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ABSTRACT 

 

Evolving from the IC fabrication processes, micromachining technologies allow 

mass production of 2D or 3D microstructures, which are otherwise difficult to achieve 

with traditional machining techniques. In this research, novel micromachining processes 

have been developed to enable new micro optical and acoustic waveguide systems for 

advanced optical sensing and acoustic imaging applications. The investigated 

applications include non-invasive cancer detection inside human body, in-field soil 

characterization, and time-delayed and multiplexed ultrasound and photoacoustic 

tomography.  

Micromachining technology enables miniaturized optical waveguide system for 

efficient light transmission. The small size and light-guiding capabilities are particularly 

useful for optical sensing at places deep inside the human body or underground. Two 

micromachined optical waveguide systems were fabricated and tested. The first one was 

used to conduct oblique incidence diffuse reflectance spectroscopy (OIDRS) for the 

determination of tumor margins on human pancreas specimens. The second one was 

used to conduct visible-near-infrared diffuse reflectance spectroscopy (VNIR-DRS) for 

extracting the compositional information of soil samples. 

Micromachining technology also makes it possible to utilize single-crystalline 

silicon as a structural material for acoustic wave propagation. It enables the development 

of high-performance integrated acoustic circuits and allows direct acoustic signal 

processing and control. The acoustic properties and propagation inside silicon 
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waveguides were characterized, and the acoustic signal processing using micromachined 

acoustic waveguide system was investigated. Based on the results, two acoustic 

waveguide systems were designed and constructed. The first system utilized 

micromachined acoustic delay lines to passively delay acoustic signal thereby reducing 

the required transceivers and processing electronics; while the second system employed 

micromachined acoustic multiplexer to actively control the transmission of acoustic 

signals. Both techniques are expected to provide new solutions to reduce the complexity 

and cost of the acoustic receiver systems in ultrasound and photoacoustic imaging. 
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NOMENCLATURE 

 

MEMS Microelectromechanical systems 

DRS Diffuse reflectance spectroscopy 
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1. INTRODUCTION 

1.1  Motivation 

Optical waves can be used for in-vivo and non-invasive sensing and imaging, 

such as material science, biomedical science, and chemistry. To efficiently collect 

signals for the sensing or imaging targets, optical waveguide systems such as fiber-optic 

sensor probes can be used. However, the large dimension of the probe and low 

penetration depth of the optical waves have limited the possibility of using the probe for 

samples deep inside a medium or located in a tight space. To address these issues, 

miniaturized optical waveguide systems are needed. 

Micromachining technologies provide ways to create optical waveguide systems 

with controllable collection angles. The micromachined optical waveguide devices are 

easy to construct and have small dimensions and high optical transmission efficiency. In 

this research, two kind of optical waveguide systems capitalizing micromachining 

technologies were developed. A micro “side-viewing” probe has been built to enable in-

vivo oblique incidence diffuse reflectance spectroscopy (OIDRS) measurement for 

pancreatic cancer detection and another micro “side-viewing” probe has been built to 

enable in-field visible-near-infrared diffuse reflectance spectroscopy (VNIR-DRS) 

measurement on soils. 

In addition to optics, ultrasound waves are also be used for non-destructive 

sensing and imaging applications. To receive and process the acoustic signals, multiple 

electrical components that involve transducers and data acquisition are necessary. 

Furthermore, to achieve fast and real-time imaging, array of ultrasound transducers are 
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needed. Ultrasound signals from the sample are detected by transducer array at the same 

time, which requires multiple-channel receiving electronics for data acquisition. This 

massive transducer array, together with their interfacial electronics, made the ultrasound 

system complex and costly. This situation has turned out to be a bottleneck for array-

base ultrasound systems. 

The above issue can be solved by using micromachining technology to create 

structural acoustic waveguide devices to replace the expensive electronic components. 

Micromachining technology enables multiple designs to be made simultaneously and 

directly from silicon, which is a good acoustic material with low transmission loss. 

Instead of controlling and processing electrical signals, the micromachined acoustic 

waveguide devices can function similarly to the electrical counterparts by directly 

handling the acoustic signals. In this research, two silicon-based acoustic waveguide 

devices, delay lines and multiplexer, were fabricated with micromachining technologies 

to replace the complex receiving configuration in ultrasound system. Silicon delay lines 

can introduce true time delays into the acoustic signals and silicon multiplexer can select 

signals out from multiple channels. The functionalities of both devices were 

demonstrated in ultrasound and photoacoustic imaging systems. These methods could 

potentially reduce the cost and complexity of the ultrasonic receiving system. 

1.2  Summary of work 

In section 2, the design, fabrication and testing of a novel miniaturized optical 

sensor probe with “side-viewing” capability is presented. Its small size, unique “side-

viewing” capability and high optical transmission efficiency enable the agile 



 

3 

 

maneuvering and efficient data collection even in the narrow cavities inside the human 

body. The sensor probe consists of four micromachined substrates with optical fibers for 

oblique light incidence and collection of spatially resolved diffuse reflectance from the 

contacted tissues. The optical sensor probe has been used to conduct the oblique 

incidence diffuse reflectance spectroscopy (OIDRS) on a human pancreatic specimen. 

Based on the measurement results, the margin of the malignant tumor has been 

successfully determined optically, which matches well with the histological results. 

In section 3, the design, fabrication and testing of a new micro optical sensor 

probe with side-viewing function to enable in-field visible-near infrared diffuse 

reflectance spectroscopy (VNIR-DRS) for soil is discussed. The optical probe consists of 

two microfabricated source chips and two collection chips.  The source chips are used to 

deliver oblique light incidence onto the soil surface, while the diffuse reflectance is 

received from the normal direction through the collector chips. Several design and 

fabrication considerations have been made to optimize the optical transmission 

efficiency of the probe and the signal-to-noise ratio (SNR) of the collected diffuse 

reflectance signal. The probe has a small outer dimension and thus can be easily fit into a 

typical soil penetrometer for in-filed VNIR-DRS measurements. Using the new optical 

probe, VNIR-DRS measurements have been successfully conducted on a number of soil 

samples, which shows the new optical probe offers better performance than the existing 

commercial reflectance soil probe. 

In section 4, the concept of ultrasound delay line receiving system is first 

demonstrated with an optical fiber-based delay line system. Following that, the design, 
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fabrication, and testing of novel micromachined silicon-based acoustic delay line system 

are presented. The acoustic properties of different silicon delay line structures have been 

characterized. Based on the experiment results, two different acoustic delay line systems 

(parallel and serial) have been successfully demonstrated to create controlled time delays 

in multiple channels of ultrasound signals. A silicon parallel delay line probe is also 

developed. Upon single acoustic excitation cycle, the time-delayed ultrasound signals 

from multiple channels are received with a single-element ultrasound transducer in a 

time-serial manner. This unique capability could be used to merge signals from multiple 

channels, thereby enabling new real-time ultrasound receiver designs with potentially 

less complexity and lower cost. 

In section 5, a novel micromachined silicon-based microfluidic acoustic 

multiplexer was presented. The acoustic multiplexer is capable of selectively 

transmitting ultrasound signals travelling in multiple acoustic channels one at a time. By 

performing selections in multiple acoustic excitation cycle, ultrasound signals from all 

channels can be selected sequentially and sent and/or received in a serial manner with 

only one single-element ultrasound transducer, followed by single channel of data 

acquisition electronics. The switching performance of the acoustic multiplexer is tested 

with ultrasound transmission experiment. An 8-channel acoustic multiplexer is 

constructed and its functionality for imaging is demonstrated by conducting 

photoacoustic (PA) imaging for an optically absorptive object inside a phantom. The use 

of acoustic multiplexer allows individual PA signals to be received with only one 
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ultrasound transducer, thus effectively reducing the complexity of the ultrasound 

receiver system. 
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2. MICROMACHINED OPTICAL WAVEGUIDE SYSTEM FOR OBLIQUE 

INCIDENCE DIFFUSE REFLECTANCE SPECTROSCOPY (OIDRS)* 

2.1  Theory of oblique incidence diffuse reflectance spectroscopy  

As shown in figure 2.1, when light is incident on the surface of an 

inhomogeneous medium (e.g. biological tissue), some of the incident light will be 

directly reflected (specular reflectance) and the remaining light will transmit into and 

interacts with the medium through scattering and absorption.  

 

Figure 2.1 Illustration of light absorption and scattering in an inhomogeneous 

medium. The light scattered out from the tissue surface becomes diffuse reflectance. 

*@ 2011 IEEE. Reprinted, with permission, from Alejandro Garcia-Uribe, Cheng-
Chung Chang, Murat K. Yapici, Jun Zou, Bhaskar Banerjee, John Kuczynski, Evan Ong, 
Erin S. Marner, Benjamin H. Levy, and Lihong V. Wang, "High-tranmission-efficiency 
and side-viewing micro OIDRS probe for fast and minimally-invasive tumor margin 
detection," IEEE Sensor Journal, 11(4), pp. 891-896, 2011. 
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After undergoing multiples times of interactions, part of the transmitted light will 

be scattered back to the surface and escape from the medium to form the diffuse 

reflectance. 

The spatially resolved steady-state diffuse reflectance for a particular wavelength 

can be calculated by diffusion theory [1]. 
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where 1 and 2  are the distances between the positive and negative source 

points and the observation point on the medium surface (figure 2.2). z is the distance 

between the virtual boundary and the tissue depth, and zb is the distance between the 

virtual boundary and the surface of the sample . The distance from the point of incidence 

to the positive point source ds is equal to 3D. For oblique incidence, the diffusion 

coefficient is D=(3(0.35a+s’))-1, where a is the absorption coefficient and s' is the 

reduced scattering coefficient. The effective attenuation coefficient eff =(a /D)1/2. The 

shift of the point sources in the x direction x = sin(t)/(3(0.35a+s’)), and t is the 

angle of light transmission into the medium. The absorption and reduced scattering 

coefficients can be calculated by [2] 
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Figure 2.2 Schematic of the diffusion theory model for oblique incidence.  

The assumption of the diffusion theory is that the reduced scattering coefficient 

is much larger than the absorption. The source and detector must also be separated in 

space so that the light is diffuse reflectance instead of specular reflectance. The diffuse 

reflectance light travels through the medium, thus optical signatures of the medium are 

more dominant. When the distance between the source and the detectors is comparable 

to the transport mean free path (~1 mm), diffusion theory does not apply.  In this case, 

Monte Carlo simulation can be applied to extract optical properties from the diffuse 

d

s=3D 
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reflectance [3].  Dr. Lihong Wang and S. L. Jacques developed a Monte Carlo modeling 

software for photon transportation in biological tissue [4]. This software was used to 

determine the optical properties of pancreatic tissue in this section. 

The optical absorption of the human tissue is mostly related to the concentration 

of hemoglobin and its oxygen saturation. These parameters are believed to have close 

relationship with the disease state of lesions [5], [6]. On the other hand, the cell nuclei of 

the tissue can be considered as the major contributor for the scattering properties. 

Research has shown the diameter of the nuclei would increase with the degree of 

dysplasia in different lesions [7]. Therefore, the close relationship between the optical 

absorption and scattering properties can be used to differentiate the state of the 

malignancy of human tissue, which forms the physiological foundation for applying 

OIDRS for the cancer detection. 

2.2  Design of the micromachined optical probe 

In the OIDRS measurements, light with particular wavelengths is delivered at a 

desirable oblique incidence angle on the tissue surface and the one-dimensional linear 

distribution of the diffuse reflectance R(x) is collected. While this can be achieved by 

using a conventional front-viewing probe that consists of straight optical fiber bundles 

(figure 2.3(a)), it will not be convenient and feasible to conduct in-vivo OIDRS 

measurements inside the human body. This is due to the fact that internal organs mostly 

consist of long and narrow tubular cavities.  To address this issue, the idea of building a 

miniaturized side-viewing fiber optic probe suitable for measurements inside the human 

body (figure 2.3(b)) was investigated. However, the side-viewing capability requires all 
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the collection fibers to undergo a sharp 90o turn within a radius of curvature less than 2.5 

mm.  This inevitably would cause significant light loss and leakage and also possible 

mechanical fracture of the collection fibers. 

 

Figure 2.3 Schematic of micro OIDRS probes for in-vivo optical characterization of 

human tissues: (a) front-viewing configuration and (b) side-viewing configuration. 

The incidence fiber has a oblique angel in both cases, while the collection 

fiber/waveguides are perpendicular to the tissue surface. 

To solve this problem, we came up with a new probe design using optical-epoxy-

filled waveguides. The probe consists of two micromachined devices assembled together. 

The first device functions as collectors of the diffuse reflection and contains five epoxy-

filled waveguides with a 90o  turn for side viewing, which are coupled to 100 µm core 

diameter optical fibers (figure 2.4(a)). The waveguides are filled with optically 

transparent epoxy (Epotek 301, Epoxy Technology, Inc., Billerica, MA, USA) to 

increase the coupling efficiency with the fibers and protect them from possible 
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contamination from the body fluids (e.g. blood). The optical epoxy has a high optical 

transmission of 98% in the visible wavelength range (figure 2.5), thus can effectively 

transmit light in the epoxy-filled waveguides. In the second device, two chips are 

assembled to hold and position one source fiber (200 µm in core diameter) which 

delivers light precisely at an oblique angle to the tissue of interest (figure  2.4(b)). 

 

Figure 2.4 Schematic design of the new “side-viewing” OIDRS probe: (a) Collection 

device and (b) Source device. 
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Figure 2.5 Optical transmission of the Epotec 301 epoxy. 

2.3  Fabrication of the micromachined optical probe 

The detail of the probe fabrication process is described below. Figure 2.6 shows 

the fabrication process. Four silicon substrates with patterned SU-8 channel are used. 

SU-8 (MicroChem, Newton, MA, USA) is chosen as the structural material because it 

can easily form patterned thick layers with high aspect ratio. The fabrication of SU-8 

structure fabrication is based on the recipe from the material provider [8]. Silicon wafers 

were first cleaned and baked at 200 o C for 5 minutes. SU-8 50 and SU-8 100 

photoresists were spun on cleaned silicon wafers at a calibrated speed for 30 seconds, 

resulting approximately 75 µm and 125µm in thickness, respectively. For the first and 

second subtracts with 75µm in thickness, a soft bake of 65 o C for 15 minutes and then at 

95 o C for 35 minutes was conducted, followed by a UV exposure of 300 mJ/cm2. After 

the exposure, the wafers were baked at 65 o C for 1 minute and 95 o C for 12 min to allow 

chemical cross-link at the exposed region. The development of the SU-8 patterns was 
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conducted for several minutes until unexposed region was completely removed. 

Similarly, for the third and forth substrates with 125µm in thickness, a 65 o C soft bake 

for 25 minutes and a 95 o C soft bake for 55 minutes was performed. The UV exposure 

power was 400 mJ/cm2 and the develop process took about 14 minutes. During the 

baking process, a slow temperature ramping was used to reduce the internal stress and 

prevent cracks formation within the SU-8 film. 

 

Figure 2.6 Schematic of the sample fabrication process. 

The first and second substrates have five curved SU-8 channel (~75 µm deep, 

~150 µm wide) on each of them and their patterns are mirror-flipped. When the two 

substrates are stacked together, tightly closed channels with cross section 150 µm × 150 

µm can be formed and serve as the waveguide and positioning device for the connection 
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fibers. Similarly, the third and fourth substrates each have one open channel (~125 µm 

deep, 250 µm wide) and mirror flipped patterns (figure 2.7). When being stacked 

together, a close channel with 250 µm × 250 µm cross section can be created as a 

position structure for source fiber. 

 

Figure 2.7 Fabricated SU-8 structures. 1st and 2nd substrates were used for 

collection channels, while 3rd and 4th substrates were used to accommodate source 

fiber. 

To form the optical waveguides, all channels were coated with a thin layer of 

silver (~300 nm thick) uniformly using electron-beam evaporation. Transparent optical 

epoxy is applied to fill the collection waveguides and the fibers are placed inside all the 

aligning SU-8 channels. The assembly of the probe was essentially stacking and aligning 
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the four substrates and glued together (figure 2.8). The proximal ends of the fibers are 

connected to the OIDRS system and the light source via SMA 905 connectors. The 

completely assembled probe is shown in figure 2.9. The probe has one 45 o  oblique 

incidence channel and five collection channels with an overall dimension of 8 × 2.5 × 2 

mm3. This small size provides the possibilities for endoscopic applications inside human 

body.  

 

Figure 2.8 Schematics of the sample assembly process. 
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Figure 2.9 Complete OIDRS probe. (a) Optical probe with fiber connections. (b) 

Close-up of probe tip. 

2.4  Application: Pancreatic tumor margin detection 

2.4.1 Introduction to pancreatic cancer 

Pancreas is an internal organ which is long and narrow. It locates behind the 

stomach and connects the duodenum and part of the digestive tract. The main function of 

pancreas is to secret digestive enzyme from exocrine cells to facilitate digestion and to 

produce insulin from endocrine cells to regulate blood sugar level. Pancreatic cancer is 

mostly occurred at the exocrine cells. The survival rate of the pancreatic cancer is 

relatively low compared with many other types of cancers. The American Cancer 

Society estimated that there were about 46,420 new cases of pancreas cancers with about 

39,590 deaths in the U.S. in 2014 [9].  The chance of developing pancreatic cancer in a 

lifetime is about 1.47%, while this rate is slowly increasing over the past 10 years. The 

low survival rate is due to the fact that early detection of pancreatic cancer is difficult. 

Because the pancreas is deep inside the body, behind the stomach and large intestine, 
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early tumors cannot be seen by routine physical examinations. In addition, the initial 

symptoms are not obvious, and so far there are no tests or physical exams can effectively 

detect the pancreatic cancer in its early stage. 

Some symptoms can be used as signs of exocrine pancreatic cancer. Jaundice is 

the yellowing of eyes and skin. The yellowish color is originated from the accumulation 

of Bilirubin in the body. Bilirubin is made by the liver and excreted into bile. When the 

pancreatic cancer compresses and blocks the bile duct, Bilirubin starts to build up and 

jaundice occurs. Also, pain in the abdomen or back may be caused by the enlargement of 

the pancreas. Unintended weight loss and digestive problems may associate with 

pancreatic cancer. 

The main types of treatment for pancreatic cancer are surgery, ablative 

techniques, radiation therapy, and chemotherapy. The surgery method requires doctors to 

remove the pancreatic cancer completely. However, the pancreatic tumor margin is hard 

to be distinguished from benign tissue; therefore, the surgery becomes one of the most 

difficult operations. Ablative techniques are invasive methods that directly destroy the 

pancreatic cancer inside patient’s body with the aid of probes. Depending on the 

destroying methods, there are radiofrequency ablation, microwave thermotherapy, and 

cryosurgery. Radiation therapy utilizes high-energy x-rays to kill the pancreatic cancer 

cell. It is non-invasive and suitable for wide-spread pancreatic tumor, but patients may 

sometimes suffer from the side effects such as skin burn, nausea, diarrhea, and weight 

loss. Chemotherapy uses anti-cancer drugs to kill the pancreatic cancer cell. This method 

is suitable for any stages of the pancreatic cancer and lowers the chance of reoccurrence 
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of the pancreatic cancer. However, the drugs also damage normal cells, resulting side 

effects such as nausea, diarrhea, hair loss, and loss of appetite. Since all these treatments 

have their limitations such as the side effects and intensive medical surgery and expenses, 

the early diagnosis of pancreatic cancer is necessary and economical for potential 

patients. 

2.4.2 Current clinical diagnosis 

Currently clinical methods for early diagnosing of pancreas cancers start form 

physical examination and lab tests. During the physical examination, doctors may check 

any symptoms that are caused by pancreatic cancer or feel a mass in the abdomen. In the 

lab test, doctors may check if the bile flow is blocked. Following by the tests and 

examinations, doctors may order patients to go through imaging test, such as computer 

tomography, magnetic resonance imaging, and ultrasound imaging. If the imaging 

results indicate high possibility of being pancreatic cancer, surgical processes including 

laparoscopy and biopsy are required. Tissues from the suspicious regions are removed 

from the patient and histologically analyzed. Based on the results, another suspicious 

cite for tissue removal is planned and performed. Multiple rounds of cut-and-analyze 

procedure are required to complete the tumor removal, which would end up with an 

extremely time-consuming surgical procedure. Furthermore, for the follow-up treatments, 

these methods lack the ability to quickly and precisely determine a safe margin for 

removing the malignant pancreatic tissues.  To address this issue, new techniques that 

can enable simple, fast, accurate and reliable tumor margin detection are necessary. 

Optical detection becomes a possible solution for its fast detection time, ease of use for 
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surgeon with minimal invasive procedure, and reliable optical spectrum readout from the 

suspicious cites. 

2.4.3 Non-invasive optical diagnosis 

Recent studies have shown that the change in the optical absorption and 

scattering properties of human tissues are closely related to their states of the malignancy 

[10], [11]. Several different optical methodologies have been investigated for 

determining the malignancy of tumors [12], [13]. Optical and spectroscopic methods 

such as near-infrared spectroscopy, Raman spectroscopy, and fluorescent spectroscopy, 

have been applied in tissue diagnosis for skin, gastrointestinal tract, cervix, and breast. 

Among them, oblique incidence diffuse reflectance spectroscopy (OIDRS) is a unique 

approach, which utilizes a special fiber optic sensor probe to measure the diffuse 

reflectance of the tissue in contact [14]. The diffuse reflectance spectra can be further 

used to extract optical absorption and scattering properties of the tissue [15].  From 

previous studies, a remarkably high accuracy of 95% in differentiating (pre)cancerous 

human skin lesions from benign ones with automated OIDRS data processing and 

classification [14] is achieved. However, to extend the application of OIDRS from skin 

to pancreas cancer which is inside the body, miniaturized fiber optic probes suitable for 

inner-body measurements are needed. For these reasons, the 2-mm micromachined 

OIDRS probe with side-viewing capability is particularly suitable for this application. 

This miniaturized, high optical transmission efficiency, and “side-viewing” 

configuration makes it compatible with medical endoscopes for effective and efficient 

in-vivo measurements even in the narrow cavities inside human body. 
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2.4.4 Testing setup and cancer detection results 

The OIDRS measurement setup is shown in figure 2.10. It consists of a white 

light source (halogen lamp), a fiber optic probe, an imaging spectrograph coupled with a 

CCD camera, and a personal computer. The source fiber of the optical probe is 

connected to the light source, while the collection fibers are connected to the 

spectrograph. During the OIDRS measurement, the probe is gently placed on the surface 

of the tissue. The incident light is delivered at an oblique angle through the source fiber, 

and the spatial distribution of the diffuse reflectance (R(x)) is acquired by the collection 

waveguides and transmitted through the collection fibers to the spectrograph. The CCD 

camera captures the diffuse reflectance spectra (from 455 to 765 nm) from all the 

collection channels within about one second, which are then stored in the personal 

computer for future analysis. Before the OIDRS measurement, the whole experimental 

setup was calibrated using a standard liquid phantom with trypan blue dye as the 

absorbers and polystyrene microspheres as the scattering elements [16].  After 

calibration, the OIDRS probe was used to conduct ex-vivo measurements on a freshly 

excised human pancreas specimen with malignant tumors (figure 2.11).  It should be 

noted that due to the extensive bleeding caused by the surgical excision, the entire 

pancreatic specimen appears in the same bloody color, which makes it almost impossible 

to visually differentiate the normal and malignant regions. 
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Figure 2.10 Experimental setup for OIDRS measurement. 

 

Figure 2.11 A human pancreas specimen with malignant tumors. The 

measurements are along the pancreatic duct. 

Figure 2.12(a) and 2.12(b) show the representative diffuse reflectance spectra 

(five channels) measured from both the normal and the malignant regions in the pancreas 

specimen, which clearly show the difference in their optical signatures.  To better 

understand the physiological origin of these differences, the absorption and scattering 

parameters were extracted from the measured diffuse reflectance spectra.  

T

umor 
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Figure 2.12 Diffuse reflectance spectra of human pancreas tissue from ex-vivo 

OIDRS measurement: (a) Normal tissue; and (b) Cancer tissue. Each color line 

represents spectrum from one of the five collection channels. 

In human tissues, hemoglobin is the major absorber within the visible spectrum. 

As shown in figure 2.11, due to the extensive bleeding caused by the surgical excision, 

the concentration of the hemoglobin and thus the absorption parameters of both the 

normal and malignant regions in the pancreatic specimen must have changed 

significantly from their original values.  However, the scattering parameter, which is 

mainly due the cell density and the size of the cell nuclei, will not be affected by the 

bleeding.  Previous studies have shown that malignant tissues usually manifest higher 

optical scattering due to increased cell density and enlarged cell nuclei.  Therefore, the 

relative value of the scattering parameter could serve as a good indicator to differentiate 

the malignant tissues from the normal ones.  To test the feasibility of using OIDRS for 

malignant tumor margin detection, we made a series of measurements along the opened 

pancreatic duct (where the pancreatic cancers usually start to develop).  Figure 2.13 
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shows the extracted scattering parameters for different locations along the pancreatic 

duct, which clearly indicate the existence and location of the tumor region. This result 

matches well with the histological reading of the pancreas specimen. 

 

Figure 2.13 Average scattering coefficient along the pancreatic duct. 

2.5 Conclusion 

A new miniaturized OIDRS optical sensor probe with side-viewing capability 

has been successfully developed utilizing micromachining technology. Our preliminary 

results show that the probe, combined with OIDRS can provide both functional and 

structural information of tissue malignancy and thus can be a useful tool for rapidly 

determining a safe margin for the surgical treatment of cancers. The new OIDRS probe 

has been used to conduct diffuse-reflectance measurement on a human pancreas 

specimen. Based on the measurement and classification, the margin between the 

malignant tissues and the benign ones has been successfully identified, which matches 
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well with the histological results. The micromachining technology plays a critical role in 

enabling probe miniaturization and performance enhancement for the clinical application 

of OIDRS. 



 

25 

 

3. MICROMACHINED OPTICAL WAVEGUIDE SYSTEM FOR VISIBLE-NEAR-

INFRARED DIFFUSE REFLECTANCE SPECTROSCOPY (VNIR-DRS)* 

3.1 Theory of visible-near-infrared diffuse reflectance spectroscopy 

When light is incident on a medium surface (such as soil), part of the incident 

light is directly reflected or scattered back, while the remaining part transmits into the 

medium. After going through a number of absorption and scattering events, some of the 

transmitted photons could escape from the surface, which form the so-called diffuse 

reflectance (figure 3.1). Recently, diffuse reflectance spectroscopy (DRS) has attracted 

much interest from the soil science community. DRS has a number of advantages such 

as rapid, timely, cheap, non-destructive and hence more efficient in collecting soil 

information when large number of soil samples require analysis. In addition, a single 

spectrum allows simultaneously characterize various sample’s constitutes and physical, 

chemical, and biological properties. For example, the diffuse reflectance of soils is 

largely affected by mineral and clay content. Different minerals and clays have their own 

characteristic optical absorbance as a function of wavelength, which are due to their 

specific electron transition and atomic vibration (figure 3.2). Because of the close 

relationship between the diffuse reflectance spectrum and the optical absorption and 

scattering of various soil contents, critical information about the soil composition and 

properties can be obtained with DRS [17]–[19].  

*@ 2011 IEEE. Reprinted, with permission, from Cheng-Chung Chang, Alejandro 
Garcia-Uribe, Jun Zou, and Christine L. S. Morgan, "Micro side-viewing optical probe 
for VNIR-DRS soil measurement,” IEEE Sensor Journal, 11(10), pp. 2527-2532, 2011. 
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Figure 3.1 Illustration of the light interaction with soil. 

 

 

Figure 3.2 Spectral absorption signatures from various materials. 
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The constitution of medium can be determined by the DRS spectrum. This is 

based on the assumption that the spectrum is a linear combination of the spectral 

signature of individual composition weighted by their abundance [20]. Based on that, a 

multivariate linear model can be used to express the spectrum and quantitatively predict 

the amount of spectral components. Quantitatively spectral analysis requires 

sophisticated statistical techniques. Many statistical methods have been applied to 

determine soil attributes [21]. For example, multiple regression analysis has been used to 

relate specific band in the NIR spectrum to a number of soil properties [22]. Other 

statistical methods such as partial least square regression [23], principle component 

regression [24], and neural-networks [25] have also been used for material analysis. 

Based on the spectrum range, DRS can be categorized into visible and near-

infrared diffuse reflectance spectroscopy (VNIR-DRS) and mid-infrared diffuse 

reflectance spectroscopy (MIR-DRS). Both spectroscopy systems can be effectively 

used for material analysis. However, the MIR-DRS system requires additional cooling 

system for the spectrograph, which prevents the possibility for on-the-go in-field 

measurement. On the other hand, VNIR-DRS system is cheaper, more portable, and light 

weight, hence providing the potential adaptability for on-the-go in-field measurement. 

The VNIR range is of particular interests in soil science because the distinctive 

spectral signature of the overtone and combination of soil minerals mainly occurs within 

this spectrum range [26]–[29]. Therefore, VNIR-DRS can provide quantitative 

information about soil properties and a single spectrum could allow simultaneous 

determination of different soil constitutes and properties [18], [21], [30]–[33]. 
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3.2 Design of the micromachined optical soil probe 

Due to soil’s highly scattering nature, the intensity of the diffuse reflectance 

would quickly diminish at locations far away from the soil surface. Therefore, to ensure 

an effective collection of the diffuse reflectance, the optical probe should be placed 

directly onto or near the soil surface. Figure 3.3(a) shows the schematic of current 

VNIR-DRS probe for soil analysis [34]. It consists of a straight optic fiber bundle as the 

detector to collect the diffuse reflectance. Depending on the actual probe configuration, a 

small halogen lamp or another straight fiber bundle (coupled to an external light source) 

serves as the incident light source. It assumes a front-viewing configuration, in which the 

probe head is in line with the direction of the straight source/collection fiber bundles. 

Although the front-viewing configuration makes the VNIR-DRS probe suitable for ex-

field measurements on extracted soil samples, it poses a challenge to in-field 

measurements. 

To conduct in-field soil measurements, the VNIR-DRS probe will need to be 

installed into a soil penetrometer (figure 3.3(b)). The soil penetrometer consists of a 

hollow metal tube with a sharp tip (to facilitate penetrating into the soil). The typical 

inner diameter of the soil penetrometer is about 1 inch. While the soil penetrometer is 

pushed into the soil, the VNIR-DRS measurements will be performed at different depths, 

such that the extraction of the soil sample is avoided. During the soil penetration, the tip 

of the soil penetrometer is subject to a large compression pressure and also potential 

abrasion damage from various soil contents. This situation precludes the possibility of 

directly using the existing front-viewing probes. As a result, miniaturized side-viewing 
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optical probes are necessary (figure 3.3(b)). Different from the front-viewing 

configuration, the side-viewing configuration allows the incident light to be delivered 

and the diffuse reflectance to be collected through a transparent window opened on the 

side wall of the penetrometer tube. 

 

Figure 3.3 Different configurations of VNIR-DRS probe for soil characterization: 

(a) Front viewing; (b) Side viewing. 

Previously, we have demonstrated both front- and side-viewing DRS probes for 

biomedical applications, which mainly operate within the visible range of 400 - 760 nm 

[15], [35]. To ensure good signal quality, a high-sensitivity CCD camera was used to 

capture the diffuse reflectance from various human epithelial tissues with moderate 
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optical absorption and scattering [36]. However, compared with human tissues, the 

optical absorption and especially scattering of soils are usually much higher, which 

result in a much weaker diffuse reflectance signal. On the other hand, due to the 

requirement of a wide operation spectrum range, the mainstream commercial VNIR-

DRS spectrometers currently used for soil analysis generally have a relatively low 

sensitivity. This situation poses a new challenge on the development of the side-viewing 

VNIR-DRS probe for in-field soil measurement. 

Figure 3.4 shows the design of the side-viewing VNIR-DRS probe for in-field 

soil measurements. The fundamental probe structure consists of one source chip for light 

delivery and one collector chip for receiving the diffuse reflectance. As shown in figure 

3.4(a), the source chip has a linear array of micro channels to house a group of optical 

fibers, which are oriented at certain angle to provide oblique light incidence. For a small 

oblique incidence angle (e.g., ≤45o), the optical fibers are able to withstand certain 

degree of bending inside the penetrometer without incurring severe light loss and 

leakage. As shown in figure 3.4(b), the collector chip is used to receive the diffuse 

reflectance from a vertical direction above the soil sample surface. This requires a sharp 

90o bending of the collection optic fibers within a tight space, which would cause severe 

light loss and leakage and even mechanical fracture of the optical fibers. To solve this 

problem, a hybrid optical waveguide structure is used for effective light “bending” and 

efficient transmission [35]. The hybrid optical waveguide consists of a micro channel 

coupled with optical fibers (400 µm core diameter and 470µm outer diameter, 0.22 N.A) 

at its two terminals. The side walls of the micro channel are coated with a highly 
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reflective metal layer to prevent light leakage from the micro channel waveguide. The 

curved portion of the micro channel is responsible for “light bending” and the straight 

portion of the micro channel serves as the self-alignment structure for fitting the optical 

fibers. When light is traveling inside the metal-coated micro channel waveguide, it 

undergoes many times of reflections on the side walls. Because this reflection is not a 

total reflection, a small reflection loss will inevitably occur during each reflection. When 

a large number of reflections are encountered (e.g., in longer waveguides), the optical 

transmission efficiency could be significantly reduced as the result of the accumulation 

of the reflection losses.  Although this was not a concern in our previous developments, 

it was found to form a performance-limiting factor for the side-viewing VNIR-DRS 

probe due to the weaker diffuse reflectance signal from the soils and lower sensitivity of 

the spectrometer. To solve this problem, optical fibers (with the jacket layer removed) 

are fitted into micro channel waveguide up to the full length of the straight portion at 

both the input and output terminals. This arrangement provides two major benefits. First, 

larger portion of the light traveling in the micro channel waveguide can be effectively 

coupled into the optical fiber for lossless transmission through total internal reflection. 

Second, the limited acceptance angle of the optical fibers (determined by the numerical 

aperture (NA)) at the input terminal help to reject specular reflectance from the soil 

surface, thus resulting in “cleaner” diffuse reflectance signals.   Meanwhile, optical 

fibers with relatively large core diameters (e.g., 400 m) are used to further facilitate the 

collection and transmission of the diffuse reflectance. This makes it possible to use 

fewer collection channels while maintaining a good signal-to-noise ratio (SNR) and high 
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coupling efficiency. It should be noted that the above probe design allows a 

reconfigurable probe structure. Multiple source and collector chips can be used and 

configured in different ways for different applications (figure 3.4(c)). 

 

Figure 3.4 Schematic design of the side-viewing VNIR-DRS probe for soil 

measurement: (a) Source chip; (b) Collector chip; and (c) Front-view of probe 

assembly with source structures sandwiched between collection structures. 
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3.3 Fabrication of the micromachined optical soil probe 

The fabrication of the side-viewing VNIR-DRS probe starts from the preparation 

of the source and collector chips. SU-8 resist (MicroChem, Newton, MA, USA) was 

used to make the source guiding structures and the collection waveguide structures. SU-

8 can be directly patterned with photolithography to form a thick and high aspect ratio 

structure (100 ~ 1000 m), which results in a simple and low-cost process. To fabricate 

the SU-8 structures, SU-8 100 resist was first spun on a pre-cleaned silicon wafer (~500 

m thick) at a calibrated spinning rate to reach a final thickness of ~250 m. A 

photolithography process based on the manufacturer suggested recipe was conducted 

[37]. A slow temperature ramping was maintained to minimize the internal stress and 

cracking of the SU-8 structures. The bottom and two side walls of the SU-8 structures 

were coated with a thin aluminum layer. Figure 3.5(a) and Figure 3.5(b) show a 

fabricated source guiding structure and a collection waveguide structure, respectively. 

They consist of 6 channels with a width of 500 m and an inter-channel spacing of 100 

m). 

 

Figure 3.5 Microfabricated aluminum-coated SU-8 structures for making the side-

viewing VNIR-DRS probe: (a) Source guiding structure; and (b) Collection 

waveguide structures. 
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After the fabrication of the SU-8 guiding and waveguide structures, the probe 

assembly was conducted. To ensure good light coupling, both ends of all the optical 

fibers were polished. To assemble the source chip, the incident optical fibers were placed 

into the SU-8 alignment structures and fixed with optical epoxy (figure 3.6(a)). A second 

silicon substrate with SU-8 alignment structures (forming a mirror image with those on 

the first one) was used to form a closed channel to accommodate the incident optical 

fibers (see figure 3.6(a)). To assemble the collector chip, after their jackets were 

removed, short sections of optical fibers were placed into the input terminals of the SU-8 

waveguide structures and fixed with optical epoxy. The inter-connection fibers (with 

their jacket removed at the tip) were placed into the output terminals of the SU-8 

waveguide structures and fixed with optical epoxy (figure 3.6(b)). Next, a second silicon 

substrate with SU-8 waveguide structures (forming a mirror image with those on the first 

one) was used to form a closed waveguide channel to accommodate all the optical fibers 

(figure 3.4(b)). The above assembly process was repeated to obtain multiple source and 

collector chips for the final assembly of the probe. Figure 3.6(c) shows a completely 

assembled prototype side-viewing VNIR-DRS probe. It consists of two source chips and 

two collector chips stacked together (with the source chips placed in the middle). The 

overall size of the complete probe is 6 mm  15 mm  6 mm, which makes it compact 

enough to be fitted into a typical soil penetrometer. 
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Figure 3.6 Assembly of the side-viewing VNIR-DRS probe: (a) Source chip; (b) 

Collection chip; and (c) Assembled probe. 

3.4  Application: Soil characterization 

3.4.1 Introduction to soil analysis 

In the past few years, there has been an increasing interest in quantitative 

evaluation of soil composition for land resource assessment and environmental 

protection [38]–[44]. This information can provide spatial information of soil and land 

attributes to support applications such as quantitative soil-landscape modeling, precision 

agriculture, and global soil C monitoring. Although a number of techniques have been 

developed for high-resolution horizontal sampling, rapid characterization of soil 
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composition in the vertical direction is still lacking. The problems faced by soil scientists 

are the current methods for soil analysis in vertical direction are too expensive and time-

consuming. The current standard approach is to conduct a detailed lab analysis along the 

longitudinal direction of the soil pedons extracted from the test site. However, both the 

extraction and analysis procedures are laborious, time-consuming and costly. For 

example, standard soil characterization procedures from the National Soil Survey Center 

cost about $2500 per pedon and take 6 to 12 months to process [26]. This creates a 

challenging situation to appropriate soil and land resources, increasing the difficulty for 

large-scale sampling tasks or some urgent situations (e.g., for the recent oil spill in the 

Gulf of Mexico). As a result, methods that can rapidly qualify soil properties (especially 

in the depth direction) are needed for soil analyzing. 

Current methods for soil analysis are soil survey, laboratory measurement, and 

spectroscopic techniques. In soil survey, the morphology of soil such as field texture, pH, 

structure, and color are collected. However, this method provides limited information of 

the soil. From laboratory measurement, functional soil properties can be collected. 

Functional soil properties are more useful than basic soil properties because they can 

provide information of the physical, chemical, and biological functions of soils. The 

spectroscopic technique involves the use of mass spectroscopy, nuclear magnetic 

resonance, visible, near-infrared, mid-infrared spectroscopy. These techniques are non-

destructive, rapid, and inexpensive. The preservation of the soil integrity enables soil 

samples to be measured many times with different techniques. The preparation of soil 

sample is shorter compared with the laboratory method. In addition, a complete scan of 
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the soil sample may take about few seconds. The total cost of the spectroscopic method 

is much less than other methods when a large amount of samples have been scanned. 

VNIR-DRS has been widely used for fast characterization of the composition of 

different soils [22], [26], [45]–[48]. It has been demonstrated that it can be quite 

effective in predicting the physical, chemical and the biological properties of air-dried 

soil samples in the lab [31]. Meanwhile, the feasibility of using VNIR-DRS for in-situ 

quantification of the clay content under different soil conditions have also been 

investigated, which shows that it is capable of predicting soil clay content at variable soil 

moistures and particle sizes [30]. 

To conduct VNIR-DRS, a special optical probe is needed to collect the diffuse 

reflectance from the soil sample in contact. However, existing optical probes are only 

suitable for ex-field measurements on prepared soil samples after being extracted from 

the ground. Although fast soil characterization is possible, the tedious extraction steps 

still cannot be avoided. In addition, the soil sample preparation is time-consuming and 

laborious. Therefore, to fulfill the potential of VNIR-DRS in soil characterization, the 

developed micromachined optical probes was used to enable in-field measurements 

(without the need of soil extraction and sample preparation). 

3.4.2 Testing setup for soil characterization 

The measurement setup consists of a halogen lamp as the white light source, the 

side-viewing VNIR-DRS probe, an ASD LabSpec 5000® VNIR spectrometer 

(Analytical Spectral Devices, Inc., Boulder, CO, USA) and a personal computer (figure 

3.7). The VNIR spectrometer operates over a wide wavelength range from 350 nm to 
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2500 nm with a sampling resolution of 2 nm. The source fiber bundle of the side-

viewing VNIR-DRS probe is connected to the output of the white light source through a 

SMA connector to deliver oblique light incidence onto the soil sample surface. The 

collection fiber bundle of the side-viewing VNIR-DRS probe is connected to the input of 

the spectrometer to resolve the diffuse reflectance spectra. The spectrometer is linked to 

the personal computer through an RS-232 interface for data acquisition and transfer. 

 

Figure 3.7 Schematic of the VNIR-DRS measurement setup. 

Prior to the soil measurement, the entire measurement setup was calibrated with a 

spectralon panel with 99% reflectivity as the white reference. After the calibration, the 

side-viewing VNIR-DRS probe was used to collect the diffuse reflectance of several soil 

samples. A typical soil sample is shown in figure 3.8(a). On each soil sample, VNIR-
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DRS measurements were also performed using the commercial front-viewing VNIR-

DRS probe (ASD® 135680 bifurcated reflectance probe) for comparison. 

3.4.3 Experimental results and discussion 

After all the measurements were complete, the diffuse reflectance spectra were 

digitally filtered using a Remez function with Park-McClellan algorithm in Matlab® 

(The MathWorks, Natic, MA, US) to eliminate high frequency noise. Due to the 

limitation in the transmission wavelength range of the optical fibers used in probe 

construction, the diffuse reflectance spectra below 500 nm and above 2200 nm have a 

low signal to noise ratio (SNR) and thus were removed (figure 3.8(b)). To better analyze 

the diffuse reflectance data, absorption spectra were derived as the natural logarithm of 

the diffuse reflectance (figure 3.8(c)).  

 

Figure 3.8 (a) A representative soil sample for VNIR-DRS measurements; (b) 

Measured diffuse reflectance spectra; and  (c) Calculated absorption spectra of the 

soil sample shown in figure 3.8(a). 
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Figure 3.8 Continued. 

As shown in figure 3.8(b) and figure 3.8(c), similar diffuse reflectance and 

absorption spectra were obtained from the side-viewing VNIR-DRS probe and its front-

viewing counterpart, except that a lower magnitude of diffuse reflectance and more 
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pronounced absorption peaks exist in the spectra from the side-viewing VNIR-DRS 

probe. We believe that they are possibly caused by the different configuration of the 

light incidence and collection in these two probes. As shown in figure 3.3(a), the front-

viewing probe utilizes optical fiber bundles, in which the incidence and collection fibers 

are closely packed in the same orientation with a core-to-core distance of ~250 m. 

Therefore, this closely-packed configuration collects certain portion of the specular 

reflectance light and diffuse reflectance with a shorter diffusion length and stronger 

intensity. On the other hand, in the side-viewing probe (figure 3.3(b)), the incident fibers 

and collection fibers are oriented at different angles with respect to the soil surface, 

respectively. In addition, they are also separated by a larger gap (~1.5 mm). The larger 

gap provides a longer path for the incident light to be fully diffused and absorbed before 

it reaches the collection fibers. More absorptions and scatterings occur along the light 

path and the collected diffuse reflectance intensity is reduced. As the relatively lower 

reflectance is not an issue for soil analysis that uses the first and second derivative of the 

absorbance, this longer distance has two extra beneficial effects. First, the diffused light 

has more interactions with the medium, so the spectrum signature of the medium will be 

more dominant. Second, the larger gap can assure less unwanted specular reflectance 

being collected that masks the diffuse reflectance of interest, and also contains higher 

diffuse reflectance component from the collected reflectance; thus, the side-viewing 

probe has a higher sensitivity to the optical absorption of the different soil components. 

The gradually increased reflectance from shorter wavelength to longer wavelength is 

also related to the scattering during light diffusion. Scattering pattern is a function of the 
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particle size and the wavelength. In our measurement, light with shorter wavelength has 

larger amount of scattering and less diffuse reflectance to reach the detector. The typical 

absorption peaks of soils have been well studied for soil analysis [49]. For example, the 

ones around 1400 nm and 1900 nm are due to the O-H group in a water molecule, while 

those close to 1700 nm and 2100 nm are related to the C-H group in humic acid. 

Absorption peaks around 1040 nm (due to iron content) and 2100nm (due to organic 

carbon) are not obvious from the spectrum of the front-viewing probe, but it is evident in 

that from the side-viewing probe. From the diffuse reflectance spectra, quantitative 

information about soil composition can be further extracted or estimated based on a 

number of statistical-library based methods [21], [24]. 

3.5 Conclusions 

A prototype side-viewing optical probe has been successfully designed, 

fabricated and tested for VNIR-DRS measurements on soil samples. Its unique small 

dimension, side-viewing capability and wide optical transmission spectrum make it 

suitable for in-field VNIS-DRS measurement. Using this probe, diffuse reflectance of 

soil samples has been successfully measured, which matches well with those obtained 

with the existing commercial probe. Due to the probe configuration, the side-viewing 

VNIR-DRS probe can provide similar or potentially superior performance than the 

commercially-available front-viewing VNIR-DRS probe. Meanwhile, the probe collects 

diffuse reflectance light within area around 4 mm  3 mm to achieve better signal to 

noise ratio, while this could sacrifice the spatial resolution of the probe. Further 
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development will focus on soil characterization based on the measurement and attach the 

sensor probe on an pentrometer to conduct real-time in-field VNIR-DRS. 
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4. MICROMACHINED SILICON ACOUSTIC DELAY LINES FOR ULTRASONIC 

AND PHOTOACOUSTIC IMAGING APPLICATIONS* 

4.1  Introduction 

4.1.1 Ultrasound transducer array receiving system 

Ultrasound transducer arrays have been widely used in ultrasound and 

photoacoustic imaging [50]. In either case, the transducer array receives the incoming 

ultrasound waves from the source point(s), and the received signals are amplified and 

digitalized by the data acquisition (DAQ) electronics simultaneously (figure 4.1).  

 

Figure 4.1 Ultrasound transducer array system: (a) Transducer array setup; (b) 

Signals received by each transducer. The arrival time is determined by the travel 

distance and acoustic velocity in the medium. 

*@ 2013 IOP Reprinted with permission from Cheng-Chung Chang, Young Cho, 
Lihong Wang, and Jun Zou, "Micromachined silicon acoustic delay lines for ultrasound 
applications," Journal of Micromechanics and Microengineering, 23(2), 025006, 2013. 
doi:10.1088/0960-1317/23/2/025006 

http://dx.doi.org/10.1088/0960-1317/23/2/025006
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To achieve high imaging resolution and speed, large high-frequency transducer 

arrays and complex DAQ electronics will be needed [51], [52]. As a result, the entire 

ultrasound imaging system could become costly. 

4.1.2 Ultrasound delay line receiving system 

To address this issue, a new ultrasound receiving system design using acoustic 

time delay was demonstrated [53]. As shown in figure 4.2(a), a series of acoustic delay 

line detectors are used to replace the transducer elements. Each delay line receives the 

acoustic wave (figure 4.2(b)) and introduces proper delay time for the signal to reach the 

other end (figure 4.2(c)), where a single transducer is connected to serially receive the 

time-delayed signals (figure 4.2(d)). The delay line system converts multi-channel 

parallel signals into single-channel serial signals and therefore requires fewer transducer 

elements and DAQ channels. It could be a more economical new approach for 

ultrasound receiving system design. 

 

Figure 4.2 Delay line receiving system: (a) Delay lines with single receiving 

transducer; (b) Ultrasound signals before entering the delay lines; (c) Ultrasound 

signals with proper delay time; and (d) Ultrasound signals received by the single 

transducer. 
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Figure 4.2 Continued. 

Different kinds of delay lines have been investigated by researchers. Delay lines 

with different shapes have been characterized, including wire, tape, and polygon. 

Various medium have been used for delay line construction. Liquid delay lines using 

mercury have found application in memory. Solid delay lines using quartz, metal and 

optical fibers have been applied to radar system. The acoustic propagation in these delay 

lines were also studied [55]-[57]. However, delay line systems for ultrasound imaging 

applications have never been implemented. To validate the concept, an optical fiber 

delay line system was built prior the use of silicon as the delay line material. 

4.2 Optical fiber delay line system and its limitations 

Optical-fiber delay lines are most desirable due to their low acoustic loss, small 

dimensions, and abundance of materials. The acoustic velocity and attenuation were first 

measured by an ultrasound through-transmission setup with 1 MHz transducers, where 

the sending transducer (V303, Olympus NDT, Waltham, MA, USA) and the receiving 

transducer (V303, Olympus NDT, Waltham, MA, USA)  were connected on the two 

ends of an optical fiber with given length (figure 4.3).  The sending transducer generated 
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an ultrasound pulse controlled by a pulser-receiver unit (5072-PR, Olympus NDT , 

Waltham, MA, USA). The ultrasound signal travelled through the optical fiber sample 

and was received by a receiving transducer at the other end. The received signal was 

amplified by the pulser-receiver unit and displayed on the oscilloscope. By measuring 

the travelling time inside the optical fiber, the acoustic speed in the optical fiber can be 

determined. By measuring the signal amplitude with respect to the length change, the 

acoustic attenuation can be derived. As shown in figure 4.4, the acoustic velocity and 

attenuation were calculated. The measurement result shows that the acoustic velocity is 

around 5108 m/s and the attenuation is 0.2 dB/cm. 

 

Figure 4.3 Ultrasound through-transmission setup 
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Figure 4.4 Acoustic velocity in optical fiber. (a) Ultrasound signals arrive at 

different time with respect to the fiber length. (b) The acoustic velocity is 

determined by the length/time ratio and is about 5108 m/s.* 

 

 

*Murat Kaya Yapici, Chulhong Kim, Cheng-Chung Chang, Mansik Jeon, Zijian Guo, 
Xin Cai, Jun Zou, and Lihong V. Wang, "Parallel acoustic delay line for photoacoustic 
tomography," Lihong V. Wang, Joseph R. Lakowicz, John A. Parrish, Bruce J. 
Tromberg, Editors, Journal of Biomedical Optics 17(11), 116019, 2012.  
Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or 
electronic copy may be made for personal use only. Systematic electronic or print 
reproduction and distribution, duplication of any material in this paper for a fee or for 
commercial purposes, or modification of the content of the paper are prohibited. 
http://dx.doi.org/10.1117/1.JBO.17.11.116019 
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 Based on the measurement results, a 16-channel optical fiber delay line system 

was designed. The fiber length and ultrasound signal arrival time information are shown 

in table 1. Based on the ultrasound signal duration (~12 s), the signal arrival time 

difference was designed to be 12 s, which is long enough to prevent signal overlapping. 

The fiber length were also carefully designed to prevent the echo signal from the shortest 

channel (arrived at 132 s) to interfere with the ultrasound signal from the longest 

channel (arrived at 128 s). 

Table 1 Fiber length and signal/echo arrival time for each channel. 

Channel # Fiber length (mm) Signal arrival time (s)/ 1st echo arrival time 
1 225 44 /132 
2 286 56 / 168 
3 347 68 / 204 
4 409 80 / 240 
5 470 92 / 276 
6 531 104 / 312 
7 593 116 / 348 
8 654 128 / 384 

 

The 16-channel delay line system was constructed by using two 8-channel delay 

line systems in parallel (figure 4.5). The optical fibers were held in air with styrofoam 

supporting structure in the middle and acrylic holder at the input and output terminals. 

The optical fibers were polished in two ends to insure good acoustic coupling. The 

optical fiber delay line system was later tested with the ultrasound through-transmission 

setup, with one input transducer for sending ultrasound signals and two output 

transducers to receive the signals. As shown in figure 4.6, each output terminal clearly 
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shows 8 distinctive ultrasound signals, which implies multiple-channel ultrasound 

signals can be delayed and received serially with a single transducer. 

 

Figure 4.5 Optical fiber delay lines system with 16-channel common input and two 

8-channel outputs. Inset: Close up look of the 16-channel input terminal with 

acrylic holder. 

 

Figure 4.6 Ultrasound signals received by the 16-channel optical fiber delay line 

system. (a) Signals received by the 8-channel output terminal 1. (b) Signals received 

by the 8-channel output terminal 2. 



 

51 

 

 Although the optical fiber delay line system validate the delay line receiving 

system concept by effectively receiving multiple-channel signals with two output 

transducers, the optical fiber delay line system still has several limitations. Because of 

the high acoustic velocity of quartz (e.g., ~6000 m/sec), the length of the optical-fiber 

delay lines need to be very large to provide sufficient delay time [53]. Even by dividing 

16 channels into two 8 channel systems, the longest channel is still 40 cm longer than the 

shortest channel. With the additional expense of two receiving transducers and to 

prevent signal cross talk and mechanical fracture of optical fibers, the required space for 

the optical fiber delay line system is huge. The plastic jacket layer would cause extra 

attenuation and distortion of the acoustic signals. In addition, the manual assembly and 

alignment of the optical fibers are very tedious and inaccurate. To address these issues, a 

new micromachined silicon acoustic delay lines was developed, which capitalize upon 

the extremely low acoustic loss of single-crystalline silicon and the micro scale precision 

of micromachining process. Compared with the optical-fiber delay lines, the 

micromachined silicon delay lines offer higher transmission efficiency, more compact 

and functional structures, easier assembly, and mass production. By using the silicon 

delay lines, two acoustic delay line systems (parallel and serial) and a delay line probe 

have been successfully demonstrated to create controlled time delays in multiple 

channels of ultrasound signals, which allows their reception with a single-element 

transducer. 
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4.3  Design of silicon acoustic delay line 

Silicon is considered as the delay line material for three reasons. First, it has 

extremely low attenuation in the MHz range (~10-4 dB/mmMHz2 @ 10 MHz) [57]. The 

dispersion of ultrasound wave propagation can be minimized with proper design [58]. 

Second, it is a mechanically strong material with excellent thermal stability. Third, it is 

compatible with well-developed microfabrication and micromachining technologies. 

Multiple delay line structures can be simultaneously fabricated with high precision in a 

compact space without tedious assembly process.  

The dimension of the delay lines affects the transmission of the acoustic signal. 

To operate only in the lowest longitudinal mode, the dimension of a rectangular-shaped 

delay line should satisfy (df/V0) << 1, where d is the width or thickness of the delay line 

(whichever is smaller), f is the frequency of the signal, and V0 is the acoustic velocity of 

the delay line material [58]. For example, suppose the acoustic velocity in silicon is 

around 8430 m/s [59], the dimension for the single mode delay line should be much 

smaller than 3.7 mm for a 2.25 MHz center frequency wave transmission. In this work, 

all the fabricated delay line structures have a width of 500 µm and a thickness of 250 µm. 

In the delay line system, each channel has a designated delay time, which is 

controlled by the travelling length of the signal. Two different layouts, parallel and serial, 

can be applied for silicon delay lines. In the parallel design, each channel carries one 

signal with a specific propagation path and delay. All the channels connect to the same 

transducer in a parallel fashion. Signal from each channel arrives at the transducer at 

different time (figure 4.7). Since the acoustic velocity of silicon is high, the delay lines 
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need to be long to achieve sufficient delay time in each channel. To satisfy the length 

requirement and remain compact in size, each channel is made of multiple U-turns with 

different radius winding together. In the serial design, all channels merge into the main 

channel at different locations with Y-shaped junctions. The delay time is controlled by 

the travelling length in the main channel (figure 4.8). 

 

Figure 4.7 Schematic of parallel delay lines. 

 

Figure 4.8 Schematic of serial delay lines. 
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4.4  Materials and methods 

To ensure a good design of the silicon-based delay lines, the acoustic properties 

of silicon, such as the velocity and attenuation were first characterized. In the second 

step, the wave propagation in the three fundamental building-block structures (straight 

line, U-turn, and Y-junction) in the parallel and serial delay lines were investigated. 

4.4.1  Delay line structure fabrication 

The delay line structures were fabricated using 250-µm-thick 4-inch {100} 

single-crystalline silicon wafers. The silicon wafer was first coated with a 300 nm thick 

aluminum layer using e-beam evaporation. The aluminum layer was patterned using 

photolithography, which served as a mask for silicon etching. The etching of the delay 

line structures was conducted using a cryogenic deep reactive ion etching (RIE) process 

on a Plasmalab® 100 RIE system (Oxford Instruments, Oxfordshire, UK). The cryogenic 

etching process can provide high etch rate and vertical sidewall profile [60]. The etching 

parameters can be found in Appendix A. The silicon wafer was first glued on an 

aluminum-coated dummy wafer with Fomblin oil (Fomblin 06/6, Solvay Plastics, 

Brussels, Belgium). The whole sample was later clamped on the chuck cooled down to -

120 Celsius by using liquid nitrogen with liquid helium backing between the dummy 

wafer and the chuck. The RIE etching was conducted for 60 minutes to completely etch 

through the silicon wafer. After etching, the delay line structures were carefully detached 

from the etched silicon wafer.  
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4.4.2  Characterization setup 

As shown in figure 4.9, the silicon samples are supported by acrylic plates with 

small holding structures to minimize signal leakage. The acrylic plates together with the 

sample and a transducer are fixed on a three axis translation stage. The acoustic wave 

signal is directly generated in silicon through the photoacoustic effect [61]. 

Photoacoustic effect is the generation of acoustic wave by pulsed light excitation. The 

material absorbs light energy and heats up, and the sudden thermal expansion creates 

pressure waves that radiate away from the excitation spot. Using photoacoustic setup, 

the acoustic wave can be generated at any points on the sample by changing the location 

of the laser focal point. The small laser focal spot is particularly suitable for acoustic 

wave excitation in sub-millimeter structures. Nanosecond laser pulses with 1064 nm 

wavelength are delivered onto the sample from a Nd: YAG laser (Quanta-Ray Pro-200, 

Newport Corporation, Irvine, CA, USA) with a 10 Hz repetition rate and 10 nanosecond 

pulse width. A shutter controlled by the trigger in the laser system is used to allow single 

pulse excitation. The laser is attenuated by a half-wavelength wave plate, a dielectric 

polarizer, two filters, and focused by an objective lens to form a beam spot of 10 μm in 

diameter. The focused pulse energy is 280 J/mm2 with 10 percent variance. Silicon 

sample absorbs light energy and induces a pressure wave in all directions. The pressure 

wave propagates along the silicon delay line structure and is received by an ultrasound 

transducer with a 2.25 MHz center frequency (V105, Olympus NDT, Waltham, MA, 

USA). The ends of the silicon are polished to create flat contact surfaces and mineral oil 

is applied at the silicon-transducer interface to improve contact and coupling efficiency. 
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The received signal is amplified by the pulser-receiver unit (5072-PR, Olympus NDT , 

Waltham, MA, USA) with 1 MHz high pass filter and 10 MHz low pass filter. The 

acoustic signal and the laser trigger signal are displayed on an oscilloscope. The data are 

collected for three times and averaged for each measurement. A similar setup was used 

with ultrasound simulation software (Wave2000, Cyberlogic Inc., New York, USA) to 

simulate ultrasound propagation. 

 

Figure 4.9 Schematic of the photoacoustic excitation setup. 
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4.5  Experiment and results 

4.5.1     Acoustic properties: Attenuation and velocity 

A 7-cm-long straight silicon delay lines etched along the <1 1 0> crystal 

direction was used to measure the acoustic attenuation and velocity (figure 4.10(a)). 

Laser light was focused on the delay line at a particular distance away from the 

transducer (figure 4.10(b)). The generated acoustic wave propagates in two directions. 

The wave traveling toward the transducer is received first, and the wave traveling away 

from the transducer is reflected on the other end and reaches the transducer at a later 

time. To avoid the reflected signal to mix with the first signal, the measuring locations 

were kept away from both ends of the delay line. Signals from eight different points with 

~5 mm intervals were measured along the delay line. The received signals were used to 

determine the acoustic velocity and attenuation. The velocity can be calculated based on 

the ratio of the travelling length and arrival time. The averaged velocity for a straight 

delay line is determined to be ~8454m/s (figure 4.11(a)). The attenuation can be 

determined by measuring the peak to peak amplitude change of the signal. As shown in 

the simulation results in figure 4.11(b) and the experimental results in figure 4.11(c), 

there is no significant change in amplitude as the travelling length increases. The small 

variation is due to the tolerance of laser power and the difference in surface condition at 

the focus location. The result implies that at 2.25 MHz, the acoustic attenuation is 

extremely low and can be negligible. 
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Figure 4.10 Straight silicon delay line. (a) Sample; (b) Measurement setup: Receive 

signal from focus points along the straight delay line. L: Traveling length ( distance 

from the focal point to the transducer). R: Receiving transducer. 

 
 

Figure 4.11 Straight silicon delay line measurement. (a) Plot of the arrival time 

versus traveling length. The average velocity in straight silicon delay line is ~8454 

m/s. Inset: Representative signal shape from L: 28.2 mm; (b) Simulation results of 

signal peak–peak amplitude versus traveling length. Inset: Representative signal 

shape from L: 30 mm; and (c) Experimental results of signal peak–peak amplitude 

versus traveling length. Inset: Representative signal shape from L: 28.2 mm. 
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Figure 4.11 Continued. 
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4.5.2     Propagation in U –turn structures with different curvature 

As shown in figure 4.12(a), U-turn structures with six different bending radii of 

curvature were attached to the receiving transducer. Each U-turn structure consists of 

two straight portions (with lengths of 3 cm and 1 cm) connected by a 180 
 round portion. 

The laser focal spot was position on the two junction points (i.e., points A and B in 

figure 4.12(b)) between the straight portion and the bending portion, respectively. The 

first-arrival signal from point A only travels in the 3-cm-long straight portion before 

reaching the transducer. The first-arrival signal from point B travels in both the curved 

and straight portion. Since the attenuation of silicon is very low at 2.25 MHz, any 

difference between these two signals is mainly due to the bending portion. Therefore, the 

insertion loss of the bending portion can be estimated by comparing the peak-to-peak 

amplitude of these two signals. As shown in figure 4.13, the amplitude ratio decreases as 

the bending radius decreases. The reduction is due to the mode conversion and direct 

reflection of the wave. As longitudinal wave hit on the wall of the delay line with an 

angle, the wave will go through reflection. Part of the reflected wave will remain in 

longitudinal mode and part of the wave will go through mode conversion and become 

transverse mode, which cannot be effectively detected by the longitudinal mode 

transducer. In addition, when the bending radius is small, some of the waves will be 

reflected back and never reach the transducer. It is also noticed that the signal wave form 

is similar to the signal from a straight delay line and no signal distortion being observed. 

However, after receiving the first peak and the reflected peak from the other end, the 

signal becomes more distorted as the radius decreases.  
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Figure 4.12 U-turn structure measurement. (a) Sample; (b) Measurement setup: 

Receive signals from different focus points, A: without bending, B: with bending. 

 
 

Figure 4.13 U-turn structure measurement. (a) Simulation results of radius versus 

amplitude ratio. Inset: Representative signal shape from turning with 6 mm radius; 

and (b) Experimental result of radius versus amplitude ratio. Inset: Representative 

signal shape from turning with 6 mm radius. 
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Figure 4.13 Continued. 

4.5.3     Propagation in Y –junction structures with different angles 

Six Y-junction structures with cross angles ranging from 5 degrees to 30 degrees 

(with a 5-degree increment) (figure 4.14(a)) were tested. Each structure has a 4-cm-long 

straight line with a 3-cm-long branch. The intersection point is located 1 cm away from 

the transducer (figure 4.14(b)). The laser focal spot was positioned at three points one at 

a time to determine the insertion loss at the junction. Signal generated from point A does 

not go through the junction and is used as the reference signal. Signal from point B 

comes from the branch and enters the straight line through the junction. Signal from 

point C is from the straight line and passes the junction. By comparing the peak-to-peak 

amplitude of the signals from the three points, the insertion loss of the straight and 

branch parts at the junction can be estimated.  
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Figure 4.14 Y-junction structure measurement. (a) Samples; (b) Measurement 

setup: Receive signals from different focal points, A: without passing junction, B: 

passing junction through branch with an angle, C: passing junction through 

straight line. 

As shown in figure 4.15, at a small cross angle, the insertion loss is not 

significantly affected by the change of the angle. Signals coming from the straight part 

or the branch do not have much difference. The average insertion loss of the Y-junction 

is around 20%, which is due to the wave leakage and reflection into the other branch. 
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Figure 4.15 Y-junction structure measurement. (a) Simulation results of angle 

versus amplitude ratio. Inset: Representative signal shapes from junction with 15 

degrees; and (b) Experimental results of angle versus amplitude ratio. Inset: 

Representative signal shapes from junction with 15 degrees. 
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4.5.4     Comparison of signal shape from different structures 

The typical acoustic pulse shape and spectrum of the first received signal are 

compared to investigate the structural effect on wave form in each structure (figure 4.16). 

All signals appear to have similar pulse shapes, and the pulse duration remains within 1 

μs. The power spectrum shows that most signals are below 5 MHz, which matches well 

with the frequency response of the transducer. 

Our experimental results show that the difference in structure of the delay line 

does not cause significant signal distortion, but only changes in amplitude. By carefully 

design the length and structure, acoustic signal can have a designated time delay with a 

distinguishable pulse shape. As a result, the straight, U-turn, and y-junction structures 

can be applied in the design for serial and parallel delay lines. 

 

Figure 4.16 Pulse shape and spectrum of different structures. 
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4.6  Multi-channel serial and parallel delay lines 

 A 4-channel serial delay line and a 4-channel parallel delay line were designed, 

fabricated and tested. The serial delay line has four inputs and one output, which consists 

of straight lines, U-turns with 4 mm radius, and 30- degree Y-junctions (figure 4.17). 

The parallel delay line has four inputs and four outputs.  Each channel consists of a 

multiple-turn spiral structure with a minimal radius of 2.5 mm (figure 4.18). The serial 

and parallel delay lines were tested using a two-port ultrasound measurement setup 

(figure 4.19). The delay lines were fixed on an acrylic holder with its inputs and outputs 

polished. A pulser-receiver unit was used to generate a driving voltage pulse for a 2.25 

MHz transmitting transducer (V106, Olympus NDT, Waltham, MA, USA). The four 

delay line inputs received the ultrasound pulse at the same time from the transmitting 

transducer. The four pulses traveled different length in the delay line and arrived at the 

outputs at different time. The receiving transducer captured the signals from the outputs, 

which were amplified by pulser-receiver unit. The signals were averaged 128 times and 

displayed on the oscilloscope. 
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Figure 4.17 4-channel serial delay lines assembled on an acrylic holder. 

 
Figure 4.18 4-channel parallel delay lines. (a) Fabricated; and (b) Assembled on an 

acrylic holder. 

 

Figure 4.19 Two-port through-transmission setup. 
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Figure 4.20 shows the received signals from the serial and the parallel delay lines. 

Both delay line structures successfully achieved four time-delayed signals with 

approximately 7 μs interval between adjacent channels. It is observed that the signal 

amplitude in both designs decreases from channel 1 to channel 4. Since the attenuation 

in silicon is negligible, the loss is due to the delay line structure. In the serial delay line 

structure, the loss is from both the U-turns and Y-junctions. While in the parallel delay 

line structure, the loss is from the curve structures. Because the signal in longer channel 

goes though more U-turns and Y-junctions, it has a higher total insertion loss resulting in 

a smaller signal. Despite of the loss, signals from the delay line structures remain clear 

and distinctive.   

 

Figure 4.20 Time-delayed signals from. (a) 4-channel serial delay lines; and (b) 4-

channel parallel delay lines. 
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Figure 4.20 Continued. 

4.7 Silicon parallel acoustic delay line probe 

The feasibility of using serial or parallel delay line systems for ultrasound 

receiving system is proven in the previous experiment. To further capitalize its function 

and to reduce the size of the delay line system, a miniaturized 16-channel silicon parallel 

delay line probe was developed. The silicon fabrication followed the process described 

in 4.4.1. The etched individual channels are shown in figure 4.21 and the design 

parameters are listed in table 2. 
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Figure 4.21 Etched silicon acoustic delay lines. 

Table 2 Delay line design parameters. 

Number of 
channels 

Shortest 
delay (µs) 

Longest 
delay (µs) 

Incremental 
delay (µs) 

Operation 
frequency 
(MHz) 

Cross 
section (µm 
x µm) 

Minimum 
radius of 
curvature 
(mm) 

16 9.5 107 6.5 2.25 500 x 250 2 
 

 After the silicon delay lines fabrication, an acrylic probe structure was cut with 

laser machining and dicing saw. The acrylic probe was used to hold up the silicon delay 

lines to support and protect them. Prior to assembly, the two ends of silicon delay lines 

were carefully polished to create flat surface and enhance signal coupling. 16 silicon 

delay lines were carefully placed inside the acrylic probe structure and secured with 

superglue. Figure 4.22 shows the assembled silicon delay lines probe. 
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Figure 4.22 Assembled 16-channel silicon acoustic delay lines probe. 

The silicon delay line probe was tested with the ultrasound through-transmission 

setup. Figure 4.23 shows the time-delayed ultrasound signals received by a single 

transducer. The difference in signal’s strength is due to the non-uniform contacts 

between the silicon delay lines and the transducers. 16 distinctive ultrasound signals’ 

peaks can be determined, which implies that the silicon delay line probe can effectively 

receive 16 ultrasound signals serially with only a single transducer. 

 

Figure 4.23 Ultrasound signals propagating in the 16-channel silicon acoustic delay 

line probe received by a single transducer. 
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The silicon acoustic delay line probe is more compact than the optical fiber delay 

line system. However, due to the brittleness of silicon, the mechanical stability of the 

silicon delay line probe is still problematic and difficult to maneuver. To improve the 

structure integrity, new designs and construction methods are required to further 

improve its usability. 

4.8  Conclusion 

In this work, we have successfully demonstrated the concept of delay line 

receiving systems using optical fiber delay lines and micromachined silicon acoustic 

delay lines. The acoustic velocity, attenuation, and propagation through bending and 

junction structures of silicon have been characterized.  True acoustic time delay has been 

demonstrated using 4-channel serial and parallel delay lines and a 16-channel silicon 

delay line probe. Our experimental results show that with proper design and construction 

of the delay line structure, acoustic signals can be transmitted with minimal attenuation 

and distortion. With the addition of acoustic time delay, it is possible to receive multiple 

acoustic signals using one single-element transducer, followed by a single-channel of 

data acquisition electronics. We expect that the micromachined silicon delay lines can be 

applied to simplify the ultrasound receiver system architecture and reduce its costs, 

thereby helping to widen the applications of ultrasound imaging by enabling new 

modalities. Our future work will investigate the high-frequency transmission and 

switching of the silicon delay lines to achieve highly functional and integrated 

reconfigurable delay line systems. 
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5. MICROMACHINED ACOUSTIC MULTIPLEXER FOR ULTRASONIC AND 

PHOTOACOUSTIC IMAGING APPLICATIONS* 

5.1 Introduction 

5.1.1 Electronics multiplexing in ultrasound receiving system 

In photoacoustic (PA) ultrasound receiving system, multiple channels of 

transducers and electronics are required [50]. As shown in figure 5.1, the 4-element 

transducer array receives ultrasound signals generated from an acoustic source and the 

received signals are processed by the data acquisition (DAQ) electronics simultaneously. 

The 4 to 1 multiplexer control the processed electrical signals and fed them serially into 

the computer for recording and image reconstruction. The acoustic waves were first 

transformed into electrical signals and processed by the data acquisition circuitry. To 

achieve fast speed and high resolution imaging, it is inevitable to use massive transducer 

array and DAQ electronics [51], [52]. As a result, the entire ultrasound imaging system 

becomes complex and costly.  Electronic multiplexing has been used to reduce the 

number of DAQ channels by selecting and serially receiving PA signals from multiple 

transducers. However, the transducer array and its sophisticated electrical interface still 

remain. 

 

*@ 2014 IEEE. Reprinted, with permission, from Cheng-Chung Chang, Young Cho, and 
Jun Zou, “A micromachined acoustic multiplexer for ultrasound and photoacoustic 
imaging applications,” IEEE Journal of Microelectromechanical Systems, 23(3), pp. 
514-516, 2014. 
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Figure 5.1 Ultrasound transducer array receiving system. (a) Transducer array and 

electronics setup; (b) Ultrasound signals received by the transducer array. T1, T2, 

T3, T4 are the acoustic signal traveling time inside the phantom. 

5.1.2 Acoustic multiplexing in ultrasound receiving system 

 The multiplexing concept has been wildly used in switching electrical signals 

[62]. However, this concept has never been successfully applied in multiplexing acoustic 

signal. Previously, researchers have designed an acoustic multiplexer using wires and 

springs, but it can only selectively transfer acoustic wave in particular wavelength and 

no actual device was fabricated [63]. Others investigated on frequency multiplexing of 

surface acoustic wave, while no bulk acoustic wave device has been developed [64]. 

To address the issue of electronic multiplexing in ultrasound receiving system, a 

novel acoustic multiplexer concept is introduced. Unlike the electronic multiplexing 

method that go through the sequence of transformation (acoustic to electronics) then 

processing steps, the acoustic multiplexing method directly processes the acoustic 

signals first then transform them into electronic signals. As shown in figure 5.2(a), an 
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acoustic multiplexer is used to replace the transducer array. Upon excitation, an acoustic 

source generates acoustic waves, which are detected by the input terminals of the 

acoustic multiplexer (figure 5.2(b)). The acoustic multiplexer selects one acoustic signal 

from multiple input channels to reach the output terminal, where a single transducer and 

DAQ are connected to receive and process the acoustic signal. The excitation-selection-

receiving cycles are repeated several times until all input channels have been selected 

sequentially (figure 5.2(c)). Signals from all channels are received serially by the single 

transducer and can be used for image reconstruction (figure 5.2(d)). The acoustic 

multiplexer converts parallel signals from multiple channels into serial signals in a single 

channel and thereby effectively reduces the transducer and electronics being used.  

Therefore, both the number of the transducer elements and DAQ channels could be 

reduced.  

 

Figure 5.2 Acoustic multiplexer receiving system. (a) System setup; (b) Acoustic 

signals received by the multiplexer input; (c) Acoustic signals after multiplexing; (d) 

Ultrasound signals received by the single transducer. TM is the acoustic signal 

traveling time inside the multiplexer. 
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Figure 5.2 Continued. 

With advanced micromachining technologies, all the essential components of the 

acoustic multiplexer can be fabricated or integrated with MEMS technologies 

simultaneously in one step without intensive assembly or packaging. As a result, the 

micromachined acoustic multiplexer could be a more economical and simpler approach 

for ultrasound receiving system. In this chapter, we report for the first time, a 

microfluidic silicon-based acoustic multiplexer which is capable of selecting bulk 

acoustic wave signal. It utilizes the acoustic properties of single-crystalline silicon and 

mercury, and the precision fabrication of the micromachining process. By using the 
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fabricated device, the acoustic multiplexing has been successfully demonstrated in the 

photoacoustic imaging receiver system. 

5.2  Design of the acoustic multiplexer 

Figure 5.3 shows the schematic of the micromachined acoustic multiplexer. It 

consists of multiple pairs of acoustic waveguides, each of which forms an acoustic 

channel for ultrasound signal transmission. A microfluidic channel lies between each 

pair of the acoustic waveguides and serves as an on/off switch for the acoustic 

waveguides. The acoustic waveguides and the microfluidic channel were made of single-

crystalline silicon.  

 

Figure 5.3 Schematic design of the acoustic multiplexer. Acoustic signal can be 

coupled to the output end through mercury droplet. The location of the mercury 

droplet is controlled by external air pressure. 
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Silicon was considered as the structural material for three reasons. First, the 

acoustic attenuation of silicon is extremely low in the MHz range (~10-4 dB/mmMHz2 

@ 10 MHz) [59]. Second, silicon is mechanically strong with good thermal stability. 

Third, it has been wildly used as structural material and is suitable for advanced 

microfabrication and micromachining. To transmit single longitudinal mode ultrasound 

signal, the rectangular-shaped silicon acoustic waveguide should have a cross section 

dimension satisfies (df/V0) << 1, where d is the width or thickness of the acoustic 

waveguide (whichever is smaller), f is the frequency of the signal, and V0 is the acoustic 

velocity of silicon [58]. To transmit 2.25 MHZ center frequency signals in a silicon 

waveguide with acoustic velocity of 8430 m/s [59], the dimension should be much 

smaller than 3.7 mm. In this session, the silicon acoustic waveguides have 500 µm in 

width and 300 µm in thickness. To obtain high spatial resolution, the input ends of the 

silicon waveguides should be closely placed. This is achieved by using bending 

waveguide structure to merge the input ends. The bending radius of the waveguide 

should be larger than 2 mm to ensure good signal transmission for silicon waveguide in 

this dimension [65]. In this work, the minimum bending radius used is around 20 mm 

and the pitch for the waveguide ends is 500 µm. The resulting input/output terminals 

have a width of 7.5 mm. The close arrangement of the output ends also enables smaller 

and cheaper transducer to be used to receive the ultrasound signals. The acoustic 

multiplexing is achieved by using a liquid-coupling acoustic switch, which is made of a 

microfluidic channel and a mercury droplet. Mercury is chosen for its mechanical and 

acoustical properties. The high surface tension of mercury enables the mercury droplet to 
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maintain its shape without spreading in the microfluidic channel. The size of the 

mercury inside the microfluidic channel can be designed by adjusting its volume. The 

width of the mercury droplet should be close to the acoustic waveguide to enhance 

coupling. The location of the mercury droplet is controlled by external pneumatic source. 

The acoustic impedance of mercury is very close to silicon [66], which allows efficient 

acoustic coupling between these two materials. When the mercury droplet is placed at 

the gap between two silicon acoustic waveguides, the incoming ultrasound signal from 

one silicon waveguide (input) can be effectively coupled to the silicon waveguide at the 

other end (output). The waveguides pair forms an “ON” state acoustic channel. 

Ultrasound signals in other acoustic waveguides are blocked due to the large acoustic 

impedance mismatch of air and silicon, thus act as “OFF” state acoustic channels.  

The switching principle was simulated using ultrasound simulation software 

(Wave2000, Cyberlogic Inc., New York, USA). Two silicon delay lines were placed in 

line between a 2.25 MHz input transmitting transducer and a 2.25 MHz output receiving 

transducer.  The gap between two silicon delay lines was filled with air or mercury to 

simulate the "OFF" state and "ON" state acoustic channels. Figure 5.4 shows the 

simulation results of the received signals at the output end from the “ON” state and 

“OFF” state acoustic channels. From the simulation results, the mercury-coupling “ON” 

state effectively transmitted the ultrasound signal while the air-coupling “OFF” state 

rejected the ultrasound signal. 
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Figure 5.4 Simulation results of the "ON" state and "OFF" state acoustic channels. 

(a) Air-coupling "OFF" state; (b) Mercury-coupling "ON" state. Inset: Simulation 

setup. The air and mercury gaps are 500 m in width. 

5.3 Fabrication of the micromachined acoustic multiplexer 

The silicon acoustic delay lines and multiplexer structure (figure 5.5) was etched 

out from a 300µm-thick double-side-polished silicon wafer using cryogenic deep 

reactive ion etching. The width of the silicon delay lines is 500 µm. The tips of the 

silicon delay lines and the sidewalls of the microfluidic channel were polished to create 

flat contact surface to ensure good acoustic coupling. The pitch of the distal ends of the 

silicon acoustic delay lines is set to be 1 mm to maintain good lateral imaging resolution, 

and that of the proximal ends is set to be 2 mm to provide good acoustic isolation 

between two adjacent delay lines. The minimum bending radius of the acoustic delay 

lines is 23 mm, which is much larger than the acoustic wavelength to minimize the 

signal distortion caused by mode conversion [67]. 
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Figure 5.5 Fabricated silicon acoustic multiplexer structure (one side). 

The multiplexer assembly process is shown in figure 5.6. First, PDMS sealing 

pads were directly moulded on a laser-micromachined acrylic sheet. PDMS has high 

acoustic attenuation and large acoustic impedance mismatch to silicon and mercury, 

which helps to reduce signal cross talk between adjacent channels. Second, the silicon 

structures were attached on the PDMS sealing pad and two polyimide micro tubings with 

a diameter of 300 um were placed at the two ends of the microfluidic channels. One of 

the polyimide microtubing was connected to a syringe pump for pneumatically driving 

of mercury droplet inside the microfluidic channel, while the other one was used to 

release the gas pressure. To form a closed microfluidic channel, another PDMS sealing 

pad with acrylic sheet was stacked on top of the silicon-PDMS-acrylic structure. Screws 

were used to fix and stabilize the structure. After assembly, a mercury droplet of 100 nL 

was driven into the microfluidic channel to form a micro slug (1 mm × 0.3 mm × 0.3 

mm) (Fig. 4(d)). The overall dimension of the assembled acoustic multiplexer is 35 mm 

× 22 mm × 6 mm (figure 5.7). 
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Figure 5.6 Acoustic multiplexer assembly process. 

 

Figure 5.7 Assembled acoustic multiplexer. (a) Side view; (b) Top view. 
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5.4 Characterization of the micromachined acoustic multiplexer 

The multiplexer was tested with the ultrasound transmission setup (figure 5.8). A 

pulser-receiver unit (5072-PR, Olympus NDT, Waltham, MA, USA) was used to 

generate a driving voltage pulse for a 2.25 MHz transmitting transducer (V105, Olympus 

NDT, Waltham, MA, USA). The transmitting transducer was in contact with the input 

terminal of the acoustic multiplexer and mineral oil was applied at the interface to 

improve the coupling efficiency between the transducer and silicon. The transmitting 

transducer sent out ultrasound signals which travel along the acoustic waveguides and 

reach the silicon sidewall. When the acoustic channel is on (i.e. coupling through 

mercury), the ultrasound signal is transmitted from the input acoustic waveguide to the 

output acoustic waveguide at the other end. When the acoustic channel is off (i.e. 

coupling through air), the ultrasound signal is blocked. A 2.25 MHZ receiving 

transducer (V106, Olympus NDT, Waltham, MA, USA) was used to capture the 

ultrasound signal. The received signal was amplified by the pulser-receiver unit and 

displayed on the oscilloscope.  
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Figure 5.8 Ultrasound transmission experiment setup. 

 

Figure 5.9 Acoustic ON/OFF characterization. (a) Reference signal from silicon 

delay line; (b) “ON” setup and the transmitted signal; (c) “OFF” setup and the 

transmitted signal. 
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Figure 5.10 Ultrasound signals from each channel received by the transducer. 

5.5 Application: Photoacoustic imaging with acoustic multiplexer 

5.5.1 Photoacoustic effect 

Photoacoustic (PA) imaging is an imaging technique based on the photoacoustic 

effect [68].  Photoacoustic effect describes an ultrasound generation phenomenon caused 

by periodic temperature fluctuations. When light hits on a sample, the sample will 

absorb the optical energy (figure 5.11(a)). Part of the ground state molecular in the 

sample will be excited into higher energy levels. These excited molecules will 

subsequently relax through different mechanism. Most of the absorbed energy will 

transform into heat while others will go through other process such as luminescence, 
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photochemical reaction, photoelectricity reaction, or into momentum resulting collision. 

These energy transform mechanisms will eventually turn into heat. The heating process 

raises the temperature of the sample, and the temperature increment will result in 

thermal expansion of the sample. Due to the temperature difference between the sample 

and the surrounding medium, heat will flow from the higher temperature sample into 

lower temperature surroundings. This heat flow changes the temperature of the 

surrounding medium and the surrounding medium also goes through thermal expansion. 

By periodically heating the sample, the sample and the surrounding medium will have 

temperature fluctuations. This fluctuation will cause the temperature changing medium, 

sample or the surrounding, to expand and shrink periodically. This volume change thus 

creates a pressure wave, which can be detected as an acoustic signal. The acoustic signal 

generation process is shown in figure 5.11(b). 

 

Figure 5.11 Physical process of photoacoustic effect. 
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5.5.2 Photoacoustic imaging techniques 

In order to form a photoacoustic image, a single-element ultrasound receiving 

transducer is scanned around the medium; alternatively, a multi-element ultrasound array 

can be used to receive signals at different locations. The PA images are reconstructed 

based on the time-of-flight (i.e. arrival time) of the ultrasonic wave. The imaging 

contrast is determined by the optical absorption of the sample and the ultrasound 

receiving frequency. Combining these two parameters, the photoacoustic imaging is not 

limited by the optical scattering or speckle artifacts and low contrast inherited from 

ultrasound imaging. Therefore, photoacoustic imaging provides high spatial resolution 

and is suitable for deep tissue imaging. Based on the imaging application, the spatial 

resolution and imaging depth can be tuned by selecting proper ultrasound detection 

frequency. 

There are two types of photoacoustic imaging systems. The first type is 

photoacoustic tomography (PAT), which reconstructs images based ultrasound signals 

received from multiple locations [69]. The second type is photoacoustic microscopy 

(PAM), which utilizes raster scan over a subject to collect point-by-point photoacoustic 

signals. In PAT, a single un-focused transducer or an array of transducers can be used to 

receive acoustic signal, while the array method can provide faster imaging speed. On the 

other hand, in PAM, a focused transducer is used in the raster scan. To demonstrate the 

capability of micromachined acoustic multiplexer in processing multiple acoustic signals, 

the acoustic multiplexer was applied in PAT system by replacing the array-type 

transducers. 
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5.5.3    Experiment setup 

Figure 5.12 shows the setup of the photoacoustic experiment. A Q-switched 

Nd:YAG pulsed-laser source (MP-1200mj, Guangzhou Miu Sing Co., Ltd, China) with 

532 nm wavelength and 8 ns pulse width was used to deliver light. The laser was 

controlled by an external trigger to allow single pulse excitation. A photodiode 

(DET36A, Thorlabs, Newton, NJ, USA) was used to determine the trigger time. The 

laser light was attenuated with a neutral density filter (NE510B, Thorlabs, Newton, NJ, 

USA) and focused by a lens on a 5 mm x 5 mm area. The incident laser pulse energy 

density was 20 mJ/cm2. When laser illuminates on an optical absorptive material, the 

material absorbs the light energy and goes through sudden thermal expansion[70]. The 

thermal expansion generates acoustic waves that radiates away from the excitation point. 

The acoustic waves were captured by the acoustic multiplexer, which processes and 

selects ultrasound signal from one of the 8 channels. The ultrasound signal from the 

selected acoustic channel was captured by the 2.25 MHz center frequency receiving 

transducer (V105, Olympus NDT, Waltham, MA, USA) and amplified by a pulser-

receiver unit. To improve coupling efficiency, mineral oil was applied at the 

multiplexer-transducer interface. The laser trigger signal from the photodiode and 

amplified ultrasound signals were displayed on the oscilloscope. The laser excitations, 

multiplexer selection, transducer receiving cycles were repeated 8 times to collect 

signals from all 8 channels for image reconstruction. 
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Figure 5.12 Photoacoustic imaging setup. 

To demonstrate its application in acoustic imaging, the fabricated 8-channel 

acoustic multiplexer was used to conduct photoacoustic tomography on an optically 

absorptive target buried inside an optically scattering phantom (figure 5.13). The 

optically absorptive target was a silicon piece with a radius of 0.75 mm in the x-z plane 

and a thickness of 0.3 mm in the y direction. It was located at 4.5 mm away from the 

surface of the optical phantom (along the z direction). The phantom was made of 3% wt. 

agar solution. Agar phantom has optical and acoustical properties similar to biological 

tissue, therefore it has been widely used in photoacoustic imaging [71]. The agar 

phantom has a dimension of 100 x 30 x 70 mm3 along x, y, and z axes, respectively. 
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Figure 5.13 Zoom in view of the imaging target inside the optical phantom. 

5.5.4   Imaging result 

Figure 5.14(a) shows the received photoacoustic signals from the 8 acoustic 

channels of the acoustic multiplexer. Figure 5.14(b) shows the reconstructed 

photoacoustic image in Matlab (MathWorks, Natick, MA, USA). The amplitude and 

the arrival time of the photoacoustic signals were normalized and calibrated, respectively. 

The envelope of the photoacoustic signals was calculated with Hilbert transform and the 

photoacoustic image was reconstructed using synthetic aperture focusing technique 

(SAFT) [72]. The imaging contrast, defined as the signal ratio between the imaging 

target and the background, is around 3. In the photoacoustic image, the location of the 

reconstructed object matches well with that of the absorptive target in the optical 

phantom. 
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Figure 5.14 Photoacoustic imaging results. (a) Photoacoustic signals received from 

each channel; (b) Reconstructed photoacoustic image. 

5.6 Conclusions 

In this work, we have successfully demonstrated a micromachined microfluidic 

acoustic multiplexer. The acoustic multiplexer is able to select ultrasound signal out 

from multiple acoustic channels. An 8-channel acoustic multiplexer was constructed and 

its functionality for ultrasound applications was demonstrated by conducting cross-

section photoacoustic imaging of an optically absorptive target. By using the 8-channel 

acoustic multiplexer, only one receiving transducer was needed to process all the 

channels. Therefore, the acoustic multiplexer could be a potential method to create cheap 

and simple ultrasound receiving systems. In the future, we will investigate using on-chip 
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droplet driving mechanism to improve the stability and switching speed of the acoustic 

multiplexer. Table 3 compares the possible on-chip driving mechanisms for future 

investigation. 

Table 3 On-chip driving mechanism. 

Mechanism Method Advantage Disadvantage 
Pneumatic 
(this work) 

 Pressure gradient [73]  Simple  Require external 
pressure source 

 Slow speed 

Thermal  Thermal capillary effect 
[74] 

 Bubble formation [75] 

 No moving parts  High power 
consumption 

 Slow speed 
Acoustical  Surface acoustic wave 

pumping [76] 
 Fast speed  Single direction 

 High driving 
voltages 

Optical  Photochemical [77] 
 Opto-electrowetting [78] 
 Light-induced thermal 

capillary effect [77] 

 No moving parts 
 Tunable 
 Biocompatible 

 Substrate heating 
 Slow speed 

Electrical  Dielectrophoretics [79] 
 Electrocapillary [80] 
 Electrowetting [81], [82] 

 Site specific 
control 

 No heating 
 No moving parts 
 Low power 

consumption 
 Fast speed 

 Electrolysis 
 May require high 

voltages 
 Polarization of 

substrate 

Structural  Electrochemical with 
surfactant [83] 

 Asymmetric surface [84] 

 No moving parts 
 Low power 

consumption 

 Material 
compatibility 

 Slow speed 
Magnetical  Magnetohydrodynamics 

[85] 
 Low voltage 
 Suitable for 

conductive liquid 
 No moving parts 
 Fast speed 

 Electrolysis 
 High power 

consumption 
 Limited 

dimensions 
(conduit size > 
100 m) 
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6. CONCLUSIONS 

In this study, the usefulness of the micromachined optical and acoustic 

waveguides systems was demonstrated with sensing and imaging applications. The 

micromachined optical waveguide systems have compact dimensions and side-viewing 

capability, which enable precise light delivery and receiving inside small cavities. The 

development of the optical sensor probe required multiple steps including optical path 

simulation, microfabrication, probe assembly, and experimental testing and validation. 

Two different kinds of micromachined optical waveguide systems along with 

their sensing applications were presented. 1) Micromachined OIDRS optical sensor 

probe for pancreatic cancer identification; 2) Micromachined VNIR-DRS optical sensor 

probe for soil characterization. The optical sensor probe together with the OIDRS system 

successfully determined the tumor margin on a human pancreatic specimen, while the 

optical sensor probe combined with VNIR-DRS system provided constitution 

information of the soil.  

The micromachined acoustic waveguide systems utilized single crystalline 

silicon for direct acoustic signal processing. The micromachined silicon structures 

replace complex transducer array and muliti-channel data acquisition electronics, thus 

allowing the use of only one ultrasound transducer and one data acquisition channel for 

acoustic imaging. This setup simplifies the imaging system and can be directly 

fabricated and integrated with acoustic circuitry in one step, thereby significantly 

reduced the labor or cost for packaging. The development of the acoustic waveguide 

system includes material acoustic properties characterization, proof of concept 
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experiment, ultrasound simulation, structure fabrication and assembly, and testing of the 

imaging system. 

Two micromachined acoustic waveguide systems were realized and implemented 

in ultrasound and photoacoustic applications. 1) Micromachined acoustic delay line 

system for ultrasound signal processing; 2) Micromachined acoustic multiplexer for 

photoacoustic imaging. The acoustic delay line system passively controls ultrasound 

signal by introducing proper time delay in the acoustic channels, thereby enables the 

conversion of parallel signals into serial signals. The acoustic multiplexer actively 

selects photoacoustic signals from multiple channels and processed the signals one after 

another. Both systems utilized the acoustic properties of single crystalline silicon and 

provides new methods for processing multiple channels' signals with a single transducer 

and electronics. 

Through the waveguide system designs discussed in this thesis, the optical 

waveguide systems and acoustic waveguide systems combined with micromachining 

technology have improved the use of optical sensor probes and inspired new acoustic 

imaging systems. By configure waveguide dimensions and wave transmission directions, 

the waveguide systems can be tailored for various applications. 



 

95 

 

REFERENCES 

[1] L. Wang and S. L. Jacques, “Use of a laser beam with an oblique angle of 
incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. 

Opt., vol. 34, no. 13, pp. 2362–2366, 1995. 

[2] S.-P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical 
properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt., 
vol. 36, no. 1, pp. 136–143, 1997. 

[3] B. W. Farrell, Thomas J., Michael S. Patterson, “A diffusion theory model of 
spatially resolved, steady-state diffuse reflectance for the noninvasive 
determination of tissue optical properties in vivo,” Med. Phys., vol. 19, p. 879, Jan. 
1992. 

[4] L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light 
transport in multi-layered tissues,” Comput. Methods Programs Biomed., vol. 47, 
no. 2, pp. 131–146, 1995. 

[5] R. M. Stone, H. B., Brown, J. M., Phillips, T. L., Sutherland, “Oxygen in human 
tumors: correlations between methods of measurement and response to therapye,” 
Radiat. Res., vol. 136, pp. 422–434, 1993. 

[6] S. Thomsen and D. Tatman, “Physiological and pathological factors of human 
breast disease that can influence optical diagnosisa,” Ann. N. Y. Acad. Sci., vol. 
838, no. 1, pp. 171–193, 1998. 

[7] L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. 
Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, 
and M. S. Feld, “Observation of periodic fine structure in reflectance from 
biological tissue: a new technique for measuring nuclear size distribution,” Phys. 

Rev. Lett., vol. 80, no. 3, pp. 627–630, 1998. 

[8] “Microchem Corp.” [Online]. Available: www.microchem.com. Accessed: 
January 18, 2009. 

[9] “American cancer society.” [Online]. Available: http://www.cancer.org. Accessed: 
March 31, 2010. 

[10] P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, S. L. Jacques, G. Koval, and 
G. Blair, “In vivo determination of optical properties of normal and tumor tissue 
with white light reflectance and an empirical light transport model during 
endoscopy,” J. Biomed. Opt., vol. 10, no. 3, 34018, 2005. 



 

96 

 

[11] T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of 
light, optical properties, drug concentration, and tissue oxygenation in-vivo in 
human prostate during motexafin lutetium-mediated photodynamic therapy,” J. 

Photochem. Photobiol. B Biol., vol. 79, no. 3, pp. 231–241, 2005. 

[12] S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. 
Nishioka, “Optical coherence tomography in the gastrointestinal tract,” 
Endoscopy, vol. 32, no. 10, pp. 796–803, 2000. 

[13] H. Messmann, R. Knüchel, W. Bäumler, A. Holstege, and J. Schölmerich, 
“Endoscopic fluorescence detection of dysplasia in patients with Barrett’s 
esophagus, ulcerative colitis, or adenomatous polyps after 5-aminolevulinic acid–
induced protoporphyrin IX sensitization,” Gastrointest. Endosc., vol. 49, no. 1, pp. 
97–101, 1999. 

[14] A. Garcia-Uribe, N. Kehtarnavaz, G. Marquez, V. Prieto, M. Duvic, and L. V 
Wang, “Skin cancer detection by spectroscopic oblique-incidence reflectometry: 
classification and physiological origins,” Appl. Opt., vol. 43, no. 13, pp. 2643–
2650, 2004. 

[15] A. Garcia-Uribe, K. C. Balareddy, J. Zou, and L. V Wang, “Micromachined fiber 
optical sensor for in vivo measurement of optical properties of human skin,” 
Sensors Journal, IEEE, vol. 8, no. 10. pp. 1698–1703, 2008. 

[16] G. Marquez and L. Wang, “White light oblique incidence reflectometer 
formeasuring absorption and reduced scatteringspectra of tissue-like turbid media,” 
Opt. Express, vol. 1, no. 13, pp. 454–460, 1997. 

[17] L. J. Janik, R. H. Merry, and J. O. Skjemstad, “Can mid infrared diffuse 
reflectance analysis replace soil extractions?,” Anim. Prod. Sci., vol. 38, no. 7, pp. 
681–696, 1998. 

[18] K. Islam, B. Singh, and A. McBratney, “Simultaneous estimation of several soil 
properties by ultra-violet, visible, and near-infrared reflectance spectroscopy,” 
Soil Res., vol. 41, no. 6, pp. 1101–1114, 2003. 

[19] P. C. Kariuki, F. Van Der Meer, and W. Siderius, “Classification of soils based on 
engineering indices and spectral data,” Int. J. Remote Sens., vol. 24, no. 12, pp. 
2567–2574, 2003. 

[20] Y. Ge, J. A. Thomasson, C. L. Morgan, and S. W. Searcy, “VNIR diffuse 
reflectance spectroscopy for agricultural soil property determination based on 
regression-kriging,” Trans. ASABE, vol. 50, no. 3, pp. 1081–1092, 2007. 



 

97 

 

[21] R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. 
Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance 
spectroscopy for simultaneous assessment of various soil properties,” Geoderma, 
vol. 131, no. 1, pp. 59–75, 2006. 

[22] E. Ben-Dor and A. Banin, “Near-infrared analysis as a rapid method to 
simultaneously evaluate several soil properties,” Soil Sci. Soc. Am. J., vol. 59, no. 
2, pp. 364–372, 1995. 

[23] G. W. McCarty, J. B. Reeves, V. B. Reeves, R. F. Follett, and J. M. Kimble, 
“Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon 
measurement,” Soil Sci. Soc. Am. J., vol. 66, no. 2, pp. 640–646, 2002. 

[24] C.-W. Chang, D. A. Laird, M. J. Mausbach, and C. R. Hurburgh, “Near-infrared 
reflectance spectroscopy–principal components regression analyses of soil 
properties,” Soil Sci. Soc. Am. J., vol. 65, no. 2, pp. 480–490, 2001. 

[25] K. W. Daniel, N. K. Tripathi, and K. Honda, “Artificial neural network analysis of 
laboratory and in situ spectra for the estimation of macronutrients in soils of Lop 
Buri (Thailand),” Soil Res., vol. 41, no. 1, pp. 47–59, 2003. 

[26] D. J. Brown, K. D. Shepherd, M. G. Walsh, M. Dewayne Mays, and T. G. 
Reinsch, “Global soil characterization with VNIR diffuse reflectance 
spectroscopy,” Geoderma, vol. 132, no. 3–4, pp. 273–290, 2006. 

[27] G. R. Hunt, “Spectral signatures of particulate minerals in the visible and near 
infrared,” Geophysics, vol. 42, no. 3, pp. 501–513, 1977. 

[28] R. N. Clark, “Spectroscopy of rocks and minerals, and principles of spectroscopy,” 
Man. Remote Sens., vol. 3, pp. 3–58, 1999. 

[29] J. B. Reeves III, G. W. McCarty, and J. J. Meisinger, “Near infrared reflectance 
spectroscopy for the determination of biological activity in agricultural soils.,” J. 

Near Infrared Spectrosc., vol. 8, no. 3, pp. 161–170, 2000. 

[30] T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, “In situ 
characterization of soil clay content with visible near-infrared diffuse reflectance 
spectroscopy,” Soil Sci. Soc. Am. J., vol. 71, no. 2, pp. 389–396, 2007. 

[31] K. D. Shepherd and M. G. Walsh, “Development of reflectance spectral libraries 
for characterization of soil properties,” Soil Sci. Soc. Am. J., vol. 66, no. 3, pp. 
988–998, 2002. 



 

98 

 

[32] D. Cozzolino and A. Moron, “The potential of near-infrared reflectance 
spectroscopy to analyse soil chemical and physical characteristics,” J. Agric. Sci., 
vol. 140, no. 1, pp. 65–71, 2003. 

[33] A. Moron and D. Cozzolino, “Exploring the use of near infrared reflectance 
spectroscopy to study physical properties and microelements in soils,” J. near 

infrared Spectrosc., vol. 11, no. 2, pp. 145–154, 2003. 

[34] “ASD. website, high intensity contact probe.” [Online]. Available: 
www.asdi.com/accessories/high-intensity-contact-probe. Accessed: September 27, 
2010. 

[35] C-C. Chang, A. Garcia-Uribe, J. Zou, L. V. Wang, B. Banerjee, “Fast and 
minimally-invasive tumor margin detection using a novel micromachined ‘side-
viewing’ OIDRS sensor probe,” in 13

th
 Solid-State, Sensors, Actuators, and 

Microsystems Workshop, Hilton Head, South Carolina, June 1-5, 2010. 

[36] A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V Wang, “In-
vivo characterization of optical properties of pigmented skin lesions including 
melanoma using oblique incidence diffuse reflectance spectrometry,” J. Biomed. 

Opt., vol. 16, no. 2, 020501, 2011. 

[37] “Microchem Corp. website, Nano TM SU-8.” [Online]. Available: 
www.microchem.com/products/pdf/SU8_50-100.pdf. Accessed: January, 18, 
2009. 

[38] K. A. Sudduth, J. W. Hummel, S. J. Birrell, F. J. Pierce, and E. J. Sadler, “Sensors 
for site-specific management.,” State Site Specif. Manag. Agric., pp. 110–183, 
1997. 

[39] A. Zhu, L. Band, R. Vertessy, and B. Dutton, “Derivation of soil properties using 
a soil land inference model (SoLIM),” Soil Sci. Soc. Am. J., vol. 61, no. 2, pp. 
523–533, 1997. 

[40] J. Zhu, C. L. S. Morgan, J. M. Norman, W. Yue, and B. Lowery, “Combined 
mapping of soil properties using a multi-scale tree-structured spatial model,” 
Geoderma, vol. 118, no. 3, pp. 321–334, 2004. 

[41] A. B. McBratney, M. de L. Mendonça Santos, and B. Minasny, “On digital soil 
mapping,” Geoderma, vol. 117, no. 1, pp. 3–52, 2003. 

[42] R. A. V. Rossel and A. B. McBratney, “Soil chemical analytical accuracy and 
costs: implications from precision agriculture,” Anim. Prod. Sci., vol. 38, no. 7, pp. 
765–775, 1998. 



 

99 

 

[43] J. A. Thomasson, R. Sui, M. S. Cox, and A. Al-Rajehy, “Soil reflectance sensing 
for determining soil properties in precision agriculture.,” Trans. ASAE, vol. 44, no. 
6, pp. 1445–1453, 2001. 

[44] I. D. Moore, P. E. Gessler, G. A. el Nielsen, and G. A. Peterson, “Soil attribute 
prediction using terrain analysis,” Soil Sci. Soc. Am. J., vol. 57, no. 2, pp. 443–452, 
1993. 

[45] A. C. Scheinost, A. Chavernas, V. Barron, and J. Torrent, “Use and limitations of 
second-derivative diffuse reflectance spectroscopy in the visible to near-infrared 
range to identify and quantity fe oxide minerals in soils,” Clays Clay Miner., vol. 
46, no. 5, pp. 528–536, 1998. 

[46] A. C. Scheinost, D. G. Schulze, and U. Schwertmann, “Diffuse reflectance spectra 
of AL substituted goethite: a ligand field approach,” Clays Clay Miner., vol. 47, 
no. 2, pp. 156–164, 1999. 

[47] D. J. Brown, R. S. Bricklemyer, and P. R. Miller, “Validation requirements for 
diffuse reflectance soil characterization models with a case study of VNIR soil C 
prediction in Montana,” Geoderma, vol. 129, no. 3, pp. 251–267, 2005. 

[48] M. R. Nanni and J. A. M. Demattê, “Spectral reflectance methodology in 
comparison to traditional soil analysis,” Soil Sci. Soc. Am. J., vol. 70, no. 2, pp. 
393–407, 2006. 

[49] E. Ben-Dor, Y. Inbar, and Y. Chen, “The reflectance spectra of organic matter in 
the visible near-infrared and short wave infrared region (400–2500 nm) during a 
controlled decomposition process,” Remote Sens. Environ., vol. 61, no. 1, pp. 1–
15, 1997. 

[50] L. V Wang, “Tutorial on photoacoustic microscopy and computed tomography,” 
Sel. Top. Quantum Electron. IEEE J., vol. 14, no. 1, pp. 171–179, 2008. 

[51] J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V Wang, and Q. Zhu, 
“A real-time photoacoustic tomography system for small animals,” Opt. Express, 
vol. 17, no. 13, 10489, 2009. 

[52] L. Song, C. Kim, K. Maslov, K. K. Shung, and L. V Wang, “High-speed dynamic 
3D photoacoustic imaging of sentinel lymph node in a murine model using an 
ultrasound array,” Med. Phys., vol. 36, 3724, 2009. 

[53] M. K. Yapici, C. Kim, C.-C. Chang, M. Jeon, Z. Guo, X. Cai, J. Zou, and L. V 
Wang, “Parallel acoustic delay lines for photoacoustic tomography,” J. Biomed. 

Opt., vol. 17, no. 11, 116019, 2012. 



 

100 

 

[54] J. E. May, “Wire-type dispersive ultrasonic delay lines,” Ultrason. Eng. IRE 

Trans., vol. 7, no. 2, pp. 44–52, 1960. 

[55] A. H. Meitzler, "Ultrasonic delay lines for digital data storage," Ultrason. Eng. 

IRE Trans., vol. 9, no. 2, pp. 30–37, 1962. 

[56] R. W. Gibson, “Solid ultrasonic delay lines,” Ultrasonics, vol. 3, no. 2, pp. 49–61, 
1965. 

[57] B. A. Auld, Acoustic fields and waves in solids, vol. 1. , New York, New York: 
Wiley, 1973. 

[58] T. R. Meeker, “Dispersive ultrasonic delay lines using the first longitudinal mode 
in a strip,” Ultrasonic Engineering, IRE Transactions on, vol. 7, no. 2. pp. 53–58, 
1960. 

[59] J. David and N. Cheeke, Fundamentals and applications of ultrasonic waves. 
Boca Raton, Florida: CRC press, 2012. 

[60] M. J. de Boer, J. G. E. Gardeniers, H. V Jansen, E. Smulders, M.-J. Gilde, G. 
Roelofs, J. N. Sasserath, and M. Elwenspoek, “Guidelines for etching silicon 
MEMS structures using fluorine high-density plasmas at cryogenic temperatures,” 
Microelectromechanical Syst. J., vol. 11, no. 4, pp. 385–401, 2002. 

[61] A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. 

Appl. Phys., vol. 47, 64, 1976. 

[62] D. Debashis, Basic Electronics. Nodia, India: Pearson Education India, 2010. 

[63] L. Dobrzynski, P. Zieliński, A. Akjouj, and B. Sylla, “Simple acoustic 
multiplexer,” Phys. Rev. E, vol. 71, no. 4, 47601, 2005. 

[64] L. Solie, “A surface acoustic wave multiplexer using offset multistrip couplers,” 
in 1974 Ultrasonics Symposium, Milwaukii, Wisconsin, November 11-14, 1974. 

[65] C.-C. Chang, Y. Cho, L. V Wang, and J. Zou, “Novel micromachined silicon 
acoustic delay line systems for real-time photoacoustic tomography applications,” 
in 2013 SPIE BiOS, San Francisco, California, February 5-7, 2013. 

[66] “Onda Corporation.” [Online]. Available: ondacorp.com/tecref_acoustictable.html. 
Acessed: August 18, 2012. 



 

101 

 

[67] C.-C. Chang, Y. Cho, L. Wang, and J. Zou, “Micromachined silicon acoustic 
delay lines for ultrasound applications,” J. Micromechanics Microengineering, 
vol. 23, no. 2, 25006, 2013. 

[68] M. Xu and L. V Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. 

Instrum., vol. 77, no. 4, 41101, 2006. 

[69] M. Xu and L. V Wang, “Universal back-projection algorithm for photoacoustic 
computed tomography,” Phys. Rev. E, vol. 71, no. 1, 16706, 2005. 

[70] J. D. Aussel, A. Le Brun, and J. C. Baboux, “Generating acoustic waves by laser: 
theoretical and experimental study of the emission source,” Ultrasonics, vol. 26, 
no. 5, pp. 245–255, 1988. 

[71] B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic 
imaging system based on 320-element linear transducer array,” Phys. Med. Biol., 
vol. 49, no. 7, 1339, 2004. 

[72] J. T. Ylitalo and H. Ermert, “Ultrasound synthetic aperture imaging: monostatic 
approach,” Ultrason. Ferroelectr. Freq. Control. IEEE Trans., vol. 41, no. 3, pp. 
333–339, 1994. 

[73] C.-H. Weng, K.-Y. Lien, S.-Y. Yang, and G.-B. Lee, “A suction-type, pneumatic 
microfluidic device for liquid transport and mixing,” Microfluid. Nanofluidics, vol. 
10, no. 2, pp. 301–310, 2011. 

[74] T. S. Sammarco and M. A. Burns, “Thermocapillary pumping of discrete drops in 
microfabricated analysis devices,” AIChE J., vol. 45, no. 2, pp. 350–366, 1999. 

[75] T. K. Jun, “Valveless pumping using traversing vapor bubbles in microchannels,” 
J. Appl. Phys., vol. 83, no. 11, pp. 5658–5664, 1998. 

[76] M. K. Tan, J. R. Friend, and L. Y. Yeo, “Microparticle collection and 
concentration via a miniature surface acoustic wave device,” Lab Chip, vol. 7, no. 
5, pp. 618–625, 2007. 

[77] D. Baigl, “Photo-actuation of liquids for light-driven microfluidics: state of the art 
and perspectives,” Lab Chip, vol. 12, no. 19, pp. 3637–3653, 2012. 

[78] S. Arscott, “Moving liquids with light: Photoelectrowetting on semiconductors,” 
Sci. Rep., vol. 1, 184, 2011. 



 

102 

 

[79] S.-K. Fan, T.-H. Hsieh, and D.-Y. Lin, “General digital microfluidic platform 
manipulating dielectric and conductive droplets by dielectrophoresis and 
electrowetting,” Lab Chip, vol. 9, no. 9, pp. 1236–1242, 2009. 

[80] M. W. J. Prins, W. J. J. Welters, and J. W. Weekamp, “Fluid control in 
multichannel structures by electrocapillary pressure,” Science 12, vol. 291, no. 
5502, pp. 277–280, 2001. 

[81] F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. 

Condens. Matter, vol. 17, no. 28, R705, 2005. 

[82] W. C. Nelson and C.-J. “CJ” Kim, “Droplet actuation by electrowetting-on-
dielectric (EWOD): a review,” J. Adhes. Sci. Technol., vol. 26, no. 12–17, pp. 
1747–1771, 2012. 

[83] A. Nakajima, “Design of hydrophobic surfaces for liquid droplet control,” NPG 

Asia Mater., vol. 3, no. 5, pp. 49–56, 2011. 

[84] N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. 
Whitesides, “Generation of solution and surface gradients using microfluidic 
systems,” Langmuir, vol. 16, no. 22, pp. 8311–8316, 2000. 

[85] J. Zhong, M. Yi, and H. H. Bau, “Magneto hydrodynamic (MHD) pump 
fabricated with ceramic tapes,” Sensors Actuators A Phys., vol. 96, no. 1, pp. 59–
66, 2002.  

 



 

103 

 

APPENDIX 

CRYOGENIC REACTIVE ION ETCHING 

The cryogenic reactive ion etching process is used to achieve anisotropic etching 

for silicon substrate. The basic idea for anisotropic etching is to find the balance between 

trench side-wall passivation and trench bottom etching. In cryogenic etching, two 

process gases are used, which is SF6 and O2. SF6 provides F radical to etch the silicon, 

while the addition of oxygen gas in low temperature forms SiOxFy layer as a protective 

layer at the sidewall. Also, the low temperature reduces the chemical reactivity. The side 

wall, covered with protective layer, is less like to be attacked by the ion bombardment. 

On the other hand, the bottom is exposed to ion bombardment which removes the 

protective layer; therefore, the bottom is un-passivated and is attacked by the F radical, 

resulting anisotropic etching. Guidelines for the process control can be found in 

reference [60]. The process parameters are listed in table 4 and etching profiles are 

shown in table 5 and table 6. The reactive ion etching system is Oxford Plasmalab 100 

ICP System. 
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Table 4 Process recipe for through-wafer etching. 

Step Time 
(minute) 

Temperat
ure (o C) 

Chamber 
pressure 
(mTorr) 

RF 
power 
(W) 

ICP 
power 
(W) 

SF6 
(sccm) 

O2 
(sccm) 

He 
backing 
(Torr) 

Stable 
process gas 

5 -120 20 0 0 100 17 0 

Stable 
temperature 

5 -120 20 0 0 100 17 0.1 

Etch 60 (for 250 
m wafer) 
90 (for 300 
m wafer) 

-120 20 10 600 100 17 0.1 

Purge 5 -120 20 0 0 0 0 0 

 
Figure A.1 Etching for 40 minutes with different line width (unit: m). 

 

Figure A.2 Etching for 40 minutes with different trench width (unit: m). 
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Table 5 Etching profile with different O2 flow rate for 10 minutes. 

O2 flow rate (sccm) Profile Note 
10 

 

Isotropic etch, 
undercut 

15 

 

Vertical side wall 

16 

 

Vertical side wall 

17 

 

Vertical side wall 

18 

 

Black silicon 
formation 

20 

 

Black silicon 
formation 
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Table 6 Etching profile with different etch time. 

Etch time 
(minutes) 

20 40 60 

Profile 

   
Depth 
(m)/ 
Etch rate 
(m/min) 

79/3.95 147/3.67 221/3.68 

Side wall 
angle with 
respect to 
vertical (o) 

0 4 4 

 




