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ABSTRACT

This dissertation includes two essays. In the first essay, I use Major League Base-

ball ticket data, both in the primary market and in the secondary market, from one

anonymous franchise in the 2011 season to study how the franchise can price dynam-

ically to increase its revenue. Compared using a uniform price schedule over time,

my model proposes that the franchise can see increased revenue by decreasing ticket

prices as the game day approaches. In the counterfactual experiment, the revenue

for the franchise can increase by approximately 6.93% as long as the assumption

holds that consumers are not strategic in either market. However, if consumers are

strategic in purchasing tickets, the revenue for the franchise will increase by around

3.67%.

In the second essay, I focus further on the secondary market using both listing and

transaction data from StubHub to study different pricing strategies for the different

types of sellers. The data show that the sellers on StubHub can be separated into

two types: single sellers and brokers. The single sellers sell tickets in just one or two

games during the whole season. The brokers sell many tickets in a given game and

also sell tickets in most of the games during the season. I use the data to estimate

the probability of sale by the probit model first and then calculate the optimal prices

for each listing on each day. The benchmark model shows that brokers price more

optimally (meaning smaller expected profit losses) on the final day of sales. However,

the two types of sellers have similar expected profit losses on other days.
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1. INTRODUCTION

Professional sports are widely popular in the United States, and because of the

convenience of the internet, tickets can now be sold online at any time not only

from the official team website, but also from other online marketplaces. This also

provides the flexibility of allowing sellers to adjust prices. For instance, in the primary

market, the franchise can dynamically price tickets for different games on different

days. In the secondary market, like StubHub, the resellers can adjust their listing

prices frequently on days leading up to the game. Therefore, the issue of dynamic

pricing has become increasingly popular and important in the sports ticket market.

In my dissertation, I discuss dynamic pricing issues not only in the primary market

for the franchise but also in the secondary market for the different types of resellers.

In the first chapter, I investigate how the franchise can optimally price tickets

keeping in mind that resale is quite prevalent in the secondary market. Unlike the

hotel and airline industries, to which the sports ticket industry is often compared,

the secondary market should be taken into consideration as we discuss the dynamic

pricing issue for the franchise in the primary market. In addition, I have considered

two types of consumers in the market. Both non-strategic and strategic consumers

are introduced to estimate the effect of dynamic pricing.

In the second chapter, I will present how sellers on StubHub use dynamic pricing

strategies to optimize their profits on the days leading up to the game. These can be

divided into two types of sellers, single sellers and brokers. They are introduced in

the market to study how much expected profit loss they have on the different days

before the game.
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2. EFFECT OF RESALE ON OPTIMAL TICKET PRICING

2.1 Introduction

The franchise can price its tickets differently in three kinds of ways. First, the

franchise can set different prices for different seats based on the quality of the seats,

so seats with better views are priced higher in the stadium than those with less

optimal views. Second, because the demand for each game might not be the same

during one season, the franchise can price one particular seat differently for each

game. For instance, prices should be higher for some particularly interesting games,

and because the demand is higher during the weekend, prices are relatively higher

than those on weekdays. Third, besides pricing over different seats and different

games, the franchise can also adjust prices during the days before the event. There

are two reasons for the franchise to do that. One is that consumers buying tickets

on different days might have different willingness to pay, so the franchise can provide

different prices for different types of consumers. The other reason is that the demand

may fluctuate during the days before the event, so adjusting prices in response to

changing demand elasticity may increase the revenue. For example, for those more

popular games, the franchise might increase prices over time if the demand increases

as the event approaches.

For these three methods, the first two have been widely used for all the franchises,

and the third one was first introduced by San Francisco Giants in 2009. Nowadays,

more than half of the Major League Baseball franchises have implemented dynamic

pricing for their tickets. Because of the existence of the secondary market and the

behavior of consumers, it is plausible to understand the benefit of dynamic pricing

in the days before the event. In the sports ticket market, the secondary market plays

2



an important role in competition; sellers in the secondary market might change their

listed prices to respond to the price changes in the primary market. In addition, the

behavior of consumers can determine the effect of dynamic pricing. For instance, the

dynamic pricing might not have the effect on the revenue if consumers can predict

the future price and strategically choose when to purchase tickets. In this chapter,

I consider the behavior of consumers and the competition between the primary and

the secondary market to study whether the franchise can dynamically change prices

during the days before the event to increase the revenue.

Figure 2.1: Average Prices in Both Markets Over Time
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I use Major League Baseball tickets as the example. The data consist of transac-

tion information in the primary market and the secondary market (StubHub) for all

the home events of one anonymous Major League Baseball team in the 2011 season.

Figure 2.1 shows the price trends in the two markets. StubHub is the most popular
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secondary market for sports tickets in the United States. Sellers can list their tick-

ets on StubHub anonymously and can easily change listed prices at any time. On

StubHub, prices decline over time because sellers have decreasing opportunity cost

of holding tickets (Sweeting, 2012). However, in the primary market tickets are sold

by the fixed price menu announced in the early season. The fluctuation of prices in

the primary market only depends on the quality of seats sold.

Although there is a price difference between the two markets in Figure 2.1, there is

almost no difference in the transaction costs of purchasing across the two markets. On

the buying pages of the Major League Baseball official website, the link to StubHub

can also be found. Consumers can easily go to the StubHub website to search

for tickets if they can not find tickets they want available in the primary market.

Therefore, I append the two markets together and jointly estimate the demand for

both markets. In order to capture the difference between the two markets and to

rationalize the price difference for consumers, I include the dummy variable for the

secondary market which can be explained as consumers’ loyalty to StubHub.

In the demand estimation, two kinds of models are introduced to describe two dif-

ferent kinds of consumers, non-strategic and strategic consumers. Although Sweeting

(2012) finds that consumers are not strategic in the secondary market, such as eBay

and StubHub, the pricing strategy by franchises can be treated as public informa-

tion for consumers. Therefore, strategic consumers should also be considered because

consumers might choose the optimal time to buy tickets by this public information.

In order to estimate the revenue change after dynamic pricing by the franchise, I

separately estimate two extreme models: one is the static demand model with all

the non-strategic consumers, and the other one is the dynamic demand model with

all the strategic consumers. Then, in the real world with two types of consumers

mixed together, the revenue change might be within the range of the two extreme

4



cases.

In the static demand model, homogeneous consumers enter into the market ran-

domly to purchase tickets, and they leave the market if they decide not to buy any

tickets. I use the random utility discrete choice model to estimate the static demand

for the two markets. In the dynamic demand model, consumers are homogeneous

and strategic in choosing the time of purchasing tickets. In the beginning, all the

consumers come into the market and start to buy tickets in both markets. If they

do not buy tickets in the current period, they can stay in the market and wait to

buy tickets in the next period. Consumers compare tickets available in the current

period with those expected to appear in the future, and they decide not to buy tick-

ets today if they expect to gain higher utility in the future. The model follows the

dynamic BLP-style model in Gowrisankaran and Rysman (2012) and Conlon (2012),

and I exclude the upgrade choice for consumers in the model. However, in order to

mitigate the burden of computation, I assume that consumers are homogeneous and

have the same perception of the future, so there is no random coefficient term for

prices or other characteristics in the model.

After estimating two kinds of demand systems, I model the behavior of sellers

in the secondary market. The intertemporal problem for sellers in the secondary

market is to decide the optimal price of tickets based on the current demand and

the expected future value. First, I use the true data and estimated price elasticities

to recover the expected value of tickets for sellers in each period. Then, in the

counterfactual experiment, we can assume the same expected value of tickets for each

seller in each period and solve the optimal price in the secondary market when the

franchise changes the price in the primary market. Consequently, the counterfactual

experiment shows that the franchise can use a declining price schedule instead of

uniform price to increase revenue. In the static demand model, revenue can be
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increased by around 6.93% compared with that in the uniform price. However, the

revenue change for the franchise becomes smaller if consumers are assumed strategic

in the dynamic model, and the revenue can only be increased by around 3.67%.

This chapter focuses on an important component of a franchise’s pricing problem

— dynamically pricing single game ticket prices as gameday approaches. A complete

analysis of optimal pricing, including the pricing of season tickets, is beyond the

scope of this paper. Season ticket pricing can interact with single game pricing in

some important ways. For instance, the number of consumers buying season tickets

might be affected if the franchise changes the original fixed price menu into the

dynamic one. This paper does not consider the effect of season tickets. The direct

effect should be the revenue loss from the season ticket. Some resellers might not

want to buy season tickets because the expected profits for reselling become lower.

In addition, the indirect effect is the distortion of the supply side in the secondary

market. Less sellers sell their tickets in the secondary market, so prices might go up

because of less competition.

The remainder of this chapter is organized as follows. Section 2.2 reviews the

related literature. Section 2.3 summarizes the data in both markets. Section 2.4

presents the model including the demand side and the supply side. Section 2.5

shows the estimation method and results. Section 2.6 provides the counterfactual

experiment based on the result of demand estimation. Section 2.7 concludes the

research.

2.2 Literature Review

In this section, two groups of literature related to ticket pricing are introduced.

First, I mention some literature using price discrimination to describe how the fran-

chise prices tickets in the stadium. Then, some theoretical and empirical literature

6



is presented to discuss the effects of resale in the market.

For ticket pricing in one stadium, Courty (2000) is a good review to discuss sev-

eral categories of ticket pricing issues in the entertainment market, including the art,

music, and sports events. Besides the pricing strategy based on the quality of seats,

the most prevalent issue in ticket pricing literature is price discrimination. Theoret-

ical literature discusses price discrimination within different frameworks. Rosen and

Rosenfield (1997) use second-degree price discrimination to discuss how the monopoly

franchise prices tickets under the deterministic demand. Dana, Jr (1999) shows that

the franchise can price differently for the homogeneous seats under the uncertain

demand to increase the profits. In the empirical research, Leslie (2004) uses data

from Broadway theater to show that observed price discrimination can increase the

firm’s profit relative to uniform pricing policies. In addition, Courty and Pagliero

(2012) find the same effect of price discrimination in the concert tour data.

As the resale becomes prevalent in the market, more literature has discussed the

effect of resale on the profits of franchises and the welfare of consumers. Theoretical

literature always uses the two-period model to illustrate the role of brokers (see

Courty (2003a), Courty (2003b), Geng, Wu, and Whinston (2007), and DeSerpa

(1994)). Most literature mentions that resale has a negative effect on franchise

profits, and the franchise can not capture the profits earned by brokers. However,

Karp and Perloff (2005) propose a different model to sketch the benefits of resale, they

find that the franchise may benefit from brokers if the franchise can not distinguish

types of consumers.

Furthermore, some empirical literature uses anti-ticket scalping laws to identify

the effects of resale. Williams (1994) uses NFL data to find that prices are lower

under the anti-ticket scalping law, and the franchise charges higher ticket prices if

resale is prevalent in the market. Elfenbein (2006) finds that ticket resale regulations

7



do affect online trading. Because regulations reduce the number of transactions

online, prices in the secondary market become higher. Depken (2006) indicates that

franchises can increase revenue by the anti-scalping laws as the attendance is not

affected by the law. Besides using the anti-scalping laws to identify the effect of

resale, Leslie and Sorensen (2014) use the structural model to show that resale does

increase allocative efficiency. The data they use are market sales in the primary

and secondary market for a sample of rock concerts, and the two-stage model allows

consumers to buy in the first stage and to resell in the second stage. As a result, the

welfare of consumers attending the event may decrease because of resale, and the

surplus generated by efficient reallocation is gained mostly by resellers.

To analyze sports tickets in the secondary market, Sweeting (2012) uses Major

League Baseball ticket data from two online secondary markets: eBay and StubHub.

He finds that prices are decreasing over time as the game date approaches, and the

sellers lower the price because of the decreasing opportunity cost of holding tickets.

Furthermore, he uses data to test how accurately traditional dynamic pricing models

describe sellers’ behavior, and he shows that simplest dynamic pricing models can fit

the behavior of sellers very well, and consumers are not strategic in buying tickets

in the secondary market.

Unlike the previous literature which nests the primary market and secondary

market together as two separate periods, I put these two markets together in each

period. The advantage of putting two markets together is that we can understand

how consumers choose between two markets, and the competition between markets

can be captured by the model. However, the drawback is that consumers buying

tickets in the primary market are not allowed to resell their tickets in the secondary

market. Although it sounds unreasonable in the real world, the data shows that

most resellers buy their tickets from the primary market by season ticket price and
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list their tickets much earlier on StubHub. If we focus on two weeks before the event,

not too many consumers actually buy tickets in the primary market and resell those

tickets on StubHub. Instead of using the previous literature model to analyze the

sports ticket market, I focus more on the competition between the two markets, and

the response of resellers is also included into the model.

2.3 Data

2.3.1 Transaction Data

The data contain all the transaction information in both the primary market

and the secondary market for all the home events of one anonymous Major League

Baseball franchise in 2011.1 The primary market includes all the channels through

the franchise, such as phone, internet, and box office. The secondary market data

are only from StubHub, the largest ticket marketplace in the United States.

Table 2.1: Number of Tickets Sold Over Time in the Two Markets

Primary Market StubHub

Days Prior Single Game Package
to Game Tickets Tickets

0 80,561 0 50,467
1-13 110,087 264 176,455
14-30 123,205 1,032 54,672
31-60 100,606 8,806 44,564
61-100 86,284 39,205 29,014
101-200 193,410 834,253 25,255
201+ 3,967 1,150,982 1,147

Total 698,120 2,034,542 381,574

1Because of the non-disclosure agreement, I can not reveal any information about the name of
the franchise.
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In the primary market, based on the method of selling, tickets can be roughly

separated as three types: single game tickets, package tickets, and group tickets.

Table 2.1 shows the number of tickets sold in the two markets and only presents

the number of single game tickets and package tickets for the primary market.2 As

indicated in Table 2.1, over 50 percent of package tickets are sold early in the season,

about over 200 days before the game. However, on StubHub, over 50 percent of the

transactions happen within two weeks before the event. Therefore, I focus on the

data within 13 days prior to the event, and in the primary market only single game

tickets are included in the sample.

Furthermore, tickets sold on the last day (0 days prior to the game) are also

excluded for two reasons. First, the last day (0 days prior to the game) has different

lengths of time for different games because not all the games start at the same time

during a day. For those games starting from noon, the number of transactions is

much smaller than those starting from evening. Second, the instrumental variable I

mention in section 2.5.1 has some problems on the last day.3 As a result, I only use

the sample in 1-13 days prior to the game to estimate the demand and do the rest

of analysis.

Besides the selection of the days before the game, I exclude some tickets in some

special areas or without seats because it is difficult to compare those seats with most

of the tickets in the field. Tickets for the home opener are also excluded because

prices are significantly higher than those in any other games. Even though all the

data are transaction data, extreme high price tickets might bias the aggregate data.

Thus I drop those tickets with prices greater than or equal to three times the face

2Adding with the number of group tickets that I see in the data will yield a number very close
to the team’s attendance; however, to avoid revealing the team’s attendance, I only list the number
of single game tickets and package tickets in Table 2.1.

3See section 2.3.2.
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value.

Table 2.2 shows the summary statistics for the full sample and the sample for

estimation, including prices, days prior to the game, face values, and characteristics

in both markets. In the full sample, the mean price on StubHub is $47.76, higher than

$34.24 in the primary market. For price dispersion, prices vary not only based on

the quality of tickets in the both markets but also across different purchasing time in

the secondary market, so the standard deviation on StubHub is $32.63, greater than

$17.92 in the primary market. Furthermore, the face value indicates the price menu

reported by the franchise in the beginning of season, but because the franchise may

change the price menu for some particular games or sections during the season, the

mean price is higher than the mean face value in the primary market. On StubHub,

the difference between the transaction price and the face value can be treated as the

markup for sellers on StubHub, and average markup is around $12.61. Moreover,

face value and distance from the seat to home plate can also represent the quality of

tickets, so the quality of tickets in the full sample is very similar in the two markets.

In addition, the front row of section dummy shows that tickets sold on StubHub have

more front row seats (9.5 percent of tickets sold), compared with those single game

tickets sold in the primary market.

If we focus on the sample in 1-13 days prior to the game, exclude those transac-

tions with extreme high prices, drop those tickets in some special areas, and exclude

the data from the home opener, the summary statistics are shown in the bottom part

of Table 2.2. The average number of transactions in the primary market is 729.26

per game, less than 1589.09 on StubHub. Consumers tend to buy tickets from the

secondary market within two weeks before the game. Furthermore, based on the face

value and the distance from the seat to home plate, the quality of tickets on StubHub

is worse than that in the primary market. Although the percentage of front row seats

11



Table 2.2: Summary Statistics

Standard
Obs. Mean Deviation Max Min

Full Sample
Primary Market
Price ($ per seat) 540,596 34.242 17.920 108 1
Days prior to game 540,596 65.081 57.382 245 0
Face value ($ per seat) 540,596 33.743 17.209 95 12
Distance from seat to home plate 540,596 277.786 95.043 439.3 82.62
Front row of section dummy 510,867 0.029 0.167 1 0
StubHub
Price ($ per seat) 345,207 47.758 32.628 706 0.01
Days prior to game 345,207 26.795 39.562 303 0
Face value ($ per seat) 345,207 35.150 18.977 95 12
Distance from seat to home plate 345,207 271.941 93.725 439.3 72.81
Front row of section dummy 342,236 0.095 0.293 1 0

Sample for Estimation
Primary Market
Price ($ per seat) 58,341 40.131 18.407 108 10
Days prior to game 58,341 6.148 3.943 13 1
Face value ($ per seat) 58,341 37.788 16.828 76 12
Distance from seat to home plate 58,341 250.638 89.389 424.2 129.9
Front row of section dummy 54,423 0.007 0.083 1 0
StubHub
Price ($ per seat) 127,127 39.684 22.692 225 0.01
Days prior to game 127,127 4.735 3.544 13 1
Face value ($ per seat) 127,127 33.673 17.051 76 12
Distance from seat to home plate 127,127 279.241 90.776 424.2 129.9
Front row of section dummy 126,610 0.073 0.260 1 0
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is higher on StubHub, tickets sold in the secondary market are distributed amongst

the areas with lower face values. In addition, prices in the secondary market still

vary more than those in the primary market because of the descending price trend on

StubHub. The maximum transaction price on StubHub is $225, and the minimum

one is only $0.01.

In order to reduce the categories of tickets, I group some sections and define 7

areas as Figure 2.2 shows. On the infield side, areas 1, 2, and 3 are on the first floor,

and areas 5 and 6 are on the second floor. On the outfield side, tickets are grouped

by each floor, named as area 4 and area 7. Tickets in the same area can be treated

as homogeneous goods.

Because the demand for each area is different in the secondary market, price

patterns on StubHub vary across areas. Figure 2.3 shows the price patterns in the

two markets for areas 1, 3, 5, and 7, and the dotted lines represent 95 percent

confidence intervals. For all areas, prices are decreasing over time in the secondary

market, as the evidence found in Sweeting (2012). Although the declining prices on

StubHub in Figure 2.1 can also be explained as the composition of the tickets sold,

Figure 2.3 clearly indicates that the prices in the secondary market is still declining

over time even though we control the quality of tickets.

In areas 1 and 5, Figure 2.3 shows that the price on StubHub is only lower than

that in the primary market when the event approaches. In order to sell tickets out

on StubHub, sellers might lower the price dramatically in the last few days before

the game. In area 3, the descending prices are significantly higher than those in

the primary market except the last day. In the last day, prices in the two markets

are almost the same. In area 7, the descending prices on StubHub are higher than

prices in the primary market at any time, which might implies that the franchise

underprice this area, or some consumers have some reasons to choose a higher price
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Figure 2.2: Area Location in the Baseball Field
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Figure 2.3: Prices for Different Areas in the Two Markets Over Time
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on StubHub.

To estimate the demand in the two markets, I aggregate the data by area, by

market, by day prior to the game, and by game. For each game, the aggregate data

contain the average prices, quantities, and other average characteristics for 7 areas

over 13 periods. For those spots without the transaction data, tickets are assumed

unavailable at that time.

2.3.2 Other Data

Besides the transaction data, I use website viewing data to approximate the

number of consumers in the market at a given point in time. This data contain the

number of website hits on the franchise pricing pages for each game everyday. Figure

2.4 shows the number of view increases as the gameday approaches. In 10 days prior

to the game, the average view per game is only 800, but it dramatically increases to
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Figure 2.4: Average View and Quantity in Both Markets Over Time
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over 2000 on the last day before the game. Furthermore, in Figure 2.4, the average

transaction quantity per game increases over time in both markets because of the

increase in potential consumers, but the number of tickets sold in the primary market

is not as proportional as the number of potential consumers.

In addition, I collect the listing data on StubHub every day from March 25,

2011 to September 28, 2011. The data include the seat information on the buying

page, such as price, quantity, row number, and seat number. However, the StubHub

transaction data do not contain the information about seat number. The only way

to connect the StubHub transaction data with the primary market transaction data

is through the listing data. In this way, the primary market buyer information

can be used to identify the seller’s information on StubHub. Then, we can get the

information about seller’s cost shock to be the instrumental variable (See section
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2.5.1). Unfortunately, the listing data is not perfect on the day of the event4, so I

can not get the seller’s complete information for 0 days prior to the game.

2.4 Model

The model includes three parts: the demand side in the two markets, the supply

side in the secondary market, and the franchise profits maximization problem. In

addition, two models are presented for the demand side. One is the static demand

model where consumers can enter the market on a given day before the game, choose

to purchase or not, and then exit the market. The other one is the dynamic demand

model which specifies strategic consumers choosing the optimal time for purchasing

tickets.

2.4.1 Static Demand Model

The model follows the random utility discrete choice model. For a given game g,

there are T periods, indexed by t = {1, 2, ..., T}. Consumers start to buy tickets from

the first period t = 1, and the game starts after the last period t = T . Consumers are

assumed to have only one unit demand, and they come into the market randomly in

some period. In each period, they can choose one of the available tickets in the market

or decide not to buy anything. Once they decide not to buy any tickets, they leave

the market forever. In the model, the market contains the primary market and the

secondary market. Consumers do not have any search cost inside the market, they

can observe all the available tickets and easily compare their prices. Furthermore,

consumers are assumed to attend the event for sure, so they do not resell their tickets

in the market.

In order to simplify the notation, I only specify the setting for one game g and

drop the subscript g. There is a set of areas j = 1, 2, ...Jt available at each period t.

4From August 2011, the listing data are not collected on the day of the event.
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For each area j, characteristic xjt and price pjt are different in each period t. Here,

xjt contains the observed characteristics, such as dummies for floor level and the

average distance between available seats and home plate. If a consumer i buys the

ticket in area j at period t, then she gains the utility

uijt = γ0 − αpjt + xjtγ1 +Dtγ2 + ξjt + εijt, (2.1)

where Dt are a set of dummies to specify the purchasing time, ξjt is unobserved

demand shock, and εijt is an idiosyncratic taste for consumers. Because consumers

buying tickets in the same area might have various utilities depending on the time of

purchasing, the period dummies are included to control the mean utility for different

period consumers. However, the period dummies only affect the purchase of the out-

side good and do not affect their decision to choose the area. Unobserved demand

shocks ξjt, such as injury news of players, is only observed by consumers. Idiosyn-

cratic taste εijt is distributed i.i.d. across time, areas, and individuals according to

a Type I extreme value distribution.

Define the mean utility of buying the ticket in area j at period t as vjt = γ0 −
αpjt+ xjtγ1 +Dtγ2 + ξjt. By integration of the idiosyncratic error term, the market

share of area j at period t is

sjt =
exp{vjt}

1 +
∑Jt

k=1 exp{vkt}
. (2.2)

Furthermore, the option of outside goods is defined as j = 0, which means consumers

do not buy any tickets and leave the market. After the mean utility of buying nothing
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is normalized as 0, then the market share of outside goods is

s0t =
1

1 +
∑Jt

k=1 exp{vkt}
. (2.3)

From equation (2.2) and (2.3), the estimating equation for demand can be written

as:

ln(sjt)− ln(s0t) = vjt = γ0 − αpjt + xjtγ1 +Dtγ2 + ξjt. (2.4)

The market share of area j and the market share of outside goods can be observed

from the data; hence, the mean utility vjt can be calculated directly in the static

demand model.

2.4.2 Dynamic Demand Model

In the dynamic demand model, the only difference from the static demand model

is that consumers who do not buy a ticket in the period t < T can stay in the market

and make the decision again in the next period t + 1. The outside good option

becomes the expectation of future purchasing.

Let εit = (εi0t, εi1t, ...εiJtt) be the idiosyncratic taste for consumer i at period t

for all the areas. The decision for consumer i at time t only depends on the taste

εit and the mean utility of currently available areas {vjt}Jtj=1, and the expectation of

future available tickets depends on current available information. Let Ωt be a state

variable which contains all the information related to consumer’s decision. Then the

Bellman equation can be written as

Vi(εit,Ωt) = max
{
εi0t + βE[Vi(εit+1,Ωt+1)|Ωt], max

j=1,...,Jt
{vjt + εijt}

}
, (2.5)
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where Vi(εit,Ωt) is the value function for consumer i at period t and β is the discount

factor for the future. Equation (2.5) indicates that the current value of the consumer

is to maximize the value between waiting to the next period and choosing the favorite

ticket from the available choice set.

Define the logit inclusive value as

δt = ln
( Jt∑

j=1

exp{vjt}
)
. (2.6)

The logit inclusive value captures the value of ex-ante purchasing tickets in the

market. By the assumption of Type I extreme value distribution error term, the

value function can be integrated as:

EV(Ωt) = ln

(
exp
(
βE[EV(Ωt+1)|Ωt]

)
+ exp(δt)

)
, (2.7)

where EV(Ωt) =
∫
εit
V (εit,Ωt) means the expectation of value function over εit. Fol-

lowing the previous literature (see Gowrisankaran and Rysman (2012), Melnikov

(2013), and Conlon (2012)), we can assume that inclusive value is sufficient for con-

sumers to make the decision, which means EV (Ωt) = EV (δt) and Prob(Ωt+1|Ωt) =

Prob(δt+1|δt). Intuitively, the inclusive value represents the situation in the mar-

ket including the number of available areas, ticket prices, and ticket characteristics

which directly affect the utility; therefore, consumers only track the inclusive value

to predict the future value. One of the possible disadvantages is that prices and

characteristics might affect the inclusive value in different ways over time. As the

game day approaches, decreasing prices make the inclusive value become higher, but

fewer available tickets or worse ticket quality might cause the inclusive value to be-

come less. To model how consumers predict the future states, I simply assume that
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consumers use the current state to predict the next state:

δt+1 = π0 + π1δt + ηt. (2.8)

Then the market share of area j at period t is

sjt =
exp{vjt}

exp
{
βE[EV(δt+1)|δt]

}
+
∑Jt

k=1 exp{vkt}
. (2.9)

The value function, equation (2.7), can also be written as:

EV(δt) = ln

(
exp
(
βE[EV(δt+1)|δt]

)
+ exp(δt)

)
. (2.10)

Define v is the vector containing all the mean value {{vjt}Jtj=1}Tt=1. Then we need two

loops to obtain the mean utility vector v. The outside loop is the contraction map-

ping based on Berry, Levinsohn, and Pakes (1995) and Gowrisankaran and Rysman

(2012):

vnewjt = voldjt + ψ
(
ln
(
s̄jt
)− ln

(
ˆ̄sjt(v

old)
))
, ∀ j, t, (2.11)

where s̄jt is the observed market share from the data, ˆ̄sjt is the market share predicted

by the model, and ψ is generally set as 1− β. Given any value of mean utility v, we

can obtain the true mean utility v by the iteration of equation (2.11).

To predict the market share by the mean value vector v, we need the inner loop

for the value function. Given the mean value vector v, the logit inclusive value δt can

be calculated by equation (2.6) in each period t. Also, π̂0 and π̂1 can be estimated

by equation (2.8). Then I discretize δt into 50 grid points.5 Based on π̂0 and π̂1,

5The range for δt is from min(δt)− 0.2(max(δt)−min(δt)) to max(δt) + 0.2(max(δt)−min(δt)).
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the transition matrix can be obtained for each state. Given the initial guess of the

value function EV(δt), the new value function is iterated by equation (2.10). Once

we have the true value function for each state, the market share can be predicted by

equation (2.9).

Then we can have the estimated equation as

vjt = γ0 − αpjt + xjtγ1 +Dtγ2 + ξjt, (2.12)

where vjt is solved by two iteration loops. Because I assume that consumers are

homogeneous, the random coefficient term is not in the model. Therefore, I do not

need to nest these two iterations into the estimation, and the mean utility can be

obtained independently. To estimate equation (2.4) and (2.12), I use the Generalized

Method of Moment (GMM) to deal with the endogeneity problem. (See section 2.5)

2.4.3 Supply in the Secondary Market

On the supply side, there are many sellers in the secondary market. Sellers can

price dynamically over time to maximize their profits, and different kinds of sellers

might have different strategies of pricing. In order to simplify the problem, I follow

the theoretical model in Sweeting (2012) but assume that sellers in the same area

are homogeneous.

To omit the notation for different games, I sketch the seller problem for a given

game g. Assume in the area j at period t, there are Mjt homogeneous sellers in

this area, and there are Nt buyers in the market. The number of buyers and sellers

are assumed exogenous. In the static demand case, there is no problem to treat

the number of new coming consumers as exogenous because consumers should leave

the market after the end of period. However, when consumers are strategic, we can

not separately identify the waiting consumers and new coming consumers. The only
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possible method is to treat either the number of new coming consumers or the number

of total consumers as exogenous. Here, the easier way is to assume the number of

total consumers is Nt.

In addition, after each period t sellers have the expected value for their tickets,

denoted as EVjt+1. In the last period t = T , it can be interpreted as the scrap value

of the ticket. For instance, if the seller can not sell the ticket in the last period, she

still can attend the event directly and gain the value. In the period t < T , sellers

can have many options. She can either continue selling the ticket or decide not to

sell the ticket on StubHub. Of course, she can also decide to sell in other secondary

markets. Therefore, the expected value after the period t is not necessarily equal to

the value of the maximization problem in the beginning of the period t + 1. The

seller’s problem can be separated period by period, and the seller decides the price

in the beginning of each period t to maximize the expected profits which includes

both the possible revenue in period t and the expected value after period t. Each

seller can only have one ticket, so the problem for seller k in area j can be written as

max
pkt

pktΦkt(pkt, p−kt) + (1− Φkt(pkt, p−kt))EVkt+1, (2.13)

where Φkt(pkt, p−kt) is the probability of sale and p−kt are all other prices by other

sellers in the market. Because all the sellers on StubHub are small relative to the

market, they are unlikely to have the market power. The function Φkt(.) is assumed

not affected by any single seller.

If the seller k sets a higher price than the price level in area j, which is pkt > pjt,

then the probability of sale is Φkt = 0. However, if pkt = pjt for all seller k in area j,
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then the probability of sale is Φkt =
sjt(pkt,p−kt)Nt

Mjt
. The first order condition is:

Φkt(pkt, p−kt) +
∂Φkt(pkt, p−kt)

∂pkt
(pkt − EVkt+1) = 0. (2.14)

Based on the first order condition, each seller can choose the optimal price p∗kt:

p∗kt = EVkt+1 +
Φkt(p

∗
kt, p

∗
−kt)∣∣∣∂Φkt(p

∗
kt,p

∗
−kt)

∂pkt

∣∣∣ . (2.15)

Because sellers in area j are homogeneous, the optimal prices should be the same in

area j, which is p∗kt = p∗jt for all seller k in area j. The probability of sale should be

Φkt =
sjt(pjt,p−jt)Nt

Mjt
≡ Φjt because every seller in the same area equally share the same

probability of sale. The marginal probability of sale ∂Φkt

∂pkt
can be assumed equal to

∂Φjt

∂pjt
if all the sellers in the same area can expect to change the price simultaneously.

Therefore, all the first order conditions at period t can be reduced as Jt first order

conditions only for different areas:

p∗jt = EVjt+1 +
sjt(p

∗
jt, p

∗
−jt)∣∣∣∂sjt(p∗jt,p∗−jt)

∂pjt

∣∣∣ ∀ j = 1, 2, ...Jt, (2.16)

where sjt(p
∗
jt, p

∗
−jt) is the equilibrium market share of area j at period t, and p−jt

are prices for other areas. Intuitively, the price for area j at period t only depends

on the expected value EVjt+1 and the elasticity in the market. Empirically we can

recover the seller’s expected value after using the data to calculate the elasticity of

demand.

2.4.4 Franchise Problem

In this section, I focus on the revenue from single-game tickets. Theoretically the

franchise can set the prices for all of the areas and periods in the primary market,
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denoted as
{{pjt}j∈J0t

}
T
t=1, where J0t = { j | ∀j in the primary market at time t}. In

the real world the franchise does not price dynamically over time,
{{pjt}j∈J0t

}
T
t=1 =

{pj}j∈J0 ∀t, where J0 = { j | ∀j in the primary market}. The revenue under the

original price menu {pj}j∈J0 should be

T∑
t=1

∑
j∈J0

Ntsjt(pjt, p−jt)pjt. (2.17)

If the franchise can change the price without any cost, the maximization problem for

the franchise is

max
{{pjt}j∈J0t

}Tt=1

T∑
t=1

∑
j∈J0t

Ntsjt(pjt, p−jt)pjt. (2.18)

We ignore the capacity constraint for the franchise because in the data tickets are

always available in all areas in the primary market. However, it is difficult to solve

this maximization problem. In the counterfactual experiment in section 2.6, I use a

new price menu to calculate the revenue and compare that with the original one.

2.5 Estimation and Results

2.5.1 Endogeneity Problem

The demand can be estimated by equation (2.4) and (2.12), but the unobserved

demand shock ξjt might be correlated with the price pjt in some case. In the primary

market, the price variation primarily depends on the quality of seats and the oppo-

nents of games. For instance, facing a popular opponent, the franchise can expect a

higher demand and set a higher price. Once we control the location of the seat and

the information of the game, the unobserved demand shock ξjt should not correlate

with the price because the price is always set by the franchise in the beginning of
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the season. However, in the secondary market, equilibrium price correlates with the

unobserved demand shock ξjt even though we have already controlled for seat qual-

ity and opponent characteristics. For instance, some news about a player before the

game might change the demand and the equilibrium price.

In the previous literature, it is common to use cost shifters to identify the demand.

Here, I use the proportion of sellers buying tickets in the primary market by package

prices as the instrumental variable for the demand in the secondary market. The

instrumental variable varies primarily across different areas and different games but

does not vary substantially over time. From the data, those sellers buying tickets by

package prices do price lower because they have lower opportunity cost than others.

They have already used the cheaper price to buy tickets in the primary market. Also,

they can bear the loss in the following games if they have already sold tickets for some

popular games in higher prices. As a result, for those areas with higher proportion

of sellers holding package tickets, the average transaction price is also lower.

The exclusion restriction of this instrumental variable strategy is that there is no

correlation between the cost shifter and the unobserved demand shock. For those

package buyers in the primary market, they always buy tickets at the beginning of

the season. The exclusion restriction would be called into question if sellers decide

to resell their tickets based on the information of the unobserved demand shock.

From the data I can observe, sellers almost always list their tickets very early in the

season on StubHub. Thus, the proportion of sellers as package buyers in the primary

market could be the potential instrumental variable to identify the demand.

2.5.2 Demand Estimation Results

After the mean utility vjt is recovered by the observed market share, the un-

observed demand shock ξjt = vjt − (γ0 − αpjt + xjtγ1 + Dtγ2) can be written as
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ξjt(α,γ), where γ = (γ0,γ1,γ2)
′. Define ξ0(α,γ) as a vector containing all the

unobserved demand shock in the primary market
{{ξjt(α,γ)}j∈J0t

}T
t=1

and ξ1(α,γ)

as a vector containing all the unobserved demand shock in the secondary market{{ξjt(α,γ)}j∈J1t

}T
t=1

, where J1t = { j | ∀j on StubHub at time t}. Furthermore, de-

fine z0 as a matrix containing all the exogeneous variables in the primary market and

z1 as a matrix containing the instrumental variable and other exogeneous variables

in the secondary market. The sample moment condition is

m(α,γ) =

⎡
⎢⎣ 1

n0
z′0ξ0(α,γ)

1
n1
z′1ξ1(α,γ)

⎤
⎥⎦ , (2.19)

where n0 and n1 are the number of observations in the primary market and in the

secondary market. Then the GMM estimator is

(
α̂, γ̂

)
= argmin

α,γ
m(α,γ)′Wm(α,γ), (2.20)

where W is a weighting matrix.

The estimated parameters are shown in Table 2.3. The first column contains the

parameter estimates and standard errors from the static demand model, and the

last two columns provide the results of the dynamic demand model. The difference

between the last two columns is whether dummies for days prior to the game are

included in the model or not. In the static demand model, there are two reasons

to include dummies for different days. First, consumers coming into the market on

different days might have different mean utilities of buying tickets. Second, dummies

for different days can be used to control the demand change over time. However,

in the dynamic model, consumers are assumed to enter the market in the early

beginning, and the waiting behavior of consumers is sketched by the model. There

27



Table 2.3: Demand Estimates

Static Model Dynamic Model

(1) (2) (3)

Seat quality
Price ($) -0.011 -0.074 -0.078

[0.001]** [0.013]** [0.014]**
Distance from seat to home plate (ft) -0.001 -0.008 -0.008

[0.000]** [0.002]** [0.002]**
First floor dummy 0.193 1.488 1.558
relative to the second floor [0.031]** [0.283]** [0.287]**
Game Information
Against divisional opponent 0.098 1.916 1.923

[0.020]** [0.206]** [0.206]**
Against league opponent -0.128 -1.187 -1.178

[0.029]** [0.256]** [0.256]**
Relative to weekday game
Saturday game -0.405 -7.878 -7.881

[0.029]** [0.221]** [0.222]**
Sunday game -0.227 -2.796 -2.796

[0.025]** [0.203]** [0.203]**

Secondary market dummy 0.462 0.261 0.274
relative to the primary market [0.020]** [0.177] [0.177]
Include dummies for Yes Yes No
days prior to game

Constant -3.341 25.021 24.903
[0.096]** [0.924]** [0.935]**

Observations 10,923 10,923 10,923

Standard errors in brackets, * significant at 5%; **significant at 1%.
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Table 2.4: The Effect on Utility in Terms of Dollars

Static Model Dynamic Model

Distance from seat to home plate (every 100 feet) −9.09 −10.26
First floor relative to the second floor 17.55 19.97
Against divisional opponent 8.91 24.65
Against league opponent −11.63 −15.10
Saturday game relative to weekday game −36.82 −101.04
Sunday game relative to weekday game −20.64 −35.85

is no need to include dummies for different days before the event. We can see that

the estimated parameters are really similar between the second column and the

third column. Those dummies included in the second column are all statistically

insignificant.

In the static demand estimation, price and distance from seat to home plate neg-

atively affect the mean utility, and the first floor contributes positively to the mean

utility. The average own price elasticity is around −0.42. Using the coefficient on

other attributes divided by the coefficient on price, we can measure other attributes

of seats by dollars, as shown in Table 2.4. On average, the effect of distance on utility

is around -$9.09 every 100 feet from home plate. Sitting on the first floor have a

utility gain around $17.55, relative to those on the second floor. For instance, seats

in area 3 and area 5 have similar distance from home plate, but areas 3 and 5 are

on the first and second floor, respectively. Consequently, the average price of seats

in area 3 is around $10 higher than that in area 5.

In addition, different games also contribute differently to the mean utility. Rela-

tive to opponents in the same league, consumers value games against the other league

$11.64 higher. Conditional on opponents in the same league, facing opponents in the

same division can increase the consumer’s utility by $8.91. Besides the different
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opponents, the event time can also affect the mean utility. Because the utility of

outside good for games on the weekend is higher than that during the weekday, con-

sumers who attend the game on the weekend have lower utility, compared with those

who attend the weekday games. Furthermore, purchasing in the differing markets

can also determine the mean utility of consumers. People prefer go to the secondary

market to buy tickets because the secondary market dummy positively contributes

to the utility, and the value of coefficient can be explained as the brand loyalty to

StubHub.

Compared with the static demand model, coefficients estimated by the dynamic

model in column (3) all have the same sign as those in the static demand model.

However, the coefficient of price is −0.078, which is more sensitive to the utility

than that in the static demand model. Similarly, the effect of distance on utility is

around -$10.26 every 100 feet from home plate. Consumers value sitting in the lower

deck/first floor nearly $20 more than sitting in the upper deck. Attributes of games

also affect the mean utility as that in the static demand model.

Moreover, the secondary market dummy plays an insignificant role on the dy-

namic demand estimation. The reason might be that prices in the two markets do

not have significant difference for consumers in the dynamic view. In the static

model, there exists the price gap between two markets in each period, so it is nec-

essary to use the secondary market dummy to explain the market preference. In

the dynamic model, consumers can forecast the future price and buy tickets in the

future, and prices in the two markets might be similar in the future. Thus, there is

no price difference in the two markets if we consider the prices over time.
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2.6 Counterfactual Experiment

This section presents the simulated results when the franchise changes the uniform

price schedule into the descending prices as the event approaches. To understand

the implication of new prices provided by the franchise, the responses of consumers

and secondary market sellers should be considered. Based on the estimated demand

system and the behavior of sellers in the secondary market, the new equilibrium can

be obtained, and the new revenue for the franchise can be compared with the original

revenue.

In the demand side, I assume that the taste of consumers does not change, so

the market share can be predicted by the estimated demand system even though

some characteristics are changed exogenously. For the supply side in the secondary

market, sellers follow the expected profit maximization problem as equation (2.13)

to decide the price in each period. From the data, the expected value for sellers in

area j after the period t can be obtained by equation (2.16). In the counterfactual

experiment, I assume that the expected values for sellers after each period are the

same as before. Then sellers in the secondary market can change their prices in

response to the new demand.

Table 2.5 and Table 2.6 present the expected values for sellers after each day prior

to the game. For each period and each area, the expected values are solved game

by game, and the table shows the mean and standard deviation of expected values

for 80 games. For those games with higher prices, sellers also have higher expected

values.

Furthermore, I do not solve the expected value period by period, using the as-

sumption that the last period’s expected value is zero. Therefore, the expected value

might be positive or negative, only representing the relative value over time for sell-
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Table 2.5: Expected Value for Sellers in the Secondary Market Over Time (Recovered
Using the Static Demand Model)

Days Area

Prior to Game 1 2 3 4 5 6 7

1 -41.75 -54.16 -63.13 -67.49 -72.80 -80.22 -72.56
(20.09) (17.30) (12.45) (13.61) (9.35) (9.37) (10.77)

2 -37.62 -51.09 -59.89 -64.17 -69.91 -77.98 -69.13
(21.68) (15.99) (13.08) (12.69) (10.30) (9.09) (10.57)

3 -32.53 -48.16 -57.03 -61.81 -68.47 -76.81 -68.80
(21.49) (16.61) (13.01) (12.21) (9.59) (9.63) (10.90)

4 -30.00 -47.15 -55.70 -60.96 -65.58 -76.12 -66.51
(23.52) (18.63) (13.39) (14.11) (8.36) (9.93) (10.72)

5 -28.68 -43.94 -54.95 -59.53 -66.04 -75.90 -66.95
(22.37) (17.03) (15.18) (13.48) (9.80) (10.02) (10.50)

6 -28.17 -44.93 -53.99 -59.55 -65.25 -75.22 -64.67
(23.49) (18.18) (14.57) (13.45) (9.08) (9.44) (12.30)

7 -27.37 -43.92 -53.20 -59.11 -66.81 -75.08 -65.63
(23.96) (16.68) (15.74) (13.21) (10.94) (9.62) (12.32)

8 -23.54 -42.29 -51.26 -56.34 -63.11 -74.48 -63.52
(21.80) (20.48) (15.17) (13.61) (9.56) (9.50) (11.20)

9 -22.48 -41.38 -49.57 -56.23 -63.95 -73.47 -63.65
(24.49) (18.37) (14.07) (12.62) (9.31) (9.16) (10.83)

10 -20.54 -41.57 -48.12 -55.93 -62.52 -73.49 -62.78
(27.54) (19.32) (15.41) (13.93) (11.77) (9.12) (11.24)

11 -24.24 -37.78 -44.32 -54.63 -61.64 -72.98 -63.03
(21.51) (17.05) (17.54) (13.35) (11.55) (9.48) (9.81)

12 -23.64 -35.99 -49.63 -56.76 -61.21 -72.30 -60.74
(24.31) (19.98) (16.00) (13.17) (12.79) (10.39) (11.28)

13 -22.33 -38.91 -49.54 -57.32 -62.89 -73.55 -61.95
(22.79) (19.32) (15.03) (14.65) (13.69) (10.96) (12.39)

Standard deviations in parentheses.
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Table 2.6: Expected Value for Sellers in the Secondary Market Over Time (Recovered
Using the Dynamic Demand Model)

Days Area

Prior to Game 1 2 3 4 5 6 7

1 41.05 28.29 18.99 15.50 8.77 3.29 9.13
(19.09) (16.53) (11.94) (12.47) (9.42) (8.32) (10.68)

2 44.89 30.97 21.90 18.26 11.68 4.78 12.41
(20.81) (15.49) (12.87) (12.06) (10.34) (8.50) (10.40)

3 49.55 34.17 24.56 20.58 13.21 5.97 12.63
(21.04) (15.65) (12.67) (11.62) (9.50) (8.40) (10.73)

4 52.14 34.87 25.87 21.28 15.81 6.56 14.97
(22.52) (17.63) (13.01) (13.85) (8.27) (8.67) (10.42)

5 53.20 37.85 26.67 22.60 15.15 6.88 14.42
(21.77) (16.33) (14.57) (12.79) (9.73) (8.41) (10.44)

6 53.96 36.89 27.45 22.47 15.95 7.08 16.52
(22.90) (17.47) (13.92) (13.20) (9.16) (9.16) (12.11)

7 54.61 37.92 28.08 23.15 14.49 7.49 15.68
(23.21) (16.09) (15.55) (13.05) (10.94) (8.99) (12.19)

8 58.26 39.36 30.03 25.55 18.06 7.74 17.63
(21.13) (19.80) (14.79) (13.53) (9.57) (8.64) (11.21)

9 59.06 40.18 31.74 25.75 17.34 8.43 17.53
(23.88) (17.72) (13.80) (12.08) (9.33) (8.66) (10.61)

10 60.88 39.93 33.10 25.78 18.57 8.68 18.27
(27.05) (19.08) (15.22) (13.60) (11.58) (8.63) (11.04)

11 57.41 43.52 36.96 27.02 19.43 9.25 18.21
(20.79) (16.95) (16.92) (12.55) (11.38) (8.07) (9.58)

12 58.09 45.27 31.67 25.04 20.00 9.87 20.44
(23.43) (19.72) (15.53) (12.09) (12.09) (8.64) (10.69)

13 59.50 42.67 31.74 24.46 18.13 8.69 19.19
(21.74) (18.78) (14.84) (13.79) (13.35) (9.17) (11.99)

Standard deviations in parentheses.
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ers. As indicated in Table 2.5, the expected values calculated by the static demand

model are all negative, but those calculated by the dynamic demand model are all

positive. The patterns in the two kinds of demand model are quite similar because

sellers in the secondary market face the same profit maximization problem no matter

how consumers behave differently in the demand side.

For different areas, sellers with higher quality tickets, such as tickets in area 1,

have higher expected values. In addition, for different days prior to the game, sellers

have declining expected values when the event approaches. Because of the limited

time to sell, sellers have less opportunity cost over time. That is the reason why the

price trend is declining in the secondary market, as mentioned in Sweeting (2012).

The method I use to simulate the new equilibrium is to calculate both the new

market share of different areas in the two markets and the new prices in the secondary

market repeatedly. More specifically, the first step is to predict the new market share

of products by the estimated demand equation after the franchise change the price

in the primary market. Second, sellers in the secondary market adjust their prices

after knowing the new market share of products. Then for consumers, prices are

changed again, and they change the decision again. After the first step and the

second step are repeated several times, the new equilibrium can be obtained. In the

new equilibrium, sellers still need to satisfy equation (2.16) to price optimally, and

consumers follow either the static demand system or the dynamic demand system.

To simplify the counterfactual experiment, some other characteristics of seats

except prices are assumed to be the same. This assumption might not be true

because the quality of seats might be different after consumers buy more or less in

the previous period. In the real data, some characteristics, such as the distance from

the seat to home plate, do not vary significantly over time. The most important

characteristic for the counterfactual experiment is price; therefore, price is assumed
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to be the only endogenous variable that should be solved.

Instead of simulating 80 games, I use the average of 80 games’ data as one rep-

resentative game to analyze the implication of price change. In different games, the

franchise might face different situations in the secondary market. For instance, for

some popular games, prices might increase even in the last few days before the event.

In that case, the franchise might not need the descending price to earn more profits.

However, the case we might be interested in is the standard game with a descending

price trend in the secondary market. Thus, I use the average data to construct the

representative game to do the counterfactual experiment.

The disadvantage of using the average data is that simulated data might not be

accurate because the average data does not represent any specific game. In order to

understand the implication of price change, I simulate two cases for the franchise:

one is simulated by the uniform price over time, and the other is simulated by the

descending price over time. The revenue difference in these two models can be

explained as the implication of price change.

Table 2.7 presents the price implication simulated by the static demand model.

The revenue in the true data is calculated directly by the average price and the

total quantity in each area, and the total revenue is around $40,706 for one game.

Compared with the true data, the total revenue simulated by the original uniform

prices is quite similar, about $40,398. However, for different areas, quantities might

be over or under predicted by the estimated model. If we want to understand the new

price implication, the best way is to compare two simulated results by the model.

If the franchise uses the descending prices over time with maximum prices close

to the price level in the secondary market and with minimum prices same as the

original price level, the number of sales for each area decreases because of higher

prices. However, the total revenue can be increased to $43,197, which is increased by
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$2,799 per game, around 6.93% of original revenues. The equilibrium prices in the

secondary market go up for each area. Intuitively, consumers come into the market

and only compare those available seats in the current period, so the franchise can

price similarly to the price in the secondary market. Even though the market share

goes down, the total revenues still increase because of higher prices.

The result predicted by the dynamic demand model is a little bit different from

that predicted by the static model. In the dynamic demand model, consumers can

predict the future price trend and make a decision of purchasing. In other words,

consumers can expect the lower price in the primary market in the future when the

franchise uses the descending price trend. Therefore, we expect that the revenue

gains in the dynamic demand model would be less than those in the static demand

model. As indicated in Table 2.8, compared with the revenue simulated by the

uniform price, $40,990, the revenue simulated by the descending price, $42,492, only

increased by $1,503 per game. This is around 3.67% of the original revenue, which

is smaller than that in the static demand model. In particular, the franchise has

the revenue loss in some areas, such as areas 1, 2, and 5. To sum up, the type of

consumers does affect the magnitude of dynamic pricing by the franchise, but overall

the effect of dynamic pricing is positive on franchise revenue.

2.7 Conclusion

In this chapter, I use Major League Baseball ticket data both in the primary

market and in StubHub to study how the franchise can price dynamically over time

to increase the revenue. I find that the revenue for the franchise can be increased

if the franchise uses the descending price instead of uniform price over time. Even

though the number of tickets sold decreases, the revenue can still be increased by

higher prices in the early days before the event.
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Two different kinds of demand systems are applied to study the effect of dy-

namic pricing. One is the static demand model, and the other one is the dynamic

demand model. In the static demand model, consumers can not make the decision

intertemporally, so the franchise can have more revenue gain by the descending price

trend because consumers do not compare prices over time. However, in the dynamic

demand model, consumers can stay in the market and predict the future available

tickets, so the franchise has less revenues than in the static demand model. Of course,

compared with the uniform price, the dynamic pricing can increase the revenue in

both cases. By the counterfactual experiment, the revenue for the franchise can be

increased by around 6.93% if consumers are assumed not strategic in both markets.

If the consumers are strategic in waiting for lower prices, the revenue for the franchise

can only be increased by around 3.67%.

In addition, this chapter provides a method for the franchise considering the

secondary market reaction to study the price implication. The model captures the

competition between two markets and the response of sellers in the secondary market;

therefore, it also can be applied for any other industry with the following charac-

teristics: perishable goods selling in a limited time and lots of sellers in a prevalent

secondary market. So facing the popular secondary market competition, those fran-

chises in any kinds of sports leagues can obtain more ticket revenue by implementing

dynamic pricing for their tickets. The future research can extend this model in two

different directions. First, it is worth discussing more comprehensive price schedule

for different types of games to further increase the revenue for the franchise. Second,

considering the effect of season ticket can make the franchise understand more about

the cost of dynamic pricing.
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3. PRICING STRATEGIES FOR DIFFERENT TYPES OF SELLERS ON

STUBHUB

3.1 Introduction

New trading platforms on the internet provide customers with opportunities to

trade tickets online. In the sports ticket market, there are many famous online

secondary markets, including eBay and StubHub. Before the game day, the reseller

can post a listing with all the ticket information including a listing price and then

adjust the price everyday until the game. Different types of resellers face different

concerns in determining listing prices. This chapter aims to study how these different

types of resellers in the secondary market price their tickets dynamically over time

before the game.

Compared with eBay, StubHub has become the more professional platform for

selling sports tickets. For each venue and game, StubHub has different web pages

with detailed stadium map to show where your tickets will be in relation to the

field. This allows sellers to list their tickets easily and for consumers to search the

tickets with a clear understanding of where their seats will be. In order to attract the

sellers and ensure them they can make a profit, StubHub provides the comprehensive

transaction records for the seller to set up the initial price, and the seller can easily

change the listing price at any time before the game. Unlike eBay which reveals

the rating of the sellers, no information about each seller is provided on StubHub.

StubHub also takes a commission after the ticket is sold.

In this chapter, I use both the listing and transaction data on StubHub for the

home games of one anonymous Major League Baseball team to investigate the pricing

strategies of those sellers. Figure 3.1 shows the average listing and transaction prices
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Figure 3.1: Listing and Transaction Prices Over Time
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for the two weeks before the game. Both the listing and transaction prices decrease

over time until the game day. Compared with the face value, the average listing price

is around two times face value two weeks before the game day, and then it falls to

the face value on the last day. Most of the sellers change the prices frequently as the

game day approaches. Figure 3.2 presents the average number of tickets available

and the actual transaction quantities per game over time. The number of tickets

listed per game is between 2000 and 2500, and most of the sellers post their listings

earlier. As the game day approaches, the number of tickets available decreases, and

the number of transactions increases.

Not all the sellers have the same purpose in selling their tickets. Some might

want to sell their tickets simply because they cannot attend the game, yet some

sellers might want to make profits through the online secondary market. Therefore,
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Figure 3.2: Listing and Transaction Quantities Over Time
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heterogeneous sellers can have different pricing strategies in different aspects. I have

classified the sellers into two groups: single sellers and brokers. Those who sell tickets

only in one or two games during the whole season are defined as the single sellers,

and those sellers who sell many tickets in one game and sell tickets in most of the

games in the season are defined as brokers. Because the data allow me to identify

how many tickets they buy in the primary market, the two types of sellers can be

classified according to the detailed purchasing information.

Comparing the price levels over time for the two types of sellers, I find that the

listing prices set by the brokers are relatively lower than those set by the single

sellers on the final day. However, on other days before the game, the brokers prices

are significantly higher than those of the single sellers even though the quality of

tickets is controlled.
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Having said that, only comparing the price level is not enough. I also estimate the

probability of sale for each listing on each day to calculate the optimal prices. The

optimal prices vary depending on the days before the game and the seats relation to

the field. The brokers tend to price more optimally with less expected profit losses

on the last day than do the single sellers. Beyond that, the two types of sellers have

similar expected profit losses on other days before the game.

The remainder of this chapter is organized as follows. Section 3.2 reviews the

literature related to dynamic pricing. Section 3.3 summarizes the data I use in this

chapter. Section 3.4 presents the model for estimating the probability of sale and

calculating the optimal prices. Section 3.5 shows the results. Section 3.6 concludes

the research.

3.2 Literature Review

In this section, I briefly review the literature on dynamic pricing, which is also

called revenue management in some economics and marketing literature.

Monopolistic dynamic pricing models, starting with Gallego and van Ryzin (1994),

consider how a monopoly firm sell perishable goods in a limited time under stochas-

tic demand. Customers are assumed to arrive according to a Poisson process, and

the monopoly firm decides the price for each period to maximize the revenue. The

optimal pricing strategy can be characterized as a function of the inventory and time

left in the horizon (Bitran and Mondschein, 1997). Bitran and Caldentey (2003)

and Elmaghraby and Keskinocak (2003) provide a comprehensive survey to classify

different models. Zhao and Zheng (2000) extend the model by considering the gener-

alized demand system with consumers whose reservation price distribution changes

over time.

Aside from the monopolistic dynamic pricing models, there is an extensive lit-
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erature on competitive revenue management. Netessine and Shumsky (2005) study

a static quantity-based competition between two airlines. Prices are the same for

each airline, but the airlines need to decide how many seats to reserve for higher-

fare passengers. Perakis and Sood (2006) present a multiple-period pricing model

to characterize the dynamic pricing problem under oligopolistic competition. Lin

and Sibdari (2009) study a discrete-time model under the multinomial logit demand,

and they proves the existence of Nash equilibrium when the inventory levels for

each firm are assumed as public information. Xu and Hopp (2006) use a continuous

model to study oligopolistic competition, and they establish a weak perfect Bayesian

equilibrium for the pricing game. In addition, dynamic pricing under competition

can also be extended to different directions, such as capacity constraint (Mart́ınez-

de Albéniz and Talluri, 2011) and strategic consumers (Levin, McGill, and Nediak,

2009; Deneckere and Peck, 2012).

Empirical literature on dynamic pricing also refers to price discrimination. How-

ever, most of the empirical studies focus on airline markets. For instance, Escobari

(2012) finds that the price increases as the inventory decreases, and the price de-

creases while there is less time to sell. Furthermore, literature also indicates that

businessmen and leisure travelers are two types of consumers for the firm to enact

price discrimination. In the hotel industry, Lee, Garrow, Higbie, Keskinocak, and

Koushik (2011) find that the price does not increase as the arrival date approaches.

In the apparel industry, Heching, Gallego, and van Ryzin (2002) find that smaller

mark-down pricing can raise the revenue significantly in the early sales season, but

Soysal and Krishnamurthi (2012) show that strategic consumers delay their pur-

chases and lower the retailer’s revenues. Facing strategic consumers, retail revenues

are 9% lower than they would have been while consumers are non-strategic. In the

sports ticket secondary market, Sweeting (2012) finds that prices are decreasing over
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time as the game date approaches, and the sellers lower the price because of the

decreasing opportunity cost of holding tickets. Moreover, he uses data to test how

accurately dynamic pricing models describe sellers’ behavior, and he proves that sim-

plest dynamic pricing models can fit the behavior of sellers very well, and consumers

are not strategic in buying tickets in the secondary market.

The analysis in this chapter is similar to that of Sweeting (2012), but the study

further discusses the heterogeneity of sellers. Most of the literature assumes that

sellers price optimally based on the remaining horizon. However, different types of

sellers might have different pricing decisions which cause them to deviate from the

optimal strategies. Therefore, this chapter uses the comprehensive data to answer

this question.

3.3 Data

The data I use contain all the listing and transaction information on StubHub

from March 25, 2011 to September 28, 2011 for some home events of one anonymous

Major League Baseball franchise in 2011 season.1 Because of the detailed primary

market transaction data, the seller can be identified if the listing contains the specific

seat information. The listing data are observed daily on StubHub.

Table 3.1 shows the summary statistics for the information of listings on StubHub,

including the listing prices, days prior to the game, sold status, face values, and other

characteristics for quality. Each observation is an available seat daily observed on

StubHub within two weeks before the game. Because the seller on StubHub tends to

set a higher price in the beginning and lower the price everyday until the game. The

mean listing price is $55.97, which is higher than the mean face value, $35.63. The

listing prices vary based on both the quality of tickets and the timing of listing. The

1In order to have all the listings until the day of the event, only 31 home events are included in
the data. Most of the games happened in the first half of the season before August.
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standard deviation of listing prices is $33.41 making it greater than the standard

deviation of face values. The quality characteristics include the distance from seat

to home plate, row number, and front row of section dummy. In addition, not all

of the listings reveal the seat number, so only parts of the listings can be identified

by the purchasing records in the primary market. Approximately 77.1% of listings

allow us to identify the information of sellers.

Table 3.1: Summary Statistics for Listings

Standard
Obs. Mean Deviation Max Min

Listing prices ($ per seat) 973,347 55.970 33.441 449 0.01
Days prior to game 973,347 7.537 4.123 14 0
Listing sold dummy 973,347 0.056 0.231 1 0
Face value ($ per seat) 973,347 35.627 18.997 95 12
Distance from seat to home plate 973,347 269.749 95.306 439.3 72.81
Row numbers 973,347 9.431 7.959 41 1
Front row of section dummy 973,347 0.102 0.303 1 0
With account information 973,347 0.771 0.420 1 0

Because the primary market transaction data include comprehensive information

of purchasing, we can understand how many tickets sellers bought in this season,

what kinds of channels they used to buy tickets in the primary market, the prices

they pay for tickets, and the zip code they live in. Table 3.2 shows the summary

statistics for those identified sellers where each observation is a seller observed on

StubHub. The total number of identified sellers is 8,606. Some of the sellers only

have tickets in one or two games, but some have tickets in almost every game in the

season. The average number of games sellers have tickets is around 37.59, and the

average number of tickets they have in one season is around 166.16. However, not
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Table 3.2: Summary Statistics for Sellers

Standard
Obs. Mean Deviation Max Min

Number of games holding tickets 8,606 37.585 31.546 81 1
Number of tickets in one season 8,606 166.159 481.758 33,002 1
Number of listings listed 8,606 12.801 32.494 847 1
Number of tickets listed 8,606 39.757 147.695 6,481 1

Buying tickets
in the primary market by
single game tickets 8,606 0.275 0.446 1 0
package tickets 8,606 0.467 0.499 1 0
group tickets 8,606 0.030 0.170 1 0
multiple types with package 8,606 0.214 0.410 1 0
multiple types without package 8,606 0.006 0.074 1 0
three mixed types 8,606 0.010 0.099 1 0

Distance from home
to stadium (miles) 5,770 112.628 274.471 1,866 0.000457
Single sellers 8,606 0.603 0.489 1 0
Brokers 8,606 0.003 0.056 1 0

all their tickets are listed to resell on StubHub. The average number of listings in

one season on StubHub is around 12.80, with about 39.76 tickets for one seller. The

most active seller posts 6,481 tickets in 61 games using 847 listings.

In addition, people can buy tickets in the primary market through three different

avenues: single game tickets, package tickets, and group tickets. In Table 3.2, 46.7%

of the sellers buy the package tickets and resell parts of their tickets on StubHub, and

21.4% of sellers buy tickets by the multiple types, including the package tickets. This

means the tickets on StubHub are mostly from the package tickets. Furthermore,

27.5% of the sellers buy the single game tickets in the primary market. For various

reasons, the sellers may have different pricing strategies. Although prices in the
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primary market are considered as sunk costs for the sellers, different types of the

tickets might also reveal some information about the sellers. For those sellers who

want to gain the profits through the resale, they need to consider using a lower cost

to buy tickets in the primary market. However, for those who simply cannot attend

the game, this may not have been a consideration when purchasing.

In order to classify sellers more robustly, I use records from the whole season to

define the two types of sellers more specifically. The single sellers have fewer than 5

listings on StubHub per season; the brokers have more than 200 listings and sell over

70% of their tickets. By the definition, Table 3.2 shows that around 60% of sellers

are the single sellers, while only 27 sellers fit into the brokers category (0.3% of all

the sellers). Although the number of the brokers is small, they have many listings in

the market. Among the 27,837 listings on StubHub, there are 2,540 listings from the

brokers (9.12% of all the listings), and there are 2,778 listings from the single sellers

(9.98% of all the listings).

Figure 3.3 shows the median listing prices, which are not adjusted by quality, for

the single sellers and brokers within two weeks before the game. On the last day, the

median listing prices for both types of sellers are close to the face value. However,

on other days prior to the game, the price levels for the two types of sellers vary.

Prices for the brokers are systematically 0.5 times face value higher than those for

the single sellers. The median price for the brokers is about two times the face value

two weeks prior to the game, whereas the median price for the single sellers only

starts from around 1.5 times the face value.

Table 3.3 represents the regression results after adjusting for quality by controlling

for the distance from seat to home plate, row number, front row of section dummy,

area dummies, and game dummies. The first two columns list the regression results

without the quality adjustment. Those sellers not specified as single sellers or brokers
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Table 3.3: Prices Difference Between Single Sellers and Brokers Over Time

Dependent Variable: Listing Prices
Compared with the benchmark (1) (2)

Days prior to game Single sellers Brokers Single sellers Brokers

0 -0.00229 -0.00993 0.0843*** -0.171***
[0.0156] [0.0132] [0.0139] [0.0118]

1 -0.0622*** 0.183*** -0.0857*** 0.194***
[0.0210] [0.0174] [0.0187] [0.0155]

2 -0.0992*** 0.244*** -0.111*** 0.270***
[0.0205] [0.0169] [0.0183] [0.0150]

3 -0.106*** 0.243*** -0.131*** 0.282***
[0.0205] [0.0166] [0.0182] [0.0148]

4 -0.104*** 0.221*** -0.139*** 0.265***
[0.0205] [0.0164] [0.0182] [0.0146]

5 -0.102*** 0.187*** -0.137*** 0.234***
[0.0207] [0.0162] [0.0184] [0.0144]

6 -0.103*** 0.199*** -0.129*** 0.250***
[0.0208] [0.0162] [0.0185] [0.0144]

7 -0.100*** 0.216*** -0.126*** 0.267***
[0.0210] [0.0161] [0.0187] [0.0143]

8 -0.0836*** 0.197*** -0.112*** 0.245***
[0.0212] [0.0160] [0.0188] [0.0142]

9 -0.0935*** 0.260*** -0.118*** 0.308***
[0.0212] [0.0159] [0.0189] [0.0142]

10 -0.106*** 0.286*** -0.129*** 0.336***
[0.0214] [0.0159] [0.0190] [0.0142]

11 -0.102*** 0.331*** -0.129*** 0.376***
[0.0216] [0.0159] [0.0192] [0.0141]

12 -0.0997*** 0.340*** -0.128*** 0.385***
[0.0216] [0.0159] [0.0192] [0.0141]

13 -0.101*** 0.333*** -0.126*** 0.380***
[0.0217] [0.0159] [0.0193] [0.0141]

14 -0.0931*** 0.404*** -0.125*** 0.451***
[0.0219] [0.0159] [0.0194] [0.0141]

Constant 1.099*** 1.758***
[0.00503] [0.00835]

Quality control Yes
Observations 750,727 750,727
R-squared 0.073 0.267

Standard errors in brackets
* significant at 10%; ** significant at 5%; *** significant at 1%
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Figure 3.3: Median Listing Prices for Single Sellers and Brokers
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are called the benchmark group. Compared with the benchmark group, there is no

difference for the single sellers or the brokers on the last day. However, during days

2-14 prior to the game, the single sellers have a lower price level as shown in Figure

3.3, and the brokers have an overall higher price level.

The third and fourth columns represent the results after the quality control. The

result indicates that on the last day, the prices listed by the single sellers are around

8% of face value higher than those by the benchmark group, and the prices listed by

the brokers are 17% of face value lower than those by the benchmark group. Thus,

considering the quality control, the brokers do price around 25% of face value lower

than the single sellers on the last day. However, on other days before the game, the

prices for brokers are relatively higher than those for the single sellers even after we

have controlled the quality of the tickets.

50



3.4 Model

3.4.1 Seller’s Problem

For a given game g, there are T periods, indexed by t={1,2,...T}, for the sellers

to sell their tickets, and the game starts after the period T . The sellers might

come into the market at different time, but in each period the number of sellers is

large enough, which the market power for each seller is relative small in the market.

However, because of the heterogeneous tickets, each seller can still decide the price

in every period which maximizes the expected profits. In the model, each seller is

assumed to have only one ticket when coming into the market, and we assume there

is no switching cost to adjust the price everyday until the game. The model is very

similar to section 2.4.3, but the difference is that tickets are heterogeneous within

the same area according to the distance from seat to home plate and different row

numbers. In addition, sellers are assumed not homogeneous in the market, so we

solve each seller’s optimal problem to decide the optimal price for each listing on

each day.

For a seller k coming into the market at period t, the profits maximization problem

can be written as

max
pkt

pktΦkt(pkt) + (1− Φkt(pkt))EVkt+1, t = 1, 2, ..., T (3.1)

where Φkt(pkt) is the probability of sale when seller k decides the price pkt at period

t, and EVkt+1 is the value of the ticket after period t. Because the quantity provided

by each seller is relative small in the market, we can assume that the probability of

sale Φkt(pkt) is exogenous for each seller, which we can estimate that from all the

listings in the market.
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In the last period T , the value EVkT+1 can be explained as the remaining value

of the ticket after the game starts. Some people might be able to attend the game

even if they can not resell their tickets in the secondary market, so the remaining

value should be positive for them. However, some people, such as brokers, have too

many tickets in one game, so they might have zero remaining values for most of the

tickets. As there is no good proxy for the remaining value for those people who can

still attend the game, I calculate the optimal price for each ticket by assuming that

the remaining values are zeros.

The first order condition for profits maximization problem is

Φkt(pkt) +
∂Φkt(pkt)

∂pkt
(pkt −EVkt+1) = 0, t = 1, 2, ..., T. (3.2)

By assuming the remaining value of the ticket EVkT+1 = 0, we can solve backwards

and find the optimal prices p∗kt from period T to period 1, and the optimal value for

each period is

EV ∗
kt = p∗ktΦkt(p

∗
kt) + (1− Φkt(p

∗
kt))EV

∗
kt+1, t = 1, 2, ..., T. (3.3)

3.4.2 Probability of Sale

In order to obtain the probability of sale for each ticket in each period, I specify

a probit model as the following:

s∗kt = β0 − αpkt + xktβ + ukt, (3.4)

pkt = xktΠ1 + zktΠ2 + vkt, (3.5)
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where skt = 1{s∗kt ≥ 0} represents the sale of listings, and xkt includes the distance

from seat to home plate, row number, front row of section dummy, area dummies,

and game dummies to characterize the quality of seats.

In the secondary market, the prices set by the sellers might be correlated with

some unobserved demand shock ukt, so equation (3.5) specifies a cost-based shock

to solve the endogeneity problem. The instrument variable zkt includes the original

price in the primary market, the distance of the seller’s zip code from the stadium,

and the ticket types that the seller buys in the primary market. All of the variables

represent the seller’s cost of buying tickets and the opportunity costs of sale. Those

variables should not be correlated with the unobserved demand shock because the

seller purchases the ticket earlier.

In addition, ukt and vkt are jointly distributed according to a joint normal distri-

bution:

⎛
⎜⎝ ukt

vkt

⎞
⎟⎠ ∼ N

⎛
⎜⎝
⎛
⎜⎝ 0

0

⎞
⎟⎠ ,

⎛
⎜⎝ 1 ρσv

ρσv σ2
v

⎞
⎟⎠
⎞
⎟⎠ , (3.6)

where ρ = 0 if there is no endogeneity problem. If considering the endogeneity

problem, I use the control function approach to estimate the model. 2 If there is

no endogeneity problem, the model can be estimated by equation (3.4) using probit

model. In order to estimate the probability of sales on different days more flexibly,

I separately estimate the IV probit model day by day until the game day.

2In order to confirm the validity of the model, I also compare this with the two stage least square
linear probability model, and the results are similar.
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3.5 Estimation and Results

3.5.1 Estimation Results

The estimates are shown in Table 3.4. Different columns represent different days

before the game. For the coefficients on price, we find that price is most sensitive

on the last day and least sensitive 5 days before the game, showing that the demand

becomes more elastic as the game day approaches. In addition, all the characteristics

contribute more to the probability of sale on the last day. Conditional on the same

area and the same game, seats with longer distance from home plate and larger row

number have less probability of sale, and the front row seats have higher probability

of sale.

3.5.2 Comparison of Actual Listing Prices to Optimal Prices

Based on the estimates from Table 3.4, we can calculate the optimal price for

each ticket on each day by equations (3.2) and (3.3). Figure 3.4 shows the optimal

and listing prices for brokers in the last five days before the game. Because the listing

data contain some extremely high prices, I present the 25 percent quantile, median,

and 75 percent quantile in the following analysis. From 5 days before the game to the

game day, the optimal prices for the brokers decrease over time. The listing prices

set by the brokers are significantly higher than optimal though the price pattern over

time is closer to the optimal one.

In Figure 3.5, the listing price pattern is different from the optimal price pattern

for the single sellers. Between 1 and 5 days prior to the game, the single sellers tend

to follow the optimal pricing pattern. However, on the last day, the single sellers

tend to price significantly higher than optimal. Single sellers, unlike brokers, are

more likely to attend the game if they do not sell the tickets, so they may have a

positive ”residual value”. If we rationalize the behavior of the single sellers on the
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Figure 3.4: Listing and Optimal Prices for Brokers
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last day by assuming the positive remaining values after the game day, the optimal

prices during the 1-5 days prior to the game should also be shifted upward by the

positive remaining values. Then, single sellers would also deviate from the optimal

prices during 1-5 days prior to the game. As a result, the single sellers either price

higher than the optimal price on the last day or deviate from the optimal pattern

during the earlier days.

If we focus on the last day and calculate the difference between the actual listing

prices and the optimal prices generated by the model, Figure 3.6 shows the Kernel

Density function of the difference between single sellers and brokers. For most of

the listings set by the brokers, the prices are close to the optimal level, making the

differences close to zero. However, the single sellers tend to price higher than the

optimal level on the last day, so the Kernel Density function of the difference shifts
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Figure 3.5: Listing and Optimal Prices for Single Sellers
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from zero to positive.

Another way to compare the actual listing prices with the optimal prices is to

calculate the expected profit loss for each listing. As the seller decides the price in

the secondary market, the difference between the optimal expected profits (π∗) and

the actual expected profits (πa) could be explained as the ”expected profit loss” for

the seller. So the expected profit losses are calculated by:

π∗
kt − πa

kt, (3.7)

where

πa
kt = paktΦkt(p

a
kt) + (1− Φkt(p

a
kt))EV

∗
kt+1, t = 1, 2, ..., T, (3.8)
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Figure 3.6: Difference Between Optimal and Listing Prices on Game Day
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and pakt is the actual listing price for seller k at time t.

Figure 3.7 and Figure 3.8 show the median expected profit losses for the single

sellers and brokers. In Figure 3.8, we can find that single sellers have the expected

profit losses over 10% of face value on the last day. Figure 3.7 also shows that listings

for the single sellers have the higher expected profit losses than those for the brokers

on the last day, and the difference between two types of sellers in the expected profit

loss is around $1.31. On other days before the game, the expected profit losses are

close to zero for two reasons. The first reason is that the probability of sale within

1 to 5 days prior to the game is not high enough. This means deviating pricing

strategies might not have a significant losses on that day. The second reason is

that the sellers are still assumed to price optimally in the next few periods, so the

expected profits on that day could be close to optimal because the optimal pricing

58



Figure 3.7: Expected Profit Losses (Dollars)
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Figure 3.8: Expected Profit Losses (Relative to Facevalue)
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Figure 3.9: Cumulative Distribution Function for Expected Profit Losses on Game
Day
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strategy in the next few periods would not have any loss.

Figure 3.9 presents the cumulative distribution function of expected profit losses

for the single sellers and brokers on the last day. Compared with the single sellers, the

brokers have more listings with an expected profit loss of less than 5 dollars. However,

the index of expected profit losses still has some disadvantages. For instance, for

those listings with a higher face value, the larger optimal expected profits can cause

higher expected profit losses. Therefore, I have created another index which is called

the ”expected profit loss rate” to measure how many percentage of expected profits

the seller expects to lose. The expected profit loss rate is defined as

π∗
kt − πa

kt

π∗
kt

. (3.9)
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Figure 3.10: Expected Profit Loss Rate
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Figure 3.10 shows the expected profit loss rate for the different types of sellers 5

days leading up to the game. The biggest difference between two types of sellers is

the loss rate on the last day. The single sellers tend to have a higher loss rate than

the brokers. The cumulative distribution function in Figure 3.11 clearly indicates

that the brokers can always price more optimally and have less expected profit loss

rate for their listings.

3.5.3 Discussion

Three possible reasons can explain the difference between the actual listing prices

and the optimal prices. The first is the positive remaining values of the tickets. The

optimal prices increase if the seller has the positive remaining values after the game

day. In Figure 3.5, the difference on the last day can be rationalized by the positive

remaining values for the single sellers. If we focus on those single sellers who live far
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Figure 3.11: Cumulative Distribution Function for Expected Profit Loss Rate on
Game Day
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from the stadium, then the difference becomes smaller on the final day.

The second one is the cost of changing list price – or a ”menu cost”. Actually,

the switching cost includes the menu cost and the management cost where we had

before assumed zero. For instance, sellers need the time to observe other information

and to decide the price. Switching cost would cause the actual listing prices up and

down the optimal prices; however, the data show that only some sellers do that on

days leading up to the game.

The third possible reason is a bounded rationality explanation. For example,

considering the reference price could cause the optimal price shift to the reference

price, whereas the reference prices would be the price in the primary market or the

transaction price on the previous day. In Figure 3.5, we can find that the single

sellers tend to price above the face value even on the final day.
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3.6 Conclusion

In this chapter, I use both listing and transaction data on StubHub to study

different pricing strategies for different types of sellers. The data show that the

sellers on StubHub can be separated into two types: single sellers and brokers. The

single sellers sell tickets in one or two games during a season, and the brokers sell

many tickets in one given game and also sell tickets in most of the games during the

season. I use the data to estimate the probability of sale by the probit model and

calculate the optimal prices for each listing on each day. The brokers do price more

optimally with the less expected profit losses and even less expected profit loss rate

on the last day than do the single sellers. In addition, during other days before the

game, two types of sellers have the similar expected profit losses, which are close

to zero. Three possible reasons to explain the difference between the actual listing

prices and the optimal prices can be tested in the future study.
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4. CONCLUSION

In this dissertation, I discuss dynamic pricing issues not only in the primary

market for the franchise but also in the secondary market for the different types of

resellers. In the first essay, I use Major League Baseball ticket data from one anony-

mous franchise in the 2011 season to study how the franchise can price dynamically

to increase its revenue. I find that the revenue for the franchise can be increased

if the franchise uses the descending price instead of uniform price over time. Even

though the number of tickets sold decreases, the revenue can still be increased by

higher prices in the early days before the event. Compared using a uniform price

schedule over time, the revenue for the franchise can be increased by around 6.93%

if consumers are assumed not strategic in both markets. However, if consumers are

strategic in purchasing tickets, the revenue for the franchise can only be increased

by around 3.67%.

In the second essay, I use both listing and transaction data on StubHub to study

different pricing strategies for the different types of sellers. The data show that the

sellers on StubHub can be separated into two types: single sellers and brokers. The

single sellers sell tickets in just one or two games during the whole season. The

brokers sell many tickets in a given game and also sell tickets in most of the games

during the season. In addition, I use the data to estimate the probability of sale by

the probit model and calculate the optimal prices for each listing on each day. The

benchmark model shows that brokers do price more optimally with the less expected

profit losses and even less expected profit loss rate on the last day than do the single

sellers. In addition, during other days before the game, two types of sellers have the

similar expected profit losses, which are close to zero.
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