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ABSTRACT 

 

The ability to recover the phase information of a signal of interest from a 

measurement process plays an important role in many practical applications. When only 

the Fourier transform magnitude of the signal is recorded, recovering the complete signal 

from these nonlinear measurements turns into a problem of phase retrieval.  

Many practical algorithms exist to handle the phase retrieval problem. However, 

they present the drawback of convergence to a local minimum because of the non-

convex Fourier magnitude constraints. Recent approaches formulating the problem in a 

higher dimensional space overcome this drawback but require a sufficiently large 

number of measurements. By using compressive sensing (CS) techniques, the number of 

measurements required for phase retrieval can be reduced with the additional 

information pertaining to the signal structure. 

With the aim of reducing the number of measurements, this dissertation focuses 

on the problem of signal recovery by exploiting the sparsity information present in the 

signal samples. In this thesis, two approaches are proposed to accomplish sparse signal 

recovery from fewer magnitude measurements, modified Phase Cut and improved Phase 

Lift. In these approaches, we combine the phase retrieval methods, both Phase Cut and 

Phase Lift, which formulate the problem in a higher dimensional space, with 풍1-norm 

minimization idea in CS by exploiting the sparse structure of the signals. The minimum 

number of measurements required for signal recovery by the proposed approaches is less 

than the number that Phase Cut and Phase Lift methods require. Both the modified Phase 
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Cut and the improved Phase Lift approaches outperform another variation of the Phase 

Lift method, Compressive Phase Retrieval via Lifting; namely, better signal 

reconstruction rate is obtained for different sparsity degrees. However, in terms of 

computation time, Phase Lift based methods are faster than the Phase Cut based 

methods. 

Ultimately, combining the phase retrieval methods with the 풍1-norm 

minimization enables the usage of the sparse structure of the signal for the exact 

recovery up to a sparsity degree from fewer magnitude measurements. However, 

challenges remain, particularly those related with computation time of methods and the 

sparsity degree of the signal which the methods could recover up to by fewer 

measurements.  
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NOMENCLATURE 

 

CPRL Compressive Phase Retrieval via Lifting 

CS Compressive Sensing 

IID Independent and Identically Distributed 

MSE Mean Square Error 

Rel. MSE  Relative Mean Square Error 

RIP Restricted Isometry Property 

SDP Semidefinite Programming 

SNR Signal-to-Noise Ratio 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

Reconstruction of the phase information of a signal from its magnitude 

measurement plays a significant role in many applications in physics and engineering. In 

many cases the magnitude information can be recorded during the measurement process 

while the phase information is lost. In order to recover the signal exactly, the phase 

information is crucial and this problem is referred to as phase retrieval.  

The phase retrieval problem was motivated by applications in fields such as X-

ray crystallography, optics, astronomy, blind channel estimation, and radar. One 

example of phase retrieval is in optics,  the shape of the object is included both in the 

amplitude and phase of the propagating electromagnetic wave [1]. However, only the 

amplitude may be measured and the phase information is lost.  Therefore, phase retrieval 

algorithms are employed to recover the lost phase information. Another example is in X-

ray crystallography, which is a method for determining the atomic and molecular 

structure of a crystal. This method is based on the fact that X-rays are diffracted by 

crystals. When incident X-ray beams pass through the crystal, they diffract into many 

specific directions. The diffraction pattern consists of reflections of different intensities.   

By using the intensities and angles of these diffracted beams, the electron density map 

within the crystal can be pictured. In these applications, the phase retrieval methods aim 

to recover the crystal shape from the magnitude of its Fourier transform. Since an X-ray 

detector can only record intensities, i.e., the square of the magnitude of the Fourier 

transform, the phase information is lost during the measurement process.  
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Mathematically, if 퐬 stands for the diffraction vector and 퐫 denotes the relative position 

of the electron to the one at the origin, the Fourier transform of the electron density 

function  휌(퐫) is given by 

F(퐬) = ρ(퐫)e−2πj〈퐫,퐬〉d퐫
푐푟푦푠푡푎푙

. (1) 

The integral in (1) is complex-valued, and it presents an amplitude and angle when it is 

expressed in polar form as F(퐬) = |F(퐬)|푒푗∠F(퐬). Only the magnitude |F(퐬)| is obtained by 

taking the square root of the intensities measured in the diffraction experiments. The 

phase information plays an important role in determining the electron density function. 

Other examples come from the field of image processing since most of the information 

about images is stored in their phase.  The images in Figure 1.1 clearly demonstrate the 

importance of the phase of the Fourier transform in preservation of the original image. 

 
Figure 1.1.  Illustration of the importance of phase in a two dimensional Fourier transform. (Top 
Left) Original Lena image; (Top Right) Original Barbara image; (Bottom Left) Image is 
obtained using the magnitude of the Fourier transform of Lena and the phase of the Fourier 
transform of Barbara; (Bottom Right) Using the magnitude of the Fourier transform of Barbara 
and the phase of the Fourier transform of Lena. 
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The methods proposed in the literature to solve the phase retrieval problem seek 

a solution based on some measurements in the object domain and in the transformed 

domain. Many methods for this problem rely on Gerchberg-Saxton [2] and “input-

output” [3] algorithms and their variations. The iterative Gerchberg-Saxton algorithm 

consists of Fourier and inverse Fourier transformation steps imposing object and Fourier 

domain constraints. This algorithm is based on alternating projections between two non-

convex sets. The greedy Gerchberg-Saxton algorithm has lead up to many researches to 

improve the phase retrieval process. Fienup’s input-output method [3], which is based on 

Gerchberg-Saxton algorithm, uses a negative feedback idea in the object domain 

operation and it is faster than the Gerchberg-Saxton method. While these classical 

methods which are based on error reduction algorithms work practically well, their 

convergence to the global optimum cannot be guaranteed, and they require prior 

information. The convergence of the methods based on the iterative alternating 

projections can be achieved for Gaussian measurements [4].  

 For the general case, the phase retrieval problem reduces to finding the 

signal 퐱∈ℂ푛, from 푚 measurements expressed as |퐀퐱| =퐛, where 퐀∈ℂ푚×푛, 퐛∈ℝ푚. 

In this problem, the signal can be recovered up to a global phase factor such that if 퐱 is a 

solution to this problem, 푐퐱 is also a solution for any 푐 with |푐| = 1. The unique recovery 

up to a global phase factor can be achieved with an oversampling ratio at least greater 

than 2, independent of the dimension [5]. The number of measurements required for 

unique recovery is 4푛−2 generic measurements in the absence of noise [6]. The 
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injectivity of the mapping over 푛 dimensional complex signals is achieved by using a 

larger set of intensity measurements. 

 Interpreting the phase retrieval problem via convex optimization helps to better 

understand the phase retrieval algorithms based on alternating projections such as the 

“input-output” algorithm [7], and also to understand how they can be implemented with 

fewer measurements [8-10]. The non-convex constraints in the phase retrieval problem 

may be relaxed into a set of convex constraints by formulating the problem in a higher 

dimensional space. The authors of the [8] formulate the phase retrieval problem as  

recovering a rank-one matrix in which the quadratic measurements of the signal are 

interpreted as linear measurements of the rank-one matrix. The problem is then cast as a 

rank minimization problem with affine constraints. Since the rank minimization problem 

is an NP-hard problem, a trace-norm relaxation approach instead of minimizing the rank 

has been proposed, and the resulting algorithm, which is a convex program, is referred to 

as Phase Lift. In [9], the Phase Lift method is combined with multiple structured 

illuminations. Several diffraction patterns are collected in order to yield uniqueness.  In 

[10], what the authors call Phase Cut is a semidefinite program (SDP relaxation) similar 

to the one in the max-cut problem. In this algorithm, the authors separate the phase and 

amplitude variables and optimize the phase variables. These convex optimization based 

methods show similar performances, and achieve exact recovery when the measurements 

are normally distributed, and the number of measurements is on the order of 푛 log푛, 

where 푛 is the dimension of the signal of interest. However, treating the phase retrieval 

problem as a matrix recovery problem increases the computational cost.    
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 Reducing the number of measurements required for phase retrieval would be 

beneficial to reduce the cost caused by collecting additional measurements. When the 

signal of interest is sparse, employing compressed sensing techniques may help to 

reduce the required number of measurements. Compressed sensing [11, 12] is a 

technique for recovering a sparse signal efficiently from an underdetermined system of 

linear equations, and it finds the sparsest solution. When the signal 퐱 is a linear 

combination of 퐾 basis vectors, and it is sparse in some domain, it is referred to as a 퐾-

sparse signal. If the matrix containing the 퐾 basis vectors as columns is 횿 and the vector 

of the coefficients in this domain is 퐬, then 퐱=횿퐬. Let 퐲=횽퐱=횽횿퐬=횯퐬 denote the 

linear measurements of the signal 퐱 with length 푛, and let 횽 represent the measurements 

matrix. Compressed sensing techniques may reconstruct 퐱 with a small error using only 

푚 measurements, in which 푚 is on the order of 푂(퐾log푛퐾⁄) [12, 13]. In order to 

recover the sparse signal from 푚<푛 measurements, the measurement matrix must 

satisfy some properties such as the restricted isometry property. Random Gaussian 

measurement matrices hold this property with a high probability, and capture the 

information in the structured signal [14, 15]. Given such a measurement matrix, exact 

recovery will be attained via 푙1-norm minimization which is a convex optimization 

problem: 

퐱̃= arg min
퐱
‖퐱‖1  푠.푡.퐲=횽퐱. (2) 

Since the number of measurements is less than the number of unknowns, there are 

infinitely many 퐬′ that satisfy 퐲=횯퐬′. The sparse solution of this underdetermined 

linear system of equations lies in the (푛−푚)-dimensional translated null space of 횯, 
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which is 퐻 =풩(횯) +퐬. The geometry of the 푙1-norm minimization is given in Figure 

1.2.   

 
Figure 1.2. (a) Visualization of 푙2-norm minimization. It finds a non-sparse point at the 
intersection of 푙2-ball and 퐻. (b) Visualization of 푙1-norm minimization. It finds the sparse point 
with high probability at the intersection of 푙1-ball and 퐻. 

Combining compressive sensing techniques and phase retrieval methods may 

enable the recovery of the unknown sparse signal from fewer magnitude measurements, 

so algorithms that exploit the signal structure might be possible. A convex formulation 

of the sparse phase retrieval problem is proposed in [16].  Similar to Phase Lift method, 

the authors of [16] lift up the problem to the space of 풏×풏 matrices, where 퐗=퐱퐱∗ is a 

rank-one matrix. Additionally, they introduce the 푙1-norm regularization by adding a 

design parameter that is multiplied with ‖퐗‖ퟏ, entry-wise 푙1-norm for the matrix 퐗, to 

the objective function of the semidefinite programming (SDP) problem. Other 

approaches based on SDP for the sparse phase retrieval problem are used in [17-19]. In 

[17], the support of the signal is found prior to the signal reconstruction. Given the 

autocorrelation of the signal and the number of locations of the nonzero values of the 
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signal, the authors of [17] aim to find the support of the signal by promoting the sparsity 

property. Following the support of the signal, a convex optimization based framework, 

which is actually the Phase Lift [8, 9] method, is employed to recover the signal. The 

procedure proposed in [17] finds the support of the signal from the support of its 

autocorrelation sequence if the sparsity of the signal is up to 푂 √푛 . 

In this research, we first present the mathematical formulation of the phase 

retrieval problem as a matrix recovery problem as in the Phase Lift [8] and Phase Cut 

[10] methods. The matrix recovery problem induced by the phase retrieval enables the 

usage of tools from convex optimization, which are stable in the presence of noise. For 

exact recovery, these methods require at least on the order of 푛 log푛 measurements. The 

similarities and differences exhibited by these algorithms are described in mathematical 

terms. Also, these algorithms are compared in terms of computational complexity, 

performance and stability in the presence of noisy measurements at different signal-to-

noise ratio (SNR) values.  

When the number of measurements is smaller than the number of data samples 

necessary for exact reconstruction, some additional information is needed. This 

additional information pertains to the signal structure. With the aim of reducing the 

number of measurements, our research focuses on the exact signal recovery by imposing 

sparsity in the signal samples. To take advantage of the sparsity of the signal, an 풍1-norm 

minimization approach was proposed in the field of compressed sensing (CS)  [11, 12]. 

Therefore, we mainly concentrate on the usage of the Phase Lift and Phase Cut methods 

for the reconstruction of sparse signals. Combining these methods with the 풍1- norm 
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minimization problem in compressive sampling, the number of measurements can be 

further reduced for unique signal recovery.  

While the recently proposed CPRL (Compressive Phase Retrieval via Lifting) 

method [16] which is motivated both by the 풍1-norm minimization approach and Phase 

Lift technique, works for sparse signal recovery from fewer measurements, a similar 

approach called the Phase Cut technique fails. Therefore, in this thesis we propose an 

approach by modifying the Phase Cut method by adding constraints to make it converge 

to the true solution in order to recover sparse signals from fewer magnitude 

measurements, and we refer to this approach as modified Phase Cut. In this thesis, we 

conduct simulations to compare the modified Phase Cut and CPRL [16]. In addition, we 

also propose an approach which is inspired by a different version of the Phase Lift 

method in [20] and the 풍1-norm minimization in order to enable the usage of the signal 

sparse structure for signal recovery from magnitude measurements. Finally, we conduct 

the performance analyses of these approaches in terms of reconstruction rate, complexity 

and robustness in the presence of noise, and perform a comparison of the proposed 

approaches with the CPRL method.  

In Section 2, the general phase retrieval problem is expressed and the methods 

formulating this problem as a semidefinite program, which are Phase Lift [8] and Phase 

Cut [10] methods, are discussed. In Section 3, the proposed approaches based on Phase 

Lift and Phase Cut methods are defined for sparse signal recovery from fewer magnitude 

measurements. In Section 4.1 simulation results are given for signal recovery from 

magnitude information without assuming any constraint about the sparse structure of the 
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signal. Finally, several results are presented in Section 4.2 that describe the performance 

of the proposed approaches in comparison with CPRL in terms of recovering sparse 

signals from fewer magnitude measurements. 
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2. PHASE RETRIEVAL METHODS  

 

Phase retrieval methods focus on seeking a solution 퐱, a 푛-dimensional signal, 

given the magnitudes of linear measurements of 퐱, i.e., the magnitudes of inner products 

|〈퐱,퐚푖〉| for 푖= 1, … ,푚. In short, this problem can be expressed as 

find            퐱 
such that    퐛= |퐀퐱|. (3) 

Matrix 퐀 stands for the 푚×푛 measurement matrix and its 푖−푡ℎ row is 

represented by the vector 퐚푖. The problem of phase retrieval is generally studied in two 

set-ups. In the first one, the measurements are obtained through a Fourier transformation 

process. Therefore, the number of measurements is equal to 푛 and there is some prior 

information about the unknown signal. Without any additional information or 

constraints, knowledge of only the Fourier magnitude is, in general, insufficient to 

uniquely determine the signal. This is due to the fact that the convolution of the true 

signal 퐱 with an all-pass signal will produce another signal with the same Fourier 

magnitude [21]. The additional information about the signal can be positivity, magnitude 

information about the signal, sparsity and so on. In the second setting, the phase retrieval 

problem is cast as a signal recovery problem from oversampled data, i.e., 푚>푛, while 

there may or may not be any prior information about the signal.  

Classical approaches for solving this problem are the error reduction algorithms 

based on alternating projections [2, 3]. For example, in phase retrieval problems, prior 

information in the signal domain may refer to the support of the signal 퐱 which might be 
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contained in some set. These iterative methods alternate between projecting 퐀퐱푘 onto the 

magnitude constraint, yielding 퐲푘 and then projecting 퐀†퐲푘 onto a known support 

constraint, yielding 퐱푘+1. Therefore, these approaches aim to find a common point in the 

intersection of two constraint sets. For any two closed convex sets, the alternating 

projection method is guaranteed to find some points in the intersection of these sets. 

However, due to the non-convexity of the magnitude constraints set, convergence is not 

guaranteed and the method can be trapped in local minima.  

 A recent approach for solving this problem formulates the non-convex 

magnitude constraint as a system of linear matrix equations. Then, the phase retrieval 

problem is defined as finding a rank-one matrix satisfying the linear constraints. In this 

formulation, rank minimization is relaxed by trace minimization. Therefore, the resulting 

algorithm becomes a convex program. This approach is called “Phase Lift [8]”. Another 

approach as a convex optimization framework is based on SDP relaxation and the 

resulting algorithm is referred to as “Phase Cut [10]”. In Sections 2.3 and 2.4 these 

methods will be described in detail. 

Before giving detailed explanations about these methods, the inherent ambiguity 

of phase retrieval problem is explained in Section 2.1. 

2.1. Ambiguity in Phase Retrieval Problem for One-Dimensional Signals 

The phase retrieval problem is considered as the signal recovery from the 

magnitude of Fourier transform. Before discussing about the uniqueness of the solution 

for the phase retrieval problem, it should be noted that the following transformations on 

the input signal which are −x, x[푛−푚] and 푥[−푛] will not change the magnitude of the 
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Fourier transform. In the problem of recovery of the signal from the magnitude of its 

Fourier transform, a sign change, unknown shift in time and time reversal will be 

considered acceptable ambiguities for unique recovery. 

Since the autocorrelation function and power spectrum are Fourier transform 

pairs, the phase retrieval problem can be interpreted as the signal recovery from the 

autocorrelation sequence. The autocorrelation sequence of a real-valued signal can be 

expressed as the convolution of the signal itself with its time reversed version: 

푟푥푥(휏) =푥(휏)∗푥(−휏). (4) 

The Fourier transform of the autocorrelation function is then given 

by X(ω)X(−ω), where X(ω) is the Fourier transform of the signal 푥. If the signal of 

interest is real-valued signal, then the Fourier transform of the autocorrelation function is 

given by X(ω)X∗(ω). Therefore, as the Wiener-Khinchin theorem states, the power 

spectrum |X(ω)|2 = X(ω)X∗(ω) is simply the Fourier transform of the autocorrelation 

function.    

Since we are dealing with finite length sequences, the finite autocorrelation 

sequence of the finite length sequence 퐱 for length 푛 is given by  

푎푘= 푥푖푥푖+푘
푛−푘

푖=0
. (5) 

The 푧-transform of the autocorrelation sequence 퐚 is given by A(푧) =

X(푧)X 푧−1 , where X(푧) is the 푧-transform of the signal 퐱. If 퐱 is the real-valued signal, 

then the polynomial X(푧) has real-valued coefficients. Therefore, the roots of X(푧) occur 

in conjugate pairs. In addition, because A(푧) = A 푧−1 , the roots of  A(푧) appear in 
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quadruples of the form 푧0,푧0
∗,푧0
−1,푧0

−∗ . The root pairs (푧0,푧0
∗) and (푧0

−1,푧0
−∗) can be 

assigned to X(푧) or X 푧−1 , or vice versa. These different assignments will lead to 

different polynomials X(푧).  

The ambiguities due to the different assignments of the roots can be avoided by 

restricting the set of admissible solutions to the minimum phase sequences which will 

enable the sequence to be uniquely defined by the magnitude of its Fourier transform 

[22]. Another example is given by a real-valued finite length signal that has an 

irreducible 푧-transform; such a signal is uniquely defined by the magnitude of its Fourier 

transform. However, such constraints would not cover a very large class of one-

dimensional signals. 

In Figure 2.1(top), a real-valued sparse signal 퐱ퟏ having a length of 16 samples is 

given. Its 푧-transform has three real-valued roots and twelve complex-valued roots. The 

non-sparse signal 퐱ퟐ is obtained by reflecting the two complex-valued roots of the 푧-

transform of 퐱ퟏ about the unit circle. Both signals 퐱ퟏ and 퐱ퟐ present the same magnitude 

for the Fourier Transform, while these two signals are different in the time domain. A 

different assignment of the roots will give rise to a different signal in the time domain 

while both of them present the same autocorrelation sequence or power spectrum 

density. Thus, in order to guarantee a unique solution, it is essential to impose some 

constraints to solve the ambiguity caused by the changes in the locations of zeros and 

poles.   
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Figure 2.1. (Top) A sparse signal contains 5 nonzero values. (Middle) A different signal having 
the same magnitude of Fourier transform as the top one. (Bottom) The Fourier transform of both 
signals. 

2.2. General Phase Retrieval Problem via Convex Optimization 

In the general phase retrieval problem, which we implemented in our 

simulations, there are 푚 measurements which are given in the form of the inner product 

magnitude |〈퐱,퐚푖〉| or |〈퐱,퐚푖〉|2 for 푖= 1, … ,푚. The sensing vectors 퐚푖 are independent 

and identically distributed (IID) standard normal random vectors. The magnitude 

measurement data are invariant under a global phase factor. Therefore, both signals 퐱 

and 푒푖휃퐱, where 휃∈[0,2휋], are accepted as solutions of the problem. 

Let 퐴:ℂ푛×푛→ℝ푚 be the linear transformation defined via the mapping 퐴(퐗) =

퐚푖
∗퐗퐚푖1≤푖≤m. Quadratic measurements in the form of  |〈퐱,퐚푖〉|2 can be interpreted as 

linear measurements of rank-one matrix 퐗=퐱퐱∗, in which the measurements |〈퐱,퐚푖〉|2 
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are given in the form of 퐴(퐱퐱∗). Therefore, the phase retrieval problem is equivalent to 

finding a rank-one matrix 퐗 from linear measurements of it. The non-convex constraints 

of the phase retrieval problem are now linear measurements of the positive semidefinite 

matrix 퐗; however, the rank constraint is non-convex and the problem of rank 

minimization is in general NP-hard. Therefore, rank minimization is computationally 

intractable.  

 The well-known heuristic that is used to solve the general rank minimization 

problem is the nuclear norm. The nuclear norm of a matrix 퐗, represented as ‖퐗‖∗, is 

the sum of the singular values of the matrix 퐗, i.e., ‖퐗‖∗≔∑ 휎푖
푟
푖=1 . The nuclear norm 

heuristic is employed in order to solve the rank minimization problems because the 

convex envelope (convex hull) of  푟푎푛푘(퐗) on the set 푆= 퐗∈ℝ푚×푛 | ‖퐗‖≤1  is the 

nuclear norm ‖퐗‖∗ [23, 24]. Therefore, the nuclear norm can be interpreted as the 

convex approximation of the rank. The convex envelope of a function 푓(푥):퐶→ℝ, 

where 퐶 is a convex set, is defined as the largest convex function 푔 such that 푔(푥)≤

푓(푥) for all 푥∈퐶 [25]. 

 When the matrix 퐗 is a positive semidefinite matrix, 퐗≽0 and 퐗∈ℝ푛×푛, 

minimization of the nuclear norm is equivalent to the trace minimization approach to 

solve the rank minimization problem. The trace of a matrix is given by the sum of its 

eigenvalues Tr(퐗) =∑ 휆푖(퐗)푛
푖=1 . Since a positive semidefinite matrix has non-negative 

eigenvalues, the 풍1-norm of the vector containing these eigenvalues, ‖휆(퐗)‖풍1 =

∑ |휆푖(퐗)|푛
푖=1  will be equal to the trace of 퐗. From compressive sensing, it is known that 

the 풍1-norm minimization of a vector results in a sparse vector. Therefore, minimizing 
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the 풍1-norm of the vector of eigenvalues will produce many zero-valued eigenvalues 

which yields a low-rank matrix. This procedure intuitively explains why trace 

minimization heuristic is used instead of rank minimization of a positive semidefinite 

matrix. In the phase retrieval problem, since the optimization variable 퐗=퐱퐱∗ is a 

positive semidefinite matrix, the trace minimization heuristic is employed to solve this 

problem. Trace minimization from convex constraints in the phase retrieval problem is a 

convex program, which can be solved efficiently. 

 In the following two sections, the methods applied to solve the phase retrieval 

problem via a convex optimization framework will be described.   

2.2.1. Phase Lift Method 

Given 푚 quadratic intensity measurements of the form |〈퐱,퐚푖〉|2, 푖= 1, … ,푚, 

the goal is to recover the unknown signal which can be a complex-valued discrete-time 

signal, 퐱∈ℂ푛. In many applications both phase and magnitude information are 

necessary, and such information comes through knowledge of the inner product 〈퐱,퐚푖〉. 

However, in many applications, only the magnitude information is recorded, and the 

phase information is lost. The Phase Lift method was recently proposed as a semidefinite 

programming framework for the phase retrieval problem [8]. The signal 퐱 can be 

recovered, up to a global phase factor, exactly from the magnitude square measurements 

if the measurement vectors 퐚푖 are independent and uniformly sampled on unit sphere. 

Let 퐚푖∈ℂ푛 be independent and identically distributed (IID) standard normal 

random vectors, and define 푏푖, 푖= 1, … ,푚, as follows: 

푏푖= |〈퐱,퐚푖〉|2,푖= 1, … ,푚.  (6) 
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When the number of measurements is at least on the order of 푛log푛, phase 

retrieval can be accomplished with high probability [8]. The problem of phase recovery 

from quadratic constraints is lifted up into the problem of recovering a rank-one matrix 

from affine constraints by casting it as a trace-minimization problem via semidefinite 

programming. The quadratic measurements can be expressed as 

푏푖= 퐚푖
H퐱H 퐚푖

H퐱 =퐱H퐚푖퐚푖
H퐱= Tr(횯푖퐗),푖= 1, … ,푚. (7) 

The matrices 횯푖 and 퐗 are given by 횯푖=퐚푖퐚푖
H and 퐗=퐱퐱H, respectively. Therefore, 

the phase retrieval problem is expressed as 

minimize     rank(퐗) 
subject to    푏푖= Tr(횯푖퐗), 푖= 1, … ,푚 
                    퐗≽0. 

(8) 

Since the rank minimization problem is NP-hard, instead of minimizing it, a trace-norm 

relaxation is adopted as shown below: 

 minimize     Tr(퐗) 
 subject to    푏푖= Tr(횯푖퐗), 푖= 1, … ,푚 
                     퐗≽0. 

(9) 

When the number of measurements is on the order of 푛log푛, the trace 

minimization solution is exact, and the matrix 퐗=퐱퐱H is the unique solution to the 

above optimization problem. This holds with probability at least 1−3푒−훾
푚
푛, where  훾 is a 

positive absolute constant, for the models in which the 퐚푖’s are independently and 

identically distributed [8]. 

In [20], exact signal recovery from the quadratic measurements is accomplished 

from the independent and identically distributed standard normal random measurement 
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vectors 퐚푖 when the number of measurements is at least 푚≥c0푛, where c0 is a 

sufficiently large constant. The phase retrieval problem is solved by finding the positive 

semidefinite matrix 퐗 that best fits the observed measurements in the 풍1-norm sense [20] 

as follows: 

                                    minimize     ∑ |Tr(횯푖퐗)−푏푖|1≤푖≤푚   
                                    subject to     퐗≽0. 

(10) 

 The approach proposed by the authors of [20] improves the Phase Lift method in 

the sense that the exact signal recovery holds with probability at least 1−푒−훾푚. 

 In Section 2.4.1, we will propose a method using the formulation in (10) in order 

to recover sparse signals. 

2.2.2. Phase Cut Method 

Another method developed for phase recovery only from the magnitude of linear 

measurements is based on formulating the problem as a quadratic optimization problem 

over unit complex phase vectors [10]. Similar to Phase Lift, complex measurements of a 

signal 퐱∈ℂ푛 are obtained from a linear injective operator, and the measurements are 

random allowing the uniqueness to be guaranteed.  

The problem of recovering the signal 퐱∈ℂ푛 from the amplitude vector 퐛=

|퐀퐱|,퐛∈ℝ푚, i.e., given 푚 measurements is solved by separating the amplitude and 

phase variables, and only the phase variables are optimized. The equation |퐀퐱| =퐛 is 

then expressed as 퐀퐱=푑푖푎푔(퐛)퐮, where 퐮∈ ℂ푚 satisfies the property |푢푖| = 1 and is a 

phase vector. Matrix 푑푖푎푔(퐛) is an 푚×푚 diagonal matrix and all its main diagonal 

entries are the elements of the vector 퐛. The phase retrieval problem is expressed as 
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min
퐮∈ ℂ푚,|푢푖|=1,퐱∈ℂ푛

‖퐀퐱−푑푖푎푔(퐛)퐮‖2
2 . (11) 

The least squares solution of the objective function in (11) is given by 퐱ls =

퐀† 푑푖푎푔(퐛)퐮. The matrix 퐀† denotes the pseudo-inverse of the measurement matrix 퐀. 

Plugging 퐱ls into equation (11), we express the objective function in the following form: 

퐀퐀† 푑푖푎푔(퐛)퐮−푑푖푎푔(퐛)퐮2
2

= 퐀퐀† 푑푖푎푔(퐛)퐮−푑푖푎푔(퐛)퐮H 퐀퐀† 푑푖푎푔(퐛)퐮−푑푖푎푔(퐛)퐮

=퐮H푑푖푎푔(퐛) 퐀퐀†−퐈퐻 퐀퐀†−퐈푑푖푎푔(퐛)퐮=퐮H푑푖푎푔(퐛) 퐈−퐀퐀† 푑푖푎푔(퐛)퐮 . 

(12) 

The last statement in equation (12) is obtained because of the orthogonal projector onto 

the left null space of matrix 퐀, 퓟퓝 퐀H =퐈−퐀퐀†, which is also the projector onto the 

orthogonal complement of image of 퐀. Finally, the phase retrieval problem becomes a 

quadratic optimization problem when it is expressed as follows: 

                                        minimize      퐮H퐌퐮  
 subject to    |푢푖| = 1,푖= 1, … ,푚, 

(13) 

where the matrix 퐌 is given by 퐌 =푑푖푎푔(퐛) 퐈−퐀퐀† 푑푖푎푔(퐛). Using the 

equation 퐮H퐌퐮= Tr(퐌퐔), this problem becomes a semidefinite program by adopting a 

convex relaxation which can be achieved by eliminating the rank constraint rank(퐔) = 1. 

The phase retrieval problem expressed as a semidefinite program is formulated below, 

and it is referred to as the Phase Cut method [10]: 

                                        minimize       Tr(퐌퐔) 
 subject to      푑푖푎푔(퐔) =ퟏ,퐔≽0.  (14) 

Matrix 퐔 is a Hermitian matrix, 퐔∈퐇푚. When the solution of this optimization 

problem has rank one, then 퐔=퐮퐮H is the optimal solution. If the resulting matrix 퐔 
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has a larger rank, then the normalized eigenvector of the matrix 퐔 corresponding to the 

largest eigenvalue is used as solution. 

When the signal of interest is real-valued, the phase retrieval problem can be 

expressed as 

min
푢∗푖

2 +푢∗(푖+푚)
2 =1,푖=1,…,푚

퐀∗퐀∗
†퐁∗−퐁∗퐮∗ 2

2. (15) 

The matrices 퐀∗∈ℝ2푚×푛 and 퐁∗∈ℝ2푚×2푚, and the vector 퐮∗∈ℝ2푚 are expressed as 

퐀∗= Re(퐀)
Im(퐀) ,퐁∗=푑푖푎푔퐛퐛  and 퐮∗= Re(퐮)

Im(퐮)  [10]. The minimization problem is 

then expressed similarly as shown below: 

minimize      퐮∗T퐁∗T 퐈−퐀∗퐀∗† 퐁∗퐮∗ 
subject to     푢∗푖

2 +푢∗(푖+푚)
2 = 1,푖= 1, … ,푚, 

(16) 

where 푢∗푖 denotes the 푖−푡ℎ element of the phase vector 퐮∗. The objective function of 

the problem in (16) is equal to Tr(퐌∗퐔∗) in which the matrix 퐔∗∈퐒2푚 is a rank-one 

matrix. The matrices 퐔∗ and 퐌∗ are defined as 퐔∗=퐮∗퐮∗T and 퐌∗=퐁∗T 퐈−

퐀∗퐀∗† 퐁∗, respectively. As a result, the semidefinite program of phase retrieval 

problem is expressed as 

 minimize     Tr(퐌∗퐔∗) 
 subject to     퐔∗(풊,풊) +퐔∗(풎+풊,풎+풊) = 1, 퐔∗≽0, (17) 

where 퐔∗(풊,풋) denotes the entry of matrix 퐔∗ corresponding to the 푖−푡ℎ row and 푗−푡ℎ 

column. Finally, after obtaining the optimization variable 퐔∗, the reconstructed signal is 

then computed as 퐱rec =퐀∗†퐁∗퐮∗. 
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2.3. Comparison of Phase Lift and Phase Cut Methods   

In order to compare these two methods, we will use a similar procedure to that 

employed in [26]. Two cases will be addressed. In the first case, the number of 

measurements (푚) is greater than the number of unknowns (푛), while in the second case 

the number of measurements is less than the number of unknowns, which is an 

underdetermined system of equations. 

Briefly, the Phase Lift technique is expressed as 

minimize     Tr(퐗) 
subject to    푑푖푎푔(퐀퐗퐀∗) =퐛⨀퐛 
                    퐗≽0, 

(18) 

where the measurement vector 퐛 is given by  퐛= |퐀퐱| and 퐛∈ℝ푚. The term 퐛⨀퐛 

denotes the Hadamard product of the vector 퐛 with itself [27]. The affine constraints in 

the form of 푏푖
2 = Tr(횯푖퐗), for 푖= 1, . . ,푚, correspond to the entries of the vector 

퐛⨀퐛=푑푖푎푔(퐀퐗퐀∗).  

 The Phase Cut method for the problem in (18) is defined by the following 

semidefinite program: 

                                        minimize     Tr(퐌퐔) 
                                        subject to    푑푖푎푔(퐔) =ퟏ,퐔≽0,  (19) 

where the matrix 퐌 is given by 퐌 =푑푖푎푔(퐛) 퐈−퐀퐀† 푑푖푎푔(퐛).  

When there are 푚≥푛 measurements and the matrix 퐀 has full column rank, 퐀†, 

the pseudo-inverse of the measurement matrix 퐀, is a left inverse and the product 퐀†퐀 is 

the identity matrix. Let us assume that the matrix 퐗 is the optimal solution of the 

semidefinite program in equation (18). Therefore, the objective function in (18) obtained 



 

22 

 

by 퐗 is less than any other value obtained by other positive semidefinite matrix in the 

feasible region of the problem, Tr 퐗 ≤Tr(퐗) = Tr(퐱퐱∗). The optimal solution 

퐗= 퐱̂퐱̂∗ can be expressed as follows because of 퐀퐱̂=푑푖푎푔(퐛)퐮̂ for some 퐮̂: 

퐗=퐀†푑푖푎푔(퐛)퐔푑푖푎푔(퐛) 퐀† H. (20) 

By using the fact 퐀†퐀=퐈, matrix 퐔 will take the expression in (21) for the equality in 

(20) to hold 

퐔=푑푖푎푔(퐛)−1퐀퐗퐀H푑푖푎푔(퐛)−1. (21) 

Therefore, it is observed that 푑푖푎푔퐔 =ퟏ (i.e., an all ones vector) and 퐔≽0. The 

matrix 퐔 is a positive semidefinite matrix because we already know 퐗≽0. With this 

knowledge and defining the vector 퐭=퐀H푑푖푎푔(퐛)−1퐰 for some vector 퐰, positive 

definiteness of the matrix 퐔 will be clear from 퐰H퐔퐰=퐭H퐗퐭≥0. Therefore, the matrix 

퐔 ensures the constraints of the Phase Cut problem. The remaining step is to show that 

퐔 gives the minimum solution of the objective function among the matrices of the 

feasible set. In this regard, the objective function is expressed in terms of 퐔 as shown 

below: 

Tr 퐌퐔 = Tr 푑푖푎푔(퐛) 퐈−퐀퐀† 푑푖푎푔(퐛)푑푖푎푔(퐛)−1퐀퐗퐀H푑푖푎푔(퐛)−1         

= Tr 푑푖푎푔(퐛) 퐈−퐀퐀† 퐀퐗퐀H푑푖푎푔(퐛)−1 = Tr(ퟎ) = 0. 
(22) 

Therefore, the matrix 퐔= 퐮̂퐮̂H is the optimal value of the Phase Cut problem. 

The Phase Cut algorithm developed by [10] does not achieve exact recovery 

when the signal of interest is sparse, and the number of measurements is less than the 
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number of unknowns. When the system is underdetermined (푚<푛), there are infinitely 

many solutions 퐱 such that 퐀퐱=푑푖푎푔(퐛)퐮 for some given phase vector 퐮. 

When the measurement matrix 퐀 has full row rank r =푚<푛, for each 

푑푖푎푔(퐛)퐮∈ℝ푚 there is a solution set of all solutions {퐱 | 퐀퐱=푑푖푎푔(퐛)퐮 } =

퐱p +퐳 | 퐳∈퓝 (퐀) , where 퐱p is any particular solution. For the least squares solution 

of the problem 퐱ls =퐀† 푑푖푎푔(퐛)퐮, we obtain the following relations: 

퐀(퐱−퐱ls) = 0 

(퐱−퐱ls)H 퐀H = 0 

(퐱−퐱ls)H 퐀H 퐀퐀T −1푑푖푎푔(퐛)퐮= 0 

(퐱−퐱ls)H퐀† 푑푖푎푔(퐛)퐮= 0 

(퐱−퐱ls)H퐱ls = 0. 

(23) 

From equation (23), it is concluded that (퐱−퐱ls) is orthogonal to 퐱ls, (퐱−퐱ls)⊥퐱ls, and 

it leads to ‖퐱‖2 =‖퐱ls‖2 +‖퐱−퐱ls‖2 >‖퐱ls‖2. As a result, the least-squares solution, 

퐱ls =퐀† 푑푖푎푔(퐛)퐮 is the minimum 풍2-norm solution.  

For the phase vector 퐮, the rank-one positive semidefinite matrix 퐗 is expressed 

as 퐗=퐀† 푑푖푎푔(퐛)퐔푑푖푎푔(퐛) 퐀† H by using the solution 퐱=퐀† 푑푖푎푔(퐛)퐮. Therefore, 

the Phase Cut method can be expressed as in (24) for sparse signal recovery [10]: 

               minimize     Tr(퐌퐔) + 퐀† 푑푖푎푔(퐛)퐔푑푖푎푔(퐛) 퐀† H
1 

                             subject to    푑푖푎푔(퐔) =ퟏ, 퐔≽0.                                                                                                  
(24) 

However, in the underdetermined system of equations, the matrix 퐌 given in the 

Phase Cut problem in (24) is equal to zero, 퐌 =푑푖푎푔(퐛) 퐈−퐀퐀† 푑푖푎푔(퐛) = 0, since 

퐀퐀† =퐈. In this case the first term of the objective function in this problem, Tr(퐌퐔) 
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(where 퐔=퐮퐮H) is constant and equal to 0. Therefore, the Phase Cut problem is 

reduced to the problem in (25) by exploiting the sparsity information as shown below:  

minimize     퐀† 푑푖푎푔(퐛)퐔푑푖푎푔(퐛) 퐀† H
1 

                             subject to    푑푖푎푔(퐔) =ퟏ, 퐔≽0.                                                                                                  
(25) 

Any solution 퐔=퐮퐮H of the problem in (25) leads to the recovered signal 퐱=

퐀† 푑푖푎푔(퐛)퐮 which may or may not be the same as the true unknown sparse signal. In 

other words, the Phase Cut algorithm chooses the minimum 풍1-norm solution among the 

least squares solutions [26]. 
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3. SPARSE SIGNAL RECOVERY 

 

In the signal recovery problem when a priori knowledge exists about the sparsity 

of the signal, the recovery is achieved from a system of underdetermined linear 

equations by employing 풍1-norm minimization, a convex optimization problem, which is 

a common technique employed in compressed sensing. The sparsity constraint does not 

need to be in the signal domain. The signal can be sparse in other bases. In compressed 

sensing applications, the system of interest in general consists of linear measurements of 

some unknown signal. However, the phase retrieval problem is nonlinear because of the 

magnitude measurements. 

The semidefinite programming based methods, which are mentioned in Section 

2, do not assume any structure about the signal. These methods, Phase Lift and Phase 

Cut, require the measurement vectors to be random and sufficiently large in order to 

uniquely determine the signal. Sparsity can be used to restrict the number of solutions of 

the phase retrieval problem and it can also be used as a feature to reconstruct the signals 

from fewer measurements. Thus, by using the sparsity constraint of the signal, methods 

could be developed to converge to the exact solution from an underdetermined system of 

magnitude measurements.  

In the following subsections, the extended versions of the semidefinite 

programming based phase retrieval methods for sparse signal recovery from the 

quadratic measurements are described. First, in Section 3.1, a recent method which is 

called compressive phase retrieval via lifting (CPRL) [16] is discussed. In the following 
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Section 3.1.1, we propose the improved Phase Lift approach by combining the phase 

retrieval problem with 풍1-norm minimization to impose the sparse structure of the signal. 

In Section 3.2, the modified Phase Cut approach is proposed to recover sparse signals 

via the Phase Cut based method. 

3.1. Phase Lift Method for Sparse Signal Recovery 

In [16], compressive sensing is applied to the problem of reconstructing a signal 

only from the magnitude information, and the compressive phase retrieval problem is 

expressed as a convex optimization problem. The problem is considered as a signal 

recovery from magnitude information 푏푖= |〈퐱,퐚푖〉|2,푖= 1, … ,푚 as in [8]. Additionally, 

it is assumed that the signal of interest is sparse. Similar to the Phase Lift method, the 

authors of [16] use a trace-norm relaxation instead of rank minimization, and exploit the 

풍1-norm minimization criterion to cope with sparsity. The formulation in (26) is then 

referred as compressive phase retrieval via lifting (CPRL [16]): 

minimize    Tr(퐗) +λ‖퐗‖1 
subject to    푏푖= Tr(횯푖퐗) 푖= 1, … ,푚 
                    퐗≽0, 

(26) 

where notation ‖퐗‖1 for matrix 퐗 denotes the entry-wise 풍1-norm. The matrices 횯푖 and 

퐗 are given by 횯푖=퐚푖퐚푖
H and 퐗=퐱퐱H, respectively, and λ> 0 is a design parameter, 

forcing the signal to be sparse. Ultimately, the problem is solved by choosing the 

estimated signal as the normalized leading eigenvector of 퐗. 

In compressed sensing, the signal is reconstructed from underdetermined linear 

measurements exactly provided that the signal is sufficiently sparse and the linear 

operator obeys the restricted isometry property (RIP) [28]. Intuitively, the restricted 
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isometry property claims that the matrix corresponding to the linear operator preserves 

the distance between two vectors that present the same sparsity.   

For a linear operator 퐴(퐗) and all 퐗≠0 such that ‖퐗‖0 ≤푘, the isometry 

constant is defined as the smallest number 휖 satisfying 

1−휖≤
‖퐴(퐗) ‖2

2

‖퐗‖2
2 ≤1 +휖. (27) 

For the linear operator used in the phase retrieval problem, the authors of [8] claim that 

the restricted isometry property in 풍2-norm is not valid since ‖퐴(퐗) ‖2
2 involves fourth 

order moments of Gaussian variables. Instead of RIP for the 풍2-norm, RIP-1 is proposed 

as follows [16].  A linear operator 퐴(퐗) is (휖, 2푘)-RIP-1 if 1−휖≤‖퐴(퐗) ‖1
‖퐗‖1

≤1 +휖 for 

all matrices 퐗≠0 such that ‖퐗‖0 ≤푘. The solution of compressive phase retrieval via 

lifting algorithm 퐗 gives the sparsest solution 퐱̃ if it has rank-one and 휖, 2 퐗 0 -RIP-1 

with 휖< 1  [16]. However, the restricted isometry property and the given theoretical 

bounds may be hard to check for a matrix. Therefore, random Gaussian matrices, which 

are known to satisfy the RIP property, are used in our simulations.  

3.1.1. Improved Phase Lift Approach for Sparse Signal Recovery 

In [20], the Phase Lift method is improved in terms of the number of 

measurements necessary for exact signal recovery such that at least 푚≥c0푛 

measurements are necessary, where c0 is a sufficiently large constant. In order to further 

decrease the number of measurements, we proposed the following approach in (28) by 

exploiting the sparsity information present in the signal: 
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                                    minimize     ∑ |Tr(횯푖퐗)−푏푖|1≤푖≤푚 +λ‖퐗‖1  
                                    subject to     퐗≽0, (28) 

where λ> 0 is a design parameter enforcing the sparsity. The matrix 퐗 is given by 

퐗=퐱퐱H. The recovered signal is estimated by extracting the largest rank-one 

component of the matrix 퐗=∑ 휆̂푘
풏
풌=ퟏ 풖̂푘풖̂푘

퐻, where 휆̂1 ≥휆̂2 ≥⋯≥휆̂푛 The estimated 

signal is then computed as 퐱̂= 휆̂1풖̂1풖̂1
퐻. In Section 4.2, it will be illustrated that the 

approach in (28) slightly improves the CPRL approach for sparse signal recovery. 

However, it is observed empirically that the reconstruction performance of this approach 

highly depends on the value of design parameter λ. 

3.2. Modified Phase Cut Approach for Sparse Signal Recovery 

When the signal is sparse and fewer measurements are recorded, the Phase Cut 

algorithm fails to recover the true signal as mentioned in Section 2.3.  

Phase recovery via the Phase Cut method can be interpreted as a projection 

problem [10]. This interpretation enables us to modify the Phase Cut method to achieve 

sparse signal recovery from fewer measurements.  

First, the objective function in (14) of Phase Cut method is expressed as 

Tr(퐌퐔), where 퐌 =푑푖푎푔(퐛) 퐈−퐀퐀† 푑푖푎푔(퐛). Since Tr(퐌퐔) = Tr(퐔퐌), it follows 

that: 

Tr(퐔퐌) = Tr 퐈−퐀퐀† 푑푖푎푔(퐛)퐔푑푖푎푔(퐛) . (29) 

Define the matrix 퐕 via 퐕=푑푖푎푔(퐛)퐔푑푖푎푔(퐛). Therefore, Tr(퐔퐌) = Tr 퐈−퐀퐀† 퐕 , 

and it is equal to the matrix inner product given by 〈퐕, 퐈−퐀퐀† 〉=〈퐕,퓟퓡(퐀)⊥〉. This 
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matrix inner product is then expressed as a distance associated to the trace norm for all 

퐕∈퐇푚 such that 퐕≽0, 

Tr 퐕퐈−퐀퐀† =푑1(퐕,ℱ), (30) 

where the set 퐹 is defined as 퐹= 퐕∈퐇푚∶ 퐈−퐀퐀† 퐕퐈−퐀퐀† =ퟎ  [10]. 

Therefore, the signal recovery problem is interpreted as minimizing a distance 

function for the constraints  퐕≽0 and 퐕푖,푖=푏푖
2,푖= 1, … ,푚. However, when the signal 

of interest is sparse and the number of measurements is less than the number of 

unknowns, the interpretation of the signal recovery problem as a distance minimization 

is not valid because 퐀퐀† =퐈 makes the distance constant (and 0 which is defined in 

(30)). 

 In this thesis, based on interpreting the phase retrieval problem as a projection 

problem as in [10], the Phase Cut method is modified to accommodate sparse signal 

recovery using fewer measurements. When we have fewer measurements, the Phase Cut 

method tries to find the sparsest solution in the class of least squares solutions 

corresponding to different phase vectors 퐮. Therefore, additional constraints limiting the 

feasible region are included in order to converge to the exact solution in (31) by limiting 

the error to 0 between the observed magnitude data and the magnitude measured for the 

solution of the problem.  

 The Phase Cut method for recovering a sparse signal from underdetermined 

measurements is proposed as follows: 
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                                  minimize      λ퐏퐔퐏H
1 

                                  subject to     퐛⨀퐛−diag(퐀퐏퐔퐏퐇퐀H) 2 <휖 
           퐔≽0, diag(퐔) = 1, 

(31) 

where 퐔=퐮퐮H and 퐏=퐀†diag(퐛). In the presence of noisy measurements 휖 is adapted 

according to the noise level. The modified Phase Cut method in equation (31) recovers 

the sparse signal from fewer measurements. 

 In Figure 3.1 an example is given to demonstrate that the modified Phase Cut 

approach recovers the true sparse signal while the Phase Cut method fails to converge to 

true solution and it results in a dense reconstructed signal. The true signal has 3 nonzero 

samples out of 32 samples, and we have 20 magnitude measurements. As seen in the 

figure, Phase cut fails to identify the signal with a degree of sparsity equal to 3. When 

we apply the modified Phase Cut approach, the true sparse signal is correctly identified. 

 
Figure 3.1. The original real-valued signal which has a length of 32 samples and the 
reconstructed signals by Phase Cut and the modified Phase Cut methods. 
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4. NUMERICAL SIMULATIONS 

 

In this section of the thesis, a number of experiments are given to analyze and 

compare the phase retrieval methods based on semidefinite programming.  Mainly Phase 

Lift [8] and Phase Cut [10] algorithms and their variations for the sparse signal recovery 

will be considered. First, in Section 4.1 we present the simulation results for the 

comparison of Phase Lift and Phase Cut methods in which no sparsity assumption on 

signal structure is made. In Section 4.2 the main results of the thesis in terms of 

computer simulations are presented and focus on sparse signal recovery by our proposed 

approaches modified Phase Cut and improved Phase Lift in comparison with CPRL [16].  

Analyses of these methods are performed in terms of complexity, stability and 

performance for both non-sparse and sparse signal recovery. The simulations are 

implemented in Matlab using CVX, a package for solving convex programs [29, 30], 

and to solve low dimensional SDP. 

The conducted computer simulations focus on establishing the relation between 

the computational complexity of the algorithm and reconstruction of the signal from a 

small number of measurements by exploiting the sparse structure of the signal, and on 

evaluating the performance of these algorithms in the presence of noisy measurements.  

We conducted the experiments with randomly generated test signals. The 

magnitude measurements are obtained by transforming the signal into the Fourier 

domain followed by random projections. 
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4.1. Simulations for the Recovery of Non-Sparse Signals 

To recover the signal 퐱 uniquely from 퐛= |퐀퐱|, 푚≥4푛−2 or 푚≥2푛−2 

generic measurements are sufficient for complex-valued and real-valued signals, 

respectively [6]. If the number of identically and independently distributed Gaussian 

measurements is on the order of 푛log푛, the Phase Lift method recovers the signal 퐱 

exactly with a high probability. When the phase recovery problem is formulated as a 

convex relaxation of a quadratic optimization problem, such as in the Phase Cut method, 

the number of measurements required for the exact recovery is at least as large  as the 

number of measurements required for the Phase Lift technique. 

Figure 4.1 shows the minimum number of measurements required to have 100% 

success rate both in the Phase Lift and the Phase Cut methods. In this experiment, we 

used real-valued test signals of length 16 samples. The magnitude measurements 

퐛= |퐑퐅퐱|, which are real-valued 퐛∈ℝ푚, are obtained by transforming the signal into 

the Fourier domain by 퐅∈ℂ16×16 followed by random projections 퐑∈ℂ푚×16, where 푚 

is the number of measurements generated from a standard normal distribution. 

Therefore, the measurement matrix 퐀 can be expressed as the product of a random 

matrix 퐑 with a Fourier matrix 퐅 such that 퐀=퐑퐅. This experiment is repeated 10 

times for 10 different random non-sparse signals. When the number of measurements 

reaches 38, exact recovery occurs for both Phase Lift and Phase Cut methods, and they 

show very similar reconstruction rates. In this case, unique recovery is achieved by using 

a larger number of measurements instead of taking the advantage of the signal structure 

such as having a few nonzero elements.    
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Figure 4.1. Reconstruction rate of a real-valued dense signal which has a length of 16 samples is 
shown for the given number of measurements. The straight line represents the Phase Lift 
method, and the dotted line represents the Phase Cut method. 

In order to compare the computational complexities of these algorithms, the 

computation time (expressed in seconds) and number of iterations necessary to solve the 

semidefinite program in Matlab via the CVX package are given in Table 4.1. The 

different lengths of the unknown signals are chosen as 8, 16 and 32. The number of 

measurements for the given signals with specified dimension 푛 is 푚= 4푛 in order to 

guarantee exact signal recovery. This experiment is repeated ten times with ten different 

random signals, and then the average number of iterations and the average computation 

time are recorded. The number of iterations does not seem to depend significantly on the 

signal size, while the computation time increases with the signal dimension. The 

computation time for the Phase Cut method is longer than that of the Phase Lift method 

to recover real-valued signals from magnitude measurements. The reason for this 
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behavior is the fact that the complex matrices are expressed as larger real-valued 

matrices with a sub-block capturing their real part and another sub-block for their 

imaginary part, as is the case in the Phase Cut algorithm. Therefore, this modification 

would increase the computational time of the algorithm whereas it would not have an 

effect on the number of iterations required to converge to the optimal solution.  

Table 4.1 Computation time and the number of iterations in SDP for Phase Lift and Phase Cut 
methods 

Method Size (풏) Iteration Time (sec) 

Phase Lift 8 20 0.74 

16 14 1.21 

32 17 13.16 

Phase Cut 8 18 1.11 

16 21 1.78 

32 22 21.99 

As discussed in Section 2.3 about the comparison of Phase Lift and Phase Cut 

methods, both algorithms find the same exact solution, up to a global phase factor, when 

the number of measurements is larger than the number of unknowns, i.e., when the linear 

mapping is injective.  Figure 4.2 illustrates an example of reconstructed signals via 

Phase Lift and Phase Cut methods. It can be seen that both methods result in the same 

exact solution for the signal recovery problem. 
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Figure 4.2. The original real-valued signal which has a length of 32 samples (plotted by stem 
function) and the reconstructed signals by Phase Lift and Phase Cut methods. 

Stability analysis of algorithms plays a significant role for practical applications. 

Therefore, the methods proposed for the phase retrieval problem need to be robust when 

the measurements are contaminated by additive noise. Because squared magnitudes are 

measured in many practical applications, i.e., in Fraunhofer diffraction in optics, we use 

the following model to test the Phase Lift method: 

푏푖= |〈퐱,퐚푖〉|2 +푣푖, 푖= 1, … ,푚, (32) 

where 푣푖 is the noise term bounded by ‖푣푖‖2
2 ≤‖휖‖2

2. Using this model, the Phase Lift 

method is reformulated as shown below in the presence of noisy measurements.  

                              minimize     Tr(퐗) 
                              subject to    퐛−푑푖푎푔(퐀퐗퐀H) ퟐ≤휖,푖= 1, … ,푚 
                                                   퐗≽0. 

(33) 
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The recovered signal is then computed by using the normalized eigenvector of 

the solution matrix 퐗 corresponding to the largest eigenvalue. When the noisy 

measurements of the signal are recorded, the solution of the Phase Lift method obeys the 

following inequalities  퐗−퐱퐱H
ퟐ≤퐶0휖  an‖퐱̃−퐱‖ퟐ≤퐶0 min ‖풙‖2,휖‖풙‖2

d, for 

some positive constant 퐶0 with high probability [8]. Existence of such bounds shows 

that the Phase Lift method is stable in the presence of noisy measurements. 

In order to test the performance of the Phase Cut method in the presence of noisy 

measurements, we adopt the model of measurements in the form of 퐛= |퐀퐱| +퐛noise 

because the measurements are obtained from the magnitude of a linear system, not the 

square of the magnitude, in the Phase Cut approach.  

 In order to compare both the Phase Lift and the Phase Cut methods in the 

presence of noisy measurements, their robustness is assessed empirically. First, noisy 

measurement models are adopted as follows: 푏푖= |〈퐱,퐚푖〉|2 +푣푖,푖= 1, … ,푚, and 

퐛= |퐀퐱| +퐛noise for the Phase Lift and the Phase Cut methods, respectively. For each 

of the models, the additive noise terms are from a Gaussian distribution. In the test, the 

Gaussian noise is added at different SNR levels:  5, 10, 25, 50 and 100 dB. For each of 

the SNR levels, different real-valued test signals of size 16, measurements of size 64 and 

the noise signals of the same size as the measurements are generated, and the experiment 

is repeated 100 times. The average relative mean square error (MSE) is calculated by 

using the results of these 100 experiments. Since the reconstructed signals present a 

phase ambiguity factor, the relative MSE is then calculated by the following formula [9]: 
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rel. MSE = min
푐:|푐|=1

‖푐퐱−퐱̃‖2
2

‖퐱‖2
2 . (34) 

The vector 퐱̃ is the reconstructed signal and the vector 퐱 is the true signal. The relative 

MSE in the dB scale is calculated by 10 log10(rel. MSE). The relative MSE and the 

relative MSE in a dB scale for different SNR levels are plotted in Figures 4.3 and 4.4, 

respectively. As shown in Figures 4.3 and 4.4, both methods are stable in the presence of 

noisy measurements. 

 
Figure 4.3. Performance of Phase Lift and Phase Cut method in the presence of Gaussian noise 
(relative MSE versus SNR). 
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Figure 4.4. Performance of Phase Lift and Phase Cut methods in the presence of Gaussian noise 
(relative MSE on log scale versus SNR). 

In the last example, we used a cropped image of dimension 32 × 32  in order to 

demonstrate the performance of the signal reconstruction methods on 2D-signals. The 

measurements are obtained by transforming the image into the Fourier domain, and 

multiplying the 2D-Fourier transform of the image by a random matrix of 

dimension 128 × 32. Finally, the absolute values of the entries of the resulting 2D signal 

are recorded as the magnitude measurements. We implemented both algorithms on a 

column by column basis, and then the recovery is achieved by combining these columns 

in order to generate an image because CVX package cannot handle this problem in the 

scale of vectorized images. In Figures 4.5(c)-(e), the images are recovered from the 
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magnitude measurements which are contaminated by additive Gaussian noise, the signal-

to-noise ratio being equal to 25 dB.   

      
(a)                       (b)                         (c)                         (d)                        (e)          

Figure 4.5. (a) The true image of dimension 32 × 32. (b) Reconstructed image by Phase Lift 
from noise free measurements (c) Reconstructed image by Phase Lift from noisy measurements. 
(d) Reconstructed image by Phase Cut from noise free measurements. (e) Reconstructed image 
by Phase Cut from noisy measurements.  

4.2. Simulations for the Recovery of Sparse Signals 

In the phase retrieval problem, the exact solution is recovered when the number 

of measurements is 푚>푛. Motivated by compressed sensing, the phase retrieval 

approaches are combined with 풍1-norm minimization techniques to recover the 

sufficiently sparse unknown signal from fewer measurements. Unique signal recovery, 

up to a global phase factor, is targeted by using the signal structure, which is sparse in 

this case, instead of recording more measurements.   

In this section, the numerical results exhibited by sparse versions of the Phase 

Lift and Phase Cut methods for recovering the sparse signals from underdetermined 

measurements are described. First, the simulations are performed to compare CPRL [16] 

and the proposed modified Phase Cut, which were mentioned in the Sections 3.1 and 3.2, 

respectively. Later, the simulation results are presented by the proposed improved Phase 

Lift approach in comparison with CPRL.  
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The magnitude measurements are obtained from 퐛= |퐑퐅퐱| and  퐛= |퐑퐅퐱|2,

퐛∈ℝ푚 for modified Phase Cut and CPRL, respectively. The sparse signal is 

transformed into the Fourier domain by multiplying the signal with the Fourier matrix 

퐅∈ℂ푛×푛 which is then further transformed via the random projection matrix 퐑∈ℂ푚×푛 

generated using a standard normal distribution. For sparse signal recovery, the number 

of measurements is less than the number of unknowns, 푚<푛.  

We have mentioned in Section 2.3 that the Phase Cut method is not tractable 

when the number of measurements is less than number of unknowns. In order to 

illustrate that the CPRL approach works, which is based on the Phase Lift method, while 

the similar approach applied to the Phase Cut method fails, the reconstruction 

performance of these methods is shown in Figure 4.6. The signal of interest that we want 

to recover is real-valued and its length is 32 samples. It has 3 nonzero values, in other 

words the sparsity degree of the signal is 3. For sparse signal recovery, 20 magnitude 

measurements of the signal are recorded. While CPRL recovers the true signal exactly, 

the 풍1-norm based Phase Cut method fails to find the true sparse signal.  
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Figure 4.6. True sparse signal in diamond shape, and reconstructed signals by Phase Cut and 
Phase Lift methods promoted with 푙1-norm minimization. 

Phase Cut algorithm fails for sparse signal recovery; however, the proposed 

modified Phase Cut method with additional constraints, which are described in Section 

3.2, works in recovering the sparse signals from fewer measurements. In Figure 4.7, it 

can be observed that the modified Phase Cut method recovers the real-valued signal, 

which has a length of 32 samples and 3 non-zero values, from 20 magnitude 

measurements. 
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Figure 4.7. True sparse signal in diamond shape, and reconstructed signal by modified Phase 
Cut in circle (푛= 32, sparsity degree = 3, 푚= 20). 

In order to demonstrate the performance of the modified Phase Cut method, first 

the success rate of the proposed approach in 100 trials is recorded for a fixed length 

signal with fixed number of measurements while the degree of sparsity is varying. In 

Figure 4.8, the success rates of the CPRL and modified Phase Cut approaches for 

different values of signal sparsity are given. While both modified Phase Cut approach 

and CPRL work for signals which present degree of sparsity up to 2 at a success rate 

90%-100%, their performance decrease sharply beyond the sparsity degree 2. It is 

observed that the modified Phase Cut method improves the performance of CPRL 

especially when the sparsity degree of the signal is 3. 
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Figure 4.8. For the signal which has a length of 32 samples, the number of successes in 100 
experiments versus the degree of sparsity is given when we have 20 magnitude measurements 
(Modified Phase Cut and CPRL). 

In Figure 4.9, the relative MSE error of both methods is given for different 

values in the degree of signal sparsity. 100 computer simulations are conducted, and in 

each simulation, the test signals are randomly generated. The relative MSE values are 

then calculated by taking the average of the error in each test. Similarly, relative MSE of 

the modified Phase Cut approach is slightly less than the relative MSE of the CPRL 

method. 
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Figure 4.9. Relative MSE versus different sparsity degrees when the number of measurements is 
fixed to 20 for a signal having a length of 32 samples. 

In the second experiment, the minimum number of measurements required to 

have exact signal recovery is illustrated for different values of the sparsity degree for a 

real-valued signal which has a length of 16 samples.  This experiment is repeated 100 

times and then the numbers of measurements required for unique signal recovery are 

averaged. In order to compare their performances, the results exhibited by CPRL and the 

modified Phase Cut methods are described. Both methods show similar performances 

and the number of measurements required to have exact signal recovery is fewer than 4푛 

measurements when the sparse structure of the signal is promoted with an 풍1-norm 

minimization as shown in Figure 4.10. 
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Figure 4.10. Number of measurements required to have exact signal recovery when the original 
signal (of size 16) is sparse. This experiment is repeated 100 times and then the results are 
averaged. 

In addition to determining the number of measurements required for unique 

signal recovery for different values of sparsity degree, we also computed the number of 

measurements required for unique signal recovery for signals with different lengths. This 

experiment is repeated 10 times for 10 different random signals, and then the average 

number of required measurements is calculated. The lengths of the signals are chosen as 

8, 16 and 32 samples, respectively, while the sparsity degree of these signals is fixed to 

3. The results of this experiment are displayed in Table 4.2. When the degree of sparsity 

of the signals is fixed and the lengths of the signals vary, the sparse signals are exactly 

recovered from fewer measurements for both CPRL and modified Phase Cut methods. 
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Table 4.2. The number of measurements required for exact signal recovery for CPRL and the 
modified Phase Cut approaches 

Method Size (풏) Number of Measurements Required for Exact 
Signal Recovery 

CPRL 8 10 

16 12 

32 15 

Modified Phase Cut 8 10 

16 12 

32 18 

In order to compare the computational complexities of the CPRL and the 

modified Phase Cut approaches, the computation time expressed in seconds and the 

number of iterations required to solve the semidefinite program in Matlab via the CVX 

package are evaluated. In Table 4.3, the lengths of the signals change while the sparsity 

degree of the signals is fixed to 3. In this case, it is observed that the computational 

complexities of both approaches depend on the signal length, especially for the modified 

Phase Cut method. When we compare the computation time for Phase Lift method in 

Table 4.1 with the computation time of CPRL in Table 4.3, CPRL achieves exact 

recovery in a shorter time. However, this improvement in the computational time for the 

modified Phase Cut method is not observed while exact signal recovery is achieved from 

fewer measurements.  
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Table 4.3. Computation time and the number of iterations in SDP for the CPRL and modified 
Phase Cut approaches (sparsity degree of the signals is fixed to 3) 

Method Size (풏) Iteration Time (sec) 

CPRL 8 18 0.64 

16 22 0.86 

32 27 3.17 

Modified Phase Cut 8 19 1.16 

16 20 3.08 

32 23 42.03 

Table 4.4. Computation time and the number of iterations in SDP for the CPRL and modified 
Phase Cut approaches (length of the signals is fixed to 16 samples) 

Method Sparsity Degree of 
the signal (풌) 

Iteration Time (sec) 

CPRL 3 22 0.87 

6 25 1.01 

10 28 1.25 

Modified Phase Cut 3 23 4.32 

6 26 8.03 

10 24 15.31 

In Table 4.4, the runtime of both approaches is given for different sparsity 

degrees of the signal. For each of the sparsity values, the number of measurements is 

chosen such that the approaches will achieve the exact signal recovery. First, when the 

signal of interest has more non-zero samples, the computation time for CPRL and 

modified Phase Cut increases. However, this increase is sharper in the computation time 

of modified Phase Cut approach. If Tables 4.1 and 4.4 are compared, it turns out that 

there is a trade-off between the computational complexity of the algorithms and the 

undersampling factor. While exploiting the sparse structure of the signals decreases the 
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necessary number of measurements for exact recovery, the runtime of the modified 

Phase Cut method increases slightly. However, in terms of recovering a signal from 

fewer measurements, exploiting the structure of the signals enables the convergence of 

the CPRL approach to the exact solution slightly faster as expected. 

To evaluate the performance of these approaches in the presence of noisy 

measurements, we employed the same procedure in the non-sparse signal recovery case 

described in Section 4.1. In the test, the Gaussian noise is added to the magnitude 

measurements at different SNR levels such as 5, 10, 25, 50 and 100 dB. For each of the 

SNR levels, different real-valued test signals which present 4 nonzero samples out of the 

16 samples are generated. In order to guarantee the exact recovery, the number of 

measurements is fixed to 16. Each experiment is repeated 100 times. In Figure 4.11, the 

relative MSE values for different SNR levels are illustrated. When the SNR level is low, 

the relative MSE of the CPRL approach is slightly lower than the relative MSE of the 

modified Phase Cut approach. For higher SNR levels, they present similar performances. 



 

49 

 

 
Figure 4.11. Performance of CPRL and modified Phase Cut in the presence of Gaussian noise 
(relative MSE versus SNR). 

 Finally, in order to improve the Phase Lift method for sparse signal recovery, we 

proposed the approach in (35) to exploit the sparsity information present in the signal by 

combining the method proposed in [20] with a 풍1-norm minimization: 

                                    minimize     ∑ |Tr(횯푖퐗)−푏푖|1≤푖≤푚 +λ‖퐗‖1  
                                    subject to     퐗≽0, 

(35) 

where λ> 0 is a design parameter enforcing the sparsity, and ‖퐗‖1 denotes the entry-

wise 풍1-norm for the matrix 퐗.  
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Figure 4.12. Success rate of the signal recovery using CPRL and the proposed approach. 

Figure 4.12 demonstrates the performance of the approach in (35) and CPRL as a 

function of the sparsity of the signal. While the performance of the proposed approach 

highly depends on the value of design parameter λ, CPRL method does not exhibit such 

a high dependence. For this reason, in order to compare their reconstruction rates, λ is 

fixed to 1.  

In Figure 4.12, it is illustrated that the proposed approach slightly improves the 

performance of CPRL approach for sparse signal recovery. For larger degrees of sparsity 

of the signal, the reconstruction rate of the proposed approach may be further increased 

by adjusting the design parameter. This experiment consists of 100 trials, and each of the 

simulations is tested with randomly generated signals with length equal to 32 samples. 
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The number of measurements is chosen equal to 20. In Figure 4.13 the relative MSE 

error of both methods is given for different values of the degree of signal sparsity.   

 
Figure 4.13. Relative MSE for different values of sparsity degree is given when the number of 
measurements is fixed to 20 for a signal having a length of 32 samples. 
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5. SUMMARY AND CONCLUSION 

 

In the presented research, the phase retrieval problem from nonlinear magnitude 

measurements is studied. The classical phase retrieval algorithms mainly depend on the 

alternating projection method. These methods work practically well; however, exact 

recovery of these methods is not guaranteed because of the nonlinear magnitude 

measurement constraint. Therefore, this study concentrates on the Phase Lift [8] and 

Phase Cut [10] methods which interpret the phase retrieval problem in a higher 

dimensional space by formulating the signal recovery problem as a rank-one matrix 

recovery problem. The Phase Lift and the Phase Cut methods which are based on 

semidefinite programming require redundant number of measurements in order to 

guarantee the exact signal recovery. However, in real-word scenarios, it can be 

expensive and time consuming to collect a large number of measurements. Therefore, in 

this study, the sparse structure of the signals is employed in order to reduce the number 

of measurements. With this goal, SDP based Phase Lift and Phase Cut methods, which 

requires sufficiently large amount of measurements, are combined with 풍1-norm 

minimization in compressive sensing. 

In this thesis, we proposed the modified Phase Cut and improved Phase Lift 

approaches in order to recover sparse signals from fewer measurements and they are 

analyzed in comparison to a recent method, called compressive phase retrieval via lifting 

(CPRL) [16]. The proposed approaches are developed by exploiting the sparsity 

information present in the signal by employing 풍1-norm minimization. 
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The Phase Lift and the Phase Cut methods recover the signals exactly with high 

probability when the number of measurements is sufficiently large in the presence of IID 

random vectors. Their performances are very similar when the number of measurements 

is greater than the number of unknowns. If both methods have optimal solutions for the 

semidefinite programs defined for each of them, these solutions are the same and exact. 

Despite their similar performance in the presence of overdetermined systems, in an 

underdetermined system of equations with sparsity constraints, the Phase Cut method 

fails because of the least squares criterion. 

The proposed modified Phase Cut method handles this problem by adding extra 

affine constraints in the range space of the linear mapping. The reconstruction 

performance of the modified Phase Cut approach is then better than the reconstruction 

rate of CPRL approach for different sparsities. The number of measurements required 

for exact signal recovery exhibits a similar trend in both approaches for different degrees 

of sparsity. However, these approaches, i.e., the Phase Lift and Phase Cut methods and 

their versions for the recovery of sparse signals, differ in terms of computational 

complexity. The Phase Lift and CPRL (the version of Phase Lift method for sparse 

signal recovery) method present less computational complexity than the Phase Cut and 

modified Phase Cut approach, respectively. Because the configuring of the Phase Cut 

based approaches in terms of dealing with complex matrices increases the matrix 

dimension according to the configuration of Phase Lift based approaches, and this 

configuration increases the runtime of these methods. In addition, decreasing the number 
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of measurements by using sparsity information of the signal improves the computational 

complexity, as well as the runtime, of the CPRL approach with respect to the Phase Lift 

method. However, surprisingly this improvement is not observed in Phase Cut based 

methods. Reducing the number of measurements by using the sparse structure of the 

signal causes the runtime of the modified Phase Cut method to increase, although it is 

achieved in sparse signal recovery, and it improves the performance of CPRL. Finally, 

both CPRL and modified Phase Cut approaches are stable in the presence of noisy 

measurements. Their performances improve with an increase in the signal-to-noise ratio. 

The other approach that we proposed in order to improve the Phase Lift method 

for sparse signal recovery gives better reconstruction performance than the CPRL 

approach. However, it is observed empirically that the performance of this approach 

highly depends on the value of design parameter λ. Better reconstruction performances 

of the improved Phase Lift approach can be achieved by carefully adjusting the design 

parameter. 

In conclusion, combining the phase retrieval methods based on semidefinite 

programming with the 풍1-norm minimization idea in compressive sensing enables the 

usage of the sparse structure of the signal for the exact recovery from fewer magnitude 

measurements. The proposed approaches which are modified Phase Cut and improved 

Phase Lift perform slightly better than CPRL in terms of reconstruction rate. However, 

the methods that are based on Phase Cut are computationally slower than the developed 

version of the Phase Lift method. For both methods, the exact signal recovery could be 

accomplished up to a lower degree of sparsity. Thus, these techniques could be improved 
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in the future in order to recover signals at higher sparsity levels from fewer 

measurements.  Finally, formulating the phase retrieval in a higher dimensional space 

and solving the semidefinite programs by interior-point methods in the CVX package 

[30] is challenging in terms of computational time in large scale problems. Therefore, for 

the future directions, some improvements could be done in terms of computation time by 

using some SDP acceleration techniques.  
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