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ABSTRACT

This dissertation concerns individual voluntary contributions in the subscription

game with three important model considerations: private information on public good

valuations, threshold uncertainty and the timing of the contribution — simultaneous

and sequential contribution.

In the first essay, we set up a simultaneous subscription game model and ana-

lyze how the contributions will be affected when individuals face different levels of

threshold uncertainty. Comparative statics with respect to the changes in the cost

distribution are derived. We find that when the cost of public good increases in the

sense of first order stochastic dominance, individuals, on average, are more willing

to contribute to the public good. But, when the cost distribution becomes more

dispersed in the sense of mean-preserving spread, individuals, on average, are less

willing to contribute to the public good.

The second essay introduces threshold uncertainty and private information on

valuations for a discrete public good in a subscription game and analyzes how the

players sequentially make their contribution decisions within this environment. I find

that the earlier contributor’s expected contribution is lower than the latter contrib-

utor’s expected contribution. The result demonstrates that the earlier contributor

can free ride off the latter contributor. Comparing the expected total contribution

in the sequential contribution mechanism with that in the simultaneous contribution

mechanism, this paper shows that the expected total contribution in the sequential

model is lower.

The third essay provides the experimental evidence of comparative statics with

respect to the changes in the cost distribution. I conduct a laboratory experiment to
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test the theoretical predictions in the first essay. The experimental result supports

the theoretical predictions of the comparative statics with respect to the threshold

uncertainty: decreasing the degree of the threshold uncertainty in the sense of mean-

preserving contraction, or increasing the mean of the threshold distribution in the

sense of first-order stochastic dominance, individuals, on average, are more willing

to contribute to the public good.
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1. INTRODUCTION

The mechanisms used to allocate public goods vary widely. The most common

way to provide public goods in modern societies is for the government to levy taxes.

Alternative institution, private contribution, plays a supplementary role to the tax-

financed allocation mechanism that contributes to the provision on public goods.

We can observe many private contribution processes such as donation, fundraising

by non-profit organizations, and construction of activity centers by neighborhood

associations. Private contributions, then, are not only attractive but also valuable

to investigate.

According to the Giving USA 2013 Report Highlights, the total 2012 contribution

was $ 316.23 billion1. Individual voluntary contribution accounted for 72% of this

total giving amount. This empirical data shows that the individual contribution is

the most important contribution source, thus, the issue explored in this disserta-

tion concerns individual voluntary contribution behavior. I tackle the topic focused

in particular on the subscription game with private information on valuation and

threshold uncertainty.

This dissertation takes into account three important considerations that may

affect individual contribution behavior. The first consideration is the valuation of the

public good. Previous studies, for example, Palfrey and Rosenthal (1984), Bagnoli

and Lipman (1989), Issac, Schmidtz and Walker (1989), have been performed in an

extremely rich informational environment in which the valuation of the public good

is commonly known. In contrast, in reality the individual hardly knows in advance

the valuation of others. That means the valuation of the public good is private

1This report is available at http://www.givingusareports.org/
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information.

Besides valuation, the individual also considers how much money is needed to

provide the public good, which is called the threshold. However, it is possible that

individuals do not know the exact provision cost and face cost uncertainty when

contributing to the public good. Therefore, threshold uncertainty is another impor-

tant factor that should be considered when investigating the private contribution

behavior. Realizing that the threshold uncertainty may affect the player’s strategic

contribution behavior, the existing literature, Nitzan and Romano (1990), Suleiman

(1997), and McBride (2006), have introduced threshold uncertainty into the discrete

public good model. The first two papers find that the threshold uncertainty may

result in an inefficient equilibrium. McBride (2006) shows that an increase of the

threshold uncertainty in the sense of mean-preserving spread increases the player’s

contribution when the value of the public good is sufficiently high; otherwise, it de-

creases the player’s contribution when the value of the public good is sufficiently

low.

Another consideration is the timing of contribution. Some super markets an-

nounce checkstand donation campaigns to support the community. This contribution

mechanism is called the simultaneous contribution mechanism since the cashier does

not tell you how much money has been collected when you make the contribution

decision. If you know the accumulated amounts when you contribute to the pub-

lic good, this type of contribution mechanism is called the sequential contribution

mechanism. For instance, churches may announce an organ fund campaign and re-

port the updated contribution level frequently; local governments may announce the

seed donations to future contributors when they launch new public good projects.

These are examples of sequential contribution. Erev and Rapoport (1990) is the

earliest experimental paper that studies simultaneous and sequential moves in a dis-
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crete public good game. Comparing the sequential institution to the simultaneous

institution, they find that when subjects made their decisions simultaneously, the

public good was provided 14.3% to 31.3% of the time. But when they made their

decisions sequentially, the public good was provided 66.7% of the time.

Varian (1994) is an early theoretical study of sequential contribution to the pub-

lic good. Varian finds that early contributors free ride off the later contributors in

sequential contribution situations, thus total contribution under a sequential insti-

tution is lower than the total contribution under a simultaneous institution. Sev-

eral later experimental and theoretical papers also focus on comparing voluntary

contribution in simultaneous and sequential institution (see Andreoni (1998), Pot-

ters et al.(2005), Masclet and Willinger (2005), Levati et al. (2007), Vyrestekova

and Garikipati (2008), Coats et al. (2009), Gächter et al. (2010) and Bracha et

al.(2011)).

To the best of my knowledge, few papers consider these three model considera-

tions at the same time when investigating private contribution to a discrete public

good in the context of a subscription game. My dissertation addresses this unex-

plored setting.

The first essay, a joint work with Timothy J. Gronberg, studies how individual

contributions are affected when facing different degrees of threshold uncertainty in

a simultaneous subscription game. As far as we know, few papers consider both

the threshold uncertainty and private information of public good’s value in the sub-

scription game. Thus, this paper complements earlier works on the contribution to

the public good with threshold uncertainty and private information, and investigates

the effect of changing the cost distribution on private contributions. By building

a theoretical subscription game model, this paper demonstrates that if the cost in-

creases in the sense of first order stochastic dominance, individuals, on average, are
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more willing to contribute to the public good. However, if the costs becomes more

dispersed in the sense of mean-preserving spread, individuals, on average, are less

willing to contribute to the public good.

The second essay develops a theoretical model and examines individual sequential

contribution to the public good in a subscription game with threshold uncertainty

and private information on valuation. This paper aims to analyze three questions:

(1) How do individuals contribute to the public good in the environment with private

information and the cost uncertainty? (2) Do individuals in different contribution or-

ders contribute differently? (3) Comparing sequential and simultaneous contribution

institutions, which institution produces higher total contributions? To the best of

my knowledge, this paper is the first to investigate private contribution to a discrete

public good under the sequential institution with private information and threshold

uncertainty.

The theoretical result of the second essay shows that individual contributions are

increasing with respect to the contributor’s order. Earlier contributors contribute

less than subsequent contributors. This result demonstrates that earlier contributors

free ride off later contributor and enjoy first-mover advantage. Another important

finding is that individuals contribute to the public good differently in a sequential

contribution institution compared to a simultaneous contribution institution. Com-

paring the player’s expected contribution in a sequential contribution mechanism

to a simultaneous contribution mechanism, this paper finds that the expected total

contribution in the sequential institution is lower than the expected total contribu-

tion in a simultaneous one. This result suggests that in an environment with private

information on valuation and cost uncertainty, sequential institutions provide lower

contribution than simultaneous institutions.

In the last essay, I conduct an experiment to test the theoretical predictions in

4



Gronberg and Peng (2014), and aim to analyze how individual contribution behavior

is affected when faced with different degrees of cost uncertainty in a lab. The advan-

tage of conducting a controlled laboratory experiment is that it helps us to explore

how individuals make contribution decisions in a specific environment.

The experimental data strongly supports comparative statics with respect to

threshold uncertainty, as predicted by Gronberg and Peng (2014). The main result

of this paper is that decreasing the degree of threshold uncertainty in the sense of

mean-preserving contraction, the individual, on average, is more willing to contribute

to the public good. Also, increasing the man of the threshold distribution in the sense

of the first-order stochastic dominance, the individual, on average, is more willing

to contribute to the public good. The results suggest that suppliers of public goods

should consider what kind of information related to the cost uncertainty they should

announce when collecting private contributions.

5



2. CHANGES IN THE THRESHOLD UNCERTAINTY IN A SIMULTANEOUS

SUBSCRIPTION GAME∗

2.1 Motivation and Related Literature

Fundraising by non-profit organizations, constructing new buildings by neighbor-

hood associations, and donating to churches are some examples of voluntary contribu-

tion to public goods. The earliest literatures, Bergstrom, Blume, and Varian(1986),

Bernheim (1986), and Andreoni (1989), investigate the situation under certainty.

But in many real world examples of voluntary contribution uncertainty plays a crit-

ical role in individual contribution decisions. This uncertainty manifests in different

ways. For example, individuals face a random distribution of their incomes, individ-

uals are not familiar with production technology, or individuals do not know the cost

of providing the public good. This paper considers a model of providing a discrete

public good in a subscription game within an environment of threshold uncertainty

and private information on public good valuations. The focus is on the comparative

statics of a change in cost uncertainty on the private contribution equilibrium under

a simultaneous institution.

A discrete public good, defined as a fixed quantity of a public good, is provided

if the total contributions are large enough to cover its cost; otherwise, the public

good is not provided. This kind of public good is also called a binary or threshold

public good. Typical examples of discrete public goods are roads, parks, community

libraries, local radio programs, school buildings, etc. In a subscription game, the

players’ contributions are refunded if the sum of the contributions are not large

∗Reprinted with permission from “Changes in the Threshold Uncertainty in a Simultaneous
Subscription Game” by Timothy J. Gronberg and Hui-Chun Peng, 2014. Theoretical Economics
Letters, 4, 263-269, Copyright [2014] by authors, Timothy J. Gronberg and Hui-Chun Peng, and
Scientific Research Publishing Inc.
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enough to cover the cost of the public good.

Palfrey and Rosenthal (1984) and Bagnoli and Lipman (1989) are important pa-

pers that analyze private provision of discrete public good. Both papers assume

players make their contribution strategies in the environment with complete infor-

mation of the public good’s value and a certain known threshold level of cost, but

the types of contribution in these two papers are different. Palfrey and Rosenthal

(1984) assumed the player to make a binary contribution — zero or a fixed amount

of contribution, but Bagnoli and Lipman (1989) allowed the player to make a con-

tinuous contribution — the player can contribute any non-negative amount to the

public good. These two papers both show that efficient provision of public goods in

the subscription game may exist.

It is possible that the players do not face a certain threshold. For example, it

might not be known how much money will be needed to build a community library

or to complete a public project. Realizing that threshold uncertainty may affect

the player’s strategic contribution behavior, Nitzan and Romano (1990), Suleiman

(1997), and McBride (2006) introduce threshold uncertainty into the discrete public

good model. The first two papers find the possibility of inefficient equilibrium under

threshold uncertainty. Inefficiency may exist because the ex post contribution exceed

the required threshold quantity of contribution or the contributions are insufficient

to cover the required threshold level. McBride (2006) investigates how the degree

of threshold uncertainty affects the players’ contributions and finds that instead of

having a monotonic relationship between the threshold uncertainty and the contribu-

tion, the effect of changing the threshold uncertainty on the contributions depends

on public good valuation. An increase of the threshold uncertainty in the sense

of mean-preserving spread increases the player’s contribution when the value of the

public good is sufficiently high; otherwise, it decreases the player’s contribution when
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the value of the public good is sufficiently low. In a follow-up paper, McBride (2010)

designs an experiment to test the predictions in McBride (2006) and finds limited

verification. His findings demonstrate that dispersing the threshold uncertainty is

often, but not always, consistent with the predictions in McBride (2006).

Another branch of literature focuses on the private information on valuation for

the public good. In reality, when an individual makes a contribution decision, he

or she might not know how valuable the public good is to other. In other words,

other’s valuation of the public good is private information. Thus, private information

of public good’s value is a potential factor that affects the player’s contribution to

the public good. Menezes et al. (2001), Laussel and Palfrey (2003), and Barbieri

and Malueg (2008) introduce private information of the public good’s value into

a subscription game with a discrete public good and examine the efficiency of the

Bayesian Nash Equilibrium. Menezes et al. (2001) use the probability of provision

given that it is socially desirable to provide the public good to measure the ex post

efficiency. They show that the probability of provision is smaller than 1. Thus, the

equilibrium in the subscription game is ex post inefficient. Moreover, they provide

evidence that if the cost of the public good is high enough, the subscription game

is better than the contribution game (the game without a refund rule). Laussel

and Palfrey (2003) analyze interim incentive efficiency, defined by Holmström and

Myerson (1983), in the subscription game. They find that the interim incentive

efficient equilibrium may exist, and the efficient equilibrium must be a continuous

equilibrium. Later, Barbieri and Malueg (2008) reexamine Laussel and Palfrey’s

work, but show the contrary result that there are no incentive efficient equilibria.

Barbieri and Malueg (2010) include both the threshold uncertainty and private

information of public good’s value in the subscription game. They assume that

player’s value is distributed with a common uniform distribution over [0, 1] and dis-
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cuss how the changes in intensity and dispersion of value affect individual expected

contributions with holding the support of value in [0, 1]. They find that increasing

player’s value in the sense of first order stochastic dominance, or dispersed player’s

value distribution in the sense of mean-preserving spread increases the equilibrium

contributions.

Although McBride (2006) analyzes how the change in the threshold distribution

affects the contribution, he only considers the model with identical and known value

of public good. Barbieri and Malueg (2010) assume the threshold uncertainty and

private information in their model, but they only analyze the effect of changing the

player’s value distribution. This paper complements these existing papers by inves-

tigating the comparative statics effect of changing the cost distribution on private

contributions within a Barbieri and Malueg setting with both threshold uncertainty

and private information.

We show that if the cost distribution becomes more dispersed in the sense of

mean-preserving spread, then the expected contributions will decrease. When the

cost of public good increases in the sense of first order stochastic dominance, the

expected contributions will increase.

Our results suggest that suppliers may increase contributions to the public good

by reducing uncertainty over the cost distribution or increasing the mean of the cost

distribution.

The rest of paper is organized as follows. Section 2 presents the model. Section 3

considers the comparative statics with respect to changes in cost distribution of the

public good and characterizes the expected contribution. Section 4 is the conclusion.
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2.2 Model

Consider a subscription game consists with n ≥ 2 players. In order to provide

a discrete public good, the players in this game simultaneously make contributions

toward this public good of any non-negative amount. Let xi ∈ [0, vi] be player i’s

contribution. Player i’s value on the public good is vi, i = 1, ..., n. And it is an

independently distributed random variable with a continuous uniform distribution

whose support is [0, 1]. With this assumption, each player’s valuation for the public

good is private information. That is, each player knows his/her own realized valua-

tion of the public good but is uncertain about other players’ valuations of the public

good. Since each player’s value follows the same distribution, this paper represents

a symmetric case.

A discrete public good can be provided if and only if the total contributions

are equal to or larger than the cost of the public good, c (also known as the cost

threshold). Suppose c is unknown when the players contribute to the public good.

However, all players believe that the cost is independent of all vi’s and distributed

with a continuous uniform distribution, F , with support [c̄− z, c̄+ z], where c̄ is the

mean of the cost, z measures the degree of the cost uncertainty.

This paper considers the public good subscription game (Admati and Perry, 1991)

where the player contributions will be fully refunded if the total contributions are

less than the cost threshold. We also assume a zero rebate rule, which means that

the excess contributions will be given to the producer of the public good.

Given F (C) = 1
2z

[
C − (c̄ − z)

]
, the ex ante probability of providing the public

good with total contributions,
[
xi +

∑
j �=iE[xj(vj)]

]
, is F

(
xi +

∑
j �=iE[xj(vj)]

)
=

1
2z

[
xi +

∑
j �=iE[xj(vj)] − (c̄ − z)

]
. Since the player does not know other players’

contributions when making the contribution decision, he/she needs to forecast the

10



amounts other players will contribute,
∑

j �=iE[xj(vj)]. Because the probability of

provision should be between 0 and 1, we can get (c̄−z) ≤ xi+
∑

j �=iE[xj(vj)] ≤ (c̄+z).

Also, we have assumed that vj ∼ U [0, 1] and xi ∈ [0, vi]. This implies that an

important constraint, 0 ≤ (c̄− z) < n ≤ (c̄ + z), must be satisfied. This constraint

demonstrates that the number of players in this subscription game needs to be larger

than the lower bound of the possible cost, (c̄ − z), but cannot be larger than the

upper bound of the possible cost, (c̄+ z).

The assumed objective for each player is to maximize his/her own expected payoff.

If the public good is provided, then player i’s payoff is (vi − xi) with the probability

of the provision, F
(
xi +

∑
j �=iE[xj(vj)]

)
= 1

2z

[
xi +

∑
j �=iE[xj(vj)] − (c̄ − z)

]
; if

the public good is not provided, then player i’s payoff is 0 with the probability,[
1 − F

(
xi +

∑
j �=iE[xj(vj)]

)]
. Thus, player i’s expected payoff function can be

written as:

Ui(xi, vi) =
1

2z

(
vi − xi

)(
xi +

∑
j �=i

E[xj(vj)]− (c̄− z)
)

(2.1)

Assume Kj ≡ E[xj(vj)] is player j’s expected contribution, thus, player i’s expected

utility function can be rewritten as:

Ui(xi, vi) =
1

2z

(
vi − xi

)(
xi +

∑
j �=i

Kj − (c̄− z)
)

(2.2)

Utilizing the maximizing Equation (2.2) with respect to xi and taking the first order

condition (F.O.C.) can yield player i’s best response function:

x∗
i

(
vi,

∑
j �=i

Kj

)
= max

{
0,

1

2

[
vi −

∑
j �=i

Kj + (c̄− z)
]}

, ∀ i (2.3)
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Under the assumption of a common uniform distribution in [0, 1], the total ex-

pected contributions by other players,
∑

j �=iKj, can be written as (n− 1)K in sym-

metric equilibrium. Hence, Equation (2.3) can be rewritten as

x∗
i

(
vi, (n− 1)K

)
= max

{
0,

1

2

[
vi − (n− 1)K + (c̄− z)

]}
, ∀ i (2.4)

From the best response function, Equation (2.4), we can find that
[
(n−1)K−(c̄−z)

]
is the cutoff point for player i to begin contributing to the public good. In other

words, player i is willing to contribute a positive amount to the public good when

his/her valuation for the public good is equal to or larger than this cutoff point. The

best response function also shows that once player i’s contribution is positive, it is

strictly increasing in a larger valuation of the public good and strictly decreasing in

other players’ expected contributions.

Using the definition of expected contribution, Ki ≡ E[xi(vi)], and the best re-

sponse function, Equation (2.4), we will have, in symmetric equilibrium,

K = E

[
max

{
0,

1

2

[
vi − (n− 1)K + (c̄− z)

]}]
(2.5)

With player values independently and uniformly distributed on [0, 1], the total

expected contributions by other players,
∑

j �=iKj , the expected equilibrium contri-

bution is determined by

K =

∫ (n−1)K−(c̄−z)

0

0dvi +
1

2

∫ 1

(n−1)K−(c̄−z)

[
vi − (n− 1)K + (c̄− z)

]
dvi

=
1

2

[1
2
− (n− 1)K + (c̄− z) +

1

2
[(n− 1)K − (c̄− z)]

1
2

]
(2.6)
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We can solve Equation (2.6) for K which yields is

K∗ =
1 + c̄− z

n− 1
+

2

(n− 1)2

{
1−

[
1 + (n− 1)(1 + c̄− z)

] 1
2
}

(2.7)

This solution concept is a symmetric Bayesian-Nash equilibrium.

Player i’s equilibrium strategy, x∗
i , must satisfy Equation (2.4), and K∗ is deter-

mined by Equation (2.7). Therefore, x∗
i can be written as:

x∗
i

(
vi, (n− 1)K∗) = max

{
0,

1

2

[
vi − (n− 1)K∗ + (c̄− z)

]}
(2.8)

And the cutoff point in equilibrium for each player to begin contributing a positive

amount to the public good, vp, is

vp =
[
(n− 1)K∗ − (c̄− z)

]
= 1 +

2

n− 1

{
1− [

1 + (n− 1)(1 + c̄− z)
] 1

2

}
(2.9)

Since the lower bound of a player’s value is 0, vp has to be equal to or larger than

0. Thus, we can get a constraint that (c̄− z) ≤ n−1
4
.

Figure 2.1 depicts player i’s equilibrium strategy.

2.3 Stochastic Dominance in Cost Threshold and Comparative Statics

Players may confront cost distributions with different levels of dispersion. If the

cost distribution can be controlled or affected by supplier actions, the results in

this paper suggest the benefits of changing information related to the cost of the

public good measured in terms of increase expected total contributions to the public

good. In this section we consider the effects of changes in the cost distribution on

equilibrium contributions.
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x∗(1)

x∗(vi)

vp 1
vi

Figure 2.1: Cutpoint Equilibrium Strategy

2.3.1 Mean-Preserving Spread in Cost Threshold Distribution

Given each player’s value distribution follows a common uniform distribution over

[0, 1], assume the cost distribution becomes more uncertain in the sense of mean-

preserving spread. For example, the new cost distribution is c ∈ U ∼ [c̄− z
′
, c̄+ z

′
],

where z
′
> z.

Proposition 1. A mean-preserving increase in the distribution of cost will decrease

individual expected contribution and the total expected contributions.

Proof.

From (2.7), we know that K∗ = 1+c̄−z
n−1

+ 2
(n−1)2

− 2
(n−1)2

[
1 + (n− 1)(1 + c̄− z)

] 1
2
in

equilibrium. Differentiating (2.7) with respect to the degree of the cost uncertainty,

z, we can get

dK∗

dz
=

1

n− 1

{
− 1 +

[
1 + (n− 1)(1 + c̄− z)

]−1
2
}

(2.10)

Since (c̄− z) is the lower bound of the threshold and assume (c̄− z) ≥ 0,
[
1 + (n−

14



1)(1 + c̄− z)
]−1

2 will be less than 1. Thus, we can obtain dK∗
dz

< 0.

Since ∂(nK∗)
∂z

= n∂K∗
∂z

and we have ∂K∗
∂z

< 0, ∂nK∗
∂z

< 0. Since the expected

contribution per player decreases, so does the total expected contribution. �

The proposition indicates that the players, on average, become less willing to

contribute to the public good when the cost of the public good becomes more uncer-

tain.

We have shown that the cutoff point in equilibrium is vp = 1+ 2
n−1

{
1− [

1+ (n−
1)(1+ c̄−z)

] 1
2
}
. Since ∂vp

∂z
=

[
1+(n−1)(1+ c̄−z)

]−1
2 > 0, increasing z will increase

the cutoff point. This indicates that the player will begin contributing a positive

amount to the public good at a higher value as the variance of the cost increases.

The change in z also affects the player’s best response function where x∗ > 0.

This effect can be divided into the direct and indirect effect using the player’s best

response function, x∗, to demonstrate these two effects.

∂x∗

∂z
=

−(n− 1)

2

∂K∗

∂z
− 1

2
(2.11)

=
{1

2
− 1

2

[
1 + (n− 1)(1 + c̄− z)

]−1
2

}
− 1

2
(2.12)

=
−1

2

[
1 + (n− 1)(1 + c̄− z)

]−1
2 < 0 (2.13)

From Equation (2.11), we find that changing z will change x∗ directly. Hence,

the second term in Equation (2.11) represents the direct effect. Also, changing z

will affect other players’ expected contributions, K∗. The first term in Equation

(2.11) measures this effect and is called the indirect effect. Equation (2.12) shows

that increasing the degree of cost uncertainty induces the negative direct effect, the

positive indirect effect. Notably, the direct effect dominates the indirect effect. Thus,

increasing z decreases x∗.
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We find that players start to contribute to the public goods at a higher cutoff

point value and the contribution amounts at each possible value of public good weakly

decrease. Hence, the expected contribution to the public good decreases with the

degree of cost uncertainty, z.

Our proposition provides the policy implication that if the suppliers are able to

reduce the uncertainty of the cost distribution, the private contribution to the public

good will increase. The reduction in cost distribution uncertainty will encourage the

players with low value to begin contributing to the public good and also increase

contributions of inframarginal contributors.

2.3.2 First Order Stochastic Dominance in Cost Threshold Distribution

Given each player’s value follows a common uniform distribution over [0, 1], as-

sume the mean of the cost distribution becomes higher in the sense of first or-

der stochastic dominance. For example, the new distribution of cost is c ∈ U ∼
[c̄

′ − z, c̄
′
+ z], where c̄

′
> c̄.

Proposition 2. A first order stochastic dominance increase in the distribution of

cost will increase individual expected contribution and the total expected contribu-

tions.

Proof.

From (2.7), we know that K∗ = 1+c̄−z
n−1

+ 2
(n−1)2

− 2
(n−1)2

[
1 + (n− 1)(1 + c̄− z)

] 1
2

in

equilibrium. Differentiating (2.7) with respect to the mean of the cost uncertainty,

c, we can get

dK∗

dc̄
=

1

n− 1

{
1−

[
1 + (n− 1)(1 + c̄− z)

]−1
2
}

(2.14)

Since (c̄− z) is the lower bound of the threshold and assume (c̄− z) ≥ 0,
[
1 + (n−

1)(1 + c̄− z)
]−1

2 will be less than 1. Thus, we can obtain dK∗
dc̄

> 0.
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Since ∂(nK∗)
∂c̄

= n∂K∗
∂c̄

and we have ∂K∗
∂c̄

> 0, ∂nK∗
∂c̄

> 0. Since the expected

contribution per player increases, so does the total expected contribution. �

The proposition indicates that players, on average, become more willing to con-

tribute to the public good when the mean cost of the public good becomes higher.

We have shown that the cutoff point in equilibrium is vp = 1+ 2
n−1

{
1− [

1+ (n−
1)(1 + c̄ − z)

] 1
2
}
. Since ∂vp

∂c̄
= −[

1 + (n − 1)(1 + c̄ − z)
]−1

2 < 0, increasing c̄ will

decrease the cutoff point. This indicates that the player will begin contributing a

positive amount to the public good at a lower value as the mean of the cost increases.

The change in c̄ also affects the player’s best response function where x∗ > 0.

This effect can be divided into the direct effect and the indirect effect using the

player’s best response function, x∗, to demonstrate these two effects.

∂x∗

∂c̄
=

−(n− 1)

2

∂K∗

∂c̄
+

1

2
(2.15)

=
{−1

2
+

1

2

[
1 + (n− 1)(1 + c̄− z)

]−1
2

}
+

1

2
(2.16)

=
1

2

[
1 + (n− 1)(1 + c̄− z)

]−1
2 > 0 (2.17)

From Equation (2.15), we find that changing c̄ will change x∗ directly. Hence,

the second term in Equation (2.15) represents the direct effect. Also, changing c̄

will affect other players’ expected contributions, K∗. The first term in Equation

(2.15) measures this effect and represents the indirect effect. Equation (2.16) shows

that increasing the mean of cost uncertainty induces the positive direct effect, the

negative indirect effect, and that the direct effect dominates the indirect effect. Thus,

increasing c̄ results in the increase of x∗.

We find that players start to contribute to the public goods at a lower cutoff

point value and the contribution amounts at each possible value of public good
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weakly increase. Hence, the expected contribution to the public good increases with

the mean of cost uncertainty, c̄.

This proposition provides the policy implication that if the suppliers are able to

increase the mean of the cost distribution, the private contribution to the public

good will increase. The increase in the mean cost will encourage the players with

low value to begin contributing to the public good and also increase contributions of

inframarginal contributors.

2.3.3 Numerical Example

In this subsection, we use two numerical examples to show that expected contri-

bution, K∗, increases in c̄, and decreases in z, respectively.

Example 1. (Mean-Preserving Spread)

In this example, we consider a subscription game with 5 players whose values are

uniformly distributed in [0, 1]. We also assume that players do not know the cost of

providing the public good but believe it follows a uniform distribution with support [1,

5], i.e. the initial c̄ = 3 and z = 2. If the cost distribution becomes more dispersed

in the sense of mean-preserving spread, such as z increases from 2 to 2.2, Figure 2.2

shows that the expected contribution is decreasing in z.

Example 2. (First-Order Stochastic Dominance)

Consider another subscription game with 5 players whose values for the public good

follow a common uniform distribution in [0, 1]. Players do not know the exact cost

of providing the public good but they believe that it is uniformly distributed in [0, 4],

that is, the initial c̄ = 2 and z = 2. If the cost of public good increases in the sense of

first-order stochastic dominance, such as c̄ increases from 2 to 2.2, Figure 2.3 shows

that the expected contribution is increasing in c̄.
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Figure 2.2: Expected Contributions in the Example of Mean-Preserving Spread
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Figure 2.3: Expected Contributions in the Example of First-Order Stochastic Dom-
inance

2.4 Conclusion

If the valuation for the public good exhibits complete information to all players

and is identical for each player, McBride (2006) finds that the effect of increased

cost uncertainty depends on the value of the public good. However, when we con-

sider public good valuations as private information, then expected contributions are
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monotonic, and a more dispersed cost distribution always decreases the expected

contributions. Moreover, we find that increasing the mean of the public good in the

sense of first order stochastic dominance will increase the expected contribution.

From a policy perspective, we suggest that suppliers can increase the private

contribution if they can either reduce the degree of uncertainty or increase the mean

with respect to the cost distribution when there exists both threshold uncertainty

and private information on public good valuations.

We offer two directions for future research. Many real-world private contribution

institutions are not simultaneous, contributions are instead often collected sequen-

tially. For example, churches may announce organ fund campaigns and report the

updated contribution level frequently or local governments announce the seed do-

nations to future contributors when they launch new public good projects. There

is no published research that investigates how the sequential contribution would be

affected by a change in the dispersion of the cost distribution or the value distribu-

tion in a subscription game under threshold uncertainty and private information of

valuation for the public good. A second research direction is to test the hypothesis

from our theoretical model using experimental methods in a laboratory environment.

These future studies may result in a more complete understanding of behavior in

mechanisms of private contribution to public goods.
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3. SEQUENTIAL CONTRIBUTION TO A DISCRETE PUBLIC GOOD

UNDER THRESHOLD UNCERTAINTY AND PRIVATE INFORMATION

3.1 Motivation

An important class of public good allocation problems involves discrete or fixed

quantity public goods. Typical examples of discrete public goods include parks, local

libraries, bridges, etc. Other interesting examples include: interest groups lobbying

to get a bill through Congress, and non-profit organizations raising funds for non-

profit agency events or projects. The cost of providing such a public good is often

called the threshold. Individuals would like to know the amount of money needed to

provide the public good when making contribution decisions; nevertheless, the cost

threshold may be uncertain in many situations. Suppliers have limited resources to

research the cost of completing a public goods project. For example, the exact cost of

construction may be unknown because biddings among potential contractors has not

been completed. Thus, threshold uncertainty is an important model consideration

in this paper.

In addition to threshold uncertainty, contributors often do not know whether

other contributors are willing to support the same project nor how much they value

the public good. Therefore, it is interesting to analyze the contribution equilibrium

assuming that valuation of the public good is private information.

Another important factor that may affect the contribution behavior is the tim-

ing of the contribution. Many real-world public/private contribution institutions

do not receive contributions simultaneously. Contributions are instead made sequen-

tially and early contributions are often announced publicly. For example, universities

announce capital campaigns for new buildings and report the earlier contributions
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periodically on websites; churches may announce organ campaign targets and then

update the donations to the organ funds in the weekly bulletin.

In this paper, I introduce cost threshold uncertainty and private information on

public good valuations in a discrete public good subscription game and analyze the

following three questions: (1) How do individuals contribute to the public good in the

environment with private information and the cost uncertainty? (2) Do individuals

operating in different contribution orders contribute differently? (3) Comparing se-

quential and simultaneous contribution institution, which institution produces higher

expected total contributions?

In the sequential contribution institution considered in this paper, each player

knows the total contributions made by the previous players before he/she makes

his/her own contribution decision. I also assume that players make contributions in

an exogenous sequence of mover and each player contributes only once. I derive the

Bayesian equilibrium for this sequential contribution model and find that individ-

ual contribution increases with respect to the contribution order, that is, the earlier

contributors contribute less to the public good than the subsequent contributors do.

In addition, I offer results of comparing the expected contributions in the sequential

and simultaneous contribution models. Results show that the expected total contri-

bution in the sequential contribution institution is less than that in the simultaneous

contribution institution.

In addition to considering both private information on valuation and the threshold

uncertainty in the primary model, I briefly discuss cases considering only private

information on valuation or threshold uncertainty in a sequential subscription game.

I find that controlling for the mean valuation, each player’s expected contribution

with private information on valuation and the threshold uncertainty is higher than

that with complete information on valuation and the threshold uncertainty. I also
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find that controlling for the mean of the threshold distribution, each player’s expected

contribution with private information on valuation and the threshold uncertainty is

higher than that with private information on valuation and threshold certainty.

The rest of paper is organized as follows. Section 2 reviews the literatures related

to threshold uncertainty, private information and sequential contribution. My model

is presented in Section 3, followed by the comparisons of the expected contribution

in the sequential and simultaneous institutions in Section 4. I briefly discuss the

cases with complete information on valuation and threshold uncertainty, with private

information on valuation and threshold certainty, and with no refund rule in Section

5. A conclusion is given in Section 6.

3.2 Literature Review

Palfrey and Rosenthal (1984), Bagnoli and Lipman (1989), investigate private

provision of a discrete public good. Both papers assume players simultaneously

make their contribution strategies in an environment with complete information on

the public good valuation and a certain known threshold level of cost, but they

consider different types of contribution. Palfrey and Rosenthal (1984) assume the

player to make a binary contribution, whereas Bagnoli and Lipman (1989) allow

the player to make a continuous contribution. These two papers show that if the

full refund rule is introduced into the threshold public good game where players

simultaneously make their contribution, no efficient Nash Equilibrium exists.

Admati and Perry (1991) investigate private provision of a discrete public good.

Instead of considering simultaneous contribution, they assume players contribute

”sequentially” in a subscription game (meaning that the contribution will be refunded

if the total contribution to the public good is not large enough to cover the fixed

cost of providing the public good). They analyze a 2-player subscription game with
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complete information where these two players make alternate contribution decisions

until the total contribution is covered the cost threshold. They show that there is a

unique, efficient subgame perfect equilibrium in the subscription game.

Nitzan and Romano (1990) extend Bagnoli and Lipman’s game by introducing

uncertainty regarding the cost of providing the public good and find different results.

The equilibrium is inefficient because the uncertainty of the cost may cause the ex

post contributions to exceed or to fall short of the required threshold.

McBride (2006) focuses on investigating how the level of threshold uncertainty

affects the players’ contributions. In his model, McBride assumes that each player

makes a binary contribution decision simultaneously and that the contribution will

not be refunded if the cost threshold is not met. He finds that instead of a monotonic

relationship between the degree of threshold uncertainty and total contributions, the

effect of changing the threshold uncertainty on the contributions depends on the

value of the public good. An increase of threshold uncertainty in the sense of mean-

preserving spread increases the player’s contribution when the value of the public

good is sufficiently high, but decreases the player’s contribution when the value of

the public good is sufficiently low. McBride (2010) designs an experiment to test his

theory in a lab and finds limited verification.

Papers by Menezes et al. (2001), Laussel and Palfrey (2003), and Barbieri and

Malueg (2008) introduce private information on the public good valuations into a

subscription game with a discrete public good and focus on examining the efficiency

of the Bayesian Nash equilibrium. Menezes et al. (2001) show that the equilibrium

in the subscription game is ex post inefficient. Laussel and Palfrey (2003) analyze

interim incentive efficiency, defined by Holmström and Myerson (1983), in the sub-

scription game. They find that the interim incentive efficient equilibrium may exist.

Later, Barbieri and Malueg (2008) reexamine Laussel and Palfrey’s analysis and show
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the contrary result that there is no incentive efficient equilibrium.

Barbieri and Malueg (2010) include both the threshold uncertainty and private

information on valuations for a public good in the subscription game. They focus

on whether changing the intensity and dispersion of value distribution affect players’

expected contributions. They find that increasing the value distribution in the sense

of first order stochastic dominance or dispersing the value distribution in the sense

of mean-preserving spread increases the expected contributions.

Barbieri and Malueg (2010) forms the basis for my model setting. The main

difference between my model and and Barbieri and Malueg’s is the timing of the

contribution mechanism. I focus on the sequential contribution, while Barbieri and

Malueg focus on the simultaneous contribution.

Gronberg and Peng (2014) consider both the threshold uncertainty and private

information on public good’s valuations in a subscription game and research the

effects of changing the threshold distribution. They find that increasing the mean

of the cost distribution in the sense of first order stochastic dominance increases

individual expected contribution; while increasing the uncertainty level of the cost

in the sense of mean-preserving spread decreases individual expected contribution.

An early analysis of sequential contribution to a public good is provided by Varian

(1994). In a model with a continuous public good and complete information on public

good valuation, he finds that sequential contribution enables the early contributor

to free ride off the latter one and the total contribution under sequential institution

is lower than the total contribution under simultaneous institution. This finding

asserts that the leader in a sequential public good game tries to exploit the first

mover advantage and leaves the burden of providing the public good to the following

contributors.

Gächter et al. (2010) examines Varian’s prediction via a laboratory experiment.
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Their experimental result is consistent with the theoretical prediction that total

contribution is lower under sequential mechanism than simultaneous alternative when

contributors’ preferences are sufficiently different (but not too different).

Bag and Roy (2011) extend Varian’s model and treat donors’ values of the public

good as private information. They show that the expected total contribution gener-

ated in a perfect Bayesian equilibrium of the sequential contribution game is at least

as large as that in a Bayesian-Nash equilibrium of the simultaneous contribution

game. This occurs because when donors are uncertain about other players’ values

of the public good, the earlier donors may be cautious in free-riding on prospective

donors.

Unlike Varian’s model, Romano and Yildirim (2001) consider warm-glow effect

noted by Andreoni (1989) as another contribution motivation in a sequential game.

In their model, the contributors are not only concerned with total contributions, but

also their own contribution level. With the warm-glow specification, they find that

the level of the public good in the sequential-move mechanism is higher than in the

simultaneous-move mechanism. Differing from Romano and Yildirim’s (2001) model,

I assume that individuals are only concerned with total contribution to a public good

in this paper.

Cartwright and Patel (2010) suggest that the heterogeneity in individual behavior

may affect the contribution in a sequential game. They find that the strategists, who

behave strategically to maximize their own payoffs, will contribute to the public good

if they are early enough in the sequence and if they believe there are enough imitated

followers in a sequential game.

Andreoni (1998) focuses on the role of seed money in a discrete public good

sequential game setting. He demonstrates that adopting a sequential fundrais-

ing strategy can increase the likelihood of providing the public good when a cost
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threshold exists. This occurs because when contributors are not willing to cover the

cost single-handedly, simultaneous contribution may generate zero equilibrium. Se-

quential contribution can eliminate such inefficiency since announcing the previous

player’s donation can ensure that the latter player is willing to cover the remain-

ing cost. Subsequently, Bracha et al.(2011) test Andreoni’s theory experimentally

and find that the experimental results are supportive of the theory when the cost

threshold is sufficiently high.

Vesterlund (2003) considers a model in which the donors have common valuations

but the quality of the charity is unknown. She shows that larger gifts from early

donors prompt later donors to give higher donations. This motivates the high quality

charities to announce the earlier contributions to the public. In contrast to Vestlund’s

paper, contributors in my paper have independent private information on a public

good valuation. Thus, the results in this paper are not based on any informational

advantage or signaling value of announcement of contributions.

There are several experimental studies on continuous public goods (see Potters

et al.(2005), Masclet and Willinger (2005), Levati et al. (2007), Vyrestekova and

Garikipati (2008)) and discrete public goods (see Coats et al. (2009)). These papers

find the sequential contribution is significantly higher than the simultaneous contri-

bution when players have complete information on the distribution of valuations of

the public good.

3.3 Model

I consider a public good game with n ≥ 2 players who sequentially contribute any

non-negative amount to a discrete public good. Player i’s value for the public good is

shown by vi, i = 1, ..., n, and is an independently distributed random variable with a

continuous uniform distribution whose support is [0, 1]. With this assumption, each
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player’s valuation for the public good is private information, meaning that each player

knows his/her own realized value for the public good, but he/she is uncertain about

other players’ values for the public good. Let xi ∈ [0, vi] be player i’s contribution.

The discrete public good can be provided if and only if the total contributions

are equal to or larger than the cost of the public good, c, known as the cost thresh-

old. Suppose c is unknown when the players make their contribution decisions and

all players believe that the cost is independent of all vi’s and distributed along a

continuous uniform distribution, F , with support [0, c̃], where c̃ ≥ n. Barbieri and

Malueg (2010) show that in order to obtaining the unique equilibrium, the model

requires the assumption that c̃ ≥ n. Since Barbieri and Malueg (2010) is the basis

for my model, I use the same framework and maintain the same assumption in this

paper.

In this paper I consider the subscription public good game (Admati and Perry,

1991). Accordingly, the player’s contribution will be fully refunded if the total contri-

butions are less than the cost threshold, c. I also assume a zero rebate rule, meaning

the excess contributions will be given to the producer of the public good.

Players in this model make their contribution decisions sequentially. I assume

that the order of the move is exogenous. Each player contributes to the pubic good

only once. The total contribution is updated and announced to the public after

any player make his/her contribution decision. Thus, when a player makes his/her

contribution decision, he/she can observe the total accumulated contribution made

by the earlier players and must anticipate the contributions of prospective players.

Assume each player has a linear utility function

zi = wi − xi + gi(xi + x−i) (3.1)
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where, wi is player i’s wealth and

gi(xi + x−i) =

⎧⎪⎨
⎪⎩

vi if xi + x−i ≥ c

xi if xi + x−i < c
(3.2)

If total contribution is larger than or equal to the cost threshold, c, the public good is

provided and player i receives vi with provision probability, pi; otherwise, the public

good is not provided and player i receives his/her own refunded contribution, xi.

Thus, player i’s expected utility function can be written as

Zi = E[zi] =
[
wi − xi + vi

]× pi + wi × (1− pi)

= wi + (vi − xi)× pi

= wi + Ui(xi|vi) (3.3)

where Ui(xi|vi) is player i’s expected payoff from the public good.

Each player’s objective is to maximize his/her expected utility. However, in the

linear utility framework, maximizing the expected utility is the same as maximizing

the expected payoff from the public good. Thus, in the following model, I assume

that each player’s objective is to maximize his/her expected payoff from the public

good, Ui(xi|vi).
Since the player contributes to the public good sequentially, he/she does not know

what contribution the subsequent players will make and has to calculate their ex-

pected contributions. Because the contribution order is different for each player, the

number of remaining players is different for each player. For example, the first player

in a 3-player game needs to expect the second and the third player’s contributions;

but, the second player can observe the first player’s contribution and only needs to
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expect the third player’s contribution. Hence, the probability of providing the public

good each player faces, pi, is different. Depending on the sequence, players’ expected

payoff functions can be written as:

Player 1’s expected payoff function is:

U1(x1|v1) = (v1 − x1)
[x1 + E1[x2] + E1[x3] + ...+ E1[xn]

c̃

]
(3.4)

where E1[xj ], j = 2..., n is the contribution Player 1 expects Player j to make.

Player 2’s expected payoff function is:

U2(x2|v2) = (v2 − x2)
[x1 + x2 + E2[x3] + E2[x4] + ...+ E2[xn]

c̃

]
(3.5)

where E2[xk], k = 3..., n is the contribution Player 2 expects Player k to make.

...

...

Player n’s expected payoff function is:

Un(xn|vn) = (vn − xn)
[x1 + x2 + ... + xn−1 + xn

c̃

]
(3.6)

Since Player n is the last player in an n-player game, he/she does not anticipate any

other player’s contribution.

From Equation (3.4) to Equation (3.6), I arrive at the expected payoff function

of Player i (the i-th player in the game) is:

Ui(xi|vi) = (vi − xi)
[∑i−1

l=1 xl + xi +
∑n

m=i+1 Ei[xm]

c̃

]
(3.7)

where
∑i−1

l=1 xl is the total contribution made by the player who acts before Player i,
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and Ei[xm] is the contribution that Player i expects Player m to make.

3.3.1 Best Response Function

To derive each player’s best response function in the sequential game, I use the

method of backward induction. For simplicity, I start with a 2-player case.

2-player case

There are two players, Player 1 and Player 2. Player 1 makes his/her contribution

decision first and Player 2 makes his/her contribution decision subsequently. Thus,

Player 1’s expected payoff function is

U1(x1|v1) = (v1 − x1)
[x1 + E1[x2]

c̃

]
(3.8)

and Player 2’s expected payoff function is

U2(x2|v2) = (v2 − x2)
[x1 + x2

c̃

]
(3.9)

By the method of backward induction, I discuss Player 2’s behavior first.

Maximizing Equation (3.9) with respect to x2 and taking the first order condition

(F.O.C), I get:

∂U2

∂x2
=

−1

c̃
(x1 + x2) +

1

c̃
(v2 − x2) = 0

=⇒ x2 =
v2 − x1

2
(3.10)

It yields Player 2’s best response function:

x2 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v2 ≤ x1

v2−x1

2
if x1 ≤ v2 ≤ 1

(3.11)
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From Equation (3.11), I find that v2 = x1 is the cutoff point for Player 2 to begin

contributing to the public good in the 2-player case. In other words, Player 2 is

willing to contribute a positive amount to the public good when his/her value is

equal to or larger than the cutoff point, x1. Also, Equation (3.11) shows that once

Player 2’s contribution is positive, it is strictly increasing in his/her value of the

public good and strictly decreasing in Player 1’s contribution.

Next, I solve for Player 1’s behavior. Since Player 1 cannot observe Player 2’s

contribution when he/she makes his/her contribution decision, he/she has to cal-

culate Player 2’s expected contribution, namely E1[x2] in Equation (3.8). Consider

Player 2’s value, v2, which follows a uniform distribution with [0, 1] and his/her best

response function, Equation (3.11), Player 2’s expected contribution Player 1 expects

is

E1

[
x2

]
=

∫ x1

0

0dv2 +

∫ 1

x1

[v2 − x1

2

]
dv2

E1

[
x2

]
=

1

4
− x1

2
+

x2
1

4
(3.12)

Substitute Equation (3.12) into Equation (3.8), Player 1’s expected payoff func-

tion can be rewritten as

U1(x1|v1) =
(
v1 − x1

)( 1
4
+ x1

2
+

x2
1

4

c̃

)
(3.13)

Maximizing Player 1’s expected payoff function, Equation (3.13), and taking the

first order condition (F.O.C), I get:

∂U1

∂x1
=

−1

c̃

(1
4
+

x1

2
+

x2
1

4

)
+

1

c̃
(v1 − x1)(

1

2
+

x1

2
) = 0

=⇒ x1 =
2v1 − 1

3
(3.14)
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It yields Player 1’s best response function:

x1 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ vL < 1
2

2v1−1
3

if 1
2
≤ vL ≤ 1

(3.15)

From Equation (3.15), I find that v1 =
1
2
is the cutoff point for Player 1 to begin

contributing to the public good in the 2-player case. In other words, Player 1 is

willing to contribute a positive amount to the public good when his/her value is

equal to or larger than the cutoff point, 1
2
. Also, Equation (3.15) shows that once

Player 1’s contribution is positive, it is strictly increasing in his/her value of the

public good.

3-player case

Assume there are three players in a subscription game. Player 1 makes his/her

contribution decision first and is followed by Player 2. Finally, Player 3 makes

his/her contribution decision.

Player 1’s expected payoff function is

U1(x1|v1) = (v1 − x1)
[x1 + E1[x2] + E1[x3]

c̃

]
(3.16)

Player 2’s expected payoff function is

U2(x2|v2) = (v2 − x2)
[x1 + x2 + E2[x3]

c̃

]
(3.17)

and Player 3’s expected function is

U3(x3|v3) = (v3 − x3)
[x1 + x2 + x3

c̃

]
(3.18)
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Using the same basic method I use to solve the 2-player case, I get each player’s

best response function:

Player 3’s best response function is

x3 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v3 ≤ (x1 + x2),

v3−(x1+x2)
2

if (x1 + x2) ≤ v3 ≤ 1
(3.19)

Player 2’s best response function is

x2 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v2 ≤ 1+x1

2
,

2v2−x1−1
3

if 1+x1

2
≤ v2 ≤ 1

(3.20)

Player 1’s best response function is

x1 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v1 <
2
3
,

3v1−2
4

if 2
3
≤ v1 ≤ 1

(3.21)

Following the same procedure in the 2-player and the 3-player case and using the

method of induction, I derive each player’s best response function in a n-player case.

The best response function of Player i, who is the i-th player in the n-player case,

can be written as

xi =

⎧⎪⎨
⎪⎩

0 if 0 ≤ vi ≤ (n−i)+
∑

p<i xp

(n+1−i)
,

(n+1−i)vi−(n−i)−∑
p<i xp

n+2−i
if

(n−i)+
∑

p<i xp

(n+1−i)
≤ vi ≤ 1

(3.22)

Player i’s best response function, Equation (3.22), shows that the higher the

player’s valuation for the public good is, the higher the contribution Player i will

make. But, the higher the total contribution made by the earlier players, the lower

the contribution Player i will make.

34



3.3.2 Bayesian Equilibrium

Since players have independent private information on valuations for a public

good, the solution concept is Bayesian equilibrium. In this subsection, I explain how

to arrive at the Bayesian Equilibrium.

2-player case

In the 2-player case I mentioned in the previous subsection, Equation (3.11) and

Equation (3.15) represent Player 1 and Player 2 best response functions, respectively.

Using these best response functions, I find each player’s equilibrium strategy. From

Equation (3.15), Player 1’s equilibrium strategies are

x∗
1 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ vL < 1
2

2v1−1
3

if 1
2
≤ vL ≤ 1

(3.23)

Thus, Player 1’s Bayesian equilibrium, also known as the ex ante expected con-

tribution, is:

E[x∗
1] =

∫ 1
2

0

0 dv1 +

∫ 1

1
2

2v1 − 1

3
dv1

=⇒ E[x1] =
1

12
(3.24)

Using Equation (3.23) and Player 2’s best response function, Equation (3.11),

yields Player 2’s equilibrium strategies:

• 1. if Player 1’s equilibrium is x∗
1 = 0

x∗
2 =

v2
2

∀v2 (3.25)
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• 2. if Player 1’s equilibrium is x∗
1 =

2v1−1
3

x2 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v2 ≤ 2v1−1
3

3v2−2v1+1
6

if 2v1−1
3

≤ v2 ≤ 1
(3.26)

According to Player 2’ equilibrium strategies, Equation (3.25) and Equation

(3.26), his/her Bayesian equilibrium is

E[x∗
2] =

∫ 1
2

0

∫ 1

0

v2
2
dv2dv1 +

∫ 1

1
2

∫ 1

2v1−1
3

3v2 − 2v1 + 1

3
dv2dv1

=⇒ E[x∗
2] =

1

8
+

23

108
=

8

27
(3.27)

3-player case

Using the best response functions I find in the last subsection, Equation (3.19) to

Equation (3.21), I calculate each player’s equilibrium strategy and his/her expected

contribution.

Based on Player 1’s best response function, Equation (3.21), his/her equilibrium

strategies are

x∗
1 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v1 <
2
3
,

3v1−2
4

if 2
3
≤ v1 ≤ 1

(3.28)

Thus, Player 1’s ex ante expected contribution is calculated from Equation (3.28),

and can be written as

E[x∗
1] =

∫ 2
3

0

0 dv1 +

∫ 1

2
3

3v1 − 2

4
dv1

=⇒ E[x1] =
1

24
(3.29)
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Using Equation (3.28) and Player 2’s best response function, Equation (3.20),

yields Player 2’s equilibrium strategies:

• 1. if Player 1’s equilibrium is x∗
1 = 0

x2 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v2 ≤ 1
2

2v2−1
3

if 1
2
≤ v2 ≤ 1

(3.30)

• 2. if Player 1’s equilibrium is x∗
1 =

3v1−2
4

x2 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v2 ≤ 3v1+2
8

8v2−3v1−2
12

if 3v1+2
8

≤ v2 ≤ 1
(3.31)

Using Equation (3.30) and Equation (3.31), I get Player 2’s Bayesian equilibrium:

E[x∗
2] =

∫ 2
3

0

∫ 1

1
2

2v2 − 1

3
dv2dv1 +

∫ 1

2
3

∫ 1

3v1+2
8

8v2 − 3v1 − 2

12
dv2dv1

=⇒ E[x∗
2] =

1

18
+

37

1728
=

133

1728
(3.32)

Based on Player 1 and Player 2’s strategies and Player 3’s best response function,

Equation (3.19), I get Player 3’s equilibrium strategies:

• 1. if Player 1’s equilibrium is x∗
1 = 0 and if Player 2’s equilibrium is x∗

2 = 0:

x∗
3 =

v3
2

∀v3 (3.33)
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• 2. if Player 1’s equilibrium is x∗
1 = 0 and if Player 2’s equilibrium is x∗

2 =
2v2−1

3
:

x∗
3 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v3 ≤ 2v2−1
3

,

3v3−v2+1
6

if 2v2−1
3

≤ v3 ≤ 1
(3.34)

• 3. if Player 1’s equilibrium is x∗
1 =

3v1−2
4

and if Player 2’s equilibrium is x∗
2 = 0:

x∗
3 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v3 ≤ 3v1−2
4

,

4v3−3v1+2
8

if 3v1−2
4

≤ v3 ≤ 1
(3.35)

• 4. if Player 1’s equilibrium is x∗
1 = 3v1−2

4
and if Player 2’s equilibrium is

x∗
2 =

2v2−1
3

:

x∗
3 =

⎧⎪⎨
⎪⎩

0 if 0 ≤ v3 ≤ 3v1+4v2−4
6

,

3v1+4v2−4
6

6v3−3v1−4v2+4
12

if ≤ v3 ≤ 1
(3.36)

Using Equation (3.33) to Equation (3.36), I get Player 3’s Bayesian equilibrium:

E[x∗
3] =

∫ 2
3

0

∫ 1
2

0

∫ 1

0

v3
2
dv3dv2dv1 +

∫ 2
3

0

∫ 1

1
2

∫ 1

2v2−1

3

3v3 − v2 + 1

6
dv3dv2dv1

+

∫ 1

2
3

∫ 3v1+2
8

0

∫ 1

3v1−2
4

4v3 − 3v1 + 2

8
dv3dv2dv1

+

∫ 1

2
3

∫ 1

3v1+2
8

∫ 1

3v1+4v2−4
6

6v3 − 3v1 − 4v2 + 4

12
dv3dv2dv1

=⇒ E[x∗
3] =

1

12
+

19

324
+

659

18432
+

3325

165888
=

4101

20736
(3.37)

To solve the n-player case, I adopt the method used in the 2-player and the

3-player cases; however, it is complicated and difficult to solve for the Bayesian equi-
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librium in a case with large number of players. This is because a player’s equilibrium

strategies I need to derive increase with the number of players in the subscription

game.

For example, to solve the Bayesian equilibrium of the last player in an n-player

game, I need to derive his/her equilibrium strategies first. According to (n − 1)

earlier players’ strategy combinations, there are 2n−1 different groups of Player n’s

equilibrium strategies. Next, I have to calculate the multiple integrals over v1, ..., vn

and to get the expected contributions in these 2n−1 different groups. The last step

to get the nth player’s Bayesian equilibrium is to sum the expected contributions in

these 2n−1 different groups. Due to the complication of deriving the Bayesian equi-

librium directly, I use the method of simulation to analyze the Bayesian equilibrium

in a game with a larger number of players.

In the following paragraphs, I describe how to simulate the Bayesian equilibrium

in this paper explicitly. I divide each player’s valuation into 1001 ”units” from 0

to 1. That is, a player’s value may be 0, 0.001, 0.002, ..., 1. Player 1 makes his/her

contribution depending on his/her best response function and his/her valuation for

the public good. Since there are 1001 possible values for Player 1, I get 1001 x∗
1.

Then, summing these 1001 x∗
1 and dividing by 1001, I will get Player 1’s expected

contribution.

When Player 2 makes his/her contribution, he/she will not only consider his/her

own best response function and his/her valuation for the public good but also con-

siders the contribution made by Player 1. Since there are 1001 different Player 2’s

values for the public good and 1001 x∗
1, I get 10012 x∗

2. I sum these 10012 x∗
2 and

divide by 10012, arriving at Player 2’s expected contribution.

Thus, to calculate the i-th player’s expected contribution in an n-player game,

I, first, get 1001i x∗
i according to Player i’s possible valuation for the public good
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and the contribution made by the players who contribute earlier. Then, Player i’s

expected contribution is calculated by summing up these 1001i x∗
i and dividing by

1001i.

Figure 3.1 shows the simulation results of each player’s expected contribution

in the 2-player to 7-player sequential contribution cases. I find that the expected

contribution increases in the order of movement in these 4 cases.

This result demonstrates that the earlier contributors can free ride off the sub-

sequent contributors in the sequential contribution institution and they enjoy the

first-mover advantage by contributing smaller amounts to the public good, relying

on other contributors to provide the public good on their own. Thus, the order of

contributing to the public good plays an important role to the contributors.

Another finding is that the gap between the first player’s and the last player’s

expected contribution increases in the number of players in the game. For example,

in the 2-player case, the first player’s expected contribution is one third of the last

player’s expected contribution; but, in the 5-player case, the first player’s expected

contribution is only one tenth of the last player’s expected contribution. This result

shows that the free-riding problem becomes more serious when the number of players

contribute to the public good in a subscription game gets larger.

3.4 Comparison of the Expected Contribution

Except for the institution of contribution, the model setting in this paper is

similar to that in Barbieri and Malueg (2010). My approach in this section is to

compare the expected contribution under sequential contribution with the expected

contribution under simultaneous contribution.

Before comparing the results of these two contribution institutions, I briefly in-

troduce Barbieri and Malueg’s model and equilibrium result. Their model setting is
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Figure 3.1: Expected Contribution per Player in the Sequential Contribution
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Figure 3.1 continued.
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the same as the model in this paper: player’s value is private information and follows

a common uniform distribution with support [0, 1]; the cost threshold of providing

the public good is uncertain and follows an uniform distribution with support [0, c̃],

where c̃ ≥ n. The only difference between Barbieri and Malueg (2010) and this pa-

per is that players make their contribution decisions simultaneously in Barbieri and

Malueg (2010), while players make their contribution decisions sequentially in this

paper. Player’s expected contribution in Barbieri and Malueg (2010) can be written

as

K = E

[
max

{
0,

1

2

[
vi − (n− 1)K

]}]

=⇒ K∗ =
1

n− 1
+

2

(n− 1)2

[
1− n

1
2

]
(3.38)

Thus, the expected contribution in Barbieri and Malueg’s simultaneous model is a

symmetric Bayesian-Nash equilibrium.

Figure 3.2 shows each player’s sequential and simultaneous expected contribu-

tions in the 2-payer to 7-player case. I find that the first (n − 1) players’ expected

contributions in the sequential contribution model are lower than that in the si-

multaneous contribution model, but the last player’s expected contribution in the

sequential contribution model is higher than that in the simultaneous contribution

model.

Figure 3.3 displays expected total contribution in the sequential and simultaneous

contribution models. It shows that the expected total contribution in the sequential

model is lower than that in the simultaneous contribution model when 2 to 7 players

participate in the subscription game. It also shows that the gap between the expected

total contribution in these two models is increasing in the number of players. This

is because the increment of the expected total contribution in the sequential model

is smaller than that in the simultaneous model.
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Figure 3.3: Expected Total Contribution in the Sequential and Simultaneous Con-
tribution Model

Figures 3.2 and Figure 3.3 show that although the last player’s expected contribu-

tion in the sequential model is higher than that in the simultaneous model, it is not

large enough to cover the decrease of the first (n−1) players’ expected contributions.

Thus the expected total contribution in the sequential model is lower.

Due to the model setting, c̃ ≥ n, increasing the number of players increases

the upper bound of threshold distribution. To compare the ex ante probability of

providing the public good, I assume that c̃ = n in an n-player case. With this

assumption, the cost of public good provision per player is unchanged, which is

equal to 1. Figure 3.4 illustrates the ex ante probability of providing the public good

in a 2-player case to a 7-player case. It shows that the ex ante probability in the

sequential model is lower than that in the simultaneous model.

Figure 3.4 also shows that whether players contribute to a public good in the

sequential institution or in the simultaneous institution, the ex ante probability is
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Figure 3.4: Ex Ante Probability in the Sequential and Simultaneous Contribution
Model

decreasing in the number of players even if the cost of public good provision per

player is unchanged.

3.5 Other Considerations

In this section, I briefly discuss the equilibria in the different theoretical environ-

ments. The first case I will discuss is based on the assumption that players have

complete information but still face the threshold uncertainty when making contri-

bution decisions. The second case that I focus on assumes that players have private

information on valuation but they know the exact cost of providing the public good

when contributing to the public good. Besides private information on valuation and

threshold uncertainty, an important assumption in the primary model is the full re-

funded rule. Another special case discussed in this section centers on the assumption

that there is no refund rule rather than the full refund rule if the total contribution

does not cover the cost of providing the public good.
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3.5.1 Complete Information on Valuation and Threshold Uncertainty

I consider a 4-player case and assume that the valuation of the public good, v,

is common knowledge and is the same for each player. As to the cost of providing

the public good, I assume it is unknown when the players make their contribution

decisions, independent of v and follows the uniform distribution, c ∼ U [0, c̃], where

c̃ ≥ n. This assumption is the same as the assumption in the primary model. In this

case, the i-th player’s expected payoff function can be written as

Ui(xi|v) =
(
v − xi

)[∑4
j=1 xj

c̃

]
(3.39)

Using the method of backward induction, I derive the Subgame Perfect Equilib-

rium. For Player 4, his/her expected payoff function is

U4(x4|v) =
(
v − x4

)[x1 + x2 + x3 + x4

c̃

]
(3.40)

To maximize Player 4’s expected payoff, I get his/her best response function

x4 =

⎧⎪⎨
⎪⎩

0 if v ≤ x1 + x2 + x3

v−x1−x2−x3

2
if v ≥ x1 + x2 + x3

(3.41)

If x4 =
v−x1−x2−x3

2
(this implies v ≥ x1+x2+x3), then Player 3’s expected payoff

function can be written as

U3(x3|v) =
(
v − x3

)[v + x1 + x2 + x3

2c̃

]
(3.42)

From Equation (3.42)

∂U3

∂x3
=

−x1 − x2 − 2x3

2c̃
< 0 (3.43)
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This indicates that the smaller x3 is, the higher U3 is. Thus, Player 3’s best response

function is x3 = 0.

If x3 = 0 and x4 =
v−x1−x2−x3

2
, Player 2’ expected payoff function can be written

as

U2(x2|v) =
(
v − x2

)[v + x1 + x2

2c̃

]
(3.44)

From Equation (3.44)

∂U2

∂x2

=
−x1 − 2x2

2c̃
< 0 (3.45)

This indicates that the smaller x2 is, the higher U2 is. Thus, Player 2’s best response

function is x2 = 0.

If x2 = 0, x3 = 0 and x4 =
v−x1−x2−x3

2
, Player 1’ expected payoff function can be

written as

U1(x1|v) =
(
v − x1

)[v + x1

2c̃

]
(3.46)

From Equation (3.46)

∂U1

∂x1
=

−x1

c̃
< 0 (3.47)

This indicates that the smaller x1 is, the higher U1 is. Thus, Player 1’s best re-

sponse function is x1 = 0. Based on each player’s best response function, I derive

the Subgame Perfect Equilibrium: when v ≥ 0, x∗
1 = x∗

2 = x∗
3 = 0 and x∗

4 = v
2
.

This Subgame Perfect Equilibrium shows that the higher the valuation of the public

good is the higher the last player’s contribution is; however, the first n− 1 player’s

contribution is independent of the valuation. That is, the first n − 1 player always

contribute zero to the public good. Using the same process I get a trivial Subgame

Perfect Equilibrium: when v ≤ 0, x∗
1 = x∗

2 = x∗
3 = x∗

4 = 0.

In order to compare the result in this case with the results in the primary model

(public good’s valuation is private information and followed a uniform distribution
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with support [0, 1]), I let v = 1
2
in this new case. That is, v equals to the mean of value

distribution in the main model. I assume the threshold distribution is c ∼ U [0, 4].

Thus, the Subgame Perfect Equilibrium in this 4-player case is x∗
1 = x∗

2 = x∗
3 = 0

and x∗
4 =

1
4
. From the equilibrium, I observe that when the public good’s valuation

is known and the threshold is uncertain, the first three players are not willing to

contribute to the public good and the last player will contribute half of his/her

valuation to the public good. This result suggests that the first three players rely on

the last player to contribute to the public good and enjoy the first-mover advantage.

Thus, there exists the free rider problem.

Table 3.1 shows the comparison of equilibria under different value information

settings.

Table 3.1: Comparison of Equilibria under Different Value Information
complete information incomplete information

v = 1
2

v ∼ U [0, 1]
x1 = 0 E∗[x1] = 0.025

threshold x2 = 0 E∗[x2] = 0.039
uncertainty x3 = 0 E∗[x3] = 0.074
c ∼ U [0, 4] x4 = 0.25 E∗[x4] = 0.189

total = 0.25 total = 0.327

In the primary model, which considers private information on valuation and

threshold uncertainty, the Bayesian Equilibrium in a 4-player case is E∗[x1] = 0.025,

E∗[x2] = 0.039, E∗[x3] = 0.074, and E∗[x4] = 0.189. Comparing this initial result

with the result in this subsection, I find that whether the public goods’s valuation is

private information or complete information, the last player contributes the most to

the public good and a free rider problem exists in both cases.
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Since the valuation in the case of this subsection equals to the mean of valuation

distribution in the main model, the contribution equilibrium results show that keep-

ing the mean of valuation the same, when the degree of valuation dispersion shrinks

to be zero, the free rider problem becomes more serious. This is because the earlier

contributors can predict the latter contributors’ contributions more accurately when

the valuation of the public good is complete information. This result suggests that

the early contributors enjoy a stronger first-mover advantage and rely more on the

last player to provide the public good.

3.5.2 Private Information on Valuation and Threshold Certainty

Next, I discuss another case when the cost of providing the public good, c, is

certain and known when players make their contribution decisions. As to the valua-

tion of the public good, I assume each player’s valuation of public good, v, is private

information and followed a common uniform distribution, v ∼ U [0, 1]. I discuss this

particular theoretical setting via a 4-player case.

The i-th player’s expected payoff function in this game can be written

Ui(xi|vi) = (vi − xi)Qi (3.48)

Qi represents the probability of providing the public good for Player i and it is equal

to

Qi =

⎧⎪⎨
⎪⎩

0 if
∑i−1

l=1 xl + xi +
∑n

m=i+1Ei[xm] ≤ c

1 if
∑i−1

l=1 xl + xi +
∑n

m=i+1Ei[xm] ≥ c

where
∑i−1

l=1 xl represents the total contributions made by the players whose contribu-

tion sequence is prior to Player i’s and Ei[xm] is the subsequent Player m’s expected

contribution that Player i expects. If the total (expected) contribution is equal to or
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larger than the provision cost, c, the public good can be provided. That is, Qi = 1 if

the provision cost is met; otherwise, the public good cannot be provided, or Qi = 0.

From Equation (3.48), Player 4’s expected payoff function can be written

U4(x4|v4) =
(
v4 − x4

)
Q4 (3.49)

Q4 =

⎧⎪⎨
⎪⎩

0 if x1 + x2 + x3 + x4 ≤ c

1 if x1 + x2 + x3 + x4 ≥ c

To maximize Player 4’s expected payoff, I get his/her best response function

x4 =

⎧⎪⎨
⎪⎩

0 if v4 ≤ c− x1 − x2 − x3

c− x1 − x2 − x3 if v4 ≥ c− x1 − x2 − x3

(3.50)

Assume c− x1 − x2 − x3 ≥ 1, I get the contribution Player 3 expects Player 4 to

make, seen below:

E3[x4] = 0 (3.51)

For Player 3, his/her expected payoff function can be written

U3(x3|v3) =
(
v3 − x3

)
Q3 (3.52)

Q3 =

⎧⎪⎨
⎪⎩

0 if x1 + x2 + x3 + E3[x4] ≤ c

1 if x1 + x2 + x3 + E3[x4] ≥ c

Using Player 3’s expected payoff function, I derive his/her best response function

x3 =

⎧⎪⎨
⎪⎩

0 if v3 ≤ c− x1 − x2

c− x1 − x2 if v3 ≥ c− x1 − x2
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If x3 = c−x1−x2, then c−x1−x2−x3 becomes c−x1−x2−(c−x1−x2) = 0 < 1

which contradicts the condition c−x1−x2−x3 ≥ 1. Thus, x3 = c−x1−x2 cannot be

Player 3’s best response function given the case with the condition c−x1−x2−x3 ≥ 1.

Therefore, Player 3’s best response function should be

x3 = 0 ∀v3 (3.53)

Based on Player 3 and 4’s best response function, the contributions Player 2 expects

Player 3 and 4 to make are E2[x3] = 0 and E2[x4] = 0.

Similarly, I get Player 2’s expected payoff function

U2(x2|v2) =
(
v2 − x2

)
Q2 (3.54)

Q2 =

⎧⎪⎨
⎪⎩

0 if x1 + x2 + E2[x3] + E2[x4] ≤ c

1 if x1 + x2 + E2[x3] + E2[x4] ≥ c

Using the same procedure, I derive Player 2’s best response function, which in

this case is:

x2 = 0 ∀v2 (3.55)

According to Equation (3.50), (3.53) and (3.55) and the condition, c− x1 − x2 −
x3 ≥ 1, I get what Player 1 expects Player 2, Player 3, and Player 4’s contribution

are E1[x2], E1[x3] = 0 and E1[x4] = 0. Thus, Player 1’s expected payoff function is

U1(x1|v1) =
(
v1 − x1

)
Q1 (3.56)

Q1 =

⎧⎪⎨
⎪⎩

0 if x1 + E1[x2] + E1[x3] + E1[x4] ≤ c

1 if x1 + E1[x2] + E1[x3] + E1[x4] ≥ c

53



and his/her best response function should be

x1 = 0 ∀v1 (3.57)

Using each player’s best response function, I derive the Bayesian Equilibrium

E∗[x1] = E∗[x2] = E∗[x3] = E∗[x4] = 0, when c ≥ 1.

To compare the result in this case with the results in the primary model, which

assumes the provision cost is unknown when players make contribution decisions and

followed a uniform distribution, c ∼ U [0, c̃], c̃ ≥ n, I assume the provision cost in

this new case equals to c̃
2
. Also, I assume the upper bound of the possible cost, c̃,

is 4. Thus, the main differences between the case in this subsection and the case in

the primary model are that the provision cost in the previous one equals to 2 and

the provision cost in the latter one follows the distribution, c ∼ U [0, 4].

Table 3.2 shows the comparison of equilibria under different cost distribution set-

tings. Based on this numerical setting, the Bayesian Equilibrium when the provision

cost is certain, known and equals to 2 is E∗[x1] = E∗[x2] = E∗[x3] = E∗[x4] = 0 since

the provision cost is larger than 1. As to the Bayesian Equilibrium in a 4-player case

when assuming private information on valuation and threshold uncertainty, it can

be shown that E∗[x1] = 0.025, E∗[x2] = 0.039, E∗[x3] = 0.074, and E∗[x4] = 0.189.

Table 3.2: Comparison of Equilibria in Different Threshold Uncertainty
no threshold uncertainty threshold uncertainty

(c = 2) (c ∼ U [0, 4])
E∗[x1] = 0 E∗[x1] = 0.025

incomplete E∗[x2] = 0 E∗[x2] = 0.039
information E∗[x3] = 0 E∗[x3] = 0.074
v ∼ U [0, 1] E∗[x4] = 0 E∗[x4] = 0.189

total = 0 total = 0.327
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Comparing the case in this subsection with the case in the primary model, I find

that keeping the mean of the cost threshold the same, if the degree of threshold

dispersion shrinks to be zero, each player’s expected contribution decreases to zero.

One explanation for this result is that the threshold in this particular numerical case

may be too high, so the players, on average, are not willing to contribute to the

public good. Each player’s average valuation is 1
2
and the threshold is 2 in this new

case. If each player is burdened with the same share of the threshold, this means

the players should, on average, contribute 1
2
to provide the public good. However,

the player whose valuation is lower than 1
2
must contribute the amount lower than

1
2
; and the player whose valuation is higher than 1

2
will not contribute the amount

equals to his/her valuation. Thus, each player’s contribution, on average, is lower

than 1
2
. This result suggests that the public good may not be provided, so each

player’s expected contribution is equal to zero.

Another reason the expected contribution is higher in the primary model is that

if the true cost is low and the public good is provided, the players get a positive

payoff. If the true cost is high and the public good cannot be provided, the con-

tributions will be fully refunded. Thus, the contributors know that contributing to

the public good will not make them worse off and they may get a positive payoff

when threshold uncertainty exists. Thus, whether the provision order is, the player’s

expected contribution under the threshold uncertainty is higher than that under the

threshold certainty.

3.5.3 No Refunded Rule

In this subsection, I will discuss another particular model setting — a no refund

rule in a 3 player case. Keeping other assumptions in the model unchanged but
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considering the no refunded rule, Player 3’s expected payoff can be written as

U3(x3|v3) = v3

[x1 + x2 + x3

c̃

]
− x3 (3.58)

From Equation (3.58)

∂U3

∂x3
=

v3
c̃
− 1 (3.59)

Since I assume that c̃ ≥ n(= 3 in this case), and 0 ≤ v3 ≤ 1, I can get ∂U3

∂x3
< 0. This

means that the more Player 3 contributes, the less his/her expected payoff is. Thus,

Player 3’s best response function is

x3 = 0 ∀v3 (3.60)

and Player 3’s expected contribution is

E[x3] =

∫ 1

0

0 dv3 = 0 (3.61)

For Player 2, his/her expected utility function is

U2(x2|v2) = v2

[x1 + x2 + E2[x3]

c̃

]
− x2

= v2

[x1 + x2

c̃

]
− x2 (3.62)

then, Player 2’s best response function is

x2 = 0 ∀v2 (3.63)
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and Player 2’s expected contribution is

E[x2] =

∫ 1

0

0 dv2 = 0 (3.64)

Similarly, Player 1’s expected payoff function can be written as

U1(x1|v1) = v1

[x1 + E1[x2] + E1[x3]

c̃

]
− x1

= v1

[x1

c̃

]
− x1 (3.65)

then his/her best response function is

x1 = 0 ∀v1 (3.66)

and his/her expected contribution is

E[x1] =

∫ 1

0

0 dv1 = 0 (3.67)

From this example, I find that if the player’s contribution cannot be refunded

when the public good is not provided, his/her expected contribution is zero regardless

of the order he holds in the sequence. Thus, with the zero refund rule, contributors

are afraid that they cannot make a high enough contribution to cover the cost of

the public good and will thus suffer a loss from contributing. This results in zero

contribution to the public good.

Comparing the results in the full refund case to that in the no refund case, I find

that using the full refund rule can encourage individuals to contribute to the public

good. This is because contributors know that making a contribution will not make

them worse off with the full refund rule.
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3.6 Conclusion

This paper considers private information on public good valuations and threshold

uncertainty in a sequential contribution mechanism and derives the Bayesian equi-

librium. I find that expected contributions are increasing with respect to contributor

order in this sequential contribution institution. The pattern of earlier movers free

ride off later mover and enjoy the first-mover advantage in the Bayesian equilibrium

to the private information game mirrors the predicted pattern of play under subgame

perfect Nash equilibrium and complete information.

This paper compares the player’s expected contribution in the sequential con-

tribution mechanism and that in Barbieri and Malueg’s (2010) simultaneous con-

tribution mechanism. I find that the expected total contribution in the sequential

institution is lower than that in the simultaneous institution. Also, the ex ante pro-

vision probability in the sequential institution is lower than that in the simultaneous

institution.

Using the simple 4-player case, I find that if the degree of valuation dispersion

shrinks to zero, the total contribution will becomes lower and the free rider problem

becomes more serious. This is because the earlier contributors rely more on the last

player’s contribution and enjoy stronger first-mover advantage. I also find that if the

degree of threshold dispersion shrinks to zero, the total expected is lower than that

with threshold uncertainty.

Future researchers could analyze changes in the threshold distribution. I have

investigated how the changing of the threshold distribution affects player’s expected

contribution in the simultaneous contribution model. I am interested in this same

question in the sequential contribution model. However, if I adopt the same model

setting I use in the simultaneous model may result in numerous and complicated
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cases. It will be very difficult to analyze the same question. I am still looking for

some more clever methods to investigate this issue.

Another direction is to test the theoretical private contribution predictions using

a lab experiment. I propose from the theoretical model, for example, that the ex-

pected total contribution in a sequential contribution institution is low than that in

the simultaneous institution and early contributors may free ride off of prospective

contributors. Future research could test this theoretical prediction in a laboratory

setting. This could help us to understand how different institution affect the behavior

of making private contribution decisions.
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4. AN EXPERIMENTAL STUDY ON SIMULTANEOUS CONTRIBUTION

AND THRESHOLD UNCERTAINTY

4.1 Motivation

In this paper, I seek to re-analyze individual contribution behaviors in a simul-

taneous subscription game with private information on valuations and threshold

uncertainty. Because it is difficult to test individual contribution behavior using

empirical data, I conduct an experiment to investigate how individual contribution

behavior is affected when the contributor is given different cost uncertainties and test

the theoretical predictions in Gronberg and Peng (2014). The advantage of conduct-

ing a controlled laboratory experiment is that it helps us explore how individuals

make their contribution decisions in a specific environment (in this paper, I consider

private information on valuations and cost uncertainty). If subject’s behavior is in-

deed affected by the factors I consider, it suggests that suppliers of public goods

should take into account private information on valuations and/or cost uncertainty

when they collect private contributions. If subject’s behavior is not affected by these

factors, it helps us explore other possible factors that may affect individual private

contribution behavior.

To test the theoretical comparative statics with respect to the threshold uncer-

tainty, I find that decreasing the degree of threshold uncertainty in the sense of

mean-preserving contraction or increasing the mean of the threshold distribution

in the sense of the first-order stochastic dominance, the individual, on average, is

more willing to contribute to the public good. As to the success rates of providing

the public good, the experimental results suggest that the empirical probability of

providing the public good is higher than the ex ante probabilities in all treatments.
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The empirical results also show that the success rates in the Baseline Treatment and

the Mean-Preserving Treatment are significantly higher than that in the Variance-

Preserving Treatment.

According to the results of the random effect Tobit regression, individual contri-

butions increase with the valuation of the public good. I also find that individual

contributions decrease with the period of the experiment. The individual contributes

less to the public good in the latter periods. As to the individual characteristic vari-

ables, the estimation results show that females contribute higher amounts to the

public good. The results also indicate that individuals who are more risk-loving con-

tribute smaller amounts to the public good, although this result is not statistically

significant.

The paper is structured as follows, Section 2 is the literature review. Section

3 summarizes the theoretical model that serves as the basis for the experimental

design. Section 4 introduces the experimental design and the procedures. Section 5

describes the hypotheses. Section 6 discusses the experimental results and Section 7

includes a conclusion.

4.2 Literature Review

Earlier studies investigate the contribution behavior in the complete informational

environment. Palfrey and Rosenthal (1984) and Bagnoli and Lipman (1989) both

assume that players make contribution decisions in the simultaneous contribution

institution with complete information on the public good valuation and a certain

known threshold level of cost. These two papers show that if the full refund rule

is introduced into the threshold public good game, the Nash equilibria are efficient.

Issac, Schmidtz and Walker (1989) conduct an experiment to test the efficacy of a

threshold public good mechanism where the valuation of the public good is common
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knowledge and the cost threshold is known. Their result shows that the full refund

rule dramatically improves the provision of the public good in the high and medium

provision cost environments.

In a real world environment, valuation of the public good is generally private

rather than public information. Some experimental literature considers the effect

of private information on contribution. Marks and Croson (1999) conduct a dis-

crete public good experiment where subjects have incomplete information about the

valuations of others. They find no significant differences in the rate of successful pro-

visions or level of group contributions when the subjects have limited information

about others’ valuations than when they have complete information.

Levati et al. (2009) move a step further and suppose that one does not know

his/her own marginal benefit from the public good, but he/she is informed that it

can take one of two values with the same probability. They examine the effect of

imperfect information on contributions by a two-person linear voluntary contribution

mechanism with stochastic marginal benefits from a public good. They show that

limited information about the value of the public good significantly lowers average

contributions.

Some studies instead focus on threshold uncertainty. Nitzan and Romano (1990)

extend Bagnoli and Lipman’s game by introducing uncertainty regarding the cost of

providing the public good and find different results. They find that the equilibrium

is inefficient because the uncertainty in cost may cause the ex post contributions to

exceed or fall short of the required threshold.

Wit and Wilke (1998) investigate the effects of provision threshold uncertainty

on contribution to the discrete public good. They assume two different threshold un-

certainty levels; under the low uncertainty case, the provision threshold is randomly

sampled from a uniform distribution over the range [800, 1000], while under the high
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uncertainty case, the provision threshold is randomly sampled from a uniform distri-

bution over the range [400, 1400]. The main finding in this paper is that threshold

uncertainty decreases the level of cooperation only under the high uncertainty case,

not under the low uncertainty case.

Gustafsson et al. (1999) conduct two experiments to compare the voluntary

contribution amount to public goods with the same expected provision threshold

but different variances. They find that subjects contribute more than the expected

provision threshold, but the average contribution is smaller in the high variance

group.

Analyzing a similar question, Suleiman et al. (2001) show that the effect of

threshold uncertainty is moderated by the threshold mean: contribution to the pub-

lic good increases as a function of uncertainty for the lower threshold mean, and

decreases (though not significantly) for the higher threshold mean.

McBride (2006) investigates how the level of threshold uncertainty affects the

players’ contributions. In his model, McBride assumes that each player makes a

binary contribution decision simultaneously and the contribution will not be refunded

if the cost threshold is not met. He finds that instead of a monotonic relationship

between the degree of threshold uncertainty and total contributions, the effect of

changing the threshold uncertainty on the contributions depends on the value of

the public good. An increase of the threshold uncertainty in the sense of mean-

preserving spread increases the player’s contribution when the value of the public

good is sufficiently high, but decreases the player’s contribution when the value of

the public good is sufficiently low. In a recent literature, McBride (2010) designs an

experiment to test his theory in a lab and finds limited verification.

Barbieri and Malueg (2010) include both the threshold uncertainty and private

information on valuations for a public good in a subscription game. They focus on
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whether changing the intensity and dispersion of value distribution affects players’

equilibrium contributions. They find that increasing the value distribution in the

sense of first order stochastic dominance, or dispersing the value distribution in the

sense of mean-preserving spread increases the equilibrium contributions.

Gronberg and Peng (2014) consider both the threshold uncertainty and private

information on public good’s valuation in a subscription game but focus on the effect

of changing the threshold distribution. They find that increasing the mean of the

cost in the sense of first order stochastic dominance increases individual contribu-

tion, while increasing the uncertainty level of the cost in the sense of mean preserve

spread decreases individual contribution. Gronberg and Peng (2014) forms the the-

oretical basis for this paper. This experiment tests the theoretical predictions found

in Gronberg and Peng (2014).

4.3 Theoretical Model

The main objective of this paper is to test the theoretical predictions in Gronberg

and Peng (2014). To demonstrate the focus for this paper, I start by summarizing

their model. The theoretical model and theoretical equilibrium will serve as the basis

for the experimental design.

4.3.1 Basic Setup

Assume n ≥ 2 players simultaneously contribute any non-negative amounts to

the public good in a subscription game (Admati and Perry, 1991). Let xi ∈ [0, vi]

be player i’s contribution. Player’s valuation for the public good, vi, i = 1, ..., n, is

private information. That is, each player knows only his/her own realized valuation

for the public good. Each player believes that other players true valuations inde-

pendently follow a uniform distribution with support [0, 1]. Since each player’s value

follows the same distribution, this is a symmetric case.
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To provide the public good, the total contribution should equal or exceed the pro-

vision cost, c. Suppose c is unknown when the players contribute to the public good.

However, all players believe that the cost is independent of all vi’s and distributed

along a uniform distribution, G, with support [c̄−z, c̄+z], where c̄ is the mean of the

cost, z measures the degree of the cost uncertainty. In order to obtain the unique equi-

librium, the model should have the constraint that 0 � (c̄− z) ≤ n−1
4

< n
2
� (c̄+ z).

Gronberg and Peng consider a subscription game. Thus, the players’ contri-

butions will be fully refunded if the total contributions are less than the realized

cost threshold. Also, they assume a zero rebate rule, which means that the excess

contributions will be given to the producer of the good.

The objective to each player is to maximize his/her expected payoff. Based on

the assumptions above, player i’s expected payoff function can be written as:

Ui(xi, vi) =
1

2z

(
vi − xi

)(
xi +

∑
j �=i

E[xj(vj)]− (c̄− z)
)

(4.1)

Assume Kj ≡ E[xj(vj)] is player j’s expected contribution. In a symmetric equi-

librium, xj(vj) is independently and identically distributed. Thus, each player’s

expected contribution in this model should be identical and Kj can be replaced by

K. Therefore, the total expected contribution by (n− 1) other contributors can be

represented by (n− 1)K and player i’s expected payoff function can be rewritten as:

Ui(xi, vi) =
1

2z

(
vi − xi

)(
xi + (n− 1)K − (c̄− z)

)
(4.2)
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4.3.2 Bayesian Nash Equilibrium and Decision Rule

Maximizing Equation (4.2) with respect to xi and taking the first order condition

(F.O.C) yields player i’s best respond function:

xi

(
vi, (n− 1)K

)
= max

{
0,

1

2

[
vi − (n− 1)K + (c̄− z)

]}
, ∀ i (4.3)

Using the definition of expected contribution, Ki ≡ E[xi(vi)], and the best response

function, Equation (4.3), in symmetric equilibrium,

K = E

[
max

{
0,

1

2

[
vi − (n− 1)K + (c̄− z)

]}]
(4.4)

Assuming that players’ values are independently and uniformly distributed on [0, 1],

the expected contribution, in equilibrium, is

K∗ =
1 + c̄− z

n− 1
+

2

(n− 1)2

{
1−

[
1 + (n− 1)(1 + c̄− z)

] 1
2
}

(4.5)

This solution concept is a symmetric Bayesian-Nash equilibrium.

Player i’s equilibrium strategy, x∗
i , must satisfy Equation (4.3) and K∗, therefore,

x∗
i can be written as

x∗
i

(
vi, (n− 1)K∗) = max

{
0,

1

2

[
vi − (n− 1)K∗ + (c̄− z)

]}
(4.6)

where K∗ should be equal to Equation (4.5).

4.3.3 Comparative Statics

SinceK∗ is a function of c̄ and z, the cost distribution may affect player’s expected

contribution. Gronberg and Peng (2014) consider the changes in the uniform cost
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distribution through mean-preserving spread and first order stochastic dominance,

and try to analyze how these changes affect player’s expected contribution.

First, I demonstrate the effect of changing threshold uncertainty in the sense of

mean-preserving spread. From Equation (4.5), K∗ = 1+c̄−z
n−1

+ 2
(n−1)2

− 2
(n−1)2

[
1+(n−

1)(1 + c̄ − z)
] 1

2
in equilibrium. Differentiating Equation (4.5) with respect to the

variance of the cost distribution, z, it is shown that

dK∗

dz
=

1

n− 1

{
− 1 +

[
1 + (n− 1)(1 + c̄− z)

]−1
2
}

(4.7)

Since (c̄− z) is the lower bound of the threshold and assume (c̄− z) ≥ 0, dK∗
dz

<

0, this result shows that when the cost distribution becomes more dispersed, the

expected contributions will decrease.

Second, I demonstrate the effect of increasing the mean of threshold distribution

in the sense of first order stochastic dominance. From Equation (4.5), K∗ = 1+c̄−z
n−1

+

2
(n−1)2

− 2
(n−1)2

[
1+ (n−1)(1+ c̄− z)

] 1
2

in equilibrium. Differentiating Equation (4.5)

with respect to the mean of the cost distribution, c̄, it is shown that

dK∗

dc̄
=

1

n− 1

{
1−

[
1 + (n− 1)(1 + c̄− z)

]−1
2
}

(4.8)

Since (c̄− z) is the lower bound of the threshold and assume (c̄ − z) ≥ 0, dK∗
dc̄

> 0,

this result shows that increasing the mean of the public good in the sense of first

order stochastic dominance will increase the expected contribution.

4.4 Experimental Design and Procedures

4.4.1 Experimental Design

I am interested in examining the effects of changing the cost distribution on in-

dividual contribution equilibrium. In order to test these effects, I conduct a simple
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between-subject experiment, which compares the contribution behaviors with dif-

ferent cost distributions. Since this experiment is a between-subject design, each

subject participates in only one session and treatment.

There are 3 treatments in this experiment. The differences among the treatments

are the list of possible provision costs. One of them is called the Baseline Treatment.

In the Baseline Treatment, there are 14 possible provision costs: 10, 30, 50, 70,

90, 110, 130, 150, 170, 190, 210, 230, 250, or 270. The second Treatment is called

the Mean-Preserving Treatment. In the Mean-Preserving Treatment, I decrease the

dispersion degree of the cost distribution but keep the mean of cost distribution

the same as that in the Baseline Treatment. In the Mean-preserving Treatment,

8 possible provision costs are listed: 70, 90, 110, 130, 150, 170, 190, or 210. The

third treatment is called the Variance-Preserving Treatment. In this treatment, I

increase the mean of the cost distribution but keep the variance the same as that

in the Baseline Treatment. There are 14 possible provision costs in the Variance-

Preserving Treatment: 70, 90, 110, 130, 150, 170, 190, 210, 230, 250, 270, 290, 310,

or 330. Each treatment has 2 sessions.

I assume the value is private information for each subject. There are 6 possible

values and they are the same in each treatment. These possible values are 0, 20,

40, 60, 80, or 100. Each subject knows that his/her group members’ values are

independently and randomly drawn from these 6 values. His/her own value, which

is only known by himself/herself, is also one of these values.

The experiment is based on the following four-player game. Each subject is given

100 tokens in each period, and has to decide how to use his/her endowment. The

player has to decide how many tokens he/she wants to contribute to a project and

how many tokens to keep for himself/herself. Subjects make decisions simultaneously.

At the beginning of each period, each subject is given the following information:
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1. His/her own valuation of the project. If the project will be implemented, he/she

receives his/her own valuation of the project, taking one of the following values:

0, 20, 40, 60, 80, or 100. The value changes every period.

2. A list of possible valuations of the project his/her group members may have.

Each group member’s valuation of the project is independently and randomly

drawn from 6 possible values: 0, 20, 40, 60, 80, or 100.

3. A list of possible provision costs. There is the cost of providing the project. To

receive the valuation of the project, the total contribution of the group must

equal or exceed the provision cost. However, the provision cost is not disclosed

until each subject in the same group makes his/her decision. Each participant

is informed of the different list of possible provision costs depending on the

treatment the subject is assigned to. At the end of each period, the provision

cost is independently and randomly drawn from the announced possible costs

by the computer.

Figure 4.1 shows an example of the computer interface in the Baseline Treatment

the subject may face when making his/her contribution decision.

After making the decision, subjects are informed about the realized provision

cost, total contribution of his/her group, whether the contribution is refunded or not

and the income he/she receives in the current period. Each subject’s income in each

period consists of three parts:

1. Income from tokens kept: the tokens which the subject has kept for him-

self/herself.

2. Income from the project: Whether the subject will get the payoff from the

project depends on whether the total contribution is equal to or larger than
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Figure 4.1: Example of Decision Screen

the realized provision cost. Income from the project is determined as follows:

– If the provision cost is met: Income from the project = The subject’s

valuation of the project.

– If the provision cost is NOT met: Income from the project = 0.

3. Income from the refund rule: the amount the subject invests into the project

will be fully refunded to him/her if the total contribution in his/her group is

smaller than the realized provision cost. The income from the refund rule is

determined as follows:

– If the provision cost is NOT met & you contribute X tokens to the project:

Income from the refund rule = X.

– If the provision cost is met: Income from the refund rule = 0.

Thus, each subject’s income in each period can be represented by the following
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equation:

πi = 100− xi +Gi(

4∑
j=1

xj) +Ri (4.9)

where

Gi(
4∑

j=1

xj) =

⎧⎪⎨
⎪⎩

vi if
∑4

j=1 xj ≥ c

0 if
∑4

j=1 xj < c

Ri =

⎧⎪⎨
⎪⎩

xi if
∑4

j=1 xj < c & xi > 0

0 o/w

Figure 4.2 is the example of payment screen in the Baseline Treatment.

Figure 4.2: Example of Payment Screen

4.4.2 Experimental Procedures

This experiment was conducted at the Economics Research Lab (ERL) at Texas

A&MUniversity. 72 subjects were recruited from the university-wide pool of students
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by the online system ORSEE (Greiner, 2004). Six sessions were conducted (two per

treatment) with 12 participants per session. Each session was conducted using z-tree

software (Fischbacher, 2007).

Upon arrival, each subject picked a chip to decide his/her seat with a privacy

partition. Subjects were then given the instructions (shown on the computer in

front of them). The experimenter read the instructions aloud. A short quiz was

given to gauge the subject’s understanding of the instructions and all subjects were

given the same quiz questions. Subjects had to answer all questions correctly for the

experiment to continue.

There were 12 participants in each session. The session consisted 30 periods of

the subscription game. Subjects were randomly re-matched with 3 other participants

in each session. Subjects were not informed of the identities of other participants

they were matched with, neither during nor after the experiment so that subjects’

decisions were not associated with ID numbers which could be used to establish

reputations. I randomly reassigned groups every period in an attempt to minimize

repeated game effect and approximate the theoretical environment of a one-shot

game, making it much harder for a group effect to develop.

At the end of the 30th period, each subject should drew two numbers randomly to

determine his/her own payment periods. Each subject got paid based on the income

he/she made in the two chosen periods. Since the subjects do not know which

period the payment will be based on, they should do their best in every period. This

payment method avoids the wealth effect. At the end of the experiment, subjects

were asked to complete a short survey asking for basic demographic information and

were then privately paid according to their incomes in the two periods which had

been randomly selected at the end of the 30th period. The conversion rate for the

experiment is one token = 5 cents. Subjects earned approximately $15.83, including
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$5 show-up payment. Average session length was about one hour.

4.5 Hypotheses

As mentioned above, this experimental design represents a subscription game with

private information on valuation and threshold uncertainty. Thus, the equilibrium is

a Bayesian Nash Equilibrium, also known as the expected contribution. Based on the

specific parameters chosen for the study, the Bayesian Nash Equilibrium prediction

in each treatment is shown in Table 4.1. In the Baseline Treatment, the Bayesian

Nash Equilibrium is 10.89. Mean-Preserving Treatment and Variance-Preserving

Treatment have the same Bayesian Nash Equilibrium, 19.88.

Table 4.1: Bayesian Nash Equilibrium Prediction
Baseline Mean-Preserving Variance-Preserving
Treatment Treatment Treatment

Bayesian
Nash 10.89 19.88 19.88
Equilibrium

From these Bayesian Nash Equilibria, I have the following three Hypotheses,

which are the comparative statics with respect to the threshold uncertainty.

Hypothesis 1a:

Keeping the mean of the cost distribution unchanged but decreasing the dis-

persion of the cost distribution will increase individual expected contribution

(Comparison between the Baseline Treatment and the Mean-Preserving Treat-

ment).

Hypothesis 1b:

Keeping the variance of the cost distribution unchanged but increasing the
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variance of the cost distribution will increase individual expected contribu-

tion (Comparison between the Baseline Treatment and the Variance-Preserving

Treatment).

Hypothesis 1c:

With the same lower bound of the cost distribution, the expected contribu-

tions in the Mean-Preserving Treatment and the Variance-Preserving Treat-

ment should be the same.

In this paper I also focus on the success rate (that is, the probability of pro-

viding the public good successfully). According to the experimental parameters

in this paper, I calculate the ex ante probability of providing the public good in

each treatment, shown in Table 4.2. From Table 4.2, the success rate in the Base-

line, Mean-Preserving and Variance-Preserving Treatment are 18.13%, 19.86% and

11.35%, respectively. Comparing the success rates in different treatments, I propose

the following hypotheses:

Table 4.2: Ex Ante Probability
Baseline Mean-Preserving Variance-Preserving
Treatment Treatment Treatment

Ex Ante
Probability 18.13% 19.86% 11.35%

Hypothesis 2a:

The ex ante probability in the Baseline Treatment is lower than the ex ante

probability in the Mean-Preserving Treatment.
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Hypothesis 2b: The ex ante probability in the Baseline Treatment is higher

than the ex ante probability in the Variance-Preserving Treatment.

Hypothesis 2c:

The ex ante probability in the Mean-Preserving Treatment is higher than the

ex ante probability in the Variance-Preserving Treatment.

4.6 Results

4.6.1 Average Contribution

Figure 4.3 tracks the average contribution to the public good over the 30 periods

in each treatment. From this figure, I find that although the average contribution in

each treatment fluctuates over the 30 period, the average contribution in the Baseline

Treatment is the lowest and the average contribution in the Variance-Preserving

Treatment is the highest in the most periods.
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Figure 4.3: Average Contribution over the 30 Periods

Table 4.3 presents the empirical average contribution in three treatments. The av-
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erage contributions in the Baseline, Mean-Preserving and Variance-Preserving Treat-

ments are 26.43, 30.80, and 33.77, respectively. Comparing the average contribution

with the Bayesian Nash Equilibrium prediction, shown in Table 4.1, I find that the

average contribution is significantly higher than the Bayesian Nash Equilibrium pre-

diction in every treatment (p = 0.00 in each treatment, t-test).

Table 4.3: Average Contribution in Three Treatments
Baseline Mean-Preserving Variance-Preserving
Treatment Treatment Treatment

Average Contribution 26.43 30.80 33.77
(standard error) (1.00) (0.94) (1.10)

Result 1: The average contribution in all treatments are significantly larger

than the Bayesian Nash Equilibrium, which derives from maximizing individual

expected payoff.

Next, I compare the average contribution in different treatments: Baseline Treat-

ment vs. Mean-Preserving Treatment, Baseline Treatment vs. Variance-Preserving

Treatment, and Mean-Preserving Treatment vs. Variance-Preserving Treatment.

Comparing the average contribution between the Baseline Treatment and the Mean-

Preserving Treatment, I find that the average contribution in the former treatment is

significantly smaller than the average contribution in the latter treatment (p = 0.00,

t-test). Thus, the experimental result supports Hypothesis 1a: Decreasing the degree

of threshold uncertainty in the sense of mean-preserving contraction causes individ-

uals, on average, to be more willing to contribute to the public good.

Comparing the average contribution between the Baseline Treatment and the

Variance-Preserving Treatment, I show that the average contribution in the Baseline
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Treatment is significantly smaller than the average contribution in the Variance-

Preserving Treatment (p = 0.00, t-test). Thus, the experimental result also supports

Hypothesis 1b: Increasing the mean of the cost distribution in the sense of the first

order stochastic dominance causes individuals, on average, to be more willing to

contribute to the public good.

Comparing the Mean-Preserving and the Variance-Preserving Treatment, I find

that the average contribution in the Mean-Preserving Treatment is significantly

smaller than the average contribution in the Variance-Preserving Treatment (p =

0.01, t-test). This experimental result rejects Hypothesis 1c that the average contri-

bution in these two treatments should be the same.

Result 2: I find empirical supports for Hypothesis 1a and Hypothesis 1b. I

find that decreasing the degree of threshold uncertainty in the sense of the

mean-preserving contraction increases average individual contribution. I also

find that increasing the mean of the threshold distribution in the sense of first-

order stochastic dominance increases average individual contribution.

The empirical results above show that although some hypotheses are significantly

supported, the level of the average contribution is significantly higher than the the-

oretical prediction in each treatment. I try to analyze which value of the public

good an individual has will result in contributing higher amounts to the public good.

Figure 4.4 depicts the distribution of value and contribution by treatment. The top

figure illustrates the Baseline Treatment, followed by the Mean-Preserving Treatment

and the Variance-Preserving Treatment.

The red triangle in the figure represents the equilibrium strategy prediction for

each value. For example, in the Baseline Treatment, the equilibrium strategy predic-

tion of an individual with value 0 is 0 tokens and the equilibrium strategy prediction
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Figure 4.4: Value and Contribution in Three Treatments
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of an individual with value 60 is 10.6 tokens. The circle represents the individual

contribution observations in the experiment. The larger the circle is, the higher the

frequency this contribution level made by the individual is observed. For example,

when value is 0, the contribution amount, 0, has the highest frequency. The green

diamond in the figure represents the average contribution level for each value. For

example, in the Baseline Treatment, the average contribution level of an individual

with value = 0 is 9.62 tokens and the average contribution level under value = 60 is

30.30 tokens.

Table 4.4 illustrates the equilibrium strategy prediction, average contribution

level and the test result for each value in each treatment.

Table 4.4: Equilibrium Strategy and Average Contribution for Each Value
Baseline Mean-Preserving Variance-Preserving

Treatment Treatment Treatment

Equilibrium 0.0 0.0 0.0

v = 0 Average Contribution 9.6∗∗∗ 16.2∗∗∗ 17.8∗∗∗

(standard error) (1.9) (2.0) (2.5)

Equilibrium 1.8 2.5 2.5

v = 20 Average Contribution 16.7∗∗∗ 20.0∗∗∗ 22.0∗∗∗

(standard error) (2.1) (1.9) (2.3)

Equilibrium 5.6 11.7 11.7

v = 40 Average Contribution 20.3∗∗∗ 30.8∗∗∗ 30.9∗∗∗

(standard error) (1.4) (1.9) (2.3)

Equilibrium 10.6 23.6 23.6

v = 60 Average Contribution 30.3∗∗∗ 34.6∗∗∗ 37.7∗∗∗

(standard error) (1.6) (1.7) (2.1)

Equilibrium 18.9 35.9 35.9

v = 80 Average Contribution 37.6∗∗∗ 39.6∗∗ 44.3∗∗∗

(standard error) (1.8) (2.1) (2.5)

Equilibrium 28.4 45.6 45.6

v = 100 Average Contribution 44.4∗∗∗ 43.8 50.2∗∗

(standard error) (2.5) (2.5) (2.6)
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Focusing on the Baseline Treatment first, I find that no matter what value the

individual places on the public good (based on his/her assignment), his/her contri-

bution, on average, is significantly higher than the equilibrium strategy. (p = 0.00,

t-test). This result notes that the average contribution is higher than Nash Bayesian

Equilibrium because the individual contributes a higher amount than the equilibrium

strategy. Mean-Preserving Treatment has similar results to the Baseline Treatment

when the value of public good is 0, 20, 40, 60 or 80. That is, individual contri-

bution, on average, is significantly higher than the theoretical equilibrium strategy

when the value of the public good is 0, 20, 40, 60 (p = 0.00, t-test) or 80 (p = 0.04,

t-test). Therefore, the higher average contribution occurs because individuals with

value 0, 20, 40, 60 or 80 contribute a higher amount to the public good in the

Mean-Preserving Treatment. The individual with value 100 in the Mean-Preserving

Treatment contributes lower amounts than the theoretical equilibrium strategy, but

it is not statistically significant(p = 0.24, t-test). As to the Variance-Preserving

Treatment, I find that individuals with value 0, 20, 40, 60, 80 (p = 0.00, t-test) or

100 (p = 0.04, t-test) also contribute higher amounts than the theoretical prediction.

Result 3: The average contribution is higher than the Bayesian-Nash Equi-

librium prediction from individuals assigned a valuation of the public good of

0, 20, 40, 60 and 80 for all treatments and with a valuation of 100 in the Base-

line Treatment and the Variance-Preserving Treatment. These individuals are

willing to contribute higher amounts to the public good than that predicted by

the equilibrium model.

Three reasons could explain why the average contribution is higher than that

predicted by the Bayesian Nash Equilibrium model. First, individuals do not follow

the objective of maximizing expected payoff. When an individual makes his/her
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contribution decision, he/she may take into account factors such as risk attitude,

altruism, or cooperation above expected payoff maximization. The second reason

is that private information on valuation and threshold uncertainty make decision

making more complicated. Thus, individuals might have trouble arriving at the

equilibrium strategy. Another reason could be that participants in the experiment do

not understand fully the rules of this game. Figure 4.4 shows that many observations

are above the diagonal, meaning that the contribution is higher than the valuation.

In this subscription game, the subject may be worse off when his/her contribution

is higher than his/her value and the public project is implemented. For example,

a subject with value 40 contributes 50 tokens to the public project and the public

project is provided, his/her payoff is 90 tokens. This amount is lower than his/her

initial endowment, 100 tokens. Thus, if the participant realizes that he/she may be

worse off when his/her contribution is larger than this value, he/she should avoid

this situation happened.

I draw the frequency of contribution that is higher than the value in each treat-

ment and ascertain whether the participants contribute more than his/her own value

occurs because the participant is not familiar with the subscription game. From Fig-

ure 4.5, I observe that regardless of the treatment the subjects participate in, the

frequency of contribution that is higher than the value is highest in Period 1. Al-

though the frequency does not decrease dramatically, I find that the frequency in the

last 10 periods is relatively low. Therefore, I will use the observations in the last 10

periods to analyze the results of comparative statics again.

Table 4.5 illustrates the empirical average contribution in the last 10 periods

in each treatment. The average contribution in the Baseline Treatment is 23.99.

Although it is lower than the average contribution in all 30 periods, 26.43, it is

still significantly higher than the Bayesian Nash Equilibrium, 10.89 (p = 0.00, t-
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test). As to the Mean-Preserving Treatment, the average contribution of the last 10

periods , 29.31, is very close to the average contribution of all periods, 30.80, and it

is significantly higher than the Bayesian Nash Equilibrium, 19.88 (p = 0.00, t-test).

The average contribution in the Variance-Preserving Treatment is 30.82, which is

lower than the average contribution of 30 periods, 33.77, is significantly higher than

the Bayesian Nash Equilibrium, 19.88 (p = 0.00, t-test).

Table 4.5: Average Contribution of Period 21∼30 in Three Treatments
Baseline Mean-Preserving Variance-Preserving
Treatment Treatment Treatment

Average Contribution 23.99 29.31 30.82
(standard error) (1.44) (1.65) (1.92)

Result 4: Using the experimental data in Period 21∼30, the average con-

tribution in all treatments is still significantly larger than the Bayesian-Nash

equilibria, which derive from maximizing individual expected payoff.

I also test the comparative statics with respect to the uncertainty using the last 10

period data. To compare the average contribution between the Baseline Treatment

and the Mean-Preserving Treatment, I find that the average contribution in the

Baseline Treatment is significantly smaller than the average contribution in the Mean-

Preserving Treatment (p = 0.00, t-test). Thus, the experimental data in the last 10

periods also supports Hypothesis 1a: Decreasing the degree of threshold uncertainty

in the sense of mean-preserving contraction causes individuals, on average, to be

more willing to contribute to the public good.

Comparing the average contribution between the Baseline Treatment and the

Variance-Preserving Treatment, I show that the average contribution in the Baseline
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Treatment is significantly smaller than the average contribution in the Variance-

Preserving Treatment (p = 0.00, t-test). The experimental data in the last 10

periods, again, supports Hypothesis 1b: Increasing the mean of the cost distribution

in the sense of first order stochastic dominance causes individuals, on average, to be

more willing to contribute to the public good.

Comparing the Mean-Preserving and the Variance-Preserving Treatment, I can-

not reject the null hypothesis that the average contribution in the Mean-Preserving

Treatment is equal to the average contribution in the Variance-Preserving Treatment

using only the last 10 periods of experimental data (p = 0.51, t-test). This exper-

imental result is consistent with Hypothesis 1c: With the same lower bound of the

cost distribution, the average contribution in the Mean-Preserving Treatment and

the Variance-Preserving Treatment should be the same.

To summarize the results of comparative statics with respect to the threshold, I

find that whether I use all periods data or the last 10 periods data, the empirical

results are consistent with Hypothesis 1a and Hypothesis 1b: Decreasing the degree of

threshold uncertainty in the sense of mean-preserving contraction causes individuals,

on average, to be more willing to contribute to the public good. Increasing the mean

of the cost distribution in the sense of first order stochastic dominance also causes

individuals, on average, to be more willing to contribute to the public good. However,

the empirical results partly support Hypothesis 1c: the average contribution in the

Mean-Preserving Treatment and the Variance-Preserving Treatment should be the

same. Another important experimental result is that although the empirical data

supports hypotheses of comparative statics, the level of average contribution to the

public project is far higher than the Bayesian Nash Equilibrium.

Although the frequency with which the contribution is higher than the value is

relative small in the last 10 periods, the average contribution in the last 10 periods
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is still significantly higher than the Bayesian Nash Equilibrium. In the following

paragraphs, I will discuss how an individual with different values contributes to the

public good project using the last 10 periods of observations. Figure 4.6 illustrates

the relation between the value and the contribution using the last 10 periods of

data. The red triangles represent the equilibrium strategy prediction, which derives

from maximizing the expected payoff. The green diamonds represent the average

contribution of the last 10 periods under each value. The circles are the contribution

observations.

Figure 4.6 shows that the average contribution increases with the value assigned

to participants. That is, the higher the value is, the higher the average contribution

is. Thus, the relationship between the value and the contribution is consistent with

the theoretical prediction. However, the levels of average contribution differ from

the equilibrium strategies.

Table 4.6 shows the average contribution of Period 21∼30 and the equilibrium

strategy under each value in three treatments. In the Baseline Treatment, the average

contribution is significantly higher than the equilibrium strategy under all values

(p = 0.00, t-test). This result shows that the average contribution in the Baseline

Treatment is higher than the Bayesian Nash Equilibrium projection, consistent with

the result using all periods of data.

In the Mean-Preserving Treatment, the individual, on average, contributes sig-

nificantly higher amounts to the public good when his/her value is 0, 20, 40, or 60

(p = 0.00, t-test). As to the Variance-Preserving Treatment, the individual, on av-

erage, contributes significantly higher amounts to the public good under all values

except 80 (p = 0.00 when value is 0, 20, 40, or 60 and p = 0.07 when value is 100,

t-test). The results in these two treatment are similar to the results using all periods

of data.
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Figure 4.6: Value and Contribution in Period 21∼30 in Three Treatments
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Table 4.6: Equilibrium Strategy and Average Contribution for Each Value in Period
21∼30

Baseline Mean-Preserving Variance-Preserving

Treatment Treatment Treatment

Equilibrium 0.0 0.0 0.0

v = 0 Average Contribution 8.5∗∗∗ 10.0∗∗∗ 9.2∗∗∗

(standard error) (3.15) (3.0) (3.6)

Equilibrium 1.8 2.5 2.5

v = 20 Average Contribution 10.1∗∗∗ 17.8∗∗∗ 19.4∗∗∗

(standard error) (2.6) (3.4) (4.0)

Equilibrium 5.6 11.7 11.7

v = 40 Average Contribution 14.8∗∗∗ 32.8∗∗∗ 25.4∗∗∗

(standard error) (2.1) (3.2) (4.0)

Equilibrium 10.6 23.6 23.6

v = 60 Average Contribution 28.5∗∗∗ 32.3∗∗∗ 33.2∗∗∗

(standard error) (3.7) (2.3) (3.4)

Equilibrium 18.9 35.9 35.9

v = 80 Average Contribution 36.4∗∗∗ 36.9 39.5

(standard error) (2.4) (2.8) (3.7)

Equilibrium 28.4 45.6 45.6

v = 100 Average Contribution 39.0∗∗∗ 43.7 51.7∗

(standard error) (4.3) (4.3) (4.1)

According to the data of Period 21∼30, I find that although the frequency of the

observations that the contribution is higher than the value is relative low among the

whole periods, the individual still contributes higher amounts than the equilibrium

strategy under most values. This results suggest that many other factors exist that

affect individual contribution decisions in a subscription game.

4.6.2 Success Rate

This paper shows that the average contribution in all treatments is higher than

the Bayesian Nash Equilibrium. Now, I analyze whether the success rates of proving

the public good are consistent with the theoretical ex ante probabilities using the

Binomial probability test. I calculate the success rates using all the data and with
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only the last 10 periods of data, calling these two success rates Pall and P21−30,

respectively. When I use all-period data to calculate the success rate, Pall, there are

180 group observations in each treatment — 3 groups per period × 30 periods per

session × 2 sessions per treatment. When I use the last 10 periods data to calculate

the success rate, P21−30, there are 60 group observations — 3 groups per period × 10

periods per session × 2 sessions per treatment. Table 4.7 reports the two observed

success rates for each treatment.

Table 4.7: Observed Success Rate
Baseline Mean-Preserving Variance-Preserving
Treatment Treatment Treatment

Pall 37.22% 39.44% 27.78%
(standard error) (0.04) (0.04) (0.03)

P21−30 35.00% 38.33% 21.67%
(standard error) (0.06) (0.06) (0.05)

I first discuss the results related to Pall in each treatment. Among 180 group ob-

servations in the Baseline Treatment, 67 observations successfully provide the public

good. The Pall in the Baseline Treatment is 37.22%, and it is statistically significant

higher than the theoretical predicted probability, 18.13% (p = 0.00). The Mean-

Preserving Treatment has the similar result. 71 group observations succeed in pro-

viding the public good. The Pall in the Mean-Preserving Treatment, 39.44%, is also

statistically significant higher than the theoretical prediction, 19.86%, (p = 0.00). In

the Variance-Preserving Treatment, 50 of 180 group observations successfully pro-

vide the public good. The Pall in the Variance-Preserving Treatment, 27.78%, is

statistically significant higher than the theoretical prediction, 11.35% (p = 0.00).

To calculate P21−30, I use 60 group observations in each treatment. Among these
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60 group observations in the Baseline Treatment, 21 observations successfully pro-

vide the public good. Thus, P21−30 in the Baseline Treatment is 35%. This is sig-

nificantly higher than the theoretical prediction (p = 0.00). In the Mean-Preserving

Treatment, 23 observations provide the public good successfully, thus, P21−30 in the

Mean-Preserving Treatment is 38.33%. It is also significantly higher than the theo-

retical prediction (p = 0.00). As to the Variance-Preserving Treatment, 13 observa-

tions successfully provide the public good, and the P21−30 in the Variance-Preserving

Treatment is 21.67%. This is still significantly higher than the theoretical prediction

(p = 0.00).

In order to test Hypothesis 2a -2c, I conduct the two-sample test of proportion. I

first compare the success rates in any two treatments using all periods of data. That

is, I compare Pall across different treatments. To test the Pall in the Baseline Treat-

ment and the Mean-Preserving Treatment, I cannot reject the null hypothesis that

the Pall in these two treatments are equal (two-tailed p-value p = 0.66, two-sample

test of proportion). However, the Pall in the Baseline Treatment is significantly higher

than the Pall in the Variance-Preserving Treatment (one-tailed p-value p = 0.03, two-

sample test of proportion). Comparing the Pall in the Mean-Preserving Treatment

and the Variance-Preserving Treatment, I find that the Pall in the Mean-Preserving

Treatment is significantly higher than the Pall in the Variance-Preserving Treatment

(one-tailed p-value p = 0.01, two-sample test of proportion).

I also compare the success rate across different treatments by the last 10 periods

data, which is called P21−30. I get a similar results that the Baseline Treatment and

the Mean-Preserving Treatment both have significantly higher success rates than the

Variance-Preserving Treatment (one-tailed p-value p = 0.05 and 0.02, respectively,

two-sample test of proportion). As for comparing the Baseline Treatment with the

Mean-Preserving Treatment, I find that the public good is less often provided in the
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Baseline Treatment compared to in the Mean-Preserving Treatment, but it is not

statistically significant (one-tailed p-value p = 0.33, two-sample test of proportion).

Using a two-sample test of proportion, the empirical data supports Hypothesis

2b and 2c that the success rates in the Baseline Treatment and the Mean-Preserving

Treatment is significantly higher than in the Variance-Preserving Treatment. This

holds true for the last 10 periods and the all periods together. However, compar-

ing the Baseline Treatment with the Mean-Preserving Treatment, I do not find a

significant difference for the last 10 periods and all periods together.

Result 5: The empirical probabilities of providing the public good are higher

than the ex ante probabilities all treatment. But the empirical data only sup-

ports Hypothesis 2b and Hypothesis 2c that the success rates in the Baseline

Treatment and the Mean-Preserving Treatment are higher than that in the

Variance-Preserving Treatment.

4.6.3 Average Payoff

Suppliers of the public good care about the amount of total contribution they can

receive from contributors. Contributors care about the payoff they may receive after

making a contribution to a public good. In this subsection, I compare the individual

payoff in the three treatments.

Table 4.8 shows the expected payoff and the average payoff in each treatment.

Average Payoffall is measured using all periods of data and Average Payoff21−30 is

measured using the last 10 periods of data.

Although the average payoff in each treatment is close to the expected payoff,

this does not happen as a result of individuals making contribution decisions based

on maximizing their expected payoff. Figure 4.7 shows the average payoff under each

value in the three treatments.
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Table 4.8: Expected Payoff and Average Payoff in Three Treatments
Baseline Mean-Preserving Variance-Preserving
Treatment Treatment Treatment

Expected Payoff 108.24 108.05 104.60

Average Payoffall 108.73 106.91 102.90
(standard error) (0.89) (0.86) (0.73)

Average Payoff21−30 109.06 109.35 103.76
(standard error) (1.26) (1.52) (1.16)

I find that individuals with specific values are worse off when contributing to the

public good. For example, I show that an individual with value = 0, on average,

contributes 9 tokens to the public good. Since the participant’s contribution is higher

than his/her value, he/she will suffer from loss when the public good is provided.

From Figure 4.7, I observe that the average payoffs of the subject with value 0,

20, 40, and 60 are lower than the theoretical prediction derived from maximizing

the expected payoff. This result demonstrates that although these subjects make

contributions higher than the Bayesian Nash Equilibrium, they can increase the

probability of providing the public good. However, the increased payoff from the

higher provision probability is not large enough to cover the decreased payoff from

contributing higher than the optimal amount to maximize expected payoff.

The subject with values 80 and 100 receives higher average payoff than the the-

oretical prediction. For these subjects, the increased payoff from higher provision

probability is larger than the decreased payoff from higher contribution, therefore,

they can enjoy higher average payoff even if their average contributions are higher

than the Bayesian Nash Equilibrium.
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Figure 4.7: Expected Payoff and Average Payoff in Three Treatments
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4.6.4 Individual Results

In this subsection, I report a random effect Tobit regression using individual

contribution data. The dependent variable is each subject’s contribution, which is

naturally censored to lie between 0 and 100. The independent variables included in

the model are described below:

• Value: measures the value of the public good

• Mean-Preserving: treatment dummy variable. It equals 1 if the treatment

is Mean-Preserving Treatment; 0 otherwise.

• Variance-Preserving: treatment dummy variable. It equals 1 if the treat-

ment is Variance-Preserving Treatment; 0 otherwise.

• Period: dummy variables that capture time fixed effect.

• Female: equals 1 if the subject is female; 0 otherwise

• Risk: measures subject’s risk preference. I use Eckel and Grossman’s (2008)

model to measure risk preference. Each subject choose one of 5 choices he

prefers:

1. 50% chance of receiving $10 and 50% chance of receiving $10.

2. 50% chance of receiving $18 and 50% chance of receiving $6.

3. 50% chance of receiving $26 and 50% chance of receiving $2.

4. 50% chance of receiving $34 and 50% chance of receiving -$2.

5. 50% chance of receiving $42 and 50% chance of receiving -$6.

The higher number of choice means the subject is more risk-loving.
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• Successt−1: equals 1 if the public good was successfully provided in the pre-

vious period; 0, otherwise.

• Total Contributiont−1: total contribution in the previous period.

• Mean-Preserving ∗ Value: interactions of Value with treatment variables

Mean-Preserving.

• Variance-Preserving ∗ Value: interactions of Value with treatment vari-

ables Variance-Preserving.

• Mean-Preserving ∗ Successt−1: interactions of Successt−1 with treatment

variables Mean-Preserving.

• Variance-Preserving ∗ Successt−1: interactions of Successt−1 with treat-

ment variables Variance-Preserving.

• Mean-Preserving ∗ Total Contributiont−1: interactions of treatment vari-

ables Mean-Preserving with Total Contributiont−1 .

• Variance-Preserving ∗ Total Contributiont−1: interactions of treatment

variables Variance-Preserving with Total Contributiont−1.

Table 4.9 reports the results of all observations (72 subjects, 30 periods) and

Table 4.10 reports the results of the last 10-period observations (72 subjects, 10

periods).
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Table 4.9: Estimation of Random Effect Tobit Regression — All Observations
Random effect Tobit regression (A-1) (A-2) (A-3) (A-4)

Dependent variable: contribution Coefficient Coefficient Coefficient Coefficient

(p-value) (p-value) (p-value) (p-value)

Value 0.427∗∗∗ 0.435∗∗∗ 0.435∗∗∗ 0.490∗∗∗

(0.00) (0.00) (0.00) (0.00)

Mean-Preserving 8.481 8.425 8.375 15.387∗∗∗

(0.11) (0.12) (0.12) (0.01)

Variance-Preserving 10.001∗ 9.567∗ 9.800∗ 12.94∗∗

(0.06) (0.08) (0.07) (0.02)

Period −0.488∗∗∗ −0.487∗∗∗ −0.462∗∗∗ −0.489∗∗∗

(0.00) (0.00) (0.00) (0.00)

Female 8.303∗ 8.432∗ 8.482∗ 8.349∗

(0.07) (0.07) (0.07) (0.07)

Risk −0.051∗ −2.717 −2.716 −2.796∗

(0.10) (0.12) (0.11) (0.10)

Successt−1 −3.755∗∗∗

(0.00)

Total Contributiont−1 0.005

(0.61)

Mean-Preserving ∗ Value −0.131∗∗∗

(0.00)

Variance-Preserving ∗ Value −0.054

(0.16)

Constant 10.487 11.260 8.810 7.150

(0.13) (0.11) (0.22) (0.31)

Log likelihood −7933.70 −7638.67 −7644.27 −7927.66

Left-censored 469 456 456 469

Uncensored 1636 1578 1578 1636

Right-censored 55 54 54 55

∗∗∗ denotes 1% significance; ∗∗ denotes 5% significance; ∗ denotes 10% significance.
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Table 4.9 continued.
Random effect Tobit regression (A-5) (A-6)

Dependent variable: contribution Coefficient Coefficient

(p-value) (p-value)

Value 0.497∗∗∗ 0.498∗∗∗

(0.00) (0.00)

Mean-Preserving 17.789∗∗∗ 22.596∗∗∗

(0.00) (0.00)

Variance-Preserving 13.618∗∗ 11.920∗

(0.06) (0.07)

Period −0.495∗∗∗ −0.461∗∗∗

(0.00) (0.00)

Female 8.454∗ 8.293∗

(0.07) (0.08)

Risk −2.774 −2.788

(0.11) (0.11)

Successt−1 −0.728

(0.70)

Total Contributiont−1 0.019

(0.30)

Mean-Preserving ∗ Value −0.134∗∗∗ −0.135∗∗∗

(0.00) (0.00)

Variance-Preserving ∗ Value −0.049 −0.057

(0.21) (0.15)

Mean-Preserving ∗ Successt−1 −5.619∗∗

(0.03)

Variance-Preserving ∗ Successt−1 −3.664

(0.18)

Mean-Preserving ∗ Total Contributiont−1 −0.059∗∗

(0.03)

Variance-Preserving ∗ Total Contributiont−1 0.004

(0.87)

Constant 6.930 4.067

(0.34) (0.59)

Log likelihood −7630.21 −7634.47

Left-censored 456 456

Uncensored 1578 1578

Right-censored 54 54

∗∗∗ denotes 1% significance; ∗∗ denotes 5% significance; ∗ denotes 10% significance.
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Table 4.10: Estimation of Random Effect Tobit Regression — Last 10-Period Obser-
vations

Random effect Tobit regression (L-1) (L-2) (L-3) (L-4)

Dependent variable: contribution Coefficient Coefficient Coefficient Coefficient

(p-value) (p-value) (p-value) (p-value)

Value 0.479∗∗∗ 0.479∗∗∗ 0.489∗∗∗ 0.467∗∗∗

(0.00) (0.00) (0.00) (0.00)

Mean-Preserving 9.570∗∗ 9.591∗∗ 9.277∗ 11.298∗

(0.09) (0.09) (0.10) (0.09)

Variance-Preserving 9.543∗ 9.596∗ 9.097 5.499

(0.09) (0.09) (0.11) (0.42)

Period −0.575∗∗ −0.577∗∗ −0.556∗∗ −0.575∗∗

(0.04) (0.04) (0.05) (0.04)

Female 11.482∗∗ 11.490∗∗ 11.354∗∗ 11.428∗∗

(0.02) (0.02) (0.02) (0.02)

Risk −2.460 −2.458 −2.428 −2.440

(0.17) (0.17) (0.17) (0.18)

Successt−1 0.324

(0.86)

Total Contributiont−1 0.016

(0.34)

Mean-Preserving ∗ Value −0.032

(0.62)

Variance-Preserving ∗ Value 0.070

(0.28)

Constant −3.548 −3.662 −5.175 −2.882

(0.64) (0.63) (0.51) (0.72)

Log likelihood −2527.68 −2527.67 −2527.23 −2526.33

Left-censored 184 184 184 184

Uncensored 524 524 524 524

Right-censored 12 12 12 12

∗∗∗ denotes 1% significance; ∗∗ denotes 5% significance; ∗ denotes 10% significance.
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Table 4.10 continued.
Random effect Tobit regression (L-5) (L-6)

Dependent variable: contribution Coefficient Coefficient

(p-value) (p-value)

Value 0.466∗∗∗ 0.468∗∗∗

(0.00) (0.00)

Mean-Preserving 13.153∗ 16.625∗∗

(0.06) (0.04)

Variance-Preserving 6.758 5.584

(0.33) (0.48)

Period −0.575∗∗ −0.561∗∗

(0.04) (0.05)

Female 11.264∗∗ 11.063∗∗

(0.02) (0.02)

Risk −2.448 −2.406

(0.18) (0.18)

Successt−1 3.040

(0.31)

Total Contributiont−1 0.031

(0.30)

Mean-Preserving ∗ Value −0.033 −0.034

(0.60) (0.59)

Variance-Preserving ∗ Value 0.073 0.065

(0.26) (0.32)

Mean-Preserving ∗ Successt−1 −5.099

(0.24)

Variance-Preserving ∗ Successt−1 −4.444

(0.35)

Mean-Preserving ∗ Total Contributiont−1 −0.051

(0.23)

Variance-Preserving ∗ Total Contributiont−1 −0.006

(0.89)

Constant −3.852 −5.907

(0.63) (0.49)

Log likelihood −2525.53 −2525.10

Left-censored 184 184

Uncensored 524 524

Right-censored 12 12

∗∗∗ denotes 1% significance; ∗∗ denotes 5% significance; ∗ denotes 10% significance.
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I first concentrate on the variable Value. Whether I use all observations or the

last 10-period observation, I show that Value has significantly positive effect on

the contribution. This means that the higher the individual values the public good,

the higher contribution that participant makes. This result supports the theoretical

contribution strategy that the contribution is increasing in the value of the public

good. When I include the interactions of Value with treatment variables Mean-

Preserving and Variance-Preserving (Model (A-4) to Model (A-6) in Table 4.9

and Model (L-4) to Model (L-6) in Table 4.10), I find that while increasing the value

of the public goods increases the contribution, the increase is significantly smaller in

the Mean-Preserving Treatment by all observations.

Second, I focus on the treatment dummy variables, Mean-Preserving and

Variance-Preserving, and analyze the differences in contributions depending on

the treatment the individual participates in. Table 4.9 and 4.10 show that Mean-

Preserving is significantly positive. Thus, an individual who participates in the

Mean-Preserving Treatment contributes significantly higher amounts to the public

good than in the Baseline Treatment. This result provides additional support for

Hypothesis 1a. The other treatment variable, Variance-Preserving, is marginally

significantly positive with all observations and in models (L-1) and (L-2) with the

last 10-period observations. Although I get limited verification that the individual

who takes part in the Variance-Preserving Treatment contributes significantly higher

amounts to the public good than in the Baseline Treatment, the result provides sup-

plementary support for Hypothesis 1b.

The variable Period is significantly negative. This indicates that an individual

contributes significantly smaller amounts to the public good project in latter periods

of the experiment. This result is consistent with the assertion that the frequency

with which the contribution is higher than the valuation becomes lower and the
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contribution amount decreases in latter periods.

I also include the time invariant variables: gender, Female, and risk preference,

Risk. I find that females contribute higher amounts to the public good project

than males. The risk preference variable shows that the individual who is more risk-

loving contributes smaller amounts to the public project. However, this result is not

statistically significant.

When considering whether the public good was provided in the previous period,

Successt−1, I find that if the public good was provided in the previous period, the

individual will decrease his/her contribution (Model (A-3)). However, considering

the interaction terms, Mean-Preserving ∗ Successt−1 and Variance-Preserving

∗ Successt−1, together, whether the public good was provided in the previous period

or not does not affect individual contributions. But, the individuals contribute less

in the Mean-Preserving Treatment when the public good was successfully provided

(Model (A-5)).

When I include the previous total contribution and the interaction terms with

value as an independent variable, Total Contributiont−1, Mean-Preserving ∗
Total Contributiont−1 and Variance-Preserving ∗ Total Contributiont−1, I

find that these variables do not significantly affect the contribution. However, indi-

viduals contribute less in the Mean-Preserving Treatment when the total contribution

in the group is higher in the previous period.

4.7 Conclusion

In this paper, I conduct an experiment to analyze individual voluntary contribu-

tion behavior in an environment with private information on valuation and threshold

uncertainty. I also test the comparative statics with respect to the threshold uncer-

tainty.
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From the experimental data, I show that whatever threshold uncertainty the

individuals face, the average contribution is significantly higher than the Bayesian

Nash equilibrium, which is derived from maximizing individual expected payoff. This

result implies that making contribution decisions consistent with the Bayesian Nash

Equilibrium condition of maximizing individual expected payoff seems difficult in

an environment with private information on valuation and threshold uncertainty.

This result also leads me to believe that other important factors affect individual

voluntary contribution behavior.

Although the level of the average contribution is higher than the Bayesian Nash

Equilibrium, the experimental data supports the theoretical predictions of the com-

parative statics in Gronberg and Peng (2014). I find that decreasing the degree of

threshold uncertainty in the sense of mean-preserving contraction makes individuals,

on average, more willing to contribute to a public good. Also, I find that increasing

the mean of the threshold distribution in the sense of first-order stochastic dominance

makes individuals, on average, more willing to contribute to a public good.

The success rate of providing the public good represents a strong performance

measure for the supplier of a public good. Keeping the variance unchanged, I find

that the success rate in the case of smaller mean of cost distribution is significantly

higher than that in the case of larger mean of cost distribution. However, keeping the

mean unchanged, the success rate in the case of small dispersion of cost distribution

and in the case of large dispersion of cost dispersion is not significantly different.

From a policy perspective, I suggest that supplier should try to reduce the degree

of uncertainty with respect to the cost distribution where there exists both threshold

uncertainty and private information on public good valuations. In doing so, I predict

they would receive higher contributions and higher success rates.

I also get limited verification that there is a tradoff between contribution and
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success rate when the supplier considers whether they should increase the provision

cost in the sense of first order stochastic dominance. The supplier can receive higher

contribution by increasing each possible provision cost. However, they might suffer

a lower probability of providing the public good.

In this paper, I have shown that the different degrees of the threshold uncertainty

indeed affect individual voluntary contribution decisions. Another factor, private

information on valuation, is worth investigating. Future researchers could conduct

another laboratory experiment to test whether individual contribution behavior is

affected by participants being given different information on valuation.
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5. CONCLUSIONS

This dissertation investigates individual voluntary contribution behavior from

three different, but related, perspectives. In the entire work, I place emphasis on the

subscription game with private information on valuation and threshold uncertainty,

both theoretically and experimentally. The final goal is to provide a set of theo-

retical frameworks and experimental tools which can be used to understand private

contribution to the public goods. On the one hand, I theoretically show that the

contribution decisions are different when individuals face different levels of threshold

uncertainty; they are also different when individuals are in different types of con-

tribution institution. On the other hand, I investigate the subscription game from

an experimental point of view and provide an experimental evidence that individual

contribution are affected when individuals are informed different levels of threshold

uncertainty.

The first essay builds a theoretical subscription game model and studies the

effects of comparative statics with respect to threshold uncertainty. We find that if

the costs becomes more dispersed in the sense of mean-preserving spread, individuals,

on average, are less willing to contribute to the public good when there exists both

private information on public good valuations and threshold uncertainty. But, if

the cost increases in the sense of first order stochastic dominance, individuals, on

average, are more willing to contribute to the public good. This theoretical result

provides a policy implication that suppliers can increase the private contribution if

they can either reduce the degree of uncertainty or increase the mean with respect to

the cost distribution in a simultaneous subscription with threshold uncertainty and

private information on public good valuations.
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The second essay develops a theoretical model and examines individual sequential

contribution to the public good in a subscription game with threshold uncertainty

and private information on valuation. This essay shows that individual contribution

is increasing with respect to the contributor’s order. Earlier contributors contribute

less than subsequent contributors. This result implies that earlier contributors can

free ride off later contributor and enjoy first-mover advantage. Comparing the in-

dividual expected contribution in a sequential contribution institution to a simul-

taneous contribution institution, I find that the expected total contribution in the

sequential institution is lower than the expected total contribution in a simultaneous

one. I also find that the ex ante probability of providing the public good in the

sequential institution is lower than that in the simultaneous institution.

In the last essay, I conduct an experiment to analyze individual voluntary con-

tribution in an environment with private information on valuation and threshold

uncertainty and test the comparative statics with respect to the threshold uncer-

tainty. This essay shows that no matter what threshold uncertainty the individuals

face, the average contribution is significantly higher than the Bayesian Nash equi-

librium. This result demonstrates that individual contribution behavior may not be

followed the objective of maximizing his/her own expected payoff. Individual may

consider other factors when contributing to the public good. As to the comparative

statics with respect to threshold uncertainty, I find that decreasing the degree of

threshold uncertainty in the sense of mean-preserving contraction makes individuals,

on average, more willing to contribute to a public good and receives higher success

rate. I also find that increasing the mean of the threshold distribution in the sense

of first-order stochastic dominance makes individuals, on average, more willing to

contribute to a public good. According to the experimental results, I would like to

suggest that suppliers should try to reduce the degree of uncertainty with respect to
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the cost distribution when there exists both threshold uncertainty and private infor-

mation on public good valuations. In doing so, I predict they would receive higher

total contributions and higher success rates.
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