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ABSTRACT

Partial differential equations are ubiquitous in petroleum engineering. In this the-

sis, we begin by introducing a generalization to Darcy’s law which includes the effects

of fluid inertia. We continue by using the generalization of Daryc’s law to derive the

hyperbolic diffusion equation (a generalization of the parabolic diffusion equation)

which takes into account a finite propagation speed for pressure propagation in the

fluid. We develop the mathematical theory used to solve the diffusion equations with

various boundary conditions, which include the theory of Sturm-Liouville problems,

eigenfunction expansions, and Laplace transformations. Further, we introduce the

application of a nonsingular Hankel transform method for finding the solution to the

diffusion equations with nonzero and nonconstant initial and boundary conditions.

It will be shown that the Hankel transform method developed herein proves to be a

more straightforward and less time consuming computation than those found in the

literature.

To show the application of the parabolic diffusion equation in the industry, we

proceed to derive the solution to the pressure pulse decay method as well as the well-

known GRI crushed core permeability method. After derivation of the solutions, we

show that the results obtained have excellent agreement with the data that can be

found from sources for the pressure pulse decay method and the actual crushed core

experiments from the GRI. To provide further insight, we investigate the pressure

behavior inside the crushed core sample and core samples as the pressure response

moves from transient to steady-state. This type of analysis has not been discussed

in existing literature.
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1. INTRODUCTION

All science requires mathematics. The knowledge of mathematical things is almost
innate in us. This is the easiest of sciences, a fact which is obvious in that no one’s
brain rejects it; for laymen and people who are utterly illiterate know how to count
and reckon.

Roger Bacon (1214–1294)

1.1 Mathematics in Petroleum Engineering

All disciplines of the arts and sciences are rooted in mathematics. In particular,

partial differential equations are used to model the phenomena that is observed in

the physical world. In the study of petroleum engineering, this fact is very evident.

Within petroleum engineering, partial differential equations are derived from first

principles to model many behaviors.

For example, predicting the movement of acid and permeability fronts in sand-

stone can be modeled by a system of two partial differential equations. Summa-

rizing [32], as acid progresses in the axial direction through a sandstone core, the

mixture reacts with and dissolves some of the solids on the surface of the pore space.

By disregarding any axial dispersion in the sandstone, a differential mole balance on

a solute i in the liquid phase gives

∂(φCi)

∂t
+
∂(V Ci)

∂x
= (Rs +Rh)i, (1.1)

where φ is the porosity, Ci is the concentration of the solute i in moles/cm3 of fluid,

V is the superficial velocity in cm/min, t is the time in min, x is the distance in

the axial direction in cm, and Rs and Rh are the heterogeneous and homogeneous

reaction rates respectively of solute i in moles/cm3 of bed volume/min. In a similar

1



fashion, a differential mole balance in the solid phase on a mineral species j in the

sandstone, that is in this case dissolvable, gives

∂ ((1− φ)Wj)

∂t
= rj, (1.2)

where Wj is the concentration of mineral species j in mole/cm3 of solids and rj is

the rate of reaction of mineral j in mole/cm3 of bed volume/min.

Another example can be found in modeling the behavior of a rod string in a

sucker rod pumping system. In deriving the force balance of a segment of a sucker

rod string, the resulting partial differential equation is the one dimensional damped

wave equation, with the rare instance of both boundary conditions prescribed at one

end of the rod string, in particular at the surface. Application of the damped wave

equation to modeling the sucker rod string yields

∂2y

∂t2
= a2 ∂

2y

∂x2
− c∂y

∂t
+ g, (1.3)

where y is the total displacement (dynamic plus static) in ft, x is the distance from

the surface in ft, t is time in sec, a is speed of sound in the rod material in ft/sec,

c is a damping coefficient in sec−1 and g is the acceleration of gravity in ft/sec2. In

essence, to determine the behavior of the rod string at any depth x, the two boundary

conditions of position and load are measured at the surface. From this information

and the assumption is that for each stroke of the pumping unit the rod string is in a

steady–state, where the initial conditions have damped out, we see that the solution

2



to (1.3) is uniquely dependent upon the boundary conditions

y(0, t) = Ppr(t), (1.4)

EA
∂y(0, t)

∂x
= Lpr(t), (1.5)

where Ppr is the position of the polished rod (at the surface) in in, E is the Young’s

modulus of the rod material in psi, A is the cross sectional area of the rod in in2,

and Lpr is the load at the polished rod in lbs. Figure 1.1 shows the parametric plots

of load and position of the polished rod and the downhole pump. These parametric

plots are known as surface and downhole (pump) dynagraph cards. The downhole

pump card is computed using (1.3)–(1.5).

As a final example, we can also consider the partial differential equation that is

currently used to model the flow of fluids through porous media. Upon derivation

from first principles, we obtain

κ∇2p =
∂p

∂t
, (1.6)

where p is the pressure in psi, r is the distance into the porous medium from the

wellbore in ft, t is the time in seconds, κ is the diffusivity coefficient in ft2/sec, and

∇2 := 1
rk

∂
∂r

(
rk ∂

∂r

)
is the Laplacian in the cases of linear (dimension k = 1) flow and

radial (dimension k = 2, 3) flow, respectively. The partial differential equation (1.6)

and a generalization of it will make up the bulk of the subject matter of this thesis.

While the aforementioned examples barely scratch the surface of the utility of

mathematically modeling the physical world, they do clearly show that PDEs are

at the heart of diagnosing and predicting the behavior of the phenomena that can

be found in petroleum engineering. And that is part of the elegance and power of

mathematics... it gives man the ability to determine the outcome and the behavior

3
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of a system before it occurs, to predict, to tell the future. No greater power exists.

1.2 Research Objectives

The objectives of this thesis are

• To provide a self-contained account of the mathematical theory needed to derive

and solve the parabolic diffusion equation and hyperbolic diffusion equation as

applied to modeling the flow of fluids in porous media.

• To demonstrate the utility of the mathematical theory developed herein by

solving the different diffusion equations with different boundary conditions in

different coordinate systems.
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• To investigate a generalization of Darcy’s law which incorporates the inertia of

the fluid, thus eliminating the assumption of an infinite pressure propagation

speed.

• To provide the mathematical rigor and detail for the some of the solutions to

the diffusion equation that are missing in known literature.

• To demonstrate a generalization of the parabolic diffusion equation by imple-

mentation of the hyperbolic wave equation, which tends to the usual parabolic

diffusion equation as the pressure propagation speed tends to infinity.

• To propose and demonstrate a new application of the Hankel transform for solv-

ing the parabolic and hyperbolic diffusion equations with nonconstant initial

and boundary conditions via an eigenfunction expansion technique.

• To provide from first principles a complete derivation of, and solution to, the

parabolic diffusion equation which models the pressure pulse decay method for

determining rock properties from core samples.

• To provide from first principles a complete derivation of, and solution to, the

parabolic diffusion equation which models the Gas Research Institute’s (GRI)

crushed core method for determining rock properties from crushed core sam-

ples.

• To investigate a novel formulation of modeling the flow of fluids in porous media

by enforcing the two required boundary conditions at the interior boundary.

1.3 Statement of the Problem

This work focuses on the parabolic diffusion equation and the hyperbolic diffusion

equation with different initial and boundary conditions. In particular, a complete

5



derivation of these equations we be provided, beginning with appropriate continuity

equations, equations of state, and equations of motion for the fluid in the porous

media.

Once these equations are derived, we demonstrate a new method of solution via

Hankel transformations. The solutions obtained by the Hankel transforms developed

in this thesis are for general initial and boundary conditions. As special cases of

these solutions, the solutions in the literature [35,36,51] where initial and boundary

conditions are assumed to be constants are easily verified. It is believed by the author

that the solution method derived in this thesis is a new contribution to the literature.

We then modify the equation of motion used to derive the parabolic diffusion

and include the effects of the fluid density and inertia. The resulting partial dif-

ferential equation is a hyperbolic diffusion equation. This is a generalization of the

usual parabolic diffusion equation in that it takes into account the fact that pressure

propagates at a finite speed in a compressible fluid. It will be shown that if one lets

this propagation speed in the hyperbolic diffusion equation go to infinity, then, as

expected, the parabolic diffusion equation will result. The Hankel transform method

developed for the parabolic diffusion equation is also developed herein to solve the

hyperbolic diffusion equation. We will also investigate specific cases with constant

boundary conditions to compare and contrast the behaviors of the two diffusion

equations.

Once the parabolic diffusion equation and the hyperbolic diffusion equation and

their respective solutions are developed, we continue by providing a detailed deriva-

tions and solutions to two popular methods used in determining the properties of

reservoir rock. The methods that are investigated are the pressure pulse decay

method [3,8,13,15,23,24,37] and the GRI crushed core method [13,15,17,18,22,24,

25,29–31,33,37,41,44,46]. After developing these solutions, new insight is provided

6



regarding the behavior of the pressure within the reservoir rock as the pressure moves

from transient to steady-state.

To conclude, we consider the problem of prescribing the two required boundary

conditions for the hyperbolic diffusion equation at the interior boundary. This is

an interesting problem to consider since there seems to be no evidence of any in-

vestigation of this problem prior to this thesis. Further development of the solution

obtained in this work is recommended for future research.

1.4 Literature Review

There is a tremendous amount of literature regarding the use of the parabolic

diffusion equation to model the flow of fluids through porous media [4, 6, 10, 13, 15,

17, 18, 23–25, 27, 29, 30, 33–37, 41, 42, 51]. The equation of motion that is used to

derive the parabolic diffusion equation is Darcy’s law. This law omits any possible

inertia effects of the fluid by assuming that the flow is sufficiently slow so that this

omission is acceptable. The solution method that seems to be the most popular the

use of the method of Laplace transform [51]. The author conjectures that one of the

reasons that this method is most popular is because as the solution develops, the

pseudo-steady state portion of the entire solution is evident and readily identified.

Regarding the use of separation of variables and the Hankel transform, the latter

of which is developed in this thesis, identifying the form of the pseudo-steady state

portion of the complete solution is not as straightforward.

The generalization of the parabolic diffusion equation to the hyperbolic diffusion

equation in this thesis is derived by including the potential effects of including a term

the fluid inertia in the equation of motion. The resulting model for the flow of fluid

in porous media is the hyperbolic diffusion equation. There is a significant amount of

literature devoted to this idea [5,11,16,19,20,28,34,38–40,52]. However, the author
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did not find anything which attempts to solve the hyperbolic diffusion equation on a

similar domain or with the implementation of a Hankel transform using eigenfunction

expansions. The resulting equation of motion is both Newton-like and Darcy-like.

It is similar to Newton in that it relates the differences in forces on the fluid to the

mass of the fluid times its acceleration. It is similar to Darcy’s law because as the

density of the fluid approaches zero (disregarded), the equation of motion tends to

the popular Darcy’s law.

Once the mathematics are completed and the solutions have been given for the

two different diffusion equations, we turn our attention to applying this theory to

solving two modeling problems in the petroleum industry. The GRI began a program

in 1991 to research and develop new methods to determine the reservoir and rock

properties of the Devonian shale in the Application Basin which involved special

coring, logging, and testing of the rock samples. The GRI topical report [29] and

related papers [30, 31] provide descriptions for the three experimental methods that

were developed in order to determine the properties of the shale rock from two wells

in Pike County, Kentucky. The methods of determining the matrix gas permeability

that were developed are pressure pulse permeability of shale core plugs, pressure

pulse permeability of crushed core samples, and permeability from degassibility of

core plugs. The two topics we investigate in this thesis are the pressure pulse decay

method and the GRI crushed core permeability method.

Knowledge of the porosity and permeability characteristics of a formation is of

paramount importance. These rock properties can be measured by using constant-

flow equipment, which can be quite time consuming and inaccurate on samples from

tight (k < 1 mD) reservoirs [15]. A method developed to mitigate these issues is the

pressure pulse decay method. This method offers is completed in a shorter amount

of time and offers more accurate estimates of rock properties. This type of test was
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pioneered by Brace [8], who suggested a nonsteady-state technique called a pressure-

pulse technigue, to determine the permeability of tight rock samples [23]. Many other

sources in the literature model the pressure pulse decay method using a model for

slightly compressible fluid [3,15,24,37] and/or a pseudopressure approach [13,15,23].

The experimental set-up for the pressure pulse decay method will be discussed in

Chapter 6.

There is a considerable amount of discussion in the literature regarding the deter-

mination of matrix gas permeability from crushed core samples [13,15,17,18,22,24,

25, 31, 33, 37, 41, 44, 46]. According to [29], the crushed core method takes core sam-

ples (or drill cuttings), crushes them, then sorts the particles by size using a sieve. A

known mass of the crushed sample of similar size are taken and loaded into a sample

cell of known volume. Helium is then expanded from a reference cell, also of known

volume, at a higher pressure, into the sample cell, which causes the ambient pressure

surrounding the crushed core samples to increase virtually instantaneously. Then, as

time progresses, the pressure in the sample cell decays further as the higher pressure

gas surrounding the crushed core samples seeps into the pores of the particles. The

matrix permeability as well as the gas-filled porosity can now be computed from the

pressure decay data. The experimental set-up for the pressure pulse decay method

will be discussed further in Chapter 7.

The test data used for determining the validity of our solution comes from two

sources. The first source is from [29] which uses core sample #36, taken from the

well Ford Motor Company No. 69, with a particle size of 20/35 mesh. The other

details of the experimental set-up, including important parameters such as sample

cell and reference cell volume as well as initial reference cell pressures and sample

mass, had to be estimated since these values were absent from all sources that the

author could find. The second source is from [41], which provides a much more

9



detailed description of a specific data set where all parameter values are provided.

The solution developed in this paper matches both pressure decay data sets with

excellent agreement.

A specific difference between the model that is developed in this thesis and the

model that is discussed very, very briefly in [29] is that the shape assumed in our

model is a sphere, while the shape assumed in [29] is a cylinder with height equal

to half the diameter. A direction toward further development of our model would

be to investigate any material differences in the solution that is found in this paper

assuming a spherical particle shape versus a the solution that would be derived

assuming a cylindrical particle shape.

1.5 Strategy and Outline of the Thesis

The idea of this work being a self-contained account of the required mathematical

theory needed to develop and solve the aforementioned parabolic and hyperbolic

diffusion equations, along with applications to existing methods which implement

these equations to determine properties of reservoir rock lends itself to the following

format.

Chapter 2 discusses and develops the continuity equation, equations of state,

and equations of motion resulting in a complete hydrodynamical system for the

flow of fluids in porous media. Depending on the equation of motion that is used,

the parabolic diffusion equation or the hyperbolic diffusion equation results. In

Chapter 3, the Sturm-Liouville theory, the Laplace transform, and the method of

separation of variables are developed in detail. These theories are at the heart of

solving the boundary value problems posed in this thesis. As such, it is critical that

the reader has a full understanding of these methods.

Following this development, Chapters 4 and 5 waste no time in immediately diving
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into solving the parabolic diffusion equation and the hyperbolic diffusion equation,

respectively, on limited reservoirs, which were fully derived and explained in Chap-

ter 2. By limited reservoirs we mean that the spatial domain on which the initial

value problems are solved is 0 < r1 < r < r2, where r1 represents the nonzero inte-

rior radius of the reservoir (the wellbore) and r2 represents the exterior radius of the

reservoir.

Once the derivation, mathematical theory, solution methodologies, and the solu-

tions themselves are determined for the two different diffusion equations, in Chap-

ters 6 and 7 we apply the solution methods discussed to show the detail involved

in obtaining models to accurately describe the pressure pulse decay method and the

GRI crushed core permeability method, respectively. In addition to providing the

details, we also provide respective graphical representations of the pressure traverses

that occur within the core sample and crushed core particles.

To conclude the thesis, in Chapter 8, we summarize the topics that were covered

in thesis and provide two new ideas for future research. The first recommendation for

future work is to model the transient pressure response methods in Chapters 6 and 7

using the hyperbolic diffusion equation. The second recommendation is to consider

a new type of boundary value problem for the hyperbolic diffusion equation on a

semi-infinite domain. In this boundary value problem, we propose considering the

fact that we can only really measure the conditions at the interior boundary r = r1.

Because of this, we wish to define our two required boundary conditions at the

interior boundary. A solution is obtained, but the author believes that there exists a

more tractable form than that what is provided. This semi-infinite boundary value

problem has proven to be an interesting problem which has tremendous potential for

further study.
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2. HYDRODYNAMIC EQUATIONS DESCRIBING THE FLOW OF FLUIDS

IN POROUS MEDIA

No amount of experimentation can ever prove me right; a single experiment can
prove me wrong.

Albert Einstein (1879–1955)

2.1 Introduction

We begin this chapter by introducing the hydrodynamic principles of a general

flow system. We then become more specific and concentrate on the flow of fluids

through porous media. The most fundamental law that we must consider in this

development is the conservation of mass which states that in a closed system the

mass (in this case, of the fluid) can neither be created nor destroyed.

2.2 Hydrodynamic Relationships

In our case, we are referring to a system of fluid in motion, so it behooves us to

restate the law in terms that are more representative of the system being investigated.

“The net excess of mass flux, per unit time, into or out of any infinitesimal volume

element in the fluid system is exactly equal to the change per unit of time of the

fluid density in that element multiplied by the free volume of the element [35].” We

may represent this statement, mathematically by

∇ · (ρ~v) =
∂

∂x
(ρvx) +

∂

∂y
(ρvy) +

∂

∂z
(ρvz) = −∂(φρ)

∂t
, (2.1)

where φ is the porosity of the element, ∇ := 〈 ∂
∂x
, ∂
∂y
, ∂
∂z
〉, ~v := 〈vx, vy, vz〉 represents

the velocity vector of the fluid in the element, and ρ is the density of the element,

both at an arbitrary point (x, y, z) in the element. The law of the conservation of
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mass in (2.1) is the continuity equation that will be used in our development.

Next we must describe the fluid that is to be modeled by defining an equation

of state which will describe the relationship between the density, pressure, and tem-

perature. This relationship can be expressed in general by

χ(ρ, p, T ) = 0 (2.2)

where p is the pressure and T is the temperature for a given point in the element.

For example, when the fluid is a completely incompressible liquid (zero compressibil-

ity), (2.2) would become

ρ ≡ const. (2.3)

If the fluid under consideration is a real gas, then

χ(ρ, p, T ) = p− zρRT

M
= 0, (2.4)

where z is the z-factor, R is the universal gas constant and M is the molecular weight

of the gas.

To round out the discussion of the description of the fluid under investigation,

we must also describe its thermodynamic qualities. The pay-off is in developing an

equation of the thermodynamic character will allow the elimination of one of the

variables p, ρ, or T so that a unified relationship of the flow and thermodynamic

qualities can be obtained. An example is density as a function of pressure, ρ = ρ(p).

Suppose the fluid is a real gas in isothermal flow, where (2.4) is the equation of state.

The relationship for the thermodynamic character would be

T ≡ const, (2.5)
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and thus substituting (2.5) into (2.4) would yield

ρ(p) =
M

zRT
p. (2.6)

The impact on hydrodynamical problems from the equation of state is now be-

coming clear. Substituting in (2.3) into the continuity equation (2.1) along with the

assumption that the matrix incompressible (∂φ/∂p = 0) we have

∇ · ~v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0. (2.7)

Inspection of (2.7) shows that it represents a relationship that must be upheld in

describing the velocity distribution in a system where the fluid is incompressible.

However, from this relationship, the individual components of velocity cannot be

determined nor does it differentiate between different incompressible liquids. Further,

it does not allow us to tell apart fluid systems that are under the influence of external

forces or if the flow is only dependent upon differences in pressure. Finally, from (2.7),

whether the fluid is flowing through an unobstructed path or a porous medium is

indistinguishable.

In addition to describing the fluid thermodynamically, a description of the dy-

namics of the fluid must also be provided as well as an explanation of how the fluid

acts under external forces and pressure differentials. In particular, what is sought is

a hydrodynamical equivalent to Newton’s law which states that the product of the

mass of a body and its acceleration is equal to and opposite the force acting on the

body. To develop this equivalent, the equation of state of the fluid as well as the

flowing conditions must be known [35].
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2.3 Classical Hydrodynamics

To have a complete hydrodynamic system, a dynamic classification of the char-

acter of the flow system must be developed in addition to the equation of continuity

and the equation of state. A unit volume element of the fluid will be acted on by

three outside forces [35]:

1. Forces opposing the motion of the fluid that are a result of friction or internal

resistance of the fluid.

2. Body forces acting on the elemental volume of fluid from the force vector ~F :=

〈Fx, Fy, Fz〉.

3. Pressure gradients of each of the components ∂p
∂x
, ∂p
∂y
, and ∂p

∂z
.

The forces for viscous flow described in item 1 in Cartesian components are given by

µ

(
∇2vη +

1

3

∂Θ

∂η

)
, η = x, y, z,

where ∇2 is the Laplacian operator defined by

∇2 := ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

and Θ is defined by

Θ := ∇ · ~v.

The physical interpretation of Θ is that it represents the rate of volume dilatation

of the fluid [35].

The dynamic classification of the character of the flow system will be determined

by equating the forces listed in items 1–3 with the product of the mass and accel-
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eration of the elemental volume of fluid. In correctly representing the acceleration

of this volume, it must be noted that the velocity of the element will change during

an interval of time at the position it once occupied originally, but it will also as an

element moves its position in the fluid. As a result, the acceleration is represented

by the total (material) derivative of the velocity, which is given by [35]

D

Dt
=

∂

∂t
+
dx

dt

∂

∂x
+
dy

dt

∂

∂y
+
dz

dt

∂

∂z

=
∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
.

Thus, we now have the dynamic equations of motion, known as the Navier-Stokes

equations, given by

ρ
Dvx
Dt

= −∂p
∂x

+ Fx + µ∇2vx +
µ

3

∂Θ

∂x
(2.8)

ρ
Dvy
Dt

= −∂p
∂y

+ Fy + µ∇2vy +
µ

3

∂Θ

∂y
(2.9)

ρ
Dvz
Dt

= −∂p
∂z

+ Fz + µ∇2vz +
µ

3

∂Θ

∂z
. (2.10)

We can represent (2.8)–(2.10) in compact vector form by

ρ
D~v

Dt
= ρ

(
d~v

dt
+ (~v · ∇)~v

)
= −∇p+ ~F + µ∇2~v +

µ

3
∇Θ. (2.11)

The development of the required equations for a complete hydrodynamic system

which includes a continuity equation (2.1), an equation of state (2.2), and a set of

dynamic equations of motion (2.8)–(2.10), and in vector form (2.11), is complete.

We may use these five linearly independent equations to solve for the five unknown

quantities ρ, p, vx, vy, and vz. With these equations the characteristics of a viscous

fluid flowing through any medium can be completely described [35].
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2.4 Generalized Darcy’s Law

In the development of a hydrodynamic system, it is clear that the law of conser-

vation of mass and the thermodynamic equation for a fluid must be kept constant.

The theory that was outlined in Section 2.3 developed the set of dynamic equations

of motion in (2.8)–(2.10). The essential difference in the dynamic equations devel-

oped in this section are that the macroscopic viewpoint of fluids flowing in a porous

medium can be substantially different from the microscopic viewpoint that is pro-

vided in (2.8)–(2.10). Darcy’s law states that macroscopically, in a porous medium

the fluid flow is directly proportional to the pressure gradient of the fluid [35]. It is a

method that can be considered similar to averaging the characteristics of the pores

and flow channels in the medium.

In general, for any body forces ~F having potential V (which implies ~F = −∇V ),

along with the pressure gradients that are acting on the fluid, the generalized Darcy’s

law can be represented mathematically by

~v = −∇Φ, (2.12)

where

Φ :=
k

µ
(p+ V ) . (2.13)

The relationships in (2.12) and (2.13) can be considered as the dynamical foundation

of viscous fluid flow through porous media for any type of homogeneous fluid. These

equations will be the macroscopic equivalent of and substitute for the Navier-Stokes

equations developed in (2.8)–(2.10) [35].
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2.5 Generalized Darcy Equations and the Navier-Stokes Equations

We now discuss one of the main ideas of this thesis. At this point we have

followed the classical development of the general hydrodynamic equations of fluid

flow in porous media. The natural progression is to replace the Navier-Stokes equa-

tions (2.8)–(2.10) with the generalized Darcy equations (2.12) and (2.13). There is

a compelling argument given by Muskat [35] which provides excellent reasoning to

make this replacement, which we will now outline.

The generalized Darcy equations (2.12) and (2.13) are different in both form from

the Navier-Stokes equations (2.8)–(2.10) as well as in omitting the density ρ. In the

Navier-Stokes equations, the density is multiplied by the total derivative which gives a

representation of the acceleration forces (inertia) in the fluid. Since density is omitted

from the generalized Darcy equations, so too are the inertia forces in the fluid. The

reason that this omission is valid is due to the belief that the viscous resistance greatly

exceeds the inertia forces in the fluid; that is unless turbulent conditions arise. In

other words, the predominate forces on the fluid are due to viscous resistance on

the fluid. The difference in the form of the generalized Darcy equations from that

of the Navier-Stokes equations are due to the “statistical averaging” of the classical

equations over the individual pores and flow channels in order to yield a simplified

macroscopic representation [35].

However, along with the author, there is considerable interest in the literature [11,

16, 19, 20, 28, 34, 38, 40, 52] on the maximum velocity of heat transmission and the

effects of fluid inertia on the flow of fluids in porous media. In particular, by including

the effects of inertia, the assumption of an infinite propagation speed of the pressure

disturbances is removed. This assumption is inherent in the generalized Darcy’s law,

which is an analog of Fourier’s law of heat transfer in the theory of heat conduction.
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The assumption of an infinite propagation speed is actually discussed briefly in [35].

It is mentioned that the velocity of propagation does in fact have an upper bound,

but the claim is that “physically it is not the absolute magnitude of the velocity of

propagation which is of primary importance, but rather its magnitude relative to the

fluid velocity in the medium [35].”

In [34] an argument is made showing that the assumption of an infinite prop-

agation speed in the transmission of heat in the usual diffusion equation is that it

predicts an increase in temperature at all points in a given body if there is an increase

in heat at some point in the body. Since this is physically impossible, it must be

assumed that the diffusion equation is correct after a sufficiently long period of time

has passed.

In the remaining sections and chapters of this thesis, we will develop the equations

of motion for fluid flow in porous media considering the two separate cases of an

infinite propagation speed and a finite propagation speed. In the development of the

case of infinite propagation speed, the usual parabolic diffusion equation will result.

This is the familiar form that serves as the foundation throughout the petroleum

engineering discipline to model fluid flow in porous media. In the development of

the case of finite propagation speed, a hyperbolic diffusion equation results. This

hyperbolic diffusion equation is nothing more that a special form of the telegrapher’s

equation, which in essence is a damped wave equation.

2.6 Equations of Motion

At this point, the dynamic laws of qualifying the fluid flow in porous media have

been developed. The procedure to complete the development of the fluid flow system

is to combine the dynamical equations with the equation of continuity. We make the

assumption that the viscosity µ is independent of pressure, the porous medium is
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isotropic, and that the compressibility of the formation is negligible.

2.6.1 Implementation of the generalized Darcy equations

To implement the generalized Darcy equations, we substitute in (2.12) into (2.1)

obtaining

∇ · (ρ∇Φ) =
∂(φρ)

∂t
, (2.14)

which upon implementing the chain rule in (2.14) results in

(∇ · ρ)∇ (p+ V ) + ρ∇2 (p+ V ) =
µ

k

∂(φρ)

∂p

∂p

∂t
. (2.15)

Neglecting gravity and assuming no other body forces, we have that V = 0, which

transforms the left hand side of (2.15) into

(∇ · ρ)∇p+ ρ∇2p =
∂ρ

∂p
∇p∇p+ ρ∇2p

=
∂ρ

∂p
(∇p)2 + ρ∇2p (2.16)

Applying the product rule to the right hand side of (2.15), we have

µ

k

∂(φρ)

∂p

∂p

∂t
=
µ

k

(
φ
∂ρ

∂p
+ ρ

∂φ

∂p

)
∂p

∂t

=
µ

k
ρφ

(
1

ρ

∂ρ

∂p
+

1

φ

∂φ

∂p

)
∂p

∂t
. (2.17)

Using the equation of state for a slightly compressible liquid [6]

ρ = ρ0e
c(p−p0), (2.18)
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and defining fluid compressibility and formation compressibility, respectively, by

c :=
1

ρ

∂ρ

∂p
and cf :=

1

φ

∂φ

∂p
, (2.19)

we can define the total compressibility by

ct := c+ cf . (2.20)

Combining (2.16)–(2.20) we obtain

∂ρ

∂p
(∇p)2 + ρ∇2p =

µρφct
k

∂p

∂t
(2.21)

Dividing (2.21) by ρ and recalling the definition of c in (2.19) yields

c (∇p)2 +∇2p =
µφct
k

∂p

∂t
. (2.22)

The term c (∇p)2 in (2.22) is the product of the fluid compressibility, which is typ-

ically a weak function of pressure for liquid that is above the bubblepoint pressure,

and the square of the gradient of the pressure, which is nonlinear. If an assumption

small and constant compressibility is made, then this term can be neglected [6]. The

end result is the parabolic diffusion equation

∇2p =
1

κ

∂p

∂t
, (2.23)

where the diffusion constant κ is defined by

κ :=
k

µφct
. (2.24)
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2.6.2 Implementation of the generalized Darcy and Navier-Stokes equations

Recall that in Section 2 we sought a hydrodynamical equivalent to Newton’s law

which states that the product of the mass of a body and its acceleration is equal

to and opposite the force acting on the body. To accomplish this task, we assume

horizontal flow and merge the ideas of the Navier-Stokes equations (2.8)–(2.10) with

the generalized Darcy equation (2.12). The thought is to create a new set of dynamic

equations of motion which includes the effect of the fluid density (inertia) and also

tends to the generalized Darcy equation when the inertia tends to zero. Neglecting

external body forces and the effects of gravity, the set of dynamic equations that

realizes these two requirements is [38,40]

ρ

φ

dvx
dt

= −∂p
∂x
− µ

k
vx (2.25)

ρ

φ

dvy
dt

= −∂p
∂y
− µ

k
vy (2.26)

ρ

φ

dvz
dt

= −∂p
∂z
− µ

k
vz. (2.27)

We represent (2.25)–(2.27) in compact vector form by

ρ

φ

d~v

dt
= −∇p− µ

k
~v, (2.28)

Recalling the equation of state (2.18) for a slightly compressible fluid, we have

∂ρ

∂p
= cρ

which implies

∂ρ

∂x

∂x

∂p
= cρ.
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Thus, we have

∂p

∂x
=

1

cρ

∂ρ

∂x
. (2.29)

Now substituting (2.29) into (2.25) we have

ρ

φ

dvx
dt

= −1

ρ

(
1

c

∂ρ

∂x
+
µ

k
ρvx

)
, (2.30)

and similarly for (2.26)–(2.27) we have

ρ

φ

dvy
dt

= −1

ρ

(
1

c

∂ρ

∂y
+
µ

k
ρvy

)
(2.31)

ρ

φ

dvz
dt

= −1

ρ

(
1

c

∂ρ

∂z
+
µ

k
ρvz

)
. (2.32)

Along the same lines as (2.29) we also have

∂ρ

∂t
= cρ

∂p

∂t
. (2.33)

Using the assumption that c is sufficiently small and using the relationship (2.33),

we can make the approximation

∂(ρvx)

∂t
= vx

∂ρ

∂t
+ ρ

∂vx
∂t

= vxcρ
∂p

∂t
+ ρ

∂vx
∂t
≈ ρ

∂vx
∂t

. (2.34)

Similarly we have

∂(ρvy)

∂t
≈ ρ

∂vy
∂t

(2.35)

∂(ρvz)

∂t
≈ ρ

∂vz
∂t

. (2.36)

Now differentiating the continuity equation (2.1) with respect to time and com-

23



bining (2.30)–(2.32) with (2.34)–(2.36) we obtain

−∂
2(φρ)

∂t2
=
∂2(ρvx)

∂x∂t
+
∂2(ρvy)

∂y∂t
+
∂2(ρvz)

∂z∂t

≈ ∂

∂x

(
ρ
∂vx
∂t

)
+

∂

∂y

(
ρ
∂vy
∂t

)
+

∂

∂y

(
ρ
∂vz
∂t

)
= − ∂

∂x

(
φ

ρ

(
1

c

∂ρ

∂x
+
µ

k
ρvx

))
− ∂

∂y

(
φ

ρ

(
1

c

∂ρ

∂y
+
µ

k
ρvy

))
− ∂

∂z

(
φ

ρ

(
1

c

∂ρ

∂z
+
µ

k
ρvz

))
= −φ

(
∂2p

∂x2
+
µ

k

∂vx
∂x

+
∂2p

∂y2
+
µ

k

∂vy
∂y

+
∂2p

∂z2
+
µ

k

∂vz
∂z

)
= −φ

[
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2

]
− φµ

k

[
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

]
= −φ

[
∂2p

∂x2
− ∂2p

∂y2
+
∂2p

∂z2

]
− φµ

ρk

[
∂(ρvx)

∂x
+
∂(ρvy)

∂y
+
∂(ρvz)

∂z

]
= −φ

[
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2

]
+
φµ

ρk

∂(φρ)

∂t
. (2.37)

Applying the relationships obtained from (2.17)–(2.20) to the left hand side of (2.37)

yields

∂2(φρ)

∂t2
=

∂

∂t

(
∂(φρ)

∂t

)
=

∂

∂t

(
ρφct

∂p

∂t

)
= φct

∂

∂t

(
ρ
∂p

∂t

)
= φct

(
∂ρ

∂t

∂p

∂t
+ ρ

∂2p

∂t2

)
= µφct

(
∂ρ

∂p

(
∂p

∂t

)2

+ ρ
∂2p

∂t2

)

≈ ρφct
∂2p

∂t2
. (2.38)

Similarly applying the relationships obtained from (2.17)–(2.20) to the right hand

24



side of (2.37) yields

−φ
[
∂2p

∂x2
− ∂2p

∂y2
+
∂2p

∂z2

]
+
µφ

ρk

∂(φρ)

∂t
= −φ

[
∂2p

∂x2
− ∂2p

∂y2
− ∂2p

∂z2

]
+
µφ2ct
k

∂p

∂t
. (2.39)

Combining (2.38) and (2.39), using (2.24), and assuming that ρ ≈ ρ0, we see

that (2.37) becomes

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
= ρ0ct

∂2p

∂t2
+

1

κ

∂p

∂t
. (2.40)

Assuming that ct is constant and cf is negligible, we have

ct =
1

ρ

∂ρ

∂p
≈ 1

ρ0

∂ρ

∂p
=:

1

ρ0a2
,

where a is the speed of sound in the fluid.

Thus, substituting in (2.24), we can rewrite (2.40) in a more general form as

∇2p =
1

a2

∂2p

∂t2
+

1

κ

∂p

∂t
. (2.41)

In Cartesian coordinates (2.41) is given by

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
=

1

a2

∂2p

∂t2
+

1

κ

∂p

∂t
. (2.42)

In cylindrical coordinates (2.41) is given by

1

r

∂p

∂r

(
r
∂p

∂r

)
+

1

r2

∂2p

∂ϕ2
+
∂2p

∂z2
=

1

a2

∂2p

∂t2
+

1

κ

∂p

∂t
, (2.43)
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which reduces to

1

r

∂p

∂r

(
r
∂p

∂r

)
=

1

a2

∂2p

∂t2
+

1

κ

∂p

∂t
(2.44)

for purely radial flow.

In spherical coordinates (2.41) is given by

1

r2

∂

∂r

(
r2∂p

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂p

∂θ

)
+

1

r2 sin2(θ)

∂2p

∂ϕ2
=

1

a2

∂2p

∂t2
+

1

κ

∂p

∂t
, (2.45)

which reduces to

1

r2

∂

∂r

(
r2∂p

∂r

)
=

1

a2

∂2p

∂t2
+

1

κ

∂p

∂t
(2.46)

for purely radial flow.

Solutions of (2.23) for purely radial flow in cylindrical coordinates will be devel-

oped in Chapter 4, while the more general solutions of (2.44) for purely radial flow

in cylindrical coordinates will be developed in Chapter 5.

Note that as the speed of sound a→∞, the hyperbolic diffusion equations (2.42)–

(2.46) all tend to their parabolic diffusion equation counter parts since the coefficient

1/a2 → 0. Thus it is expected (and will be confirmed) that the solutions obtained

in Chapter 5 should tend to the corresponding solutions in Chapter 4 as a→∞.
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3. METHODS OF SOLUTION

God used beautiful mathematics in creating the world.

Paul Dirac (1902–1984)

3.1 Introduction

Many of the models that are derived in petroleum engineering turn out to be

nonlinear partial differential equations and, in many cases, can be impossible to

solve analytically. To circumvent this impasse, assumptions are made about the

system and the relative magnitude of certain terms in the differential equation which

allow their omission, thus making the resulting simplified partial differential equation

linear and at the same time accurate enough for engineering purposes. In addition,

the newly obtained differential equation is solvable and from the solution the general

behavior of the entire system can still be determined.

Different methods exist for solving the linear partial differential equations that

are found in the study of fluid flow in porous media. One method of solution is

using a transform method. The methods that will be used in this thesis are the

transforms of Laplace and Hankel. The most popular of these transform methods

is the Laplace transform and the theory of this method will be discussed below.

The Hankel transform will be implemented in subsequent chapters and it will be

constructed for specific solutions to given problems. Separation of variables is another

method that will be introduced in this chapter as a means to solve the problems found

in this thesis.

Implementation of the Hankel transform and separation of variables produce reg-

ular or singular (to be defined later) Sturm-Liouville problems, depending on the

spatial domain. Thus, in order to implement these solution methods, we must be
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(a) Charles Sturm (1803–1855). (b) Joseph Liouville (1809–1882).

Figure 3.1: The parties responsible for the development of the Sturm-Liouville theory.

able to solve Sturm-Liouville problems. Due to this requirement, we will begin this

chapter will the necessary development of Sturm-Liouville theory. We follow with a

discussion of the method of separation of variables and Laplace transform theory .

3.2 Sturm-Liouville Theory

In this section a detailed introduction to Sturm-Liouville theory and orthogonal

series expansions will be provided following the development in [14].

We take as our foundation the generalized second order eigenvalue problem of

the form

a2(x)y′′ + a1(x)y′ + a0(x)y + λy = 0, a < x < b, (3.1a)

α1y(a) + α2y
′(a) = 0, (3.1b)

β1y(b) + β2y
′(b) = 0, (3.1c)

where it is assumed that the coefficient functions ai are continuous and a2(x) is posi-

tive for all a < x < b. Central to the solution methodology for (3.1) is Sturm-Liouville
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theory, named after Charles François Sturm and Joseph Liouville (see Figure 3.1).

We first define the operator L by

Ly := a2(x)y′′ + a1(x)y′ + a0(x)y (3.2)

and then convert this into Sturm-Liouville form. The resulting Sturm-Liouville op-

erator is

Sy : =
1

w(x)
[(p(x)y′)′ + q(x)y]

=
1

w(x)
[p(x)y′′ + p′(x)y′ + q(x)y] (3.3)

= a2(x)y′′ + a1(x)y′ + a0(x)y,

where the operator S is also defined for all a < x < b. We solve (3.3) for p, q, and w

obtaining

p(x) = a2(x)w(x), p′(x) = a1(x)w(x), q(x) = a0(x)w(x). (3.4)

By differentiating the first equation in (3.4) and combining it with the second equa-

tion in (3.4) we obtain

w′(x) =
a1(x)− a′2(x)

a2(x)
w(x)

which has the solution

w(x) = exp

[∫ (
a1(x)− a′2(x)

a2(x)

)
dx

]
. (3.5)

Since w(x) is now known, we can find all three functions in (3.4). It should be noted

that since a2(x) is assumed to be positive for all a < x < b, we now also have that
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p(x) and w(x) are also positive for all a < x < b as well.

3.2.1 Regular Sturm-Liouville theory

We are now in a position to develop the regular Sturm-Liouville theory. Given

the Sturm-Liouville problem

1

w(x)
[(p(x)y′)′ + q(x)y] + λy = 0, a < x < b, (3.6a)

α1y(a) + α2y
′(a) = 0, (3.6b)

β1y(b) + β2y
′(b) = 0, (3.6c)

we say that λ is an eigenvalue of (3.6) if there exists a nonzero solution y(x) associated

with the value of λ. If so, then the function y(x) is an eigenfunction corresponding

to λ. Furthermore, (3.6) is a regular Sturm-Liouville problem and S is a regular

Sturm-Liouville operator if we have

1. α2
1 + α2

2 6= 0 and β2
1 + β2

2 6= 0,

2. p, q, w, p′ are continuous on a < x < b,

3. p(x), w(x) > 0 on a < x < b.

We now state three necessary theorems for the development of the regular Sturm-

Liouville theory, all of which can be found in [14]. This theory will be used in

subsequent sections and chapters to develop different transforms and solutions. The-

orem 3.1 defines Lagrange’s Identity and Green’s Identity, both of which are used in

the proof of Theorem 3.2.

Theorem 3.1 (Lagrange’s Identity and Green’s Identity). Let S be a Sturm-Liouville
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operator with p ∈ C1[a, b] and u, v ∈ C2[a, b]. Then

uSv − vSu =
1

w

d

dx
[p(uv′ − u′v)] (3.7)

is called Lagrange’s Identity. The weighted integration of (3.7) is

∫ b

a

[u(x)Sv(x)− v(x)Su(x)]w(x) dx = p(x)[u(x)v′(x)− u′(x)v(x)]
∣∣∣b
a
, (3.8)

which can be written as

〈u, Sv〉w − 〈Su, v〉w = p(x)[u(x)v′(x)− u′(x)v(x)]
∣∣∣b
a
. (3.9)

Both (3.8) and (3.9) are called Green’s Identity.

It is straightforward to see that Green’s Identity is determined by multiply-

ing (3.7) by the weight function w(x) and then integrating over the finite interval

[a, b]. The results of Theorem 3.1 are used in the proof (which is omitted here) of

Theorem 3.2 below.

Theorem 3.2 (Regular Sturm-Liouville Operators are Symmetric). Let S be a reg-

ular Sturm-Liouville operator and u, v ∈ C2[a, b] satisfy the boundary conditions

in (3.6b) and (3.6c). Then

〈u, Sv〉w = 〈Su, v〉w, (3.10)

which indicates that S is symmetric with respect to the weighted inner product.

The result of Theorem 3.2 is essential in the development of the theory for general

Sturm-Liouville problems. The third theorem that we state identifies properties of

regular Sturm-Liouville problems. The most important of the properties listed in
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Theorem 3.3 is the completeness of the eigenfunctions. The series solution meth-

ods that we employ in this thesis depend upon this fact, as we will soon see that

in computing the coefficients in the series solutions, we rely on the fact that the

eigenfunctions are orthogonal.

Theorem 3.3 (Properties of Regular Sturm-Liouville Problems). Consider the reg-

ular Sturm-Liouville problem (3.6).

(a) The eigenvalues are real and can be arranged into an increasing sequence

λ1 < λ2 < · · · < λn < λn+1 < · · · ,

such that λn →∞ as n→∞.

(b) The sequence of eigenfunctions {yn(x)}∞n=1 forms a complete orthogonal family

on a < x < b with respect to the weight function w(x); that is, if λn and λm

are distinct with corresponding eigenfunctions yn(x) and ym(x), then

〈yn, ym〉w :=

∫ b

a

yn(x)ym(x)w(x) dx = 0, n 6= m.

(c) The eigenfunction yn(x) corresponding to the eigenvalue λn is unique up to a

constant multiple.

(d) The eigenfunction yn(x) corresponding to the eigenvalue λn has (n−1) interior

zeroes in the interval (a, b).

(e) If f ∈ L2
w[a, b] is expanded in an infinite series of these eigenfunctions,

f(x) =
∞∑
n=1

cnyn(x), a < x < b, (3.11)
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then the coefficients in (3.11) are given by

cn =
〈f, yn〉w
〈yn, yn〉w

=

∫ b
a
f(x)yn(x)w(x) dx∫ b
a
y2
n(x)w(x) dx

. (3.12)

Here, equality is meant in the sense of L2 convergence weighted by w(x). We

denote the weighted L2
w space by L2

w[a, b], where

L2
w[a, b] :=

{
f : [a, b]→ R

∣∣∣ ∫ b

a

|f(x)|2w(x) dx <∞
}
.

We note that if zero is an eigenvalue of a Sturm-Liouville problem, we will set

λ0 = 0. In this case, we will begin the infinite series in (3.11) with n = 0 instead of

n = 1 and part (d) in Theorem 3.3 will of course now read yn has n interior zeroes.

3.2.2 Singular Sturm-Liouville theory

When employing the method of separation of variables and the Hankel transforms

found in this thesis, it may be that the resulting Sturm-Liouville problem does not

meet the criteria to be considered regular. However, it is still desirable to have an

monotone sequence of eigenvalues that are real with corresponding eigenfunctions

that make up a complete orthogonal family in an apposite weighted L2 space. In

what follows, we will make the necessary modifications to the regular Sturm-Liouville

theory that was developed in Subsection 3.2.1 in order to maintain these properties.

We again consider (3.6). Suppose that both properties

1. p, q, w, p′ are continuous on a < x < b and

2. p(x), w(x) > 0 on a < x < b

are true. Also, suppose that at least one of the following properties

(a) p(x) or w(x) is zero at an endpoint,
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(b) p, q, or w becomes infinite at an endpoint, or

(c) a = −∞ or b =∞,

is also true. Then we say that (3.6) is a singular Sturm-Liouville problem and the

operator S is called a singular Sturm-Liouville operator. The endpoint where at least

one of (a)–(c) are true is called singular.

Considering the singular Sturm-Liouville problem (3.6), our goal is to have an

analogous theorem to Theorem 3.3. However, in order to do so, we must establish

a result that states that the singular Sturm-Liouville operator is also symmetric. In

order to do so, we must show that the right hand side of Green’s Identity (3.9) is

zero. In order to do so, we must make sure that we modify the endpoint(s) where the

problem is singular and enforce conditions such that Green’s Identity is zero, which

in turn causes the singular Sturm-Liouville operator to be symmetric. We now state

a theorem that is a singular version of Theorem 3.3.

Theorem 3.4 (Singular Sturm-Liouville Operators are Symmetric). Let S be a sin-

gular Sturm-Liouville operator and u, v ∈ C2[a, b]. If we have

lim
x→a+

p(x)[u(x)v′(x)− u′(x)v(x)] = lim
x→b−

p(x)[u(x)v′(x)− u′(x)v(x)] (3.13)

for all u, v that satisfy the properly modified boundary conditions of (3.6b) and (3.6c),

then

〈u, Sv〉w = 〈Su, v〉w,

which indicates that S is symmetric with respect to the weighted inner product.

We remark that for a regular endpoint, the condition (3.13) is equivalent to (3.9).

The use of limits in (3.13) is due to the fact that some of the functions p, u, v may

not be defined at the endpoints, or may even be infinite.
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Proving that the eigenvalues of a singular Sturm-Liouville problem are real and

that the corresponding eigenfunctions are orthogonal with respect to the weight

function w(x) can be accomplished by showing that the singular Sturm-Liouville

operator S is symmetric. This is why the importance of Theorem 3.4 cannot be

overstated.

3.3 The Method of Separation of Variables

In order to introduce the method of separation of variables, we will outline the

solution method to the IBVP

1

r

∂

∂r

(
r
∂y

∂r

)
=

1

κ

∂y

∂t
, a < r < b (3.14a)

y(r, 0) = 0, a < r < b, (3.14b)

y(a, t) = 1, t > 0, (3.14c)

y(b, t) = 0, t > 0. (3.14d)

It is important to realize that in order to use the separation of variables method,

we must have homogeneous boundary conditions. To do so, we introduce a solution

yss(r) that solves

1

r

∂

∂r

(
r
∂y

∂r

)
= 0 (3.15a)

y(a) = 1, (3.15b)

y(b) = 0. (3.15c)

It is easy to see that the general solution to (3.15) is

yss(r) = A+B ln(r). (3.16)
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Enforcing the boundary conditions (3.15b) and (3.15c) on (3.16), we find that the

particular solution to (3.15) is

yss(r) =
ln
(
r
b

)
ln
(
a
b

) . (3.17)

We now modify the original problem to

1

r

∂

∂r

(
r
∂y

∂r

)
=
∂y

∂t
, a < r < b (3.18a)

y(r, 0) = −yss(r) = −
ln
(
r
b

)
ln
(
a
b

) , a < r < b, (3.18b)

y(a, t) = 0, t > 0, (3.18c)

y(b, t) = 0, t > 0. (3.18d)

We now find the solution ytr to the above. Note that the full solution to the original

IBVP (3.14) that was posed at the beginning of this section will be the sum of the

solution to (3.18) and (3.17) given by

y(r, t) := ytr(r, t) + yss(r).

To use the method of separation of variables, we seek a solution to (3.18) of the form

ytr(r, t) = R(r)T (t).
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We substitute this into (3.18a) and obtain

1

r

∂

∂r

(
r
∂R(r)T (t)

∂r

)
=
∂R(r)T (t)

∂t

R′′(r)

R(r)
+

1

r

R′(r)

R(r)
=
T ′(t)

T (t)
.

Since the left hand side is made up only of functions of the independent variable r

and the right hand side is made up only of functions of the independent variable t,

it must be that both sides are constant in order for equality to hold. Thus, we set

both sides equal to a separation constant λ by

R′′(r)

R(r)
+

1

r

R′(r)

R(r)
=
T ′(t)

T (t)
= −λ,

where λ is yet to be determined and only has a minus sign for convenience.

We now have two ordinary differential equations to solve. In fact, we will use the

boundary values as the initial values for the differential equation for the variable r.

The first differential equation one that we consider is

T ′(t) = −λT (t),

which has as a general solution T (t) = Ce−λt, where C is an arbitrary constant.

The second differential equation can be cast in Sturm-Liouville form as

1

r

∂

∂r

(
r
∂R(r)

∂r

)
+ λR(r) = 0 (3.19)

R(a) = 0 R(b) = 0. (3.20)

37



We first check to see if λ = 0 is an eigenvalue. Observe,

1

r

∂

∂r

(
r
∂R

∂r
(r)

)
= 0

has the solution R0(r) = A+B ln(r). In order to satisfy the homogeneous boundary

conditions, A = B = 0. Thus, λ = 0 is not an eigenvalue.

We now assume λ > 0 and solve

1

r

∂

∂r

(
r
∂R(r)

∂r

)
+ λR(r) = 0 (3.21)

R(a) = 0 R(b) = 0. (3.22)

Enforcing the boundary conditions (3.18c) and (3.18d), the solution is given by

Rn(r) = J0(a
√
λn)Y0(r

√
λn)− Y0(a

√
λn)J0(r

√
λn),

where λn are the countably infinitely many positive roots of R(b) = 0. Notice by

definition we also have Rn(a) = 0. For each λn, we now denote Tn(t) = cne
−λnt. By

the Superposition Principle [14], we have the solution ytr(r, t) as

ytr(r, t) =
∞∑
n=1

Rn(r)Tn(t) =
∞∑
n=1

cn

[
J0(a

√
λn)Y0(r

√
λn)− Y0(a

√
λn)J0(r

√
λn)
]
e−λnt.

We must have ytr(r, 0) = −yss(r). Thus, using (3.11) and (3.12) in Theorem 3.2, we

have

ytr(r, 0) = −yss(r) =
∞∑
n=1

cn

[
J0(a

√
λn)Y0(r

√
λn)− Y0(a

√
λn)J0(r

√
λn)
]
,
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which implies that for each n we have

cn = −
∫ b
a
yss(r)[J0(a

√
λn)Y0(r

√
λn)− Y0(a

√
λn)J0(r

√
λn)]r dr∫ b

a
[J0(a

√
λn)Y0(r

√
λn)− Y0(a

√
λn)J0(r

√
λn)]2r dr

=
π2λnJ

2
0 (b
√
λn)

2(J2
0 (b
√
λn)− J2

0 (a
√
λn))

∫ b

a

yss(r)
[
J0(a

√
λn)Y0(r

√
λn)

−Y0(a
√
λn)J0(r

√
λn)
]
r dr.

Thus, the complete solution to (3.14) is

y(r, t) = yss(r) + ytr(r, t)

=
ln
(
r
b

)
ln
(
a
b

) +
∞∑
n=1

cn

[
J0(a

√
λn)Y0(r

√
λn)− Y0(a

√
λn)J0(r

√
λn)
]
e−λnt.

This solution is the same as that found in [35, 36]. Other IBVPs can be solved

similarly. The methods outlined in this chapter can be used to solve any of the

standard diffusion equations found in [27,35,36,51].

3.4 Laplace Transform Theory

Laplace transforms can sometimes offer the engineer a simpler technique in ob-

taining solutions to linear partial differential equations, particularly if at least one of

the boundary conditions are not constant. The theory of Laplace transforms is also

sometimes referred to as operational calculus, due to the famous English electrical

engineer, mathematician, and physicist Oliver Heaviside (see Figure 3.2). Originally,

Heaviside used his operational calculus to solve equations in electromagnetic theory

and communications.

The development of the Laplace transform was led by French mathematician

and astronomer Pierre-Simon Laplace (see Figure 3.3) who worked primarily in the

development of similar transforms in probability theory. He began by introducing
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Figure 3.2: Oliver Heaviside (1850–1925).

various transforms which were initially used to transform difference equations. The

idea was to solve the transformed difference equation in the new domain and then

invert the solution back to the original domain, thus obtaining the solution to the

original difference equation. The development of the Laplace transform came soon

after. Laplace also made the observation that the Fourier transform for solving linear

partial differential equations, in particular the diffusion equation, was only applicable

to solutions which were periodic.

3.4.1 The Laplace transformation

We begin the introduction of the Laplace transformation with some necessary

definitions. We assume that the reader has a basic understanding of functions of a

complex variable. In this section we follow the development in [12].

We define the Laplace transform of a real or complex-valued function f(t) of the
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Figure 3.3: Pierre-Simon Laplace (1749–1827).

real variable t by

F (s) := L{f(t)}(s) = lim
ε→0+

lim
T→∞

∫ T

ε

e−stf(t) dt =

∫ ∞
0

e−stf(t) dt, (3.23)

where s ∈ C and C is the set of complex numbers. In other words, s = x+ iy, where

both x, y ∈ R and i :=
√
−1. The function f typically has the property that f(t) = 0

for all t < 0.

We remark that in the case that f(t) is a function that has a jump discontinuity

at t = 0 or is continuous at that point, then the lower limit ε→ 0+ can be replaced

by ε → 0. However, if the function f(t) is singular at t = 0, then the lower limit

should be chosen as in (3.23). This choice of the lower limit omits the singular point

at t = 0, thus defining the Laplace transform F (s) in terms of f(t) only when t > 0.

As with any transformation, uniqueness needs to be contemplated. By (3.23), it

can be observed that there exists only one Laplace transform F (s) for f(t). If two

functions f and g have the same Laplace transform, then it can be said that f = g
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almost everywhere, which takes into account the possibility that there are a finite

number of isolated points {tk}nk=1 in any finite interval [a, b] (with 0 ≤ a < b < ∞)

such that f(tk) 6= g(tk). If both functions have the same Laplace transform and are

continuous for all t ≥ 0, then f = g for all t ≥ 0.

According to (3.23), we can write F (s) as

F (s) = u(x, y) + iv(x, y), (3.24)

where

u(x, y) =

∫ ∞
0

e−xt cos(yt)f(t) dt and v(x, y) = −
∫ ∞

0

e−xt sin(yt)f(t) dt. (3.25)

Given that the function f(t) is piecewise continuous over any interval (0, T ) and can

be bounded by an exponential function as t → ∞, there exist positive constants α

and M such that |f(t)| < Meαt, for all t ≥ 0. When α and M exist, we say that f

is O (eαt).

Considering (3.24) and (3.25), as well as supposing that f is piecewise continuous

and O (eαt), we can now state the following theorem [12].

Theorem 3.5. Let a real-valued function f be piecewise continuous over any interval

0 < t < T and O (eαt) as t→∞. Then, for s ∈ C, its transform

F (s) = L{f(t)}(s) =

∫ ∞
0

e−stf(t) dt

is analytic function of s over the half plane x > α. Its Laplace integral is absolutely

and uniformly convergent over each half plane x ≥ x0 > α, and f and its derivatives
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are bounded there. Also, for x > α,

F (n)(s) = L{(−t)nf(t)}(s), n = 1, 2, . . . ,

F (s) = F (s̄).

We may expand Theorem 3.5 to the case of where f is infinite at some t = t0,

but (t− t0)kf(t) remains bounded as t→ t0 for some k < 1.

When the magnitude of the complex number s approaches ∞ in a half plane of

convergence of the Laplace integral, the behavior of the transform F (s) is controlled

by the regularity properties of the function f(t). Accordingly, we have the subsequent

theorem [12].

Theorem 3.6. Let a function f and its derivative f ′ be piecewise continuous on

any bounded interval (0, T ) and let f be O (eαt). Then, in any half plane where

Re(s) ≥ x0 > α, the transform F obeys

lim
|s|→∞

F (s) = 0.

For slightly stronger conditions of continuity, piecewise continuity, and of expo-

nential order on f and its derivatives, we can state the resulting useful theorem [12].

Theorem 3.7. Given n > 0, suppose f, f ′, . . . , f (n−1) are continuous, the next two

derivatives f (n), f (n+1) are piecewise continuous over each interval [0, T ] while the

functions f and its first n derivatives are O (eαt). Then we have that

snF (s)− sn−1f(0+)− sn−2f ′(0+)− · · · − sfn−2(0+)− fn−1(0+) (3.26)
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is bounded over any half plane x ≥ x0 > α and

lim
|s|→∞

snF (s)− sn−1f(0+)− sn−2f ′(0+)− · · · − sfn−2(0+) = fn−1(0+). (3.27)

Additionally, f(0+) = f ′(0+) = · · · = f (n−2)(0+) = 0 is a necessary and sufficient

condition for F (s) to be O (s−n) over the half plane and lim|s|→∞ s
nF (s) = f (n−1)(0+)

in the half plane.

If the function f or any of the (n − 1) derivatives are continuous at t = 0, then

we may use 0 instead of 0+. Theorem 3.7 is extremely important and its results will

be used when inverting a Laplace transform. In fact, from Theorem 3.7 we have the

general formula for the Laplace transform of the nth derivative of the function f(t)

L{f (n)(t)}(s) = snF (s)−sn−1f(0+)−sn−2f ′(0+)−· · ·−sfn−2(0+)−fn−1(0+), (3.28)

for all n ≥ 0.

3.4.2 The inversion integral for the Laplace transformation

In order to ensure the existence of the inverse Laplace transform of a function

F (s), the following theorem is stated which provides the requirements that are suf-

ficient for a real or complex-valued function f(t) of the real variable t [12]. The

following theorem [12] is known as the Laplace inversion formula or the Bromwich

integral formula.

Theorem 3.8 (Laplace inversion formula). Let F be any function of the complex

variable s = x + iy that is analytic and O(s−k) for all s over a half plane x ≥ α,

where k > 1; also let F (x) be real-valued for x ≥ α. Then for all real t the inversion

integral of F (s) along any line x = γ, where γ ≥ α, converges to a real-valued
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function f that is independent of γ,

f(t) = L−1{F (s)}(t) =
1

2πi

∫ γ+i∞

γ−i∞
eztF (z) dz, |t| <∞, (3.29)

whose Laplace transform is the given function F (s):

L{f(t)}(s) = F (s), Re s > α.

Furthermore, f(t) is O (eαt), it is continuous for all real t, and F (t) = 0 for all

t ≤ 0.

Theorem 3.8 demonstrates the conditions under which the inverse Laplace trans-

form of F (s) exists and that the resulting function is represented by f(t). The last

part of Theorem 3.8 can be proved by implementing an extension of Cauchy’s integral

theorem, and showing for any γ > 0 and t ≤ 0, we have

∫ γ+i∞

γ−i∞
eztF (z) dz = 0,

which implies f(t) = 0 for all t ≤ 0, and in particular f(0) = 0.

As will be demonstrated in this thesis, solutions to boundary value problems

that are found using the inverse Laplace transform of a function F can usually be

verified by examining the properties of F . We state two theorems that make this

possible [12].

Theorem 3.9. Let F be an analytic function of the complex variable s and O(s−k−m),

with m ∈ Z+ and k > 1, over a half plane x ≥ α. Also let F (x) be real for x ≥ α.

Then the inversion integral of F along any line x = γ ≥ α converges to the inverse
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transform of F , a real-valued function f , given by

L−1{F (s)}(t) = f(t), t ≥ 0,

and the derivatives of f are given by

f (n)(t) = L−1{snF (s)}(t), n = 1, 2, . . . ,m.

Furthermore, f and each of its derivatives are continuous when t ≥ 0 and O(eαt),

and their initial values are zero:

f(0) = f ′(0) = · · · = f (m)(0) = 0.

The next theorem considers a function F that has two independent variables and

how differentiation and continuity with respect to the second parameter are dealt

with [12].

Theorem 3.10. Let F be a continuous function of two variables r and s = x + iy

when x ≥ α, analytic with respect to s over that half plane for each fixed r, and

such that |F (r, s)| < M |s|−k there, where k > 1, and the constants M , k, and α are

independent of r. Also, let F (r, x) be real when x ≥ α. Even if r has an unbounded

range of values, let F (r, α+iy) be bounded for all r and y. Then the inverse transform

of F with respect to s, which can be written as

f(r, t) = L−1{F (r, s)}(t), γ ≥ α, t ≥ 0,

is a continuous real-valued function of its two variables r and t ≥ 0 for which a

positive constant N independent of r exists such that |f(r, t)| < Neαt. In particular,
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f is a bounded function of r for each fixed t. If the partial derivative fr(r, t) also

satisfies the conditions imposed here on F , then

∂

∂r
f(r, t) = L−1

{
∂

∂r
F (r, s)

}
(t),

and |fr(r, t)| < Neαt.

The results of Theorem 3.10 are extremely important and will be used throughout

the sequel when boundary value problems are solved using the method of Laplace

transforms.

The next theorem provides a means to represent the inverse Laplace transform

of a function F as the sum of the residues of eztF (z).

Theorem 3.11. Let F be analytic everywhere except for isolated singular points

sn, n ∈ Z+ in a half plane x < γ and such that its inversion integral along the

line x = γ represents the inverse Laplace transform f(t) of F (s). On appropriate

contours CN , N ∈ Z+ in the left half plane x ≤ γ, let F satisfy the order condition

|F (z)| < M |z|−k, where M and k are positive constants independent of N . Then

when t > 0, the series of residues ρn(t) of eztF (z) at sn converges to f(t),

f(t) =
∞∑
n=1

ρn(t), t > 0,

if its terms corresponding to points sn within the ring between successive paths CN

and CN+1 are grouped as a single term of the series.

Also, if k > 1 and L−1{F} represents 1
2
f(0+) when t = 0, then

1

2
f(0+) =

∞∑
n=1

ρn(0).
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The results of Theorem 3.11 are also of tremendous significance and will be em-

ployed when finding solutions via the inverse Laplace transform.

48



4. PARABOLIC DIFFUSION

When the solution is simple, God is answering.

Albert Einstein (1879–1955)

4.1 Introduction

In this chapter, the solution to the parabolic diffusion equation in cylindrical

coordinates that was developed in (2.23) will be derived. The problem will be cast

in terms of a limited reservoir in which there exists one initial condition and two

boundary conditions. Of the two boundary conditions, the first will be specified at

the internal boundary r = r1, which is the wellbore, while the second will be specified

at the external boundary, r = r2, which is the edge of the reservoir. The reservoir is

assumed to be of purely horizontal radial flow and the effects of gravity are neglected.

The two most popular analytical methods that are discussed in the literature

are the Laplace transform [51] and the method of separation of variables [35, 36].

In the types of problems contained in this chapter, the Laplace transform is useful

because it allows the engineer the ability to at once see the pseudo-steady state part

of the solution. The difficult part seems to be the inversion of the Laplace transform,

especially in the case when there exists a double pole. The method of separation of

variables has the same advantage in that it allows the engineer to glean the pseudo-

steady state solution immediately once the solution is complete. Its downfall is that

in some cases one must know three elementary solutions to the parabolic diffusion

equation.

In this chapter, by derivations of different Hankel transforms, which have not

been found in the literature for this particular application, we will develop solutions

to the radial flow parabolic diffusion equation where the pressure and/or flow rates
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are arbitrary functions of time at the inner and outer radii and the initial condition

is an arbitrary function of the reservoir radius. The benefit that results from using

this method is that instead of computing three different solutions and then applying

Duhamel’s method as in [35, 36], we only need to solve one initial boundary value

problem with an arbitrary function of reservoir radius for the initial condition and

two arbitrary functions of time for the two boundary conditions.

To solve the following IBVPs, we will first derive an appropriate Hankel trans-

form for each one. We then transform the IBVP via the newly developed Hankel

transform and obtain an associated initial value problem. We will solve the initial

value problem, which, for each case, turns out to be a nonhomogeneous first order

ODE. Finally, with a clever use of the eigenfunction expansion technique from the

Sturm-Liouville theory developed in Chapter 3, which will act as the inverse Hankel

transform, we will invert the solution to the associated ODE, thus obtaining the

solution to the original IBVP.

4.2 Solutions for Radial Flow Defined at Both Boundaries

The radial flow parabolic diffusion IBVP where the boundary conditions are flow

rates represented by arbitrary functions of time at the inner and outer radii is given

by

1

r

∂

∂r

(
r
∂p

∂r

)
=

1

κ

∂p

∂t
, (4.1a)

p(r, 0) = g(r), (4.1b)

r
∂p

∂r

∣∣∣∣
r=r1

= f1(t), (4.1c)

r
∂p

∂r

∣∣∣∣
r=r2

= f2(t). (4.1d)

As stated in Theorem 3.3(e) and the remark following the theorem, we can repre-
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sent an arbitrary function f ∈ L2
w[a, b] as an infinite series given by (3.11). If zero is

an eigenvalue of a Sturm-Liouville problem we will begin the infinite series in (3.11)

with n = 0 instead of n = 1.

With this in mind, we now begin to derive an appropriate Hankel transform

for (4.1). By the Sturm-Liouville theory developed in Chapter 3, we have that the

operator

S :=
1

r

∂

∂r

(
r
∂

∂r

)
is a Sturm-Liouville operator with weight w(r) = r. By Theorem 3.1 this implies for

any u, v ∈ C2[r1, r2] we have

〈u, Sv〉w − 〈Su, v〉w =

∫ r2

r1

[u(x)Sv(x)− v(x)Su(x)]r dr = r[u(r)v′(r)− u′(r)v(r)]
∣∣∣r2
r1
,

Supposing that u and v both satisfy the boundary conditions u′(r1) = u′(r2) =

v′(r1) = v′(r2) = 0, and since S is a Sturm-Liouville operator, by Theorem 3.2 we

have that S is symmetric with respect to the weighted inner product. Thus, we have

〈u, Sv〉w = 〈Su, v〉w.

As stated in Chapter 3, the fact that S is symmetric with respect to the weighted

inner product is essential in the development of the theory for general Sturm-Liouville

problems. The most important property that we glean is that there exists a complete

orthogonal family of eigenfunctions on r1 < r < r2 with respect to the weight r.

Thus, we now determine the eigenvalues of S and the corresponding functions.

We seek to find the eigenfunctions of

Su = −λu
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subject to the boundary conditions

u′(r1) = u′(r2) = 0.

First, we set λ = 0 to see if zero is an eigenvalue. We have

Su = 0,

which has the general solution

u(r) = A+B ln(r).

Enforcing the homogeneous boundary conditions we see that B = 0, but A can be

any constant value. Without loss of generality, we can define A := 1. Thus, λ = 0 is

an eigenvalue of S with the corresponding eigenfunction

u0(r) = 1. (4.2)

We now solve

Su = −λu,

where λ = α2 > 0. Thus, we now seek the solution to

∂2u

∂r2
+

1

r

∂u

∂r
+ α2u = 0

subject to the boundary conditions

u′(r1) = u′(r2) = 0.
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This is of course Bessel’s differential equation of order zero. The general solution is

given by

u(r) = AJ0(αr) +BY0(αr).

Enforcing the homogeneous boundary conditions we have the two equations

AJ1(αr1) +BY1(αr1) = 0

AJ1(αr2) +BY1(αr2) = 0.

We solve for A and obtain

A = −BY1(αr2)

J1(αr2)

As a result we have

B

(
Y1(αr1)J1(αr2)− Y1(αr2)J1(αr1)

J1(αr2)

)
= 0

To avoid a trivial solution, B 6= 0. Thus, we let B = J1(αr2) and define the αn as

the countably infinitely many positive roots of

Y1(αnr1)J1(αnr2)− Y1(αnr2)J1(αnr1) = 0.

From this relationship, we define the parameter ρ by

ρ :=
J1(αnr1)

J1 (αnr2)
=
Y1(αnr1)

Y1 (αr2)
. (4.3)

The resulting solutions are

un(r) = Y1(αnr2)J0(αnr)− J1(αnr2)Y0(αnr). (4.4)
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Thus, the set of {un(r)}∞n=0 form a complete orthogonal family of eigenfunctions on

r1 < r < r2 with respect to the weight r with corresponding eigenvalues {λn}∞n=0.

As a result, by Theorem 3.3, given a function f ∈ L2
w[r1, r2], it can be expanded in

an infinite series of these eigenfunctions as in (3.11) where the coefficients in (3.11)

are given by (3.12).

For this particular problem, given an arbitrary f ∈ L2
w[r1, r2], we have the coeffi-

cients of the eigenfunction expansion as

c0 =
〈f, u0〉w
〈u0, u0〉w

=

∫ r2
r1
f(r)r dr∫ r2
r1
r dr

=
2

r2
2 − r2

1

∫ r2

r1

f(r)r dr, (4.5)

for n = 0 and

cn =
〈f, un〉w
〈un, un〉w

=

∫ r2
r1
f(r) (Y1(αnr2)J0(αnr)− J1(αnr2)Y0(αnr)) r dr∫ r2
r1

(Y1(αnr2)J0(αnr)− J1(αnr2)Y0(αnr))
2 r dr

=
J2

1 (αnr1)π2α2
n

2 (J2
1 (αnr1)− J2

1 (αnr2))

∫ r2

r1

f(r) (Y1(αnr2)J0(αnr)− J1(αnr2)Y0(αnr)) r dr,

(4.6)

for n ≥ 1.

Given a function f ∈ L2
w[r1, r2], we now define the Hankel transform of f as the

inner product

H{f}(αn) := 〈un, f〉w =

∫ r2

r1

un(r)f(r)r dr = F (αn). (4.7)
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Observe that for n = 0 (α0 = 0) we have

H{Sf}(α0) = 〈u0, Sf〉w

= 〈Su0, f〉w + r[u0(r)f ′(r)− u′0(r)f(r)]
∣∣∣r2
r1

=

∫ r2

r1

f(r)Su0(r)r dr + r2[u0(r2)f ′(r2)− u′0(r2)f(r2)]

− r1[u0(r1)f ′(r1)− u′0(r1)f(r1)]

= r2f
′(r2)− r1f

′(r1).

For n ≥ 1 we have

H{Sf}(αn) = 〈un, Sf〉w

= 〈Sun, f〉w + r[un(r)f ′(r)− u′n(r)f(r)]
∣∣∣r2
r1

=

∫ r2

r1

f(r)Sun(r)r dr + r2[un(r2)f ′(r2)− u′n(r2)f(r2)]

− r1[un(r1)f ′(r1)− u′n(r1)f(r1)]

= −α2
n

∫ r2

r1

f(r)un(r)r dr + r2un(r2)f ′(r2)− r1un(r1)f ′(r1)

= −α2
n〈un, f〉w + r2f

′(r2)(Y1(αnr2)J0(αnr2)− J1(αnr2)Y0(αnr2))

− r1f
′(r1)(Y1(αnr2)J0(αnr1)− J1(αnr2)Y0(αnr1)

= −α2
nH{f}(αn) +

2

παn

(
f ′(r1)

ρ
− f ′(r2)

)
.

To solve the IBVP (4.1), we now apply the Hankel transform H and obtain the

transformed initial value problem for n = 0

1

κ

dP

dt
(α0, t) = f2(t)− f1(t), (4.8a)

P (α0, 0) = G(α0), (4.8b)

55



and for n ≥ 1

1

κ

dP

dt
(αn, t) + α2

nP (αn, t) =
2

παn

(
f1(t)

r1ρ
− f2(t)

r2

)
, (4.9a)

P (αn, 0) = G(αn), (4.9b)

where

P = H{p}, dP

dt
=
dH{p}
dt

= H
{
dp

dt

}
, G = H{g}.

It is easy to see that when n = 0 the solution to (4.8) is given by

P (α0, t) = G(α0) + κ

∫ t

0

f2(τ)− f1(τ) dτ.

When n ≥ 1 the solution to (4.9) is given by

P (αn, t) = G(αn)e−α
2
nκt + κ

∫ t

0

e−α
2
nκ(t−τ) 2

παn

(
f1(τ)

r1ρ
− f2(τ)

r2

)
dτ.

Recall that, by Theorem 3.3, p(r, t) can be expanded in an infinite series of the

eigenfunctions {un(r)}∞n=0 as in (3.11) where the coefficients in (3.11) are now given

by (4.5) and (4.6).
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Observe,

p(r, t) =
∞∑
n=0

〈un, p〉w
〈un, un〉w

un(r)

=
∞∑
n=0

∫ r2
r1
p(r, t)un(r)r dr∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=0

P (αn, t)∫ r2
r1
u2
n(r)r dr

un(r)

=
P (α0, t)∫ r2

r1
u2

0(r)r dr
+
∞∑
n=1

P (αn, t)∫ r2
r1
u2
n(r)r dr

un(r)

=
2
(
G(α0) + κ

∫ t
0
f2(τ)− f1(τ) dτ

)
r2

2 − r2
1

+
∞∑
n=1

[
π2α2

nJ
2
1 (αnr1)

2(J2
1 (αnr1)− J2

1 (αnr2))

]
·[

G(αn)e−α
2
nκt + κ

∫ t

0

e−α
2
nκ(t−τ) 2

παn

(
f1(τ)

r1ρ
− f2(τ)

r2

)
dτ

]
un(r)

=
2

r2
2 − r2

1

(∫ r2

r1

g(r)u0(r)r dr + κ

∫ t

0

f2(τ)− f1(τ) dτ

)
+
∞∑
n=1

[
π2α2

nJ
2
1 (αnr1)un(r)e−α

2
nκt

2(J2
1 (αnr1)− J2

1 (αnr2))

]
·[∫ r2

r1

g(r)un(r)r dr + κ

∫ t

0

eα
2
nκτ

2J1(αnr2)

J1(αnr1)

f1(τ)

παnr1

dτ − κ
∫ t

0

eα
2
nκτ

2

παn

f2(τ)

r2

dτ

]
=

2

r2
2 − r2

1

∫ r2

r1

g(r)r dr +
2κ

r2
2 − r2

1

∫ t

0

f2(τ)− f1(τ) dτ

+ π
∞∑
n=1

[
α2
nJ1(αnr1)un(r)e−α

2
nκt

J2
1 (αnr1)− J2

1 (αnr2)

]
·[

π

2
J1(αnr1)

∫ r2

r1

g(r)un(r)r dr + κ
J1(αnr2)

αnr1

∫ t

0

eα
2
nκτf1(τ) dτ

−κJ1(αnr1)

αnr2

∫ t

0

eα
2
nκτf2(τ) dτ

]
.
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4.3 Solutions for Pressure Defined at the Inner Boundary and Radial Flow

Defined at the Outer Boundary

The radial parabolic diffusion IBVP where at the internal radius the pressure is

an arbitrary function of time while at the outer radius the flow rate is an arbitrary

function of time is given by

1

r

∂

∂r

(
r
∂p

∂r

)
=

1

κ

∂p

∂t
, (4.10a)

p(r, 0) = g(r), (4.10b)

p(r1, t) = f1(t), (4.10c)

r
∂p

∂r

∣∣∣∣
r=r2

= f2(t). (4.10d)

We begin by deriving an appropriate Hankel transform for (4.10). To do so, we now

determine the eigenvalues of the operator S and the corresponding functions. We

seek to find the eigenfunctions of

Su = −λu

subject to the boundary conditions

u(r1) = u′(r2) = 0.

First, we set λ = 0 to see if zero is an eigenvalue. We have

Su = 0,
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which has the general solution

u(r) = A+B ln(r).

Enforcing the homogeneous boundary conditions we see that A = B = 0. Thus,

λ = 0 is not an eigenvalue of S.

We now solve

Su = −λu,

where λ = α2 > 0. Thus, we now seek the solution to

∂2u

∂r2
+

1

r

∂u

∂r
+ α2u = 0

subject to the boundary conditions

u(r1) = u′(r2) = 0.

This is of course Bessel’s differential equation of order zero. The general solution is

given by

u(r) = AJ0(αr) +BY0(αr).

Enforcing the homogeneous boundary conditions we have the two equations

AJ0(αr1) +BY0(αr1) = 0

AJ1(αr2) +BY1(αr2) = 0.

We solve for A and obtain

A = −BY1(αr2)

J1(αr2)

59



As a result we have

B

(
Y0(αr1)J1(αr2)− Y1(αr2)J0(αr1)

J1(αr2)

)
= 0

To avoid a trivial solution, B 6= 0. Thus, we let B = J1(αr2) and define the αn as

the countably infinitely many positive roots of

Y0(αnr1)J1(αnr2)− Y1(αnr2)J0(αnr1) = 0

From this relationship, we define the parameter ρ by

ρ :=
Y1(αnr2)

Y0(αnr1)
=
J1(αnr2)

J0(αnr1)
. (4.11)

The resulting solutions are

un(r) = Y1(αnr2)J0(αnr)− J1(αnr2)Y0(αnr). (4.12)

Thus, the set of {un(r)}∞n=1 form a complete orthogonal family of eigenfunctions on

r1 < r < r2 with respect to the weight r with corresponding eigenvalues {λn}∞n=1.

For this particular problem, given an arbitrary f ∈ L2
w[r1, r2], we have the coeffi-

cients of the eigenfunction expansion as and

cn =
〈f, un〉w
〈un, un〉w

=

∫ r2
r1
f(r) (Y1(αnr2)J0(αnr)− J1(αnr2)Y0(αnr)) r dr∫ r2
r1

(Y1(αnr2)J0(αnr)− J1(αnr2)Y0(αnr))
2 r dr

=
J2

0 (αnr1)π2α2
n

2

∫ r2
r1
f(r) (Y1(αnr2)J0(αnr)− J1(αnr2)Y0(αnr)) r dr

J2
0 (αnr1)− J2

1 (αnr2)
, (4.13)

for n ≥ 1.

Given a function f ∈ L2
w[r1, r2], we now define the Hankel transform of f as the

60



inner product

H{f}(αn) := 〈un, f〉w =

∫ r2

r1

un(r)f(r)r dr = F (αn). (4.14)

Observe that for n ≥ 1 we have

〈un, Sf〉w = 〈Sun, f〉w + r[un(r)f ′(r)− u′n(r)f(r)]
∣∣∣r2
r1

=

∫ r2

r1

f(r)Sun(r)r dr + r2[un(r2)f ′(r2)− u′n(r2)f(r2)]

− r1[un(r1)f ′(r1)− u′n(r1)f(r1)]

= −α2
n

∫ r2

r1

f(r)un(r)r dr + r2un(r2)f ′(r2) + r1u
′
n(r1)f(r1)

= −α2
n〈un, f〉w + r2f

′(r2)(Y1(αnr2)J0(αnr2)− J1(αnr2)Y0(αnr2))

− αnr1f(r1)(Y1(αnr2)J1(αnr1)− J1(αnr2)Y1(αnr1)

= −α2
nH{f}(αn)− 2

παn
(ραnf(r1) + f ′(r2))

= −α2
nF (αn)− 2

παn
(ραnf(r1) + f ′(r2)) .

To solve the IBVP (4.1), we now apply the Hankel transform HS and obtain the

initial value problem for n ≥ 1

1

κ

dP

dt
(αn, t) + α2

nP (αn, t) = − 2

π

(
ρf1(t) +

f2(t)

αnr2

)
, (4.15a)

P (αn, 0) = G(αn), (4.15b)

where P = H(p), dP/dt = dH (p) /dt = H (dp/dt), and G = H(g). The solution

to (4.15) is given by

P (αn, t) = G(αn)e−α
2
nκt − κ

∫ t

0

e−α
2
nκ(t−τ) 2

π

(
ρf1(t) +

f2(t)

αnr2

)
dτ.
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Recall that, by Theorem 3.3, p(r, t) can be expanded in an infinite series of the

eigenfunctions {un(r)}∞n=1 as in (3.11) where the coefficients in (3.11) are now given

by (4.13).

Observe,

p(r, t) =
∞∑
n=1

〈un, p〉w
〈un, un〉w

un(r)

=
∞∑
n=1

∫ r2
r1
p(r, t)un(r)r dr∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=1

P (αn, t)∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=1

P (αn, t)∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=1

[
π2α2

nJ
2
0 (αnr1)

2(J2
0 (αnr1)− J2

1 (αnr2))

]
·[

G(αn)e−α
2
nκt − κ

∫ t

0

e−α
2
nκ(t−τ) 2

π

(
ρf1(t)− f2(t)

αnr2

)
dτ

]
un(r)

=
∞∑
n=1

[
π2α2

nJ
2
0 (αnr1)un(r)e−α

2
nκt

2(J2
0 (αnr1)− J2

1 (αnr2))

]
·[∫ r2

r1

g(r)un(r)r dr − κ
∫ t

0

eα
2
nκτ

2

π

J1(αnr2)

J0(αnr1)
f1(τ) dτ − κ

∫ t

0

eα
2
nκτ

2

παn

f2(τ)

r2

dτ

]
= π

∞∑
n=1

[
α2
nJ0(αnr1)un(r)e−α

2
nκt

J2
0 (αnr1)− J2

1 (αnr2)

]
·[

π

2
J0(αnr1)

∫ r2

r1

g(r)un(r)r dr − κJ1(αnr2)

∫ t

0

eα
2
nκτf1(τ) dτ

−κJ0(αnr1)

αnr2

∫ t

0

eα
2
nκτf2(τ) dτ

]
.
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4.4 Solutions for Pressure Defined at Both Boundaries

The radial parabolic diffusion IBVP where the pressures are arbitrary functions

of time at the inner and outer radii is given by

1

r

∂

∂r

(
r
∂p

∂r

)
=

1

κ

∂p

∂t
, (4.16a)

p(r, 0) = g(r), (4.16b)

p(r1, t) = f1(t), (4.16c)

p(r2, t) = f2(t). (4.16d)

We now derive an appropriate Hankel transform for (4.16). To begin, we determine

the eigenvalues of S and the corresponding functions. We seek to find the eigenfunc-

tions of

Su = −λu

subject to the boundary conditions

u(r1) = u(r2) = 0.

First, we set λ = 0 to see if zero is an eigenvalue. We have

Su = 0,

which has the general solution

u(r) = A+B ln(r).
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Enforcing the homogeneous boundary conditions we see that A = B = 0. Thus,

λ = 0 is not an eigenvalue of S.

We now solve

Su = −λu,

where λ = α2 > 0. Thus, we now seek the solution to

∂2u

∂r2
+

1

r

∂u

∂r
+ α2u = 0

subject to the boundary conditions

u(r1) = u(r2) = 0.

This is of course Bessel’s differential equation of order zero. The general solution is

given by

u(r) = AJ0(αr) +BY0(αr).

Enforcing the homogeneous boundary conditions we have the two equations

AJ0(αr1) +BY0(αr1) = 0

AJ0(αr2) +BY0(αr2) = 0.

We solve for A and obtain

A = −BY0(αr2)

J0(αr2)

As a result we have

B

(
Y0(αr1)J0(αr2)− Y0(αr2)J0(αr1)

J0(αr2)

)
= 0
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To avoid a trivial solution, B 6= 0. Thus, we let B = J0(αr2) and define the αn as

the countably infinitely many positive roots of

Y0(αr1)J0(αr2)− Y0(αr2)J0(αr1) = 0

From this relationship, we define the parameter ρ by

ρ :=
Y0(αnr2)

Y0(αnr1)
=
J0(αnr2)

J0(αnr1)
. (4.17)

The resulting solutions are

un(r) = Y0(αnr2)J0(αnr)− J0(αnr2)Y0(αnr). (4.18)

Thus, the set of {un(r)}∞n=1 form a complete orthogonal family of eigenfunctions on

r1 < r < r2 with respect to the weight r with corresponding eigenvalues {λn}∞n=1.

For this particular problem, given an arbitrary f ∈ L2
w[r1, r2], we have the coeffi-

cients of the eigenfunction expansion as

cn =
〈f, un〉w
〈un, un〉w

=

∫ r2
r1
f(r) (Y0(αnr2)J0(αnr)− J0(αnr2)Y0(αnr)) r dr∫ r2
r1

(Y1(αnr2)J0(αnr)− J1(αnr2)Y0(αnr))
2 r dr

=
J2

0 (αnr1)π2α2
n

2 (J2
0 (αnr1)− J2

0 (αnr2))

∫ r2

r1

f(r) (Y0(αnr2)J0(αnr)− J0(αnr2)Y0(αnr)) r dr,

(4.19)

for n ≥ 1.

Given a function f ∈ L2
w[r1, r2], we now define the Hankel transform of f as the
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inner product

H{f}(αn) := 〈un, f〉w =

∫ r2

r1

un(r)f(r)r dr = F (αn). (4.20)

Observe that for n ≥ 1 we have

〈un, Sf〉w = 〈Sun, f〉w + r[un(r)f ′(r)− u′n(r)f(r)]
∣∣∣r2
r1

=

∫ r2

r1

f(r)Sun(r)r dr + r2[un(r2)f ′(r2)− u′n(r2)f(r2)]

− r1[un(r1)f ′(r1)− u′n(r1)f(r1)]

=

∫ r2

r1

f(r)Sun(r)r dr − r2u
′
n(r2)f(r2) + r1u

′
n(r1)f(r1)

= −α2
n

∫ r2

r1

f(r)un(r)r dr

+ αnr2f
′(r2)(Y0(αnr2)J1(αnr2)− J0(αnr2)Y1(αnr2))

− αnr1f
′(r1)(Y0(αnr2)J1(αnr1)− J0(αnr2)Y1(αnr1))

= −α2
nH{f}(αn) + αnr2f

′(r2)
2

παnr2

− αnr1f
′(r1)

2ρ

παnr1

= −α2
nF (αn) +

2

π
(f(r2)− ρf(r1)).

To solve the IBVP (4.16), we now apply the Hankel transform H and obtain the

initial value problem for n ≥ 1

1

κ

dP

dt
(αn, t) + α2

nP (αn, t) =
2

π
(f2(t)− ρf1(t)) , (4.21a)

P (αn, 0) = G(αn). (4.21b)
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The solution to (4.21) is given by

P (αn, t) = G(αn)e−α
2
nκt + κ

∫ t

0

e−α
2
nκ(t−τ) 2

π
(f2(τ)− ρf1(τ)) dτ.

Recall that, by Theorem 3.3, p(r, t) can be expanded in an infinite series of the

eigenfunctions {un(r)}∞n=1 as in (3.11) where the coefficients in (3.11) are now given

by (4.19).

Observe,

p(r, t) =
∞∑
n=1

〈un, p〉w
〈un, un〉w

un(r)

=
∞∑
n=1

∫ r2
r1
p(r, t)un(r)r dr∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=1

P (αn, t)∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=1

P (αn, t)∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=1

[
π2α2

nJ
2
0 (αnr1)

2(J2
0 (αnr1)− J2

0 (αnr2))

]
·[

G(αn)e−α
2
nκt + κ

∫ t

0

e−α
2
nκ(t−τ) 2

π
(f2(τ)− ρf1(τ)) dτ

]
un(r)

=
∞∑
n=1

[
π2α2

nJ
2
0 (αnr1)un(r)e−α

2
nκt

2(J2
0 (αnr1)− J2

0 (αnr2))

]
·[∫ r2

r1

g(r)un(r)r dr + κ

∫ t

0

eα
2
nκτ

2

π
f2(τ) dτ

]
− κ

∫ t

0

eα
2
nκτ

2

π

J0(αnr2)

J0(αnr1)
f1(τ) dτ

= π
∞∑
n=1

[
α2
nJ0(αnr1)un(r)e−α

2
nκt

J2
0 (αnr1)− J2

0 (αnr2)

]
·[

π

2
J0(αnr1)

∫ r2

r1

g(r)un(r)r dr + κJ0(αnr1)

∫ t

0

eα
2
nκτf2(τ) dτ

−κJ1(αnr2)

∫ t

0

eα
2
nκτf1(τ) dτ

]
.
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5. HYPERBOLIC DIFFUSION

Mathematics is the most beautiful and most powerful creation of the human spirit.

Stephan Banach (1892–1945)

5.1 Introduction

In this chapter, the solution to the hyperbolic diffusion equation in cylindrical

coordinates that was developed in (2.44) will be derived. The problem will be cast

in terms of a limited reservoir in which there exists two initial conditions and two

boundary conditions. Of the two boundary conditions, the first will be specified at

the internal boundary r = r1, which is the wellbore, while the second will be specified

at the external boundary, r = r2, which is the edge of the reservoir. The reservoir is

assumed to be of purely horizontal radial flow and the effects of gravity are neglected.

Just as in Chapter 4, by derivation of different Hankel transforms, which have not

been found in the literature for this particular application, we will develop solutions

to the radial flow hyperbolic diffusion equation where the pressure and/or flow rates

are arbitrary functions of time at the inner and outer radii and the initial condition

is an arbitrary function of the reservoir radius.

To solve the following IBVPs, we will follow the procedure outlined in Chapter 4.

Once all three cases are solved, we will compare the solutions of the hyperbolic

diffusion IBVPs with the solutions to the parabolic diffusion IBVPs.
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5.2 Solutions for Radial Flow Defined at Both Boundaries

The radial flow hyperbolic diffusion IBVP where the flow rates are arbitrary

functions of time at the inner and outer radii is given by

1

r

∂

∂r

(
r
∂p

∂r

)
=

1

a2

∂p2

∂t2
+

1

κ

∂p

∂t
, (5.1a)

p(r, 0) = g1(r), (5.1b)

∂p

∂t
(r, 0) = g2(r), (5.1c)

r
∂p

∂r

∣∣∣∣
r=r1

= f1(t), (5.1d)

r
∂p

∂r

∣∣∣∣
r=r2

= f2(t). (5.1e)

As stated in Theorem 3.3(e) and the remark following the theorem, we can represent

an arbitrary function f ∈ L2
w[a, b] as an infinite series given by (3.11). If zero is

an eigenvalue of a Sturm-Liouville problem we will begin the infinite series in (3.11)

with n = 0 instead of n = 1.

The appropriate Hankel transform for (5.1) is identical to that given in (4.7)

for (4.1). Restating the Hankel transform we have for n = 0 (α0 = 0) and n ≥ 1,

respectively,

H{Sf}(αn) = r2f
′(r2)− r1f

′(r1).

and

H{Sf}(αn) = −α2
nH{f}(αn) +

2

παn

(
f ′(r1)

ρ
− f ′(r2)

)
,

where we used the definition of ρ in (4.3).
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To solve the IBVP (5.1), we now apply the Hankel transform H and obtain the

initial value problem for n = 0

1

a2

d2P

dt2
(α0, t) +

1

κ

dP

dt
(α0, t) = f2(t)− f1(t), (5.2a)

P (α0, 0) = G1(α0), (5.2b)

dP

dt
(αn, 0) = G2(αn), (5.2c)

and for n ≥ 1

1

a2

d2P

dt2
(α0, t) +

1

κ

dP

dt
(αn, t) + α2

nP (αn, t) =
2

παn

(
f1(t)

r1ρ
− f2(t)

r2

)
, (5.3a)

P (αn, 0) = G1(αn), (5.3b)

dP

dt
(αn, 0) = G2(αn). (5.3c)

We define the function Fn(t) by

Fn(t) :=

 f2(t)− f1(t), n = 0,

2
παn

(
f1(t)
r1ρ
− f2(t)

r2

)
, n ≥ 1.

(5.4)

It is easy to see that when n = 0 the solution to (5.2) is given by

P (α0, t) = G1(α0) +
κ

a2

(
1− e−

a2t
κ

)
G2(α0)

+ 2κ

∫ t

0

F0(τ)e−
a2(t−τ)

2κ sinh

(
a2

2κ
(t− τ)

)
dτ.
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When n ≥ 1 the solution to (5.3) is given by

P (αn, t) =



G1(αn)e−
a2t
2κ

(
a2

2κJ (αn)
sinh (tJ (αn)) + cosh (tJ (αn))

)
+G2(αn) e

−a
2t
2κ

J (αn)
sinh (tJ (αn))

+ a2

J (αn)

∫ t
0
Fn(τ)e−

a2(t−τ)
2κ sinh ((t− τ)J (αn)) dτ, αn <

a
2κ
,

(
G1(αn)

(
a2t
2κ

+ 1
)

+G2(αn)t

+a2
∫ t

0
e
a2τ
2κ Fn(τ)(t− τ) dτ

)
e−

a2t
2κ , αn = a

2κ
,

G1(αn)e−
a2t
2κ

(
a2

2κJ (αn)
sin (tJ (αn)) + cos (tJ (αn))

)
+G2(αn) e

−a
2t
2κ

J (αn)
sin (tJ (αn))

+ a2

J (αn)

∫ t
0
Fn(τ)e−

a2(t−τ)
2κ sin ((t− τ)J (αn)) dτ, αn >

a
2κ
,

(5.5)

where

J (αn) =


√
a4−4a2κ2α2

n

2κ
, αn <

a
2κ
,

√
4a2κ2α2

n−a4
2κ

, αn >
a
2κ
.

(5.6)

Notice that the solution for the case αn = a
2κ

results from taking the limit as

αn → a
2κ

in either of the other two cases. Keeping this in mind and recalling the

relationships

sinh(iz) = i sin(z) and cosh(iz) = cos(z), (5.7)
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we can represent the function simply as

P (αn, t) = G1(αn)e−
a2t
2κ

(
a2√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+ cosh

(
t

√
a4 − 4a2κ2α2

n

2κ

))

+G2(αn)
2κe−

a2t
2κ√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+
2κa2√

a4 − 4a2κ2α2
n

∫ t

0

Fn(τ)e−
a2(t−τ)

2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ,

(5.8)

letting the hyperbolic trigonometric functions switch over to regular trigonometric

functions when the argument

√
a4−4a2κ2α2

n

2κ
becomes imaginary (i.e., when αn >

a
2κ

).

We will exercise this option below when stating the complete solution to (5.1).

Recall that, by Theorem 3.3, p(r, t) can be expanded in an infinite series of the

eigenfunctions {un(r)}∞n=0 as in (3.11) where the un(r) are defined by (4.2) and (4.4),

and the coefficients in (3.11) are now given by (4.5) and (4.6).
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Observe,

p(r, t) =
∞∑
n=0

〈un, p〉w
〈un, un〉w

un(r)

=
∞∑
n=0

∫ r2
r1
p(r, t)un(r)r dr∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=0

P (αn, t)∫ r2
r1
u2
n(r)r dr

un(r)

=
P (α0, t)∫ r2

r1
u2

0(r)r dr
+
∞∑
n=1

P (αn, t)∫ r2
r1
u2
n(r)r dr

un(r)

=
2

r2
2 − r2

1

(
G1(α0) +

κ

a2

(
1− e−

a2t
κ

)
G2(α0)

+2κ

∫ t

0

F0(τ)e−
a2(t−τ)

2κ sinh

(
a2

2κ
(t− τ)

)
dτ

)
+
∞∑
n=1

[
π2α2

nJ
2
1 (αnr1)un(r)

2(J2
1 (αnr1)− J2

1 (αnr2))

]
·[

G1(αn)e−
a2t
2κ

(
a2√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+ cosh

(
t

√
a4 − 4a2κ2α2

n

2κ

))

+G2(αn)
2κe−

a2t
2κ√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+
2κa2√

a4 − 4a2κ2α2
n

∫ t

0

Fn(τ)e−
a2(t−τ)

2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

]
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=
2

r2
2 − r2

1

(∫ r2

r1

g1(r)r dr +
κ

a2

(
1− e−

a2t
κ

)∫ r2

r1

g2(r)r dr

+2κ

∫ t

0

(f2(τ)− f1(τ)) e−
a2(t−τ)

2κ sinh

(
a2

2κ
(t− τ)

)
dτ

)
+
∞∑
n=1

[
π2α2

nJ
2
1 (αnr1)un(r)

2(J2
1 (αnr1)− J2

1 (αnr2))

]
·[

e−
a2t
2κ

(
a2√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)
+ cosh

(
t

√
a4 − 4a2κ2α2

n

2κ

))
·

∫ r2

r1

g1(r)un(r)r dr +
2κe−

a2t
2κ√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)∫ r2

r1

g2(r)un(r)r dr

+
2κa2√

a4 − 4a2κ2α2
n

·∫ t

0

2

παn

(
f1(τ)

r1ρ
− f2(τ)

r2

)
e−

a2(t−τ)
2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

]

=
2

r2
2 − r2

1

(∫ r2

r1

g1(r)r dr +
κ

a2

(
1− e−

a2t
κ

)∫ r2

r1

g2(r)r dr

+2κ

∫ t

0

(f2(τ)− f1(τ)) e−
a2(t−τ)

2κ sinh

(
a2

2κ
(t− τ)

)
dτ

)
+ π

∞∑
n=1

[
α2
nJ1(αnr1)un(r)

J2
1 (αnr1)− J2

1 (αnr2)

]
·[

π

2
J1(αnr1)e−

a2t
2κ

(
a2√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+ cosh

(
t

√
a4 − 4a2κ2α2

n

2κ

))∫ r2

r1

g1(r)un(r)r dr

+
πκJ1(αnr1)e−

a2t
2κ√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)∫ r2

r1

g2(r)un(r)r dr

+J1(αnr2)
2κa2

αnr1

√
a4 − 4a2κ2α2

n

∫ t

0

f1(τ)e−
a2(t−τ)

2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

−J1(αnr1)
2κa2

αnr2

√
a4 − 4a2κ2α2

n

∫ t

0

f2(τ)e−
a2(t−τ)

2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

]
.
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5.3 Solutions for Pressure Defined at the Inner Boundary and Radial Flow

Defined at the Outer Boundary

The radial hyperbolic diffusion IBVP where at the internal radius the pressure is

an arbitrary function of time while at the outer radius the flow rate is an arbitrary

function of time is given by

1

r

∂

∂r

(
r
∂p

∂r

)
=

1

a2

∂p2

∂t2
+

1

κ

∂p

∂t
, (5.9a)

p(r, 0) = g1(r), (5.9b)

∂p

∂t
(r, 0) = g2(r), (5.9c)

p(r1, t) = f1(t), (5.9d)

p(r2, t) = f2(t). (5.9e)

The appropriate Hankel transform for (5.9) is identical that given in (4.14) which

was defined for (4.10). Restating the Hankel transform we have

H{Sf}(αn) = −α2
nF (αn) +

2

παn
(αnρf(r1) + f ′(r2)),

where we used the definition of ρ in (4.11).

To solve the IBVP (5.9), we now apply the Hankel transform H and obtain the

initial value problem for n ≥ 1

1

a2

d2P

dt2
(αn, t) +

1

κ

dP

dt
(αn, t) + α2

nP (αn, t) = − 2

π

(
ρf1(t) +

f2(t)

αnr2

)
, (5.10a)

P (αn, 0) = G1(αn) (5.10b)

dP

dt
(αn, 0) = G2(αn). (5.10c)
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Defining the function Fn(t) by

Fn(t) := − 2

π

(
ρf1(t) +

f2(t)

αnr2

)
, n ≥ 1, (5.11)

the solution to (5.10) is given by (5.5) where the function Fn(t) in (5.5) is now

defined by (5.11). When stating the complete solution to (5.9), we will use the

representation (5.8) with the function Fn(t) in (5.8) defined by (5.11).

Recall that, by Theorem 3.3, p(r, t) can be expanded in an infinite series of the

eigenfunctions {un(r)}∞n=1 as in (3.11) where the un(r) are defined by (4.12) and the

coefficients in (3.11) are now given by (4.13).

Observe,

p(r, t) =
∞∑
n=1

〈un, p〉w
〈un, un〉w

un(r)

=
∞∑
n=1

∫ r2
r1
p(r, t)un(r)r dr∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=1

P (αn, t)∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=1

[
π2α2

nJ
2
0 (αnr1)un(r)

2(J2
0 (αnr1)− J2

1 (αnr2))

]
·[

G1(αn)e−
a2t
2κ

(
a2√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+ cosh

(
t

√
a4 − 4a2κ2α2

n

2κ

))

+G2(αn)
2κe−

a2t
2κ√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+
2κa2√

a4 − 4a2κ2α2
n

∫ t

0

Fn(τ)e−
a2(t−τ)

2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

]
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=
∞∑
n=1

[
π2α2

nJ
2
0 (αnr1)un(r)

2(J2
0 (αnr1)− J2

1 (αnr2))

]
·[

e−
a2t
2κ

(
a2√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)
+ cosh

(
t

√
a4 − 4a2κ2α2

n

2κ

))
·

∫ r2

r1

g1(r)un(r)r dr +
2κe−

a2t
2κ√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)∫ r2

r1

g2(r)un(r)r dr

− 2κa2√
a4 − 4a2κ2α2

n

·∫ t

0

2

π

(
ρf1(t) +

f2(t)

αnr2

)
e−

a2(t−τ)
2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

]

= π
∞∑
n=1

[
α2
nJ0(αnr1)un(r)

J2
0 (αnr1)− J2

1 (αnr2)

]
·[

π

2
J0(αnr1)e−

a2t
2κ

(
a2√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+ cosh

(
t

√
a4 − 4a2κ2α2

n

2κ

))∫ r2

r1

g1(r)un(r)r dr

+
πκJ0(αnr1)e−

a2t
2κ√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)∫ r2

r1

g2(r)un(r)r dr

− 2κa2J1(αnr2)√
a4 − 4a2κ2α2

n

∫ t

0

f1(τ)e−
a2(t−τ)

2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

− 2κa2J0(αnr1)√
a4 − 4a2κ2α2

n

∫ t

0

f2(t)

αnr2

e−
a2(t−τ)

2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

]
.
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5.4 Solutions for Pressure Defined at Both Boundaries

The radial parabolic diffusion IBVP where the pressures are arbitrary functions

of time at the inner and outer radii is given by

1

r

∂

∂r

(
r
∂p

∂r

)
=

1

a2

∂p2

∂t2
+

1

κ

∂p

∂t
, (5.12a)

p(r, 0) = g1(r), (5.12b)

∂p

∂t
(r, 0) = g2(r), (5.12c)

p(r1, t) = f1(t), (5.12d)

p(r2, t) = f2(t). (5.12e)

The appropriate Hankel transform for (5.12) is identical that given in (4.20) which

was defined for (4.16). Restating the Hankel transform we have

H{Sf}(αn) = −α2
nF (αn) +

2

π
(f(r2)− ρf(r1)),

where we used the definition of ρ in (4.17).

To solve the IBVP (5.12), we now apply the Hankel transform H and obtain the

initial value problem for n ≥ 1

1

a2

d2P

dt2
(αn, t) +

1

κ

dP

dt
(αn, t) + α2

nP (αn, t) =
2

π
(f2(t)− ρf1(t)) , (5.13a)

P (αn, 0) = G1(αn) (5.13b)

dP

dt
(αn, 0) = G2(αn). (5.13c)
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Defining the function Fn(t) by

Fn(t) :=
2

π
(f2(t)− ρf1(t)) , n ≥ 1, (5.14)

the solution to (5.13) is given by (5.5) where the function Fn(t) in (5.5) is now

defined by (5.14). When stating the complete solution to (5.12), we will use the

representation (5.8) with the function Fn(t) in (5.8) defined by (5.14).

Recall that, by Theorem 3.3, p(r, t) can be expanded in an infinite series of the

eigenfunctions {un(r)}∞n=1 as in (3.11) where the un(r) are defined by (4.18) and the

coefficients in (3.11) are now given by (4.19).

Observe,

p(r, t) =
∞∑
n=1

〈un, p〉w
〈un, un〉w

un(r)

=
∞∑
n=1

∫ r2
r1
p(r, t)un(r)r dr∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=1

P (αn, t)∫ r2
r1
u2
n(r)r dr

un(r)

=
∞∑
n=1

[
π2α2

nJ
2
0 (αnr1)un(r)

2(J2
0 (αnr1)− J2

0 (αnr2))

]
·[

G1(αn)e−
a2t
2κ

(
a2√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+ cosh

(
t

√
a4 − 4a2κ2α2

n

2κ

))

+G2(αn)
2κe−

a2t
2κ√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+
2κa2√

a4 − 4a2κ2α2
n

∫ t

0

Fn(τ)e−
a2(t−τ)

2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

]

79



=
∞∑
n=1

[
π2α2

nJ
2
0 (αnr1)un(r)

2(J2
0 (αnr1)− J2

1 (αnr2))

]
·[

e−
a2t
2κ

(
a2√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)
+ cosh

(
t

√
a4 − 4a2κ2α2

n

2κ

))
·

∫ r2

r1

g1(r)un(r)r dr +
2κe−

a2t
2κ√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)∫ r2

r1

g2(r)un(r)r dr

+
2κa2√

a4 − 4a2κ2α2
n

∫ t

0

2

π
(f2(t)− ρf1(t)) e−

a2(t−τ)
2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

]

= π
∞∑
n=1

[
α2
nJ0(αnr1)un(r)

J2
0 (αnr1)− J2

0 (αnr2)

]
·[

π

2
J0(αnr1)e−

a2t
2κ

(
a2√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)

+ cosh

(
t

√
a4 − 4a2κ2α2

n

2κ

))∫ r2

r1

g1(r)un(r)r dr

+
πκJ0(αnr1)e−

a2t
2κ√

a4 − 4a2κ2α2
n

sinh

(
t

√
a4 − 4a2κ2α2

n

2κ

)∫ r2

r1

g2(r)un(r)r dr

− 2κa2J0(αnr2)√
a4 − 4a2κ2α2

n

∫ t

0

f1(τ)e−
a2(t−τ)

2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

+
2κa2J0(αnr1)√
a4 − 4a2κ2α2

n

∫ t

0

f2(t)e−
a2(t−τ)

2κ sinh

(
(t− τ)

√
a4 − 4a2κ2α2

n

2κ

)
dτ

]
.

5.5 Comparison of the Solutions to the Hyperbolic and Parabolic Diffusion

Equations

In this section we will compare and contrast the solutions to the hyperbolic the

IBVP (5.1) and the corresponding parabolic IBVP (4.1). Via a dimensionless analog,

we will show that as a→∞ in (5.1), its solution tends to the solution to (4.1). We

will also compare the pseudo-steady state solutions the IBVPs both analytically and
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graphically.

5.5.1 Solution to the dimensionless hyperbolic diffusion initial boundary value

problem

We can represent the hyperbolic diffusion equation (5.1a) in dimensionless form

by defining the following dimensionless variables

pD :=
2πkh(pi − p)

qµ
,

rD :=
r

r1

,

R :=
r2

r1

,

tD :=
κt

r2
1

,

τ :=
κ

ar1

,

where pi is the initial reservoir pressure. We set the initial conditions (5.1b) and (5.1c)

to

g1(r) = pi

g2(r) = 0,

respectively. The boundary conditions (5.1d) and (5.1e) are set to

f1(t) =
qµ

2πkh
and f2(t) = 0,

respectively. This translates to a constant terminal rate at the wellbore and a no-flow

outer boundary.
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We can now write the IBVP (5.1) in dimensionless form by

1

rD

∂

∂rD

(
rD
∂pD
∂rD

)
= τ 2∂

2pD
∂t2D

+
∂pD
∂tD

, (5.15a)

p(r, 0) = 0, (5.15b)

∂p

∂t
(r, 0) = 0, (5.15c)

rD
∂pD
∂rD

∣∣∣∣
rD=1

= −1, (5.15d)

rD
∂pD
∂rD

∣∣∣∣
rD=R

= 0. (5.15e)

From the solution methods presented in this chapter as well as Chapter 3, we

see that there are three approaches we can take. We choose to use the method of

Laplace transforms to solve (5.15). The reason for this choice is that the solution

that will be obtained from the Laplace transform does not require a priori knowledge

of three separate fundamental solutions as in the method of separation of variables.

Also, if we chose to use the Hankel transform method outlined in Section (5.2), the

form of the pseudosteady state portion of the equation would not be evident.

The Laplace transform of pD(rD, tD) with respect to tD is given by (3.23) as

P (rD, s) = L{p(rD, tD)}(s) =

∫ ∞
0

e−stDp(rD, tD) dt.

Implementing Theorem 3.9 and Theorem 3.10, we also have

∂pD
∂tD

(rD, tD) = sP (rD, s)− p(rD, 0) = sP (rD, s),

τ 2∂
2pD
∂t2D

(rD, tD) = τ 2

(
s2P (rD, s)− sp(rD, 0)− ∂pD

∂tD
(rD, 0)

)
= τ 2s2P (rD, s),
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and

∂pD
∂rD

(rD, tD) =
∂P

∂rD
(rD, tD).

Thus, the Laplace transformation of the IBVP (5.1) is now a second order BVP

1

rD

∂

∂rD

(
rD

∂P

∂rD

)
−
(
τ 2s2 + s

)
P (rD, s) = 0, 1 < rD < R, (5.16a)

rD
∂P

∂rD

∣∣∣
rD=1

= −1

s
, (5.16b)

rD
∂P

∂rD

∣∣∣
rD=R

= 0. (5.16c)

Note that (5.16a) is a form of the modified Bessel equation of order zero. Thus, the

general solution to (5.16a) is given by

P (rD, s) = A(s)I0(rD
√
τ 2s2 + s) +B(s)K0(rD

√
τ 2s2 + s), (5.17)

where A(s) and B(s) are to be determined by implementing the boundary condi-

tions (5.16b) and (5.16c). In doing so we obtain the particular solution to (5.16a)

P (rD, s) =

K1

(
R
√
τ 2s2 + s

)
I0

(
rD
√
τ 2s2 + s

)
+ I1

(
R
√
τ 2s2 + s

)
K0

(
rD
√
τ 2s2 + s

)
s
√
τ 2s2 + s

(
I1

(
R
√
τ 2s2 + s

)
K1

(√
τ 2s2 + s

)
−K1

(
R
√
τ 2s2 + s

)
I1

(√
τ 2s2 + s

)) .
(5.18)

The inverse Laplace transform can be found by evaluating the following contour

integral

p(rD, tD) = L−1{P (rD, s)}(tD) =
1

2πi

∮
sn

estDP (rD, s) ds, n = 0, 1, 2, . . .

By inspection, we can identify the isolated singular points of (5.18) and then
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implement Theorem 3.11. First observe that there is a second order pole at s = 0

and a first order pole at s = − 1
τ2

. We find our residue ρ0(r, t) of estP (r, s) at s0 = 0

by

ρ0(rD, tD) = lim
s→0

[
d2

ds2

(
s2estDP (rD, s)

)]
= lim

s→0

[
d2

ds2
·(

sestD
(
K1(R

√
τ 2s2 + s)I0(rD

√
τ 2s2 + s) + I1(R

√
τ 2s2 + s)K0(rD

√
τ 2s2 + s)

)
√
τ 2s2 + s

(
I1(R
√
τ 2s2 + s)K1(

√
τ 2s2 + s)−K1(R

√
τ 2s2 + s)I1(

√
τ 2s2 + s)

))]

=
r2
D + 4 (tD − τ 2)

2(R2 − 1)
− R2 ln(rD)

R2 − 1
− 3R4 − 4R4 ln(R)− 2R2 − 1

4(R2 − 1)2
. (5.19)

To confirm this solution we can check it against the terms before the summation in

the solutions in [35, pg. 656, Eq. 5] and [36, pg. 86, Eq. 72], with r1 = 1, r2 = R

and appropriate sign changes in (5.19), since the inner boundary condition at r = r1

in [35,36] was +1 instead of −1 here in (5.15d). Similarly, we can confirm the above

solution (5.19) exactly with [51, pg. 321, Eq.VII-13]. Likewise, we find our residue

ρ1(r, t) of estP (r, s) at s1 = − 1
τ2

by

ρ1(rD, tD) = lim
s→− 1

τ2

[(
s+

1

τ 2

)
estDP (rD, s)

]

=
2τ 2e−

tD
τ2

R2 − 1
. (5.20)

To conclude, we must find the remaining singularities of P (rD, s). By inspection

of denominator of (5.18), we can easily see that there are no zeros for τ 2s2 + s > 0,

but there are countably infinitely many isolated zeros for τ 2s2 + s < 0.
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Since all poles are negative, we can perform a change of variables

τ 2s2 + s→ −u2, which implies s =
−1±

√
1− 4τ 2u2

2τ 2

and

ds = ∓ 2u√
1− 4τ 2u2

du.

From these results we find that the remaining singularities can be found by evaluating

− 1

2πi

∮
αn

2u√
1− 4τ 2u2

e
−1+
√

1−4τ2u2

2τ2
tDP+(rD,−u2) du

+
1

2πi

∮
αn

2u√
1− 4τ 2u2

e
−1−
√

1−4τ2u2

2τ2
tDP−(rD,−u2) du, (5.21)

for n = 2, 3, . . . , where

P±(rD,−u2) =
2τ 2 (K1(Riu)I0(rDiu) + I1(Riu)K0(rDiu))

iu(−1±
√

1− 4τ 2u2) (I1(Riu)K1(iu)−K1(Riu)I1(iu))

= ± 2τ 2 (J1(Ru)Y0(rDu)− Y1(Ru)J0(rDu))

u
(
∓1 +

√
1− 4τ 2u2

)
(J1(Ru)Y1(u)− Y1(Ru)J1(u))

. (5.22)

We now add the two contour integrals in (5.21) by substituting in (5.22) to obtain

− 1

2πi

∮
αn

e−
tD
2τ2

(1+
√

1−4τ2u2)M(t, τ, u)Un(rD)

u2 (J1(Ru)Y1(u)− Y1(Ru)J1(u))
du

=− 1

2πi

∮
αn

2e−
tD
2τ2H(t, τ, u)Un(rD)

u2 (J1(Ru)Y1(u)− Y1(Ru)J1(u))
du, (5.23)

where

M(tD, τ, u) = 1 +
√

1− 4τ 2u2 + e
tD
τ2

√
1−4τ2u2

(
1 +
√

1− 4τ 2u2
)
,
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Un(rD) = Y1(Ru)J0(rDu)− J1(Ru)Y0(rDu),

and

H(tD, τ, u) = cosh

(
tD
2τ 2

√
1− 4τ 2u2

)
+

1√
1− 4τ 2u2

sinh

(
tD
2τ 2

√
1− 4τ 2u2

)
.

The task of evaluating (5.23) is simplified by the fact that the remaining countably

infinitely many poles are isolated. Because of this fact, we can again employ The-

orem 3.11. Using the Wronskian, the definition of ρ in (4.3), relationships between

Iν , Kν , Jν , and Yν , and a significant amount of algebra, we continue evaluating (5.23)

by applying the limit as u→ αn to obtain

− 1

2πi

∮
αn

2e−
tD
2τ2H(t, τ, u)Un(rD)

u2 (J1(Ru)Y1(u)− Y1(Ru)J1(u))
du

=−
∞∑
n=2

2e−
tD
2τ2H(t, τ, αn)Un(rD)

α2
n limu→αn

(
d
du

(J1(Ru)Y1(u)− Y1(Ru)J1(u))
)

=
∞∑
n=2

2πJ2
1 (αn)αne

− tD
2τ2H(t, τ, αn)Un(rD)

2α2
n (J2

1 (αn)− J2
1 (αnR))

=π
∞∑
n=2

J2
1 (αn)e−

tD
2τ2H(t, τ, αn)Un(rD)

αn (J2
1 (αn)− J2

1 (αnR))
. (5.24)

Thus, combining (5.19), (5.20), and (5.24), we have that the solution to (5.15) is

pD(rD, tD) =
r2
D + 4

(
tD + τ 2

(
e−

tD
τ2 − 1

))
2(R2 − 1)

− R2 ln(rD)

R2 − 1
− 3R4 − 4R4 ln(R)− 2R2 − 1

4(R2 − 1)2

+ π

∞∑
n=2

J2
1 (αn)e−

t
2τ2H(tD, τ, αn)Un(rD)

αn (J2
1 (αn)− J2

1 (αnR))
. (5.25)
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5.5.2 Analytic comparison of solutions

We note that through a straightforward limit calculation, we can easily show

that, as τ → 0 (a → ∞), the solution (5.25) to (5.15) converges to the solution to

the associated dimensionless parabolic diffusion IBVP given by

1

rD

∂

∂rD

(
rD
∂pD
∂rD

)
=
∂pD
∂tD

, (5.26a)

p(r, 0) = 0, (5.26b)

rD
∂pD
∂rD

∣∣∣∣
rD=1

= −1, (5.26c)

rD
∂pD
∂rD

∣∣∣∣
rD=R

= 0. (5.26d)

Notice that the second initial condition (5.15c) that was present in (5.15) is no longer

necessary to obtain a unique solution to (5.26).

From the solution (5.25), observe

lim
τ→0

r2
D + 4

(
tD + τ 2

(
e−

tD
τ2 − 1

))
2(R2 − 1)

− R2 ln(rD)

R2 − 1
− 3R4 − 4R4 ln(R)− 2R2 − 1

4(R2 − 1)2

=
r2
D + 4tD

2(R2 − 1)
− R2 ln(rD)

R2 − 1
− 3R4 − 4R4 ln(R)− 2R2 − 1

4(R2 − 1)2
. (5.27)

In the summation from the solution (5.25), we must also evaluate the behavior of
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e−
t

2τ2H(t, τ, αn) as τ → 0. Observe,

lim
τ→0

e−
tD
2τ2H(t, τ, αn)

= lim
τ→0

e−
tD
2τ2

(
cosh

(
tD
2τ 2

√
1− 4τ 2α2

n

)
+

1√
1− 4τ 2α2

n

sinh

(
tD
2τ 2

√
1− 4τ 2α2

n

))

= lim
τ→0

e−
tD
2τ2

2

(
e
tD
2τ2

√
1−4τ2α2

n + e−
tD
2τ2

√
1−4τ2α2

n +
e
tD
2τ2

√
1−4τ2α2

n − e−
tD
2τ2

√
1−4τ2α2

n√
1− 4τ 2α2

n

)

= lim
τ→0

1

2

(
e
tD
2τ2

(−1+
√

1−4τ2α2
n) +

e
tD
2τ2

(−1+
√

1−4τ2α2
n)√

1− 4τ 2α2
n

)

=
1

2

(
e−tDα

2
n + e−tDα

2
n

)
=e−tDα

2
n . (5.28)

Thus, applying the results of (5.27) and (5.28), we see that the solution (5.25)

to (5.15) becomes

pD(rD, tD) =
r2
D + 4tD

2(R2 − 1)
− R2 ln(rD)

R2 − 1
− 3R4 − 4R4 ln(R)− 2R2 − 1

4(R2 − 1)2

+ π
∞∑
n=2

J2
1 (αn)e−tDα

2
nUn(rD)

αn (J2
1 (αn)− J2

1 (αnR))
, (5.29)

which is the solution to the dimensionless parabolic diffusion IBVP (5.26).

5.5.3 Graphical comparison of the solutions

In order to best observe the behavior of the solution to the dimensionless hy-

perbolic diffusion IBVP and the dimensionless parabolic diffusion equation, we illus-

trate the behavior of the solutions via a multi-precision numerical Laplace inversion

scheme [1,49,50] and plot the results. The algorithm employs the GWR function [48],

which computes the numerical value of the inverse Laplace transform of a function

at a given value.
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Figure 5.1: Plot of dimensionless pressure vs. dimensionless time with different
values for the parameter τ .

Implementing the GWR multi-precision Laplace inversion method, we set R =

3000 and compute the inverse of (5.18) with

τ = 0 (diffusion), 0.0001, 0.001, 0.01, 0.1, 1, 10.

Of course, when τ = 0 this implies that the pressure wave propagation speed is

infinite. In this case we have pure diffusion. By inspecting Figure 5.1, we see that

the slower the pressure wave propagation speed, the longer it takes in dimensionless

time for the diffusion process to dominate. This is evident by noting that the diffusion

process dominates when the plot of the dimensionless hyperbolic solution converges

to the plot of the diffusion curve for a given value of τ . Further, the larger values of

dimensionless time tD, dimensionless hyperbolic pressure pD takes longer to converge

to the dimensionless pressure trace of diffusion as the value of τ increases. This delay

is similar to wellbore storage, which is also illustrated in Figure 5.2.

We now illustrate the relationship between dimensionless pressure pD and its
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Figure 5.2: Plot of dimensionless logarithmic pressure derivative vs. dimensionless
time with different values for the parameter τ .

associated logarithmic derivative p′D, which is the pressure derivative with respect to

logarithmic time. The logarithmic derivative is defined by

p′D(rD, tD) :=
dpD(rD, tD)

d ln(tD)
= tD

dpD(rD, tD)

dtD
= tDL−1{sP (rD, s)}(tD).

In Figures 5.4– 5.10, pD := pD(1, tD) and p′D := p′D(1, tD), which are the dimension-

less pressure and the dimensionless logarithmic derivative at the wellbore rD = 1.
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Figure 5.3: Plot of dimensionless pressure and dimensionless logarithmic derivative
vs. dimensionless time with τ = 100.
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Figure 5.4: Plot of dimensionless pressure and dimensionless logarithmic derivative
vs. dimensionless time with τ = 10.
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Figure 5.5: Plot of dimensionless pressure and dimensionless logarithmic derivative
vs. dimensionless time with τ = 1.
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Figure 5.6: Plot of dimensionless pressure and dimensionless logarithmic derivative
vs. dimensionless time with τ = 0.1.
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Figure 5.7: Plot of dimensionless pressure and dimensionless logarithmic derivative
vs. dimensionless time with τ = 0.01.
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Figure 5.8: Plot of dimensionless pressure and dimensionless logarithmic derivative
vs. dimensionless time with τ = 0.001.
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Figure 5.9: Plot of dimensionless pressure and dimensionless logarithmic derivative
vs. dimensionless time with τ = 0.0001.
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Figure 5.10: Plot of dimensionless pressure and dimensionless logarithmic derivative
vs. dimensionless time with τ = 0 (diffusion).
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6. PRESSURE PULSE DECAY METHOD

If I were again beginning my studies, I would follow the advice of Plato and start
with mathematics.

Galileo Galilei (1564–1642)

6.1 Introduction

We begin our analysis of the pressure pulse decay method with a development

of the continuity equation in Cartesian coordinates. The continuity equations will

be used to derive the pressure squared (p2) diffusion equation in the Cartesian co-

ordinate system IBVP that will be used to model the flow of gas through the core

sample. We then proceed to develop the appropriate initial and boundary conditions

to model the pressure pulse decay method. The solution can be used to determine

permeability and porosity of a tight core sample, such as shale. The solution meth-

ods contained in [15,23,24] do not show the derivation of the continuity equation in

Cartesian coordinates, nor do they show the detail in obtaining the solution in the

Laplace domain, nor the inversion of the Laplace transform to obtain the solution in

the time domain. Additionally, in the literature reviewed by the author, none of the

solutions considered using the p2 diffusion equation to model the flow of gas through

a core sample. We will show the missing detail in the development of certain parts

of the problem, including the development of the boundary conditions that are used

as well as the solution method to obtain the infinite series in the analytic solution.

To illustrate the solution, we will provide plots of the pressures versus time of both

the upstream and downstream pressures that occur during the experiment. Addi-

tionally, we will show the pressure traverses that occur inside the sample during the

experiment, which the author believes to be a new contribution.
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6.2 Mathematical Model in the Cartesian Coordinate System

To begin, we first derive the continuity equation in the Cartesian coordinate

system. Using the continuity equation that we develop, we combine it with Darcy’s

law, the real gas law, and some assumptions to obtain the p2 diffusion equation in

the Cartesian coordinate system. We then discuss the experimental system set-up

for the pressure pulse decay method and derive the appropriate initial conditions

and boundary conditions. At the conclusion of this section we will have a properly

derived dimensional IBVP whose solution can be used to model the pressure decay

of the gas at the end points of and passing through core the core sample during the

entire duration of the test.

6.2.1 Derivation of the continuity equation in the Cartesian coordinate system

To derive the diffusion equation in Cartesian coordinates, we must first derive the

continuity equation in Cartesian coordinates. The continuity equation stems from

the principle of conservation of mass which states that the net rate of creation or

destruction of matter is zero [27]. Considering the spatially fixed control volume in

Figure 6.1, we have


The mass flow rate into

the control volume ∆V

during the time period ∆t.

−


The mass flow rate out of

the control volume ∆V

during the time period ∆t.

 (6.1)

=


The rate of mass accumulation

in the control volume ∆V

during the time period ∆t.

 ,
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Figure 6.1: Fixed control volume ∆V for the experiment.

where we assume that there is no mass flow rate into or out of the control volume

due to a source or a sink. The mass flow rate into the core is given by

dmin

dt
= ρvxA, (6.2)

while the mass flow rate out of the core is given by

dmout

dt
= [ρvx + ∆(ρvx)]A. (6.3)

At any instance, the bulk control volume is given by

∆Vs = A∆x,

the mass control volume is given by

∆Vp = ∆Vsφ,
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and thus, the mass in the control volume is given by

∆m = ρ∆Vp.

The rate of mass accumulation is the difference in mass in the control volume for

the time period t to t+ ∆t over the length of the time period ∆t. Thus,

macc =
|ρA∆xφ|t+∆t − |ρA∆xφ|t

∆t
. (6.4)

Combining (6.2), (6.3) and (6.4) and substituting into (6.1), we have

|ρA∆xφ|t+∆t − |ρA∆xφ|t
∆t

= ρvxA− [ρvx + ∆(ρvx)]A = −A∆(ρvx). (6.5)

Dividing (6.5) by the bulk volume ∆Vs, we obtain

|ρφ|t+∆t − |ρφ|t
∆t

= −∆(ρvx)

∆x
. (6.6)

Taking the limit of (6.6) as ∆x, ∆t → 0, we finally obtain the continuity equation

in the Cartesian coordinate system

∂(ρφ)

∂t
= −∂(ρvx)

∂x
. (6.7)

6.2.2 Derivation of the diffusion equation in the Cartesian coordinate system

Assuming laminar flow, the form of Darcy’s Law that will apply here is given by

vx = −k
µ

∂p

∂x
. (6.8)

98



Substituting (6.8) into (6.7), we have

∂(ρφ)

∂t
=

∂

∂x

(
ρ
k

µ

∂p

∂x

)
. (6.9)

Recall the real gas law

pV = znRT, (6.10)

where n = m/M , m is the mass of the gas and M is the molecular weight of the gas.

We solve (6.10) for density ρ and obtain

ρ =
m

V
=

pM

zRT
. (6.11)

Substituting (6.11) into (6.9), we now have

∂

∂t

(
pMφ

zRT

)
=

∂

∂x

(
kpM

µzRT

∂p

∂x

)
. (6.12)

Using the fact that Mand R are constant, and assuming isothermal conditions and

that k is also constant, we can simplify (6.12)

∂

∂x

(
p

µz

∂p

∂x

)
=

1

k

∂

∂t

(
pφ

z

)
=
φ

k

∂

∂t

(p
z

)
+
p

z

∂φ

∂t

=
φ

k

∂

∂p

(p
z

) ∂p
∂t

+
p

z

∂φ

∂p

∂p

∂t

=
φ

k

p

z

∂p

∂t

(
z

p

∂

∂p

(p
z

)
+

1

φ

∂φ

∂p

)
. (6.13)
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Recalling the definition of the compressibility of gas in terms of its density and

implementing the real gas law (6.11) we have

cg =
1

ρ

∂ρ

∂p
=
zRT

pM

∂

∂p

(
pM

zRT

)
=
z

p

∂

∂p

(p
z

)
. (6.14)

Assuming no formation compressibility, cf = 1
φ
∂φ
∂p

= 0 and substituting (6.14)

into (6.13), we obtain

∂

∂x

(
p

µz

∂p

∂x

)
=
φcg
k

p

z

∂p

∂t
. (6.15)

Recalling that

p
∂p

∂x
=

1

2

∂p2

∂x
and p

∂p

∂t
=

1

2

∂p2

∂t
, (6.16)

we plug in (6.16) into (6.15) yielding

∂

∂x

(
1

µz

∂p2

∂x

)
=
φcg
k

1

z

∂p2

∂t
. (6.17)

Assuming the term µz is constant in (6.17), we have

∂2ψ

∂x2
=
µφcg
k

∂ψ

∂t
,

where ψ = p2.

One final assumption is made. We assume that the gas compressibility is virtually

constant throughout the experiment, since there is a small relative change in pressure

during the decay. Thus, cg = 1/p ≡ constant, which yields the final representation
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Figure 6.2: Experimental set-up of the pressure pulse permeability method on
crushed cores.

of the p2 diffusion equation as

∂2ψ

∂x2
=

1

κ

∂ψ

∂t
,

where κ = k
φµcg

.

6.3 Description of the experimental system set-up and development of the initial

conditions and boundary conditions for the pressure pulse decay method

Referring to Figure 6.2, we will now describe the experimental set-up and execu-

tion of the pressure pulse decay method. The core sample is prepared by fitting it

into a sleeve and placing it into a cell. The pressure in the upstream and downstream

volumes, Vu and Vd, respectively, as well as the core sample is increased to the level

that is required to begin the experiment. The pressures in the core as well as in

the upstream and downstream volumes must be given time to equalize before the

experiment begins.

A pressure pulse of less than one order of magnitude of that of the equalized

pressure is put into the upstream volume. At this time, the core sample and the

downstream reservoir are still isolated from the upstream volume by a valve. To

begin the experiment, at time t = 0, a valve between the upstream volume and the
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core is opened and the pressure in the upstream volume causes the gas to expand

through the core sample and into the downstream volume. At the instant that the

experiment begins, the upstream volume pressure will be denoted by Pui and the

core sample pressure and the downstream volume pressure will be denoted by Pd,

where we have that Pui > Pd. The pressure in the upstream volume begins to decay

at the instant the valve between it and the core sample is opened. The experiment

concludes when the pressure in both the upstream and downstream volumes reach

an equilibrium value.

We now turn our attention to setting up the appropriate boundary conditions.

The boundary condition at the face of the core, x = L, in contact with the upstream

volume must consider the pore volume of the sample, denoted by φVs, and the

upstream volume, denoted by Vu. This boundary condition has to describe the

conservation of mass occurring at the upstream face of the core sample as gas flows

from the upstream volume into the core and eventually the downstream volume,

resulting in a pressure decrease in the upstream volume. Thus, we have

Vu
κ

∂p2

∂t

∣∣∣∣
x=L

+
φVs
L

∂p2

∂x

∣∣∣∣
x=L

= 0, for t > 0.

Given the above discussion on the boundary condition at the upstream face of the

core sample, it is straightforward to define the pressure at the upstream face as a

function of time by

pu(t) = p(L, t) with pu(0) = p(L, 0) = Pui ,

where Pui denotes the initial pressure in the upstream volume at the instant the

experiment begins.
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Similarly, the boundary condition at the face of the core, x = 0, in contact with

the downstream volume must also consider the pore volume of the sample,and the

downstream volume, denoted by Vd. This boundary condition has to describe the

conservation of mass occurring at the downstream face of the core sample as gas flows

from the core sample into the downstream volume, resulting in a pressure increase

in the downstream volume. Thus, we have

Vd
κ

∂p2

∂t

∣∣∣∣
x=0

− φVs
L

∂p2

∂x

∣∣∣∣
x=0

= 0, for t > 0.

Given the above discussion on the boundary condition at the downstream face of the

core sample, it is straightforward to define a the pressure at the downstream face as

a function of time by

pd(t) = p(0, t) with pd(0) = p(0, 0) = 0.

The complete formulation of the IBVP for modeling the pressure pulse decay

method in terms of ψ = p2 is thus

∂2ψ

∂x2
− 1

κ

∂ψ

∂t
= 0, for 0 < x < L and t > 0, (6.18a)

ψ(x, 0) = 0, for 0 < x < L, (6.18b)

ψ(0, t) = ψd(t) and ψ(L, t) = ψu(t), for t ≥ 0,

where ψd(0) = 0 and ψu(0) = P 2
ui
,

LVd
φκ

∂ψ

∂t

∣∣∣∣
x=0

− Vs
∂ψ

∂x

∣∣∣∣
x=0

= 0, for t > 0, (6.18c)

LVu
φκ

∂ψ

∂t

∣∣∣∣
x=L

+ Vs
∂ψ

∂x

∣∣∣∣
x=L

= 0, for t > 0. (6.18d)
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6.4 Solution to the Mathematical Model

We now proceed to solve the IBVP for modeling the pressure pulse decay method.

While the dimensional IBVP (6.18) has a physical significance that is clear due to the

fact that it is represented using the original physical variables and parameters, we

choose to express and solve the problem using dimensionless variables. The reason

is twofold. First, from a purely mathematical point of view it is more succinct

and straight forward due to the algebra involved in simplifying the various forms

as we progress towards the final representation. Second, numerical computations

become easier to implement with dimensionless variables and one of the main uses

of the solution will be to compute pressure decay profiles given a set of variables and

parameters for specific cases to be modeled.

Using the dimensionless variables

xD =
x

L
, tD =

κt

L2
, β =

φVs
Vu

, γ =
Vd
Vu
,

and

ψD (xD, tD) =
ψ(xD, tD)− (pd(0))2

(pu(0))2 − (pd(0))2
=
ψ(xD, tD)

P 2
ui

,
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we represent the dimensional IBVP (6.18) in dimensionless form by

∂2ψD
∂x2

D

− ∂ψD
∂tD

= 0, for 0 < xD < 1 and tD > 0, (6.19a)

ψD(xD, 0) = 0, for 0 < xD < 1, (6.19b)

ψD(0, tD) = ψDd(tD) and ψD(1, tD) = ψDu(t), for t ≥ 0,

where ψDd(0) = 0 and ψDu(0) = 1,

Vd
φ

∂ψD
∂tD

∣∣∣∣
xD=0

− Vs
∂ψD
∂xD

∣∣∣∣
xD=0

= 0, for tD > 0, (6.19c)

Vu
φ

∂ψD
∂tD

∣∣∣∣
xD=1

+ Vs
∂ψD
∂xD

∣∣∣∣
xD=1

= 0, for tD > 0. (6.19d)

We proceed by taking the Laplace transform of (6.19) with respect to tD. Defining

ΨD(xD, s) := L{ψD(xD, tD)} (s), we obtain

d2ΨD

dx2
D

− sΨD(xD, s) = 0, for 0 < xD < 1, (6.20a)

sΨD(0, s)− β

γ

dΨD

dxD

∣∣∣∣
xD=0

= 0, (6.20b)

sΨD(1, s) + β
dΨD

dxD

∣∣∣∣
xD=1

= 1. (6.20c)

The general solution to (6.20a) is given by

ΨD(xD, s) = A cosh(xD
√
s) +B sinh(xD

√
s), for 0 < xD < 1.

Forcing the boundary conditions we now have the particular solution to (6.20) given

by

ΨD(xD, s) =
β cosh (

√
sxD) +

√
sγ sinh (

√
sxD)

sβ(γ + 1) cosh (
√
s) +

√
s (β2 + γs) sinh (

√
s)

(6.21)

In order to find the solution in the time domain, we must take the inverse Laplace
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transform of ΨD(xD, s) in (6.21) with respect to s . We note that there are countably

infinitely many poles for ΨD. The poles, denoted by {sn}∞n=0, are all simple poles

and occur at s0 = 0 and at the roots of

√
sβ(γ + 1) cosh

(√
s
)

+
(
β2 + γs

)
sinh

(√
s
)

= 0. (6.22)

Since all the nonzero roots of (6.22) are along negative real axis, for each pole sn,

there exists a positive real number αn such that
√
sn = iαn, which implies sn = −α2

n.

Thus, we perform the change of variables sn → −α2
n and obtain

f(αn) := αnβ(γ + 1) cos (αn) +
(
β2 − α2

nγ
)

sin (αn) = 0. (6.23)

The countably infinitely many poles of (6.23) are all simple and are denoted by

{αn}∞n=0, where 0 = α0 < α1 < α2, . . .

Implementing the appropriate residue theory, we now compute the inverse Laplace

transform.

ψD(xD, tD) = L−1 {Ψ(rD, s)} (tD)

=
1

2πi

∮
{sn}

estDΨ(rD, s) ds

=
1

2πi

∮
{sn}

estD(β cosh (
√
sxD) +

√
sγ sinh (

√
sxD))

sβ(γ + 1) cosh (
√
s) +

√
s (β2 + γs) sinh (

√
s)
ds.
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Performing a u-substitution, with s = −u2 and ds = −2u du, we obtain

ψD(xD, tD) =
1

2πi

∮
{αn}

2ue−u
2tD(β cos (uxD)− uγ sin (uxD))

u2β(γ + 1) cos (u) + u (β2 − γu2) sin (u)
du

=
1

2πi

∮
{αn}

2e−u
2tD (β cos (uxD)− uγ sin (uxD))

uβ(γ + 1) cos (u) + (β2 − γu2) sin (u)
du

=
1

1 + β + γ

+ 2
∞∑
n=1

e−α
2
ntD (β cos (αnxD)− αnγ sin (αnxD))

(β(γ + 1) + β2 − γα2
n) cos(αn)− αn(β(γ + 1) + 2γ)) sin(αn)

=
1

1 + β + γ

+ 2
∞∑
n=1

e−α
2
ntD (cos (αnxD)− αnγ/β sin (αnxD))

(1 + γ + β − α2
nγ/β) cos(αn)− αn(1 + γ + 2γ/β) sin(αn)

.

Recalling that ψ = P 2
ui
ψD = p2, we have

p(xD, tD) = Pui ·√√√√ 1

1 + β + γ
+ 2

∞∑
n=1

e−α2
ntD (cos (αnxD)− αnγ/β sin (αnxD))

(1 + γ + β − α2
nγ/β) cos(αn)− αn(1 + γ + 2γ/β) sin(αn)

.

(6.24)

Note that in (6.24) all the terms in the summation have a decaying exponential

function. Thus, after a sufficiently long time, the limiting pressure (i.e. the pressure

at all points in the experimental set-up, including both upstream and downstream

volume and the core sample), denoted by p∞, is given by

p∞ := lim
tD→∞

p(xD, tD) =

√
P 2
ui

1 + β + γ
=

√
VuP 2

ui

Vu + φVs + Vd
. (6.25)

By observing the limiting pressure at the end of the experiment, we can compute
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the porosity of the sample by solving (6.25) and obtaining

φ =
VuP

2
ui
− p2

∞(Vu + Vd)

p2
∞Vs

.

6.5 Comparison of Results

Some preliminary results are shown in Figures 6.3–6.6. In Figure 6.3, we use

β = 1 and γ = 1
10

, which simulates the pore space of the sample equal to the

upstream volume, but the upstream volume is 10 times the downstream volume.

The constants are switched to β = 1
10

and γ = 1 in Figure 6.4, which simulates

the pore volume of the sample is 10 times less than the downstream volume, but

the upstream volume is equal to the downstream volume. In Figure 6.5, we use

β = γ = 1, which simulates the pore volume of the sample, the upstream volume,

and the downstream volume being equal. Finally, in Figure 6.6, we use β = 1 and

γ = 10, which simulates the pore volume of the sample equal to the upstream volume,

but the downstream volume is 10 times the upstream volume.
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Graphics for Thesis
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Figure 6.3: Example solution showing gas pressure in the upstream and downstream
volumes as well as the pressure at different points in the sample throughout the
experiment where β = 1 and γ = 1
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Figure 6.4: Example solution showing gas pressure in the upstream and downstream
volumes as well as the pressure at different points in the sample throughout the
experiment where β = 1

10
and γ = 1.
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Figure 6.5: Example solution showing gas pressure in the upstream and downstream
volumes as well as the pressure at different points in the sample throughout the
experiment where β = γ = 1.
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Figure 6.6: Example solution showing gas pressure in the upstream and downstream
volumes as well as the pressure at different points in the sample throughout the
experiment where β = 1 and γ = 10.
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7. GRI CRUSHED CORE PERMEABILITY METHOD

The essence of mathematics lies in its freedom.

Georg Cantor (1845–1918)

7.1 Introduction

We begin by deriving from first principles the continuity equation and diffusion

equation in the spherical coordinate system. We then derive the appropriate initial

conditions and boundary conditions to model the method of pressure pulse perme-

ability on crushed cores. Once the diffusion equation and the proper initial conditions

and boundary conditions are developed, we provide a detailed step by step solution

via the transform method of Pierre-Simon Laplace. We aim to preserve the spirit of

solving the diffusion equation with Bessel functions in the cylindrical coordinate sys-

tem [33,51] by employing spherical Bessel functions for our solution in the spherical

coordinate system.

7.2 Mathematical Model in the Spherical Coordinate System

To begin, we first derive the continuity equation in the spherical coordinate sys-

tem. Using the continuity equation that we develop, we combine it with Darcy’s law,

the real gas law, and some assumptions to obtain the pressure squared (p2) diffusion

equation in the spherical coordinate system. We then discuss the experimental sys-

tem set-up for the pressure pulse permeability method on crushed cores and derive

the appropriate initial conditions and boundary conditions. At the conclusion of this

section we will have a properly derived dimensional initial boundary value problem

whose solution can be used to model the pressure decay of the gas surrounding the

crushed core sample during the entire duration of the test, as well as other significant
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results such as the logarithmic derivative of the pressure decay.

7.2.1 Derivation of the continuity equation in the spherical coordinate system

To derive the diffusion equation in spherical coordinates, we must first derive the

continuity equation in spherical coordinates. The continuity equation stems from

the principle of conservation of mass which states that the net rate of creation or

destruction of matter is zero [27]. Considering the spatially fixed control volume in

Figure 7.1, we have


The mass flow rate into

the control volume ∆V

during the time period ∆t.

−


The mass flow rate out of

the control volume ∆V

during the time period ∆t.

 (7.1)

=


The rate of mass accumulation

in the control volume ∆V

during the time period ∆t.

 ,

where we assume that there is no mass flow rate into or out of the control volume

due to a source or a sink. The mass flow rate into the sphere is given by

dmin

dt
= −ρvrAin = −ρvr(r + ∆r)2 sin(θ)∆γ∆θ, (7.2)

while the mass flow rate out of the sphere is given by

dmout

dt
= −ρvrAout = − [ρvr −∆(ρvr)] r

2 sin(θ)∆γ∆θ, (7.3)
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Figure 7.1: Model of spherical crushed core sample showing the spatially fixed control
volume ∆V .

where the term ∆ (ρvr) is the change in mass flux occurring inside the control volume.

At any instance, the bulk control volume is given by

∆V = r2 sin(θ)∆γ∆r∆θ, (7.4)

the mass control volume is given by

∆Vp = ∆V φ, (7.5)

and thus, the mass in the control volume is given by

m = ρ∆Vp. (7.6)
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The rate of mass accumulation is the difference in mass in the control volume for

the time period t to t+ ∆t over the length of the time period ∆t. Thus,

macc =
|ρr2 sin(θ)∆γ∆r∆θφ|t+∆t − |ρr2 sin(θ)∆γ∆r∆θφ|t

∆t
. (7.7)

Combining (7.2), (7.3) and (7.7) and substituting into (7.1), we have

|ρr2 sin(θ)∆γ∆r∆θφ|t+∆t − |ρr2 sin(θ)∆γ∆r∆θφ|t
∆t

=
((
−ρvr(2r∆r + (∆r)2)

)
−
(
∆(ρvr)r

2
))

sin(θ)∆γ∆θ. (7.8)

Dividing (7.8) by the bulk volume ∆V , we obtain

|ρφ|t+∆t − |ρφ|t
∆t

= −ρvr
(

2

r
+

∆r

r2

)
− ∆(ρvr)

∆r
. (7.9)

Taking the limit of (7.9) as ∆r, ∆t → 0, we finally obtain the continuity equation

in the spherical coordinate system

−∂(ρφ)

∂t
=

2

r
ρvr +

∂(ρvr)

∂r
=

1

r2

(
∂

∂r
r2(ρvr)

)
. (7.10)

7.2.2 Derivation of the diffusion equation in the spherical coordinate system

The form of Darcy’s Law that will apply here is given by

vr = −k
µ

∂p

∂r
. (7.11)
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Substituting (7.11) into (7.10), we have

∂(ρφ)

∂t
=

1

r2

∂

∂r

(
r2ρ

k

µ

∂p

∂r

)
. (7.12)

Recall the real gas law

pV = znRT, (7.13)

where n = m/M , m is the mass of the gas and M is the molecular weight of the gas.

We solve (7.13) for density ρ and obtain

ρ =
m

V
=

pM

zRT
. (7.14)

Substituting (7.14) into (7.12), we now have

∂

∂t

(
pMφ

zRT

)
=

1

r2

∂

∂r

(
r2 kpM

µzRT

∂p

∂r

)
. (7.15)

Using the fact that M and R are constant and assuming k and T are also constant,

we can simplify (7.15) into

1

r2

∂

∂r

(
r2 p

µz

∂p

∂r

)
=

1

k

∂

∂t

(
pφ

z

)
=
φ

k

∂

∂t

(p
z

)
+
p

z

∂φ

∂t

=
φ

k

∂

∂p

(p
z

) ∂p
∂t

+
p

z

∂φ

∂p

∂p

∂t

=
φ

k

p

z

∂p

∂t

(
z

p

∂

∂p

(p
z

)
+

1

φ

∂φ

∂p

)
. (7.16)
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Recalling the definition of the compressibility of gas in terms of its density and

implementing the real gas law (7.14) we have

cg =
1

ρ

∂ρ

∂p
=
zRT

pM

∂

∂p

(
pM

zRT

)
=
z

p

∂

∂p

(p
z

)
. (7.17)

Assuming no formation (crushed core) compressibility, cf = 1
φ
∂φ
∂p

= 0 and substitut-

ing (7.17) into (7.16), we obtain

1

r2

∂

∂r

(
r2 p

µz

∂p

∂r

)
=
φcg
k

p

z

∂p

∂t
. (7.18)

Noting that

p
∂p

∂r
=

1

2

∂p2

∂r
and p

∂p

∂t
=

1

2

∂p2

∂t
,

we get

1

r2

∂

∂r

(
r2 1

µz

∂p2

∂r

)
=
φcg
k

1

z

∂p2

∂t
. (7.19)

Assuming the term µz is constant in (7.19), we have

1

r2

∂

∂r

(
r2∂ψ

∂r

)
=
µφcg
k

∂ψ

∂t
,

where ψ = p2.

One final assumption is made. We assume that the gas compressibility is virtu-

ally constant throughout the experiment, since there is such a small overall change

in pressure during the decay. Thus, cg = 1/p ≡ const, which yields the final repre-
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Figure 7.2: Experimental set-up of the pressure pulse permeability method on
crushed cores [41].

sentation of the pressure squared diffusion equation as

1

r2

∂

∂r

(
r2∂ψ

∂r

)
=

1

κ

∂ψ

∂t
,

where κ = k
φµcg

.

7.3 Description of the experimental system set-up and development of the initial

conditions and boundary conditions for the crushed core permeability method

Referring to Figure 7.2, we will now describe the experimental set-up and execu-

tion of the pressure pulse permeability method on crushed cores. The reference cell

with volume V0 contains gas at an initial pressure P0i that is higher than the initial

pressure P1 sample cell of volume Vs. The volume of the sample cell is the sum of

the dead volume Vd (denoted by DV in Figure 7.2) and the volume of the particles

V1. The particles are assumed to be spherical in shape, with radius R. The number
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of spherical particles n in the sample cell is calculated by

n =
3V1

4πR3
.

At the beginning of the experiment the valve located just above the sample cell is

opened and instantaneously the pressures in the reference cell and the sample cell

equalize to the pressure P0, indicated by the pressure gauge attached to the sample

cell in Figure 7.2. The value of P0 is computed using a Boyle-Mariotte pressure-

volume assumption to obtain

P0 =
P0iV0 + P1Vd
V0 + Vd

.

Thus, the initial pressure condition at time t = 0 for each of the n spheres in the

sample cell is P1, for any distance 0 ≤ r < R inside the sphere, while the initial

pressure condition at time t = 0 for each of the n spheres in the sample cell is P0,

on the exterior of the sphere r = R is P0. We note that the pressure on the exterior

of the spheres for all time t ≥ 0 is also the pressure that is recorded by the pressure

gauge and is used to indicate the pressure decay as time goes on.

We now turn our attention to setting up the appropriate boundary conditions on

each of the n spheres in the sample cell. The interior boundary condition at r = 0 is

for each sphere is a no-flow boundary condition

r2dψ

dr
= 0

which is relatively easy to derive because at the center of the sphere there will simply

be no flow. The exterior boundary condition requires a little more work.

Consulting [10] and making the appropriate changes to a pressure diffusion equa-
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tion instead of a heat diffusion equation, we have that the incremental change in

pressure δp in the incremental time δt is given by

Qδt−H(p− p0)δt−Kδt
∫ ∫

dp

dn
dS = Stδp,

which implies

H(p− p0) + 4πR2K
dp

dr
+ St

dp

dt
−Q = 0.

Above Q is an external source of volume per unit time, H is a volumetric rate per

unit pressure, K = k
µ

is the conductivity of the sample, and K
∫ ∫

dp
dn
dS = 4πR2K dp

dr

is the rate of flow of pressure over the surface area of a sphere of radius R, with units

of volume per unit time. The parameter St := Vtcg is the compressive storage, with

units of volume per unit pressure, of the total open space volume Vt := V0 + Vd, and

dp
dt

is the rate of change of pressure per unit time. Since we do not lose any pressure

to an outside source via radiation and we do not have an external pressure source

during the experiment, both H and Q are zero, respectively. We do, however, have

a rate of flow of pressure over the surface area of a sphere of radius R which is equal

to the loss of volume pressure per unit time. Thus, the exterior boundary condition

at r = R is

4πR2K
dp

dr
+ St

dp

dt
= 0,

which, in terms of ψ = p2, is equivalent to

4πR2 k

µ

dψ

dr
+ Vtcg

dψ

dt
= 0.
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Further simplifying, we can now write the exterior boundary condition as

4πR2κ
dψ

dr
+

1

φ
Vt
dψ

dt
= 0.

The complete formulation of the initial boundary value problem for modeling the

pressure pulse permeability method on crushed cores is thus

1

r2

∂

∂r

(
r2∂ψ

∂r

)
=

1

κ

∂ψ

∂t
(7.20a)

ψ(r, 0) = P 2
1 , 0 ≤ r < R, (7.20b)

ψ(r, 0) = P 2
0 , r = R, (7.20c)

r2∂ψ

∂r

∣∣∣∣
r=0

= 0, 4πr2κ
∂ψ

∂r

∣∣∣∣
r=R

+
1

φ
Vt
∂ψ

∂t

∣∣∣∣
r=R

= 0. (7.20d)

7.4 Solution to the Mathematical Model

We now proceed to solve the initial boundary value problem for modeling the

pressure pulse permeability method on crushed cores. While the dimensional initial

boundary value problem (7.20) has a physical significance that is clear due to the

fact that it is represented using the original physical variables and parameters, we

choose to express and solve the problem using dimensionless variables. The reason

is twofold. First, from a purely mathematical point of view it is more succinct

and straight forward due to the algebra involved in simplifying the various forms

as we progress towards the final representation. Second, numerical computations

become easier to implement with dimensionless variables and one of the main uses

of the solution will be to compute pressure decay profiles given a set of variables and

parameters for specific cases to be modeled.
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Using the dimensionless variables

rD =
r

R
, tD =

κt

R2
, and ψD (rD, tD) =

ψ(rD, tD)− P 2
1

P 2
0 − P 2

1

,

we represent the dimensional initial boundary value problem (7.20) in dimensionless

form by

1

r2
D

∂

∂rD

(
r2
D

∂ψD
∂rD

)
=
∂ψD
∂tD

(7.21a)

ψD(rD, 0) = 0, 0 ≤ rD < 1 (7.21b)

ψD(rD, 0) = 1, rD = 1, (7.21c)

r2
D

∂ψD
∂rD

∣∣∣∣
rD=0

= 0, (7.21d)

r2
D

∂ψD
∂rD

∣∣∣∣
rD=1

+
CD
φ

∂ψD
∂tD

∣∣∣∣
rD=1

= 0, (7.21e)

where we define the dimensionless volume ratio by

CD :=
Vt

3V1

(7.22)

We proceed by taking the Laplace transform of (7.21) with respect to tD. Defining

ΨD(rD, s) := L{ψD(rD, tD)} (s), we obtain

1

r2
D

d

drD

(
r2
D

dΨD

drD

)
= (sΨD(rD, s)− ψD(rD, 0)) (7.23a)

r2
D

dΨD

drD

∣∣∣∣
rD=0

= 0, (7.23b)

r2
D

dΨD

drD

∣∣∣∣
rD=1

+
CD
φ

(sΨD(rD, s)− ψD(rD, 0))

∣∣∣∣
rD=1

= 0. (7.23c)
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The general solution to (7.23a) is given by

Ψ(r, s) = A i0(rD
√
s) +B k0(rD

√
s),

where i0 and k0 are the modified spherical Bessel functions of order zero the first

and second kind, respectively. Forcing the interior boundary condition we see that

B = 0 to avoid the singularity at rD = 0 and thus

Ψ(rD, s) = A i0(rD
√
s).

Forcing the exterior boundary condition we see that the particular solution to (7.23)

is given by

Ψ(rD, s) =
i0(rD

√
s)CD

φ
√
s i1(
√
s) + s i0(

√
s)CD

In order to find the solution in the time domain, we must take the inverse Laplace

transform of ΨD(rD, s) in (7.23) with respect to s. We note that there are countably

infinitely many poles for ΨD. The poles, denoted by {sn}∞n=0, are all simple poles

and occur at s0 = 0 and at the roots of

φ i1(
√
s) +

√
s i0(
√
s)CD (7.24)

Since all the nonzero poles of (7.24) are along the negative axis, for each pole sn,

0 < n < ∞, there exists a positive real number αn such that
√
sn = iαn, which

implies sn = −α2
n. Thus, we perform the change of variables sn → −α2

n and obtain

φ j1(α) + α j0(α)CD, (7.25)

where j0 and j1 are the spherical Bessel functions of the first kind of order zero and
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one, respectively. The countably infinitely many poles of (7.25) are all simple and

are denoted by {αn}∞n=0, where 0 = α0 < α1 < α2, . . .

Implementing the appropriate residue theory, we now compute the inverse Laplace

transform.

ψD(rD, tD) = L−1 {Ψ(rD, s)} (tD)

=
1

2πi

∮
{sn}

estDΨ(rD, s) ds

=
1

2πi

∮
{sn}

estD i0(rD
√
s)CD

φ
√
s i1(
√
s) + s i0(

√
s)CD

ds.

Performing a u-substitution, with s = −u2 and ds = −2u du, we obtain

ψD(rD, tD) =
1

2πi

∮
{αn}

−2ue−u
2tD i0(rD

√
−u2)CD

φ
√
−u2 i1(

√
−u2) +−u2 i0(

√
−u2)CD

du

=
1

2πi

∮
{αn}

−2ue−u
2tD i0(irDu)CD

φiu i1(iu)− u2 i0(iu)CD
du

=
1

2πi

∮
{αn}

2ue−u
2tD j0(rDu)CD

φu j1(u) + u2 j0(u)CD
du

=
∞∑
n=0

Res
[
2ue−u

2tDΨ(rD,−u2), αn

]
=

3CD
φ+ 3CD

+ 2
∞∑
n=1

e−α
2
ntDj0(rDαn)CD

(3CD + φ) j0(αn)− αnCDj1(αn)
.

Thus, we may now define dimensionless pressure by

pD(rD, tD) :=
√
ψD(rD, tD). (7.26)

Recalling the definition of CD in (7.22) and that ψ(rD, tD) = P 2
1 +(P 2

0−P 2
1 )ψD (rD, tD),

123



Table 7.1: Parameters used to model the pressure decay in the GRI Topical Report
93/0297 [29].

Parameter Value Units

bulk density 2.54 g/cc
sample mass 30 g

V1 11.811 cc
k 1× 10−7 md
φ 0.0214 —
R 0.335 mm
Vd 11.339 cc
P1 101008 Pa
P0i 1479960 Pa
P0 695474 Pa
V0 8.592 cc
µ 1.863× 10−6 cp
cg 1.4379× 10−8 Pa−1

n 75000.6 —

we have the solution

ψ(rD, tD) = P 2
1 +

Vt(P
2
0 − P 2

1 )

φV1 + Vt
+ 2

∞∑
n=1

e−α
2
ntDj0(rDαn)Vt(P

2
0 − P 2

1 )

(Vt + 3V1φ) j0(αn)− αnVtj1(αn)
.

Finally, recalling rD = r
R

and tD = κt
R2 , we have

ψ(r, t) = P 2
1 +

Vt(P
2
0 − P 2

1 )

φV1 + Vt
+ 2

∞∑
n=1

e−α
2
n
κt
R2 j0( r

R
αn)Vt(P

2
0 − P 2

1 )

(Vt + 3V1φ) j0(αn)− αnVtj1(αn)
,

which implies that the definition of the dimensional pressure is

p(r, t) :=
√
ψ(r, t). (7.27)
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Table 7.2: Parameters used to model the pressure decay in Profice [41].

Parameter Value Units

V1 75× 10−6 m3

k 1× 10−18 md
φ 0.1 —
R 10 mm
Vd 26.5× 10−6 m3

P1 1× 105 Pa
P0i 1× 106 Pa
P0 487097 Pa
V0 20× 10−6 m3

µ 1.863× 10−6 cp
cg 2.12658× 10−6 Pa−1

n 18 —

7.5 Comparison of Results

Since actual pressure versus time data was not available, the solution plots of

pressure versus time in [29,41] were digitized as accurately and precisely as possible.

The digitized values were then used as a comparison for our results.

To begin, we refer to Figure 7.3. The data that is available in the literature is

sparse, so certain parameters had to be estimated with a swag. The values for the

necessary parameters are given by Table 7.1. By inspection, there is a very good

agreement between the estimated [7] GRI model and the GRI observed data when

compared with the model developed in this paper.

We now turn our attention to Figure 7.4. All the required data for this experi-

ment was provided in [41]. The values for the necessary parameters are restated in

Table 7.2. There is excellent agreement between the solution derived in this paper

when compared to the digitized data set [7] that was estimated from [41].

Figure 7.5 demonstrates an interesting plot of dimensionless pressure versus di-
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Figure 7.3: Comparison of digitized GRI Model [29] and digitized GRI data [29], and
the dimensional solution (7.27).

mensionless time behavior of the sphere at different radii. It is interesting to note

that at shallower depths into the sphere the pressure increases sharply to a value

that is greater than the limiting pressure of p∞ :=
√

3CD
φ+3CD

, then decays to the limit

as time progresses, while at deeper depths into the sphere the pressure is always

increasing towards the limiting pressure.

To complete the analysis of the GRI crushed core permeability method, type

curves will be generated and shown below in Figures 7.6–7.15. In Figures 7.16–

7.23 below, we examine the behavior of the ratio of dimensionless pressure to the

limiting pressure pD/p∞ versus dimensionless time tD. The following curves show the

sensitivity of the method to changes in permeability, porosity, and CD. The range

of CD is 1
256
≤ CD ≤ 2 and the range of porosity is 0.005 ≤ φ ≤ 0.05.
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Graphical Results - GRI and Profice
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Figure 7.4: Comparison of digitized data [41] and the dimensional solution (7.27).
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Figure 7.5: Interesting pressure v. time behavior at multiple radii using the dimen-
sionless solution (7.26).
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Graphical Results - pD v.tD
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Figure 7.6: GRI method type curve for the dimensionless volume ratio CD = 1
256

.

10-6 10-5 10-4 10-3 10-2 10-1 100 101
10-4

10-3

10-2

10-1

100

tD

p D

GRI Crushed Core Type Curves, CD =
1

128

f = 0.05

f = 0.045

f = 0.04

f = 0.035

f = 0.03

f = 0.025

f = 0.02

f = 0.015

f = 0.01

f = 0.005

FIGURES.cdf     3

Figure 7.7: GRI method type curve for the dimensionless volume ratio CD = 1
128

.
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Figure 7.8: GRI method type curve for the dimensionless volume ratio CD = 1
64
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Figure 7.9: GRI method type curve for the dimensionless volume ratio CD = 1
32

.
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Figure 7.10: GRI method type curve for the dimensionless volume ratio CD = 1
16

.
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Figure 7.11: GRI method type curve for the dimensionless volume ratio CD = 1
8
.
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Figure 7.12: GRI method type curve for the dimensionless volume ratio CD = 1
4
.
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Figure 7.13: GRI method type curve for the dimensionless volume ratio CD = 1
2
.
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Figure 7.14: GRI method type curve for the dimensionless volume ratio CD = 1.
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Figure 7.15: GRI method type curve for the dimensionless volume ratio CD = 2.
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Graphical Results - pD

pD

v.tD
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Figure 7.16: GRI method type curve using pD
p∞

for the dimensionless volume ratio

CD = 1
256

.
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Figure 7.17: GRI method type curve using pD
p∞

for the dimensionless volume ratio

CD = 1
128

.
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Figure 7.18: GRI method type curve using pD
p∞

for the dimensionless volume ratio

CD = 1
64

.
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Figure 7.19: GRI method type curve using pD
p∞

for the dimensionless volume ratio

CD = 1
32

.
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Figure 7.20: GRI method type curve using pD
p∞

for the dimensionless volume ratio

CD = 1
16

.
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Figure 7.21: GRI method type curve using pD
p∞

for the dimensionless volume ratio

CD = 1
8
.
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Figure 7.22: GRI method type curve using pD
p∞

for the dimensionless volume ratio

CD = 1
4
.
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Figure 7.23: GRI method type curve using pD
p∞

for the dimensionless volume ratio

CD = 1
2
.
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8. SUMMARY AND CONCLUSIONS

The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty lies
only in the fact that application of these laws leads to equations that are too
complex to be solved.

Paul Dirac (1902–1984)

8.1 Summary

In this thesis, we studied the existing solution methods and results of the parabolic

diffusion equation and provided a generalization of the parabolic diffusion equation

that takes into account a finite propagation speed for pressure propagation in the

fluid. This generalization is the hyperbolic wave equation, which was referred to as

the hyperbolic diffusion equation herein. The hyperbolic diffusion equation results

from deriving the hydrodynamic equations for the flow of fluids in porous media. In

particular, we began with a generalization of Darcy’s law which included the effects

of fluid inertia. This generalization lead us to the hyperbolic diffusion equation. It

was noted that when the effects of fluid inertia were ignored as in Darcy’s law, the

usual parabolic diffusion equation results.

We continued by developing the theoretical background of the different mathe-

matical methods that are used to solve the two aforementioned diffusion equations

with various boundary conditions. The methods are Sturm-Liouville theory, eigen-

function expansions, and Laplace transformations. Further, we introduced the appli-

cation of a nonsingular Hankel transform method for finding the solution to the two

diffusion equations with nonzero and nonconstant initial and boundary conditions.

It was shown that the Hankel transform method developed herein proved to be a

more straight forward and less time consuming computation than those found in the
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literature.

Once the solutions to the parabolic and hyperbolic diffusion equations were de-

veloped, we then investigated the solutions to the parabolic diffusion equation and

the hyperbolic diffusion equation. We showed that, as expected, the solution to the

hyperbolic diffusion equation converges in the limit to the diffusion equation, as the

propagation speed in the hyperbolic model approached infinity. We then illustrated

the comparison by plotting dimensionless pressure versus dimensionless time with

different propagation speeds in the hyperbolic diffusion equation against the dimen-

sionless pressure solution to the parabolic diffusion equation. The convergence of

the hyperbolic model to the parabolic model was evident. Similar results were found

when examining the logarithmic derivatives as well.

To show the application of the parabolic diffusion equation, we derived the so-

lutions to the pressure pulse decay method as well as the well-known GRI crushed

core permeability method. After the derivations of the solutions, it was shown that

the results obtained have excellent agreement with the data that can be found from

sources for the pressure pulse decay method and the actual crushed core experiments

from the GRI. To provide further insight, we investigated the pressure behavior in-

side the crushed core samples and core samples as the pressure response moves from

transient to steady-state. This type of analysis has not been discussed in existing

literature until now.

8.2 Conclusions

From the work in this thesis, we conclude the following:

1. The well-known parabolic diffusion equation for modeling the flow of fluids

through porous media can be generalized, in terms of pressure propagation

speed, by the hyperbolic diffusion equation, which is a direct result from gen-
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eralizing Darcy’s law to include the effects of fluid inertia.

2. The associated IBVPs with functions as boundary conditions (instead of con-

stants as found in the literature) can be solved by implementing the different

nonsingular Hankel transforms that were derived in this thesis. This solution

method is more straightforward and in some cases can yield the solution in less

time than the existing methods.

3. Using the Laplace transform theory developed herein, the solutions to the pres-

sure pulse decay method and the GRI crushed core method can be found.

Further investigation of these solutions graphically provided new insight with

respect to the transient pressure response inside the samples.

8.3 Recommendations for Future Work

The author recommends the two following topics for future work.

8.3.1 Hyperbolic diffusion equation to model the pressure pulse decay method and

the GRI method

An interesting topic would be to cast the pressure pulse decay method and the

GRI crushed core permeability method as hyperbolic diffusion IBVPs. The solu-

tions should be compared and contrasted against the solutions found when using the

parabolic diffusion equation in this thesis. The reason that this type of work may

be fruitful is that the information regarding the properties of the rock are found

from modeling the transient behavior of the pressure response. It may be that the

assumption of an infinite pressure propagation speed in the gas is not acceptable for

these methods.
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8.3.2 Solution of the Hyperbolic Diffusion Equation with Boundary Conditions

Specified at the Wellbore

Implementation of the diffusion equations on reservoirs with finite dimension

provide models to describe the density and pressure distributions in the reservoir. To

solve this problem analytically, one must have knowledge of the diffusion coefficient

κ, the speed of sound a in the fluid, as well as the wellbore and reservoir radii, r1 and

r2, respectively. Obtaining a representative values of a and κ can be accomplished

by measurements taken on a core sample and assuming constant reservoir properties

throughout. The parameter that may not be initially measured before the production

of a well commences is the exterior radius r2.

A second topic for future work would be to investigate the hyperbolic diffusion

equation where the two required spatial boundary conditions are defined at the inte-

rior radius of the reservoir. This type of solution does not require a priori knowledge

of the radius of the reservoir. If the pressure and the flow rate can be measured from

the reservoir beginning at the instant that the well begins production, at which time

we call t = 0, then embedded in the two boundary conditions that are at the interior

radius of the reservoir (the pressure and flow rate) will be the information (the char-

acteristics of the reservoir) necessary to compute the external radius of the reservoir.

This has been investigated some in the literature as an ill-posed heat equation, but

the details for its application in flow of fluids in porous media do not seem to exist.

The author has found only a limited numbers of papers [9, 26] that investigate the

solution to the parabolic diffusion equation with both boundary conditions defined

at one boundary for the parabolic diffusion equation in cylindrical coordinates. A

method that is used to solve this problem is to cast it as a hyperbolic diffusion equa-

tion with a small coefficient of the second derivative with respect to time. In both
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papers [9, 26], the convergence of the solution to the parabolic diffusion equation is

questionable since the solutions are assumed to have the form of a power series.

The author’s idea for future work in this area stems first from the observation

that there does not seem to be any research in the flow of fluids through porous

media which contemplates the problem of solving the hyperbolic diffusion equation

in cylindrical with the two required boundary conditions both being defined at one

boundary, in this case, at the interior (wellbore) radius r1. Second, the author

believes that along with sound, pressure propagates as waves with a finite speed,

as opposed to an infinite propagation speed as implied by the parabolic diffusion

equations.

We now attempt to begin the solution to this problem. In doing so, we recall

the old saying by Danish poet and mathematician Piet Hein (1905–1996), Problems

worthy of attack prove their worth by hitting back. This claim by Hein will be proven

shortly.

We consider the BVP

∂2p

∂r2
+

1

r

∂p

∂r
=

1

a2

∂2p

∂t2
+

1

κ

∂p

∂t
, (8.1a)

p(r1, t) = f(t), (8.1b)

r
∂p

∂r

∣∣∣∣
r=r1

= F (t). (8.1c)

where f(t) and F (t) are functions representing the terminal pressure and terminal

rate, both at the wellbore r = r1.

We seek solutions that are harmonic in time. In this case, we see that particular

solutions to (8.1) have the form

(A(ω)J0(ξr) +B(ω)Y0(ξr)) e−iωt, (8.2)
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where

ξ =
1

a

√
ω2 + i

a2ω

κ
.

The complete solution over the entire continuous spectrum is given by

p(r, t) =

∫ ∞
−∞

(A(ω)J0(ξr) +B(ω)Y0(ξr)) e−iωt dω. (8.3)

The character of the function p(r, t) is such that the infinite integral in (8.3) converges

uniformly. A result of this uniform convergence is that we may take the partial

derivative of p(r, t) with respect to both r and t.

In order to determine A(ω) and B(ω), we enforce the boundary conditions (8.1b)

and (8.1c) on (8.3) obtaining

p(r1, t) = f(t) =

∫ ∞
−∞

(A(ω)J0(ξr1) +B(ω)Y0(ξr1)) e−iωt dω

r
∂p

∂r

∣∣∣∣
r=r1

= F (t) = r1

∫ ∞
−∞
−ξ (A(ω)J1(ξr1) +B(ω)Y1(ξr1)) e−iωt dω.

The coefficients of e−iωt may be interpreted as the Fourier transforms of f(t) and

F (t), respectively. Thus we have

A(ω)J0(ξr1) +B(ω)Y0(ξr1) =
1

2π

∫ ∞
−∞

f(α)eiωα dα

A(ω)J1(ξr1) +B(ω)Y1(ξr1) = − 1

2πr1ξ

∫ ∞
−∞

F (α)eiωα dα.

Solving for A(ω) and B(ω), we substitute into (8.3) obtaining an exact solution
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to (8.1) given by

p(r, t) =
1

4

∫ ∞
−∞

∫ ∞
−∞

(
(J1(ξr1)Y0(ξr)− Y1(ξr1)J0(ξr))ξr1f(α)

+ (J0(ξr1)Y0(ξr)− Y0(ξr1)J0(ξr))F (α)

)
eiω(α−t) dω dα. (8.4)

There is great difficulty in further evaluating (8.4) due to the complexity of ξ in the

argument of the Bessel functions. If one can find the transformation that removes ξ

from the argument of the Bessel functions in (8.4), then the author conjectures that

a tractable solution could then be constructed.
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