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ABSTRACT 

 

The thermodynamic properties of a fluid confined in extremely small pores can 

be substantially different from those observed of the same bulk fluid. These differences 

in behavior could have technical applications in adsorption-based separations; may pose 

a challenge with regards to the extraction of oil entrapped in the small cavities of 

reservoir rocks; or could even be utilized in complex heterogeneous catalytic systems 

such as those used in gas-to liquid fuel conversions.  

This thesis describes the use of the generalized van der Waals theory to extend 

cubic equations of state, such as Peng-Robinson, that are widely applied in the oil and 

gas industry to model the behavior of pure fluids as well as mixtures confined in 

spherical pores. Empirical expressions were developed for the coordination number in 

spherical pores as a function of the molecule to pore size ratio, for the distribution of 

molecules along the pore radius as function of temperature, and of the interaction 

potential between the molecules and the pore wall. Despite their relative simplicity, the 

expressions capture the limiting behaviors expected at high and low temperatures. The 

model parameters were then fitted to experimental data for the adsorption of light 

hydrocarbons and gases in common adsorbents. Finally, the calculated results were 

compared to the experimental results in order to assess the performance of the model, 

through adsorption equilibrium calculations. 
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NOMENCLATURE 

 

ai  Energy parameter of pure component i  

ap  Confinement-modified energy parameter of the equation of state 

ap,ij  Confinement-modified energy parameter for a mixture 

bi  Volume parameter of pure component i 

bp  Confinement-modified volume parameter of the equation of state 

bp,i  Confinement-modified volume parameter of pure component i 

Econf   Configurational energy 

Fp Fraction of the confined molecules subject to the pore wall attractive field 

for random distribution of the molecules inside the pore 

fw,i Parameter used in ai  

k  Boltzmann constant 

N  Total number of molecules 

Nav  Avogadro’s number 

P  Pressure 



 

v 

 

q  Internal partition function of one molecule 

Q  Canonical partition function 

R  Ideal gas constant 

rp  Pore radius   

T  Absolute temperature  

V  Total volume 

Vf  Free volume 

An  Lower asymptote 

Kn  Upper asymptote 

Bn  Growth rate  

Qn  Depends on the value of the average logistic function at t = 0 

Mn  Time of maximum growth if Q = η  

W   Value of the average logistic function divided by 10 

ηn    Affects near which asymptote maximum growth occurs in the normal 

distribution function 

σn   Standard deviation parameter in the normal distribution function 
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μn  Mean or expectation of the normal distribution function 

δp  Square well width of the molecule-wall interaction potential 

εp  Square well depth of the molecule-wall interaction potential 

λ  De Broglie wavelength 

ρmax  Confinement-modified number packing density 

ρn,max  Confinement-modified molar packing density 

σ  Molecular diameter 

ν  Molar volume 

ω  Accentric factor 

i.j  Components 

NC  Number of fluid components 
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CHAPTER I  

INTRODUCTION 

 

It is a well-known fact that the behavior of fluids confined within small pores 

highly differs from regular behavior in the bulk phase. This phenomenon is more 

pronounced when the size of the pore is in the range of nanometers, and the effects of 

constraint as well as the interaction between the pore wall and the molecule of the fluid 

must be taken into account. Modeling of this kind of phenomenon is extremely 

important for the chemical industry, as many operations and processes involve confined 

fluids. Another complexity associated with modeling the adsorption of a system is a lack 

of representation of structural heterogeneity or whether the adsorbent can influence the 

behavior of the system. 

The difference between fluid properties in the bulk phase and the confined phase 

depends on the interaction of fluid molecules with the wall of the porous media that 

entraps them. Current adsorption models often do not include the effect of adsorbent 

pore size and shape, accounting for only the chemical heterogeneity aspect of the 

surface. Hence there is a need to study the effects of pore size and shape on confinement. 

This can be done in great detail using molecular simulations. However, the downside to 

utilizing such simulations is that their computational demand proves to be too high for 

practical equipment and process design. 

The development of such models can help predict the behavior of confined fluids 

in the applications of heterogeneous catalysis. Warrag
1
 applied an equation of state for 
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fluids confined in cylindrical pores, developed by Travalloni et al
2
, to investigate 

possible fluid condensation inside the pores of the catalysts employed in the Fischer 

Tropsch synthesis, as part of the Gas-to-Liquids process. Multi-phase equilibrium 

calculations were also performed for the bulk and confined regions of the catalyst. 

A model that can describe the phenomena of confinement would be highly 

pertinent to the field of Oil & Gas for application to oil deposits confined in porous 

rocks in reservoirs. The oil extraction process is complicated, due to the complexity of 

the fluid mixture as well as due to the properties of the porous media in which it is 

entrapped. Most water and hydrocarbon systems display three phases, namely an organic 

liquid phase, an aqueous phase, and a gaseous phase, with flat phase interfaces. 

However, this generalization cannot be applied to most petroleum reservoirs. In reality, 

there are transition regions in which several phases can exist, namely water-oil contact 

(WOC) regions and gas-oil contact (GOC) regions. The compositions of these phases 

can differ, i.e. within the same reservoir, the confined fluid may be in either liquid or 

vapor phase, depending on the nature of the adsorbent that the particles are confined in. 

Another aspect that adds to the complexity of these calculations is that the composition 

of a phase may vary for different pores. Hence a model that can simultaneously predict 

the effect of height and confinement can be utilized in predicting the occurrence of 

WOC and GOC regions. 

Continuing previous work of our group on the behavior of confined fluids, the 

objective is to develop a thermodynamic model for fluids confined in spherical pores. 
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This thesis will extend the Peng-Robinson equation of state to this case, through use of 

the generalized van der Waal’s theory as a starting point for the model’s derivation.  

Using the existing equation of state for cylindrical pores as a basis, this 

expression can be modified for spherical pores. This can be accomplished by developing 

expressions for the porosity and coordination number, as well as modifying the 

configurational energy expression and the free volume expression to account for 

spherical geometry. The modified Peng-Robinson equation of state models the fluid in 

bulk and confined spaces, thus it presents itself as a practical approach to describe 

confinement. The bulk phase is treated a system confined by an extremely large pore so 

that the effect of the wall on the molecules is negligible.  

An advantage of using the same model for both bulk and confined phases is the 

ease of modification of conventional phase equilibrium procedures and computational 

programs to account for confinement. From a theoretical standpoint, this particular 

approach ensures consistent representation of fluid behavior over wide ranges of 

pressure. From a practical view, this technique enables ease of adaptation of existing 

computational procedures for phase equilibrium calculations in the cases of adsorption, 

such as the dew point, bubble point and flash point. It also greatly simplifies the 

computation of the calorimetric properties of adsorption. Another added benefit of this 

model is the relative simplicity of the mathematical calculations.  

The structure of this thesis is described as follows. Chapter II presents a literature 

review on the history of thermodynamics and cubic equations of state and the 

development of models related to confinement of fluids. Chapter III discusses the 
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theoretical basis and the simplifying assumptions adopted in this work for the 

development of equations of state for pure fluids and confined mixtures, as well as the 

formulation of the model obtained. Chapter IV discusses the different kinds of porous 

adsorbents that have a spherical structure, and can be considered for applications of the 

model. Chapter V presents the equilibrium calculations and the parametric fitting 

methods that were utilized in the analysis of the developed model, in order to obtain a 

conclusive comparison between experimental and calculated results. Chapter VI 

discusses the results of the evaluated model, and what adjustments could be made to 

improve it. Chapter VII presents the conclusions of this work and Chapter VIII contains 

information regarding the continuity of this work and future areas that need to be 

investigated. 
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CHAPTER II 

LITERATURE REVIEW 

 

Previous work on the development of an equation of state to calculate the 

properties of confined fluids has been carried out. Zhu et al.
3
 developed an equation of 

state for fluids confined in cylindrical pores from the formulation of a theory of 

interfaces, based on the attractive interactions between the adsorbent and adsorbed 

phases, as well as the concepts of surface tension and curvature of the adsorbed 

interface. The fluid pressure in the pore size and the strength of the molecule-wall 

interaction (modeled by Lennard-Jones potential) were related to the thickness of the 

adsorbed layer on the pore wall (i.e., the quantity adsorbed). This model has been shown 

to describe the adsorption behavior of Nitrogen in samples of molecular sieve MCM-41 

(mesoporous solid) characterized by different pore sizes. However, this approach is not 

suitable for microporous solids because the small amount of fluid molecules within each 

micropore would invalidate the theory of interfaces that has been thermodynamically 

described for macro or mesoscopic systems. 

Schoen and Diestler
4
 proposed an extension of the van der Waals equation of 

state for fluids confined in rectangular pores. These authors relied on Perturbation 

Theory, with reference to a fluid of hard spheres with uniform density. A correction was 

defined based on the mean-field approximation to account for the attractive effect of the 

molecule-molecule and molecule-wall (both modeled by Lennard-Jones potential) 

interactions. The only difference between this equation of state and van der Waals is the 
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energy parameter, which is a function of the distance between the solid walls for 

confined fluids. This model was able to qualitatively predict some effects of the 

confinement in fluids experimentally adsorbed on mesopores, such as capillary 

condensation and reduction of the critical temperature of the fluid due to the reduction in 

pore size. However, the model predicts that the critical density of the fluid is 

independent of pore size, which is a consequence of the assumption of uniform density 

of the confined fluid. Furthermore, the authors reported that their model does not 

adequately describe the adsorption under near the critical point of the unconfined fluid. 

To avoid this problem, molecular simulation results suggest a need to consider various 

regions inside the pore that are dependent on the distance from the wall. Thus, the 

properties of fluids under confinement are a result of the contributions of each region, 

thus allowing a simplified representation of the variation of the fluid density in the radial 

direction of the pore. 

Truskett et al.
5
 extended the Diestler and Schoen model

4
 so as to consider the 

occurrence of hydrogen bonds between the molecules of fluid, aiming to describe the 

associative behavior of fluids (for example: water) under confinement. But Giaya and 

Thompson
6
 observed that the predictions of this model appeared to be very sensitive to 

the values of some parameters, which could affect the performance of the model. Thus 

they proposed a change in the method of accounting for the effect of hydrogen bonds on 

the properties of the fluid. This methodology has been extended to cylindrical pores, 

obtaining predictive results consistent with experimental observations concerning water 

adsorption in two mesoporous materials. 
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Zarragoicoechea and Kuz
7
 developed an extension of the van der Waals equation 

of state to fluids confined in pores with finite areas. These authors began with a classical 

thermodynamic formulation, together with the premise that the pressure of the confined 

fluid has tensor character, given the anisotropic nature of the system. The molecule-

molecule interaction was modeled by a Lennard-Jones potential and the attractive 

molecule-wall interaction was neglected. This model was used to predict the conditions 

of the fluid capillary condensation, and obtained results that were comparable to those 

provided by network models and numerical simulations.  

Derouane
8
 proposed a modification of the simple attractive van der Waals 

equation of state to create an appropriate model to predict the density and physical state 

of fluid molecules adsorbed in microporous solids at or near pore saturation conditions. 

A term dependent on the pore radius was added to the original equation of state, which 

refers to the increase of fluid pressure due to the increase in the degree of confinement, 

as suggested by experimental study. The repulsive effect of confinement was not altered, 

due to experimental indications that the van der Waals volume parameter suffers a slight 

reduction (approximately 15%) for confined fluids. This model was able to qualitatively 

describe the critical density increase and a decrease in the critical temperature as a result 

of a reduction of the pore size. Although the repulsive part of the van der Waals equation 

has not been modified, an approach was suggested by which such a modification could 

be performed in order to obtain more quantitative predictions suitable for the adsorption 

of fluids in micro-and mesoporous solids. 
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Sandler
9
 describes that the total energy of such an assembly of molecules can be 

separated into translational, rotational, vibrational, electronic and interaction energy. 

Each of these energy contributions is assumed to be independent of each other. The 

generalized van der Waals equation can be modified to fit several EOS based on the 

assumptions made for the free volume, Vf and mean potential, φ. Van der Waals 

developed the expression for free volume based on its literal meaning, i.e. the volume 

that is available for a new molecule of diameter σ to be introduced into a volume V 

occupied by N similar molecules. Van der Waals also assumed that the coordination 

number is a function of density and is independent of temperature. The square well 

model is chosen due to its simplicity, and because expressions such as the coordination 

number can be well defined without any ambiguity.  

Woods et al.
10

 investigated the thermodynamic behavior and local density for the 

adsorption of molecules in zeolites with spherical cavities, with the molecules following 

Lennard-Jones behavior. The different methods undertaken were a direct calculation of 

the partition function, a derivation of the results yielded by the expansion of the virial 

coefficient expression, and use of the grand canonical Monte Carlo simulations as a 

comparison tool for the former methods. The partition function results were found to be 

better than those obtained from the virial coefficient expression. These results were then 

compared to the Monte Carlo simulation. The result for occupancy in the adsorbents was 

an interesting focal point of this paper. Two adsorbent systems were chosen for study, 

namely xenon in faujasite (large cavities) and a reduced version of a similar system 

(small cavities). For both large and small cavities, the average occupancy was 4 
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molecules per pore, with the actual occupancy ranging from 1-7 molecules. For larger 

cavities, discrepancies were noted between the partition function calculations and 

simulation results when the average occupancy was greater than 5. The small cavity 

results were in agreement for all occupancies. 

Travalloni et al.
2
 extended the generalized van der Waal’s equation for 

confinement in cylindrical pores. The interactions between the fluid molecules, as well 

as the fluid molecules with the walls were modeled using the square-well theory. This 

procedure involved developing empirical expressions for the coordination number, 

porosity and the free volume, which were in turn implemented in the configurational 

energy equation. Adsorption calculations were then performed to study the performance 

of this model, as well as its sensitivity to the fitted parameters. This work will employ a 

similar technique of developing an equation of state, while making necessary 

modifications for spherical pores. 
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CHAPTER III 

THERMODYNAMIC MODEL  

 

Through use of statistical thermodynamics, the generalized van der Waals 

approach was adopted as a basis for the development of an equation of state that could 

model fluids under the effects of confinement in porous media. These models are 

designed as extensions of simple cubic equations of state, with aspects related to these 

equations of state included in terms that characterize confinement, i.e., pore size and the 

strength of the interactions between the fluid molecules and the pore walls. Hence, the 

modified equation of state obtained is expected to describe the behavior of a fluid as a 

function of the degree of confinement. This model would apply to the confined fluid, as 

well as the unconfined fluid, thus providing a simple and consistent adsorption model. 

To achieve this goal, several hypotheses have been assumed about the adsorbent-

adsorbate system, and the resulting models of these hypotheses were obtained 

analytically through computer algebra. The following is a description of the models 

whose formulation provided a basis for this work. 

According to Hill
11

, the properties of a mixture can be obtained from the 

canonical partition function: 

1 2 3 2
1

( , , , , ... ) exp d
!

i

i

TNNC
confNi

NC fN
i i i

Eq
Q T V N N N V T

N kT 

  
   

   
     (1) 

where NC is the number of components, T is the absolute temperature, V is the total 

volume of the system, Ni is the number of molecules of component i of the fluid, qi is the 
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internal partition function for a molecule of component i,  is the de Broglie wavelength 

(translational energy contribution to the function partition), k is the Boltzmann constant, 

Vf is the free volume and Econf is the configurational energy. For NC=1, equation 1 

reduces to the pure component canonical partition function. 

The canonical partition function, Q, represents a bridge between statistical and 

classical thermodynamics. Through this expression, various thermodynamic properties 

such as Helmholtz free energy, A, pressure, P, and chemical potential of a component i 

can be derived as follows,
9
 

)...,,,(ln)...,,,( 2121 NCNC NNNVTQkTNNNVTA      (2) 

NCNNNTV

Q
kTP

...,, 21

ln












         (3) 

 

, ,

ln

j i

i

i T V N

Q
kT

N




 
   

 
        (4) 

As per the generalized van der Waals theory, expressions must be defined for the 

free volume, Vf, which denotes the repulsive part of the equation of state and the 

configurational energy, Econf, which denotes the attractive part. This is based on the 

assumption that the fluid molecules are hard spheres that interact with each other 

through the square-well potential model.  

 

Free Volume Expression 

In the case of mixtures, the expression for free volume of the fluid mixture 

follows, 
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NC

i i

i
f

N
VV

1 max,
         (5) 

which, for pure substances, reduces to: 

max


N
VNVV f          (6) 

where β is the excluded volume per fluid molecule and ρmax is the packing density of the 

fluid. In the case of confined fluids, ρmax is a function of the dimensions of confinement, 

namely the adsorbent pore size. Applying the assumption of perfectly spherical 

adsorbent pores with a radius rp, and fluid molecules are spheres of diameter σ, this leads 

to ρmax being a function of the rp/σ ratio. To find out the relationship between these 

quantities, porosity data is used. 

Porosity is a measure of the empty or void spaces in a material. It is the fraction 

of the volume of void spaces over the total volume, and is normally expressed as a 

number between 0 and 1. The equation for porosity at packing density follows the same 

basis as the cylindrical porosity developed by Travalloni et al.
2
 ρmax is functionally 

dependent on the mean porosity of loosely packed beds of hard spheres in a spherical 

pore. In the model, porosity is calculated using the following expression, 

exp 0.5 exp 0.5
p p

1 2 3 4 5

r r
c c c c c

 

      
          

      

    (7) 

Constants c1-c5 were obtained by minimizing the deviation between computer-

simulated porosity data results
12

 and values calculated using equation 7. These values are 

displayed in Table 1, while the porosity fit obtained is displayed in Figure 1. 
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Table 1: Parameters used to calculate porosity 

c1 0.46091 

c2 0.98273 

c3 2.65807 

c4 1.44365 

c5 29.0217 

 

 

Figure 1: Porosity versus rp/σ (Pfoertner)
12
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Configurational Energy 

The model only considers interactions in regions I and II of the spherical pore, 

depicted in Figure 2. The first term in the configurational energy expression (equation 8) 

describes the molecule-molecule interactions taking place in regions I and II of the pore, 

while the second term explains the molecule-wall interactions that occur in region II of 

the pore. Interactions in region III are neglected, due to hardcore repulsion from the pore 

wall, thus rendering this region inaccessible to the mass centers of the fluid molecules. 

 

 
Figure 2: Square-well region inside a spherical pore 

 

The configurational energy describes the interactions between the fluid 

molecules as well as the interactions between the fluid molecule and the pore wall. From 

the work by Travalloni et al.
2
, the configuration energy follows, 

ppCconf NFN
N

E  
2

        (8) 
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where Nc is the coordination number, ε is the energy parameter of the molecule-

molecule interaction, εp is the energy parameter of the molecule-wall interaction and Fp 

is the fraction of confined fluid molecules that occupy the square-well region of the 

pores. 

 

Coordination Number and Calculations for Nearest Neighbors 

The coordination number is essentially defined as the number of nearest 

neighbors that a selected particle interacts with
9
. It is necessary to determine the 

coordination number based on the geometry, as this gives an idea of how the molecules 

will be distributed within the pore.  

Each of the commonly used cubic equation of state, the Peng-Robinson EOS 

among them, uses a different expression for the bulk coordination number, which needs 

to be modified to account for the effect of confinement in spherical pores. The formal 

solution to this problem is to find the radial distribution function of molecules inside the 

pore. To avoid this difficult calculation and in order to obtain an equation for the 

coordination number for spherical pores, several empirical functions were investigated, 

including the generalized logistic function (Richard’s curve)
13

, the normal distribution 

function
14

 and the sigmoidal function. Out of these, it was determined that a combination 

of the generalized logistic function
13

 and the normal distribution function
14

 would 

provide the best fit to the geometric data
12

, i.e. the ratio of the pore size to the molecular 

diameter, rp/σ. Hence, the average logistic-normal function was adapted to describe the 

confinement part of the coordination number. Equation 9 expresses the formula adapted 

for the confinement coordination number, and equation 10 describes the entire 
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coordination number. Table 2 displays the fitted parameters and Figure 3 presents its 

results. 

 

    

   
2

2

1

exp 2
1

10 2
1 exp n

p ij n n
n n

ij n

n

n n p ij n

r
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Q B r M


  

 


 
  

   
 

   
 

   (9) 

 

           (10) 

 

Table 2: Average Logistic-Normal Function Constant Values 

Parameter Value 

An -4.685 x 10
-4

 

Kn 1.000 x 10
1
 

Qn 2.628 x 10
-1

 

Bn 3.345 

Mn -8.141 x 10
-1

 

ηn 3.255 x 10
-4

 

σn 2.666 x 10
-1

 

μn 1.794 

 

As in the case of the parameters for porosity (Table 1), the parameters in Table 2 

are applicable to any substance or mixture. Thus it is not necessary to refit them during 

application of the model. 

 

 
 

, ,

, ,

1 1 2
( ) ln

1 1 2

max
i max

c ij PR ij

max i max j max

x
N Wf T

 

   

  
 
  
 



 

17 

 

 
Figure 3: Coordination number versus rp/σ 

 

The limiting value of Nc as rp/σ → ∞ in equation 9 is approximately 10. The 

minimum coordination number is 0, which would result in a configuration of a single 

sphere confined within a sphere, with no space available for the insertion of additional 

spheres. Hence the maximum coordination number for a sphere follows the previously 

observed result for cylindrical pores by Travalloni et al.
2
, while the minimum 

coordination number does not follow the previous results. 

The best representation of spherical particles confined within a sphere was found 

on a website entitled Densest packing of spheres in a sphere
12

. This website displays 3-D 

simulations of spheres within a sphere of unit diameter; the URL can be found in the 

references section. An example of packed spheres inside a spherical cavity is shown in 

Figure 3. The number of spheres that are to be inserted can be manually adjusted.  
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Figure 4: Spherical particles confined within a sphere, n = 20

*
 

 

In the configurational energy expression, Fp is defined as the fraction of the total 

number of fluid molecules in region II (the intermediate square-well layer). It is a 

simplistic way to account for the local distribution of the fluid molecules within each 

adsorbent pore. As in the case of the coordination number, the formal method of finding 

the local density distribution within the adsorbent is avoided by taking an empirical 

approach. Fp depends on Fpr, which is the fraction of confined molecules in the square-

well region of the pores for random distribution of the fluid. It is based on the volume of 

the pore, which is spherical. 

                                                 

*
Image reprinted with permission from “Densest Packing of Spheres in a Sphere” by Pfoertner, 

H., 2011, Copyright [2011] by Pfoertner, H. 
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The volume of a sphere simply follows the formula below, 

3

3

4 II RV            (12) 

3

3

4 IIII RV            (13) 

Substituting these expressions into Fpr, 
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An empirical expression was developed for Fp in order to avoid complications in 

determining the local distribution of the confined fluid, which follows, 

 








































 


max

1exp11
kT

FFF
p

prprp       (16) 

and satisfies different physical limits of the confined fluid. When ρ → ρmax and T → ∞, 

Fp = Fpr, which means that the fluid is randomly distributed in the pores. When ρ → 0 

and T → 0, Fp = 1, and the confined molecules occupy the square-well region of the 

pores. 

θ is a geometric term that defines the relationship between the real and maximum 

pore radius and accounts for all fluid molecules that are attracted to the pore wall. The 
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expression for θ can be assumed to follow the same formula as in the case of cylindrical 

pores i.e. 

   
  

     
  
 

          (17) 

Extended Peng-Robinson Equation of State 

The expression for the extended Peng-Robinson equation of state developed by 

Travelloni et al.
15

 for confined fluids (PR-C) is as follows, 
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           (18) 

where R is the universal gas constant, ap is the confinement-modified energy parameter 

of the fluid mixture, bp is the confinement modified volume parameter, ν is the molar 

volume of the fluid, Fpa is the fraction of confined molecules in the square-well region of 

the pores for random distribution of the fluid, and θ is the geometric factor.  

The development of the model follows the steps of the work of Travelloni et al.
15

 

for confined fluids except for details related to the pore geometry, which is spherical 

here as opposed to cylindrical in the original publication. The working expressions for 

ap, which is the modified energy parameter for confinement of the fluid mixture, and for 

bp , which is the modified volume parameter for confinement of the fluid mixture, are: 
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The auxiliary terms to evaluate pa  are expanded as follows:  

 , 1p ij ij i j ija W a a k          (21) 
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  (22) 

The parameters of equation 21 are presented in Table 2. Additional intermediate terms 

are: 

2

i j

ij
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         (26) 

2f 0.37464 1.54226 0.26992wi i i          (27) 

The auxiliary terms to evaluate pb  are expanded as indicated here. First, bp,i is 

the confinement modified volume parameter of pure component i,  

,

max, ,max,

1av
p i

i n i

N
b

 
          (28) 
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where ρmax,i and ρn,max,i are the number packing density and molar packing density of 

pure component i, respectively, and Nav is the Avogadro number. ρn,max,i depends on the 

molecule size, as well as the pore size as follows:  

2.65807 0.5 29.0217 0.

max, 3

5

,

1.02958 1.87689 2.75716

p p

i i

r r

n i

i avN

e e
 




   
       

    
    (29) 

where 
i  is given by equation 23 and ib , upon which it depends, is given by equation 24.  

 

Comments 

 It should be remarked that the model presented in this chapter is developed to 

represent the behavior of many molecules in many pores. It is not intended for the 

individual modeling of a single pore.  

Another interesting detail about the development of a model for fluids in a 

spherical pore is how to obtain volume derivatives, such as that of the Helmholtz 

function, which gives the formula for pressure. There are many ways of changing the 

volume of pore space in a medium. In this discussion, two are considered. The first is to 

change pore diameter, keeping the number of pores constant.  The second is to change 

the number of pores while maintaining constant diameter.  

When dealing with bulk fluids, any changes in volume would not have a major 

effect on how the molecules interact with the confining wall (as this effect, on average, 

is negligibly small). Therefore, volume changes affect the space available for the 

molecules without affecting the characteristics of their interaction with the confining 

wall. For confined fluids, the pressure in the pore was computed in analogous fashion, 
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i.e., the volume was modified in a virtual process that changes the number of pores but 

maintains constant diameter. 
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CHAPTER IV 

ZEOLITES 

 

In order to compare the calculated and experimental adsorption results, it is 

necessary to determine which porous materials would be suitable for this purpose. 

Through use of the Dortmund Data Bank
16

, ZEOMICS
17

 and published papers, a list of 

zeolites which have near spherical structures were identified and compiled, as per Table 

3. Zeolites have been used for the purpose of adsorption and catalysis for the past 50 

years. Due to their regular cavity shape and size, zeolites prove to be suitable candidates 

for studying the effects of confinement. 

The adsorbents considered for analysis were mainly zeolite A, which follows the 

LTA structure
17

, sodalite, which follows the SOD structure
17

 and chabazite, which 

follows the SSZ-13 structure
17

. The reason for the selection for these zeolites is the vast 

amount of adsorption data available from literature. All three zeolites have nearly 

spherical pores, with some cylindrical structures acting as connectors or channels to the 

spherical pores. For simplicity’s sake, the effect of the cylinder is assumed to be 

negligible, i.e. the zeolites are assumed to be purely spherical.  

This work focuses on the adsorption of methane, ethane, propane, and butane, 

which are abundant in Qatar as some of the major components of natural gas. Both pure 

component and binary mixture literature data were compiled.  
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Table 3: Spherical Zeolite Classification 

Structure Name 

ASV ASU-7 

ATN MAPO-39 

DDR Deca-dodecasile 3R 

DFT DAF-2 

LTL Linde Type L, zeolite L 

MEP Melanophlogite 

MOZ ZSM-10 

OSO OSB-1 

RTE RUB-3 

RTH RUB-13 

RWY UCR-20 

SAS STA-6 

SFF SSZ-44 

SOD Sodalite 

SSZ-13 Chabazite 

TSC Tschortnerite 

UOZ IM-10 

LTA Zeolite A 

- Zeolite 13X 

 

 



 

26 

 

 
Figure 5: Zeolite A

17
 follows the Linde type A (LTA) structure

†
 

 

 
Figure 6: Sodalite

17
 follows the SOD structure

† 

 

                                                 

†Zeolite images reprinted with permission from “ZEOMICS - Zeolites and Microporous 

Structures Characterization” by First, E. L., and Floudas, C. A., 2011., Copyright [2011] by 

Floudas, C. A.  
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Figure 7: Chabazite

17
 follows the SSZ-13 structure

† 

 

Table 4 details the structural properties of the adsorbents considered. This table 

includes information about the largest cavity diameter, which is an important 

quantitative characteristic of the pore, as well as the specific pore volume, which is the 

sum of all the pore volumes per one gram of adsorbent. The sodalite structured zeolites 

considered are ZIF-8, ZIF-90, ZIF-Cl, ZIF-NO2, and ZIF-COOH. 
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Table 4: Zeolite properties 

Adsorbent Largest Cavity Diameter (m) 

Specific Pore Volume 

(m
3
/kg) 

Chabazite 8.75 x 10
-10

 3.21 x 10
-4

 

Deca-dodecasile 3R 8.75 x 10
-10

 3.21 x 10
-4

 

Zeolite 13X 1.30 x 10
-9

 3.60 x 10
-4

 

Zeolite A 1.11 x 10
-9

 5.08 x 10
-4 

 

Zeolite L 1.72 x 10
-9

 4.30 x 10
-4

 

ZIF-8 (sodalite) 1.16 x 10
-9

 5.20 x 10
-4

 

ZIF-90 (sodalite) 1.72 x 10
-9

 4.30 x 10
-4

 

ZIF-Cl (sodalite) 1.70 x 10
-9

 4.10 x 10
-4

 

ZIF-COOH (sodalite) 1.72 x 10
-9

 4.30 x 10
-4

 

ZIF-NO2 (sodalite) 1.71 x 10
-9

 4.00 x 10
-4
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CHAPTER V 

EQUILIBRIUM CALCULATION AND PARAMETER FITTING 

 

Parameter Fitting 

The formulas for coordination number, porosity and free volume were inserted 

into the canonical partition function of the extended Peng-Robinson model. Using 

relationships of classical thermodynamics, it is possible to obtain expressions for 

pressure, component fugacities and other thermodynamic properties. The Thermath
18

 

computer algebra package, which is based on Mathematica, was used for this purpose, 

generating code in Visual Basic, then inserted in the XSEOS
19

 package. The goal of 

these calculations is to determine the confined phase properties, such as pressure and 

adsorbed amount. The entire numerical process is carried out in the XSEOS
19

 

spreadsheet, by using functions that have been programmed into the spreadsheet and 

modifying existing functions through Visual Basic code.  

Visual Basic is used to modify and create functions that will be required for the 

calculations, such as prslnphiV (ln Φv) and prsvv, which are the values in the vapor 

phase of the natural logarithm of the fugacity coefficient and molar volume, 

respectively. The arguments required for these functions are the universal gas constant, 

pressure, temperature, mole fraction, and the properties of the substance such as critical 

temperature Tc, critical pressure Pc, acentric factor ω and the binary interaction 

parameter kij (zero for pure components). The spreadsheet is divided into four sections, 
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namely experimental adsorption data, unconfined phase or bulk phase properties, 

confined phase properties and equilibrium conditions. 

Pure Components 

For pure substances, it is important to obtain characteristic properties of the 

confined phase such as the energy parameter εp, the size parameter δp/σ, and the 

pressure. In order to calculate these properties, equilibrium conditions are implemented 

by assuming that the fugacities in the bulk and confined phases are equal, noting that the 

pressures in the bulk phase and confined phase are different. The aforementioned 

characteristic properties are attained by using Excel’s Solver function to minimize the 

squared relative deviation (objective function) between the experimental and calculated 

adsorbed amounts. 

The molar volume is then calculated using the prsvv function built into XSEOS
19

, 

and the inverse yields the molar density. Finally, the calculated adsorbed amount values 

are obtained by multiplying the molar density and the specific pore volume of the 

adsorbent.  The adsorption isotherm is then plotted using the calculated adsorbed amount 

versus the bulk phase pressure. 

The steps are summarized as follows, 

1. Obtain experimental data for isothermal adsorption components, namely the 

adsorbed amount and bulk phase pressure, as well as the adsorbent information 

such as pore radius and specific pore volume. 
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2. Perform calculations for the fugacity in the bulk phase, using the extended Peng-

Robinson equation of state for confined fluids, assuming an infinitely large pore 

size, and assigning a value of zero to the size and energy interaction parameters. 

3. Assign initial estimates for the size and energy parameters in the confined phase.  

4. Perform calculations for the fugacity of the confined phase, using the extended 

Peng-Robinson equation of state for confined fluids, by implementing the 

specified pore radius as well as the size and energy interaction parameters. 

5. Calculate the molar volume by using the prsvv function built into XSEOS
19

. The 

inverse yields the molar density. The calculated adsorbed amount values are 

obtained by multiplying the molar density and the specific pore volume of the 

adsorbent. 

6. Using Solver, minimize the sum of the squared differences between calculated 

and experimental adsorbed amounts by changing the characteristic size and 

energy parameters and adsorbed phase pressure. The bulk and confined phase 

fugacities are assumed to be equal, i.e. the isofugacity conditions are constraints 

in the minimization. 

7. Plot the adsorption isotherm, using the calculated adsorbed amount versus the 

pressure.  
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Binary Mixtures 

The binary mixture spreadsheet is divided into four sections just like the pure 

component spreadsheet. The energy parameter εpi,j and the size parameter δpi,j values are 

not calculated but are obtained from the respective pure component files. It is also 

necessary to know the characteristic properties of the components, which include Tc, Pc, 

ω and kij. In the case of this model, the value for kij is not obtained from literature but is 

calculated in order to give more accurate results. This value is reported as the scaled kij 

in the spreadsheet. 

For binary mixtures, the aim is to obtain the characteristic properties of the 

confined phase by minimizing the total relative deviation squared (objective function) 

between the experimental and calculated adsorbed amounts. Once these values are 

obtained, then the experimental and calculated selectivity values are calculated. The 

calculated adsorbed amount for each component is then calculated by multiplying the 

molar density, the mole fraction of the respective component and the specific pore 

volume of the adsorbent. The total adsorbed amount is simply the summation of the 

adsorbed amounts of the components. Finally, the binary mixture adsorption isotherm is 

plotted by using the calculated adsorbed amounts versus the bulk phase pressure. 

In the case of binary systems, it is beneficial to obtain pure component data from 

the same source as the mixture data, as the experimental conditions will be very similar. 

This would lead to consistent pure component results, which will provide a basis for 

estimation of the mixture parameters. Inconsistencies in the experimental data lead to 

incorrect model predictions.  
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XSEOS Spreadsheet Calculations 

 The XSEOS
19

 spreadsheet used for adsorption calculations depends on the Visual 

Basic code that runs in the background. The code includes definitions for 

thermodynamic properties related to cubic equations of state, which in this case is 

mainly the Peng-Robinson equation of state that has been modified for confinement in 

spherical pores. These thermodynamic functions are evaluated through Visual Basic 

functions, many of which need specified values of pressure, temperature and mole 

fractions. As usual with equations of state, it is thus necessary to find the molar volume 

before evaluating other properties. 

 The Topliss et al.
20

 technique is the standard root-finding method used in the 

XSEOS
19

 spreadsheet to evaluate equations of state. This technique is suitable to 

determine the roots of cubic equations of state and non-cubic equations of state that have 

three roots in the region of possible physical interest. However, Travalloni et al.
15

 

discovered that the Peng-Robinson equation of state extended to cylindrical pores may 

have up to five roots in the region of physical interest. In this particular case, the Topliss 

et al.
20

 technique is not applicable. Therefore, Travalloni et al.
2
 used a brute force 

approach to root-finding that brackets the roots by scanning possible density values, 

from near-zero to the packing density. No similar study about the number of roots of the 

Peng-Robinson equation of state extended to spherical pores was conducted. As a 

precautionary measure, the brute force equation of state root-finding method was 

employed. 
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CHAPTER VI 

RESULTS AND DISCUSSION 

 

Results based on the new equation of state are presented in this chapter. The 

comparison of the calculated results versus experimental data was represented through 

the use of adsorption isotherms, by plotting adsorbed amount versus bulk phase pressure. 

The results were obtained by minimizing the objective function, i.e. the squared relative 

deviation between the experimental and calculated adsorbed amount data. 

This chapter represents plots of pure component adsorption, accompanied by 

plots of the mixtures. For mixtures, the fitted parameter values, i.e. εp and δ/σ, were 

simply extracted from the solved pure component files.  

 

Zeolite A Results 

Pure Components 

The largest cavity diameter for Zeolite A, obtained from the ZEOMICS
17

 

website, is 11.7 Å. A summary of the results obtained for pure components adsorbed in 

zeolite A is displayed in Table 5. These include the number of experimental points 

(Nexp), temperature and pressure range, the value of the fitted parameters (δ/σ and εp), the 

average relative deviation (ARD) and the reference. The overall bulk pressure for these 

cases never exceeded 5.06 MPa, hence there was no opportunity to observe the behavior 

of the model at very high pressures, only at low and moderate pressures.  
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For the hydrocarbons in Table 5, there is an increase in the energy parameter (εp) 

with the addition of each CH2 group. However, there is no clear trend for the size 

parameter (δp/σ). The average relative deviation (ARD) has been calculated for all the 

data, with the largest relative deviations often occurring at low bulk phase pressures. 

The pure component methane fit
21

 in Figure 8 shows an underestimation of the 

calculated amount at lower pressures, and an overestimation of the amount at higher 

bulk phase pressures, which go up to 5 MPa, with an ARD of 10.58%. The methane
22

 

plot in Figure 9 has a good qualitative fit and smaller ARD value (5.57%), but the 

experimental bulk phase pressure only reaches about 1.76 MPa. It is interesting to 

observance the discrepancy of these two experimental data sets, measured at very similar 

temperatures for the same substance and adsorbent. For example, according to the 

Sievers
21

 data at 303.15 K, the adsorbed amount is 2.666 mol/kg when the bulk phase 

pressure is equal to 1.167 MPa. According to the Loughlin et al.
22

 data at 300.15 K, a 

similar adsorbed amount (2.651 mol/kg) occurs when the bulk phase pressure is equal to 

1.76 MPa. There is a difference of about 40% in experimental pressure between these 

data points, taken from different sources at very similar conditions.  

The ethane fitting
23

 in Figure 10, with an ARD of 5.89%, is based on a data set 

that reaches a maximum bulk phase pressure of about 0.08 MPa, i.e., below atmospheric 

pressure. The plot shows a tendency to underestimate the adsorbed amount at low 

pressures and overestimate in the upper pressure range. 

 

 



 

 

 

3
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Table 5: Zeolite A Pure Component Results 

Component Nexp 
Experimental 

T (K) 

Experimental 

P range 

(MPa) 

δp/σ εp (K) Reference ARD (%) 

Carbon 

dioxide 
30 303.15 

2.0 x 10
-4

 – 

5.06 

0.1009 3753.72 
Sievers

21
 

11.82 

Methane 

18 300.15 
3.5 x 10

-2
 - 

1.76 

0.1232 1274.45 Loughlin et 

al.
22

 

5.57 

21 303.15 
2.51 x 10

-4
 - 

5.05 

0.1326 1319.54 
Sievers

21
 

10.58 

Ethane 16 308.15 
2.27 x 10

-5
 – 

8.00 x 10
-2

 

0.2249 2080.50 Glessner 

and Myers
23

 

5.89 

Propane 

12 300.15 
5.5 x 10

-4
 - 

3.50 x 10
-1

 

0.0923 3088.20 Loughlin et 

al.
22

 

20.90 

13 323.15 
2.5 x 10

-3
 - 

9.90 x 10
-2

 

0.0757 3269.62 Grande and 

Gigola
24

 

0.78 

14 423.15 
2.6 x 10

-3
 - 

9.90 x 10
-2

 

0.1428 2173.24 Grande and 

Gigola
24

 

3.24 

n-butane 15 308.15 
3.3 x 10

-5
 – 

8.00 x 10
-2

 

0.1286 4294.34 Glessner 

and Myers
23

 

20.81 
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Figure 8: Calculated versus experimental results for methane adsorbed in zeolite A at 

303.15 K (Sievers)
21

 

 

 
Figure 9: Calculated versus experimental results for methane adsorbed in zeolite A at 

300.15 K (Loughlin et al.)
22
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Figure 10: Calculated versus experimental results for ethane adsorbed in zeolite A at 

308.15 K (Glessner and Myers)
23

 

 

 

Temperature dependence on the model was another trend considered. In order to 

assess the effect of temperature on the model results, adsorption data at different 

temperatures were analyzed. Propane was the studied component and the adsorption data 

was modeled at three different temperatures, namely 300.15 K, 323.15 K and 423.15 K. 

This example again illustrates the discrepancies between experimental data points from 

different sources.  According to the Loughlin et al.
22

 data at 300.15 K, when the bulk 

phase pressure is equal to 0.0857 MPa, the adsorbed amount is 1.815 mol/kg. The data 

of Grande and Gigola
24

 at 323.15 K register an adsorbed amount of 2.25 mol/kg for a 

bulk phase pressure of 0.8041 MPa. Despite being at a lower temperature and higher 

pressure (conditions that favor adsorption), the value of Loughlin et al.
22

 is about 20% 

smaller than the value of Grande and Gigola
24

. The ARD with respect to Loughlin et 
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al.
22

 data is 20.9%, with pronounced systematic deviations. However, there is much 

better agreement with the data of Grande and Gigola
24

, with ARDs equal to 0.78% and 

3.24%, at 323.15 K and 423.15 K, respectively. The experimental data show that 

temperature has a sizeable effect on adsorbed amounts and the model, fitted with 

parameters specific to each temperature, was capable of correlating this effect.  

 

 
Figure 11: Calculated versus experimental results for n-propane adsorbed in zeolite A at 

300.15 K (Loughlin et al.)
22
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Figure 12: Calculated versus experimental results for n-propane adsorbed in zeolite A at 

323.15 K (Grande and Gigola)
24

 

 

 
Figure 13: Calculated versus experimental results for n-propane adsorbed in zeolite A at 

423.15 K (Grande and Gigola)
24

 

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 0.02 0.04 0.06 0.08 0.1

A
d

so
rb

ed
 a

m
o

u
n

t 
(m

o
l/

kg
) 

Pressure (MPa) 

Experimental

Calculated

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

A
d

so
rb

ed
 a

m
o

u
n

t 
(m

o
l/

kg
) 

Pressure (MPa) 

Experimental

Calculated



 

41 

 

The pure component plots for n-butane
23

 and  carbon dioxide
21

 in zeolite A are 

displayed in Figures 14 and 15, respectively. As in some of the prior cases, the model 

over predicts the adsorbed amount at what seems to be the pore saturation condition, at 

the highest bulk phase pressures available from experimental data. Since this 

phenomenon occurs for the highest amounts within the pore, a possible explanation is 

that the repulsive part of the equation of state, which is a direct consequence of van der 

Waals’ excluded volume expressions, overestimates the bulk phase pressure and density. 

 

 
Figure 14: Calculated versus experimental results for n-butane adsorbed in zeolite A at 

308.15 K (Glessner and Myers)
23

 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.02 0.04 0.06 0.08 0.1

A
d

so
rb

e
d

 a
m

o
u

n
t 

(m
o

l/
kg

) 

Pressure (MPa) 

Experimental

Calculated



 

42 

 

 
Figure 15: Calculated versus experimental results for carbon dioxide adsorbed in zeolite 

A at 303.15 K (Sievers)
21

 

 

The average number of molecules inside each pore (average occupancy) was 

calculated for these systems, each of them at its highest bulk phase pressure, as the 

product of the fluid density in the pore by the pore volume, and by Avogadro’s number.   

The actual occupancy was then calculated by determining the number of moles (total 

pore volume divided by molar volume) and multiplying that by Avogadro’s number. The 

calculated occupancy at the highest bulk phase pressure was then compared to the 

maximum theoretical occupancy. The latter was evaluated based on geometrical 

considerations, assuming the molecules are spheres (whose effective diameters  are 

listed in Table 6) which are confined inside a spherical zeolite A cavity (diameter, φ = 

11.7 Å). This value is used to compute the ratio of the molecule and cavity diameters. 
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For example, the diameter ratio is equal to 0.3415 for carbon dioxide. A spherical cavity 

can accommodate 12 spheres with a diameter ratio equal to 0.3445. However, if an 

attempt was made to fit 13 spheres, their diameter ratio would have to be smaller than 

0.3415. Thus, according to these calculations, 12 molecules would be the maximum 

theoretical occupancy for carbon dioxide in a zeolite A cavity of 11.7 Å diameter. The 

calculated average occupancy never exceeded the theoretically determined value. Table 

6 displays all the theoretical and calculated occupancy numbers for each component in 

zeolite A. 
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Table 6: Occupancy number calculations for pure components in Zeolite A 

Component 

Molecular 

Diameter, d (Å)
25

  

Calculated 

Diameter Ratio 

(d/φ) 

Theoretical 

Diameter Ratio 

Maximum 

Theoretical 

Occupancy 

Average 

Calculated 

Occupancy, N 

Carbon dioxide
21

 3.99 0.3415 0.3445 12 6.72 

Methane 
21

 3.78 0.3231 0.3235 14 4.35 

Methane
22

 3.78 0.3231 0.3235 14 2.76 

Ethane
23

 4.39 0.3750 0.3780 8 2.27 

Propane
22

 4.93 0.4217 0.4494 4 2.28 

n-Butane
23

 5.60 0.4790 0.4641 3 2.38 
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Mixtures 

Figure 16 shows the results for the adsorption of mixture of methane and carbon-

dioxide adsorbed in zeolite A at 303.15 K. The experimental bulk phase pressure of each 

experimental data point is different, ranging from to 3.086 to 3.168 MPa. The fitted pure 

component parameters of methane and carbon dioxide (Table 5, Figures 8 and 15) were 

used. Calculations under the assumption that the cross binary interaction parameter 

follows k12=k21=0 failed to produce acceptable results for this mixture. Thus, the binary 

interaction parameter k12 (=k21) was estimated using the binary mixture data. In the use 

of conventional cubic equations of state, the generally expected range for a kij parameter 

is between 0 and 1. Treating it as an entirely empirical parameter, its value was found to 

be equal to 3.95, and this is possibly due to the effect of confinement. Given the 

complexity of the modeled situation and the limited experience with this new 

thermodynamic model, it is difficult to pinpoint the exact reason for this large value of 

the binary interaction parameter. It may be an issue with the mixing rules or a 

consequence of deficiencies in other parts of the model. Despite these underlying 

concerns, this plot shows a good adherence of the calculated values to the experimental 

trends. 
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Figure 16: Calculated versus experimental results for a mixture of methane and carbon-

dioxide adsorbed in zeolite A at 303.15 K and about 3.1 MPa, fitted kij value of 3.95 

(Sievers)
21

 

 

 

Figure 17 displays results for a binary mixture of ethane and n-butane using the 

available pure component parameters (Table 5, Figures 10 and 14) and a fitted value of  

the cross binary interaction parameter follows k12 (=k21), found to be 1.8. Each 

experimental data point is at a different bulk phase pressure in the range from 6.38 kPa 

to 6.60 kPa.  The representation here is again related to the adsorbed amount versus the 

mole fraction of one of the components (ethane) in the bulk phase. This experimental 

data set poses a very difficult challenge to the model. For a mole fraction of ethane equal 

to 0.998 in the bulk phase, i.e., almost pure ethane, the adsorbed amount of n-butane is 

about 2.6 times the adsorbed amount of ethane, and the model is incapable of correlating 
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this trend. However, as the original reference
23

 points out, the uncertainty in the bulk 

phase mole fractions is very high because of the experimental procedure.  

 

 
Figure 17: Calculated versus experimental results for a mixture of ethane and n-butane 

adsorbed in zeolite A at 308.15 K and about 6.42 x 10
-2

 MPa, fitted kij value of 1.8 

(Glessner and Myers)
23

 

 

To attenuate the effect of this uncertainty, the mole fractions in the adsorbed 

phase were assumed to be fixed and equal to their experimental values. Then, when 

minimizing the deviations between experimental and calculated adsorbed amounts, the 

unknowns were the value of k12 (=k21), the confined phase pressures, and the mole 

fractions in the bulk phase. This minimization problem is subject to equality constraints, 

which are the phase equilibrium equations at each experimental condition. The fitted 
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binary interaction parameter is equal to 1.2. Overall, the reconfigured mixture fit in 

Figure 18 appears to have improved qualitatively in comparison to the original fitting in 

Figure 17. The adsorbed amounts have been plotted versus the confined phase mole 

fraction of ethane as in the original reference
23

. 

 

 
Figure 18: Calculated versus experimental results for a mixture of ethane and n-butane 

adsorbed in zeolite A at 308.15 K and about 6.42 x 10
-2

 MPa, fitted kij value of 1.2 

(Glessner and Myers)
23
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Sodalite Results 

Pure Components 

The adsorption of methane and carbon dioxide in a sodalite type adsorbent, ZIF-

8, was also studied, and the results of these fits are displayed in Table 7. The diameter of 

the ZIF-8 adsorbent pores is slightly smaller than zeolite A, at 11.6 Å, and this value was 

obtained from the work by Nieto-Draghi et al
26

. The ARDs for methane and carbon 

dioxide are equal to 8.56% and 9.03%, and the deviations at the highest bulk phase 

pressure of each respective plot are equal to 8.2% and 18.9%. The average pure 

component occupancy numbers at the highest bulk phase pressure are found to be 8.63 

molecules for methane and 4.97 molecules for carbon dioxide.  
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Table 7: Sodalite Pure Component Adsorption Results 

Component Nexp 

Experimental 

T (K) 

Experimental 

P range (MPa) 

δp/σ εp (K) Reference ARD (%) 

Methane 7 303.15 1 x 10
-2

 - 5 0.2426 947.28 

Nieto-Draghi et 

al.
26

 

8.56 

Carbon dioxide 7 303.15 1 x 10
-2

 - 5 0.2931 1089.18 

Nieto-Draghi et 

al.
26

 

9.03 



 

51 

 

 

 
Figure 19: Calculated versus experimental results for methane adsorbed in ZIF-8 (SOD) 

at 303.15 K (Nieto-Draghi et al.)
26

 

 

 
Figure 20: Calculated versus experimental results for carbon dioxide adsorbed in ZIF-8 

(SOD) at 303.15 K (Nieto-Draghi et al.)
26
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Mixtures 

Figure 21 shows the results of the adsorption of the methane and carbon dioxide 

mixture in ZIF-8 at 303.15 K. The mole fractions of methane and carbon dioxide in the 

bulk phase are equal to 0.75 and 0.25, respectively, in all experimental data points.  The 

fitted k12 (=k21) value is 0.383. The model captures the general trend of the experimental 

data except for the apparent change in selectivity at the highest experimental pressure of 

5 MPa. 

 

 
Figure 21: Calculated versus experimental results for a mixture of methane and carbon 

dioxide adsorbed in ZIF-8 (SOD) at 303.15 K, fitted k12 value of 0.383 (Nieto-Draghi et 

al.)
26
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Chabazite Results 

Pure Components 

The adsorption of methane and carbon dioxide in chabazite was also studied. The 

diameter of the chabazite adsorbent pores is 3.8 Å according to Li et al.
27

, which is much 

smaller in comparison to both zeolite A and sodalite. However, there are several reported 

values for the diameter of this adsorbent and a diameter of 8 Å, from ZEOMICS
17

 was 

adopted. It was presumed that due to less space available within the pore, the effects of 

confinement would be more pronounced, thus it could possibly affect the outcome. The 

results for chabazite are summarized in Table 8. 
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Table 8: Chabazite Pure Component Data 

Component Nexp 

Experimental 

T (K) 

Experimental P 

range (MPa) 

δp/σ εp (K) Reference ARD (%) 

Methane 9 297.15 

1.2 x 10
-2

 –  

1.1 x 10
-1

 

0.21063 1293.934 Li et al.
27

 16.96 

Carbon 

dioxide 

10 297.15 

1.2 x 10
-2

 –  

1.1 x 10
-1

 

0.44662 1769.982 Li et al.
27

 2.98 
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Figure 22 shows the results for methane, for which the ARD is 16.96%. Despite 

this apparently high ARD value, the calculated results show very acceptable behavior, 

taking into account the scattering of the experimental information. The experimental 

data of carbon dioxide exhibit much less scattering. The calculated values agree well 

with the experimental information, and the ARD value is 2.98%.   

 

  
Figure 22: Calculated versus experimental results for methane adsorbed in chabazite 

(SSZ-13) at 297.15 K (Li et al.)
27
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Figure 23: Calculated versus experimental results for carbon dioxide adsorbed in 

chabazite (SSZ-13) at 297.15 K (Li et al.)
27

 

 

The average occupancy number for the pure components at the highest 

experimental bulk phase pressure are predict to be only 0.32 molecules for methane and 

1.5 molecules for carbon dioxide are adsorbed. However, the molecular diameter of 

carbon dioxide is bigger than that of methane. Hence, there is a possibility of a higher 

preference for the adsorption of carbon dioxide molecules as opposed to methane.  

 

Mixtures 

In the case of the methane and carbon dioxide mixture in chabazite depicted in 

Figure 24, the calculated results for methane predict the experimental trend very well, 

whereas the carbon dioxide trend is not as good qualitatively.  
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Figure 24: Calculated versus experimental results for a mixture of methane and carbon 

dioxide adsorbed in chabazite (SSZ-13) at 297K, fitted kij value of 0 (Li et al.)
27

 

 

The fitted k12 value is found to be approximately zero, but this is due to the fact 

that its value was constrained to be non-negative. Without the use of a constraint, the k12 

value is found to be -2.4, but this does not bring substantial improvement to the model’s 

representation of carbon dioxide behavior. 
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CHAPTER VII  

CONCLUSIONS 

 

In order to model fluids confined in porous media with spherical pores, the 

generalized van der Waals theory was applied to modify the Peng-Robinson equation of 

state. The developed model contains two adjustable parameters for each component of 

fluid. These parameters are related to the interactions between the fluid molecules and 

the pore walls. The effect of pore size on the properties of the fluid was explicitly 

represented in the model. This enables it to describe the behavior of fluids in pores of 

different sizes, in both the bulk and confined state, and with the same values of its 

parameters. Thus, the same model can be applied to all the phases of adsorption systems. 

Although not studied in this thesis, the model can also be used to derive expressions for 

calorimetric properties such as residual enthalpy, which is convenient for energy 

balances in adsorption systems. 

The model is intended to describe the average behavior of many molecules 

distributed inside many pores. It is not meant for and is not capable of predicting the 

spatial distribution of the molecules inside a pore, in the same way that a conventional 

equation of state for bulk fluids is not intended to predict the spatial distribution of 

molecules in a bulk phase.    

One aspect that must be taken into careful consideration is the source of the 

experimental data. Adsorption isotherm experiments are complex and have a large room 

for uncertainty, as the data used in some of the applications illustrated. Since the 
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modeling is dependent on parameter fitting from experimental data, unreliable data is 

likely to yield poor results. In addition, in the adsorption literature, it is common to find 

articles that only present the experimental data in plots. Extracting numerical values 

from them adds to the uncertainty. Therefore, the data should preferably come from 

reliable sources where they appear in tabular form. On a similar note, it is also important 

to source pure component data and mixture data from the same experimental set-up, as 

different experimental set-ups can give origin to data discrepancies between seemingly 

similar systems. 

Average relative deviations (ARDs) between the experimental and calculated 

results, as well as the average occupancies, were used to assess the model’s 

performance. For the pure component adsorption cases studied in this work, the ARD 

was slightly larger than 20% in two cases, between 10% and 20% in three cases, 

between 5% and 10% in four cases, and below 5% in three cases. However, these 

numbers should be used with care. In some of the cases, there is clear systematic 

deviation between experimental and calculated results. In at least one case, such as 

methane adsorption in chabazite, the ARD value seems to be related to the scattering of 

the experimental data rather than the model’s inability to represent the system. The 

average occupancy numbers predicted by the model are lower than the maximum 

theoretical occupancy. Hence, with respect to the examples provided in this thesis, there 

is no violation of the theoretical limit of molecules that can be adsorbed. For mixtures, 

the generally accepted values for the binary interaction parameter (kij) of cubic equations 

of state for bulk fluids lie within the range of 0 to 1, but that is not the case for this 
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model. The fitted kij parameters exceed this limit considerably, but have proven to be 

necessary to provide better fits for the calculated data. 

The model showed a tendency to overestimate adsorbed amounts of pure 

components at high values of the bulk phase pressure. The corresponding pressure 

values inside the pores are even higher. This poor prediction at high pressures suggests 

that there may be a flaw with the expression developed for free volumes. At such 

conditions, it is possible that the repulsive term of the model, based on van der Waals 

free volume expression, could be a contributing factor towards why the model cannot 

predict saturation at higher pressures. The high pressures experienced in the confined 

phase may push the free volume expression well past its limiting application condition. 

Future refinements could result from using a modified version of the Carnahan-Starling 

expression for the repulsive part, to account for the effect of confinement. 

Future work will have to expand this performance analysis by including other 

adsorption models. In addition, there are several possible modifications and extensions, 

which are discussed in the next chapter. 
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CHAPTER VIII 

FUTURE WORK 

 

This work can be extended in a number of directions, which are outlined in this 

chapter. 

 Additional comparisons are necessary for a complete assessment of the model’s 

potentials and limitations. The experimental data need to be selected very carefully, and 

especially when dealing with mixtures. Both the pure component and mixture data 

should preferably come from the same source. The current results suggest that the model 

overestimates the adsorbed amounts of pure components at high pressures, but more 

evidence is needed to reach a conclusion.  

 There are several advantages associated with using a single model which is 

applicable to both confined and unconfined fluids, and is derived from the canonical 

partition function, as it can be the single source for the expressions of all thermodynamic 

properties. This is theoretically convenient, but the ultimate test for models is their 

comparison to experiments. Future work should focus on testing the model with more 

substances, mixtures, and different adsorbents, and comparison of its performance to that 

of other adsorption models. Future work would also entail the calculation of heats of 

adsorption, based on the equations developed in this thesis. 

It would be interesting to combine the models for confinement in cylindrical and 

spherical pores to predict adsorption behavior in zeolites that have both kinds of pores 

present. The results could then be compared to the separate spherical and cylindrical 
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results, to determine which representation is more accurate. This research could extend 

to the simulation of adsorption equilibrium in heterogeneous porous adsorbents, in 

which the presence of both cylindrical and spherical pores is prominent. Furthermore, 

the developed model can be inserted into a general flash program, which has the 

capability of automatically determining the number of bulk and confined phases in 

equilibrium. This type of calculation has already been implemented for adsorbents with 

cylindrical pores, with meaningful results. 

In this thesis, all the calculations involved systems with small pores, with 

diameters of about 10 Å. As the results for average occupancy showed, few molecules 

are predicted to be inside such pores. This is possibly the most stringent test for the 

developed model. It will be interesting to test how it performs for mesoporous systems 

(typical pore diameters from 2 to 50 nm), which could have better functionality. 

With respect to industrial applications, a field of further interest is that of shale 

oil, where kerogen is trapped in tight rock formations. Shale oil is poised to become 

North America’s largest source of energy, due to large deposits that have been located in 

the Green River formation situated in Colorado, Utah and Wyoming, as well as in the 

Barnett Shale and Eagle Ford Shale formations in Texas. It is estimated that the 

recoverable amount of shale oil in the Green River formation exceeds 800 billion 

barrels
28

, while the maximum production of the Eagle Ford formation could reach 

800,000 barrels a day
29

. 

While there is future potential for mass production of shale oil, it is still an area 

that remains to be explored. Extraction of shale oil is extremely complex, and requires 
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expensive heating and refining processes. Further applications of the equation for 

confinement could extend to shale oil, possibly extended to confinement in pores of 

different shapes, in order to describe the behavior of the confined deposits by providing 

necessary information such as the confined pressures. For example, Marcellus shale
30

 

found in the Appalachian basin is comprised of several flat plates, which could be a 

possible structure to explore in the future. Several properties such as pressure, density 

and compositional grading due to gravitational effects could be determined through use 

of a similar thermodynamic model. Such studies can help in the facilitation of better 

suited shale oil extraction techniques. 
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APPENDIX 

 

Explanation of Functions used in the Code 

The Thermath
18

, Matlab and Visual Basic developed code is used to calculated 

pressure and its first two derivatives with respect to molar volume at constant 

temperature for pure components, i.e. 

(
  

  
)
 
     (

   

   
)
 
  , at the critical point 

 The main functions concerned are prslnphiv, which is the fugacity coefficient for 

vapor, prslnphil, the fugacity coefficient for liquid and prsvv, the molar volume. All 

three functions rely on the eospropspspec function which is defined as, 

                                                               

                            

It takes the program-defined parameters kual_eos, which refers to the equation of 

state under consideration, propset, which distinguishes between fugacity coefficients and 

molar volume, and ifase, which is a part of a procedure created by Topliss et al.
20

 For the 

modified Peng-Robinson equation of state, kual_eos is assigned a value of 13. For 

liquids, the ifase value is 1, and for vapor, the ifase value is -1. Propset is assigned a 

value of 1 for fugacity coefficients and 4 for molar volume. The eospropspspec function 

also takes values inputted by the user, such as the gas constant rcell, temperature Tcell, 

pressure Pcell, mole fraction xcells, the critical properties of the substance 

parametercells, and any additional values go into extracells. In addition to these 

parameters, there also exists the eosget variable which calls the equation of state routine, 
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and the preos variable which calls various routines needed to calculate properties for the 

Peng-Robinson equation of state for adsorption in spherical pores. Molar density is 

calculated on the basis of either the brootforce or the Topliss et al.
20

 technique. 

Brootforce is essentially a method by which brute force is applied to make the routine 

work.  


