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ABSTRACT 

 

Diamond has been under spotlight in industry since the discovery of its 

extraordinary mechanical properties, high wear resistance and excellent chemical 

inertia. These properties enable diamond a competitive candidate for industrial and 

biomedical applications. In the present research, the tribological properties of two 

types of diamond materials, diamond reinforced ceramic composites and diamond 

coatings have been investigated.  

Experimental approaches consist of tribological investigation, electrochemical 

evaluation and characterization of diamond-reinforced ceramic composites (DRCC), 

thin nanocrystalline diamond (NCD) film, thin microcrystalline diamond (MCD) film 

and their functionalized derivatives.  

After the tribotest, phase transformation from diamond carbon (sp3) to 

amorphous carbon (sp2) is confirmed by Raman spectroscopy in the diamond 

composite. The surface roughness of the diamond grits was found to be greatly reduced 

due to wear. A tribo-electrochemical method is developed to in situ monitor the this 

amorphrization-wear process. It is discovered that the current density is a function of 

the excitation voltage in a sinusoidal pattern. The amplitude and period of the 

sinusoidal pattern reflect the intensity and the frequency of the process. For the 

diamond-cartilage contact, it is found that the coefficient of friction between cartilage 

Figure and diamond decreases with increasing load because real contact area is not 
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linearly change with load. Even though the hydrogen treatment decreases the friction 

and ammonia treatment decreases adhesion and friction in dry conditions, the friction 

under lubrication is determined by synergy effects of number of bonds established and 

strength of single bond between protein of the cartilage and the diamond surface. 

In the present research, the wear mechanism of diamond-reinforced composite 

has been demonstrated. The amorphization-wear process of diamond can be real-timely 

monitored using electrochemical approach. The frication force between diamond 

surface and human cartilage can be adjusted by changing number of bonds established 

or strength of single bond between protein of the cartilage and the diamond surface. 

This research proposes new avenue in the evaluation of friction and wear of diamond 

materials, which will be beneficial to wide range of diamond applications, including 

aerospace industries, mechanical processing, biomedical science, prosthetics and 

energy industries. 
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NOMENCLATURE 

Acronyms 

AFM  Atomic force microscope 

CMP  Chemical mechanical polishing  

CPE  Constant phase element 

CVD  Chemical vapor deposition  

DLC  Diamond like carbon 

DRCC Diamond-reinforced ceramic composite 

ECMP Electro-chemical mechanical polishing 

EIS  Electrochemical impedance spectroscopy  

MCD  Microcrystalline diamond 

MPCVD Microwave plasma chemical vapor deposition  

NCD  Nanocrystalline diamond 

PCD  Polycrystalline diamond 

PVC  Polyvinylchloride 

SEM  Scanning electron microscope 

TEM  Transmission electron microscope/microscopy                  

UNCD Ultrananocrystalline diamond  
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Symbols 

a   Amplitude of fluctuation pattern 

Ar  Real contact area 

i   Current density 

N   Applied load 

T   Period of fluctuation pattern 

V   Potential 

θ   Phase shift 
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CHAPTER I 

INTRODUCTION 

 

In this chapter, essential knowledge and information will be provided for 

readers to understand the background of current research. This research focuses on 

tribological performance of diamond containing materials. Properties of these materials, 

their applications in mechanical and biomedical fields, basics of wear and current 

problems will be briefly introduced.  

 

1.1.   Basics of diamond 

Diamonds are commonly regarded as gemstones and popularly utilized for 

components in jewelry. The productivity of diamond has been greatly increased since 

the synthetic method was developed to generate diamond from other forms of carbon. 

The applications of diamond materials expanded to manufacturing and processing 

industry due to their extremely high hardness and strength. Later, more and more 

interesting properties of diamond, such as low friction, chemical inertness, high 

thermal conductivity and excellent biocompatibility, were discovered and investigated, 

making diamond a popular player in scientific research. In this section, the structure 

and properties of diamond will be reviewed.  
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1.1.1.  Atomic structure of cubic diamond  

Diamond is composed of carbon atoms with a tetrahedral arrangement. One 

unit cell of cubic structured diamond is illustrated in Figure 1.1. The carbon atoms 

form a varied arrangement of face-centered cubic structure. There are four more atoms 

(red) inside the unit cell besides eight atoms (green) at the corner and six atoms (purple) 

in the center of the face plane. In each unit cell, there are 4+8*1/8+6*1/2=8 atoms. 

This crystal structure is termed as diamond lattice. In this structure, each carbon atom 

is coordinated to four adjacent carbon atoms with a tetrahedral arrangement. The center 

atom is connected to the atoms at the four corners by sp3 bond, a particular type of 

covalent bond according to hybrid orbital theory. The lattice constant of the diamond 

cubic is 0.357 nm and the length between two neighboring carbon atoms is 0.154 nm.  

Both graphite, which is the mostly seen form of carbon, and diamond are 

compose of pure carbon. The hardness and strength of diamond, however, are much 

higher than those of graphite. Graphite has a layered structure as shown in Figure 1.2. 

In the plane, carbon atoms are sp2 bonded in a hexagonal arrangement. However, 

between two layers there is no strong atomic bond and they are connected by Van der 

Waals force. This force is a much weaker interaction so the adjacent planes can easily 

slide over each other. This is the reason why graphite is widely used as solid lubricant.  
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Figure 1.1. Atomic structure of cubic diamond (lattice constant is 0.357 nm). 

 

Figure 1.2. Layered structure of graphite. 
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1.1.2.  Man-made diamond 

In this section, different technologies developed to produce diamond will be 

discussed. The production of diamond greatly increased after the invention of 

apparatus forming man-made diamond. With the development of these technologies, 

both the quality and size of synthesis diamond have been improved. As a result, 

nowadays, the amount of man-made diamond is about 3 times higher than that of 

natural diamond from mining,1, 2 making it the major source of raw materials for 

diamond containing components.  

 

1.1.2.1. Single crystal diamond 

Single crystal diamonds are the most common forms of diamond found in 

natural environment. They are formed from carbonaceous materials at extremely high 

temperatures and pressures. The location for diamond formation is usually more than 

one hundred kilometers under the ground.3 The diamonds are carried from deep mantle 

to the earth surface by the volcano activity.  

Hard work has been done to produce man-made diamond when the diamond 

was discovered to be a form of carbon.2 Different types of reactions were explored to 

generate diamond but only one of them showed positive results. At controlled and 

stable temperatures and pressures, diamond crystallize from carbon dissolved in 

molten metals, such as nickel and iron.1 Figure 1.3 schematically illustrates the 

formation of diamond in a high pressure chamber. Countless attempts had been made 
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to synthesize diamond before the acknowledged success of General Electric Co. in 

1955.4 The researches utilized a "belt" apparatus which was able to reach higher than 

41 GPa and 5000 oC at the same time.5 The development of diamond synthesis was 

greatly improved immediately after the first successful attempt was made. Giardini et 

al.,6 Hall,7, 8 Wedlake,9 and Pugh et al.10 developed various experimental devices to 

produce diamond from carbonaceous materials, most of which are graphite, in terms of 

high pressure synthesis.  

 

 

Figure 1.3. Schematic of formation of diamond under high pressure and high temperature. 



  6 
 

In addition to high pressure synthesis method, shock wave process is another 

approved approach to produce single crystalline diamond. Very small diamond 

particles were obtained by DeCarli and Jamieson in 1961.11 A shot shock wave was 

believed to generate extremely high pressure up to 60 GPa when they applied an 

explosive charge to graphite. Their work was followed by Sekine et al.,12 Simonsen et 

al.,13 Trueb14-16 and others.17, 18 The exact mechanism of the shock synthesis process is 

still under exploring. One possible explanation is that the shock generates high 

temperature and high pressure, melting the graphite and converting graphite into 

diamond. The reaction occurs in a very short time interval and then the pressure drops 

rapidly, leading to the reconversion of diamond back to graphite.2 Due to this effect, 

the diamond phase formed by shock wave is not stable and the productivity is relative 

low.  

 

1.1.2.2. Polycrystalline diamond  

Compared to single crystalline diamond, polycrystalline diamond (PCD) is 

harder and tougher in texture. With the rigid atomic structure, single crystalline 

diamond is relatively weak in particular cleavage direction. In PCD, the growth 

direction of each grain is randomly distributed. As a consequence, the development of 

dislocation or crack stops at the boundary of two grains. This effect determines that 

PCD is tougher than single crystalline diamond. Reduced population of dislocation and 

plastic deformation due to grain boundary also increases the hardness of PCD. The 
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featured Raman peaks for single crystalline diamond, nanocrystalline diamond (NCD) 

and microcrystalline diamond (MCD) are shown in Figure 1.4. A sharp peak at 1333 

cm-1 can be determined in single crystalline and MCD. This peak is the featured peak 

for sp3 bond between carbon atoms. For MCD, D band between 1200 cm-1 to 1400 

cm-1 for disorder carbon (sp2 bonded) is also detected in addition to the sharp peak. In 

the spectrum of NCD, there is no sharp peak observed. Three broad bands are observed 

at 1136 cm-1, 1333 cm-1, and 1587 cm-1. The D (1333 cm-1) and G (1587 cm-1) bands 

are related to sp2 bond and are detected in Raman spectrum due to the grain boundary 

in NCD structure.19 It is concluded that in single crystalline diamond all carbon atoms 

are sp3 bonded. In PCD, such as nanocrystalline diamond and microcrystalline 

diamond, the concentration of sp3 bond decreases and sp2 bond is dominating. Using 

Raman spectroscopy, various types of diamonds can be easily distinguished.  

It is very difficult to obtain PCD from natural source. Various approaches have 

been developed to produce PCD. An early experiment performed by Wentorf et al.20 in 

1980 successfully generated PCD film from tiny diamond particles. These diamond 

particles were sintered under high temperature and pressure, which are relatively lower 

than those for diamond synthesis.  
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Figure 1.4. Raman features for single crystalline diamond, nanocrystalline diamond and microcrystalline 

diamond.  

 

The sintering of diamond is schematically described in Figure 1.5. The mixture 

is heated to a temperature at which approximately 70% of the melting temperature of 

diamond under high pressure. The catalyst metal, such as cobalt, melts and prevents 

the transformation of diamond to graphite during sintering process.21-23 The sintering 

method for producing PCD have been modified and improved later. Big bulk of PCD 
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(disc with a diameter of 50 mm and thickness of 5 mm 1) could be produced using 

sintering technology.  

 

 

Figure 1.5. Schematic description of PCD sintering. 

 

In many cases, only a thin coating film of PCD on the substrate is necessary to 

modify interface properties. Chemical vapor deposition (CVD) is the most commonly 

utilized approach to produce thin PCD films in nano and micro scale. Compared to the 

high temperature and high pressure technologies discussed above, deposition of 

diamond can be achieved at a much lower pressure using CVD. The principle of 

diamond CVD is schematically illustrated in Figure 1.6. The carbon source of diamond 
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is methane. Hydrogen is usually included in the gas source for chemical reactions. The 

ratio of methane to hydrogen varies from case to case depending on the diamond types. 

There are three primary stages involved in the diamond CVD. External energy source, 

such as microwave, direct current, and hot filament,24-39 produces a plasma in the 

reaction chamber to activate the mixture of gas. Under the effect of plasma, the 

gaseous materials are heated up to a temperature over 1000 oC. Bonds between atoms 

are broken down and the gas molecules are converted into active particles like radicals, 

ions and electrons as shown in Figure 1.6. In the second stage, a set of complicated 

chemical reactions occur between these reactive particles until they finally reach the 

substrate. The fragments involved in these reactions are moved and circulated by the 

gas flow and diffusion. In the final stage, the gaseous species near the substrate forms a 

diffusion layer and reacts with the surface. At the interface, various reactions and 

processes occur, including adsorption of the active particles onto the surface, 

desorption of them back to the diffusion layer, transportation of them from one region 

to another for suitable reaction site. Diamond is deposited on the substrate through 

these complex reactions. An accurate evaluation of chemical reactions in diamond 

CVD is not available. Different factors, diffusion temperature, types and ratios of 

gaseous phase, surface structure of substrate, types of energy source, greatly impact the 

growth of diamond, making it even harder to study.40, 41   

The diamond CVD has been widely studied since in the produce of diamond 

was possible.42, 43 Numerous modifications and improvements have been introduced by 
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subsequent researchers.25, 43-48 To date, these techniques have been widely applied to 

produce polycrystalline diamond.  

 

1.1.3.  Properties of diamond 

In this section, main properties of diamond will be discussed. These properties 

determine the wide applications of diamond materials in both industrial and scientific 

fields.  

 

 

Figure 1.6. Diamond CVD process. 
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1.1.3.1. Hardness 

Hardness is used to evaluate the resistance of a material to plastic deformation 

under external force. The higher hardness of a material is, the harder it is to force the 

material deform permanently. Diamond is well known for its highest hardness of all 

recognized materials. In the Mohs scale of hardness for mineral ranging from 1 (the 

softest) to 10 (the hardest), diamond has the highest value of 10. Even though many 

novel super hard materials have been fabricated,49-53 none of them have been proven to 

be superior to natural diamond in hardness. Due to this property, diamond is usually 

employed as sharp indenters to produce indents on other materials as the criterion of 

hardness measurement.  

 

1.1.3.2. Thermal conductivity 

The measured thermal conductivity of diamond is 900–2,320 W·m−1·K−1.54-56 

This value remains unbeatable among currently known materials. The thermal 

conductivity of diamond could be greatly improved when the isotopic purity of 12C is 

increased from 98.9% (the natural concentration) to 99.9%.54 In some MEMS or 

semiconductor devices where extreme heat dissipation ability is required, thin diamond 

film is utilized.57-59  

 

1.1.3.3. Young's modulus 

Modulus is a measure to evaluate the resistance of a material to elastic 
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deformation. According to Hooke's law, the modulus can be easily obtained from the 

stress strain curve by calculating the slope of the curve in elastic region. The measured 

modulus of single crystalline diamond is 1050 GPa60 and that of polycrystalline 

diamond is 500-533GPa.61 The modulus of diamond is higher than that of most other 

materials. Carbyne, another allotrope of carbon was reported to have the highest elastic 

modulus of 32700 GPa in all the materials.62  

 

1.1.3.4. Chemical stability 

Diamond is chemically inert. At a high temperature of 625 °C, a graphite-like 

layer was found on the diamond surface in oxygen environment, indicating the 

oxidation of diamond.2 Diamond and carbon dissolve in some molten metals, such as 

Fe, Ni, Mg, and Co, at higher temperature.63 At room temperature diamond has 

excellent resistance to any chemical attacks even from strong bases and acids. Based 

on this fact, the impurities on the synthetic diamond surface can be removed by those 

reaction agents.  

 

1.1.3.5. Tribological properties 

The tribological properties of diamond have been partially revealed. Low 

friction was found in diamond or diamond-based structures, including diamond like 

carbon (DLC) films,64, 65 ultrananocrystalline diamond,66 doped DLC film,67, 68 among 

others. The study of low friction diamond69-71 could improve the performance of 
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contact surface in mechanical components and reduce the energy loss due to friction. 

The potential application of diamond-based micro electromechanical systems has been 

established duo to the study of surface features of diamond thin films in 

nano-scale.72-75 In vacuum environment, COF on diamond surface jumps fast to 

approximately 1.76 More detailed information on tribological properties of diamond 

will be discussed later. 

 

1.1.3.6. Biocompatibility 

The excellent biocompatibility of diamond and diamond-like carbon has been 

experimentally approved. Variety of studies on determining biological impacts of 

diamond materials have been performed by means of in vitro or in vivo tests.77-84 The 

results demonstrate that diamond materials are adherent to types of bio tissues and no 

toxic effects are detected. Most diamond materials are chemically composed of 

biologically compatible elements, namely carbon, nitrogen and hydrogen. As a result, 

these materials show positive results in biocompatibility measurements.  

 

1.1.4.  Applications of diamond 

Diamond has been under spotlight since the discovery of its extraordinary 

mechanical and tribological properties. The excellent hardness, stiffness, and tribological 

performance enable diamond a competitive candidate where low friction and reliable 

wear resistance is desired. In this section, applications of diamond materials in various 
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areas will be reviewed.   

 

1.1.4.1. Diamond tools for processing and machining 

All other materials have lower hardness than diamond. Theoretically, diamond 

materials can be used to machine any materials except for itself. Deposition of a 

diamond layer on ordinary cutting tools can remarkably decrease the wear and prolong 

the service life.85 PCD blocks have been widely used as inserts in drilling and turning 

tools.86-98 Davim and Baptista90 investigated the cutting force using PCD tools to 

machine silicon carbide reinforced aluminum. They found that the cutting force in 

turning gradually and progressively increases with time during machining. Huang et al.99 

used PCD tools to process SiCp/Al composites, which is a promising material with 

outstanding thermo-physical performance but its machinability is poor. The quality of 

the finished surface was found to increase with machining speed. Andrewes et al.100 

utilized PCD inserted cutting tool to machine SiC-reinforced aluminum and results 

revealed that combination of good thermal conductivity and low COF led to wear of 

diamond. The performance of brazed PCD tool in processing metal-based composites 

was evaluated by Davim.101 It was demonstrated that it is necessary to use diamond tool 

to machine SiC reinforced metal-based composites in order to ensure long tool life.  

In addition to PCD, single crystalline diamond grits are usually employed as 

reinforcements in grinding and sawing tools. Guo et al.102 investigated the performance a 

set of diamond grinding wheels on grinding optical class. It was demonstrated that depth 
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of surface damage if diamond wheel with coarser grains was used. Simulation results 

from Koshy et al.103 indicated that the surface roughness of the finished workpiece is 

related to the distribution of diamond grit protrusion height. Zhao et al.104 utilized 

diamond grinding tool to conduct ultra-precision processing. The diamond tool showed 

extremely low vibration in grinding optical classes. The integrity of surface and surface 

in ground optical glass was improved and more polishing time could be saved.   

 

1.1.4.2. Diamond tips for scanning or indentation 

For the probe measurement and indentation test in micro and nano scale, the key 

factor is the quality of the tip. In order to obtain reliable and consistent results, it is 

essential for the tip to maintain the origin shape and surface morphology. This means the 

material for fabricating tip needs to be resistant to both elastic deformation and plastic 

deformation. Diamond is the most promising candidate except for its coat considering 

the requirements in mechanical properties. Due to the extreme hardness and elastic 

modulus, diamond has been widely used in scanning probes105-108 and micro and nano 

indenters.68, 109-111 Niedermann et al.112 coated PCD films on silicon AFM tip with a 

doped layer and investigated the performance of the modified tip in AFM scanning and 

nanoindentation experiments. The diamond coated tip presented atomic-scale resolution. 

The obtained results demonstrated that CVD diamond was suitable for manufacturing 

nanoprobe tools with controlled quality. In addition to the excellent mechanical 

proprieties, the interesting electrical properties of diamond expand the applications of 
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diamond in micro and nonoprobe measurements. Gallo et al.113 employed the diamond 

tip to image the pore networks structure of ultrafiltration membrane. The utilization of 

diamond tip in exploring the breakdown voltage, nano-scanning resistance imaging, and 

investigating electrical properties of WS2 in form of thin films113 has been reported.   

 

1.1.4.3. Diamond in biological and biomedical applications 

As a promising material for biomedical application, diamond have attracted great 

attention due to its chemical inertness, low friction and high wear resistance. These 

properties make diamond a promising candidate as coatings materials in biological and 

biomedical applications. DLC coated Ti specimen was proven to be capable of staying in 

the muscle of rabbits for approximately one year without obvious negative effect.114 

Chong et al.115 investigated the cell adhesion properties on diamond surfaces with 

different functionalizations. It was found that surface oxygenation increases the 

hydrophilicity and provided a better environment for cell adhesion. Hauert et al.116 

studied the performance of Ti-DLC exposed to a biological environment and discovered 

that the adsorption of proteins on the sample surface is dependent on the concentration 

of Ti.  

Diamond materials have been proved to be a potential candidate in prosthetics. 

DLC coating on metal (Co28Cr6Mo) surface was found to effectively reduce the 

volumetric wear117 in artificial joint. The wear rate of tetrahedral amorphous carbon 

(ta-C) coated metal-on-polyethylene mating pair was 105-106 times lower than the 
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metal-on-metal or metal-on-polyethylene joint and the corrosion rate greatly decreased 

as well.118 The service time of artificial joint has been significantly increased by coating 

ta-C film on both metal surface and polymer surface for an ultra-high-molecular-weight 

polyethylene and Co-Cr-Mo contact.119  

 

1.2.   Friction and wear of material 

Friction and wear are two of the primary reasons responsible for energy and mass 

loss in mechanical systems. Holmberg et al.120 demonstrated that almost one-third of the 

energy extracted from fuel is lost due to friction and wear in a car. When two surfaces in 

contact have relative motion, friction is inevitable even though the surface roughness is 

very low. In this section, basic knowledge about wear will be introduced. Wear of 

diamond materials will discussed as well.  

 

1.2.1.  Origin of friction and wear 

Understanding of origin of friction and wear is the heart of tribology. Modern 

search on friction and wear mechanism started from 1940s121-128 based on the platform 

established by Amontons and Coulomb. With the fast development of nanotechnology, 

exploring of friction and wear mechanism in nano scale have been progressively carried 

out.129-133  

According to those classic theories, friction between two mating surfaces comes 

from three sources. Two surfaces in contact with relative motion is schematically 
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presented in Figure 1.7. Figure 1.7 (a) shows a pin-on-disk configuration and Figure 1.7 

(b) displays the interface in a smaller scale. For clearer illustration, the contact between 

two single asperities is shown in Figure 1.7 (c), (d) and (e). The first origin of friction 

and wear is plastic deformation on the surface as in Figure 1.7 (c). When two surfaces 

are pressed against each other, plastic deformation is generated on the softer material if 

the external pressure is high enough to overcome the yield strength. Friction force is the 

macro scale display of the stress produced in the deformation process.128, 134 Similar to 

the case of plastic deformation, friction results from the stress between two asperities 

when they are elastically deformed as shown in Figure 1.7 (d).127, 128 Interfacial bonds 

and reactions are another primary source of friction. In close contact, van der Waals 

forces increases when the two asperities approaches each other. The formation and 

breakage in the sliding process produce a tendency of shear and accordingly stress.135-139 

This process is shown in Figure 1.7 (e). Due to the complex surface and interface 

conditions, the three effects are not independent from each other. In real applications, 

plastic deformation, elastic deformation and interfacial bonds usually coexist, making 

the analysis of wear mechanism more complicated. Different wear mechanism lead to 

various types of wear, which will be discussed in the next section.  

 

1.2.2.  Different types of wear 

The complex nature of interfacial reaction determines that wear on surface have 

multiple forms. The Four typical types of wear is illustrated in Figure 1.8. 
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Abrasive wear happens when a hard surface slides against a softer material under 

relatively high pressure as in Figure 1.8 (a).121, 127 The hard asperities scratch off the 

material on the counter surface and generate macro scale plowing track. The plowing 

track on worn surface is illustrated in Figure 1.9.  

 

 

Figure 1.7. Illustration of friction and wear between two surfaces. 

 

Massive amount of heat is generated during the sliding of two surface. The heat 

is highly localized so the temperate of a particular asperity could be really high, leading 
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to the softening of the material as in Figure 1.8 (b). There is a chance that the soft 

portion detaches from the previous surface and attaches to the hard asperity. This 

produces a material transfer from one surface to another. This process results in the 

delaminating of the softer material as shown in the red rectangles of Figure 1.9.  

 

 

Figure 1.8. Four typical types of wear. 

 

For elastic materials, deformation recovers when the contact separates (Figure 

1.7 (d)). As a result, elastic deformation doesn't generate visual wear. However, if the 

asperity is subjected to cyclic pressure fatigue wear will happen after a long time as in 

Figure 1.8 (c). In this case, even though the pressure is not high enough to force the 

material deform plastically, the long lasting cyclic application of load causes fatigue 

and finally leads to permanent deformation.140-142 



  22 
 

 

 

Figure 1.9. Worn surface showing features of abrasive wear and adhesive wear. 

 

In many applications, the mechanical components are exposed to oxygen, 

chemicals or other reactive agents. Chemical reactions induced change on the surface 

materials could new substances which are more easily removed as shown in Figure 1.8 

(d). As a consequence, the wear on surface increases due the combined effects of 

chemical reactions and mechanical scratch.143-146 
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1.2.3.  Wear of diamond containing materials 

Although diamond and DLC are well known for their extraordinary mechanical 

properties and chemical inertness, they have been found to wear in many industrial 

applications, such as mining, drilling, machining, or being used as indenters and tips of 

probe-based profilometry.65, 67, 68, 73, 147, 148  

In machining process, the friction force between tools and workpieces is 

extremely high. Tool wear is a common phenomenon even though diamond is superior to 

all other materials in hardness. In order to evaluate the performance of various 

machining tool, extensive studies have been conducted. Flank wear was found to be the 

dominating wear of PCD cutting tools100, 101 in machining of hard ceramics. Wear of 

different portions of cutting tool is shown in Figure 1.10. The most observed wear had 

the features of adhesive wear and abrasive wear. Compared to PCD tools, CVD diamond 

was reported to have a shorter life.100 Hu et al.149 found that delamination was the 

leading cause of wear of NCD and MCD tools. After polishing, the wear resistance of 

the diamond cutting tools increased, leading to longer tool life.150, 151  
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Figure 1.10. Tool wear on diamond cutting tool.  

 

For grinding tools with diamond grits, the primary wear type is attritious wear 

for conventional grinding.1, 152 Ding et al.152 employed ultrasonic vibration-assisted 

grinding to process SiC and they found that macro and micro fracture of the diamond 

grits was the dominating factors leading to wear. Hitchiner and Wilks153 used diamond 

tools to machine hard metals, such as tool steels and stainless steels. The experimental 

results showed that chemical wear of diamond grits induced by oxidation often played 

important role in grinding.  

In scanning and indentation process, friction between probe tip and sample 

surface is inevitable. Actually, friction induced wear is one of the most common 
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reasons for failure of the probe.154 Wear of probes is one of the major concerns of 

researches because damage or deformation of probes resulted from wear reduce the 

precision of measurements and tests. Liu et al.155 fabricated an ultrananocrystalline 

diamond (UNCD) probe for AFM scanning. In subsequent experiment, the UNCD 

probe showed much better wear resistance than the conventional silicon nitride probe. 

Both abrupt fracture and slowly grown wear were found in a diamond coated AFM 

probe by Chung and Kim.154 In addition to fracture and gradual wear, Liu et al.156 

demonstrated that the adhesive force led to the damage and wear of probe. Kim et al.67 

confirmed this statement. In their experiment with UNCD probe, the domination wear 

mechanism was the detach of grain from the probe rather than surface atoms erosion.  

 

1.3.   Monitoring of wear  

Great attention has be paid to study the friction and wear of diamond 

containing materials. Exploring how wear happens and understanding the wear 

mechanism are key to improve the performance and prolong the service life of these 

materials. In this section, approaches for investigating diamond wear will be discussed. 

  

1.3.1.  Conventional approaches  

Optical sensor system shown in Figure 1.11 can be utilized to detect the surface 

morphology of working tools.157-162 The tool wear is evaluated through comparison of 

the surface morphology. Due to the limitation of measuring speed, only quasi-on-line 
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investigation can be achieved by this type of system and the acceptance in industry is 

slow.158 Cutting force has been used as an indirect indication of surface wear on 

machining tool.90, 163-167 The drawback of cutting force signal method lies to the 

complicated conditions affecting the forces and the difficulties to develop a strong and 

precise system. Vibrations and acoustic emissions during machining process reveal the 

change on the machining tools. As a result, these signals can be employed to evaluate 

the wear of the tools.168-174 Fixing sensors for detecting these signal in a suitable 

location is usually a problem.  

 

 

Figure 1.11. Optical sensor system for tool wear measurement. 
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1.3.2.  Tribo-electrochemical investigation  

The combination of tribological study and electrochemical investigation have 

been recently used to evaluate the material removal on the sample surface in chemical 

mechanical polishing (CMP) and electro-chemical mechanical polishing (ECMP) 

process.175-179 By measuring the electrochemical impedance of the sample, the in situ 

observation in tantalum CMP and ECMP was achieved.175 The chemical formation and 

mechanical removal of tantalum oxide was studied during the polishing process. The 

material removal process in CMP and ECMP is very similar to the material loss due to 

wear. In both cases, deformation of asperities or sharp peaks is generated due to 

external effects and materials are forced to be detached from their original site. In 

addition, multiple components determine the final result. Mechanical force induces the 

friction force between two surfaces in contact. Chemical reactions leads to change of 

chemical composition and surface structure. Electrochemistry positively or negatively 

affects these processes. From the perspective of basic reactions, the mechanism of 

wear and material removal in CMP and ECMP is the same. Therefore, it is possible to 

use the tribo-electrochemical approach to study wear of diamond containing materials.  
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CHAPTER II 

MOTIVATION AND OBJECTIVES 

 

Diamond is the hardest material on earth. Diamond composites have been one 

of the hardest material systems today. As stated in Chapter I, diamond materials are 

widely applied in occasions where they rub with another surface. Under external load, 

loss caused by friction and wear of either diamond or the other phase is one of the 

major concerns in applications of this type of material. Diamond materials possess 

excellent mechanical properties but their wear sometimes leads to serious accidents in 

industrial applications. Without thorough understanding of their wear mechanisms, 

failure prediction has not been possible. In order to improve the performance of mating 

pair containing diamond materials, better understanding of interfacial behavior and 

tribological properties of diamond is highly desired.  

Due to poor industrial productivity of diamond, it is impossible for diamond 

bulk to be widely applied. Small particles and thin films are the two primary forms of 

diamond materials in current applications. Based on this background, diamond grits 

reinforced ceramic (Si and SiC) composites and nanocrystalline and microcrystalline 

diamond films are studied in the present research. These composites are chosen 

because silicon cemented diamond materials have shown excellent resistance for 

erosion wear in spray drying powder processing. The reported superior high stiffness 

and hardness of this type of material also make them potential applicant in heavy 
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machinery industry. On the other hand, the high wear resistance and outstanding 

biocompatibility of nanocrystalline and microcrystalline diamond enable them to be 

promising materials for biomedical applications. The composites will be synthesized 

by means of reaction sintering to form silicon carbide as the primary binder phase 

between the diamond particles. The thin films will be prepared using microwave 

plasma chemical vapor deposition (MPCVD). These materials are characterized and 

investigated in this study. The tribological properties and interfacial behaviors are 

evaluated based on the experimental results.  

There are three major objectives in this research. The following chart illustrates 

the approaches to achieve these objectives.  

 

 

Figure 2.1. Flow chart of this research. 
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2.1 Development of a novel approach to monitor the friction of diamond in situ 

Unpredictable wear of materials usually leads to disastrous consequences. In 

situ monitoring of a wear process is scientifically interesting and practically important. 

There is no approach available to real-timely detect the wear of insulating diamond. A 

novel electrochemical method will be proposed in this research to monitor the change 

on diamond surface.   

 

2.2 Investigation of the mechanism of wear of diamond composites 

Diamond-reinforced ceramic composites present a type of material with 

ultrahigh hardness and strength. These materials usually work under harsh conditions. 

Drilling and mining tools, for instance, have to sustain extremely high contact pressure 

and frequent shock. In order to improve the design and service life of these 

components, it is necessary to understand the wear mechanism, which has not been 

well studied. Tribochemical examination of the diamond composites will be conducted 

using a pin-on-disk configuration in both aqueous and dry environments. 

Characterization will be carried out on worn disks and wear debris to identify the 

possible processes on the diamond surface during friction and wear. 

 

2.3 Optimization of the diamond-cartilage friction pairs  

Nanocrystalline and microcrystalline diamond are potential candidates for 

coating film on artificial joint in biomedical applications. The tribological properties of 
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the diamond film will be dramatically impacted by different fictionalizations. 

Understanding interfacial behavior of diamond with different functionalized groups 

will benefit the development of prosthetics. By using tribological approach, the 

interfacial properties of diamond-biomaterial contact will be revealed.  
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CHAPTER III 

MATERIALS AND METHODS 

 

Approaches and procedures employed in the present research are described in 

this chapter. The first section reveals the information about the materials used. The 

second section description about the characterization approaches. Details on 

tribological experiments and electrochemical investigation are also introduced in this 

chapter.   

 

3.1.   Materials 

Two diamond-reinforced ceramic composites (DRCC) were investigated in the 

current research. They are composed of silicon, silicon carbide and diamond grits. The 

two types of composites have the same compositions but each component shares 

different weight fractions. The compositions and mechanical properties of these two 

composites are listed in Table 2.1. The one with less amount of diamond and smaller 

grit size is designated as DRCC-1. The second one with more and larger diamond grits 

is designated as DRCC-2. The silicon carbide and silicon serve as the binder phases to 

hold the diamond particles together in reactive sintering. Samples were made into disks 

and hemispherical pins to facilitate the tribotest in a pin-on-disk configuration. The 

diameter and the thickness of the disk are 50.5 mm and 7 mm, respectively. The 

diameter of the pins is 8 mm. 
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In order to evaluate the tribological behavior and interfacial properties of 

diamond-biomaterial contact, human cartilage was selected as the mating phase with 

diamond surface. The human cartilage used in this study was a piece of hip joint 

cartilage , which was obtained from Shandong Orthopedic Hospital, China. Six 

diamond samples were prepared, including nanocrystalline diamond (NCD), ammonia 

treated NCD (NCD-NH3), hydrogen treated NCD (NCD-H2), microcrystalline diamond 

(MCD), ammonia treated MCD (MCD-NH3), and hydrogen treated MCD (MCD-H2). 

The NCD was deposited on silicon surface using MPCVD method with argon-rich 

CH4/H2/Ar plasmas. The MCD was prepared by means of DC arc jet CVD in 

circulating CH4/H2/Ar environment. The as-deposited MCD was then polished with 

diamond grinding wheels. Hydrogen treatment was carried out at 750-800 °C for 15 

min while ammonia treatment was at 300 °C for the same time. More details about the 

sample preparation can be seen in other references.41, 180 

 

3.2.   Characterization 

Optical microscope was used to examine the composite disk surface after 

frictional experiments. The surface morphology of cartilage after wear test was also 

investigated using the optical microscope to check the influence of long time friction 

on surface morphology.  
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Table 2.1. Composition and mechanical properties of the two diamond composites. 

 DRCC-1 DRCC-2 
Diamond (wt.%) 55-65%  

   

20-35% 
SiC (wt.%) 30-40% 65-75% 
Si (wt.%) 2-10% <6% 
Density (g/cm3) 3.33-3.38 2.85-3.1 
Hardness (HV) 3922 2746 
Young’s Modulus (GPa) 760 450 
Poisson’s ratio 0.12 0.15 

 

The thin diamond films were studied using Raman spectrometer (Horiba 520i, 

HORIBA, Ltd.) to determine the impact the functionalization on the surface structure. 

The surface of diamond composite DRCC-1 and its wear debris were measured as well. 

The wavelength of the excitation laser was 532 nm. The spectra were scanned from 

400 cm-1 to 2000 cm-1.  

The composite disk surface was checked by scanning electron microscope 

(SEM) (Vega, Tescan Corp.) with an accelerating voltage of 15 kV after sputtering 

coating (PVD75, Kurt J. Lesker Corp.) of a 10 nm layer of Chromium.  

Surface roughness of the diamond grit in the composite before and after 

frictional experiments were compared using a profilometer (DEKTAK, Veeco 

Instruments Inc.). 2D and 3D profile of the worn disk surface was obtained using a 

Keyence VK9700 profilometer (Keyence Corp.).  

The surface morphology of thin diamond film was evaluated using an atomic 

force microscope (Nano-R2, Pacific Nanotechnology) in noncontact mode. Nanorule 
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(Pacific Nanotechnology, Inc.) program was employed for analysis and image 

processing. 

 

3.3.   Tribological investigation 

In the current research, the coefficient of friction (COF) in the contact was 

measured using a pin-on-disk tribometer (CSM Instruments). The schematic 

illustration of the setup is displayed in Figure 3.1. During the experiments, weight was 

applied on the steel rod to generate load. The supporting arm, steel rod and the pin 

were fixed together and stayed still in the experiment. The disk was attached to the 

stage, which could be driven to move in either cyclic linear or rotational motion. The 

friction force and COF were recorded by the piezoelectric sensor and exported after the 

experiment. The applied load can be adjusted from 0.01 N to 10 N and the range of the 

speed is from 10 rpm to 600 rpm. 

In the experiments for the composites, rotational mode was firstly used. The 

disk was attached to a rotating polyvinylchloride (PVC) stage and the pin was fixed to 

the steel rod in Figure 3.1 of the tribometer through a Teflon rod. The rotating stage has 

the shape of a cup and was filled with water during experiments. The distance from the 

pin to the center of rotating disk was 18.8 mm. In order to evaluate the impact of load 

and speed on friction, the applied load was increased from 2 N to 10 N and rotating 

speed was adjusted from 10 rpm to 30 rpm. Both the pin and the disc was immersed in 

water, which served as lubricant.  
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Due to the high wear resistance of diamond, relatively high load was necessary 

to generate notable wear track. Pin-on-disk experiments were carried out with two pins 

forced against the disk using an industrial tribotest setup. The center and the contact 

points of two pins on the disk were positioned in a straight line. The distance from each 

pin to the center of the disk was equal. This design is to increase the test efficiency of 

hard materials. The resulting wear track diameter on the disk was 15.24 mm. The load 

applied to each pin was 250 N resulting a total load of 500 N. The experiment was run 

for 8 h at a sliding speed of 79.4 mm/s in an aqueous environment. The accumulating 

sliding distance was 2,298 m.  

Wear debris was necessary for the analysis of wear mechanism. In aqueous 

environment it was very difficult to collect the wear debris. As a result, linear mode 

was then applied in dry condition to generate adequate amount of wear debris. The 

linear motion mode was utilized in order to collect pilled-up debris at two ends of the 

wear track. The experiments lasted for 10 min with a load of 10 N and a maximum 

linear speed of 79.4 mm/s. Each measurement of COF was repeated three times for 

statistic analysis. After the frictional experiments, the composites surface was 

characterized.  

In the experiments for diamond-cartilage contact, the cartilage was attached to 

the steel rod in Figure 3.1. The diamond sample was attached to the stage which 

reciprocally move with a length of 3 mm. During the frictional experiments, DI water 

and commercial calf bovine serum (Thermo Fisher Scientific Inc.) was added into the 
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contact as lubricant. The COF under different conditions was measured. The sliding 

speed was changed from 2 mm/s to 6 mm/s with an increment of 1 mm/s while the 

applied load was increased from 0.5 N to 1.5 N with an increment of 0.25 N. 

Relatively small loads and speeds were applied to mimic the real hip joint. Each 

experiment was repeated three times under the same conditions. The diamond samples 

were cleaned with acetone and the cartilage was cleaned with ethanol before each 

experiment. In order to evaluate the influence of friction on the surface morphology of 

cartilage, wear test was carried out with a fixed load of 1 N and a fixed sliding speed of 

6 mm/s for 2000 cycles. After that, the surface of the cartilage was characterized using 

optical microscope.  

 

3.4.   Electrochemical study  

Besides tribotests, the potentiostatic electrochemical impedance spectroscopy 

(EIS) and potentiodynamic experiments were utilized to evaluate the electrochemical 

properties at the interface of diamond-diamond contact. The EIS and potentiodynamic 

measurements were carried out using a Gamry potentiostat (Reference 600, Gamry). 

The potentiostat has three electrodes, namely working electrode, counter electrode, and 

reference electrode. A drop of silver paint was used to connect a conductive wire and 

the pin.  

 



  38 
 

 

Figure 3.1. Schematic of experimental setup for tribological measurement. 

 

As a result, the pin can serve as the working electrode in the electrochemical 

investigation system. The PVC stage and Teflon rod described in section 3.2 separated 

the composite pin and disk from other conductive components in the system. During 

experiments, all three electrodes were submerged in water. The expression of the 

experimental setup is shown in Figure 3.2. Bode plot and Nyquist plot were generated 

from the EIS tests. COF curves and the Tafel curves were obtained through tribotests 

and potentiodynamic measurements, respectively.  

All experiments were performed following a specific procedure. The 

experiment was conducted for 5 min at a constant load and speed to allow the system 

to stabilize. When the system reached the steady state, the potentiostat was activated 

and the EIS measurement was started. As soon as the EIS measurement was 

completed, the potential dynamic experiments were then conducted. During the EIS 
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test and potential dynamic measurement, the COF was recorded simultaneously 

through the tribometer. After the experiment, the Bode plot and the Nyquist plot were 

analyzed using Gamry EIS 3000 program to obtain the equivalent circuit model. The 

measured Tafel curves were analyzed to investigate the impact of loads and speeds on 

the phase transformation and wear process. 

The EIS measurements were performed by scanning frequencies from 0.05 Hz to 

1 MHz with an AC potential of 100 mV. In the potentiodynamic experiments, the 

scanning range was -1.4 V to 0.4 V for DRCC-1 and -1 V to 1 V for DRCC-2. The 

scanning rate and sampling rate were 5 mV/s and 1/s (1 Hz), respectively.  

 

 

Figure 3.2. Schematic of experimental setup for electrochemical measurement. 
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CHAPTER IV 

IN SITU MONITOR IN FRICTION AND WEAR THROUGH 

TRIBO-ELECTROCHEMICAL CHARACTERIZATION1

 

During rubbing, interfacial properties at the contact reveal information about 

friction and wear. In this chapter, an electrochemical method will be developed to 

monitor the wear process of two diamond-reinforced ceramic composites (DRCC). 

These samples have different diamond grits sizes and concentrations and the friction 

process takes plan in an aqueous environment. The in situ method to be developed 

includes setups for potentiodynamic measurements and electrochemical impedance 

spectroscopy. The tribo-electrochemical performance of the two composites will be 

investigated. The impact of applied load and rotating speed on COF will be evaluated. 

 

 

4.1.   Development of an in situ method to monitor the friction and wear process 

In situ monitor of a wear process is scientifically interesting and practically 

important. Unpredictable wear and failure of mechanical components could be avoided 

and the stability of the whole system will be improved if in situ monitor is possible. We 

have recently developed a novel approach using tribo-electrochemical principles to study 

                                                        
 
1Part of this chapter is reproduced by permission of The Electrochemical Society from  
“In Situ Tribo- Electrochemical Evaluation of Wear of Diamond Composites” by 
Huaping Xiao, et al., J. Electrochem. Soc., 2014, 161, E87-E92 (Copyright © 2013,  
The Electrochemical Society)  
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material removal and degradation in chemical mechanical polishing process for 

metals.175, 176, 179 In this study, a setup containing a tribometer and a potentiostat will be 

assembled for this purpose. The electrochemical impedance spectroscopy (EIS) and 

potentiodynamic measurements will be used as an analytical tool to evaluate the surface 

chemical conditions. The experimental setup and conditions were described in Chapter 

III. The results of potentiodynamic measurements will be discussed in this section. 

In the potentiodynamic experiments, the change of current density passing 

through the composite surface with applied potential was recorded during rubbing. 

Physicochemical change on the surface can be evaluated based on the experimental 

results. Tafel curves at different conditions are illustrated in Figure 4.1. The 

measurements under different loads and rotating speeds are compared. The Tafel 

curves of DRCC-1 show little change when the applied loads or rotating speed is 

increased. For DRCC-2, different phenomenon is observed. The Tafel curves shift to 

lower potential and higher current density with increasing load and rotating speed. 

More interestingly, in the magnified plots the Tafel curves show wave patterns.  
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Figure 4.1. Relation between applied potential and responding current density (Tafel curve) in 

potentiodynamic measurements for DRCC-1 (a, b) and DRCC-2 (c, d) under different loads and rotating 

speeds (The inserts are magnified plots at positive potential under 2 N and 12 rpm/ 5 N and 10 rpm). 
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Fig. 4.1. Continued. 
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When the pin and disk come into contact, the diamond particles sustain the 

applied load because Si and SiC are easily removed. During friction, Si and SiC were 

worn first as illustrated in Figure 4.2. Figures 4.2 (a) and (b) reveal the 2D and 3D 

profile of the DRCC-1 after friction experiments, respectively. In Figure 4.2 (a), the 

profile along a diamond particle is displayed. It is clear that the diamond surface is 

higher than the surrounding phase. The plateau region indicating the diamond particle 

and valley region showing the ceramic phase can be identified in Figure 4.2 (b). The 

relatively elevated diamond particle confirms that the ceramic phase was removed 

before the diamond particles. The two surfaces in contact are diamond-diamond in 

most occasions. Due to the non-uniform distribution of diamond particles the applied 

load could be sustained by only a few diamond particles. This leads to small real 

contact area, resulting high contact pressure. The phase transformation from sp3 

bonded carbon (diamond) to sp2 bonded carbon(amorphous carbon) occurs under high 

pressure in the tribotest.181-183 In this study, the transformed amorphous carbon is 

removed by harder diamond particles on the counter face during tribotests. The 

electrical conductivity of amorphous carbon is much higher than that of diamond.184, 185 

Therefore, the phase transformation from diamond to amorphous carbon and the wear 

of the amorphous carbon can be evaluated by the change of electrical properties. In the 

potentiodynamic measurement, such amorphization-wear process is demonstrated by 

the periodic change of the current density. When the diamond surface is amorphorized, 

the conductivity increases and so does the current density. The conductivity and the 
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current density decrease as the amorphous carbons is removed.  

Figure 4.3 shows the measured, fitted and calculated relation between potential 

and current density of DRCC-2 under 5 N and 15 rpm. To facilitate the calculation, the 

x axis and y axis of Tafel curve were interchanged. Current density is exponentially 

related to potential according to Tafel equation.186 That is: 

i = mVn  (4-1) 

where i is the current density, V is the potential, m and n are constants to be 

determined from curve-fitting of the measured data. In this study, the amorphization- 

wear process produced sinusoidal pattern. So Equation 4-1 is modified to: 

i = mVn + a sin( 2π
T

V + θ) (4-2) 

where a is the amplitude of the sine function, T is the period and θ is the shift of 

the phase. The value of m and n were obtained by means of non-linear curve fitting 

using the Origin 8 program. The fitting curve is displayed in Figure 4.3. Substituting 

the value of m and n into Equation 4-2, a, T and θ can be determined. We calculated 

the duration in time by evaluating the potential span in each period. Take Figure 4.3 as 

an example, the potential period in the figure is 27.3 mv. The scanning rate for the 

potentiodynamic measurement was 5 mV/s, indicating that 5 mV in potential scale 

stands for 1 s in time scale. As a result, the time span is 27.3/5=5.46 s. 
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Figure 4.2. 2D (a) and 3D (b) profile of DRCC-1 surface after friction experiments, the two circles in (a) 

and (b) indicate the same area. 
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Figure 4.3. Measured (solid line), fitted (dashed line) and calculated (dotted line) relation between 

applied potential and responding current density of DRCC-2 under 5 N and 15 rpm. 

 

4.2.   Evaluation of frictional behavior  

In this section, frictional behavior at the interface will be evaluated using 

electrochemical method and tribological method.  

 

4.2.1.  Electrochemical method 

The impacts of loads and rotating speeds on the fluctuation behavior were 

analyzed by means of mathematical calculation. Table 4.1 lists the calculated values of 

a and T under different conditions. Similar tendencies of the calculated results are 
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observed for both DRCC-1 and DRCC-2. At constant rotating speed, the period of the 

sine function change little with loads. The amplitude, however, gradually increases as 

the loads is increased. When the applied load is kept constant, the period reduces and 

the amplitude remains stable with increasing rotating speed. More loads lead to higher 

contact pressure and more diamond carbon is amorphorized. More phase 

transformation alters electrical properties of the surface so the measured current 

density shows greater change. When the rotating speed is increased, the period of 

amorphization-wear process becomes shorter which means the amorphous carbon on 

the surface is removed faster. It is interesting that the calculated amplitude of DRCC-2 

is much greater than that of DRCC-1. This means that more materials on the DRCC-2 

surface is removed under the same condition.  

 
Table 4.1. Calculated value of a and T under different conditions. 
 

 2N- 
12rpm 

4N- 
12rpm 

6N- 
12rpm 

8N- 
12rpm 

10N- 
12pm 

5N- 
10rpm 

5N- 
15rpm 

5N- 
20rpm 

5N- 
25rpm 

5N- 
30rpm 

DRCC-1 
a 0.12 0.22 0.36 0.42 0.61 0.41 0.37 0.38 0.31 0.39 

T (s) 8.66 7.86 7.62 7.9 7.96 9.66 5.71 3.78 2.84 2.28 
DRCC-2 

a 2.8 3.6 4.4 30.2 55.1 3.4 3.8 4.3 4.8 5.2 
T(s) 7.61 7.48 7.64 7.59 7.52 9.89 5.46 3.75 2.85 2.25 

 

4.2.2.  Tribological study 

The frictional behavior of the composites investigated using a pin-on-disk 
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configuration will be discussed in this section. The change of COF with loads and 

speeds was recorded. Figure 4.4 (a) displays the sample curve demonstrating COF 

changes with time. The average value of the COF curve was estimated and used as the 

effective COF for each test. The test was repeated for three times. The error bars in 

Figure 4.4 (b) and (c) show the highest and lowest data points. The impact of the 

rotating speed (Figure 4.4 (b))and applied load (Figure 4.4 (c)) on COF is shown. At a 

constant load of 5 N, the COF of DRCC-2 decreases with increasing rotating speed 

whereas the COF of DRCC-1 remains stable within the same speed range (10 rpm to 

30 rpm). When the rotating speed is fixed, the COFs of both DRCC-1 and DRCC-2 

show an upward trend as the applied load is increased. It is clear that the COF of 

DRCC-1 is much lower than that of DRCC-2 under the same conditions. Considering 

the similar composition of the two composite, one possible reason for the significant 

difference in COF is due to the difference in grain size of diamond particles. As 

illustrated in Figure 4.2, diamond surfaces rub against each other in most occasions. 

The smaller particle size and lower diamond concentration of DRCC-2 lead to smaller 

asperity area. After the friction experiment, the area fraction (the ratio of area of 

diamond asperities to that of the whole surface) on the pin was measured using image 

processing technique. The color of the diamond grit is different from that of the 

ceramic phase as shown in Figure 4.2 (a). By defining a threshold value of grey level, 

the diamond region was easily differentiated from the ceramic phase. 
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Figure 4.4. Sample curve demonstrating COF as a function of time (a), variation of COF with rotating 

speed (b, applied load is 5 N) and applied load (c, rotating speed is 12 rpm). 

 

The area fraction of DRCC-1 and DRCC-2 are ~60% and ~30%, respectively. The 

smaller asperity area leads to higher local pressure. High pressure impedes the relative 

motion and further causes the increase in friction force as well as the COF. The contact 

pressure increases with applied load, so in both cases the COF goes up when load is 

raised. This result correlates with the increased amplitude of the sinusoidal pattern with 

rising load, which is shown in Table 4.1. The amplitude is a reliable indicator of the 
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friction force when the direct measurement of force is not available.  

 

4.3.   Model of the interfacial interactions 

In the previous sections, a novel electrochemical method using potential 

dynamic measurements was developed to monitor the dynamic change on composite 

surface. The frictional behavior of diamond composite sliding against itself was 

evaluated. In this section, EIS measurements will be utilized to investigate 

electrochemical impedance properties on the composite surface.   

 

4.3.1.  Interfacial properties of DRCC-1in aqueous environment  

DRCC-1 and DRCC-2 have the same chemical composition but the 

concentration of each components, namely diamond grit, Si and SiC, is different. 

Electrochemical properties of DRCC-1 will be analyzed in this section.  

 

4.3.1.1. Bode plot and Nyquist plot 

The change of electrochemical impedance with applied AC frequency reveals 

the properties of surface and interface during sliding. Figures 4.5 (a) and 4.5 (b) show  

relation between impedance and frequency under 5 N and 20 rpm for DRCC-1. In the 

Bode plot (Figure 4.5 (a)) for DRCC-1, one relaxation at 2 Hz (dotted arrow) is 

observed.  
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Figure 4.5. Bode plot (a), Nyquist plot (b), equivalent circuit model (c) and schematic representation (d) 

for DRCC-1 under 5 N and 20 rpm (Dots are measured results and curves are simulations. The insert in 

Nyquist plot is the magnified plot at high frequency. The arrow in Nyquist plot indicates the direction of 

lower frequency.). 
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Figure 4.5. Continued. 
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The relaxation phenomenon is the temporary delay of the current which is 

induced by the change of the dielectric properties of the interface. In the Bode plot, the 

peak of phase angle as we can see in Figure 4.5 (a) is an indication of relaxation. The 

Nyquist plot (Figure 4.5 (b)) reveals the relationship between the real and the 

imaginary parts of the impedance at different frequencies during friction. The result of 

EIS experiment reflects the change of current passing through the electrode and 

solution with applied voltage. In most cases, the system is not pure resistive and a 

phase shift is usually observed due to the capacitive and the inductive component. The 

variation of the dielectric properties of the interface causes the change of the 

responding current. Therefore, the properties of the interface can be evaluated if the 

electrical measurements are available.  

 

4.3.1.2. Equivalent circuit model 

The equivalent circuit model (Randle model) is a widely used tool to 

investigate the physicochemical processed at the interface in electrode-electrolytic 

systems.187 In the model the solution is usually represented as a resistor (R1).188 In 

aqueous environment, an interfacial double layer is formed and two electrical 

components can be used to represent it.189, 190 In the case of DRCC-1, a constant phase 

element (CPE) and a Warburg impedance (W) are determined by means of modeling. 

The relaxation phenomenon observed in Figure 4.5 (a) indicates charge transfer or 

formation of new components at the interface.191 In the current system, the surface of 
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DRCC-1 represents a new set of electrical components. Modeling was attempted to 

determine the unknown components. A simple resistor-capacitor combination was 

generated. The complete equivalent circuit for DRCC-1 is displayed in Figure 4.5 (c). 

Comparison between the measured results and the simulated results can be seen in 

Figure 4.5 (a) and (b). Validity of the proposed equivalent circuit model is confirmed 

by the close match. Figure 4.5 (d) illustrates the physical model of the interface. In 

Figure 4.5 (d) impedance of bulk liquid is represented as R1. No chemical reaction is 

involved in the water so that the R1 is an ohmic resistor. Due to the excess charge on 

the electrode surface, ions with opposite charges in water are attracted to the interface 

and form the interfacial double layer. A parallel CPE and Warburg impedance 

combination (CPE and W) are used to describe the interfacial double layer. The 

imperfect capacitor (CPE) produces a phase delay less than 90°. According to the 

simulation result, the DRCC-1 surface is described as a combination of resistor and 

capacitor. The boron-doped diamond is more conductive so the diamond phase is 

supposed to be the resistor and the ceramic phase is represented by the capacitor. In the 

case of diamond, the charge transfer caused by chemical reaction is negligible due to 

the chemical inertia of diamond. Therefore, the resistor representing diamond is also 

ohmic. 

 

4.3.2.  Interfacial properties of DRCC-2 in aqueous environment 

This section will focus on DRCC-2. Compared to DRCC-1, DRCC-2 has lower 
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diamond grit size and weight fraction. DRCC-2 presented higher friction as shown in 

section 5.1. The electrochemical properties of DRCC-2 with static potential will be 

investigated in the following.  

 

4.3.2.1. Bode plot and Nyquist plot 

The change of impedance with frequency under 5 N and 20 rpm for DRCC-2 is 

shown in Figure 4.6 (a) and 4.6 (b). The relaxation phenomenon (indicated by the 

dotted arrow) is observed at 0.35 MHz.  

 

 

Figure 4.6. Bode plot (a), Nyquist plot (b), equivalent circuit model (c) and schematic representation (d) 

for DRCC-2 under 5 N and 20 rpm (Dots are measured results and curves are simulations. The insert in 

Nyquist plot is the magnified plot at high frequency. The arrow in Nyquist plot indicates the direction of 

lower frequency. ). 
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Figure 4.6. Continued. 
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Figure 4.6. Continued. 

 

4.3.2.2. Equivalent circuit model 

In addition to the electrical components of the solution (R1) and the double 

layer (CPE and R2), a set of inductor and resistor were included in the model to 

represent DRCC-2. The proposed physical model is shown in Figure 4.6 (d). Interfacial 

double layer also forms at the interface in case of DRCC-2 and is represented as a 

paired CPE and resistor.  

All the resistor are regarded as ohmic for the same reason mentioned in the 

discussion for DRCC-1. In DRCC-2, the density of conductive diamond particles is 

much less than DRCC-1.The passage for electrons in DRCC-2 is more complicated 

and coil-like pass ways may form. This is one explanation for the inductive component 



  59 
 

in the circuit. The inductor causes the phase advance shown in Figure 4.6 (a). Grit size 

is one possible explanation for the difference between the two models. The path of 

electron flux inside the composite changes when a sample with a different grit size is 

used. 

 

4.4.   Summary 

Two diamond-reinforced-ceramic composites, namely DRC-1 and DRC-2 were 

investigated using a tribological and electrochemical approach. A tribo-electrochemical 

approach was utilized to real-timely evaluate the friction and wear process on the 

composite surface. Even though these two composites have the same chemical 

composition, very different equivalent circuit models were developed based on the EIS 

measurements. This difference was due to the lower concentration and grit size in 

DRCC-2, which led to a more complicated path for electrons inside the composite. In 

the potentiodynamic investigation, experimental data revealed the sinusoidal behavior 

of the current density against potential. It was correlated to the amorphization-wear 

process during rubbing. The amplitude in the sinusoidal pattern is an indication of the 

intensity of the amorphization-wear process. This behavior was affected by the grit size 

of diamonds. The larger diamond grit generated less current due to lower wear in 

comparison with otherwise. These results show that friction and wear of the diamond 

reinforced ceramic phase composites can be in situ monitored by means of the 

proposed electrochemical approach. More importantly, this approach is also applicable 
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to monitor friction and wear process of other nonconductive material, which has not 

been possible until this study. Real-time detection of wear between a rubbing pair is of 

critical significance for the performance and safety of industrial systems. The findings 

in this study provide a new method to solve this problem.  
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CHAPTER V 

MECHANISMS OF WEAR AND PHASE TRANSFORMATION2

 

In this chapter, the wear mechanisms of diamond-reinforced ceramic composite 

(DRCC) will be investigated. Characterization techniques utilized include Raman 

spectroscopy, optical microscope, and scanning electron microscope (SEM). Analysis 

was conducted before and after tribotests. Wear mechanisms will be proposed based on 

the observed phase transformation of diamond carbon in the friction process.  

 

 

5.1.   Characterization of wear track 

During friction and wear, the surface microstructure of the composite subjects 

to change. In this section, the change of structure will be evaluated. Experimental 

conditions have been discussed in Chapter III. The optical image of the scanned region 

on the DC-1 disk surface is displayed in Figure 5.1 (a). Two distinct regions, the 

non-wear region and the wear region, can be differentiated. The non-wear region is 

generally dark while notable bright particles can be seen in the wear region. To 

understand this further, we conducted Ramon spectroscopic analysis of worn diamond 

samples. The reference area (no wear) was labeled as area (1) in the optical image in 

Figure 5.1 (a). The worn diamond particles, showed shinny spots in the same optical 

                                                        
 
2Part of this chapter is reproduced with permission from “Silicon-oxide-assisted wear 
of a diamond-containing composite” by Huaping Xiao, et al., Journal of Applied 
Physics,2013, 114, 223505 (Copyright © 2013, AIP Publishing LLC)  
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image, were labeled as (2) to (6) in Figure 5.1 (a). Raman spectra are illustrated in 

Figure 5.1 (b). At spot 1, the strong peak for Si (520 cm-1) and visible peaks for SiC 

(795 and 970 cm-1) were detected. In the wear region, the intensity of the featured 

peaks for Si and SiC were greatly reduced. At spots 2, 3, and 4, small peaks for Si (520 

cm-1) and SiC (795 cm-1) can be seen. At spots 5 and 6, however, no peaks for Si and 

SiC can be determined. With regard to the peaks for carbon, strong Raman peak for 

diamond around 1333 cm-1 were detected at all those six spots. Smooth and broad band 

appear near 1406 cm-1 (the D band) and its intensity increases as the wear of the 

diamond particle increases. Table 5.1 lists the intensities of the carbon peaks at 

different spots. Another observation is that the featured line for D band was found to 

shift from spot 2 to spot 6 as shown in Figure 5.1. From spot 2 to spot 6, the position of 

D band shifts to higher wavenumber and then shifts back. For better understanding the 

shift of D band, the spectra between 1250 and 1550 cm-1 were deconvoluted using 

Lorentzian fitting. Results in Figure 5.2 show that the fitted middle peak is very close 

to the position of the original D band. 
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Figure 5.1. (a) Optical image and (b) Raman spectrum for DC-1 disk surface (spot 1 is in non-wear 

region and the other spots are in wear region, the numbers on line 3 to line 6 are the positions of D band 

for spot 3 to spot 6). 

 

It is noted that for adequate comparison, the whole peaks are not shown. The 

position of the fitted middle peak shows an upward-downward tendency as observed in 
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the original spectra. In addition to the middle peak, another peak around 1460 cm-1 is 

identified by means of convolution. This peak is from the finite-size crystals of 

graphite.192 Again, the according wavenumber of the right peak increases first and then 

decreases.  

 

Table 5.1. Intensity of Raman peaks for carbon on DRCC-1 disk. 

No. of spot Diamond 
(sp3) 

D band (sp2) sp3/sp2 

1 1515 30 50.5 
2 11945 204 58.6 
3 17865 358 49.9 
4 56142 1452 38.7 
5 42872 1639 26.2 
6 39909 15602 2.6 

 

 

The SEM images of both the non-wear (reference) region (Figure 5.3 (a) and 

(c)) and the wear region (Figure 5.3 (b) and (d)) were obtained. The diamond particles 

can be clearly distinguished in both regions. The significant difference between the two 

regions is that the particle surface in the wear region is smoother than that in the 

reference.  
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Figure 5.2. Deconvolution of Raman spectra in the range between 1250 and 1550 cm-1 (the positions of 

the middle and the right peak for each spot are shown in numbers). 



  66 
 

 

 
 

Figure 5.3. SEM images of non-wear region (a and c) and wear region (b and d) on the disk. It is clear 

that the diamond was polished. 

 

The measured surface roughness of the diamond particles in the wear region is 

33.9±12.8 nm. In the non-wear region, the exact value of roughness cannot be 

determined because it was out of the measuring range. It is clear that it is more than 1 

µm. According to Figure 5.3, it is obviously seen that the diamond grits are polished. 

This is correlates with the shiny surfaces observed under the optical microscope in the 

wear region (Figure 5.1 (a)).    
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5.2.   Characterization of wear debris 

In order to achieve compressive understanding of the structure change in wear 

process, the study of wear debris is necessary. The Raman spectra of wear debris are 

shown in Figure 5.4. The blue (top) and green (middle) lines are for the wear debris 

and the red line (bottom) is reference. There is a sharp peak detected at 510 cm-1 for 

debris 1. Based on previous studies,193, 194 the crystalline Si has a characteristic peak at 

520 cm-1. When being oxidized, this peak shifts toward lower wavenumber down to 

480 cm-1, where a mixture of amorphous Si and silicon oxide existed. With 

amorphization, these peaks are widen.195 According to those, it is clear that the peak at 

510 cm-1 is believed to be a sign of oxidized Si due to friction.  

Compared to the reference plot, the featured peaks for C in wear debris shifted 

from 1333 cm-1 to 1326 cm-1 in debris 2. Zhao et al.196 observed similar downshift of 

Raman peak when diamond particle size was reduced. This is correlated with the shift 

of the Raman peak. A high intensity band at 1596 cm-1 was detected. This is a typical 

G band (sp2 bond) confirming the existence of sp2 bond in the wear debris. It is 

important to note that in Figure 5.1, according to the Raman pattern the debris 1 is 

most likely obtained from SiC/Si phase and the debris 2 from diamond grits.  

 



  68 
 

 

Figure 5.4. Raman spectra of wear debris and non-wear surface. 

 

5.3.   Phase transformation from diamond carbon to amorphous carbon 

The physical properties of the carbon-based composite strongly depend on the 

chemical bonding (diamond sp3 bond and disorder/graphite sp2 bond) that interlink the 

carbon atoms.197, 198 The Raman peak around 1333 cm-1 is an indicator of cubic 
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diamond of pure sp3 bonds.199, 200 As a matter of fact, except for the peak at 1180 cm-1, 

all other lines detected by Raman in the range of 1000-1650 cm-1 are considered to 

originate from carbon with sp2 bonds.201 The most important two features for sp2 bonds 

are the D and G band. The broad D band ranges from 1280 to 1400cm-1 and G band 

ranges from 1520 to 1600 cm-1. 202, 203 

In the case of DC-1, the decreasing ratio of diamond peak to D band and the 

broadening of the D band demonstrate the change of sp3 into sp2 bonds. The phase 

transformation from diamond carbon to amorphous carbon (a-C) took place as evident 

by the decreasing sp3/sp2 ratio. With high sp3 bonds concentration (above 80%), the 

a-C is recognized as tetrahedral carbon (ta-C) in order to distinguish it from ordinary 

sp2 a-C with lower sp3 concentration. On the disk surface the coexistence of cubic 

diamond, ta-C, and a-C is possible because of the nonuniformity of hardness and 

pressure distribution in friction process. At spot 1, 2 and 3, no shiny diamond particles 

are observed, indicating there is no severe wear at those spots. The sp3/sp2 ratio is high 

and cubic diamond is the dominating component at those 3 spots. The wear at spots 4, 

5 and 6 is visually more intense compared to spots 2 and 3 as observed in Figure 5.1 

(a). The results of Raman spectra showed that the intensity ratio of sp3/sp2reduces 

when more wear is generated on the diamond particle. This means the concentration of 

ta-C and a-C increases and sp3 bonded carbon transfers to sp2 bonded carbon with the 

wear process. In this study, the experiments were done in aqueous environment so the 

thermal effect in the phase transformation is negligible. Pressure and shear stress are 
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the two major contributors for the sp3 to sp2 conversion.182, 204, 205 According to 

Pastewka et al.,182 at the amorphous carbon-diamond interface, the carbon atoms 

cannot move so the shear stress is close to zero. The origination of bond breakage is 

from pressure and shear stress only works inside amorphous carbon.   

Regarding the Raman peak shift, the shift of the D band could be attributed to 

two possible reasons. The first explanation is the change of the molecular structure of 

carbon. Any change of the molecular structure could induce the variation of the 

vibrational state of the carbon. In the friction process, the chemical bond between the 

carbon atoms could change and defects could be generated due to the wear of the 

interface. Stress is another possible reason for the shift of D band. High contact 

pressure was applied to the surface during the friction test and it is highly possible that 

residual stress remains in the structure. The downshift of D band under strain had been 

observed in graphite oxide and carbon fibers.206, 207  

 

5.4.   Wear mechanisms of diamond-reinforced composite 

In this study, the wear experiments were conducted in both aqueous and dry 

environment. In aqueous condition, the heat generated due to friction dissipated 

quickly through water. The observed phase transformation is not the consequence of 

the rise in temperature. Under the applied load of 250 N the local contact pressure 

could be up to 31.8 GPa. Under such stress, the phase transformation from sp3 bonded 

carbon to sp2 bonded carbon is induced. This is correlated with our previous study in 
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diamond-like carbon.195 Furthermore, crystalline Si was found to be amorphized and 

oxidized due to sliding. It is well known that amorphous silica is a polishing 

agent.196,208 It is interesting that in our diamond-containing composite, the oxidized 

silicon produces a polishing agent that actually promotes wear of diamond. In this case, 

the weak sp2 bonded carbon is prone to be removed.  

 

 

Figure 5.5. (a) Schematic expression of wear model of diamond composite in friction process, (b) The 

amorphization process for diamond carbon (the carbon atoms in different layers are displayed in red 

(sp2) and purple (sp3)), (c) The silicon oxide assisted wear of sp2 carbon. 
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This mechanism is illustrated in Figure 5.5. In dry condition, the wear process 

is similar to that in wet condition due to humidity (R.H. ~40%) except that the 

temperature is higher because the generated heat accumulates at the contact. High 

temperature could promote the phase transformation and dislocation generation. These 

changes took place even though a smaller applied load.  

 

5.5.   Summary 

This chapter discussed the wear mechanism of diamond grits reinforced 

ceramic composite. In this study, the ceramic phase was a combination of silicon and 

silicon carbide. The specific type of composite presented a class of materials with 

ultrahigh hardness, stiffness and strength. The worn disk surface and wear debris after 

tribological experiments were characterized using Raman spectrometer, SEM, and 

profilometer. Comparison of Raman spectra on the disk showed that the intensity ratio 

of sp3 bonded carbon to sp2 bonded carbon decreases as the wear of diamond particle 

increases. The phase transformation of diamond carbon to ta-C, a-C and graphite like 

carbon is confirmed by the decrease of sp3/sp2 ratio. The SEM images showed that the 

surface became smoother after the tribological experiments. The smoothing was 

confirmed by the reduced roughness of the diamond grits from above 1 µm to 33.9 nm.  

The Raman peak of wear debris identified a shift from crystalline Si (521 cm-1) 

to the mixture of amorphous silicon and silicon oxide at 510 cm-1. This meant that Si 

transformed from crystalline to both amorphous and oxidized structures. The phase 
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transformation weakens the mechanical strength of carbon at the interface. The 

formation of amorphous silica particles as polishing agent promoted wear rather, 

polishing, of diamond that was evident under SEM observation. This was also 

confirmed by the smoothening and reduction of the surface roughness of diamond 

particles. The discovery and understanding of wear mechanism in the present study 

was also applicable to other types of diamond reinforced composite. Diamond had 

much higher hardness than other materials so other phases in the composite were 

removed first as discussed in Chapter IV. High contact pressure between 

diamond-diamond contact led to phase transformation. After that the weaker 

amorphous carbon was removed. In this research, SiO2 served as polishing agent. For 

other diamond reinforced composite there could be no such smoothing effect.  
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CHAPTER VI 

DIAMOND-CARTILAGE FRICTION-PAIR FOR POTENTIAL 

APPLICATIONS IN PROSTHETICS 

 

This chapter will explore the potential applications of diamond materials in 

prosthetics. As a promising material for biomedical applications, diamond has attracted 

great attention due to its chemical inertness, low friction, and excellent 

biocompatibility. Tribological performance of the cartilage-diamond contact in 

deionized water and calf bovine serum environments will be investigated for 

fundamental understanding. To optimize lubrication, hydrogen and ammonia treatment 

will be applied on diamond surfaces. Adhesion and wettability on different diamond 

surfaces will be studied to determine the impact of functionalization on surface 

properties. 

 

6.1.   Investigation of surface morphology with and without functionalization 

Surface morphology of the two mating surface is directly related to friction. In 

this study, the same cartilage will slide on different diamond surfaces. In order to 

evaluate the impact of functionalization methods on surface morphology, AFM was 

used to scan the diamond surface and results are displayed in Figure 6.1. It is obvious 

that the grain size for NCD series is between 10 nm to 30 nm and that of MCD is about 

1-2 µm. No obvious change of morphology is observed after functionalization.  
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Figure 6.1. AFM images showing surface morphology of NCD series (left column) and MCD series 

(right column), the first row is as-deposited samples, second row is after ammonia treatment, and the 

third row is after hydrogen treatment.  
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6.2.   Surface microstructure characterized using Raman spectrum 

Raman spectra of the six diamond samples, which were obtained under the 

same conditions (wavelength of excitation laser is 532 nm with a power of 0.3 watt), 

are displayed in Figure 6.1. For the NCD series, there is no sharp peak observed for 

carbon bond. Three broad bands at 1136 cm-1, 1333 cm-1, and 1587 cm-1 are seen. They 

are typical bands for NCD.19, 209-211 The D (1333 cm-1) and G (1587 cm-1) bands are 

related to sp2 bond and can be detected in Raman spectrum due to the grain boundary 

in NCD structure.19 There is no obvious change of the spectra for NCD after ammonia 

and hydrogen treatments. For the three MCD samples, sharp peak at 1333 cm-1 

indicating cubic diamond is observed. The diamond peak is due to the sp3 bond 

between carbon atoms. In addition to the sharp peak, the D band is also detected. After 

treatment with hydrogen, the band for sp2 bond shifts to 1130 cm-1 and 1586 cm-1. Its 

position changes to 1226 cm-1 after ammonia treatment. The band shift is due to the 

interaction between the dangling bond on the surface and the -H or -NH2 end group 

from hydrogen and ammonia treatment. 
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Figure 6.2. Raman spectra for diamond. 

 

6.3.   Impact of functionalization on contact angle and adhesion force 

Contact angle of DI water on different diamond surfaces are compared in 

Figure 6.3. For pure NCD and MCD, the measured contact angles are 82° and 56°, 

respectively. The contact angles decrease to 54° and 42° after ammonia treatment. 

Being treated in the hydrogen environment, the diamond surfaces become more 

hydrophobic. The contact angles increase to 86° and 92° as shown in the last row of 

Figure 6.3. The sp2 bonded carbon has lower surface energy than that with sp3 bond. 

When the other conditions are the same, the contact angle on MCD surface is lower 
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than that on NCD. The change of hydrophobic properties after functionalization was 

attributed to the adsorption phenomenon on the surface of diamond.212-214  

 

 

Figure 6.3. Contact angles of DI water on different diamond surfaces.  

 

In order to confirm the impact of functionalization on surface adhesion, the 

displacement-output voltage curve was obtained using the AFM. A typical curve is 

illustrated in Figure 6.4. The AFM tip utilized in this study is a typical contact mode tip. 

It is made of Si3N4 with a radius of 40 nm and a spring constant of 0.2 N/m. The 

sample stage was moved up until it reached a preprogrammed height. Then it was 

retracted to the original position. In the retracting process, the detachment of AFM tip 
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and sample surface produced a sudden increase of output voltage as displayed in 

Figure 6.4. The displacement of the AFM tip at the detachment point can be 

quantitatively evaluated. Given the spring constant of the cantilever, the adhesion force 

can be calculated.  

 
 

 

Figure 6.4. Schematic of typical displacement-output voltage curve for adhesion force measurement (the 

distance indicated by the double sided arrow is the displacement of the AFM tip at the point of 

detachment). 

 

The displacement-output voltage curves on different sample surfaces were 

obtained and illustrated in Figure 6.5 (a) and (c). The calculated adhesion force based 

on the curves in Figure 6.5 is shown in Figure 6.6. In Figure 6.6 (a), the displacement 

of the AFM cantilever at the detachment point is 95 nN. This value decreases to 14 nN 
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after hydrogen treatment. Ammonia treatment, on the other hand, increases the 

adhesion force on the microcrystalline diamond to 162 nN. Similar effects of the 

fictionalization on adhesion force are found on microcrystalline diamond surface. The 

calculated adhesion forces on MCD, MCD-H2, and MCD-NH3, are 736 nN, 531 nN 

and 785 nN, respectively. During the hydrogen treatment, chemisorption of hydrogen 

saturated dangling bonds by forming C-H bonds on the surface. After the saturation, 

the reduced adhesion force (Figure 6.5) indicated the lowered surface energy. Such 

decrease in the surface energy was believed to induce hydrophobicity (Figure 6.3). On 

the contrary, the ammonia treatment increased surface energy , leading to the increase 

of hydrophilicity (Figure 6.3). 

There are two possible explanations for this phenomenon. The nitrogen atoms 

were doped into the substrate, producing N-C polar bonds. These bonds are more 

attractive to water molecules than the nonpolar C-C or C=C bonds. As a result, more 

hydrogen bonds are established between diamond surface and water molecules and 

contact angle decreases. On the other hand, NH2 end group can be terminated onto the 

diamond surface by saturating the dangling bonds, leading to increase of surface 

energy and decrease of contact angle.  
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Figure 6.5. Displacement-output voltage curves (a, c) and calculated adhesion force (b, d) for 

nanocrystalline and microcrystalline diamond with and without fictionalization. 
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Figure 6.5. Continued.  
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6.4.   Tribological performance under lubrication  

To investigate the impacts of applied load on friction, the COF was measured at 

different loads while the sliding speed was fixed at 2.5 mm/s. The results are compared 

in Figure 6.6. Figure 6.6 (a) and (b) illustrates the measurements when DI water and 

calf bovine serum were used as lubricant, separately. In Figure 6.6 (a), the COF is 

determined to decrease with increasing load no matter what the contacting pair is. The 

COF of the NCD series is higher than that of MCD series under the same conditions. 

For NCD series, the COF ranges from 0.12 to 0.18 whereas the COF of MCD is less 

than 0.12. It is notable that very low friction (0.04-0.08) is observed when MCD and 

MCD-NH3 were used as mating surface with cartilage. The friction of cartilage- 

cartilage contact is between the cartilage-NCD contact and the cartilage-MCD contact. 

Another significant observation is that for both NCD and MCD the functionalization 

dramatically influences the frictional property. The hydrogen treatment increases the 

friction between the diamond surface and the cartilage surface. The COF for NCD 

drops after the ammonia treatment. In the case of MCD, at small load of 0.5 N, the 

COF decreases a little amount after the functionalization of ammonia. At higher loads, 

however, the COF becomes higher after the treatment. The measured COF is revealed 

in Figure 6.6 (b) with the lubrication of calf bovine serum. The COF is found to reduce 

with load when serum was used as lubricant. Compared to DI water, serum effectively 

reduces the friction. In the case of NCD-cartilage, the COF reduces to 0.023 at the load 

of 1.5 N.  
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Figure 6.6. Variation of COF with applied load (Sliding speed was fixed at 2.5 mm/s. a, in DI water 

environment, b, in calf bovine serum environment).  
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Cartilage has the properties of elastomers215, 216 which are characterized by 

viscoelasticity. When sliding against another object under external load, the cartilage 

produces deformation. The friction force between the cartilage and the object is 

determined by the combination of the adhesion force and the deformation force.217 

Compared to the strong effect of adhesion, the force induced by deformation is 

relatively insignificant. Therefore, the adhesion force dominates the frictional force. 

According to the classic theory developed by Tabor,218 the adhesion force is 

positively related to the actual contact area between the mating surfaces. For both rigid 

body and elastomer, the real contact area has been found to increase with load in a 

power law with an index less than 1,219, 220 Ar ∝ Nx  (x<1). Dividing the adhesion 

force by the load generates the COF, COF ∝ Ar/N = Nx−1. The index for the load is 

less than 0, determining that COF decreases with load. This is the explanation for the 

decreasing trend of COF in Figure 6.6.  

The change of COF with sliding speed is shown in Figure 6.7. Under a constant 

load, the COF reversely changes with speed in most cases except for the 

MCD-cartilage contact. The COF for MCD-cartilage contact decreases with speed in 

DI water environment while it stays stable in serum environment. The impact of 

functionalization still can be observed in Figure 6.7. Similar to the observation in 

Figure 6.6, the hydrogen treatment increases the friction and ammonia treatment 

decreases it for NCD as shown in Figure 6.7 (a).  
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Figure 6.7. Variation of COF with sliding speed (Applied load was fixed at 1 N. a, in DI water 

environment, b, in calf bovine serum environment). 
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For MCD, both functionalization methods reduce the friction at low speed while 

increase that at high speed in DI water environment. When serum was used, the 

ammonia treatment increases the friction force between the diamond and the cartilage. 

Compared to the COF ranging from 0.058-0.063 for cartilage-cartilage contact, the 

COF for MCD-cartilage contact is relatively low (~0.038). 

 

6.5.   Surface wear on cartilage 

The surface morphology of the cartilage before and after the wear test is 

displayed in Figure 6.8. There is no clear sign of severe wear by comparing Figure 6.8 

(a) and (b). Randomly distributed small bumps can be observed in both figures. These 

surface textures are analogous to asperities on a rough surface. After the wear test, the 

bumps maintain their overall shape and were not scratched off. One difference can be 

seen from the bumps. After wear test, the surface of some bumps becomes flat as 

shown in the circles. This is believed to result from the plastic deformation of the 

asperities caused by the normal stress and shear stress in the sliding. The flat surface is 

not produced through the scratch of material from the top of the bump. The scratch will 

generate grooves or damaged structure on the surface, which is not seen in Figure 6.8 

(b).  
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Figure 6.8. Optical microscope image of the cartilage surface before (a) and after (b) the wear test 

(Cartilage sliding on MCD surface with a fixed load of 1N and fixed speed of 6 mm/s for 2000 cycles in 

calf bovine serum environment). 
 
 



  89 
 

6.6.   Model of the cartilage-diamond contact 

Adhesion force on the diamond samples is determined by the hydrogen bond 

and the electrostatic interactions between the diamond surface and the proteins of the 

cartilage. The contact between cartilage protein and diamond surface during sliding at 

different conditions is schematically displayed in Figure 6.9. In dry conditions, the 

ammonia treated sample has the most interactions while the density of interactions on 

the H-terminated diamond is the lowest, so do the adhesion force. With the 

introduction of lubricant, the scenario changes remarkably. In some regions, lubricant 

enters the interface and separates the protein and the diamond surface. The interaction 

still exists in the rest regions. It is apparent that the more areas are occupied by 

lubricant, the less adhesion is left. The ammonia treated diamond is most hydrophilic 

and the hydrogen treated diamond has the worst hydrophilicity. Therefore, the 

sequence of the functionalization methods are ammonia treatment, no treatment and 

hydrogen treatment in term of surface area affected by the lubrication. Figure 6.9 

indicates that the final adhesion is determined by two factors: the surface area occupied 

by the lubricant and the original density of the interactions established between protein 

and diamond. In this study, these two factors conflict with each other as shown in the 

figure. The difference of friction between NCD and MCD can be explained by the 

lower surface energy of sp2 bonded carbon. As a result, more interactions can be 

established and adhesion and friction is higher between NCD and protein. Based on the 

results of frictional experiment, microcrystalline diamond without functionalization 
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has the lowest total adhesion, as well as the friction, with cartilage. If this material is 

utilized as the coating film in the artificial joint, low friction will be achieved and long 

service life is possible. 

 

 

Figure 6.9. Schematic of adhesion during sliding of cartilage on different diamond surfaces. Left column 

is in dry condition, right column is in lubricated condition. Thickness of dashed line indicates strength of 

the bond.  
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6.7.   Summary 

Tribological study was conducted on six diamond samples which have different 

surface chemistry and structures. When they were slide against cartilage, the hydrogen 

treatment was found to increase the friction for both nanocrystalline diamond and 

microcrystalline diamond. The ammonia treatment reduced the friction for NCD and 

increased that for MCD. This is due to the synergetic This is due to the synergic effects 

of the amount of lubricant molecules trapped within the matting surface and the 

interfacial interactions between protein and diamond surfaces. Compared to 

cartilage-cartilage contact, the cartilage-MCD has lower COF, indicating that MCD 

behaves better than nature and this material is promising to be used in artificial joints.  
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1.   Conclusions  

This research studied the tribological and electrochemical properties of 

diamond-containing materials. Two types of diamond reinforced ceramic composites 

and six types of diamond coating films were investigated.   

The two composites are composed of boron-doped diamond particles, Si and 

SiC. They were investigated using a tribo-electrochemical approach for in situ 

monitoring of wear. The COF of the DRCC-1, which has with larger diamond grits and 

higher area fraction of diamond, was much lower than that of the DRCC-2. This was 

attributed to the lower contact pressure due to higher area fraction of diamond. Two 

circuit models representing the two composites were developed based on the EIS 

measurement and simulation. Experimental data revealed the sinusoidal behavior of 

the current density against potential in Tafel curves. It was correlated to the 

amorphization-wear process during rubbing. The smaller amplitude in the sinusoidal 

pattern indicates less intense amorphization-wear process. This behavior was affected 

by the grit size of diamonds. The larger diamond grit generated less current due to 

lower wear in comparison with otherwise. These results showed that the wear of the 

diamond-containing composites can be in situ monitored by means of the proposed 

electrochemical approach. The approach developed in this research could be used for 
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the monitor, control and management of working tools. 

In order to study the wear mechanism of the diamond composite, the worn 

surface and wear debris after tribological experiments were characterized using Raman 

spectrometer, SEM, and profilometer. The results showed that the intensity ratio of sp3 

bonded carbon to sp2 bonded carbon decreased as the wear of diamond particle increased. 

The phase transformation of diamond carbon to amorphous carbon was confirmed by the 

decrease of sp3/sp2 ratio. In the wear debris, Si was found to transform from crystalline 

to both amorphous and oxidized structures. The phase transformation weakened the 

mechanical strength of carbon at the interface. The formation of amorphous silica 

particles as polishing agent promoted the polishing of diamond that was proved under 

SEM observation. This was also confirmed by the smoothening and reduction of the 

surface roughness of diamond particles. The discovery and understanding of diamond 

polishing mechanism is important for applications industries that use wear components. 

Human cartilage was used as counter surface to study the tribological 

properties of diamond in biomedical applications. Tribological study was conducted on 

six diamond samples which have different surface functionalization and structures. 

When slide against cartilage, the hydrogen treatment was found to increase the friction 

for both nanocrystalline (NCD) and microcrystalline diamond (MCD). The ammonia 

treatment one, on the other hand, reduced the friction for NCD and increased that for 

MCD. This was due to the synergic effects of the amount of lubricant molecules 

trapped within the matting surface and the interfacial interactions between protein and 
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diamond surfaces. Compared to cartilage-cartilage contact, the cartilage-MCD had 

lower COF. This proved that the MCD behaved better than nature in terms of surface 

friction and this material is promising to be used in artificial joints. 

The findings in this research provide new understanding of diamond wear and 

tribological performance of diamond on biomaterial surface. These results are 

beneficial for the improvement in design of diamond tools to reduce wear, and 

development of devices for monitoring wear of insulating materials. The applications 

of diamond in prosthetic and biomedical industries will be broadened as well. The 

experimental results and discussion in this research are helpful for science and 

engineering communities who work on the properties and applications of diamond 

materials.  

 

7.2.   Recommendations 

Based on the findings in this work, the recommendations for future works are: 

1) Study of other diamond structures: Various forms of diamond, such as 

single crystalline diamond, nanocrystalline diamond and 

microcrystalline diamond, are currently utilized in industries. The wear 

mechanism of various types of diamond could be different. In this study, 

the diamond particle is single crystalline. The wear mechanism of other 

types of diamond should be investigated in the future.  
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2) Tribological and electrochemical properties in different chemical 

environments: Most of the experiments in this research are conducted in 

aqueous environment. The diamond materials in applications are 

usually exposed to acid or base solutions. The chemical environment is 

believed to have great impact on the properties. Therefore, the 

investigation of diamond materials in different chemical solutions 

would be interesting.  

 

3) Effect of other functionalization on diamond surface: The surface 

functionalizaiton has been proved to greatly change the surface 

properties of diamond. Using other functionalization methods, it is 

possible to obtain a diamond surface which has even better tribological 

performance than MCD in this research.  
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