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ABSTRACT 

 

Reniform (Rotylenchulus reniformis) nematodes cost US cotton growers over 130 

million dollars per year. Genetic resistance of the wild African species Gossypium 

longicalyx to reniform nematodes was previously transferred into upland cotton 

(Gossypium hirsutum L.). LONREN and other cotton lines containing the responsible 

gene, Renlon, are highly nematode-resistant, but when grown in nematode-infested fields, 

the seedlings and plants became "stunted". Hypothesized causes include hypersensitivity 

reaction, per se, and/or increased susceptibility to soil pathogens. My research objectives 

have been: [1] to develop Renlon-linked markers and map the Renlon region at high 

resolution, [2] to recombine Renlon and nearby loci and determine if “stunting” is due to 

linkage drag, [3] to create genomic and germplasm resources for genetic manipulation of 

chromosome-11, especially Renlon, and [4] to determine if "stunting" is due solely to 

plant-nematode interactions or involves additional pathogens. 

 

Putative SNPs between G. hirsutum and G. longicalyx were collaboratively sequence-

aligned to the D5 reference genome. By selecting SNPs aligned to the Renlon-

homeologous region and screening them against a genetic panel, we identified 85 as 

Renlon -linked. To enable large-scale SNP applications, we developed inexpensive 

methods for high-throughput non-destructive seed DNA extraction for PCR-based 

genotyping. We then high-resolution mapped 10 SNPs in the proximal alien segment 

near Renlon. We chose the two closest Renlon-flanking SNPs and used them for marker-
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assisted selection to identify 5 recombinants from 17,600 BC1F1 seed. Subsequent 

progeny tests indicated 2 of the 5 recombinants were free of "stunting" and that 1 seems 

to be segregating for nematode resistance.  Contingent on verification of the resistance, 

the results indicate that stunting of LONREN seedlings is indeed due to linkage drag, not 

hypersensitivity, per se. To determine if "stunting" can be ascribed solely to 

hypersensitivity-induced root damage, we conducted three replicated growth chamber 

experiments with multiple genotypes, pasteurized and natural soils, and several pathogen 

treatments. The results showed that Thielaviopsis root rot alone can cause severe 

seedling "stunting", but not the nematodes, alone.  Moreover, they showed that 

LONREN-like genotypes are differentially sensitive to the combined presence of 

reniform nematodes and Thielaviopsis, and become more severely stunted. 
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CHAPTER I 

INTRODUCTION 

 

Cotton and Impact of Reniform Nematode 

Cotton is the leading natural fiber crop and is produced by plants of several species of 

the genus Gossypium L., which includes extensive phenotypic diversity among ca. 52 

species, including the two new species recently identified (30) (Grover et al. 

unpublished, Wendel et al. unpublished). The genus consists of at least five 

allotetraploid (2n = 4x = 52) and 45 diploid (2n = 2x = 26) species (56). There are four 

domesticated species, including the New World allotetraploids G. hirsutum and G. 

barbadense and the Old World diploids G. arboreum and G. herbaceum. Gossypium 

hirsutum and G. barbadense originated in the Yucatan Peninsula of Central America 

(145, 163). Other species of cotton serve primarily as germplasm sources for genetic 

improvement. Of the four domesticated cottons, G. hirsutum is the most important 

domestically and worldwide.  While best known for the fiber that it produces on the 

surface of seeds, the cotton seed is also a valuable source of vegetable oil, ruminant 

animal feed and other feed products (42).  

 

The primary species of cotton grown in the United States is G. hirsutum, also called 

upland cotton, although Pima cottons are also grown in certain regions, and are primarily 

G. barbadense, infused with small amounts of G. hirsutum germplasm through 

hybridization and human selection.  Pima cultivars are characterized by extremely long 
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fibers (>4 cm), but are grown on limited hectares in the western states of New Mexico, 

Arizona, and California, and accounts for less than 5% of the total U.S. crop.  

 

Cotton is a perennial plant that is generally grown as an annual in cotton production 

systems.  The United States was ranked third in lint production for the year 2010, after 

China and India (USDA-Foreign Agriculture Service). The amount of US land devoted 

to cotton production peaked in 1926 at approximately 18 million hectares. The advent of 

mechanized farming and the availability of effective, relatively low-cost fertilizers, 

pesticides and improved cotton cultivars after World War II allowed for significantly 

greater yields per unit area, leading to a decline in cultivated hectares. High-yielding 

cultivated Upland cotton cultivars have been considered genetically vulnerable for many 

years (68). Molecular data underscore the low genetic variation at the species level, 

relative to other plant taxa (29), with further reductions resulting from domestication, 

selection in the USA for non-photoperiod sensitivity and predominant modern breeding 

practices.  The reduced genetic variability increases potential vulnerability to pathogen 

or insect epidemics of the crop (25). 

 

The importance of plant-parasitic nematodes as yield-limiting pathogens of cotton has 

received increased recognition and attention in the United States in the recent past (141).  

Currently, the four most damaging species of plant-parasitic nematodes affecting cotton 

in the US are the southern root-knot (Meloidogyne incognita), reniform (Rotylenchulus 

reniformis), Columbia lance (Hoplolaimus columbus) and sting (Belonolaimus 
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longicaudatus) nematodes (22, 23, 85, 92). Estimated losses of cotton lint yield by these 

pathogens in the US have increased from 1% to 2% in the 1950s to more than 4% in 

2000 (22).  Nematodes are the pathogens that cause the greatest losses in U.S. cotton, 

and reniform nematode is second only to root-knot nematode (Meloidogyne spp.), 

causing an estimated economic loss of approximately 2.0% nationwide.  However, in the 

Mid-South states of Alabama, Mississippi, and Louisiana, losses to reniform nematode 

have been much higher, averaging 7.2% (24). Some areas of Texas also suffer 

significant losses. 

 
Reniform nematode was first reported as a pest of cotton in 1940 by A.L. Smith (1940). 

Originally described in Hawaii (90), reniform nematode was found associated with 

Pratylenchus pratensis (probably P. brachyurus) in Georgia fields used in fusarium wilt 

trials by Steiner and Smith (138). Subsequently, reniform nematode was identified as the 

causal agent for stunted cotton in Louisiana in the 1960s (18, 19, 73). Important studies 

on reniform nematode were conducted in Louisiana and Texas in the 1970s and 1980s, 

but only in the past decade has there been an increase in research effort and heightened 

awareness of the pathogenic ability of this nematode.  

 

Unlike many other species of plant-parasitic nematode, reniform nematode reproduces 

readily and achieves very high population densities in fine-textured soils. The life cycle 

of reniform nematode follows the basic pattern for plant parasitic nematodes, beginning 

with a one-celled egg. The egg is deposited in a gelatinous matrix and undergoes cell 

divisions that lead to the development of the first-stage juvenile (J1). The J1 molts to 
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form a second-stage juvenile (J2) that hatches from the egg. The life cycle of the 

juvenile stages diverges from that of many plant parasitic nematodes in that the J2 

through J4 stages are fairly immobile and do not feed (20, 58, 127, 137). Also, the J3 

and J4 remain inside the cuticles from previous molts (20). Adult males and immature 

females emerge from the cuticles, and vermiform females penetrate roots to establish a 

feeding site in the stele. The females are sedentary semi-endoparasites during the 

remainder of their life cycle, with the anterior portion of the female on the root surface. 

The reproductive system of the female continues to develop after initiating a feeding 

site, and egg production begins within 1 to 2 weeks, depending on temperature. 

Typically, about 60 eggs are found in an egg mass. The optimum temperature for 

reproduction is about 30°C, with no development at 16 or 36°C (20). 

 

Reniform nematode can feed and reproduce on a wide range of plants. Many vegetable 

crops, vetch, clover, and certain varieties of soybean are excellent hosts. Non-host crops 

include corn, sorghum, peanut, and winter grain crops such as wheat, rye, oats, and 

barley (59).  Reniform nematode feeding induces marked cellular changes, including 

formation of dense granular cytoplasm, dissolution of cell walls and coalescing of 

cytoplasm of adjacent cells, thickening of cell walls by deposition of polysaccharides, 

enlargement (hypertrophy) of cells and enlargement of nuclei and nucleoli, resulting in 

the formation of multinucleate syncytia (118).  Carter (31) reported that in reniform-

resistant G. arboreum, feeding leads to hypertrophy of pericycle cells, and their 

disintegration starting at 7 to 12 days after penetration. Cell walls immediately adjacent 
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to the nematode head were thickened and more safranin-positive in resistant than in 

susceptible cotton cultivars (31). 

 

Nematode Management in Cotton 

Management by cultural practices 

In modern cotton production, cultural practices often have limited use in suppressing 

nematode population densities and minimizing yield losses (120). Crop rotation, 

growing non-host, resistant, or antagonistic cover crops, incorporation of plant materials 

or animal manures, and destruction or removal of cotton stalks and roots to minimize 

nematode survival and reproduction have been investigated (7, 44, 45, 81, 83). Tillage 

has long been recommended as a means of incorporating crop residue and for destruction 

of residual roots. This may be especially important for cotton since it is a perennial and 

could support reproduction of plant-parasitic nematodes in areas where soil temperatures 

remain above the activity threshold for pathogenic nematodes for extended periods 

following harvest of the crop. Destruction of cotton root systems or removal with a stalk 

puller, however did not increase the yield of subsequent cotton crops in Georgia or North 

Carolina (35, 68).  Additional cultural practices that have been suggested for suppressing 

nematode population densities include planting date, the use of organic amendments, and 

cover crops. Unfortunately, little information is available on the effects of planting dates 

on cotton nematode populations. Cotton planting date had no impact on Columbia lance 

nematode in North Carolina, and planting dates are not flexible in many areas because of 

the relatively long season used to produce cotton in the United States (81). 
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Management with nematicides 

Nematode management in cotton is largely dependent on nematicides, and these 

materials are reasonably effective in preventing cotton-yield suppression by plant-

parasitic nematodes on cotton (139). The use of nematicides, however, has increasingly 

come under scrutiny by public and government agencies because of toxicological and 

environmental concerns (149). Currently, the only nonfumigant nematicide/insecticide 

with a proven level of efficacy against nematodes that is labeled for at-planting use in 

cotton is aldicarb (Bayer Crop Science, Research Triangle Park, NC). Another 

carbamate, oxamyl (DuPont Crop Protection, Wilmington, DE), is labeled for foliar 

application to cotton, provided a preplant or at-plant application of a nematicide was 

made.  Current fumigant nematicides labeled for use in cotton include the chlorinated 

hydrocarbon 1, 3-dichloropropene (Dow AgroSciences, Indianapolis, IN) and metam 

sodium (Amvac Chemical Corp., Los Angeles, CA).  

 

Management by biological control 

Over the past 20 years, studies on biological control of reniform nematode have reported 

antagonistic activity of nematophagous fungi and strains of bacteria against different 

life-cycle stages of nematode (156-158). Paecilomyces lilacinus, Pochonia 

chlamydospora, and an unidentified fungus named Arkansas Fungus have been 

documented as parasites of the egg stage of reniform nematode (77, 157). The 

vermiform life stages were reported to be colonized by the fungi Arthrographis spp., 

Pseudorobillarda spp., and Fusarium equiseti (101). The zoosporic fungus Catenaria 
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auxiliaris was reported colonizing reniform nematode vermiform life stages (32). 

Furthermore, strains of the bacteria Pasteuria spp. and Pseudomonas fluorescens have 

been reported to reduce the number of reniform nematodes in soil (65, 133). Recently, 

soils suppressive to reniform nematode have been reported in Louisiana and Texas; 

however, the agents responsible for this suppression have not been identified (128). 

 

In summary, chemical control is somewhat successful, but it is expensive and 

environmentally damaging and only a temporary solution. Crop rotation, whenever 

possible, is a better management alternative (26, 45, 144, 148, 164). But, rotation often 

returns only a fraction of the profits lost to reniform nematode damage. Most rotational 

crops are less profitable than cotton and the performance boosts to subsequent cotton is 

limited to only the first year that cotton is grown following the rotation (45). Biological 

control holds some promise for the future, but with current knowledge it is difficult to 

promote or establish a micoflora or fauna in soils that effectively suppresses nematode 

population densities, especially in the relatively short period of time of a single growing 

season. Reliable and effective biological control systems are likely to be limited in the 

near future to specialized situations, such as intensely managed crop systems where the 

environment can be manipulated to promote biological activity. Ultimately, therefore, 

host plant resistance is the best means of reniform nematode control from economic 

perspectives, as well as from environmental and human health perspectives. Host plant 

resistance has been prioritized over chemical, biological, cultural, and regulatory control 

components as a major goal for pest management (139). The desirability of genetic 
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resistance as a solution to the reniform nematode has increased with growing awareness 

of real and perceived dangers from some nematicides, and as laws have increasingly 

restricted their use (41, 52, 55, 121, 165). If developed by conventional hybridization 

methods using resistance genes that occur naturally in Gossypium, these products would 

not be transgenic, and could be readily deployed in US grower fields. Another, partial 

solution has been to identify tolerant genotypes that suffer less damage than do typical 

cultivars. A drawback of tolerance is that tolerant genotypes typically support high levels 

of nematode reproduction, and thus cannot be used to reduce the nematode population 

density in the soil. A second drawback is that tolerance appears to be highly 

environment-dependent, making the development of widely adapted tolerant cultivars 

unlikely (82). More than a dozen breeding lines and cultivars exhibiting some degree of 

reniform nematode tolerance have been identified (37-40, 72, 82, 134, 143, 150). 

Because discovery of tolerance provides an immediate solution to the problem, the 

search for tolerance remains an important research priority. Recent studies have 

identified several breeding lines and cultivars with potential for use in the important 

Mississippi Delta production region (134, 143). 

 

Interaction Between Soil Pathogens and Reniform Nematode 

Interactions between nematodes and other plant pathogens have been documented in a 

number of crops  (1, 2, 33, 53, 140, 142, 155, 161). Synergism between nematodes and 

fungal pathogens in cotton is much more common, or perhaps better documented, than 

associations between nematodes and other pathogen groups (142). In much of the U.S. 
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Cotton Belt, interactions between nematodes and seedling disease pathogens are 

common. In the early 1950s, an increase in cotton seedling disease, caused by 

Rhizoctonia solani, was observed in the presence of Meloidogyne incognita (119). This 

association with R. solani is not limited to M. incognita. Studies have suggested that 

increasing populations of reniform nematode and R. solani result in a linear suppression 

in plant growth (132). The presence of M. incognita, reniform nematode , or  

Hoplolaimus spp. has also been shown to increase the severity of seedling disease 

caused by certain fungal pathogens including Pythium,  Alternaria,  Glomerella, and  

Fusarium  spp. (142).  

 

Recently, numerous researchers have reported on interactions between T. basicola and 

M. incognita (71, 94, 104, 154, 155). It also has been reported that reniform nematode 

and several fungal species, including T. basicola are synergistically deleterious (108). 

With these interactions, enhanced seedling mortality and delayed plant development 

occur with cotton seedlings in the presence of both organisms.   It seems that while each 

of these pathogens normally can cause disease of a chronic nature, in combination they 

can cause significant plant mortality, and there is some evidence that infection by the 

nematode allows Thielaviopsis. basicola access to vascular tissue that would not 

normally be invaded in the absence of the nematode (153). 

 

Stunted plants of LONREN show symptoms typical of fungal root rots. A wide array of 

fungal pathogens, including T. basicola, have been isolated from the roots of nematode-
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infested plants (16).  The soil-borne fungus, Thielaviopsis basicola (Berk. & Broome) 

Ferraris (syn. Chalara elegans Nag Raj & Kendrick), the causal agent of black root rot 

of cotton, is an important plant pathogen of upland cotton (Gossypium hirsutum L.). It 

was first described in a field in Arizona in 1942 (78).  

 

Currently, T. basicola is recognized as an economically important seedling pathogen of 

cotton throughout the world (5, 66). The fungus has a host range of over 230 species and 

is a destructive pathogen on the roots of many crop and ornamental plants (131). It 

overwinters as thick-walled chlamydospores that germinate in the presence of the host 

and adequate soil water (67). T. basicola usually colonizes the root cortical tissue, 

causing dark brown to black discoloration of roots and hypocotyl (97, 99). Black root rot 

is most severe when soils are cool (below 24 ℃) and wet (above -20 joules/kg) (130, 

153). Infection of the seedling affects the roots and the portion of the hypocotyl below 

soil level. Infected cortical tissue turns black, but the vascular tissue, which is often not 

attacked, remains white. Diseased seedlings are stunted and easily pulled from the soil. 

Upland cultivars are rarely killed by the disease if soil temperatures are above 20 ℃, but 

affected plants may still be stunted, with a pronounced swelling in the crown area just 

below soil level (21). 

 

Management approaches for most fungal–nematode disease interactions require a 

consideration of both pathogens. The use of nematicides has been shown to lower the 

amount of crop loss caused by both fungal and nematode pathogens (36, 74). Seedling-
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disease pathogens, though, are capable of causing disease in the absence of the plant-

parasitic nematodes, and the use of fungicides may also be necessary. Traditional disease 

management programs that utilize host plant resistance, crop rotation, and/or 

modification of the planting environment to enhance seedling vigor are also effective at 

limiting the damage caused by nematode–fungal interactions. 

 

Cotton Resistance Breeding and Genomics 

In an extensive survey of Gossypium germplasm for reniform nematode resistance and 

tolerance, Yik and Birchfield found G. longicalyx J.B. Hutch. & B.J.S. Lee, to be 

immune to reniform nematode infection, whereas G. somalense (Gürke) J.B. Hutch. and 

G. stocksii Mast. were highly resistant. Resistance was also found in G. arboreum L., G. 

herbaceum L. and G. thurberi Tod. accessions (170). The most information regarding 

resistance to the reniform nematode introgression is available for G. barbadense, G. 

arboreum, G. aridium and G. longicalyx. Most accessions of G. barbadense, a species 

which freely hybridizes with G. hirsutum, are susceptible to the nematode, and resistant 

G. barbadense accessions usually suppress nematode populations by only 70-90% (125). 

In contrast, many accessions of G. arboreum, from which genes are introgressed via 

bridging species, are highly resistant to the reniform nematode (146), and the most 

resistant G. arboreum accessions suppress nematode reproduction 95% or more 

compared to susceptible G. hirsutum. As the extreme case, G. longicalyx, from which 

genes can be transferred only with great difficulty, is virtually immune. Given that 

strongest reniform nematode resistance has been found among diploid species, wide-
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cross introgression of the resistance gene(s) into upland and Pima cultivars is a logical 

step, although not an easy one. This apparent inverse relationship between compatibility 

and resistance within Gossypium greatly confounds strategies and funding for 

developing resistant cultivars. 

 

The first successful genetic introgression into upland cotton of strong reniform nematode 

resistance from an alien species involved germplasm from the African diploid wild 

species G. longicalyx; it involved the synthesis and backcrossing of di-species hexaploid, 

a tri-species hybrid, "HLA", [ (G. hirsutum x G. longicalyx)² ] x G. armourianum 

Kearn.], followed by modified backcrossing (13, 124).  Segregation of the reniform 

nematode resistance suggested monogenic control, and linkage with molecular and 

phenotypic markers indicated a single dominant gene or haplotype in chromosome 11, 

Renlon (48).  Two of the resulting germplasm lines from this resistance source were 

jointly released by the USDA, Texas AgriLife Research and Cotton Incorporated, 

namely LONREN-1 and LONREN-2 (14).  

 

Since the development and informal release of LONREN-1 and LONREN-2, progeny 

derived from a cross between a tri-species hybrid [G. arboreum x (G. hirsutum x G. 

aridum)2] and MD51ne (G. hirsutum) showed that resistance among introgression 

products was associated with the SSR markers BNL3279_132 and BNL2662_090 of 

chromosome 21 and originally designated the alien c21 locus as Renari, which is from G. 

aridum (129).  To avoid confusion with the Renlon
 gene from G. longicalyx located on 
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chromosome-11, which nomenclature convention implies as an allele of the Ren1 locus, 

the name of the Renari locus was later revised to Ren2
ari (54). Current data also suggest 

that Ren1 and Ren2 loci are duplicate (homeologous) genes with Ren1 residing on 

chromosome 11 (member of the "A" sub-genome) and Ren2 on chromosome 21 (member 

of the "A" sub-genome). Plants containing both Ren1
lon and Ren2

ari appeared to have 

slightly higher resistance than those with just one gene.  Pyramiding these two genes 

could also increase “durability” of the resistance. 

 

Gossypium barbadense GB-713 is the most resistant of G. barbadense and G. hirsutum 

accessions noted to date (123). Robinson initiated attempts to combine resistance to 

reniform nematode with resistance to root-knot nematode (M. incognita) by crossing 

GB-713 with either Acala NemX or M 315-RNR. The germplasm line BARBREN 713 

was released early 2012. A bulk-segregant analysis indicated the resistance to reniform 

nematode in  was controlled by a single dominant gene with additive effects (125). 

Based on segregation and linkage analyses from progenies involving hybrids with Acala 

Nem-X, resistance of GB-713 was attributed to three resistance genes, including two in 

chromosome 21, and one in chromosome 18 (61). The resulting germplasm line from 

this resistance source BARBREN 713 were joint released by the USDA, MAFES, Texas 

AgriLife Research and Cotton Incorporated. 

 

The evidence above collectively indicates that the best approach is to develop reniform 

nematode resistance in Upland cotton simultaneously through introgression of 
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resistances from multiple known sources. To facilitate introgression and gene 

pyramiding, it is absolutely essential to develop molecular markers for each resistance 

gene, because these enable researchers and seed companies to more cost- and time- 

effectively monitor sexual transmission, recombination and homozygosity of resistance 

as they proceed through the cultivar development process. Without molecular markers, 

reniform nematode resistance of individual plants can be detected only by nematode 

reproduction assays, which are time- and resource-consuming, expensive and not 

without error (48, 124). 

 

Simultaneous introgression of resistance from several species is probably the wisest 

approach. Incomplete expression or incorporation of closely linked deleterious genes is 

possible in all cases. Resistance from a single source may prove inconsistent across 

locations and/or time.  Pyramided resistance genes may provide higher degrees or more 

durable resistance. The availability of more than one gene resistance might allow for 

varying the resistance to reduce likelihood of the pathogen developing virulence to a 

single resistance gene.   

 

“Stunting” Problem and the Hypotheses 

LONREN-1 and LONREN-2 were shared soon after their development and before 

official release to expedite performance evaluations in additional locations, 

experimentation and breeding.  Broader evaluations of the LONREN lines and derived 

materials quickly revealed that plants carrying plants bearing the alien Renlon-bearing 
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segment were debilitated when grown in heavily nematode-infested fields.  LONREN 

and derived resistant lines were smaller and less productive on average than isogenic 

susceptible lines in spite of their resistance to the nematodes(15). To avail growers the 

maximum benefits of the nematode resistance, cultivars with resistance should be free of 

special concerns and, if possible, not require specialized weed management practices. 

So, eliminating the "stunting", if possible, is deemed to be an important practical goal.   

There are six hypotheses for LONREN stunting (Fig. 1.1). 

 

 

 
Figure 1.1. Primary hypotheses for stunting of LONREN lines in the field. 
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1. Allelic resistance gene loss: It is possible that G. hirsutum chromosome 11 (c11) 

normally contains an “allele” of the Renlon gene that contributes significantly toward 

plant resistance to one or more US soil-borne pathogens, but not to significant reniform 

resistance.  In LONREN lines, replacement of the endogenous G. hirsutum allele by 

Renlon compromises resistance to the corresponding US soil-borne pathogen(s), and 

leads to stunting in fields that harbor both the pathogen(s) and nematode.   

2. Linked resistance gene loss:  Replacement of a G. hirsutum c11 segment by a 

homeologous G. longicalyx segment entails loss of one or more nearby (clustered or 

linked) endogenous genes that contribute significantly to resistance to soil-borne 

pathogens. Linked gene(s) could also impart greater sensitivity to herbicides. 

3. Gain of the linked gene(s) that exacerbate sensitivity to one or more soil 

pathogens: Replacement of a G. hirsutum c11 segment by a homeologous G. longicalyx 

segment entails gain of one or more nearby genes that exacerbate sensitivity to one or 

more soil pathogens. 

4. Pleiotropic effect of Renlon: The G. longicalyx allele, Renlon has dual effects, one 

being higher resistance to reniform nematodes and another being reduced resistance to 

certain other soil-borne pathogens.   

5. Secondary effect of resistance:  The host plant resistance to reniform nematode 

leads to extensive tissue damage, “hyper-sensitivity”, which compromises root vigor and 

viability.  Exaggerated loss of key tissues in LONREN lines at nematode feeding sites, 

such as epidermis, could increase susceptibility to certain soil-borne pathogens as a 

secondary effect.  
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6. Combined effects:  Root damage from hypersensitivity to reniform nematodes 

and reduced genetic resilience to soil-borne pathogens (174). 

 

Recent evidence indicates that LONREN germplasm is differentially sensitive to high-

nematode populations, and suffers considerable root damage, which contributes to 

stunting (136).  Controlled experiments indicate genotypes with the Renlon-bearing 

segment are also differentially susceptible and/or sensitive to specific soil-borne fungi, 

including Thielaviopsis basicola (12). The increased susceptibility could be due to 

overly hypersensitive reaction to reniform nematodes and (or) nearby alien genes co-

introduced by “linkage drag” that modify resistance to one or more soil fungi.  

Recombining Renlon into c21 rather than c11 did not avoid stunting, and indicated that 

loss of native c11 resistance genes does not account for the stunting.  Newly created 

hybrids between BARBREN and LONREN show LONREN-like stunting levels, and 

indicate the LONREN factor(s) that lead to stunting are dominant and (or) epistatic to 

the non-stunting nature of BARBREN713 resistance.  

 

It would seem improbable, but possible that the gene for nematode resistance directly 

affects multiple traits, so indirect effects seem much more likely, e.g., due to tissue 

damage from hypersensitive cell death, or accentuation of the downstream pathogen 

response system(s). For example, allelic choice at the methylation of the benzoxazinoids 

locus can favor resistance to aphids or caterpillars (102). Recent literature has 

documented physiological connections between resistance to nematode and other 
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pathogens, ramifications of which can be pathogen-specific (57, 107). Also, closely 

linked genes would be expected to affect multiple traits, including pathogen resistance 

and agronomic performance and quality.  Such effects could be due to direct effects of 

specific genes on specific pathways and traits, while others might be quite indirect.  Of 

special interest may be other genes that affect resistances to other pathogens, because 

many genes important to resistances are known to be clustered and so it would be quite 

likely that the gene for reniform resistance is flanked by other G. longicalyx genes that 

alter the profile of resistances to multiple pathogens. Bell et al. noted that FOV and 

Thielaviopsis were synergistically detrimental in causing severe stunting in concert with 

the reniform nematode (12).  Alterations in pathogen resistance could indirectly affect 

numerous other agronomic traits, including herbicide sensitivity.  In any case, high-

resolution recombination offers the simplest approach to selecting reniform-resistant 

cottons that are free of unwanted genetic effects of linked alien genes.  Products from 

recombination would not be GMO, and would be readily bred and deployed in US 

grower fields.  The main objectives of my work have been: [1] to develop Renlon-linked 

markers and map the Renlon region at high resolution, [2] to recombine Renlon and nearby 

loci and determine if “stunting” is due to linkage drag, [3] to create genomic and 

germplasm resources for genetic manipulation of chromosome-11, especially Renlon, and 

[4] to determine if "stunting" is due solely to plant-nematode interactions or involves 

additional pathogens. 
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CHAPTER II 

DEVELOPMENT OF SNP MARKERS BETWEEN G. longicalyx AND G. hirsutum 

BY RNA-SEQ 

 

Introduction 

Next-generation sequencing (NGS) technologies are being extensively used for genome-

wide genetic marker development through RNA-seq, reduced-representation sequencing, 

restriction-site-associated DNA sequencing (RAD-seq) and low-coverage genotyping 

(43). The availability of abundant markers will facilitate association mapping, fine-

mapping of regions of interest, marker assisted selection (MAS) to circumvent the 

problem of linkage drag during introgressions or map-based cloning. The most common 

application of NGS is SNP discovery.   

 

In recent years, SNP markers have gained much interest in the scientific and breeding 

community (116). They occur in large numbers as differences of individual nucleotides 

between individuals and every single-copy SNP is a potentially useful DNA marker.  

Recent emergence of NGS technologies such as 454 Life Sciences (Roche Applied 

Science, Indianapolis, IN), HiSeq (Illumina, San Diego, CA), SOLiD and Ion Torrent 

(Life Technologies Corporation, Carlsbad, CA) have eliminated the problems associated 

with low-throughput and high-cost SNP discovery (96). RNA-seq can provide the most 

informative SNPs for gene synteny-based comparative genomics and association 
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mapping (64, 105, 162, 167). A number of software programs have been developed for 

SNP identification from the NGS data (89, 147). 

 

Transcriptome sequencing using NGS technologies allows rapid and inexpensive SNP 

discovery within genes and avoids highly repetitive regions of a genome. While SNP 

discovery in crops with simple genomes with a high quality reference genome sequence 

such as rice and arabidopsis (106, 169) is a relatively straightforward process, complex 

genomes pose serious obstacles for the researchers interested in developing SNPs. One 

of the major problems is the highly repetitive nature of larger complex plant genomes 

(103). Effective SNP discovery in complex genomes requires additional analysis to 

consider duplicate loci and to identify and eliminate pseudo-SNPs produced by mis-

assembly of paralogous and homoelogous sequences inherent to polyploidy genomes. 

Prior to the emergence of NGS technologies, researchers relied on different experimental 

strategies to avoid repetitive portions of the genome. These include discovery of SNPs 

experimentally by resequencing of unigene-derived amplicons using Sanger’s method 

(166) and in silico SNP discovery through the mining of SNPs within EST databases 

followed by PCR-based validation (8).  

 

The cotton genus (Gossypium L.) consists of five allotetraploid (2n = 4x = 52) and 45 

diploid (2n = 2x = 26) species (56). There are four domesticated species, including two 

New World allotetraploids, G. hirsutum and G. barbadense, and two Old World diploids 

G. arboreum and G. herbaceum. Within these 4 cultivated species, Upland Cotton, G. 
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hirsutum L. (AD1) is the most important fiber crop in the world. The diploid species fall 

into eight cytological groups, or ‘genomes’, designated A–G and K based on the 

chromosome-pairing relationships (51). Gossypium longicalyx (F1) is a wild species, 

originally from Africa. It has reniform nematode resistance (170) and potential fiber 

quality traits (46, 160). The first genome sequenced from the Gossypium genus was G. 

raimondii (2n=26, D5 genome), a Peruvian tree. This genome was sequenced with a 

combination of Sanger, Roche 454 pyrosequencing and Illumina paired-end reads (111).  

 

In present study RNA-seq was performed using G. longicalyx and five different cultivars 

of Gossypium hirsutum, ‘Acala’, ‘FM832’, ‘Sealand’, ‘PD-1’, and ‘TM-1’ using the 

Illumina NGS platform to identify SNPs between G. hirsutum and G. longicalyx (Gh_Gl 

SNPs). It is well known that cotton improvement efforts are seriously constrained by the 

limited amount of genetic diversity available to breeders and the  Gh_Gl SNPs produced 

from this project will be useful for future introgressions from G. longicalyx, genome-

wide mapping, and fine-mapping in specific regions of the genome. 

 

Here, I am reporting the following SNP development information as conducted in 

conjunction with this whole LONREN project. Two methods were used for developing 

Gh_Gl SNPs by collaborators from the University of California-Davis. Method I: Use 

assembly from RNA-seq of five G. hirsutum cultivars was used as the reference to detect 

Gh_Gl SNPs. Method II: A reference assembly built from RNA-seq of TM-1 (based on 

Roche 454 sequencing reads) and public ESTs was used as a reference to develop Gh_Gl 
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SNPs. A total of 68,578 Gh_Gl SNPs were developed by Method I and 38,217 Gh_Gl 

SNPs were developed by Method II. A subset of 86 randomly selected Gh_Gl SNPs by 

Method I was validated by KASPar assays (http://www.lgcgenomics.com/). 

Approximately 90% of the SNPs were successfully developed to KASPar assays.  78% 

of the total Gh_Gl SNPs were mapped to G. raimondii D5 genome. 

 

Materials and Methods 

Sequencing and informatic analyses leading to SNP development was done in 

collaboration with several researchers in the Stelly laboratory at Texas A&M University 

and the Allen Van Deynze laboratory at UC Davis.  Dr. Hamid Ashrafi and Dr. Allen 

Van Deynze of UC Davis completed the assemblies, wrote necessary program scripts, 

and made most of the comparisons used for discovery of putative SNPs.  Illumina 

sequencing was performed at the UC Davis Genome Center.   

 

Plant material, RNA extraction and library preparation  

Five G. hirsutum cultivars – ‘Acala Maxxa’ (Acala), ‘FiberMax 832’ (FM832), ‘Sealand 

542’ (Sealand), ‘PD-1’, ‘TM-1’ and G. longicalyx (plant number 200908137.04 from the 

Beasley Lab collection planted at Texas A&M University) were used for transcriptome 

analysis. Young leaf tissues were sampled from each plant and used to isolate total RNA 

using the Qiagen RNeasy Mini Kit per manufacturer instructions. RNA isolates were 

quantified using NanoDrop spectrophotometry and checked for quality by gel 

electrophoresis. Illumina TruSeq® RNA libraries were prepared using the manufacturer 
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protocol. Libraries were normalized (98) by denaturation and rehybridization in NaCl 

and TMAC (tetramethyl ammonium chloride) buffers and were then treated with Duplex 

Specific Nuclease to digest any remaining DNA contamination (175). The treated library 

was re-amplified using the Illumina library primers via PCR per manufacturer’s 

instructions. The libraries were sequenced using the Illumina Genome Analyzer II for 85 

cycles to get paired-end reads.  

 

De novo assembly of five G. hirsutum cultivars 

For each G. hirsutum cultivar, a non-redundant set of sequences was obtained using the 

V-match program in the Velvet assembler (Fig. 2.1). One iteration of assembly for each 

cultivar was also created using the CLC Genomics workbench (V. 4.0). Multiple 

iterations (from 21 K-mers to 51 K-mers) of assembly were created using Velvet 

assembler for each cultivar. And a non-redundant set of sequences for each cultivar were 

obtained by V-match program (V. 2.0) (http://www.vmatch.de/). The assemblies 

obtained by the two independent programs were combined to create a Velvet-CLC 

assembly from each cultivar. A final G. hirsutum assembly was obtained by combining 

each of the five Velvet-CLC assemblies in the program CAP3 (Fig. 2.1). 
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Figure 2.1. Assembly strategy for G. hirsutum transcriptome reference assembly. 

 
 
 
Identification of SNPs 

Two methods were used separately to identify the single nucleotide variations between 

G. longicalyx and G. hirsutum cultivars.  

 

Method I: The G. hirsutum assembly derived from the five cultivars (Fig. 2.1) was used 

as a reference and the RNA-seq reads of G. longicalyx were mapped to this assembly 

using the Burrows-Wheeler Alignment tool (BWA) for the detection of SNPs and 

INDELs. To map all the reads of each G. hirsutum cultivar separately to the G. hirsutum 

assembly, the SAMtools program was used with the merge option set to merge all 

alignment files and generate a SAM pileup file for all cultivars together as well as 
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generate a pileup file for each individual cultivar. Galaxy and custom Perl scripts were 

used to parse the SAM pileup files and to generate a so called ‘genotype’ table. From the 

genotype table the SNPs between G. hirsutum and G. longicalyx (Gh_Gl SNPs) were 

identified by custom Perl algorithm(s). For each contig in the SNP file, the full length 

sequence of the contig was extracted from the assembly file and SGN 

(http://solgenomics.net/) was used to find the putative intron position(s). From the list of 

SNPs, 50 bases from both sides of the SNP site were extracted from the reference 

sequence. The list of SNPs was reduced to SNPs not in the vicinity of 100 bases of an 

intron. 

 

Method II: Reads from G. longicalyx were trimmed for quality and then aligned to the 

Gossypium hirsutum assembly created from inbred TM-1 (Ashrafi et al. unpublished), 

using the CLC Genomics Workbench (V. 5.0). The mapping files were exported as BAM 

files to a Linux server and SAMtools was used to call variants. The resulting pileup files 

were filtered using the filter pileup perl script in Galaxy (https://main.g2.bx.psu.edu/) to 

remove INDELs and positions with coverage less than three. The resulting file was then 

further filtered using an in-house perl script which required the two genotypes to be 

homozygous for different bases with minimum coverage of 10. Putative SNPs were then 

removed from the list if they were located within 50 bases of a predicted intron-exon 

boundary on the TM-1 assembly using SGN (http://solgenomics.net/). The list of SNPs 

was reduced to SNPs not in the vicinity of 100 bases of an intron. 
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From the last SNP list (step above) and list of GSPs (Genome Specific Polymorphisms) 

or INDEL positions, we defined three classes of SNPs:  

 Class I contained SNPs in contigs with no GSPs or INDELs;  

 Class II contained SNPs with no GSPs or INDELs in the vicinity of 50 bases of 

the SNPs, but beyond this 50bp range, GSPs or INDELs were allowed;  

 Class III contained SNPs with one GSP or INDEL within 50 bases of the SNP. 

 

SNP validation 

Prior to SNP applications, the SNPs were validated to identify true SNPs from random 

sequence errors. To evaluate the sets of putative SNPs identified by a given 

bioinformatic "pipeline", a subset of the overall set was analyzed experimentally in a wet 

lab to estimate the rate at which the set of putative SNPs would convert to functional 

assays. LGC Genomics/ Kbioscience KASPar assays (http://www.lgcgenomics.com/) 

were used. Allele-specific and allele-flanking primers were developed using 

BatchPrimer3 using an optimal primer Tm of 57oC (minimum 55oC, maximum 60oC, 

maximum difference between primers 5oC), optimal product size of 50 base pairs 

(minimum 50 base pairs, maximum 100 base pairs) and the default settings were used 

for the remaining parameters. KASPar assay primers were mixed at the dilutions 

specified by LGC Genomics then assessed using a small cotton screening panel. 

 



 

27 
 

 

A subset of 86 Gh_Gl SNPs was randomly selected from SNPs identified by Method I. 

The DNA samples (2 µL at 10ng/µL) were formatted in 96-well plates. They were dried 

at 60-65°C for an hour. The screening panel included Acala, FM832, Sealand, PD-1, 

TM-1 and G. longicalyx.  Each genotype was replicated three times. Reagents included 

sterile deionized water 3.826 µl, 2x Reaction mix 4 µl, Primer mix 0.11 µl, 50mM 

MgCl2 0.064 µl. A total of 8 µl of reagents was added to each well of the plate that 

contained the dried DNA samples and then sealed by Flexiseal with sealing tape at 

175°C. The PCR was conducted by the KASPar assay (KBioscience Ltd., Hoddesdon, 

UK), following an acclimation step of 94°C for 15 minutes, the first 10 cycles consisted 

of:  denaturation at 94°C for 20 seconds, followed by annealing starting at 65°C for 1 

minute, decreasing 0.8°C per cycle to an annealing temperature of 57°C for the final 

cycle. This was followed by 28 cycles of denaturation at 94°C for 20 seconds, and 

annealing at 57°C for 1 minute. Plates were then briefly centrifuged, then read on the 

Pherastar plate reader. The Pherastar files were imported into KlusterCaller software for 

genotyping. In the event that greater amplification was required, plates were returned to 

the hydrocycler for iterations of 3 additional PCR cycles, with the denaturation steps at 

94°C for 20 seconds, and annealing at 57°C for 1 minute.  

. 

Alignment of SNPs to the D5-reference genome  

The SNP and flanking sequences were aligned to the Gossypium raimondii (D5) 

reference genome sequence (111) using BWA in Galaxy using default settings. SNPs 

were separated into files based on D5-genome scaffold alignment. Scaffold files were 
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sorted by genome position. Density of markers along the D5 genome scaffold were 

plotted in the R program using a sliding window over genome position.  

 

Results 

Plant material and sequencing 

Five G. hirsutum cultivars ‘Acala’, ‘FM832’, ‘Sealand’, ‘PD-1’, ‘TM-1’ as well as 

G. longicalyx were used for RNA sequencing. A few small leaves were used for each 

RNA extraction. cDNA libraries to be used for sequencing were prepared from the poly-

A containing RNA and sequenced on the Illumina Genome Analyzer using a 101 bp 

paired-end strategy.  

 

RNA-seq libraries of the five G. hirsutum cultivars were run in 31 lanes separately of the 

Illumina flow cell whereas the G. longicalyx sample was run in 6 lanes. Paired-end 

sequencing of each transcriptome generated 53,468,192, 52,257,485, 45,278,905, 

50,458,314 and 60,237,336 sequence reads for Acala, FM832, Sealand, PD-1, TM-1, 

respectively, whereas 52,050,305 sequence reads were generated for G. longicalyx 

(Table 2.1). 
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Table 2.1. Sequencing statistics of five G. hirsutum cultivars and G. longicalyx. 

Species  Cultivar(s)  Genome  No. of  Illumina 

Lanes for each 

cultivar 

No. Total 

Reads  

Percent Reads 

Used* 

Velvet Assemb. 

Percent 

Reads Used 

CLC  

G. hirsutum  Acala Maxxa 

FiberMax 

832 

PD-1 

Sealand 542 

TM1  

(AD)1  

(AD)1 

(AD)1 

(AD)1 

(AD)1 

31 

31 

31 

31 

31 

TOTAL => 

53,468,192 

52,257,485 

45,278,905 

50,458,314 

60,237,336 

261,700,232 

4%-40% 

4%-38% 

5%-38% 

6%-39% 

1%-43% 

2%-29% 

58.8% 

58.3% 

57.3% 

58.7% 

41.1% 

38.6%  

G. longicalyx  -  (F1)  6  52,050,305  0.7%-57%  43.8%  

* Percent reads used in the assembly by Velvet when using different K-mers from 21-51. 

 

 

 

De-novo assembly of the transcriptome 

Cleaned reads were assembled using the Velvet de novo assembly program and the CLC 

Genomics Workbench. Reads were assembled for different K-mer values (K21 to K51) 

in Velvet and one iteration of assembly for each cultivar in the CLC Workbench. The 

assembled data were analyzed for the total number of contigs produced by each 

program, N50 values, and number of contigs greater than 300 nt (Table 2.2). 
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Table 2.2. Assembly statistics of five G. hirsutum cultivars and G. longicalyx. 

 

 

Identification of SNPs  

The BWA program was used for identifying SNPs between G. longicalyx and G. 

hirsutum. Two categories of Gh_Gl SNPs were generated by Method I (G. hirsutum 

assembly served as the reference): Non-specific Gh_Gl SNPs, which are the SNPs 

between G. longicalyx and one of the five G. hirsutum cultivars; Specific Gh_Gl SNPs, 

which are the SNPs between G. longicalyx and all five G. hirsutum cultivars. Fifty bases 

on each side of the SNP site were extracted from the reference sequence. Overall,        

68, 578 SNPs were identified between G. longicalyx and G. hirsutum using Method I 

which were classified as either "Nonspecific" or "Specific", and then further classified as 

belonging to Class I, II, or III as described above (Additional file 1).  

Species,  Cultivar(s)  No. of 

Velvet  

Contigs 

> 300 

nt  

Total No.  

Nuc.  

Velvet  

N50  No. of  

CLC 

Contigs 

> 300 nt  

Total No.  

Nuc.  

N50  No 

Contigs 

Total No.  

Nuc.  

N50 

G. hirsutum  Acala Maxxa 

FiberMax 832 

PD-1 

Sealand 542 

TM1 

86,127 

84,773 

 77,647 

83,896 

104,986 

49,466,603 

48,471,346 

43,570,663 

47,832,219 

55,970,600 

597 

596 

579 

593 

545 

35,558 

34,606 

32,549 

34,393 

36,099 

21,714,353  

21,079,331  

19,387,564 

20,906,291 

17,363,787 

661 

656 

636 

653 

479 

-  -  -  

Mega 

Assembly 

(Velvet + 

CLC) 

G. hirsutum  

-  -  -  -  -  -  -  71,916 61,283,682  1145 
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Gh_Gl SNPs between G. longicalyx and TM-1 were generated by Method II (TM-1 

assembly and public ESTs were used as reference). Using this method, 38,217 SNPs 

were identified between G. longicalyx and TM-1 which were classified as Class I, II, or 

III (Additional file 1). Table 2.3 shows the distribution of SNPs identified using both 

methods as well as their class type. 

 

 

 
Table 2.3. Summary of Gh_Gl SNPs identified by the two methods. 

Method Specificity Class type* #SNPs 

I Non-specific I 12,119 

II 7,364 

III 1,709 

Specific I 28,176 

II 15,666 

III 3,544 

II G. longicalyx vs. TM-1 I 14,546 

II 18,960 

III 47,11 
*        Class I (Clean SNPs) – No intron, no INDEL and no GSP in the SNP-containing contig.     

Class II – No intron, no INDEL and no GSP within 50 bases of the SNP.   
Class III – No intron within 100 bases of SNP, but one GSP/INDEL within 50 bases of the SNP.  
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SNP validation 

Randomly selected SNPs from non-specific and specific types, including all three 

classes, were tested by KASPar assay. Overall, 86 SNP-based markers were tested. 

Approximately 90% of the Gh_Gl SNPs tested were convertible to KASPar assay 

(Table 2.4).  

 

Table 2.4. Gh_Gl SNP validation summary. 

Specificity Class type* Number of SNPs tested Successful SNPs Rate of success 

Non-specific I 14 12  

II 14 13  

III 15 14  

Specific I 14 14  

II 14 12  

III 15 13  

Total I, II and III 86 78 90.70% 
*        Class I (Clean SNPs) – No intron, no INDEL and no GSP in the SNP-containing contig.     

Class II  – No intron, no INDEL and no GSP within 50 bases of the SNP.   
       Class III – No intron within 100 bases of SNP, but one GSP/INDEL within 50 bases of the SNP.  
 

 
Alignment of SNPs to the D5 cotton genome 

The overall D5 genome assembly (V2.1) includes 748.1 Mb, with 1,033 scaffolds and 

19, 735 contigs. The scaffold N50 = 6 (62.2 Mb), contig N50 = 1,596 (135.6kb),  and 41 

scaffolds are > 50kb in size. Overall the assembly putatively represents approximately 

99.0% of the genome (http://www.phytozome.net/cotton.php).  
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In total 106,795 Gh_Gl SNPs (78%), including 68,578 Gh_Gl SNPs developed by 

Method I and 38,217 by Method II, were aligned to the D5 genome assembly using the 

BWA program with default settings (Table 2.5).  

 

Table 2.5. Numbers and classifications of the Gh_Gl SNPs mapped to the D5 

genome. 

Specificity Class type* Unmapped Mapped Total 

Non-specific I 1943 10176 12119 

 II 1103 6261 7364 

 III 347 1362 1709 

Specific I 6033 22143 28176 

 II 3153 12513 15666 

 III 1067 2477 3544 

G. longicalyx vs. TM-1 I 3216 11330 14546 

 II 4130 14830 18960 

 III 1614 3097 4711 

 Total 22606 84189 106795 

 Percent 21.17 78.83  
*        Class I (Clean SNPs) – No intron, no INDEL and no GSP in the SNP-containing contig.     

Class II  – No intron, no INDEL and no GSP within 50 bases of the SNP.   
Class III – No intron within 100 bases of SNP, but one GSP/INDEL within 50 bases of the SNP.  

 

 

Of the markers aligned, 99.75% were aligned to 1of the 13 pseudo-chromosome 

scaffolds. Only 267 markers were aligned to unplaced scaffolds (Table 2.6). All the 

Gh_Gl SNPs with the map position on D5 genome were shown in the additional file 1. 
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Density of markers along the D5 genome 13 major scaffolds were plotted in the R 

program using a sliding window over genome position.  

 

Table 2.6. Distribution of mapped Gh_Gl SNPs. 

Scaffold Name Number of Hits Percent of Total Hits 

Unmapped 22606 21.17 

Chr01 6445 6.03 

Chr02 5734 5.37 

Chr03 4309 4.03 

Chr04 6607 6.19 

Chr05 6168 5.78 

Chr06 6422 6.01 

Chr07 8616 8.07 

Chr08 7349 6.88 

Chr09 10643 9.97 

Chr10 5607 5.25 

Chr11 5776 5.41 

Chr12 4236 3.97 

Chr13 6010 5.63 

other scaffolds 267 0.25 
 

 

The density of markers along the 13 major scaffolds of the D5 genome were plotted in R 

using a sliding window over genome position in collaboration with K Hoegenauer (Fig. 
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2.2). The mapped SNPs were not uniformly distributed across each chromosome.  More 

SNPs were clustered in gene-rich, high-recombination euchromatic regions than in 

repeat-rich, low-recombination heterochromatic regions.   

 

 

 
Figure 2.2. Distribution of SNPs relative to Gossypium raimondii (D5) draft genome 

version 2.1. 

 

 

Discussion 

Apart from the initial bottleneck encountered during the domestication process, cotton 

breeding has frequently involved crossing and re-selection within small sets of breeding 

materials which has led to the loss in genetic diversity (25, 28, 100, 163). The narrow 

genetic base of Upland cotton has become a serious concern since limited genetic 

diversity translates to limited allelic availability for continued genetic gain (27). With a 

heightened risk of genetic vulnerability to disease epidemics and climate change, elite 
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Chr06Chr05

Chr04Chr03Chr02
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breeding programs could benefit from the unexploited standing genetic variation of 

obsolete cultivars without the yield drag typically associated with wild accessions. 

Interspecific gene transfer through sexual hybridization and introgression continues to be 

the predominant method for introducing new alleles into many domesticated plant 

species. The genes other than the targeted gene on the alien chromatin usually cause 

linkage drag, a deleterious effect on yield and quality. Reduction of linkage drag is the 

most difficult goal to achieve because of the selection for the target. Hence, this is where 

use of marker-assisted selection (MAS) is most rewarding (69, 171). Combined with 

traditional selection techniques, MAS has become a valuable tool in selecting organisms 

for traits of interest, such as color, meat quality, or disease resistance. 

 

Such is the case with LONREN which was created to confirm reniform resistance found 

in G. longicalyx (127). Combining G. longicalyx with G. hirsutum offers superior fiber 

trait characteristics as well (160). The large number of G. longicalyx markers developed 

here will provide tags for a large number of genes in which differences exist between G. 

hirsutum and G. longicalyx. All of these Gh_Gl SNPs will be available for genome-wide 

mapping, fine-mapping in specific regions of the genome and future introgressions from 

G. longicalyx.  In addition, 86 markers across the genome were randomly selected and 

~90% were validated by KASPar assay. 

 

Of the total 106,795 Gh_Gl SNPs, only 22,606 of them did not map to D5 genome, 

whereas over 78% of them did map, even though the F1 and D5 genomes are not 
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evolutionarily close.  The A-genome diploids native to Africa and the Mexican D-

genome diploids diverged ~5-10 MYA (135), and several lines of evidence indicate that 

G. longicalyx from Africa with its F-subgenome is more closely related to the A-

subgenome than the D-subgenome (112).  

 

The Gh_Gl SNPs were aligned to the D5 genome to obtain some indication of the 

relative position of the SNPs in the genome. As expected due to the nature of 

heterochromatic regions near centromeres and telomeres, the SNPs were distributed 

unevenly across the 13 chromosomes. A bimodal pattern was evident, where large 

numbers of SNPs mapped near the sub-telomeric regions of chromosome arms while 

small numbers of SNPs mapped to what are inferred to be centromeric and telomeric 

regions, i.e., approximately the middle and ends of the reference scaffolds, since most 

cotton chromosomes are metacentric or submetacentric (93). However, based on a 

sliding-window approach, the diminishing SNP densities in telomeric regions are 

difficult to interpret, because they inferably include the combined effects of a statistical 

artifact, and the reduction and eventual absence of genes in the sub-telomeric and 

telomeric regions. The statistical artifact would arise as the “window” progressively 

includes the end of a chromosome. 
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CHAPTER III 

NON-DESTRUCTIVE HIGH-THROUGHPUT DNA EXTRACTION AND 

GENOTYPING METHODS FOR COTTON SEEDS AND SEEDLINGS 

 

Introduction 

Molecular plant breeding requires the genotyping of a large number of individuals for 

diversity analysis, marker-assisted selection, mapping and "fingerprinting". For high-

throughput genotyping programs, the most limiting factor for the use of PCR 

amplification in analyzing large plant populations is the time and expense of extracting 

DNA.  

 

There are several reports on rapid extraction of DNA from plant tissues, but almost all of 

these involve tissue from whole plants (17, 50, 60, 86). In addition, several in-house 

DNA extraction protocols have been described for temperate crops, based on the use of 

96-well Microliter microtiter plates (49, 109). 

 

DNA isolation from cotton (Gossypium sp.) is complicated by the presence of phenolic 

compounds (110). During tissue homogenization of certain plants, phenolics become 

oxidized and irreversibly bind with proteins and nucleic acids (91). This irreversible 

binding produces a gelatinous material, which is hard to separate from organelles, and 

which renders DNA unsuitable for PCR or restriction enzyme digestion (114). 

Previously developed protocols for extraction of cotton DNA suitable for PCR are based 
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on leaf tissue, and involve the use of many chemicals (34, 88, 110). A 96-well plate 

based high-throughput DNA extraction method was reported by Xin et al. (168).  It is 

applicable to many species, including cotton, and avoids grinding and/or the use of 

organic solvents, but it relies on plant leaf tissue.  

 

DNA extraction performed on seed or cotyledon instead of leaf tissue would allow 

genotyping to be carried out independently of the growth season, or very early in the 

growth season. This would enable seed to be selected prior to planting or cotyledons 

prior transplanting. In addition, it would be useful for identifying rare recombinants or 

gene combinations from among thousands of individual seed or seedlings. DNA 

extraction performed on seed has been described previously using single dry seed of 

wheat, rice, barley and several other species (3, 35, 75), including patented robotics-

enabled methods (47, 70). 

 

In this chapter, I report on the development of a high-throughput method for non-

automated but rapid extraction of DNA from ungerminated seeds or cotyledons suitable 

for PCR analysis. This method was derived in part from the methods described by Xin et 

al. (2003) and von Post et al. (2003) (152, 168).  Relative to commercial kits readily 

applicable to cotton seeds and cotyledons, this method is a magnitude lower in cost and 

more time saving. Being applicable to seeds and cotyledons, it enables genotyping 

before planting or during initial seedling stages, both of which offer numerous 

advantages. This method has already proven itself useful in multiple ongoing research 



 

40 
 

 

projects that require low-cost DNA preparations for PCR-based applications. 

Preliminary tests indicate that with minor adjustments, it is applicable to seeds of other 

plants with moderate or large seed size.   

 

Materials and Methods 

Solutions and buffers 

Buffer A (100 mM NaOH, 2% Tween® 20) must be made fresh from 10 M NaOH and 

20% Tween 20 stock solutions just before use. For buffer B [100 mM Tris-HCl (Sigma), 

2 mM EDTA], the pH is ~2.0. Buffer B does not have to be made fresh for each 

extraction and can be stored at room temperature (152, 168). 

 

Plant materials 

Mature undelinted and delinted seed were used to assess applicability to seed of cotton 

(G. hirsutum). Cotyledon tissues of cotton were grown under greenhouse conditions 

(Day Temperature: 29.4°C, Night Temperature: 23.9°C, Humidity: 70%, Light: Natural 

light) in a commercial growing medium (Metro-Mix 700).  

 

Cotton seed and seedling tissue sampling procedures 

Delinted or undelinted seed were sanded opposite the hypocotyl using the Sanding Drum 

(Dremel #407) with 60-grit Sanding Bands (Dremel #408), just far enough to expose 

cotyledonary tissue (Fig. 3.1a). Sanded seeds were inserted one seed per well into 

modified PCR plates (Phenix #MPS-499) labeled with a unique identifying code (Fig. 
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3.1c), from which the end of each well had been previously removed (e.g., cut away with 

a box-cutter or similar tool) (Fig. 3.1b), then covered with adhesive tape (e.g., packing 

tape) to prevent the seed from falling out of the wells.  When seed are variable in size, 

additional manual pressure may be required to force seed into the well, or a water-

soluble glue may be applied to the plate to more firmly secure the smaller seed.  The 

PCR plate was then inverted, and an Engraving Cutter (Dremel #107) was rotated at a 

slow speed while inserting it to the depth of the cutting head (approximately 2.4 mm) 

(Fig. 3.1d), such that the abrasion created fine tissue particles in each well. After each 

use, the cutting head was cleaned by drilling a hole into a conventional pencil eraser 

(Fig. 3.1e). About 3.5 mg of particulate cotyledonary tissue was obtained from each 

sample. For applications involving smaller seeds, or those requiring smaller amounts of 

DNA, a 1.6 mm Engraving Cutter (Dremel #106) was used, which yielded around 1.5 

mg of tissue. Once drilling was completed, a regular PCR plate (Phenix #MPS-499) 

labeled with a matching unique identifying code was physically placed male-to-female 

with the modified collection/storage plate (Fig. 3.1f), and then the pair of plates was 

inverted and slapped to dislodge and transfer the drillings into the matching wells of the 

regular PCR plate. The modified plates of sampled seeds were stored sequentially 

according to labels. After genotyping, seed were selected based on genotype, then 

extracted from the plate and germinated in "rag dolls" of germination paper or in Jiffy 

peat pellets. 
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Figure 3.1. Cotton seed tissue sampling process. (a) Sand undelinted cotton seed using 
a Sanding Drum. (b) Modify a PCR plate by cutting tips of wells. (c) Place sanded seed 
into modified PCR plate. (d) Drill sanded seeds using an Engraving Cutter. (e) Clean 
Engraving Cutter by drilling into an eraser. (f) Match wells of modified (seed) and 
unmodified (sample) plates, then invert and hand-slap upper plate to dislodge and 
transfer tissue from modified to unmodified plate. 
 

 

Seedling tissue samples were obtained from 3-day post-emergence cotyledons (Fig. 

3.2a) using a standard (6 mm diameter) single-hole punch (Fig. 3.2b), which was wiped 

clean between samples. For applications requiring smaller amounts of DNA, a 

commercially available 3 mm punch, or alternatively, a 200 µL pipette tip can be cut to 
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the appropriate size, and used to create 3 mm diameter leaf disks. Each tissue disk was 

transferred into a well of a 96-well plate (Fig. 3.2c) or a flat-bottomed microfuge tube, 

depending on the number sampled overall. Samples were dried by one of two methods 

before extraction. Either tissue samples were heated in a dry incubator for 1 hour at 

60°C, or desiccant beads were added to the tubes/wells, closed, and allowed to dry for 24 

hours. Once dried, tissues were crushed individually to increase contact surface; a 

disposable or clean-able implement was used to avoid cross-contamination.  

 

 

 
Figure 3.2. Cotyledon tissue sampling process. (a) Obtain seedling tissue samples 
from 3-day post-emergence cotyledons. (b) A standard (6mm diameter) single-hole 
punch. (c) Transfer cotyledon tissue disk into a 96-well PCR plate. 
 

 

 
 

a

b

c
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DNA extraction  

50 µL of Buffer A was added to each sample and plates were optionally mixed or 

vortexed and briefly centrifuged to ensure reagent contact with the seed tissue or 

cotyledon disk. Plates can be processed simultaneously either by placing in 1200W 

microwave for 1 minute at 30% power (approximately 360W) or by using a bench-top 

oven, water bath or thermocycler set at 95°C for 10 minutes. Plates were removed and 

50 µL of Buffer B was added to each sample. Then plates were diluted 2x with de-

ionized H2O, mixed or vortexed and briefly centrifuged to consolidate extract. Ten µL of 

supernatant was transferred to another plate, and the new plate was then diluted another 

10x with de-ionized H2O for seed DNA extraction. For cotyledons, after Buffer addition 

and heating steps, 10 µL was transferred into a new plate, then the new plate was diluted 

10x directly. For PCR-based analysis, approximately 2 µL of the diluted extract was 

transferred from a DNA plate to a PCR plate using either a conventional multi-channel 

pipette or i-Pipette (Apricot Designs). The whole procedure is shown in Table 3.1.  
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Table 3.1. Procedure of high-throughput DNA extraction from cotton seeds or 

seedlings. 

 
 

 

 

 

 

 

 

1. Add 50µL Buffer A to the samples, then seal the plate. 

2. Mix to immerse tissue, then centrifuge briefly to consolidate tissue. 

3. Heat, using one of several options: (1). Microwave for 1 minute at 30% power 

(approximately 400 Watts); (2). Heat for 10 minutes at 95°C in an oven, a 

thermocycler or a waterbath. 

4. Add 50µL Buffer B to the plate. 

5. Mix or vortex, then centrifuge briefly to consolidate extract and cellular debris. 

6. For cotton seed extract: dilute 2x, transfer 10µL to a new plate, and dilute new 

plate 5x or 10x. For seedling extract: transfer 10µL to a new plate, then dilute 

DNA samples in the new plate 10x. 

7. Transfer 2 µL of the diluted extract to a new PCR plate. Optionally dry the 

samples at 65°C.   

8. Conduct PCR.  
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Primers 

Two cotton SNPs were used in this study, one for testing seed-based DNA extraction, 

and the other for seedling-based extraction.  The SNPs were chosen from subsets of 

large numbers of interspecific SNPs identified by comparative RNA-seq analysis, and 

experimentally tested with KASPar assays as part of the computational pipeline 

evaluation process for identifying putative SNPs between cotton (G. hirsutum) and 

several related 52- and 26-chromosome species (Hulse et al. in preparation).  SNP 

Gl_072641 can be detected by KASPar assay using the common reverse primer 

TGTGGAGGCATAGTGAGAGG, and forward SNP-specific primers 

GGTGTATGTAAAAGTCCGAAAGCA and GTGTATGTAAAAGTCCGAAAGCG. 

SNP Gb_010283 can be detected by KASPar assay using the common reverse primer 

AGATTGACTCGGGACTTCCT, and forward SNP-specific primers 

CCCCTCATGTTTCTAACTATTTGT and CCCTCATGTTTCTAACTATTTGC.  

 

PCR conditions  

Two µL of DNA extract were added to each well, the plate was briefly centrifuged, and 

dried down in a bench-top oven for 1 hour at 65°C. An 8 µL PCR mixture containing 4.0 

µL of Reaction Mix (KASP Master mix, LGC Genomics #KBS-1016-002), 3.826 µL of 

sterile deionized water, 0.11 µL of Assay (Primer) Mix, and 0.064 µL of 50 mM MgCl2 

were added to each well. The PCR was conducted by the KASPar assays (KBioscience 

Ltd., Hoddesdon, UK), following an acclimation step of 94°C for 15 minutes, the first 10 

cycles consisted of:  denaturation at 94°C for 20 seconds, followed by annealing starting 
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at 65°C for 1 minute, decreasing 0.8°C per cycle to an annealing temperature of 57°C for 

the final cycle. This was followed by 28 cycles of denaturation at 94°C for 20 seconds, 

and annealing at 57°C for 1 minute. Plates were then briefly centrifuged, then read on 

the Pherastar plate reader. The Pherastar files were imported into KlusterCaller software 

for genotyping. In the event that greater amplification was required, plates were returned 

to the hydrocycler for iterations of 3 additional PCR cycles, with the denaturation steps 

at 94°C for 20 seconds, and annealing at 57°C for 1 minute.  

 

SNP amplification for cotton seed DNA 

The protocols above for non-destructive extraction of DNA from cotton seed and SNP 

genotyping were tested with experimental research materials. DNA samples extracted in 

the prescribed manner from 88 BC1F1 cotton seeds were placed into the first 11 

columns of a 96-well plate, where these 88 seeds were known on the basis of pedigree to 

be segregating for SNP Gl_072641, which is in an alien chromosome segment derived 

from the species G. longicalyx, a wild African relative of cultivated cotton. The 12th 

column of the same 96-well plate was dedicated to conventionally extracted DNAs from 

the parental leaf tissue, using Qiagen kits, and two non-template controls. All samples in 

the plate were amplified using the primer set for SNP Gl_072641. 

 

SNP amplification for cotton cotyledon DNA 

The protocols above for non-destructive extraction of DNA from cotton seedling 

cotyledons and SNP genotyping were tested with experimental research materials. Using 



 

48 
 

 

the procedures described above, DNA was extracted from 36 BC2F1 hybrid seedlings 

from a G. hirsutum*2/G. barbadense plant known to be heterozygous for the alien 

segment and were amplified using the SNP Gb_010283. DNA was extracted from young 

leaves of the parents using commercial kits (Qiagen). The test plate included two non-

template controls and 16 empty wells.  

 

Germination of drilled seeds after PCR analysis 

Drilled seeds were stored in modified plates in cabinet drawers at room temperature of a 

conventional air-conditioned office (Fig. 3.1C). Germination rates were assessed by 

placing seed in two types of "ragdolls" of germination paper (Anchor Paper Co.), one 

pre-soaked with tap water, and other with tap water plus Benlate (0.5 ml / 100 ml tap 

water).  Ragdolls were incubated in the dark at 30°C for 48 hours before assessment.    

 

Results and Discussion 

Non-destructive seed DNA genotyping 

DNA samples extracted from BC1F1 cotton seeds using the non-destructive protocol and 

from leaf tissue using conventional kits were amplified with SNP Gl_072641. KASP 

ratios from all of the seed DNA samples fell into two well-defined clusters (Fig. 3.3).  

The patterns and positions of the clusters of seed-based SNPs were congruent with 

expectations for a marker that is heterozygous in the F1 hybrid parent, symbolized as 

(FADD) and homozygous (AADD) in the other parent. Each seed-based data point fell 

along the same ray (angle) as the respective control samples that had the same genotype. 
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The observed ratio in this batch of 88 BC1F1 seed was 44:44, which adheres exactly to 

the conventionally expected testcross ratio (1:1).  Relative to conventionally prepared 

DNA from segregating seedlings, we noted that the clusters were significantly more 

dispersed along the ray (angle), which indicated more variation in overall fluorescence 

amplitude.  We typically observed similar levels of dispersion at right angles to the ray, 

indicating that SNP-specific fluorochrome ratios were similar for the non-destructive 

seed-based extractions and conventional leaf-based extractions.  There would seem to be 

two possible explanations for the additional variation in overall SNP signal amplitude, 

one being increased variation for DNA concentration in seed-based extractions, and the 

other being variation for compounds that interfere with the PCR process, such as 

phenolics. Regardless, several extra PCR cycles were needed for DNA samples extracted 

by seeds compared with conventional leaf-based extractions. The average non-

destructive seed DNA extraction method provided sufficient DNA for 1000 PCR 

reactions; prior to PCR, the extract was diluted 20X. 

 



 

50 
 

 

 
Figure 3.3. SNP genotyping of DNA extracted from individual cotton seed after 41 

PCR cycles. The red rectangle denotes wells that contained DNA samples extracted 
using a commercial kit and fresh leaf tissue.  In the two clusters, wells containing 
conventionally extracted DNA samples are denoted by symbols * and +. Wells 
containing non-template controls (no sample DNA) are black. The remaining 88 DNA 
samples were extracted by the non-destructive seed DNA extraction method from a 
backcross family segregating for SNP Gl_072641.   
 

 

Cotyledon DNA genotyping 

DNA samples extracted from cotyledons were run in duplicate wells and amplified with 

SNP Gb_010283. KASP ratios from all of the seed DNA samples fell into two well-
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defined clusters (Fig. 3.4). The patterns and positions of the clusters of seed-based SNPs 

were congruent with expectations for a marker that is heterozygous in the F1 hybrid 

parent, and homozygous in the other parent. Each seed-based data point fell along the 

same ray (angle) as the respective control samples that had the same genotype. The 

observed ratio in this batch of 36 BC1F1 seed was 19:17, which was not different from 

the expected testcross ratio (1:1).  Relative to conventionally prepared DNA from 

segregating seedlings, we noted that the clusters were similarly clustered along the ray 

(angle), which indicates similar variation in overall fluorescence amplitude.  We also 

observed similar levels of dispersion at right angles to the ray, indicating that SNP-

specific fluorochrome ratios were similar for the cotyledon-based extractions and 

conventional leaf-based extractions. The cotyledon-based extractions were less variable 

than the non-destructive seed-based extractions. On average, the cotyledon-based 

extractions yielded enough DNA for 500 PCR reactions, based on 20 ng per reaction.  

The reduced DNA yield is likely related to the relative number of nuclei sampled. Casual 

observations indicated a two-fold or three-fold difference in the amount of tissue 

removed from cotyledons by the two extraction methods. When determining PCR 

conditions for the DNA extracts from expanded cotyledons, we observed superior results 

by limiting the pre-PCR dilution to ~10X, whereas it was ~20X for seed DNA extract.  

As observed for the seed-extracted DNA samples, the cotyledon- extracted DNA 

samples needed a few more PCR cycles than the conventional leaf- extracted DNA 

samples. 
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Figure 3.4. SNP genotyping of DNA extracted from individual cotton seedling 

cotyledons. The red rectangle denotes wells that contained DNA samples extracted 
using a commercial kit and fresh leaf tissue. In the two clusters, wells containing 
conventionally extracted DNA samples are denoted by symbols * and +. Wells 
containing non-template controls (no sample DNA) are black, and empty wells are 
colored orange. The upper 72 wells contain 36 duplicated samples from the seedling-
based DNA extraction method, following 44 PCR cycles.  The 36 seedlings were part of 
a backcross family segregating for SNP Gb_010283. 
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Effect of drying on cotyledon DNA extraction 

Initial tests of the extraction procedures for cotyledons were based on fresh tissue, but 

were observed to yield inconsistent and generally undesirable results (not shown).  

Given that the fresh tissue contains much more water than the non-imbibed seed, we 

added steps for drying and crushing the cotyledonary tissue before adding the extraction. 

Good results were obtained using DNA extracted from cotyledon tissue that was dried 

and crushed (Fig.3.4). 

 

Germination of seeds after DNA extraction 

Breeders and other researchers will benefit greatly if they can genotype seed and later 

germinate seed that are selected based on the genotypic results.  It is thus very important 

to know if seed would be able to germinate consistently after having their seed coats 

violated and sufficient amounts of tissue removed for successful DNA extractions.  At 

the outset of experiments to develop a sampling protocol that would not significantly 

impair germination ability, we tested the effects of drilling slightly into 100 seed for 

tissue sampling, and then assessed the germination ability using conventional indoor 

germination procedures.  All but two of the 100 seed germinated (Fig. 3.5a), and upon 

inspection we noted that those two seed had been drilled in the wrong position (near the 

radical).  Overall, germination was excellent in laboratory and greenhouse conditions; 

seedlings were vigorous and no ill effects were observed except for the absence of 

marginal tissue (Fig. 3.5b). In subsequent "rag-doll" germination tests, non-drilled seed 

with and without fungicide treatment had nearly perfect germination percentages, as did 
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drilled seed with fungicide treatment (98%), whereas germination rates were slightly 

reduced without fungicide treatment (~90%). The germination of drilled seed in natural 

soils has not been tested. 

 

 
Figure 3.5. Seed germination test after non-destructive tissue sampling for DNA 

extraction. (a) Image of tissue-sampled seeds after germination in a "ragdoll". (b) Image 
of seedlings from sampled seeds, growing in soil cups; cotyledons lack areas of marginal 
tissue, due to previous sampling from the seed before germination. 
 

 

Procedural details for seed DNA extractions 

In preparing each cotton seed for tissue sampling, part of the seed coat, which is 

maternal not zygotic tissue, was removed by sanding. The removal provides direct 

access to embryo tissue, which differs from some previous seed DNA extraction 

methods (35). The drill bit used to sample seed tissue was cleaned between each seed by 

drilling into a pencil eraser, and this seemed to preclude significant cross contamination 

(Fig.3.1e). A modified 96-well plate was a useful holder for seed during the tissue 

sampling process. Holding seed by hand, tweezers and most other devices was 

cumbersome and inefficient, so this plate-based seed tissue sampling was more efficient 
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compared to single-seed handling on a flat, concave or indented surface (152). As 

reported previously, microtiter plates are convenient for storage of suitably small seeds 

(35, 152). By using the same modified plate to hold seed during sampling and storage, 

we avoided the need to transfer seed and minimized chances for loss of seed identity. 

Undelinted cotton seeds will fit more snugly in the plate, provided they are not too large. 

Large seed and seed size variation can cause some problems, but can be addressed by 

applying extra pressure to force a larger seed into a well, or applying water-soluble glue 

to the back of the plate. DNA yields varied somewhat from seed to seed, but it was 

sufficiently consistent to use for large-scale PCR based genotypic screening. It is likely 

that most variation in DNA yields arose from differences in the amounts of tissue 

obtained per seed and the relative particle size distributions, where finer particles would 

expectedly yield more DNA. It is also possible that differences in seed composition 

affected DNA extraction efficacy. 

 

Procedure details for cotyledon DNA extractions 

As noted above, a drying step was added to the process for cotyledon DNA extraction. It 

was observed that after drying samples with desiccant beads, the PCR seemed to be 

slightly more effective than after drying using an oven, possibly due to damage to DNA 

of fresh tissue by higher temperatures. The SNP amplification rate of cotyledon DNA was 

87.5% for 136 samples dried with an oven and 100% for 60 samples dried with desiccant 

beads. 
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Reliability and scalability 

This tissue sampling process for cotton seeds based on modified 96-well plates was 

originally developed by members of the Stelly laboratory. It has been used on over 20,000 

seeds (finish in 3 weeks including extraction and genotyping by one person) and the 

success rate were over 95% (Chapter V). Five recombinants were verified after screening 

20,000 seeds. The 5 recombinants were further confirmed by growing the seeds and 

extracting leaf DNA using a commercial kit (Chapter V). This 96-well plate based method 

for DNA extraction from cotton seeds and cotyledons, which can be directly used in 

KASPar assays for high-throughput genotyping, has been developed by modifying 

existing DNA extraction methods. Overall, a modified and optimized existing protocol 

was utilized, which enabled efficient / effective screening of populations (prior to 

planting) using SNP markers. This high-throughput DNA extraction method is cost 

effective (less than $0.05/sample), non-destructive (drilled seeds exhibit high germination 

rates) and fast (20,000 seeds genotyped in 3 weeks by one person). The major advantage 

of this method is that extraction is performed on cotton seed or cotyledon tissue instead of 

leaf tissue, which allows MAS to be carried out before growing or transplanting. DNA 

from both seed and cotyledon extracts were tested and found to be amplifiable more than 

one year after extraction, and amenable to other PCR reactions, e.g., amplification with 

SSR primers (Fig. 3.6).  Thus, the user neither needs to germinate the seed quickly, nor 

analyze the DNA quickly.  
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Figure 3.6. SSR genotyping of DNA extracted from individual cotton seed one year 

after extraction. The last lane contained DNA extracted using a commercial kit from 
fresh leaf tissue. The other 10 lanes contain DNA extracted by the non-destructive seed 
DNA extraction method from a backcross family. PCR was run using primers for SSR 
marker CIR 316. 
 

 

 

Comparison to commercial kits 

There is an increasing number of commercial DNA extraction products, which can vary 

considerably in price and applicability to various plants (173). Even though many 

provide high quality DNA, the cost of those commercial kits and the amount of time that 

they require are generally prohibitive for large sample numbers, especially for most 

academic plant research laboratories. There are several recent papers on rapid and cost-

effective DNA extraction methods, and most of them are based on plant tissue, not seed 

(17, 50, 60, 86). A few DNA extractions methods have been published based on the use 

of pre-germinated seeds, such as barley, wheat and rice (35, 75, 152).  None of them 

have provided a high-throughput method for cotton seeds, which is a major crop 

worldwide with a rapidly expanding need for marker-assisted genotyping.  Since special 
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equipment is not needed for the DNA extractions, it will allow virtually any laboratory 

capable of running PCR-based markers the possibility to use genomic tools for research 

and breeding applications. For applications that rely on PCR, the methods described here 

should help meet those needs. Low-replication tests suggest the methods can be 

extended to a number of other plants, including crops with medium or large seed. 
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CHAPTER IV 

DEVELOPMENT AND HIGH-RESOLUTION MAPPING OF Renlon-LINKED SNP 

MARKERS  

 

Introduction 

The reniform nematode (Rotylenchulus reniformis Linford & Oliveira) (58, 87) is an 

increasing problem in cotton (Gossypium hirsutum L.) production in the eastern half of 

the United States Cotton Belt. It is estimated to result in annual losses of ~$130M, with 

major impact in the states of Mississippi, Louisiana, and Alabama (22, 84, 124). Control 

of reniform nematode has been largely limited to crop rotation and application of 

nematicides (144). The growing problem of reniform nematode in cotton production has 

led to the desire to incorporate genetic resistance to the reniform nematode in Upland 

cotton genotypes.  

 

Extensive screening of the G. hirsutum germplasm collection over the years has 

confirmed that Upland cotton Gossypium hirsutum (2n=52, 2[AD]1, ~2.5 Gbp) 

germplasm lacks significant resistance to the reniform nematode (72, 125, 146, 170). 

Some of the wild diploid Gossypium species are highly resistant to the reniform 

nematode, but introgression of the trait into Upland cotton is extremely difficult due to 

differences in their ploidy level between wild and cultivated cotton species (84). 

Introgression of traits from wild species is difficult to complete and utilization in applied 

breeding programs is complicated and often limited by close linkage between the desired 
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alien gene(s) and nearby alien genes that are agriculturally undesirable.  The survival of 

the plants resulting from many interspecific crosses is inescapably low due to 

chromosome pairing difficulties (9, 10) and the probability of obtaining agronomically 

suitable introgressed material is even lower.  

 

In an extensive survey of Gossypium germplasm for reniform nematode resistance and 

tolerance, Yik and Birchfield (1984) found G. longicalyx J.B. Hutch. & B.J.S. Lee, to be 

immune to reniform nematode infection, whereas G. somalense (Gürke) J.B. Hutch. and 

G. stocksii Mast. were highly resistant.  Resistance was also found in G. arboreum L., G. 

herbaceum L. and G. thurberi Tod. accessions (170). The most information regarding 

resistance to the reniform nematode and its introgression to G. hirsutum is available for 

G. aridium, G. arboreum, G. barbadense and G. longicalyx (122). 

 

Romano et al. (2009), using progeny derived from a cross between a tri-species hybrid 

[G. arboreum x (G. hirsutum x G. aridum)2] and MD51ne (G. hirsutum),  showed that 

resistance among introgression products was associated with the SSR markers 

BNL3279_132 and BNL2662_090 on chromosome 21 and originally designated the 

alien c21 locus as Renari, as it was donated from G. aridum (129); the locus was later 

renamed Ren2
ari (54). 

 

An AFLP marker linked to reniform nematode resistance from G. arboreum was 

identified and tested in the BC2F1 generation (6). This resulted in a good correlation of 
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marker presence and resistance.  However, in the BC2F2 generation the marker was not 

highly correlated with the resistance gene. New markers linked to resistance have been 

found, and their usefulness for marker-assisted selection is currently being evaluated (6).   

 

GB-713 is the most resistant of G. barbadense and G. hirsutum accessions noted to date 

(123). Robinson initiated attempts to combine resistance to reniform nematode with 

resistance to root-knot nematode (M. incognita) by crossing GB 713 with either Acala 

NemX or M 315 RNR. A bulk-segregant analysis indicated the resistance to reniform 

nematode in GB 713 was controlled by a single dominant gene with additive effects 

(125). Based on segregation and linkage analyses from progenies involving hybrids with 

Acala Nem-X, resistance of GB713 was attributed to three resistance genes, including 

two in chromosome 21, and one in chromosome 18 (61). One QTL on chromosome 21 

was at map position 168.6 (LOD 28.0) flanked by SSR markers, BNL1551_162 and GH 

132_199 at positions 154.2 and 177.3, respectively. A second QTL on chromosome 21 

was at map position 182.7 (LOD 24.6) flanked by SSR markers BNL4011_155 and BNL 

3279_106 at positions 180.6 and 184.5, respectively. One QTL with smaller genetic 

effects was localized to chromosome 18 at map position 39.6 (LOD 4.0) and flanked by 

SSR markers BNL 1721_178 and BNL 569_131 at positions 27.6 and 42.9, respectively 

(61). 

 

 The African wild species, G. longicalyx (2n=26, 2F1, ~1.3 Gbp) was found to be the 

most reniform-resistant Gossypium species, and deemed completely resistant (170). 
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Transfer of reniform nematode resistance from G. longicalyx (F1) to Upland cotton lines 

was achieved by [1] “Tri-species hybrid synthesis [(G. hirsutum / G. longicalyx) 2n=6x 

// G. armourianum (designated "HLA" tri-species hybrid) and (G. hirsutum / G. 

herbaceum) 2n=6x // G. longicalyx (designated "HHL")], [2] modified backcrossing 

(BC), and [3] inbreeding.  A gene conferring “immunity" to reniform nematodes was 

thereby transferred from the wild species Gossypium longicalyx by homologous 

recombination with Upland cotton chromosome 11, and two of the resulting reniform-

resistant upland lines were released for more extensive evaluation and breeding in 2007, 

namely LONREN-1 and LONREN-2 (48, 124).  Microsatellite (SSR) markers were 

developed to tag this gene, and the closest marker BNL3279_114 was found to reside < 

1 cM away from the gene (48).  The linkages led to extensive use of marker-assisted 

selection (MAS) in cotton breeding programs for resistant and susceptible types, as MAS 

was more effective, less time-consuming and less expensive than high quality 

phenotypic screening.  Broader evaluations of the LONREN lines and derived materials 

quickly revealed that plants bearing the alien Renlon segment from G. longicalyx were 

debilitated when grown in naturally nematode-infested fields.  LONREN and derived 

resistant lines were smaller and less productive on average than isogenic susceptible 

lines in spite of their resistance to the nematodes (15). 

 

The list of potentially contributing factors to stunting has included root damage caused 

by hypersensitivity to the nematode, per se, and/or new or accentuated susceptibility to 

one or more soil-borne pathogens, e.g., due to loss of linked (repulsion) G. hirsutum 
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disease resistance loci (174). Several nematode and fungal resistance loci of cotton are 

known to reside nearby. It seems unlikely but is certain possible that the gene for 

nematode resistance directly affects multiple traits, rather indirect effects seem much 

more likely, e.g., due to tissue damage from hypersensitive cell death.  Additionally, 

closely linked genes would be expected to affect multiple traits, including pathogen 

resistance and agronomic performance and quality.  Such effects could be due to direct 

effects of specific genes on specific pathways and traits, while others might be quite 

indirect. Of special interest may be other genes that affect resistances to other pathogens, 

because many genes important to resistances are known to be clustered and so it would 

be quite likely that the gene for reniform resistance is flanked by other G. longicalyx 

genes that alter the profile of resistances to multiple pathogens.  

 

In any case, high density of Renlon-linked markers are needed in order to better 

characterize the Renlon flanking region.  Several recently mapped SSR markers from 

public resources and maps were found to be linked with Renlon. We also discovered 85 

Renlon-linked SNPs. Such efforts were facilitated by the availability of the D5 genome 

assembly, which was released in early 2012 (111), and the availability of large numbers 

of putative SNPs between G. longicalyx and G. hirsutum (Gh_Gl SNPs) deduced by 

RNA-seq (Chapter II). Using the D5 genome assembly as a reference for "mapping" 

(sequence alignment by BLASTN analysis), hundreds of Gh_Gl SNPs were localized in 

the Renlon region. The putative Gh_Gl SNPs mapped in the Renlon region according to 

the D5 genome were tested against a screening panel that confirmed them as 
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experimentally useful SNPs and localized them to the region of interest. Validated 

Gh_Gl SNPs were selected and used for high-resolution mapping. Eitht SNPs on each 

side of Renlon were selected and mapped on 1760 individuals from two different testcross 

families, PCOs and DCOs. Due to the low homeologous recombination rate between G. 

hirsutum and G. longicalyx, we are unable to separate all the SNPs. 

 

Materials and Methods 

Plant materials 

Plant materials included tri-species hybrid consisting of G. hirsutum (AD1) as the 

recipient species, G. longicalyx (F1) as the donor parent, and a wild diploid, G. 

armourianum (D2-1). The hybrids were designated by the initials HLA for [(G. hirsutum 

x G. longicalyx) chromosome-doubled x G. armourianum]. The developmental details of 

the tri-species hybrids are summarized by Bell and Robinson (2004) (13). Two sister 

germplasm lines LONREN-1 and LONREN-2 containing the introgressed G. longicalyx 

gene Renlon were jointly released by the USDA-ARS, Texas A&M AgriLife Research 

and Cotton Incorporated (14).  In addition to the two released LONREN lines, more 

lines containing Renlon were developed, each differing in pedigree and/or alien segment 

constitution. The lines were categorized according to recombination events relative to 

Renlon, the centromere, mapped SSR markers, the phenotypic marker Fzglon and the 

telomere (48). The Renlon-containing introgression lines were classified into one of two 

basic types, DCO and PCO (Fig. 4.1).  
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Figure 4.1. Diagrammatic representation and categorization of DCO and PCO 

recombination products characterized with the aid of SSR markers that closely 

flank the Renlon gene. Prior to recombination between these SSRs, the alien segment 
(red) is large and spans both SSRs. A nearby crossover can be detected by loss of an 
alien marker. Nearby distal crossovers (DCOs) lack CIR 316_191 (right) and nearby 
proximal crossovers (PCOs) lack BNL 3279_114 (left). 
 

 

 

"DCO" resistance lines carry the product of a previous crossover distal to the Renlon 

gene, i.e., they contain a proximal alien segment which can be identified by SSR 

markers BNL3279_114, BNL1066_156 and BNL836_215. Each "PCO" resistance line 

carries the product of a proximal crossover (between Renlon and the centromere), and 

contains the distal alien segment which can be identified by SSR marker CIR316_191 

and phenotypic marker Fzglon.  

 

DCO

CEN

CIR 316_191

BNL1231_null

BNL 3279_114

Renlon

~ 0.5

~ 1

Fzglon (Fuzz green)

BNL 1066_156

BNL 836_215

PCOWhole alien segment

~ 2.9

~11.7

~ 2.8
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The two classes are exemplified by advanced backcross lines 7117(PCO) and 

7123(DCO), both of which exhibit high resistance to reniform nematode. The pedigrees 

of 7117 and 7123 are shown in Table 4.1. Backcrosses were used to create a large 

BC1F1 populations of both lines for high-resolution mapping. Seeds of both 

homozygous lines were acquired from A. A Bell, (USDA-ARS at College Station, TX), 

and planted in the green house over the fall of 2009 at College Station, TX. Crosses were 

made with G. hirsutum ‘FiberMax 966’ (FM 966) to create Renlon heterozygotes in the 

early spring of 2009. F1 seeds were collected, sorted and ginned. F1 plants were 

backcrossed (testcrossed) to FM 966 to construct the large BC1F1 populations in the 

summers of 2010 and 2011 in the field in College Station. A set of pollination-specific 

seed envelopes was randomly selected from the 2011 summer backcrosses for high-

resolution mapping, providing a sample of 880 BC1F1 seeds.  

 
 
 
Table 4.1. Pedigree of 7117 and 7123. 

Plant ID Resistance Source* Recombination type 

Parents/ Generation 

BC2 BC3 BC4 BC5 BC6 BC7 

7117 HLA-B45 PCO DPL 458 DPL 458 FM 958 DPL 5415 STV 474 NemX 

7123 HLA-A85 DCO Nemx DPL 458 STV 454 FM 958 STV 474 NemX 

*   HLA-B45 group BC1: pollen from Acala NemX 
     HLA-A85 group BC1: a pool of G. hirsutum pollen from SG125, DP373, PM1220, TAMCOT Sphinx 

 

 

DNA extraction 

DNA samples of the screening panel and parental controls from each mapping 

population were extracted using young, folded or newly unfolded leaves by Qiagen 
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DNeasy Plant Mini Kit according to the manufacturer’s protocol. DNA yield was 

estimated using a NanoDrop2000 and the DNA diluted to 10ng/µl for PCR 

amplification. 

 

DNA samples from the progeny of each mapping population were extracted from 

undelinted seeds using the seed DNA extraction method described in Chapter III. DNA 

samples extracted from 88 seeds were in each 96-well plate with the last plate column 

containing parental control DNA and non-template control. The DNA samples were 

diluted 20X.  

 

Renlon-linked SNP markers 

By previous efforts, a total of 106,795 Gh_Gl SNPs were developed by RNA-seq and in 

silico filters and comparisons as described in Chapter II. The estimated rate of 

conversion from in silico SNPs to usable SNP markers (KASPar assays) for the whole 

F1 (G. longicalyx) genome was over 90% (Chapter II). The RNA-seq derived Gh_Gl 

SNPs and previously published SSR markers on the Renlon map (48) were aligned to the 

G. raimondii D5 genome sequence assemblies, which were released in early 2012 

(http://www.phytozome.net/cotton.php) (111), using the BWA program with default 

settings. The SNPs which mapped in the Renlon region were selected for validation with 

a screening panel.  There are three classes of Gh_Gl SNPs:  Class I (Clean SNPs – No 

intron - No INDEL – No GSP in the SNP-containing contig), Class II (No intron-No 

INDEL – No GSP within 100 bases of the SNP), and Class III (No intron within 100 
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bases of the SNP but One GSP/INDEL within 100 bases of the SNP). Only Class-I and 

Class-II Gh_Gl SNPs mapped in the Renlon region were selected and used for validation. 

Allele-specific primers and allele-flanking primers for the selected SNPs were designed 

using the Batch primer3 software program. Default settings were used to select both the 

SNP-specific and flanking primers with the only exception being maximum product size 

of 100bp, minimum product size of 50bp; minimum primer Tm 55℃, and maximum 

primer Tm 63℃. Likewise, default settings were also used for penalty weights. Desirable 

SNP markers were validated against the screening panel by KASPar assays 

(KBioscience Ltd., Hoddesdon, UK). A 6x4 format with 2 replicates of each genotype 

were used for screening Renlon linked SNPs (Table 4.2). Plates were originally run for 

the optimum 38 cycles on the LGC genomics SNP line, centrifuged then read on the 

Pherastar plate reader. The Pherastar files were imported into KlusterCaller software for 

genotyping. If the plates were not acceptably clustered and did not have scoreable 

genotypes, an additional set of 3 cycles was added and the plates were read and imported 

again, this was repeated until scoreable clusters were formed. 

 

The screening panel consisted of parental controls and several different homozygous and 

heterozygous reniform nematode resistance lines (Table 4.2). ‘FM 966’ and ‘Acala 

Nemx’ (Nemx) were used as susceptible controls, and they are also backcross parents 

used for the advanced reniform nematode resistant lines. G. amourianum was used as a 

bridge when creating the original HLA tri-species hybrid. G. longicalyx provided the 

reniform nematode resistance gene, Renlon. 
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Table 4.2. Screening panel for Renlon linked SNP markers. 
7127 7123 7117 7131 3401 3402 

7127 7123 7117 7131 3401 3402 

HLA G. lon FM 966 G. arm Nemx HTC 

HLA G. lon FM 966 G. arm Nemx HTC 

7127, 7123, 7117, 7131, 3401 and 3402 are the different nematode resistance lines, and 
were derived from the original HLA family. 
7127 & 7123 bear different distal cross over (CO) events. 
7117 bears a proximal CO. 
7131 bears a distal CO (heterozygous). 
3401 & 3402 contain large alien segments, where 3401 is heterozygous. 
HLA is the tri-species hybrid. G. longicalyx, FM 966, G. armourianum, Nemx are the 
parents of HLA or the backcross parents of these different resistance lines. 
 

 

 

High-resolution mapping 

The SNPs used for high-resolution mapping were selected from the validated Renlon-

linked Gh_Gl SNPs.  The recombination rate between G. longicalyx and G. hirsutum is 

relatively low, so the selected Gh_Gl SNPs were equally distributed with some distances 

according to the D5 alignment results.  

 

 SNP amplification was performed in 96-well plates using the KASPar assay as 

previously described. Genotype files were uploaded to MSTmap online, with single 

linkage group (LG) for Grouping LOD Criteria. Default settings 

(http://138.23.178.42/mstmap/) were used to estimate the genetic distance of the mapped 

SNP markers. 
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Results 

Renlon-linked SNPs 

By aligning mapped SSR markers with Renlon to the D5 genome assembly, Scaffold_7 

(Chromosome_7) was identified to be the region of interest (Table 4.3). Hundreds of 

Gh-Gl SNPs (Class I and Class II) were aligned to this D5 region of interest. We 

eliminated SNPs that were repetitive, SNPs from the same RNA-seq contig, and lastly, 

SNPs for which good KASP primers could not be designed. Finally, 126 Gh-Gl SNPs 

from the region of interest were selected and primers designed. After testing against the 

screening panel (Table 4.2) using the KASPar assay, 86 Gh-Gl SNPs were validated 

with linkage to the Renlon gene (SNP sequences and primers are in additional file 2). 

Markers were distributed along a relatively large D5 segment that aligned to the targeted 

region. 

 

 

Table 4.3. Mapped SSR markers aligned to the D5 assembly. 
Mapped SSR markers Scaffold or Chromosome Position on D5_V2.1 

CIR316 07 59563000 

BNL1231 07 57124927 

BNL3279 07 56142974 

BNL1066 07 54550465 

BNL836 07 52098818 

 

 



 

71 
 

 

The SSR markers in Table 4.3 are from the genetic map of Dighe et al. 2009 (48). All of 

them aligned to D5 Chr. 07 by using BWA with default settings. The position on D5 is 

either by the primer start position or the marker sequence. 

 

High-resolution mapping 

Two Gh_Gl SNPs were selected in the common region of PCOs and DCOs.  The two 

SNPs aligned on both sides of SSR marker BNL1231 based on the D5 alignment results. 

Eight SNPs were selected for both proximal and distal regions, and they were roughly 

equally distributed across the region. Selected Gh_Gl SNP sequences and primers are 

highlighted in additional file 2.  

 

The genetic order of the 10 Gh_Gl SNPs for the 7123 family was the same as the order 

obtained following alignment to the D5 genome (Table 4.4).  Seven recombination 

events were found in the 7123 (DCO) family. The recombinants were confirmed twice 

by SNP markers. The alien segment of 7123 was located between SSR markers 

BNL1231 and BNL836. The mapping results were confirmed using Renlon linked SSR 

markers.   

 

No recombination events were found in the 7117 (PCO) family (Table 4.4), although 8 

Gh_Gl SNPs were selected in this region plus 2 Gh_Gl SNPs in the common region of 

the DCOs and PCOs and they were distributed from SSR marker BNL1231 to 



 

72 
 

 

phenotypic marker Fzglon, which is thought to be located very near the end of the 

chromosome-11 in G. hirsutum.  

 

 

Table 4.4. High-resolution mapping results of Renlon-linked SNPs. 
SNPs for DCO Position on D5_V2.1 MST MAP POSITION (cM) 

Gl_178356 52275364 0 
Gl_117394 52513762 0 
Gl_085251 52847958 0.452 
Gl_200380 53688922 0.931 
Gl_187401 54605631 1.341 
Gl_142101 55188861 1.674 
Gl_012150 55404836 1.674 
Gl_117570 55971263 1.674 
Gl_168758 56835707 2.174 
Gl_072641 57279176 2.610 

SNPs for PCO Position on D5_V2.1 MST MAP POSITION (cM) 
Gl_168758 56835707 0 
Gl_072641 57279176 0 
Gl_212476 57435262 0 
Gl_052088 57775963 0 
Gl_148225 57834425 0 
Gl_104307 58465267 0 
Gl_211386 58627706 0 
Gl_199350 59030131 0 
Gl_208281 59481497 0 
Gl_082005 60340986 0 
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The 7 new recombinants found in the 7123 family were confirmed with 10 relevant 

Gh_Gl SNP markers (Table 4.5). The seeds were selfed and the resulting seeds collected 

for use in future germplasm evaluation.  

 
 
 

 

Table 4.5. New recombinants identified from BC1F1 progeny from family 7123. 
7123 

family 
Gl_178

356 
Gl_117

394 
Gl_085

251 
Gl_200

380 
Gl_187

401 
Gl_142

101 
Gl_012

150 
Gl_117

570 
Gl_168

758 
Gl_072

641 

D1F3 H H H H H H H H H A 

D1H4 H H H H H A A A A A 

D2C10 H H A A A A A A A A 

D3E4 H H H A A A A A A A 

D3H1 A A A A H H H H H H 

D6F4 A A A A A A A A H H 

D8A11 A A A A A A A A H H 
A: homozygous for G. hirsutum allele. 
H: heterozygous for G. longicalyx allele. 
 

 

 

Discussion 

For identifying Renlon linked SNP markers, the D5 genome assembly was used as a 

reference. The Gh_Gl SNPs developed by RNA-seq were aligned to D5 using the BWA 

program, as were the SSR markers previously mapped to Renlon (48) . Over 70% of the 

the Gh_Gl SNPs were mapped to the D5 assembly (Chapter I). The Renlon region was 

identified by the position of Renlon linked SSR markers aligned on D5. The desirable 

SNPs aligned on the region of interest were validated using KSAPar assays with a 

screening panel of selected cotton cultivars. In total 86 Gh-Gl SNPs were validated as 
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linked with Renlon across the whole alien segment on chromosome-11 from analysis of 

the data obtained with the screening panel. A-genome diploids native to Africa and 

Mexican D-genome diploids diverged ~5–10 MYA (135). Several lines of evidence 

indicate that G. longicalyx from Africa with the F-subgenome is more closely related to 

the A-subgenome than the D-subgenome (112). Not all the the potential SNPs of interest 

can be found by the alignment results of Gh_Gl SNPs against D5 genome assembly. 

 

The BC1F1 families from 7117 and 7123 were selected for high-resolution mapping, 

because they are two different types of previous recombination events, PCO and DCO. 

Lines 7117 and 7123 contained shorter alien segments as revealed following analysis 

with newly developed Renlon-linked SSR markers. In other words, the common Renlon 

flanking region between 7117 and 7123 was smaller than other combinations of PCOs 

and DCOs. For each family, 880 BC1F1 seeds were selected for high-resolution mapping.  

 

The seed DNA extraction method is cheap, non-destructive and fast. This method works 

well for large numbers of DNA extracts that are needed in a manner that is especially 

time and cost efficient. In total, 880 samples from each family were mapped with 10 

markers. Thus the total number of data points collected was 880x10x2 = 17,600. Three 

hundred and eighty-five (2.1875%) data points were missing, confirming the robust 

nature of the seed DNA extraction method developed.  
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The effort to achieve high-resolution mapping around Renlon was affected by the low rate 

of recombination in this chromosomal region. Only a partial high-resolution map was 

constructed for the DCO family containing the proximal alien segment. The mapping 

results revealed that no recombination events were identified in the 7117 (PCO) family, 

and only 7 recombinants were identified in the 7123 (DCO) family. The 10 Gh_Gl SNPs 

used in mapping the 7117 family aligned to the D5 assembly on Chr. 07  from 56835707 

to 60340986bp, and  the alien Renlon  segment (from SSR marker BNL1231 to 

phenotypic marker Fzglon)  is ~ 3.8 cM based on the previous genetic map made between 

G. longicalyx introgression resistance lines and G. hirsutum (48). For 7123 family, the 

10 Gh_Gl SNPs used aligned to D5 Chr. 07 from 52275364 to 57279176bp 

corresponding to ~15.1 cM on the genetic map. The recombination rate was particularly 

depressed in these advanced backcross generations compared to the previous genetic 

map.  

 

The high-resolution map was limited primarily by the lack of sufficient recombination 

events in the Renlon chromosomal region, which is due to the especially low 

recombination rate between the alien segment from G. longicalyx and chromosome 11 of 

G. hirsutum. However the Gh_Gl SNP markers developed are now available and will be 

useful for studying the Renlon region in the future. The two closest Gh_Gl SNP markers, 

Gl_072641 and Gl_168758, are ~0.4 cM apart in the current map and have been used to 

screen the recently released LONREN germplasm (14). The introgressed segment 

containing Renlon is valuable for more than just resistance to reniform nematode, as it 
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also harbors greater fiber quality traits (160). All of the validated Renlon linked Gh_Gl 

SNP markers will be valuable in identifying new recombinants by MAS, as well as in 

facilitating future germplasm introgression from G. longicalyx. The seven new 

recombinants with different alien segments will be potentially useful germplasm in the 

future, as well. 
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CHAPTER V 

 SCREENING FOR NEMATODE-RESISTANT RECOMBINANTS WITHOUT 

“STUNTING” 

 

Introduction 

A nematode resembling reniform was first reported in Georgia, US in the 1940 (138). 

Reniform is now recognized as a serious pest of Upland cotton (Gossypium hirsutum L.) 

and soybean (Glycine max L.) in the southern United States (124). It is estimated to 

cause annual losses of approximately $130M, with major impacts in Mississippi, 

Louisiana and Alabama (22, 84, 124). Upland cotton Gossypium hirsutum (2n=52, 

2[AD]1, ~2.5 Gbp) cultivars lack significant resistance to reniform nematode. Even 

though more than 2000 G. hirsutum accessions have been evaluated (126, 150, 159), 

only weak to moderate resistance was found. The African wild species, G. longicalyx 

(2n=26, 2F1, ~1.3 Gbp) was found to be the most resistant Gossypium species (170). 

Transfer of reniform nematode resistance from G. longicalyx (F1) to Upland cotton lines 

was achieved by the development of the tri-species hybrid, "HLA", [(G. hirsutum x G. 

longicalyx)² ] x G. armourianum Kearn.], followed by backcrossing and inbreeding (13, 

124).  A gene conferring “immunity" to reniform nematodes was thereby transferred 

from the wild species G. longicalyx to G. hirsutum. Linkage with molecular and 

phenotypic markers indicated that a single dominant gene or haplotype Renlon in 

chromosome 11, was responsible for resistance (48). The germplasm lines LONREN-1 
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and LONREN-2 have this resistance gene and were jointly released by the USDA, Texas 

AgriLife Research and Cotton Incorporated (48, 124).   

 

The LONREN cotton lines are virtually immune to reniform nematode (Rotylenchulus 

reniformis) in controlled inoculation studies. Yet when planted in nematode-infested 

fields these lines often show severe stunting at two to three weeks after planting, 

compared to their nematode-susceptible sibs or commercial cultivars (15). BARBREN-

713 released in 2012 suppresses reniform populations by 70-90%, but does not show any 

stunting problem in nematode-infested fields.  The resistance in GB-713, the resistant 

parent of BARBREN-713, was attributed to three resistance genes, Renbarb1, Renbarb2 and 

Renbarb3 located in chromosome 21 and 18 (61).  

 

Recent evidence indicates that LONREN germplasm is differentially sensitive to high-

nematode populations, and suffers considerable root damage, that leads to stunting 

(136).  Controlled experiments indicate that genotypes with Renlon are also differentially 

susceptible and/or sensitive to specific soil-borne fungi, including Thielaviopsis 

basicola, in the presence of reniform nematode(12). The increased susceptibility could 

be due to a hypersensitive reaction to reniform nematodes and (or) nearby alien genes 

that modify resistance to one or more soil fungi (“linkage drag”).  Introgressing Renlon 

into c21 rather than c11 did not avoid stunting, and indicated that loss of native c11 

resistance genes does not account for the stunting (16). Hybrids created between 

BARBREN and LONREN also show stunting, indicating that the factor(s) that lead to 
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stunting are dominant and (or) epistatic to the non-stunting nature of BARBREN713 

resistance (16).  

 

The list of factors potentially contributing to stunting include severe root system damage 

caused by hypersensitivity to the nematode, and/or increased susceptibility to soil-borne 

microbial pathogens.  Another possibility is that replacement of cotton DNA by alien 

DNA inadvertently included loss of one or more allelic or linked G. hirsutum genes that 

normally provide resistance to soil-borne pathogen(s) (174).  To avail growers the 

maximum benefits of nematode resistance, cultivars with resistance should be free of 

special concerns and, if possible, not require specialized weed management practices. 

Thus, eliminating the "stunting", if possible, is deemed to be an important practical goal. 

 

Usually, introgression breeding carries a cost, namely, genetic linkage of non-targeted 

loci that are eliminated through repeated backcrossing. Linkage drag can persist within a 

genome despite backcrossing, especially if recombination is suppressed. Linkage drag 

has been considered as one of the biggest concerns in introgressing traits from unadapted 

germplasm into adapted germplasm. Several examples of linkage drag in tomato and 

other crops have been quantified using molecular markers (62, 80, 117, 151, 172). 

Linkage drag can denote favorable, deleterious or neutral alleles that become 

inadvertently incorporated into breeding lines or cultivars. 
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When the source of a gene is wild germplasm, linkage drag could be difficult to remove 

by traditional backcross procedures. Marker analysis can help to solve the problem. 

Breaking the linkage by MAS offers the simplest approach to selecting reniform-

resistant cottons that are free of unwanted genetic effects of linked alien genes.  Products 

from recombination would not be genetically modified, and would be readily bred and 

deployed in US grower fields.   

 

A total of 17,600 BC1F1 progenies were screened by high-throughput non-destructive 

DNA extraction methods based on seeds and genotyping of the two closest Renlon-linked 

SNP markers. Five recombinant seed with minimized flanking regions were found 

among those 17,600 backcross seeds. Tests for stunting and reniform nematode 

resistance were carried out for the selfed progenies from the five recombinants to 

determine whether the new recombinants are resistant to reniform nematode but free of 

stunting. Progeny from two of those five recombinants were free of stunting. Based on 

tests with nematodes, the progeny from one of the two stunt-free recombinants had lost 

resistance to the nematode as a consequence of the crossover, while the other segregated 

for resistance, suggesting that it might separate the resistance and the stunting. Further 

tests will be needed to confirm resistance and verify loss of stunting in the resistant 

progeny. 
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Materials and Methods 

Materials for large-scale screening  

Eighteen different nematode-resistant homozygous lines with different previous 

recombination events between flanking SSR markers were used for the study. All of the 

lines were selected from diverse pedigrees of the advanced backcross program (Table 

5.1).  HLA-A group BC1: a pool of G. hirsutum pollen from SG125, DP373, PM1220, 

TAMCOT Sphinx; HLA-B group BC1: pollen from Acala NemX. Lines 7117, 7118 and 

7119 have proximal cross overs (PCOs), and they contained a distal alien segment with 

SSR markers CIR316_119 and Fzglon. The other 15 lines (DCOs) have distal cross overs, 

and they contained a proximal alien segment with SSR markers BNL3279_114, 

BNL1066_156 and BNL1066_215 (as described in Chapter IV). 

 

Backcrosses were used to reduce the alien segment size by identifying new 

recombination events near the Renlon gene (Fig. 5.1). Seeds of 18 lines putatively 

homozygous for previous recombination events near Renlon were obtained from A. A. 

Bell in 2009 (USDA-ARS at College Station, TX).  Seeds were planted in a greenhouse 

in the fall of 2009, and testcrossed with G. hirsutum ‘Fibermax 966’ to yield Renlon 

heterozygotes (F1s) in spring 2009. Seeds were collected, sorted and ginned. F1 plants 

from the 18 lines were backcrossed with FM 966 in summer 2010 and summer 2011 in 

College Station, at the University’s F&B Road field. Backcross seeds (BC1F1) from 18 

different nematode-resistant homozygous lines were randomly selected, and 17,600 were 

used for screening in this study. 
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Table 5.1.  Pedigree of different parents used to obtain Renlon recombinants.  
Plant 

ID 

Resistance 

Source 

Parent ID, Generation, and Marker 

information 

Parents/Generation 

BC2 BC3 BC4 BC5 BC6 BC7 

7109 HLA-A132 

MO30-1 BC7S2 =wh fz, 3279-lon, 316-

Nemx, RKN-1 

Aub 

623 

DPL 

458 

DPL 

458 

STV 

474 

FM 

958 NemX 

7110 HLA-A122 

MM9 BC7S2 =wh fz, 3279-lon, 316-

Nemx, RKN-1 NemX 

DPL 

458 

DPL 

458 

STV 

454 

STV 

454 NemX 

7111 HLA-A103 

ML43-2 BC7S2 =wh fz, 3279-lon, 316-

Nemx, RKN-1 

DPL 

458 

DPL 

458 

DPL 

458 

STV 

454 

FM 

958 NemX 

7112 HLA-A103 

ML42-10 BC7S2 =wh fz, 3279-lon, 316-

Nemx, RKN-1 

DPL 

458 

DPL 

458 

DPL 

458 

STV 

454 

FM 

958 NemX 

7113 HLA-A103 

ML37-12 BC7S2 =wh fz, 3279-lon, 316-

Nemx, RKN-1 

DPL 

458 

DPL 

458 

DPL 

458 

STV 

454 

FM 

958 NemX 

7114 HLA-A103 

ML24-10 BC7S2 =wh fz, 3279-lon, 316-

Nemx, RKN-1 

DPL 

458 

DPL 

458 

DPL 

458 

STV 

454 

FM 

958 NemX 

7115 HLA-A103 

ML20-5 BC7S2 =wh fz, 3279-lon, 316-

Nemx, RKN-1 

DPL 

458 

DPL 

458 

DPL 

458 

STV 

454 

FM 

958 NemX 

7116 HLA-A84 

ME25-19 BC7S2 = wh fz, 3279-lon, 

316-Nemx, RKN-1 

DPL 

458 

DPL 

458 

DPL 

458 

STV 

474 

FM 

958 NemX 

7117 HLA-B45 

7A-14 BC7S1 = gr fz, 

3279-hir,  316-lon 

DPL 

458 

DPL 

458 

FM 

958 

DPL 

5415 

STV 

474 NemX 

7118 HLA-A85 

MF-3 BC7S1 = gr fz, 

3279-hir, 316-lon NemX 

DPL 

458 

DPL 

458 

STV 

474 

FM 

958 

DPL5

415 

7119 HLA-B91 

12-11 BC7S1 = gr fz, 

3279-hir, 316-lon NemX 

DPL 

458 

FM 

958 

DPL 

5415 

STV 

474 NemX 

7121 HLA-A103 ML-38 BC7S1 =  wh fz,  3279-lon 

DPL 

458 

DPL 

458 

DPL 

458 

STV 

474 

FM 

958 NemX 

7122 HLA-A85 MK-27 BC7S1 =  wh fz,  3279-lon 

CBL 

413 

DPL 

458 

STV 

454 

FM 

958 

STV 

474 NemX 

7123 HLA-A85 

MH-8 BC7S1 =  wh fz, 

3279-lon NemX 

DPL 

458 

STV 

454 

FM 

958 

STV 

474 NemX 

7124 HLA-A85 MG-15 BC7S1 =  wh fz, 3279-lon NemX 

DPL 

458 

DPL 

458 

STV 

474 

DPL 

5415 NemX 

7125 HLA-B26 4(NX)-4 BC7S1 = wh fz, 3279-lon 

DPL 

458 

DPL 

458 

FM 

958 

DPL 

5415 

STV 

474 NemX 

7126 HLA-A84 

MR-7 BC7S1 = wh fz, 

3279-lon NemX 

DPL 

458 

FM 

966 

DPL 

5415 

DPL 

5415 

DPL 

493 

7127 HLA-A103 

85-10 BC8S1 = wh fz, 

3279-lon 

DPL 

458 

DPL 

458 

DPL 

458 

FM 

966 

FM 

966 

FM 

966 

7131 HLA-A103 

85-10 BC8S1=Fzg heterozygous, 3279-

lon 

DPL 

458 

DPL 

458 

DPL 

458 

FM 

966 

FM 

966 

FM 

966 
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Figure 5.1. Backcross method to minimize alien segments. 

 

 

DNA extraction 

DNA of individuals from the backcross populations was extracted from undelinted seeds 

using the seed DNA extraction method (Chapter III). Seed samples were placed in 96-

well PCR plates with the last column empty for parental controls and non-template 

control. Eighty-eight BC1F1 seeds or DNA samples were put in each plate. The DNA 

samples were diluted ~20X.  
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DNA of parental controls were extracted using young, folded or newly unfolded leaves 

using the Qiagen DNeasy Plant Mini Kit, and the DNA yield was estimated using a 

NanoDrop2000. DNA then was diluted to 10ng/µl for PCR amplification. 

 

MAS for identifying best recombinants 

The Renlon-linked Gh_Gl SNP markers were developed by D5 genome assembly 

alignments and KASPar assay validation as described in Chapter IV. The two closest 

SNPs, Gl_168758 and Gl_072641, on opposite sides of SSR marker BNL1231 were 

selected and used for large-scale screening of backcross seeds to identify recombinants 

with breakpoints very close to Renlon (Table 5.2).  

 

Table 5.2. Two closest Renlon-linked SNPs. 

SNP 
name 

Position 
inD5 SNP sequences 

Common 
primer 

Allele 
specific 
primer 1 

Allele 
specific 
primer 2 

Gl_16
8758 56835707 

AGATCCTGAGATTCGAAGCCAAA
ATTGACATCAACTCGAGTGCGAG
CTTT[G/A]TCGATCTGTCAGACCC
CTTTCTTCTTTTGCTTCTTCTTGC

GCAAATAATT 

TATTTG
CGCAA
GAAGA
AGCA 

AACTCG
AGTGCG

AGCTTTG 

CAACTC
GAGTGC
GAGCTT

TA 

Gl_07
2641 57279176 

GAGGCGATGAAGATCAAATCAC
TGTGGAGGCATAGTGAGAGGTTA
GCTAT[C/T]GCTTTCGGACTTTTA
CATACACCGGCAGGAAGCTTGAT

AAGGATCAGTAA 

TGTGG
AGGCA
TAGTG
AGAGG 

GGTGTAT
GTAAAA
GTCCGA
AAGCA 

GTGTAT
GTAAAA
GTCCGA
AAGCG 

 

 

Two hundred 96-well plates of seed DNA samples (17,600 samples) were screened 

using the two SNP markers, Gl_168758 and Gl_072641, which are closest to Renlon. The 

LGC Genomics/Kbioscience KASPar assay (http://www.lgcgenomics.com/) was used 
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for SNP amplification. Allele-specific and allele-flanking primers were developed using 

Batch Primer-3 software with an optimal primer Tm of 57℃ (minimum 55℃, maximum 

60℃, maximum difference between primers 5℃), and optimal product size of 50 base 

pairs (minimum 50 base pairs, maximum 100 base pairs). The default settings were used 

for the remaining parameters. Primers were mixed at the dilutions specified by LGC 

Genomics before using in KASPar assays. Plates were originally run for the optimum 38 

cycles on the LGC genomics SNP line, centrifuged and then read on the Pherastar plate 

reader. The Pherastar files were imported into Klustercaller software for genotyping. If 

the plates were acceptably clustered with scoreable genotypes, an additional set of 3 

cycles were added and the plates were read and imported again. This addition of 3 PCR 

cylces and re-reading the plates was continued until scoreable clusters were formed. 

 

Phenotypic screening 

Selfed seeds were produced from recombinant plants shown to be heterozygous by 

marker-assisted selection. The ratio of the recombinant in the selfed seeds will be ~ 1: 2: 

1 for the tested marker. The seeds were collected, ginned, delinted and stored in an 

incubator at 40℃ for two weeks to increase consistency of germination. Before 

phenotypic screening, a set of 10 selfed seeds from the selected recombinants were 

planted, and DNA was extracted using young, folded or newly unfolded leaves from the 

seedlings by the Qiagen DNeasy Plant Mini Kit. The DNA then was tested for 

BNL1231_null. To date, BNL1231_null is the marker closest to the Renlon gene, and as 

far as is known, it has co-segregated 100% with both reniform nematode resistance and 
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seedling stunting. Selfed seeds from the selected recombinant plants were used to test for 

stunting and reniform nematode resistance, i.e., to determine if linkage was broken 

between Renlon and nearby loci that we hypothesize could control susceptibility to 

stunting.   

 

Stunting test assay 

In the stunting assay, FM 966 served as a nematode-susceptible non-stunting control, 

and experimental line LONREN MR-19 served as a nematode-resistant stunting 

susceptible control. Five experimental replicates were used for each control.  Ten BC1S1 

progeny from each recombinant were used because they were expected to segregate 3:1 

for susceptibility to stunting.  

 

Experiments were conducted in growth chambers at the USDA-ARS, College Station, 

Texas. The temperature was set to 20℃ during night (11 hours) and 25℃ during daytime 

(13 hours). A fine sandy loam top soil was bought from a local dealer (Oppie's Topsoil, 

Sand, and Gravel; 1755 W. 28th Street, Bryan, TX  77803), and mixed 3:1 with washed 

sand. The wetted mixture was pasteurized with aerated steam treatment at 75℃ for 16 

hours on each of two consecutive days. Pasteurized soil was equilibrated in growth 

chambers for at least 24 hours before use.  

 

Planting cups, drilled and fitted with fiber glass screen for drainage, were filled with 

about 500 g of sandy loam soil.  One day before planting seedlings, a 50 g core of soil (5 
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cm long, 2.5 cm diameter) was replaced in the center of the cup with infested soil, which 

contained a mixture of fungi and reniform nematodes. The core soil mix for the stunting 

test contained 43.5 nematodes/gram. The nematode population was originally from 

Arkansas provided by R. T. Robbins, University of Arkansas. 

 

Seeds were scarified, rinsed with hot tap water (50°C) for 20 seconds, rolled in 

germination paper (Andwin Scientific, Catalog Number: 28334-194) and germinated at 

30°C for 24 hours, and then at 14°C for another 24 hours, to obtain radicles of consistent 

length (~ 5 cm).  After that, seedlings were transplanted individually into cups. 

 

Each cup was fertilized before planting by applying 50 mg of 10-30-20 fertilizer (Scotts 

Peters 99350 10-30-20 Water Soluble Peat Lite Plant Starter Fertilizer) in 50 ml water. 

After one week, 25 mg of 10-30-20 fertilizer was used. On subsequent weeks by 

intervals until harvest, each cup was fertilized with 50 mg of 15-5-25 fertilizer (Scotts 

Peters 9922015-5-25 Water Soluble Peat Lite Flowering Fertilizer) in 50 ml water. Plant 

height data were recorded after two weeks of planting. 

 

Reniform nematode resistance test assay 

In the reniform nematode resistance test assay, FM 966 was used as a nematode-

susceptible control, and experimental line MR-19 as a nematode-resistant control. Eight 

experimental replicates were used for controls and BC1S2 seedlings from homozygous 
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BC1S1 plants selected by MAS from five BC1F1recombinant plants. Four replicates of 

LONREN-2 also were included in the test. 

 

The experiments were conducted in a growth chamber at the USDA-ARS, College 

Station, Texas. The temperature was set at 28℃ for 13 hours of light and 22℃ for 11 

hours of dark. The soil mix used for nematode assays was made by mixing 90.9 liter 

sandy loam: 7.6 liter vermiculite, 600 ml dolomite and 300 ml gypsum. The soil was 

thoroughly wetted and pasteurized at 75℃ for 16 hours. The soil was equilibrated in 

growth chambers for 24 hours before use. Seed germination and transplanting steps were 

the same as for the stunting test assay. 

 

Reniform nematodes were extracted by the Baermann funnel technique from sandy loam 

soil infested with an Arkansas population of reniform nematode provided by R.T. 

Robbins. Reniform nematodes were injected into the soil surrounding seedlings using a 1 

ml syringe (B-D Luer Lock Part No. 309628). Approximately 4,000 reniform nematodes 

were injected for each cup. 

 

Three cores of soil from each cup were sampled eight weeks after inoculation, and 

extracted by the Baermann funnel technique. Then nematodes were counted and counts 

per gram of soil were calculated. Statistical analyses were performed using SAS 

(Version 9.3; SAS Institute, Cary, NC). 
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Results 

MAS for the best recombinants 

Five new recombinants each with 5 new break points between SNP markers Gl_168758 

and Gl_072641 were found among 17,600 BC1F1seeds (Table 5.3).  

 

Table 5.3. Five new recombinants with recombination locations by MAS. 
Recombinant progeny DCO donor Gl_168758 BNL1231 Gl_072641 new break point 

D1F3 7123 H A A proximal to BNL1231 
LS33C5 7112 H A A proximal to BNL1231 
LS53F11 7110 A H H Distal to BNL1231 
LS78D5 7126 A H H Distal to BNL1231 

LS149B11 7110 A H H Distal to BNL1231 

A: homozygous for G. hirsutum allele; H: heterozygous for G. longicalyx allele  

 

BNL1231, to date, is the only marker that has completely co-segregated with resistance 

and susceptibility to reniform nematode and stunting. It is a dominant marker without 

amplification in G. longicalyx (BNL1231_null). Before conducting the stunting assay, 

ten selfed seeds were tested from each putative recombinant plant against BNL1231. 

BNL1231_null was lost for two of the five recombinant lines, D1F3 and LS33C5. 

Conversely, LS53F11, LS78D5 and LS149B11 still contained BNL1231_null. Stunting 

and reniform resistance tests were conducted next to see if any of the recombinants 

obtained both resistance to reniform nematode and stunting. 
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Stunting test assay 

Plant height was measured two weeks after planting (Table 4).  Progeny from D1F3 and 

LS33C5 did not show stunting. Progeny from LS53F11, LS78D5 and LS149B11 

segregated for stunting (Table 5.4).  The results indicate BNL1231_null was linked with 

stunting. A reniform resistance test was needed to determine whether BNL1231 was 

uncoupled from the Renlon gene. 

 

Table 5.4. Plant height (cm) data two weeks after planting. 

Plant 
Genotypes (BC1F1 Lines or Families) 

FM 966 MR-19 D1F3 LS33C5 LS53F11 LS78D5 LS149B11 

1 8.4 3.7 9.1 6.3 6 4.1 8.1 

2 6.3 3.1 6.4 8.8 8.3 7.8 3.8 

3 5.8 3 8.5 8.7 6 7.1 4.2 

4 7.8 3.2 7.3 7.3 4.4 5.2 9.3 

5 5.5 5.4 7.8 7.6 6.5 6.1 4.2 

6 n/a n/a 6.2 9.8 6.3 5.5 5.4 

7 n/a n/a 6 9.6 3.6 7.7 9.2 

8 n/a n/a 7.7 8.7 4.9 4.1 4.2 

9 n/a n/a 7.7 9.6 5.5 5.2 4.4 

10 n/a n/a 6.3 6.7 4.1 4 3.7 

Avg. 6.76 3.68 7.3 8.31 5.56 5.68 5.65 

Std. dev 1.27 1 1 1.19 1.31 1.38 2.17 

S.E. 0.57 0.45 0.30 0.38 0.414 0.436 0.686 

 
 
 
Reniform nematode resistance test 

Reniform nematodes per gram of soil were determined and evaluated. FM 966 and MR-

19, and LONREN-2 showed significant differences for nematodes per gram of soil (Fig. 

5.2). Both MR-19 and LONREN-2 had extremely low reniform nematodes from this 

experiment (~0 nematode per gram soil), which was consistent with previous results. 
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BC1S2 plants from LS53F11, LS78D05 and LS149B11had extremely low reniform 

nematodes numbers similar to the LONREN lines. BC1S2 plants from LS33C05 had 

very high numbers of reniform nematode similar to FM 966 (up to ~40 nematode per 

gram soil). BC1S2 plants from D1F3 showed segregation for resistance, which was not 

expected. One plant from D1F3 showed higher numbers of reniform nematode than the 

rest; two plants showed very low numbers of reniform nematode similar to LONREN 

lines (~0 nematode per gram soil); and seven plants had relatively low reniform numbers 

(~1 to 2 nematode per gram soil) but not as low as those of LONREN lines.  

 

 

 
Figure 5.2. Boxplot displaying mean nematodes per gram of soil for each genotype 

at eight weeks after inoculation. 
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Discussion 

In describing the reniform-resistant upland backcross products from G. longicalyx 

introgression, Robinson et al. (2007) noted that each contains an alien Renlon-bearing 

segment of unknown physical length and genetic composition, because linkage map 

distances (cM) are poor indicators of absolute physical size (Mbp).  Given that the rate 

of recombination between the alien segment (F1-genome) and c11 (A-subgenome of the 

[AD]1 genome) is much lower than between normal c11 homologs, the physical size of 

the alien segment could be significantly under-estimated by linkage map distances (48, 

124).  The larger the alien c11 segments, the more likely that they would contain 

agronomically deleterious linked genes and perform less than optimally for one or more 

other significant traits. Genetic recombination might mitigate or solve the stunting issues 

of Renlon lines by differentially eliminating linked alleles that cause stunting while 

retaining the beneficial linked allele for nematode resistance. 

 

 Achieving desirable recombinants around Renlon is complicated by the low rate of 

recombination of the alien segment harboring Renlon with chromosome-11 of G. 

hirsutum, which is not completely homologous.  Moreover, DNA extraction of large 

numbers of individuals is another challenge. A total of 17,600 testcross seeds from 

different resistance families and FM 966 were screened using seed DNA extraction 

method (Chapter III) for the two closest SNP markers. Five recombinants with reduced 

flanking regions were found among 17,600 seeds, which reflects the rare recombination 

rate between the F sub-genome and the A sub-genome in the Renlon region. 
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The existing genomic resources do not yet make it easy to discover/identify all of the 

SNPs linked with Renlon, especially the ones very close to Renlon, because the D5 

genome is the only cotton reference sequence available at present. Renlon and its flanking 

region may be specific to G. longicalyx.  For example, the SSR marker BNL1231_null is 

the closest marker to the Renlon gene, and no recombination events have been found 

between BNL1231_null and Renlon. The BNL1231 primers do not give amplification of 

a product from G. longicalyx, which could be due to a difference in the Renlon-flanking 

region in G. longicalyx and G. hirsutum. The two closest Renlon-linked SNP markers 

were identified according to the alignment results to the D5 genome assembly and the 

screening panel. The actual distance between those two SNPs and the Renlon gene in the 

F genome is unknown. The new recombinants identified by the two SNPs may not have 

the shortest possible alien segment.  

 

BC1S1 progeny from each of five BC1F1 plants selected as "recombinants" were tested 

in the stunting assay. The results showed that for two, D1F3 and LS33C05, the BC1S1 

families were free of stunting and thus of possible interest (Table 5.5). For the other 

three recombinant families, the plant height measured at two weeks after planting clearly 

showed segregation of stunting, and thus are less desirable recombination products. 
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Table 5.5. Performance of the five recombinants families in the stunting assay and 

resistance assay. 

Recombinant progeny Stunting assay (BC1S1) Resistance assay (BC1S2) 
D1F3 non-stunting segregation for resistance  

LS33C5 non-stunting susceptible 
LS53F11 segregation for stunting resistance 
LS78D5 segregation for stunting resistance 

LS149B11 segregation for stunting segregation for resistance 
 

 

BC1S2 plants from recombinant families that were homozygous for SNP markers were 

also tested for reniform nematode resistance. All of the families that showed stunting 

were homozygous for resistance except LS149B11, which showed one susceptible plants 

among the ten tested. Progeny from the non-stunting family LS33C05 were susceptible 

similar to FM 966. The other non-stunting family D1F3 segregated for resistance (Table 

5.5). All of the BC1S2 plants were from the BC1S1 plants that were homozygous for the 

two closest SNP markers, therefore, the BC1S2 plants were expected to be homozygous 

for resistance. Since progeny from D1F3 segregated, there may have been incorrect 

classification based on the SNP markers, or recombination may have been occurred 

between the SNP markers and the resistance gene. That is unlikely, because of the very 

low recombination rate between the F and A sub genomes. Before any final conclusion 

can be made, further tests are needed to confirm whether stunting and resistance to 

reniform nematode were separated in the D1F3 family. 
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CHAPTER VI 

EFFECTS OF THE RENIFORM NEMATODE RESISTANCE Renlon SEGMENT ON 

SEVERITY OF THIELAVIOPSIS ROOT ROT IN COTTON 

 

Introduction 

The reniform nematode (Rotylenchulus reniformis Linford & Oliveira) was recognized 

as a serious pest of cotton in 1959 (73).  It has increased in importance since that time 

(141), and causes annual losses of approximately $130M in the U. S. Cotton Belt, with 

losses of 4-5% in the states of Mississippi, Louisiana and Alabama (22, 84, 122). 

Reniform nematode reduces cotton yield, boll size and lint percentage (40, 73). The life 

cycle of reniform nematode follows the basic pattern for sedentary plant parasitic 

nematodes. Vermiform females penetrate roots to establish feeding sites in the stele. The 

females remain sedentary semi-endoparasites during the remainder of their life cycle, 

with the anterior portion of the female and egg sacs on the root surface. The optimum 

temperature for reproduction is about 30℃, with no development at 16 or 36℃ (20, 137).  

 

Upland cotton (Gossypium hirsutum L.) cultivars lack significant resistance to the 

reniform nematodes, with only weak to moderate resistance reported (72, 125, 146, 170).  

In 1984, the African wild species G. longicalyx was reported to be the most resistant 

Gossypium species, and deemed completely resistant (170).  A gene conferring 

“immunity" to reniform nematodes was transferred from G. longicalyx into upland 

cotton (124). Linkage of the introgressed trait with molecular and phenotypic markers 
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indicated that it is determined by a single dominant gene or haplotype Renlon in 

chromosome 11 (48). Two germplasm lines LONREN-1 (PI 669509) and LONREN-2 

(PI 669510) from this resistance source were jointly released by the USDA-ARS, Texas 

A&M AgriLife Research and Cotton Incorporated (14).   

 

When LONREN-1 and LONREN-2 were planted in nematode-infested fields, they 

exhibited severe stunting at two to three weeks after planting (12). It has been reported 

that this stunting is due to hypersensitivity to reniform nematode (4, 136). However, the 

stunted field-grown plants of LONREN were found to show symptoms typical of fungal 

root rots, and a wide array of fungal pathogens was isolated from the roots, including 

Thielaviopsis basicola (Berk. & Broome) Ferraris (syn. Chalara elegans Nag Raj & 

Kendrick) (16).   

 

The soil borne fungus T. basicola is the causal agent of black root rot of cotton, an 

important seedling disease of upland cotton (Gossypium hirsutum L.).  Black root rot  

was first described in Arizona in 1942 (78).  The fungus overwinters as thick-walled 

chlamydospores that germinate in the presence of the host and adequate moisture (67). 

This fungus usually colonizes the root cortical tissue, causing dark brown to black 

discoloration of roots and hypocotyl (97, 99). Black root rot is most severe when soils 

are cool (below 24℃) and wet (above -20 joules/kg) (130, 153).  
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Interactions between nematodes and other plant pathogens have been documented in a 

number of crops (1, 2, 33, 53, 140, 142, 155, 161).  Synergism between nematodes and 

fungal pathogens in cotton is much more common, or perhaps better documented, than 

associations between nematodes and other types of pathogens . In the U.S. Cotton Belt, 

interactions between nematodes and seedling disease pathogens are common. An 

increase in cotton seedling disease caused by Rhizoctonia solani occurs in the presence 

of root knot nematode, Meloidogyne incognita (119). Increasing populations of reniform 

nematode and R. solani results in a linear suppression in plant growth (132). M. 

incognita,  reniform nematode , or Hoplolaimus spp. increase the severity of seedling 

disease caused by Pythium,  Alternaria,  Glomerella, and  Fusarium  spp. (1).  T. 

basicola also interacts with M. incognita (71, 94, 104, 154, 155). Alone, nematodes and 

fungi each cause disease of a chronic nature, whereas in concert they can cause 

significant plant mortality. There is some evidence that infection by the root-knot 

nematode allows T. basicola access to vascular tissue that would not normally be 

invaded in the absence of the nematode (153). The reniform nematode also interacts with 

several fungal species, including T. basicola, to increase cotton seedling disease severity 

(108).  

 

Observations by Agudelo et al. (4) and Sikkens et al. (136) led to the hypothesis that the 

hypersensitivity of LONREN germplasm to nematode feeding can cause stunting. 

However, hypersensitivity is but one of several possible explanations for the stunting 

(174). Another hypothesis is that stunting of LONREN materials (lines) results from 
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increased susceptibility to one or more soil-borne pathogens. Such susceptibility could 

result from root damage, and/or from increased genetic susceptibility.  Black root rot is a 

particularly severe seedling disease and can be influenced by concomitant nematode 

attack, as noted above. We considered T. basicola to be a strong candidate as a 

significant factor in the stunting of LONREN genotypes bearing the introgressed G. 

longicalyx gene, Renlon, when grown in reniform-infested fields.    

 

The present chapter reports the results of controlled experiments that investigate the 

LONREN stunting problem.  Natural cotton fields harbor potential pathogens. One or 

more of these pathogens could contribute to the stunting phenomenon. Initial 

experiments indicated that genotypes with the Renlon gene are differentially susceptible 

and/or sensitive to T. basicola (12). Three experiments were conducted in controlled 

environments to determine whether the stunting is due solely to hypersensitivity to 

reniform nematode or due to the increased susceptibility to the soil borne pathogen T. 

basicola in the presence of reniform nematode and the Renlon-bearing alien segment. 

 

Materials and Methods 

Genetic materials 

Five cotton genotypes were included in all three growth chamber experiments, 

germplasm line LONREN MR-19 (MR-19), cultivar Delta & Pineland ‘ DP 493’ (DP 

493), cultivar Fibermax ‘FM 966’ (FM 966), germplasm line BARBREN-713, and 

breeding line M-315 RNR (PI 592514) (M 315). MR-19 is a reniform nematode-resistant 
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line that contains the introgressed G. longicalyx gene Renlon, and is susceptible to 

stunting in nematode-infested fields. It has the microsatellite marker BNL3279_114, 

which is closely linked to the Renlon gene (48). DP 493 is susceptible to reniform 

nematode, and was the last backcross parent used in the development of MR-19. Line 

BARBREN-713 is a germplasm line released in 2012 for resistance to reniform and root-

knot nematodes.  The reniform nematode resistance in BARBREN-713 was introgressed 

from G. barbadense accession GB-713 (11, 125). In contrast to LONREN lines with 

resistance from G. longicalyx, BARBREN-713 does not exhibit stunting in nematode-

infested fields.  ‘FM 966’ is susceptible to reniform nematodes, but does not exhibit 

severe stunting. M 315 is resistant to root-knot nematodes but susceptible to the reniform 

nematodes, and was the last backcross parent used in the development of BARBREN-

713. 

 

Seed germination and soil preparation 

Seeds were scarified and rinsed with hot tap water (50°C) for 20 seconds, then rolled in 

germination paper (Andwin Scientific, Catalog Number: 28334-194) and germinated at 

30°C for 24 hours, then at 14°C for another 24 hours, to obtain radicles of consistent 

length (~ 5 cm).  After that, seedlings were transplanted individually into cups 

containing ~500 g soil.  

 

A fine sandy loam top soil was bought from a local dealer (Oppie's Topsoil, Sand, and 

Gravel; 1755 W. 28th Street, Bryan, TX  77803), and mixed 3:1 with washed sand. The 
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wetted mixture was pasteurized with aerated steam treatment at 75℃ for 16 hours on 2 

consecutive days. Pasteurized soil was equilibrated in growth chambers for at least 24 

hours before use. Natural sandy loam soil was used directly without pasteurization. 

Various soil-borne pathogens including T. basicola were found in the natural sandy loam 

soil by isolating from cotton seedling roots grown in the soil for 48 hrs (12). 

 

Experiment 1 --  T. basicola and reniform nematode in pasteurized sandy loam soil 

The

 

impact of reniform nematode and T. basicola on cotton seedlings and plant development 

was examined for the five genotypes described above, using pasteurized soil in growth 

chambers. Pathogenicity of fungal isolates was tested alone and in combination with 

reniform nematode. This experiment included four treatments: [i] control, untreated 

(CON); [ii] nematode only (NE); [iii] T. basicola only (TB); and [iv] reniform nematode 

and T. basicola (NE+TB) together. The experimental design was a 4 x 5 factorial 

randomized complete block design (RCBD). One seedling was grown per cup, each 

containing 500 g of soil.  Nematode treatment consisted of ca. 2500 reniform nematodes 

per cup (5 reniform nematodes/g soil). 

 

Experiment 2 --  Natural sandy loam soil

The same five genotypes were tested in the natural sandy loam soil that contained

 T. basicola in addition to other microorganisms but not reniform nematode. 

Treatments were evaluated in natural sandy loam soil with nematodes present (NE)

 or absent (CON). The treatment design was a 2 x 5 factorial RCBD. One seedling was 
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 grown per cup, each containing 500 g of soil.  Nematode treatment consisted of 
 
ca. 2500 reniform nematodes per cup. 

 

Experiment 3 -- High concentration of reniform nematodes in pasteurized sandy loam  soil

The treatment design was a 2 x 5 factorial RCBD with the five genotypes and reniform

nematode present (NE) or absent (CON). One seedling was grown per cup, each 

containing 500 g of soil.  In contrast to the other two experiments, the nematode treatment 

consisted of ca. 10,000 reniform nematodes per cup (20 reniform nematodes/g 

soil). 

 

All of the experiments were conducted in controlled environment chambers at the 

USDA-ARS Southern Plains Agricultural Research Center, College Station, Texas. In 

the randomized complete block experimental designs (RCBDs), each growth chamber-

time combination served as a block, with 4 replications (plants per genotype) in each 

block. Two blocks were tested for each experiment. The temperature was set to 20℃ 

during night (11 hours) and 25℃ during daytime (13 hours). 

 

Reniform nematode extraction 

Reniform nematodes were extracted by the Baermann funnel technique from soils 

infested with the nematode provided by R.T. Robbins, University of Arkansas. Extracted 

nematodes were free of T. basicola, even though the fungus was occasionally found in 

the nematode infested soil (16).  
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T. basicola inocula 

Isolates of T. basicola were obtained from roots of cotton growing in the sandy loam 

soil. Methods of T. basicola inocula preparation were similar to those of Bell et al. (12). 

Fungal isolates were increased on a 100g of sterile fine sand mix containing 1.5% 

ground cotton roots in 250 ml flasks. Flasks were infested by adding fungal spores from 

the periphery of 3-week old cultures growing on carrot juice medium, and then were 

incubated for at least a month with periodic mixing before using as inocula. Quantitative 

estimates of T. basicola inocula in the flasks were made by dilution plating on a 

selective medium (16). The concentration of T. basicola inocula obtained in this manner 

was about 600,000 colony-forming units/g soil. 

 

Inoculation with T. basicola and reniform nematode 

A 50 g portion of fungal culture in soil was diluted by thoroughly mixing it with 1000 g 

of soil to obtain the inoculum concentration added to cups.  Cups were filled with about 

500 g of sandy loam soil.  One day before planting seedlings, a 50 g core of soil (5 cm 

long, 2.5 cm diameter) was replaced with the T. basicola-infested soil mix. For the CON 

treatment in experiment 1, pasteurized sandy loam soil was placed in the core area. 

 

Seedlings were planted in the middle of the T. basicola infested core, one seedling per 

cup. Reniform nematodes were injected as a suspension using a 1 ml syringe (B-D Luer 

Lock Part No. 309628) with a perforated needle into the area surrounding seedlings. 
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Three injections were placed in a triangular pattern about 2.5 cm from the seedling, and 

a fourth injection was placed very close to the seedling.  

 

Fertilization 

Each cup was fertilized before planting by applying 50 mg of 10-30-20 fertilizer (Scotts 

Peters 99350 10-30-20 Water Soluble Peat Lite Plant Starter Fertilizer) in 50 ml water. 

After the first week, 25 mg of 10-30-20 fertilizer was used. Thereafter, each cup was 

fertilized with 50 mg of 15-5-25 fertilizer (Scotts Peters 9922015-5-25 Water Soluble 

Peat Lite Flowering Fertilizer) in 50 ml water every week until harvest. 

 

Data collection and statistical analysis 

Fresh shoot weight, plant height and root weight were recorded three weeks after 

planting. All statistical analyses were performed using SAS (Version 9.3; SAS Institute, 

Cary, NC). Treatment effects were analyzed within each genotype.  For experiment 1, to 

test for different performances of each genotype among four treatments (CON, NE, 

NE+TB and TB), one-way ANOVA was used to analyze treatment effects for each 

genotype separately. If a significant F-test was detected (P <0.05), the Student-Newman-

Keuls’ (SNK) test was used to further elucidate treatment differences (P =0.05). For 

experiment 2 and 3, since there were only two treatments for each genotype, a t-test was 

used to detect treatment differences for each genotype (P =0.05). Data from two repeated 

growth chamber experiments (trials) were pooled with four replicates in each, and trials 

were considered as block effects. 
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Results 

In Experiment 1, the growth medium was pasteurized soil. Plant heights of all five 

genotypes were not reduced by the NE treatment, as compared to the CON treatment 

(Fig. 6.1A). In fact, BARBREN-713 plant height was increased by NE treatment, as 

compared to CON treatment. The TB treatment significantly reduced the plant heights of 

all five genotypes, as compared to the CON and NE treatments. The combined 

treatment, NE+TB, stunted plant height of MR-19 more than the TB treatment. MR-19 

was the only genotype for which plant height was significantly reduced by the NE+TB 

treatment, as compared to the TB treatment. The effects of Experiment-1 treatments on 

shoot weights paralleled the effects on plant height, as described above. When given the 

NE+TB treatment, MR-19 was the only genotype for which the shoot weight decreased 

significantly more than that of seedlings given the TB treatment (Fig. 6.1B). The effects 

on root weight were somewhat different. Root weights of all genotypes were increased 

by the NE treatment, as compared to the CON treatment. The increase was significant 

for roots of four genotypes, but not MR-19 (Fig. 6.1C). For all five genotypes, the root 

weights were greatly reduced by the TB and NE+TB treatments, as compared to the 

CON and NE treatments. 
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Figure 6.1. Plant height (A), shoot weight (B) and root weight (C) of plants grown 

in pasteurized sandy loam soil, including five genotypes (M 315, BARBREN-713, 

FM 966, MR-19, and DP 493) and four treatments, control (CON), reniform 

nematode only (NE), reniform nematode and T. basicola (NE+TB), and T. basicola 

only (TB). Each bar represents the mean of 8 replicates (plants) pooled from two growth 
chamber experiments with four replicates each and the lines indicate the standard errors 
of the means. Letters within each genotype indicate significant differences among 
treatments according to SNK test (P < 0.05). The concentration of reniform nematode 
inoculations was 5 nematodes/g soil. 
 

 

The NE treatment had little effect on seedling height and shoot weight, but tended to 

increase root mass. The single and combined treatments with TB or NE+TB dramatically 

decreased seedling growth of all five genotypes. According to all three measures, the 

responses of all of the genotypes except MR-19 were similar to the NE+TB and TB 

treatments, with only slightly more severe responses to the NE+TB treatment. However, 

the response to the NE+TB treatment was exceptionally strong for MR-19, which 

displayed significantly stronger decreases for plant height and shoot weight, as well as 

differences in root weight, which were close to significant, too. 

 

In Experiment 2, the growth medium was non-pasteurized natural soil. Of the five tested 

genotypes, only MR-19 had significantly lower shoot weight (P =0.0157) after the NE 

treatment, as compared to the CON treatment (Fig. 6.2A and 6.2B). For plant height and 
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root weight, there were no significant differences between seedlings receiving NE or 

CON treatments for any of the five lines (Fig. 6.2C) (P ≥ 0.107). Results of Experiment 

1 were generally similar to those of Experiment 2, but less severe. When under the NE 

treatment, MR-19 suffered significant decreases in shoot weight, but declines in root 

weight and plant height were non-significant. 

 

 

 
Figure 6.2. Plant height (A), shoot weight (B) and root weight (C) of natural (non-

pasteurized) sandy loam soil test, including M 315, BARBREN-713, FM 966, MR-

19, and DP 493 with two treatments of control (CON) or with 5 reniform 

nematodes/g soil (NE). Soil pathogens, including T. basicola were present in the natural 
sandy loam soil. Each bar represents the mean of 8 replicates (plants) pooled from two 
growth chamber experiments with four replicates each and the lines indicate the standard 
errors of the means. Letters within each genotype indicate significant differences among 
treatments and growth conditions, according to t-tests (P < 0.05). The concentration of 
reniform nematode inoculations was 5 nematodes/g soil.  
 

 

In Experiment 3, the growth medium was pasteurized sandy loam soil. Plant heights and 

root weights of all five genotypes were not significantly affected by the NE treatment, as 

compared with CON (P ≥0.0730 for plant height, P ≥0.0956 for root weight). However, 

shoot weight of DP 493 was increased by the NE treatment, as compared to the CON 
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treatment (P =0.0432). Shoot weights of all the other four genotypes were not 

significantly affected by NE treatment (Fig. 6.3) (P ≥0.2675).  

 

 

 

Figure 6.3. Plant height (A), shoot weight (B) and root weight (C) of plants grown 

in pasteurized sandy loam soil. Genotypes M 315, BARBREN-713, FM 966, MR-19, 

and DP 493 were grown without (CON) and with 20 reniform nematodes/g soil 

(NE). Each bar represents the mean of 8 replicates (plants) pooled from two growth 
chamber experiments with 4 replicates each and the lines indicate the standard errors of 
the means.  Letters within each genotype indicate significant differences among 
treatments and growth conditions, according to t-tests (P < 0.05).  
 

 
 
Discussion 

The pasteurized sandy loam soil used in Experiment 1 and Experiment 3 was free of T. 

basicola and other soil-borne pathogens, greatly reducing complexities of the 

experiments. The natural sandy loam soil used in Experiment 2 was not pasteurized and 

contained an assortment of soil borne microorganisms, including T. basicola. This 

provided an opportunity to assess effects of nematodes in the presence of a complex 

array of other organisms and microbes, and where the natural level of T. basicola was 

much lower than in Experiment-1 treatments involving inoculation of soil with T. 
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basicola.  The inoculation levels of reniform nematode (5 nematodes/g soil) used in 

Experiment 1 and 2 are typical of the nematode concentrations found in the nematode-

infested cotton fields of the Texas A&M AgriLife Research farm near College Station, 

TX, where severe stunting of LONREN lines has occurred (15). The inoculum level of 

reniform nematode used in Experiment 3 was four-fold higher, about 20 nematodes/g 

soil, and provided an opportunity to assess effects of the nematode, per se, at a high 

inoculum level. 

 

The collective response of the five genotypes to NE treatment in Experiment 1 was to 

grow as large, or perhaps even larger, than non-inoculated control seedlings.  Thus, 

when no microbes were initially present in the soil, the presence of nematodes had a 

slightly positive or neutral effect on initial seedling growth. Similar results were also 

observed in Experiment 3 even with higher nematode inoculum density.  In both 

experiments, differential responses of MR-19 seedlings to control versus low or high 

nematode pressures were non-significant. These data indicate that stunting of Renlon-

containing genotypes does not result directly from nematode-induced hypersensitivity, 

and suggests the involvement of one or more additional factors.  

 

Seedlings of all genotypes in Experiment 1 were stunted more by the TB treatment than 

by the NE treatment.  All genotypes except MR-19 responded similarly to TB and 

NE+TB treatments, and were severely debilitated.  Furthermore, all genotypes except for 

MR-19 were damaged only slightly more by the NE+TB treatment than by the TB 
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treatment. Seedlings of MR-19, however were severely damaged by NE+TB treatment.  

In Experiment 2, in the presence of natural soil pathogens, all genotypes except MR-19 

responded similarly to control and NE treatments. In contrast, MR-19 was significantly 

stunted by the NE treatment.  In Experiment 1 and 2, MR-19 did not exhibit unusual 

sensitivity to T. basicola or natural soil pathogens without the application of nematodes.  

The differential responses by MR-19 are concordant with the hypothesis that stunting 

arises from increased susceptibility to T. basicola and perhaps other soil pathogens when 

nematodes are present.  

 

Plant height, shoot weight and root weight decreased for all genotypes subjected to the 

NE+TB treatment. This result parallels the previous report that the combination of 

reniform nematode and T. basicola induced more severe necrosis of roots and 

hypocotyls than T. basicola alone (108). In the presence of root-knot nematodes, 

vascular tissue colonization by T. basicola may exacerbate root dysfunction and cause 

increased seedling mortality in grower fields under specific environmental conditions 

(79, 153). A similar phenomenon might underlie the interactions observed for reniform 

nematode and T. basicola.  The reniform nematode could render the roots of all 

genotypes more susceptible to T. basicola by physically disrupting the continuity of the 

endodermis that normally functions as a barrier to further fungal invasion into the root 

and or by down regulation of plant defense genes at the nematode feeding sites (95).  

Such interaction between the nematode and fungal pathogen is often indirect and occurs 

owing to induced modifications in the host plant (76). For MR-19, such a disruption may 
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be especially pronounced (4), and physically render the roots even more susceptible to 

infection by T. basicola, and perhaps other soil pathogens. Another possibility is that 

susceptibility to soil pathogens is heightened as a result of overlap or interactions 

between physiological response pathways. Plants can be predisposed to infection by soil 

pathogens in response to systemic metabolites produced at the site of nematode infection 

(76, 115).  Metabolic modifications induced in MR-19 by the reniform nematode could 

heighten physiological sensitivity of seedlings to soil pathogens.  

 

In these experiments, MR-19 was not stunted any more than other genotypes by 

reniform nematode alone and there was no apparent root necrosis.  This finding differs 

markedly from a previous study of LONREN stunting that reported LONREN 

germplasm to be differentially sensitive to high-nematode populations, with 

hypersensitivity leading to root necrosis and plant stunting (136).  It is suspected that the 

discordance could be due to differences in nematode population densities or purity.  In 

this work, 5 nematodes per gram of soil in Experiment 1 and Experiment 2 was used, 

which is similar to local infested field levels and within the recommended population 

density for pot assays (122).  In Experiment 3, an elevated level of 20 nematodes per 

gram was used, as a further test.  In contrast, previously published results were based on 

extremely high nematode populations levels, up to 50,000/150 cc soil, i.e., ~333 

nematodes/g soil (136). Nematodes can vector plant pathogens, including plant viruses 

(63) and plant bacteria (113), which can significantly affect the development of some 

disease complexes in plants. Another difference between the studies is that the duration 
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of the treatments. The experimental cycle in this study was only 3 weeks, which is long 

enough to score stunting but short enough to minimize effects of post-planting 

contamination. In contrast, the previous study used nearly 9 weeks (62 days). At the 

conclusion of the experiments presented here, roots and hypocotyls of nematode-only 

treatments were not discolored (Fig. 6.4), whereas roots and soil-line regions of 

hypocotyls were very darkly discolored in the previous study (136), strongly indicating 

pathogenesis by organisms other than nematodes.   

 

 

 

 
Figure 6.4. Roots of seedlings from T. basicola test in autoclaved sandy loam soil.  
From left to right are five genotypes, M 315, BARBREN-713, FM 966, MR-19 and DP 
493; From top to bottom are four treatments of control (CON), reniform nematode only 
(NE), reniform nematode and T. basicola (NE+TB) and T. basicola only (TB). 
 

 



 

112 
 

 

Overall, the results indicate that stunting of LONREN genotypes containing the Renlon 

gene, e.g. MR-19, is not caused by reniform nematode alone, but is instead caused by 

combinations of reniform nematode with T. basicola and/or other natural soil-borne 

pathogens. Physical damage due to hypersensitivity to the nematode is at most a 

relatively minor factor in seedling stunting. Reniform nematodes, however, clearly 

exacerbate the high susceptibility of LONREN genotypes to T. basicola and perhaps 

other soil pathogens.  The increased susceptibility might be due to a combination of 

facilitated entry past the endodermal barrier coupled with hypersensitive reactions to 

feeding. This would allow necrotrophic fungi to penetrate xylem tissue more readily. 

Additional research will be needed to sort out the basis for the increased susceptibility of 

cotton to black root rot, caused by the Renlon gene in the presence of reniform 

nematodes.  
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CHAPTER VII 

CONCLUSIONS 

 

Reniform (Rotylenchulus reniformis) nematodes are pathogens of cotton (Gossypium 

hirsutum) and soybean (Glycine max.) in the southern United States.  The nematode 

costs US cotton growers over $130M per year in lost yield, quality and management 

expenses.  Extremely strong resistance was found in the wild African diploid species G. 

longicalyx and introgressed into tetraploid cotton.  Two highly resistant cotton lines were 

released, LONREN-1 and LONREN-2, but field testing revealed severe stunting of 

seedlings grown in fields heavily infested with reniform nematodes.  Possible 

explanations include root damage caused by hypersensitivity to the nematode, per se, 

and/or new or accentuated susceptibility to one or more soil-borne pathogens, e.g., due 

to loss of linked (repulsion) G. hirsutum disease resistance loci. Several nematode and 

fungal resistance loci of cotton are known to reside nearby. To better characterize this 

chromosomal region and potentially separate the resistance and stunting, a map-based 

approach was undertaken to recover recombinants that retain the alien resistance gene 

(Renlon) but minimize the flanking alien segments. 

 

To better characterize the Renlon chromosomal region, a total of 106,795 SNPs between 

G. longicalyx and G. hirsutum were developed by RNA-seq. A subset of 86 Gh_Gl 

SNPs, which were randomly selected, was validated by KASPar assays, and the 

conversion rate was 90.70%. All the SNPs were aligned to the D5 cotton genome 
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assembly, and 78% of them were successfully mapped. Those SNPs will facilitate future 

germplasm introgression from G. longicalyx and analysis of products from past 

introgression efforts. 

 

By aligning resistance-linked SSR markers BNL3279, BNL1231, BNL1066, and 

CIR316 to the D5 genome assembly, the Renlon region was identified in the D5 genome. 

All of the Gh_Gl SNPs that aligned to this Renlon region were selected and tested against 

a screening panel of various cotton cultivars. A total of 85 Gh_Gl SNPs were validated 

as linked with Renlon, of which 18 were selected for high-resolution mapping. The two 

SNPs most closely flanking Renlon were selected according to the alignment position on 

the D5 genome and used for MAS to identify new recombinants that would reduce the 

alien segments flanking Renlon. 

 

To enable high-resolution mapping and large-scale screening with large populations, 

manual procedures for non-destructive high-throughput extraction of DNA suitable for 

PCR-based genotyping from cotton seeds and seedlings were developed. By sampling 

minimal amounts of tissue from embryonic or seedling cotyledons, damage is minimized 

and viability not discernibly affected, yet the yield of DNA from each seed or seedling is 

typically sufficient for 1000 or 500 PCR reactions, respectively. The tissue sampling 

procedure for seed relies on a modified 96-well plate, which is subsequently used for 

seed storage, and there is no need to transfer the seed, reducing chances for error. The 

methods allow for 1000 seed, or many thousands of seedling DNA samples to be 
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economically prepared per person-day and a cost near $ 0.05 per sample. These methods 

are applicable before planting or pre-transplanting, as desired, and enable a wide variety 

of applications that require genetic testing utilizing PCR-based genotyping methods. 

 

By using the high-throughput non-destructive seed DNA extraction method, 880 seeds 

from two different resistance families were mapped with 18 of the validated SNPs. A 

high-resolution map was partially constructed for the resistance family containing the 

proximal Renlon alien segment, but was not constructed for the resistance family 

containing the distal alien segment due to the very low recombination rate between G. 

hirsutum and G. longicalyx.  

 

In order to identify new recombinants with minimal flanking regions, DNA was 

extracted from 17,600 backcross seed using the newly developed high-throughput non-

destructive DNA extraction method and genotyped with the two closest flanking SNP 

markers. Five new recombinants with minimized flanking regions were identified from 

the 17,600 seeds screened. Stunting and reniform nematode resistance tests were used to 

evaluate selfed progeny from each recombinant to determine if any of them were 

resistant to reniform nematode but free of stunting. Two of the five recombinant families 

were free of stunting, one of which, D1F3, seemed to segregate for reniform nematode 

resistance, although this result requires further confirmation. If correct, it would confirm 

that resistance and seedling stunting have been separated through additional 

recombination, and that LONREN stunting is due to linkage drag.  
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To determine if the stunting might result directly from hypersensitivity to the nematode, 

and/or increased susceptibility to soil-borne pathogens, LONREN line MR-19 and four 

control genotypes were exposed to different treatments with the soil borne pathogen 

Thielaviopsis basicola and/or reniform nematodes. Plant height, shoot weight and root 

weight were used as measures of stunting. LONREN MR-19 was stunted significantly 

more with the combined treatment of T. basicola and nematodes as compared to the 

effect with exposure to T. basicola alone, and no significant stunting was observed when 

treated with nematodes alone. The other genotypes did not show the differential response 

to the combined treatment. These results indicate that the stunting of LONREN seedlings 

is due largely to increased susceptibility to T. basicola and perhaps to other soil fungi, 

and not due to the response to the nematode per se.  The increased susceptibility of 

LONREN to stunting when facing reniform could be due secondary effects from tissue 

damage and/or physiological change that alter sensitivity or reaction to soil-borne 

pathogens. 
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