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ABSTRACT 

 

Heat transfer modeling is important in many fields of engineering. In petroleum 

engineering, heat transfer modeling has many applications. One such application that 

this study focused on is flow rate estimation. In this work, two different models for 

estimating wellbore fluid temperature are highlighted with emphasis on using those 

models along with distributed temperature measurements to estimate rate of flow.  

 

Both models employ mass, momentum and energy balance and are well established in 

the literature. The steady-state model is used where the fluid flow is essentially steady 

and any change in rate is followed by a sufficiently long steady schedule. The transient 

model is used where the well is still flowing in the initial stages or fluctuations in rate 

cause time of flow to be an important consideration. Flow rate estimation is predicated 

on the match between the measured and the estimated fluid temperatures.  

 

Superposition of heat flow is developed in this work with regards to both steady-state 

and transient wellbore fluid temperature models. The superposition principle accounts 

for the changing heat transfer rate between wellbore fluid and formation which all 

flowing fluid temperature models in literature neglect. 

 

Three case studies are presented to demonstrate the application of the methodology of 

rate estimation proposed. Fluid flow rates for steady and transient cases were 



 

iii 

 

successfully estimated within engineering accuracy for all three cases. In all three cases, 

in addition to the traditional downhole-pressure and surface-rate measurements, 

temperatures were recorded at various depths providing the data that allowed for testing 

of the models. The computational accuracy of flow rates increased at shallower depths 

owing to the increased heat transfer that was conducive to larger temperature 

differences, enhancing the fidelity of measurements.  

 

The analysis also provides an opportunity to consider its use in other applications such 

as pre-cleanup transient testing. Computed rates from the proposed methodology can be 

used to perform transient analysis for the cleanup period. While the field examples 

strengthened the new rate-computation methods introduced here, simulated example 

shown at the end of the study probed the possibility of extracting meaningful 

information from the cleanup data. 
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NOMENCLATURE 

 

a Lumped parameter defined by Eq. 32, hr-1 

𝐵 Lumped parameter defined by Eq. 21, Btu/hr.ft.°F 

CJ Joule-Thomson coefficient, °F/(lbf/ft
2)  

cp Tubing fluid heat capacity, Btu/lbm °F 

CT Thermal storage parameter, dimensionless 

d𝑝/d𝑧  Tubing pressure gradient, psi/ft 

g Gravitational acceleration, ft/sec2 

gc Conversion factor, 32.17 (lbm-ft)/lbf/sec2 

gG Geothermal gradient, °F/ft 

H Enthalpy, Btu/lbm 

h Productive interval depth, ft 

k Permeability of the productive interval, md  

ke Formation thermal conductivity, Btu/hr.ft.°F 

J Conversion factor, 778 ft.lbf/Btu 

L Length of flow string, ft 

𝐿𝑅 Relaxation length parameter given by Eq. 20, ft-1 

m Mass of fluid per unit length, lbm/ft 

Q Rate of heat transfer, Btu/hr.ft. 

r radial coordinate 

rcem Cement radius, ft 
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rci Inside casing radius, ft 

rco Outside casing radius, ft 

rins Insulation radius, ft 

rti Inside tubing radius, ft 

rto Outside tubing radius, ft 

s skin, dimensionless 

t Production time, hr 

tD Dimensionless time  

TD Dimensionless temperature 

Tei Undisturbed formation temperature at any depth, °F 

Teibh Undisturbed formation temperature at bottomhole, °F 

Teij Undisturbed formation temperature at previous depth, °F 

Tf Tubing fluid temperature, °F 

Tfi Initial tubing fluid temperature at the start of time step, °F 

Tfj Tubing fluid temperature at previous depth, °F 

Tfws Tubing fluid temperature without superposition, °F 

Twb Temperature at the wellbore/formation interface, °F 

U Overall heat transfer coefficient, Btu/hr.ft2.°F 

v Velocity of fluid, ft/hr 

𝑤 Mass flow rate of tubing fluid, lbm/hr 

x Weights assigned to particular depths, dimensionless 

z Well depth, ft 
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zj Well depth at the previous step, ft 

𝛼 Wellbore inclination with horizontal, degrees 

𝛼𝑒  Thermal diffusivity of formation, ft2/hr 

ξ Lumped parameter defined by Eq. 25, °F/ft 

𝜙 Lumped parameter defined by Eq. 2, °F/ft 

𝜓 Lumped parameter defined by Eq. 28, °F/ft 
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CHAPTER I  

INTRODUCTION  

 

One of the wonders of modern science is the ability to discover or create energy 

intensive fuels. The on-going battle between the depleting energy resources and the 

initiatives to find new ones has given birth to a need of a greater workforce striving 

towards this important task. According to recent surveys, the World population is 

expected to increase by a billion in the next decade. Due to such unprecedented increase 

in population, energy demands are expected to soar high as well. And with most of the 

‘easy hydrocarbon’ almost on the verge of depletion, it behooves us to remember that the 

total hydrocarbon reserve of the world is finite and it is dwindling every day. Thus it 

becomes incumbent to find new resources and develop efficient and economically 

feasible means of extracting the available ones.  

 

Oil and gas bearing pay zones are porous rock media that are found thousands of feet 

below the earth’s surface. At such depth the fluids possess energy in the form of high 

pressure and temperature. Wells are drilled to produce these fluids from these pay zones. 

In producing these fluids, the engineers have to contend with two major types of energy 

loss. Energy is lost from the fluid in moving from the porous medium to the wellbore 

and then moving from the well bottom, henceforth called bottomhole, to the wellhead. 

This study provides models that deal mostly with the latter. 
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A reservoir’s potential is determined by its ability to economically produce the fluids 

present in the porous medium. This ability depends on both the properties of the 

reservoir fluids and the properties of the porous rock medium. To gauge this potential, 

oil companies in the United States and all over the world spend millions of dollars a year 

in well testing to estimate parameters related to these factors. In order to estimate useful 

properties from the testing, the transient bottomhole pressure response along with the 

surface or bottomhole rate measurements are required for any analysis. Pressure 

measurements are often reliably available with a reasonable degree of accuracy. Rate 

measurements, on the other hand, often lack synergy with pressure due to sensor 

resolution and/or frequency of monitoring. Such measurements may introduce 

significant uncertainty in transient tests interpretations. Furthermore in deep reservoirs 

where temperatures and pressures are high, failure of measuring gauges add to the cost 

and uncertainty of a test. 

 

Accurate heat transfer modeling can contribute significantly in that realm. Earth 

temperature generally increases with depth. Thus, as the hot fluid from bottomhole rises 

up the wellbore, its temperature is higher than the surrounding Earth temperature which 

causes it to lose heat to the surroundings. When the flow rate of the fluid increases, more 

of the hotter fluid from the bottom displaces the colder fluid in the wellbore at any given 

point and therefore the temperature increases. Conversely, with a drop in fluid rate, the 

rate of displacement is going to decrease, thus bringing about a decrease in the rate of 

temperature increment. Hence, it is observed that temperature profiles tend to follow rate 
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profiles to a great extent for at least low to moderately high flow rates. Investigation of 

such a relationship to compute rates and fill the gap where rate measurements are 

lacking or doubtful require sound inverse modeling of flowing wellbore fluid 

temperature.  

 

Perhaps the most common form of transient testing is the flow-after-flow test. Such tests 

usually consist of stabilized flow periods. Even if the flow period is still transient, more 

often than not the flow duration causes the thermal transients to settle and steady state to 

kick in. During such a time, the inverse modeling requires a steady-state model to 

predict temperature and subsequently estimate rate. Moreover in drillstem testing, 

analyses of transient data are generally restricted to that of post-cleanup period because 

rates often go unmonitored at early times during the cleanup phase, unless aided by 

multiphase flow metering. The value of early-time production data monitoring may be 

overlooked for two reasons: first, transients may be difficult to interpret because of two-

phase flow in the formation; second, two-phase flow metering becomes a requirement. 

Such a void necessitates the application of a more rigorous transient analytical model to 

apply the mentioned approach. Estimation of flow rates for the cleanup period would 

facilitate their use in transient analysis. Intrinsically, if reasonable formation 

conductivity (kh) and skin can be extracted from the cleanup period, considerable time 

saving can result because the designed test sequence can be altered with respect to flow 

rates and flow periods commensurate with test objectives. 
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A great deal of work has been done in the field of heat transfer in wellbores. Lesem et al. 

(1957), Ramey (1962), Willhite (1967) and Alves et al. (1992) have all made significant 

contributions to the field. However nearly all flowing fluid temperature models assume 

that heat exchange between the formation and the fluid remains constant throughout the 

entire production time. Hasan and Kabir (1994) and Hasan et al. (2005) have developed 

steady state and transient models for estimating fluid temperature. These models too 

assume constant flux between the wellbore and the formation at their core. 

 

In this work, we have undertaken the task of developing a model to account for the 

variable flux between the wellbore and the formation. With proper forward modeling of 

heat transfer, temperature measurements can serve some really useful purposes.  

Coupling multiple temperature measurements to help with interpretation can provide 

further usefulness. These are more commonly known as distributed temperature 

measurements where the fluid temperature measurement is made at several depths along 

the wellbore. We use the superposition model in conjunction with the established steady-

state and transient temperature models for the inverse modeling of temperature to 

estimate flow rates.  

 

In the next chapter, we discuss the available literature on the forward modeling of 

flowing fluid temperature profile in wellbores and the inverse modeling phenomenon. In 

the first part of the chapter, the focus is on thermal flow modeling and estimation of flow 

rate from temperature measurements. Various applications of distributed-temperature 
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sensing (DTS) are also mentioned. The second part of the chapter emphasizes on the 

near-wellbore issues and the investigation of the cleanup period.  

 

In Chapter III, we demonstrate the model development for the superposition of heat flow 

and the approach involving the use of the steady-state and the transient models to 

estimate flow rate. Chapter IV presents case studies where the estimations and the 

predictions are compared against field data supplied by Hess Corporation. A discussion 

of the application and simulated examples that probe the possibility of extracting 

meaningful information from the cleanup data are highlighted in Chapter V. Chapter VI 

finally presents conclusions and some recommendations. 
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CHAPTER II  

LITERATURE REVIEW  

 

Production of gas and oil constitutes significant heat transfer between the wellbore fluid 

and the formation. This is due to the fact that the rising fluid in the wellbore is generally 

at a much higher temperature than the surrounding wellbore which sets a temperature 

differential conducive to heat loss from the fluid. The modeling of this heat transfer 

becomes a more involved process as the exchange depends on both time duration of the 

flow and the position in the wellbore. The modeling is significant since most of the fluid 

properties are a function of temperature. Hence for accurate pressure profiling, needed 

for gauging vertical flow performance or determining choice of materials for facilities 

and equipment design, fluid temperature needs to be known. In this study, we have 

reviewed previous work involving steady-state and transient heat transfer modeling 

along with application of data from distributed temperature sensing (DTS). One of the 

applications of DTS, that has been discussed, is the estimation of fluid flow rate from 

temperature data for the cleanup period of a newly drilled well.  We comment on some 

of the work done with regards to the investigation of the cleanup period. 

 

Steady-state and Transient Modeling 

One of the earliest works in this field could be traced back to Schlumberger et al. (1937) 

who pointed out the usefulness of measuring wellbore fluid temperature. Following this, 

there were a few developments in the area but it was not until two decades later that 
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Lesem et al. (1957) and Moss and White (1959) came up with procedures to estimate 

wellbore fluid temperature. However Ramey (1962) and Edwardson et al. (1962) were 

the first ones to present a theoretical model to estimate fluid temperature as a function of 

well depth and production time. Following these classical works, many researchers such 

as Willhite (1967), Pacheco and Farouq Ali (1972), Herrera et al. (1978), Hong and 

Griston (1986) and Willhite and Griston (1987) used Ramey’s model in various 

applications. However these models neglected kinetic and frictional energy losses in 

their development and were limited to single-phase fluids only. In addition to that, the 

models made use of the line source assumption and treated the wellbore radius to be 

negligible. While these assumptions may work in steady-state cases, they cause 

significant inaccuracy during early times. Several improvements of these models have 

been suggested since. Satter (1965) improved on Ramey’s work by including the effects 

of phase change in his modeling with steam injection wells. Shiu and Beggs (1980) 

proposed a method for estimating a specific parameter in Ramey’s equation. Sagar et al. 

(1991) made a significant improvement by extending Ramey’s work to include 

multiphase flow and accounting for kinetic energy effects and Joule-Thompson 

expansion using an empirical approach. Alves et al. (1992) came up with a unified 

equation for flowing temperatures which was applicable to both pipelines and wellbores, 

and degenerated into Ramey’s equation for single phase incompressible liquid. Hasan 

and Kabir (1994) improved on the line source assumption by appropriating the wellbore 

as a cylindrical source. In addition, they also accounted for convective heat transfer in 

the casing annulus, demonstrating excellent coherence with the field data. In more recent 
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time, Hagoort (2004) illustrated a graphical correlation to estimate the length of early 

transient period of flowing well. This development was based on the result of revisiting 

Ramey’s model on which Hagoort (2005) made further improvement by presenting an 

analytical solution for wellbore fluid temperature of gas wells.  

 

Since then more focus has been given to forward modeling of transient temperatures in 

wellbores especially in terms of transient testing. Some of the early notable works 

involve Kabir et al. (1996) and Fan et al. (2000). Hasan et al. (2005) developed 

analytical models for transient wellbore fluid temperature for both draw-down and build-

up for transient gas-well testing. Their models were validated with field data. Guo et al. 

(2006) also designed a model for estimating temperature profiles in pipelines with 

different kinds of insulations. Their model assumed conduction to be the only mode of 

significant heat transfer. Izgec at al. (2007) proposed improvements to the previous 

analytic temperature models by developing a numerical differentiation scheme which 

removed the limitations imposed by the constant relaxation parameter assumption used 

in previous models. In a more recent study, Bahonar et al. (2011 a, b) developed a 

numerical fully implicit non-isothermal wellbore/reservoir simulator. They solve the 

heat transfer problem in much the same way as Hasan et al. (2005) and stretch its 

application to the design of gas well tests and interpretation of both isothermal and non-

isothermal gas reservoirs. 
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Inverse Modeling and Distributed Temperature Sensing (DTS) 

The dependence of fluid temperature on flow rate can be used inversely to estimate rate 

given temperature data.  Inverse modeling has also become possible with the availability 

of such robust models and high speed computing in today’s age. The idea of inverse 

modeling is not new. Witterholt and Tixier (1972) and Curtis and Witterholt (1973) first 

used the influence of flow rate on fluid temperature in Ramey’s equation in conjunction 

with measured temperature, for qualitative estimation of flow rate from various 

producing zones. Their method could not work for estimating flow rates from multiple 

zones, largely owing to the dependence of the method on the establishment of constant 

temperature difference between the wellbore fluid and formation. Since the time of 

Curtis and Witterholt, inverse modeling has been studied by many researchers. Kabir 

and Hasan (1998) and Izgec et al. (2009) explored the different issues with inverse 

modeling in terms of the placement of gauges.  The more recent successes though that 

inverse modeling has seen are in terms of distributed temperature measurements.  

  

DTS has shown tremendous potential with various forms of testing and analysis. The 

approach can also be extended to help with drillstem testing. Most often for drillstem 

testing, pressure and temperature measurements are made at the wellhead and 

bottomhole. DTS data in this context is rarely reported, although DTS is quite prevalent 

in permanent completions nowadays. Numerous studies have been done on DTS and 

various applications are discussed in literature. Some of these applications include 

matrix treatment diagnosis (Glasbergen et al. 2009, 2010; Tan et al. 2012), zonal 
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contribution assessment (Tardy et al. 2012, Parta et al. 2010), fracture-stimulation 

diagnosis (Tabatabaei et al. 2012), and injection profiling (Gao et al. 2008, Hoang et al. 

2012), among others. Duru and Horne (2010) made use of DTS data for estimating 

formation parameters, such as permeability and porosity, among others, during transient 

testing.  

 

Wang et al. (2008) presented a flow-profiling inverse model using DTS technology. The 

model is applicable for both gas and oil but is based on steady-state energy balance. 

Kabir et al. (2012) built further on the Wang et al. (2008) model by combining it with 

flow rate estimation methods proposed by Izgec et al. (2010). The combination 

facilitated the estimation of the entire suite of flow information, independent of wellhead 

flow measurements. However Izgec et al. (2010) model used a constant to account for 

Joule-Thompson and the kinetic energy effects.  

 

Near Wellbore and Well Cleanup 

Applicability of fluid temperature data in transient testing can also be extended to the 

near wellbore region. As discussed earlier, temperature measurements provide a unique 

opportunity to estimate flow rates. This can be extremely useful in areas where rate 

information is not available. Subsequently, the rates can be used in transient analysis. 

Such a technique could be used for the analysis of the cleanup period where the rates are 

normally not metered due to variable multiphase flow. Important parameters can be 

obtained this way when near wellbore damage precludes use of cleanup data for 
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conventional testing. Since the near-wellbore properties are altered by the drilling 

operation itself, and the invasion of mud during over-balanced drilling, near-wellbore 

formation damage has been studied by investigators from various perspectives over the 

years. From the standpoint of transient-pressure testing, analysis of cleanup data was 

investigated by Larsen and Kviljo (1990) and Larsen et al. (1990). In these studies, the 

authors explored the variable-skin concept en route to establishing the attainment of 

cleanup. They showed with field data that the derived skin declines in a hyperbolic 

fashion in conventional tests. Stated differently, production of the invaded mud filtrate 

declines hyperbolically. This finding has considerable merit in that the diminishing 

influence of the unwanted phase with time was learned.  

 

Systematic studies have also evolved in understanding variable skin in wireline-

formation testing, wherein similar tests are run, but at a much reduced scale of producing 

rate and time. Studies of Goode and Thambynagyam (1996), Alpak et al. (2008), 

Ramaswami et al. (2012), among others, are cases in point. As expected, declining skin 

turned out to be the norm. Skin evolution has also been observed by Clarkson et al. 

(2013) in coal-bed methane wells. They coined the term dynamic-skin ratio, which was 

included in the dimensionless type-curve variables and flowing-material-balance 

formulation to include the effect of changing skin. More recently, Theuveny et al. (2013) 

explored various nuances of near-wellbore and wellbore cleanup operation with a 

transient multiphase wellbore simulator coupled with a reservoir-flow simulator.  
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CHAPTER III  

MODEL DEVELOPMENT  

 

Introduction 

This chapter talks about the two flowing-fluid temperature modeling techniques, steady-

state and transient that were developed by Hasan and Kabir (1994) and Hasan et al. 

(2005) respectively. Temperature models for wellbore fluid are developed using an 

energy balance between the wellbore fluid and its surrounding.  Such an energy balance 

requires formation temperature distribution and overall heat transfer coefficient for the 

wellbore elements. When a well has been flowing at a constant rate for a relatively long 

period of time, the flow rate stabilizes and flowing temperature profile tends to reach a 

plateau. The temperature value at this plateau can be predicted using the steady-state 

model presented. Relatively easier implementation of steady-state model over the 

transient model provides the advantage of using it in cases where transient modeling is 

not essential. Conversely, transient modeling is more robust in terms of accounting time 

duration of production. When production is initiated or when the production rate is 

changed, thermal transients set in and take a much longer time to stabilize than their 

pressure counterparts. Generally speaking, the flow rate becomes stable soon after its 

initiation or change from one rate to another. However temperature changes for the 

corresponding period take much longer time to attain stability. 
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Improvement in both models has been suggested through the use of superposition of heat 

flow. Superposition principle here takes account for the variable heat flux between the 

wellbore and the formation. Inverse modeling is also explained later in the chapter. This 

forms an important section as it explains the basis and methodology of rate estimation 

using temperature. 

 

Steady-state Model 

Hasan and Kabir (1994) solved the thermal diffusivity equation for formation 

temperature using a wellbore of a finite radius.  The basis of the analysis is that the 

steady-state heat flow from the tubing fluid to the wellbore/formation interface equals 

the heat flow from this interface to the formation. The heat flow from the tubing to the 

formation was modeled using an overall heat transfer coefficient which included thermal 

resistances for conduction and convection in the tubing, conduction through the tubing, 

insulation, casing and cement material. The flow of heat through the various layers can 

be more clearly understood by referring to the schematic from Hasan and Kabir (1994), 

shown in Figure 1. Natural convection in the annulus was also accounted for in their 

model. They developed the following linear differential equation to estimate the flowing 

fluid temperature in a wellbore for a steady-state system.  

 d𝑇𝑓

d𝑧
=

𝑇𝑒𝑖 − 𝑇𝑓

𝐴
−

𝑔sin𝛼

𝑐𝑝𝐽𝑔𝑐
+ 𝜙 (1) 

where 
𝜙 = 𝐶𝐽

d𝑝

d𝑧
−

𝑣d𝑣

𝑐𝑝𝐽𝑔𝑐
 (2) 
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Figure 1 – General well configuration involving a variety of elements. 
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Goal of this chapter is to improve on this model by accounting for superposition. 

Moreover, the intent is to use the model in inverse modeling in order to estimate fluid 

rates in the well. 

 

Transient Model  

Modeling transient heat transfer for flowing fluid is usually complicated by the coupled 

nature of the three transport processes – heat, fluid, and momentum transports.   Hasan et 

al. (2005) side-stepped this issue by assuming, based on their experience, that mass and 

momentum transport attains stead-state orders of magnitude faster than does heat 

transport.  They also assumed that the change in temperature of the tubing/casing/cement 

material is proportional to that of the fluid and can be represented by the concept of 

thermal storage. This storage was represented in the form of a constant, CT. Hasan et al. 

(2005) assumed a value of 3 for CT for the drawdown period. In this study, it was 

discovered that the value of CT is not constant and varies, perhaps depending on the 

material of the completions and time for which the well has been producing. This idea 

was not pursued though, and a different constant value was used for the case studies in 

the next chapter. The following expression for the transient temperature profile, 

developed by Hasan et al., is used in this work.  

 
(1 + 𝐶𝑇)

𝜕𝑇𝑓

𝜕𝑡
−

𝑤

𝑚

𝜕𝑇𝑓

𝜕𝑧
=

𝑤

𝑚
𝐿𝑅[𝑇𝑒𝑖(𝑧) − 𝑇𝑓] +

𝑤

𝑚
(𝜙 −

𝑔sin𝛼

𝑐𝑝𝐽𝑔𝑐
) (3) 
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Details of the two models are provided in each of the respective works. Both these 

models assume a constant heat flux between the fluid and the formation and therefore we 

present the concept of superposition in the next section. 

 

Effect of Varying Heat Flux on Heat Transfer 

In order to estimate the fluid temperature more accurately it is essential to incorporate 

changes that will account for the variation of heat flux with production time.  We develop 

the concept of varying heat flux as following.  

 

Steady-state Model 

The rate of heat transfer, Q, from the wellbore to the formation (or vice versa) at the 

formation/wellbore interface per unit depth of the well (Btu/hr./ft.) is given by  

 
𝑄 = −

2𝜋𝑘𝑒

𝑇𝐷(𝑡𝐷)
(𝑇𝑓 − 𝑇𝑒𝑖) (4) 

In Eq. 4, we assume the geothermal gradient to be linear with depth, i.e.,  

 𝑇𝑒𝑖 = 𝑇𝑒𝑖𝑏ℎ − 𝑔𝐺(𝐿 − 𝑧) (5) 

The dimensionless temperature, TD(tD ), is  a  function  of  dimensionless  time,  

 
𝑡𝐷 =

𝛼𝑒𝑡

𝑟2
 (6) 

and can be estimated from (Hasan and Kabir, 2002), 

 𝑇𝐷 = 𝑙𝑛[𝑒−0.2𝑡𝐷 + (1.5 − 0.3719𝑒−0.2𝑡𝐷)√𝑡𝐷] (7) 

However, Eq. 4 is only valid for constant heat flux at the wellbore/formation interface.  In 

general, wellbore fluid temperature tends to approach the temperature of the formation 
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surrounding it, thereby decreasing heat transfer rate with time.  To account for this 

changing heat flux we use the superposition principle.  Let’s consider a new well that has 

produced fluids at a constant rate for a time t.  To estimate fluid temperature at time t, we 

divide the total into n periods (not necessarily equal) _ (t1 - 0), (t2 - t1), (t3 - t2), ..., (tn-1 - tn) as 

shown in Figure 2.  We assume that the heat flux at each of these time periods is constant.  

Thus, at the first time step,  

 
𝑄1 = −

2𝜋𝑘𝑒

𝑇𝐷(𝑡𝐷)
(𝑇𝑤𝑏 − 𝑇𝑒𝑖)1 (8) 

Or, 

 
𝑇𝑒𝑖 − 𝑇𝑤𝑏,1 =

𝑄1𝑇𝐷(𝑡𝐷𝑛)

2𝜋𝑘𝑒
 (9) 

The heat flow rate, Q2, during the second time step, t2 - t1, will be different from Q1.  This 

situation will be represented by adding another constant heat source, which supply heat to 

the well at time > t1 and whose magnitude is equal to Q2 - Q1.  The wellbore/formation 

interface temperature at this step, Twb,2, is then the sum of the effects of these two heat 

sources and is given by, 

 
𝑇𝑒𝑖 − 𝑇𝑤𝑏,2 =

𝑄1𝑇𝐷(𝑡𝐷𝑛) + (𝑄2 − 𝑄1)𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷1)

2𝜋𝑘𝑒
 (10) 
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Figure 2 – Schematic representation of superposition principle. 

 

 

Similarly, the third time period can be represented by three sources of heat supplying Q1 

from zero time, Q2- Q1 since t1, and Q3- Q2, since t2.  Hence, 

 𝑇𝑒𝑖 − 𝑇𝑤𝑏,3

=
𝑄1𝑇𝐷(𝑡𝐷𝑛) + (𝑄2 − 𝑄1)𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷1) + (𝑄3 − 𝑄2)𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷2)

2𝜋𝑘𝑒
 

(11) 

Hence for the nth time period, 

 
𝑇𝑒𝑖 − 𝑇𝑤𝑏,𝑛 =

∑  𝑛

2𝜋𝑘𝑒
 (12) 

where 

 
∑  

𝑛
= ∑(𝑄𝑖 − 𝑄𝑖−1)𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑖−1)

𝑛

𝑖=1

 (13) 
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and both Q0 and TD0 are zero. 

 

The flowing wellbore fluid temperature is obtained from an energy balance between the 

wellbore fluid and the surrounding formation at the time of interest, t.  The rate of heat 

transfer from the wellbore fluid to the wellbore/formation interface, in terms of the overall 

heat transfer coefficient for the wellbore, is given by, 

 𝑄𝑛 = −2𝜋𝑟𝑈(𝑇𝑓 − 𝑇𝑤𝑏)𝑛 (14) 

Hence, 

 
𝑇𝑤𝑏,𝑛 = 𝑇𝑓,𝑛 +

𝑄𝑛

2𝜋𝑟𝑈
 (15) 

Substituting this expression for Twb,n into Eq. 12, we get 

 
𝑇𝑒𝑖 − 𝑇𝑓,𝑛 =

𝑄𝑛

2𝜋𝑟𝑈
+

(𝑄𝑛 − 𝑄𝑛−1)𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑛−1)

2𝜋𝑘𝑒
+

∑  𝑛−1

2𝜋𝑘𝑒
 (16) 

where Σn-1 is defined the same way as Eq. 13 for n-1 elements. Or 

 
𝑇𝑒𝑖 − 𝑇𝑓,𝑛 =

𝑄𝑛

2𝜋
[

1

𝑟𝑈
+

𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑛−1)

𝑘𝑒
] −

(𝑄𝑛−1)𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑛−1)

2𝜋𝑘𝑒

+
∑  𝑛−1

2𝜋𝑘𝑒
 

(17) 

Rewriting Eq. 17 in a different form, we get 

 
𝑇𝑒𝑖 − 𝑇𝑓,𝑛 =

𝑄𝑛

2𝜋
[
𝑘𝑒 + 𝑟𝑈𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑛−1)

𝑟𝑈𝑘𝑒
] −

(𝑄𝑛−1)𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑛−1)

2𝜋𝑘𝑒

+
∑  𝑛−1

2𝜋𝑘𝑒
 

(18) 

and thus for Qn, 
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𝑄𝑛 = 𝑤𝑐𝑝𝐿𝑅,𝑛(𝑇𝑒𝑖 − 𝑇𝑓,𝑛) +

𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑛−1)(𝐵𝑛𝑄𝑛−1)

𝑘𝑒
−

𝐵𝑛 ∑  𝑛−1

𝑘𝑒
 (19) 

where 

 
𝐿𝑅 =

2𝜋

𝑐𝑝𝑤
[

𝑟𝑈𝑘𝑒

𝑘𝑒 + 𝑟𝑈𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑛−1)
] (20) 

and 

 
𝐵𝑛 =

𝑟𝑈𝑘𝑒

𝑘𝑒 + 𝑟𝑈𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑛−1)
=

𝑤𝑐𝑝𝐿𝑅

2𝜋
 (21) 

Energy balance on the flowing fluid for a differential depth, dz, gives, 

 d𝑇𝑓

d𝑧
=

1

𝑐𝑝
[−

𝑄𝑛

𝑤
−

𝑔 𝑠𝑖𝑛𝛼

𝑔𝑐𝐽
−

𝑣

𝑔𝑐𝐽

d𝑣

d𝑧
] + 𝐶𝐽

d𝑝

d𝑧
 (22) 

Substituting the expression for Qn from Eq. 19 into Eq. 22, we obtain 

 d𝑇𝑓

d𝑧
= −𝐿𝑅,𝑛(𝑇𝑒𝑖 − 𝑇𝑓,𝑛) −

𝑔 𝑠𝑖𝑛𝛼

𝑔𝑐𝐽𝑐𝑝
−

𝑣

𝑔𝑐𝐽𝑐𝑝

d𝑣

d𝑧
+ 𝐶𝐽

d𝑝

d𝑧

−
𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑛−1)(𝐿𝑅𝑛𝑄𝑛−1)

2𝜋𝑘𝑒
+

𝐿𝑅𝑛 ∑  𝑛−1

2𝜋𝑘𝑒
 

(23) 

Or 

 d𝑇𝑓,𝑛

d𝑧
= −𝐿𝑅𝑇𝑒𝑖 + 𝐿𝑅(𝑇𝑓,𝑛) −

𝑔 𝑠𝑖𝑛𝛼

𝑔𝑐𝐽𝑐𝑝
+ 𝜙 + 𝜉 (24) 

where 

 
𝜉 = −

𝑇𝐷(𝑡𝐷,𝑛 − 𝑡𝐷,𝑛−1)(𝐿𝑅𝑛𝑄𝑛−1)

2𝜋𝑘𝑒
+

𝐿𝑅𝑛 ∑  𝑛−1

2𝜋𝑘𝑒
 (25) 

and 

 
𝜙 = 𝐶𝐽

d𝑝

d𝑧
−

𝑣d𝑣

𝑐𝑝𝐽𝑔𝑐
 (2) 
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We can then rewrite Eq. 24 as, 

 d𝑇𝑓,𝑛

d𝑧
=

d𝑇𝑓𝑤𝑠

d𝑧
+ 𝜉 (26) 

where Tfws is the fluid temperature estimated without superposition.  Assuming that ξ is 

invariant, the linear differential equation, Eq. 26 is solved as 

 
𝑇𝑓 = 𝑇𝑒𝑖 +

(1 − 𝑒(𝑧−𝐿)𝐿𝑅)

𝐿𝑅

(𝜓 + 𝜉) (27) 

where 

 
𝜓 = 𝑔𝑔𝑠𝑖𝑛𝛼 + 𝜙 −

𝑔 𝑠𝑖𝑛𝛼

𝑔𝑐𝐽𝑐𝑝
 (28) 

 

Transient Model 

Eq. 27 provides the temperature equation with superposition for the steady state model. 

The transient model can be developed with the similar principles using the transient 

differential equation. For this analysis, we assume that fluid flow transients subside 

quickly and that flow rate, w, is independent of well depth. An energy balance indicates 

that any heat received/lost from the formation would change the fluid temperature with 

time and depth.  In terms of fluid internal energy fluid enthalpy H, fluid mass rate w, fluid 

mass in the control volume m, the energy balance equation can be expressed as 

 
𝑄 =

d

d𝑡
[𝑚𝑐𝑝𝑇𝑓(1 + 𝐶𝑇)] −

d

d𝑧
[𝑤(𝐻 +

1

2
𝑣2 − 𝑔 𝑧 𝑠𝑖𝑛𝜃)] (29) 

The term CT, represents the heat storage effect of the tubulars and cement sheaths in the 

wellbore.  The heat received from (or lost to) the formation, Q, is given by Eq. 8 



 

22 

 

 
𝑄1 = −

2𝜋𝑘𝑒

𝑇𝐷(𝑡𝐷)
(𝑇𝑤𝑏 − 𝑇𝑒𝑖)1 (8) 

As we discussed in the previous subsection, the requirement of a constant Q can be allowed 

for by subdividing the time in consideration into discrete temporal steps. Analogous to the 

derivation of Eq. 24, we obtain the following differential equation for fluid temperature as a 

function of time and depth, 

 d𝑇𝑓

d𝑧
=

𝑤𝑐𝑝𝐿𝑅

𝑚𝑐𝑝(1 + 𝐶𝑇)
(𝑇𝑒𝑖 − 𝑇𝑓) +

𝑤𝑐𝑝

𝑚𝑐𝑝(1 + 𝐶𝑇)
(1 − 𝑒(𝑧−𝐿)𝐿𝑅)(𝜓 + 𝜉) (30) 

Again, assuming ξ and ψ to be constant, we arrive at the following expression for fluid 

temperature, 

 
𝑇𝑓 = 𝑇𝑒𝑖 + (𝑇𝑓𝑖 − 𝑇𝑒𝑖)𝑒−𝑎𝑡 +

(1 − 𝑒−𝑎𝑡)

𝐿𝑅
(1 − 𝑒(𝑧−𝐿)𝐿𝑅)(𝜓 + 𝜉) (31) 

Where 

 
𝑎 =

𝑤𝑐𝑝𝐿𝑅

𝑚𝑐𝑝(1 + 𝐶𝑇)
 (32) 

In many situations, the differences in prediction when using Eq. 24 and Eq. 30 as 

opposed to Eq. 1 and Eq. 3 are not large. Thus, while less accurate, using Eq. 1 and Eq. 

3, in cases where 𝜉 is not large, for the sake of simplicity and saving computation time, 

may be acceptable. 

 

Inverse Modeling 

During production, fluid temperature at various depths in the wellbore can be estimated 

using the fluid rate as shown in the previous sections. When the distributed temperatures 

are available, the opportunity arises to solve the inverse problem for estimating rates. 
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Using the boundary conditions as shown by Hasan et al. (2009), the following model can 

be derived from Eq. 1 for a depth-by-depth estimation of temperature., 

 

𝑇𝑓 = 𝑇𝑒𝑖 +
(1 − 𝑒(𝑧−𝑧𝑗)𝐿𝑅)

𝐿𝑅
(𝜓 + 𝜉) + 𝑒(𝑧−𝑧𝑗)𝐿𝑅(𝑇𝑓𝑗 − 𝑇𝑒𝑖𝑗) (33) 

where LR  is defined in a similar manner as Eq. 20. As shown by Eq. 33 and Eq. 20, the 

fluid temperature depends on LR, which in turn depends on the mass flow rate, w. This 

relationship between the fluid temperature and the mass flow rate forms the basis of the 

computational approach suggested. The approach was also outlined in a recent study by 

Izgec et al. (2010). However the non-linear relationship between the fluid temperature 

and rate does not lend itself for a direct solution of rate from fluid temperature. This is 

why we use an iterative procedure. The process involves guessing a rate, followed by 

calculating the fluid temperature throughout the wellbore using Eq. 33. The calculated 

temperature, Tc, is then compared with the known fluid temperature, Tdata, at the depths 

of interest and the following optimization function minimized, 

 ∑ 𝑥(𝑇𝑐 − 𝑇𝑑𝑎𝑡𝑎)2 (34) 

where x represents the weight that can be assigned to particular depths where the 

temperature data shows more fidelity or where more confidence in the data exists. 

Intuitively shallower depths would show more fidelity than deeper measurements. 

During the procedure, the magnitude and the direction of the error in temperature, (𝑇𝑐 −

𝑇𝑑𝑎𝑡𝑎), can be used to guess a better value of the rate. The multiple depths help reduce 

the uncertainty and non-uniqueness in the optimization. The process also allows 

optimization of those parameters which are often known with some degree of 
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uncertainties, such as cement conductivity, thermal conductivity of fluid and pipe 

roughness. Once optimization is done, the same parameters should be used throughout 

the entire process for any specific well. Application of this procedure is shown in the 

next chapter. 

 

The process mentioned thus far is intended for steady-state modeling. Inversion with 

transient temperature modeling required a more complex and calculation-intensive 

algorithm. We divide the production time into several time-steps, not necessarily equal. 

It should be noted that there could be as many time steps as preferred by the user. The 

smaller the time intervals, the better the accuracy is for the estimated rates. In other 

words, with more number of time steps in the process, more accurate rates would be 

estimated. 

 

Using initial and boundary conditions as defined below,  

Boundary condition: 

 𝑇𝑓(𝐿, 𝑡) = 𝑇𝑒𝑖𝑏ℎ (35) 

Initial condition: 

 𝑇𝑓(𝑧, 0) = 𝑇𝑒𝑖𝑏ℎ − (𝐿 − 𝑧)𝑔𝐺sin𝛼 (36) 

the following transient model can be obtained from Eq. 30, 

 
𝑇𝑓,𝑛 = 𝑇𝑒𝑖 +

(1 − 𝑒−𝑎(𝑡𝑛−𝑡𝑛−1))(1 − 𝑒(𝑧−𝐿)𝐿𝑅)

𝐿𝑅
(𝜓 + 𝜉) + (𝑇𝑓,𝑛−1

− 𝑇𝑒𝑖)𝑒−𝑎(𝑡𝑛−𝑡𝑛−1) 

(37) 
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Temperature at the end of each time step is used as an initial condition for the following 

time step. This procedure, though more calculation intensive, allows for better 

granularity in the estimations and thus can be compared with data from metering at 

multiple different depths and times using Eq. 34. Once again, having data at different 

depths would help reduce the uncertainty and non-uniqueness in the estimation matrix. 

 

Summary 

Steady-state and transient modeling of flowing wellbore fluid temperature is highlighted 

with improvement suggested through the use of superposition of heat flow. Detailed 

modeling of heat flow superposition is shown for both steady-state and transient models. 

Inverse modeling is discussed with detailed description of the optimization procedure 

followed and the equations used.  

 

The application of the models and techniques developed is shown in the next chapter for 

both steady-state and transient models with inverse modeling to estimate flow rates 

using field data. 
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CHAPTER IV  

MODEL APPLICATION 

 

Introduction 

The last chapter talked about the details and the methodology that was adopted in the 

modeling of temperature and inverse modeling. Here we present some of the field cases 

where the model was applied. The data was supplied by Hess Corporation from their 

deepwater asset in Western Australia. In this setting, the mudline generally occurs 

around 3,500 ft, with productive intervals ranging from 10,000 to 17,000 ft. Temperature 

and rate data both were available for this study. For temperature data, the acoustic 

surface-readout technology was used by the operator which allowed for measurements 

from downhole gauges in real time. The acoustic units were installed onto the outside of 

the tubing string, approximately every 1500 ft below the mudline. The temperature 

sensors on these units had an accuracy of ±1.5°C. The rates were measured using a 

multiphase flow meter. Figure 3 presents a picture of the entire data set available for 

Well 3. Similar data sets were available for other wells which are discussed in the 

subsequent sections. Such distributed data set provides the feasibility of such modeling. 

Even in cases where distributed data is not present, as we show later, the technique can 

be made use of by utilizing just the wellhead information. However in that case, the user 

has to compromise on accuracy and uniqueness. This point is discussed later in this 

chapter.  



 

27 

 

The wells were initially flowed with increasing high rates as can be seen in Figure 3. 

This period is the cleanup period. After this, the well is shut-in for some time and then 

flowed again for the flow-after-flow test. In this test, the well is flowed at a constant 

flow rate till the flowing pressure achieves pseudo-steady state (PSS), at which point the 

rate is increased to another constant value till PSS is achieved again. This is repeated for 

a set of four or five rates.  

 

We attempt to provide solutions for only the dry section of the well. This is because the 

uncertainty in the heat-transfer parameters in the wet section and convective heat loss at 

the wellhead, precipitated by variable wind speed and other factors, collectively demand 

a large entry of accurate information for credible solutions. 

 

 

 

Figure 3 – Depth dependent measurement of transient temperature in Well 3. 

(Kabir et al. 2014) 
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Steady-state Modeling  

Two wells were studied for the steady-state modeling purpose. The match and the 

solutions later on are provided for the steady part of the flow during the flow-after-flow 

analysis. Computation starts with a known pressure and temperature at the bottomhole. 

Thereafter, temperature of the next segment is calculated using Eq. 33.  

 

Well 2 

The details of the input parameters used for Well 2 are presented in Table 1. Using these 

inputs, temperature profiles were generated at different rates for the flow after flow 

analysis.  
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Total Vertical Depth, ft 9,032 

Measured Depth, ft 10,194 

Inclination below 7,000 ft, degrees 52 

Pipe Roughness, ft 0.000465 

  

Tubing ID, in. 3 4/5 

Tubing OD, in. 6 

Casing ID, in. 8 15/22 

Casing OD, in. 9 5/8 

Cement ID, in. 9 5/8 

Cement OD, in. 12 

  

Mudline Temperature, °F 50 

Bottomhole Temperature, °F  182 

  

Coefficient of Thermal Expansion (β), 1/°F 0.00011 

Critical Pressure, psia 671.14 

Critical Temperature, °R 367.74 

Specific gravity of gas 0.643 

Thermal conductivity of tubing fluid, Btu/(hr-ft-°F) 0.018 

Thermal conductivity of tubing and casing, Btu/(hr-ft-°F) 26 

Thermal conductivity of annulus fluid, Btu/(hr-ft-°F) 0.4 

Thermal conductivity of cement, Btu/(hr-ft-°F) 0.6 

Thermal conductivity of formation, Btu/(hr-ft-°F) 1.4 

Specific heat of gas, Btu/(lbm-°F) 0.78 

Specific heat of annular fluid, Btu/(lbm-°F) 1 

Density of annular fluid, lbm/ft3 67.15 

Viscosity of annular fluid, cp 1 

Geothermal gradient, °F/ft 0.0252 

Table 1 – Input parameters for Well 2. 

 

 

 

History matching of temperature profiles for various rates is shown in Figure 4. It 

should be noted that only one set of input parameters were used for the entire depth and 

time. The continuous lines, which represent the model estimations, compare well with 

the data points shown. Figure 5 presents the inverse modeling efforts to generate the 
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steady-state rates based on the temperature match shown in Figure 4. Here the 

temperature is plotted against rates at various depths. 

 

 

 

Figure 4 – History matching temperature profiles at various rates for Well 2. 

(Kabir et al. 2014) 

 

 

 

As expected, the smallest response occurs as we move towards the bottom of the well. 

The largest excursion is seen near the mudline. Hence, as mentioned in Chapter III, more 

weightage can be assigned to the depths near the mudline for inverse modeling. In 

Figure 5, only the few more important depths are shown whereas Figure 3 shows that 

data was available for more stations. The gauges that made a difference to the rate 

estimation during inverse modeling are shown. 
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Figure 5 – History matching temperature profiles at various depths for Well 2. 

(Kabir et al. 2014) 

 

 

 

Table 2 presents the error analysis of the rates that were obtained by matching the 

temperatures as shown in Figure 4 and Figure 5. 

 

 

  Flow Rate, MMscf/D 

  Rate 1 Rate 2 Rate 3 Rate 4 

Computed 14.87 25.04 33.17 49.68 

Measured 14.40 25.02 34.95 44.00 

Error (%) 3.29 0.07 -5.11 12.91 

Table 2 – Error estimation in computed rates, Well 2. (Kabir et al. 2014) 

 

 

As shown in Table 2, the rates predicted are within engineering accuracy. 
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Well 3 

Table 3 presents the input parameters used for Well 3. A similar analysis was carried out 

for Well 3 as for Well 2. 

 

 

Total Vertical Depth, ft 11,572 

Measured Depth, ft 11,840 

Inclination below 8,800 ft, degrees 28 

Pipe Roughness, ft 0.00027 

  

Tubing ID, in. 3 4/5 

Tubing OD, in. 4.5 

Casing ID, in. 8 15/22 

Casing OD, in. 9 5/8 

Cement ID, in. 9 5/8 

Cement OD, in. 13 

  

Mudline Temperature, °F 41 

Bottomhole Temperature, °F  227.3 

  

Coefficient of Thermal Expansion (β), 1/°F 0.00011 

Critical Pressure, psia 671.14 

Critical Temperature, °R 367.74 

Specific gravity of gas 0.643 

Thermal conductivity of tubing fluid, Btu/(hr-ft-°F) 0.011 

Thermal conductivity of tubing and casing, Btu/(hr-ft-°F) 26 

Thermal conductivity of annulus fluid, Btu/(hr-ft-°F) 0.4 

Thermal conductivity of cement, Btu/(hr-ft-°F) 0.6 

Thermal conductivity of formation, Btu/(hr-ft-°F) 1.4 

Specific heat of gas, Btu/(lbm-°F) 0.78 

Specific heat of annular fluid, Btu/(lbm-°F) 1 

Density of annular fluid, lbm/ft3 67.15 

Viscosity of annular fluid, cp 0.6 

Geothermal gradient, °F/ft 0.02322 

Table 3 – Input parameters for Well 3. 
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History matching of temperature profiles for this case is shown in Figure 6. As shown 

before, the match was predicated upon honoring the last temperature data point, for a 

given flow rate, at each depth. 

 

 

 

Figure 6 – History matching temperature profiles at various rates for Well 3. 

 

 

 

As expected the match starts to suffer at higher rates. This is due to the phenomenon 

called Joule-Thompson cooling. This point was also made recently by Kabir et al. 

(2014). Similar to Figure 5, Figure 7 shows the history matching of temperature profiles 

at various depths. Here we show results from more gauges. There are quite a few gauges 

towards the bottom which may appear redundant but are usually placed as backups due 

to high rate of gauge failure at the bottomhole. 

q, MMscf/D 
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Figure 7 – History matching temperature profiles at various depths for Well 3.

Gauge Depth, ft 

3,877 

7,742 

6,638 

5,531 

4,429 

8,846 

9,951 

11,603; 11,645; 
11,744; 11,803 
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All the gauges shown in Figure 7 are neither needed nor were used for the estimation. 

Using multiple gauges, after a certain number of gauges the model reaches a diminishing 

rate of return. Use of more gauges after that does not add much utility to the inversion 

process. Moreover the data near the bottomhole lacks the fidelity as well that the model 

relies on to estimate rates.  

 

Table 4 presents the error analysis for the rate estimation process. 

 

 

  Flow Rate, MMscf/D 

  Rate 1 Rate 2 Rate 3 Rate 4 

Computed 16.49 33.98 56.10 76.26 

Measured 17.89 33.80 49.10 68.30 

Error (%) -7.85 0.54 14.26 11.65 

Table 4 – Error estimation in computed rates, Well 3. 

 

 

 

The rather large error for the last two rates is related to the Joule-Thompson cooling 

effect as described earlier. 

 

Transient Modeling 

Similar analysis was carried out for the two wells already mentioned using the transient 

model developed in the previous chapter. Additionally, another well was studied under 

the same premise. This well, Well 4 provided a unique opportunity to illustrate the 

strength of transient modeling. In this section, we show all three wells and the forward 

modeling results. However we focus mainly on Well 4 for this section of the analysis. 
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For all three wells transient fluid temperature data over more than 100 hours were 

available for multiple flow rates at various well depths. Figure 8 shows data from five of 

those stations for Well 4. 

 

 

 

Figure 8 – Depth-dependent measurements of transient temperature in Well 4. 

 

 

 

Figure 8 illustrates a number of interesting phenomena that characterize the transient 

fluid-temperature behavior. One such characteristic evident is the distinctly varying 

temperature profiles near the mudline while a near-flat line represents the profile close to 

the bottomhole. The explanation of this gradual flattening of the temperature profiles 

with increasing depth is simple. Fluid entering the wellbore is at (or nearly at) the same 



 

37 

 

temperature as the formation. Therefore, near the bottomhole, there is little or no 

difference between the fluid temperature Tf and the surrounding formation Tei. Because 

Tf ̶ Tei is the driving force for heat transfer, not much heat exchange occurs near the well 

bottom, which explains the relatively unperturbed temperature profile with time at 

deeper stations. In contrast, near the mudline the formation surrounding the fluid is at a 

much lower temperature than the fluid itself. This larger temperature contrast at 

shallower depths explains the greater heat exchange. 

 

For the same amount of heat exchange, however, temperature change is smaller for 

greater rates (because Q ~ mcpΔT). Therefore, at higher flow rates the fluid temperature 

will stay higher than for a lower rate because of a smaller temperature difference. This 

behavior is observed in the temperature profiles at 2 to 6 hours. During this period, rates 

keep increasing, resulting in increasing fluid temperature with rate and, therefore, with 

time. 

 

When fluid flow is initiated from a shut-in well (or when a step increase in rate occurs), 

the fluid temperature increases for some time, even if the rate is kept constant. This point 

is illustrated in Figure 9, wherein at each constant-rate segment, the fluid temperature 

increases by about 15oF. This phenomenon is easier to understand for a rate increase 

than for a rate decrease; although, the same explanation applies to both situations. When 

a rate increase is initiated and held constant for some time, hotter fluid from greater 

depth moves up and replaces the colder fluid at any given position. As production 
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continues, increasingly hotter fluid from greater depths does the replacement, thereby 

allowing the fluid temperature to increase with time at any elevation higher than the 

point of fluid entry. However, after the bottomhole fluid has replaced the fluid at a given 

location, the temperature change reaches a point of diminishing returns for a given rate. 

In other words, this location reaches a pseudosteady-state temperature for a given rate. 

 

 

 

Figure 9 – Gas Rate and Fluid Temperature during the cleaning phase in Well 4. 

 

 

 

Below we offer both verification and validation of the transient temperature model. In 

addition to the data from the three wells mentioned above, we also used temperature 

estimation from a commercial software package (WELLCAT) to verify our model. The 

finite-element wellbore simulator uses a detailed description of the wellbore, fluid, and 

formation to generate transient solution for the flow problem at hand. The simulator 

estimates temperature profile based on the rate history where temperature at the end of a 
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rate step is used as an initial condition for the next rate step. Although this simulator is 

intended for casing design, it solves the heat flow problem of interest in a rigorous 

fashion. However the simulator is not capable of inverse modeling. Therefore it was only 

used to validate forward model. 

 

Well 2 

The details of the input parameters used for Well 2 are presented in Table 1. Bottomhole 

pressures known at each time step are tabulated in Appendix A. Figure 10 presents the 

history matching effort of the temperature profile near the mudline for the well. The 

good agreement of the model with data provides validation and the commercial 

simulator verifies the results. As noted earlier, only one set of input parameters was used 

for history matching temperature data from all depths and rates for all three wells in this 

study. 
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Figure 10 – History matching transient temperature profile, Well 2. 

 

 

 

As shown in Figure 10, Well 2 depicts a classical temperature profile for a flow-after-

flow test, following the cleanup and shut-in periods. The initial period from well startup 

until about 12 hours corresponds to the cleanup phase wherein the rate is continually 

increased in a stepwise fashion. After this period of activity, the well is shut in for about 

the same period. Following the shut-in, the flow-after-flow test for deliverability, in 

which the surface rate is increased in each successive step for the same duration, is 

initiated. This succession of rate profile is accurately captured by the temperature 

profile. At the start of the test (at approximately 25 hours), the temperature increases due 

to the hotter fluid rising up the wellbore. The temperature starts to stabilize at around 33 

hours when another increase in rate causes the temperature to rise farther. Although the 

time is the same, this increase in temperature is not the same as with the previous rate. 
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This reduced response is triggered by the decreasing temperature difference between the 

fluid and the wellbore as mentioned earlier. 

 

Well 3 

As in the case of steady-state modeling, analysis similar to Well 2 was applied to Well 3 

as well.  Input parameters for Well 3 are presented in Table 3. Bottomhole pressures 

known at each time step are tabulated in Appendix A. Verification with a commercial 

simulator and data validation is shown in Figure 11.  

 

 

 

Figure 11 – History matching transient temperature profile, Well 3. 

 

 

 

The profiles reasonably match the data. One interesting thing to note over here is the dip 

in the temperature profile around 90 hours. This dip is a manifestation of a sudden drop 
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in flow rate around the same time as shown in Figure 3. Such sensitivity bodes well 

during the inverse modeling to predict rate. 

 

Well 4 

The same reasoning applies to Well 4 which follows a similar rate schedule. Input 

parameters for Well 4 are presented in Table 5 and bottomhole pressures in Appendix A. 

During the production from Well 4, hydrates were formed in the wellbore. As Figure 8 

shows, this plugging occurred around 42 and 52 hours. The problem was mitigated by 

methanol injection. However, the benefit of using temperature measurements to estimate 

flow rate becomes more evident here because this anomaly is captured by the fluid 

temperature and successfully reproduced by the model and the commercial simulator, as 

Figure 12 and Figure 13 demonstrate. 

 

 

 
Figure 12 – History matching transient temperatures profile, Well 4. 
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Total Vertical Depth, ft 15,347 

Measured Depth, ft 16,434 

Inclination 24 

Pipe Roughness, ft 0.00001 

  

Tubing ID, in. 3 4/5 

Tubing OD, in. 4.5 

Casing ID, in. 8 15/22 

Casing OD, in. 9 5/8 

Cement ID, in. 9 5/8 

Cement OD, in. 13 

  

Mudline Temperature, °F 86 

Bottomhole Temperature, °F  273 

  

Coefficient of Thermal Expansion (β), 1/°F 0.00011 

Critical Pressure, psia 671.14 

Critical Temperature, °R 367.74 

Specific gravity of gas 0.643 

Thermal conductivity of tubing fluid, Btu/(hr-ft-°F) 0.03 

Thermal conductivity of tubing and casing, Btu/(hr-ft-°F) 26 

Thermal conductivity of annulus fluid, Btu/(hr-ft-°F) 0.3 

Thermal conductivity of cement, Btu/(hr-ft-°F) 0.6 

Thermal conductivity of formation, Btu/(hr-ft-°F) 1 

Specific heat of gas, Btu/(lbm-°F) 0.78 

Specific heat of annular fluid, Btu/(lbm-°F) 1 

Density of annular fluid, lbm/ft3 67.15 

Viscosity of annular fluid, cp 0.6 

Geothermal gradient, °F/ft 0.01615 

Table 5 – Input parameters for Well 4. 
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Figure 13 shows the history match of transient temperature profiles done at various 

depths. For clarity of presentation, only three depths are shown, but in reality, we have 

had 10 depths (each 1,000 ft apart) to anchor the model solution. As expected, the  

 

 

 

Figure 13 – History matching transient temperature profiles using data at different 

depths, Well 4. 

 

 

 

fidelity of the temperature response decreases with increasing depth. Yet, the decrease in 

flow rate is captured at greater depths as well. Such spatial data help in accurate 

estimation of the fluid flow rates because multiple datasets constrain the problem at 

hand. This point is illustrated more clearly in Figure 14, which shows the rate history 

match based on the temperature matches in Figure 13.  



 

45 

 

 

Figure 14 – Estimated rate profile using temperature data at different depths, Well 

4. 

 

 

 

As shown in Figure 14, the predicted rates closely follow those recorded using the 

multiphase flow meter. The model’s sensitivity enables it to capture the flow rate 

restrictions around 42 and 52 hours. 

 

A problem that often creeps up during inverse modeling is the solution non-uniqueness. 

This aspect is often the case in inverse problems because the problem is often under 

defined. However, temperature data at multiple depths make up for the lack of under 

defined parameters. That said, we cannot ignore that more often than not such rich data 

are lacking in most test settings. Usually the temperature data is limited to the wellhead 

and bottomhole conditions. Therefore, we employed the same methodology discussed 

earlier on temperature data from just one depth nearest to the mudline, which is 
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construed as most appropriate for the analysis because of the largest temperature 

response. 

 

Figure 15 offers the results for the history matching of temperature estimates and 

Figure 16 presents the rate estimated based on the match shown in Figure 15. As shown, 

the match quality for the temperature is not much different; however, the rate quality 

suffers slightly. Here, the non-uniqueness of the inverse problem becomes more evident 

during our analysis because the problem becomes less constrained. This experience 

suggests that the model be calibrated and anchored for a known rate to achieve more 

confidence in the prediction when using data from a single location. 

 

 

 

Figure 15 – History matching transient temperature profile using data nearest to 

the mudline, Well 4. 
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Figure 16 – Estimated rate profile using temperature data nearest to the mudline, 

Well 4. 

 

 

 

Summary 

Application of the models developed in the previous chapter is shown for both steady-

state and transient temperature models. Three different wells are discussed in this 

chapter for the purpose of model verification and validation. Inverse modeling is 

demonstrated for all three wells as well. Though the availability of data at different 

depths provide for more faith in the modeling and inversion, rate can be estimated using 

just one depth. In such case, it is suggested to calibrate the model against known rates 

before applying the algorithm to a rate estimation exercise. 
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CHAPTER V  

FIELD APPLICATION 

 

Introduction 

So far we discussed how fluid temperature in the wellbore can be estimated with time at 

any depth. The technique facilitates inverse modeling and the estimation of rate as it 

changes with time in the wellbore. This chapter highlights how this method can be made 

use of on the field to obtain useful and much needed information. 

 

In most settings, the cleanup period is overlooked from a transient-test interpretation 

standpoint. This is primarily because rates are seldom metered with a multiphase flow 

meter. Obviously, continuously changing the two-phase flow situation presents 

additional challenges in test interpretation. However, if rates of the dominant phase are 

inferred from distributed temperature measurements, reliable estimations of relevant 

reservoir parameters may be obtained. These estimated parameters, in turn, can be used 

to fine-tune the subsequent test sequence, thereby saving considerable expense.  

 

This chapter demonstrates the applicability of the proposed rate-estimation model from 

the distributed-temperature data by verifying its performance with a field example, Well 

4. We also validate the usefulness of cleanup data analysis with a simulated example. 

The simulated example was generated with a commercial numerical model, wherein 
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fluid invasion was mimicked by injecting water into the formation and producing gas 

thereafter by imposing step-wise increase in drawdown at sandface. The use of statistical 

design of experiments (DOE) provides clues about the relative importance of input 

parameters. 

 

Estimating Reliable Rates with Temperature Modeling 

Rates are estimated through an overall temperature match at various depths by honoring 

discrete temperature data at the end of each time period. Figure 17 depicts the 

temperature data and estimates using the rigorous transient model (Eq. 31) for the early 

cleanup phase of Well 4. An important observation in Figure 17 is the smooth nature of 

the temperature profile, which may lead one to think that the rise in temperature was 

because of production period alone. That, however, is not the case. In fact, the cleanup 

fluid flow rate changed significantly and irregularly over time.  

 

Figure 18 provides a comparison between the estimated rates using the described 

methodology and the measured rates during the early cleanup phase in Well 4. As Figure 

18 points out, the transient temperature modeling allows for the determination of rate. 

Despite the steady increase of temperature, Figure 18 satisfactorily captures the 

fluctuations in rate. The ability to obtain such information can have great impact on 

transient testing. With the pressure measurements already available using downhole 

telemetry, the requirements for transient testing is satisfied with this information. This is 

discussed more in the next section. 
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Figure 17 – Temperature history matching using transient and steady-state models 

for cleanup phase, Well 4. 

 

 

 

 

Figure 18 – Comparison of measured and estimated rates during the cleanup phase, 

Well 4. 
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It was speculated that the effect of superposition is not significant in this analysis. To 

investigate this, simulations with and without superposition were carried out. Figure 19 

shows the differences in the temperature estimated with and without superposition for 

one of the rate schedules during the cleanup phase. As the figure shows, the 

superposition in heat flow does not play a significant part for this flow problem at hand.  

 

 

 
Figure 19 – Temperature estimation at different depths with and without 

superposition for cleanup phase, Well 4. 

 

 

 

However, some important items worthy of note confirm the notion of decreasing heat 

transfer rate with time. As time progresses, the fluid temperature estimated with 

superposition tends to be slightly higher than without superposition. This observation 

confirms that the difference in temperature between the wellbore fluid and the formation 

is decreasing due to the formation being heated up, thereby decreasing the heat transfer 

rate as highlighted above. Therefore, the fluid temperature with superposition is slightly 
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higher. Another observation is that the effect of superposition declines with increasing 

depth. This outcome makes intuitive sense in that the difference between the formation 

and the fluid temperature declines with increasing depth. 

 

Cleanup Effect in Pressure-Transient Response 

In this section, we use both synthetic and field examples to explore the effect of cleanup 

in our ability to obtain reservoir permeability. The underlying thought is to obtain a good 

estimation of permeability so that the post-cleanup flow and shut-in periods can be fine-

tuned. We resort to the statistical DOE to do an objective analysis. To that end, we 

generate solutions with a numerical simulator by injecting water into the formation to 

mimic fluid invasion, followed by a rest period and a sequence of flow and shut-in 

periods, as depicted in the rate profile in Figure 20 and Figure 21. Figure 20 shows the 

two buildups: one after the cleanup and the second after the flow-after-flow test. The 

parameters obtained from the two buildup analyses confirm the hypothesis that the same 

permeability estimate can be obtained from the two tests. We compared the results of 

two buildups from one of the worst cases considered in this study in terms of depth of 

invasion. The underlying idea was to underscore the point that permeability is well 

estimated during or following the incomplete cleanup period. As Figure 22 suggests 

only the skin is impacted, not the formation kh. Let us study the results of the DOE to 

learn more about the effect of skin. 
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Figure 20 – Pressure simulation for one of the design cases.
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Figure 21 – Rate simulation for the same case as Fig. 20. 

 

 

 

 

Figure 22 – Buildup charts for the same case as in Fig. 10. 
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Table 6 presents the design variables for the full-factorial analysis. The summary of 

these flow-simulation runs are presented in Figure 23 and Figure 24 on Pareto charts. In 

this DOE, skin for both the shut-in periods is the dependent variable, whereas formation 

conductivity, depth of mud-filtrate invasion, and the initial shut-in time before 

production constituted the three independent variables. As noted in some of the skin 

values associated with the second buildup, formation cleanup is not guaranteed in 

adverse situations when deep filtrate invasion occurs, coupled with inadequate flow 

periods and/or insufficient drawdown. This point is made clearly in Figure 21 wherein 

the water continues to be produced long after the cleanup, thereby affecting the skin for 

the second buildup. 

 

 

  kh, md-ft depth of invasion, ft Initial shut-in time, hr 

Low 50 1 0 

Medium 1500 2 10 

High 4000 3 24 

Table 6 – Design variables for full factorial analysis. 

 

 

 

The positive sign associated with any independent variable on the Pareto chart suggests 

that an increase of the independent variable will result in an increase of the dependent 

variable. Although kh is by far the dominant variable, the Pareto chart does not imply 

that the other two variables with absolute t-test value below 95% confidence level are 
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not influencing the skin in the second buildup test. Rather, the chart shows that they are 

statistically insignificant within the 95% confidence interval. 

 

 

 
Figure 23 – Pareto chart showing the significance of independent variables in skin 

from BU-1. 

 

 

 

 
Figure 24 – Pareto chart showing the significance of independent variables in skin 

from BU-2. 
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As the results of the DOE with the simulated example show, the skin is dominated by the 

formation’s conductivity or the kh product. Interestingly, the other significant variable 

for the pre-cleanup skin is the depth of invasion. However, the significance of filtrate 

invasion diminishes in the second buildup, reaffirming the contention that the difference 

in the pre- and post-cleanup response manifests in terms of skin. This point is made by 

Figure 25, which shows the results of pre- (BU-1) and post-cleanup (BU-2) shut-in 

periods. As expected, the derivative signatures overlay suggests the same conductivity, 

but the pressure-difference curves separate indicating the skin effect or incomplete 

cleanup. 

 

 

 

Figure 25 – Incomplete cleanup manifests in terms of skin, Well 4. 

 

 

 

The analysis in the last few pages strongly suggests that the same permeability can be 

gauged from the pre-cleanup transient response as from the post-cleanup. The only issue 

which remains then is the availability of reliable rates for the pre-cleanup period. The 
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example shown in this and the previous section, therefore, is a demonstration of how 

those rates can be obtained from measurements that are already made in most DST 

settings.  

 

Summary 

This chapter presents how the models and the methodology presented till the last chapter 

can be made use of in a unique way to help with drill-stem testing. Rates are estimated, 

using the same analysis as presented, for the cleanup period in Well 4. Those rates are 

then shown to convey reliable permeability estimates through analysis of transient 

testing techniques. It is shown that the difference seen in the buildup derivatives 

response is due to skin and not permeability which provides assurance that the flow-

after-flow test can be designed/fine-tuned according to the already estimated parameters. 

Thus, considerable expense can be saved in term of rig time costs and avoiding test 

design failures. 
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CHAPTER VI  

DISCUSSION AND CONCLUSION 

 

This thesis presents steady-state and transient temperature models for predicting flowing 

fluid temperature in the wellbore. The models presented are based on the work of Hasan 

and Kabir (1994) and Hasan et al. (2005). A novel depth-dependent temperature 

superposition approach was used to arrive at the analytical formulations. The 

superposition principle accounts for the variable heat flux between the wellbore fluid 

and the formation which was held constant in all the models in literature prior to this 

work. The study also demonstrates the use of temperature measurements made at several 

depths in estimating flow rates in dry-gas wells. The multiphase flow meter and surface 

separator verified these rates for all three wells. A commercial, numerical wellbore 

simulator lends further credence to the analytical solution presented here for the transient 

model. Although the solution becomes robust when multiple discrete temperature data 

sets become available at various depths, the use of single data set at the wellhead is also 

feasible for estimating rates as outlined here. Successful implementation of rate 

estimation, within engineering accuracy, is shown for both steady-state and transient 

cases.    

 

This study accounts for the effect of formation heating in the form of a variable ξ to 

account for the depth-dependent superposition effect. However, ξ did not turn out to be 
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greatly significant for the field flow problem studied. Nonetheless, we surmise that this 

parameter will play a more significant role in different circumstances. To begin with, the 

importance of ξ can be gauged by comparing it with the value of ψ in the model. If ξ is 

insignificant compared to the value of ψ, it might not cause a significant effect. 

Conversely, if ξ is significant in comparison to ψ, ignoring it may lead to inaccuracy of 

the estimated rates. This situation may arise in cases where the resistance between the 

wellbore and the formation is higher than usual, such as in presence of vacuum-insulated 

tubing. Another example of reduced heat loss arises at late times when the formation has 

had a chance to heat up after a considerable production period.  

 

Interpretation of transient-pressure data for both pre- and post-cleanup periods suggested 

that formation permeability is unaffected by the two-phase flow effects. Stated 

differently, only the skin is different in the two analyses. The use of statistical DOE 

provided the initial clue. For instance, a combination of independent variables, such as 

the permeability-thickness product, soak period, and radius of mud-filtrate invasion 

collectively suggested that permeability was reproduced without any error. The 

convergence of the derivative plateaus supports this notion, but the difference in the 

corresponding pressure curves is a reflection of skin. Both synthetic and field examples 

lend credence to this point. Estimating the formation permeability up front allows fine-

tuning of the subsequent test periods commensurate with objectives.  
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Though the models seem to work really well, we would still like to make some 

suggestions for any further improvement or incremental work done on the same subject. 

Some of the assumptions that were made in this study could be avoided and the 

modeling looked at in a more robust manner. The models presented assume some of the 

thermal properties to be constant, e.g. specific heat capacities and thermal conductivities 

are assumed to stay constant throughout the wellbore. The thermal storage parameter, 

CT, is also assumed to be a constant value as mentioned before. Though the model has 

the ability to handle changes in the wellbore diameter, it was largely kept constant for 

the purpose of modeling. Moreover, the variation of the superposition variable, ξ, with 

well depth was ignored in the initial derivation of the model. However it was accounted 

numerically in the numerical implementation. Most of these assumptions would not 

incur significant effects on the temperature models. However, for the purpose of more 

accurate modeling and making the model more sound theoretically, some of these 

assumptions can be removed in future works.  
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APPENDIX A  

PRESSURE DATA 

 

Time, hr Pressure, psig 
 

Time, hr Pressure, psig 

     

0.95 4019.16 
 

25.22 3971.07 

1.45 4004.86 
 

27.20 3999.16 

1.97 3993.42 
 

29.20 3958.17 

2.45 3977.39 
 

31.20 3952.16 

2.95 3955.72 
 

33.23 3948.99 

3.45 3927.22 
 

35.20 3946.95 

3.95 3903.09 
 

37.20 3906.81 

4.73 3881.02 
 

39.20 3899.01 

7.22 3849.21 
 

41.20 3894.55 

8.70 3791.51 
 

43.20 3891.37 

9.72 3775.30 
 

45.20 3849.36 

11.12 3764.06 
 

47.20 3841.68 

11.72 3740.72 
 

49.25 3836.85 

14.22 3765.33 
 

54.25 3832.54 

16.72 3960.50 
 

59.25 3777.66 

19.22 3982.76 
 

64.25 3767.32 

21.72 3993.06 
 

69.25 3760.65 

23.72 3998.99 
 

73.23 3755.52 

Table A. 1 – Bottomhole pressure data, Well 2. 
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Time, hr Pressure, psig 
 

Time, hr Pressure, psig 

     

0.33 5530.65 
 

33.71 5450.58 

0.83 5521.14 
 

35.71 5447.94 

1.55 5515.04 
 

37.71 5446.02 

1.79 5494.01 
 

39.71 5392.42 

2.29 5489.82 
 

41.86 5388.95 

3.30 5469.19 
 

53.86 5374.29 

4.79 5428.48 
 

65.86 5286.18 

6.79 5372.36 
 

77.86 5270.92 

8.79 5322.12 
 

90.45 5256.75 

11.53 5322.48 
 

90.64 5245.53 

13.53 5315.69 
 

90.66 5412.40 

15.53 5501.27 
 

90.68 5413.02 

17.53 5506.85 
 

90.69 5413.78 

19.53 5509.92 
 

90.73 5413.85 

21.53 5511.88 
 

90.80 5415.16 

23.61 5513.31 
 

93.80 5416.53 

23.70 5514.43 
 

96.80 5243.63 

23.79 5514.46 
 

99.80 5240.71 

25.29 5492.10 
 

102.80 5237.16 

26.68 5501.86 
 

105.80 5233.74 

29.56 5490.51 
 

108.80 5230.50 

29.71 5488.43 
 

113.49 5229.59 

31.71 5488.47 
   

Table A. 2 – Bottomhole pressure data, Well 3. 
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Time, hr Pressure, psig 
 

Time, hr Pressure, psig 

0.93 6857.58 
 

43.25 6719.27 

1.76 6735.19 
 

43.75 6746.32 

2.38 6934.04 
 

45.75 6686.23 

4.38 6816.50 
 

47.75 6635.77 

6.96 6714.94 
 

49.75 6642.97 

8.96 6615.14 
 

51.75 6682.03 

10.96 6903.56 
 

52.75 6749.91 

12.96 6919.98 
 

53.25 6751.86 

14.96 6927.28 
 

54.00 6740.80 

16.77 6931.52 
 

56.00 6645.28 

17.75 6933.58 
 

58.00 6620.58 

18.00 6895.88 
 

60.00 6600.35 

18.25 6881.37 
 

62.00 6593.92 

21.50 6901.64 
 

64.00 6589.04 

23.50 6889.26 
 

67.50 6584.84 

25.50 6863.32 
 

67.75 6574.91 

27.25 6833.14 
 

73.75 6574.26 

29.25 6827.52 
 

79.75 6569.40 

31.25 6743.17 
 

85.75 6583.66 

33.25 6732.68 
 

91.75 6575.28 

35.25 6727.23 
 

97.75 6570.60 

37.50 6722.74 
 

103.75 6564.89 

39.50 6713.54 
 

109.81 6551.61 

41.75 6654.25 
   

Table A. 3 - Bottomhole pressure data, Well 4. 
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APPENDIX B  

SAMPLE CALCULATION 

 

New methodology proposed in this work is calculation intensive; here we present some 

details of computations so that others can replicate our results or implement the model. 

The calculations are shown for Well 4. Input parameters for Well 4 are presented in 

Table 5. The depth of 3,777 ft is selected for the sample calculations. At this depth, the 

measured and estimated quantities are given below. Some parameters like the velocity 

gradient and dZ/dT are required for the calculation of ф. The velocity gradient is 

calculated numerically. The Z-factor and its temperature derivative are calculated using 

the Dranchuk and Abou-Kassem correlation (1975). The calculation uses the Newton-

Raphson approach for iterative calculations. The parameters obtained at 5.5 hours are 

shown in Table B.1 and B.2. 

 

Bottomhole pressure, psig 6,669 

Fluid temperature, °F 173.9 

Flow rate, MMscf/D 47.36 

Table B. 1 – Measured quantities at 5.5 hours in Well 4. 
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U, Btu/(hr-ft2-°F) 3.12 

vf, ft/sec 22.84 

dv/dz, 1/sec 0.000181 

Z 1.002 

dZ/dT, 1/°F 0.00054 

CJcp, ft
3/lbm 0.0232 

ф -0.00064 

Ψ, °F/ft 0.0126 

ξ, °F/ft 0.00033 

Table B. 2 - Calculated quantities at 5.5 hours in Well 4. 

 

 

 

By using these values, the fluid temperature is calculated to be 172.6 °F, which 

compares well to the measured temperature. Rate is estimated using an optimization 

technique whereby the difference between the calculated and measured temperatures is 

minimized. The optimization yields a rate of 46 MMscf/D. Note that this calculation is 

performed for a time during the cleanup phase. During this time, the fluid properties are 

not only changing with pressure and temperature but are also expected to change as a 

result of early production of mud filtrate and/or completion fluid, which could vary with 

time in certain instances. Therefore, a greater tolerance of temperature match might be 

required in those rare instances.  

 

The temperature calculated without accounting for superposition was 172 °F. The 

superposition calculation, although more accurate, does not bring about a large 

difference in the calculation without superposition. This point is also alluded to in the 
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text. The crux of the difference lies in how significant the value of ξ is. In this case, it is 

not significant. Hence, the two temperatures are about the same. 


