the design objectives that are not 

achievable by existing origami design methods, such as “making the flat-folded shape’s 

center of mass overlap with one of its creases”. But the proposed GA-based meta-

heuristics are also great tools for exploiting new and novel features that are not initially 

expected by the designers or the design problems. And if these new features fit for the 

design problem, the designers can then formulate the new features found into a new 

fitness evaluation component and update the design fitness function. 

 

Future Work 

There are two major directions for planning future studies. One direction is about 

the mathematics, geometry and algorithms in origami. This direction can be specified 

into the following specifications: 

1) The inspection of flat-foldability and rigid-foldability of an origami is left 

partially solved. Although both of them are NP-complete problems, the research 

can proceed on the improvement of the current algorithms. 
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2) The current algorithm for extracting the creases from a PMR uses density-based 

clustering and LDA. Future study can be invested in the two algorithms to 

improve the efficiency of the entire CRA. 

The other direction is about the application of the GA on more types of open 

origami design problems. 

1) In this dissertation, the GA and its variation have proved their effectiveness on 

open origami design problems requesting both geometric and functional 

problems. But the applications of the method that has been presented so far only 

discussed about realizing functional requirements heavily relying on geometry. 

In future study, I plan to expand the method by achieving the realization of 

functional requirements related with structural properties. For instance, one of 

the problems I am interested in is to synthesize the FEA of the structure into both 

the GA with “ice-cracking” and the CEEFOOD. So the methods would be 

available for designing origami shapes and their material that have enough 

strength for supporting a load. Another extension would be targeted at some 

practical origami design problems, such as an origami tent with desired space 

inside, and a paper plane with desired aerodynamic properties. 

2) The research has been focusing on the mathematic and geometric foundations of 

the abductive design method. The future study is on extending the method on 

practical engineering problems. One possible application is realizing crease 

pattern designs on an intelligent SMA origami sheet based on the research of the 

Texas A&M University ODISSEI group (Hartl, Lane and Malak 2012, Oehler, 
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Hartl, Lopez, Malak et al. 2012, Peraza-Hernandez, Hartl and Malak 2013, 

Peraza-Hernandez, Hartl and Malak 2013). The SMA origami sheet features the 

capability of bending along arbitrary creases while keeping the original shape of 

the sheet unchanged. But the SMA origami sheet won’t allow sharp folding 

angles, it is more suitable to be used for making foldable structures to achieve 

static or dynamic functional properties than to be used for building exact artistic 

shape designs. Therefore, after interfacing with structural analysis tools, the 

method developed in this research will be a great tool for deriving shape designs 

for the SMA origami sheet. 

3) The complementary mechanisms (captive breeding and atavism) and the hybrid 

ranking are applied to support the basic evolutionary operators in keeping the 

balance between elitism and diversity among the candidate solutions through the 

evolution of the GA and CEE. But I plan to make the statistical analysis of how 

these measures, as well as the parameter settings for these evolutionary operators 

and mechanisms, would affect the convergence speed and the quality of designs. 
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