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ABSTRACT 

Bovine Respiratory Disease (BRD) is the leading cause of morbidity and 

mortality in the cattle feeding industry. High impact and cost of BRD necessitates 

development of preventative mechanisms to improve animal health, performance, and 

well-being and to augment the sustainability of beef production. Two potential 

mechanisms to prevent disease were investigated: through metaphylactic therapy (or the 

on-arrival mass medication of a group of high-risk cattle to control BRD) and through 

manipulation of dietary energy intake. 

A trial was conducted to determine the effects of on-arrival metaphylaxis in beef 

cattle for controlling BRD and the subsequent effects on health and performance. Male 

calves in a randomized complete block design (n=198) received ceftiofur crystalline free 

acid (EXC), tilmicosin phosphate (MIC), or were not treated (CON). Significant 

differences were not observed in morbidity rates (P = 0.14) between cattle on the MIC 

(46.4 ± 4.32%) or EXC treatments (56.5 ± 4.32%). Both the MIC and EXC treatments 

effectively reduced overall morbidity and delayed onset of clinical illness in newly 

received beef cattle. Furthermore, this reduction in overall morbidity was achieved with 

minimal increase in total antimicrobial usage. While overall performance outcomes were 

not different, animal health was improved with metaphylaxis. 

 A second trial was conducted to determine the effects of limit-feeding growing 

steers on immune function. Thirty-two steers were fed the same ration at one of three 

intake levels (low, medium, or high DMI). All steers were vaccinated on study d-0 with 

a five-way modified live vaccine, which acted as an immunological challenge to 
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measure immune function. Energy intake affected serum neutralizing antibody response 

to vaccines, and therefore overall immune function, in growing cattle. Future research 

should establish an ideal window of energy intake for growing cattle where both 

performance and health are optimized. 
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CHAPTER I 

INTRODUCTION AND REVIEW OF LITERATURE 

 

Introduction 

Bovine Respiratory Disease (BRD) is the leading cause of morbidity and 

mortality in the cattle feeding industry, affecting feedlot cattle almost five times more 

often than the next most commonly reported disease (USDA-APHIS, 2001). In 1999, 

feedlots in 12 states reported an average BRD incidence of 14.4% (USDA-APHIS, 

2000a), although 97.8% of cattle processed in a feedlot were vaccinated against BRD in 

the same year (USDA-APHIS, 2000c). Cost of treatment for a single case of respiratory 

disease in 2013 was $23.60 (USDA-APHIS, 2013). Accounting for production losses 

such as labor, decreased feed intake, and reductions in growth adds to the cost of BRD. 

Mortalities and chronically ill cattle that require multiple treatments push this cost 

estimate up. These costs far exceed the average cost of treating less common diseases 

such as lameness and digestive disorders. High impact and cost of BRD necessitates 

development of preventative strategies to improve animal health, performance, and well-

being, and to augment the sustainability of beef production. Two potential methods to 

prevent disease will be discussed: prevention through metaphylactic therapy (or the on-

arrival mass medication of a group of high risk cattle to control BRD) and through 

dietary manipulation.  
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Diagnosis of BRD is typically made by subjective observation. Cattle displaying 

symptoms are typically depressed or lethargic, have labored breathing or nasal 

discharge, and refrain from drinking or eating (Duff and Galyean, 2007). Cattle with 

prolonged cases of respiratory disease that go undiagnosed may begin to display 

emaciated body condition. Perino and Apley (1998) developed a scoring system to 

clinically describe BRD by a scoring an animal from 0 to 4 with increasing severity, 

where 0 describes a normal animal and 4 describes a moribound animal that is unable to 

rise. Scores of 1-3 describe increasing severity of animals that are depressed, weak, and 

have labored breathing or an altered gait. Such a scoring system is useful because it 

applies a quantitative approach to a subjective evaluation. They recommend animals 

assigned a clinical score ≥ 1 and have a rectal temperature ≥ 40°C be treated for 

respiratory disease. Duff and Galyean (2007) similarly recommend treatment when cattle 

displaying symptoms have a rectal temperature ≥ 39.7°C. Although treatment protocols 

differ between studies, cattle are typically treated for respiratory disease based on 

clinical observation and rectal temperature.  

Many factors contribute to BRD development, and pathogenic causes include 

both viral and bacterial agents (Callan, 2002). Newly arrived, lightweight cattle may 

experience various preweaning and postweaning stressors including transportation, 

management, and nutritional stress (Duff and Galyean, 2007). Stress negatively affects 

the immune system, measured by an increase in the total number of circulating white 

blood cells following transport, corresponding with an increase in plasma cortisol level 

(Murata et al., 1987). Increases in specific types of circulating white blood cells, such as 
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neutrophils, indicates that an immune response is occurring. Increases in plasma cortisol, 

a glucocorticoid secreted via the hypothylamic-pituitary axis, indicate that the animal is 

stressed, which may affect immune function. Swanson and Morrow-Tesch (2001) 

described in a review the immunological response to cattle transport stress and 

concluded that the immune system is suppressed during stress. Immune decline, in 

addition to commingling and exposure to pathogens, can increase the risk of BRD 

development. Although risk factors and stressors are well widely described, an industry-

wide definition of “high risk” cattle has not been made concrete. Using known attributes 

of an incoming group of cattle to assign a level of risk (i.e., expected percent morbidity) 

to the group. Feedlots most commonly base this prediction on distance traveled and 

shrink, or the amount of body weight lost during transport (USDA-APHIS, 2000b).  

Dry matter intake can decrease by up to 45% in morbid cattle, and it takes 10-17 

d for feed intake to return to normal once an animal has been successfully treated 

(Chirase et al.,1991). Previous research on BRD has shown that both DMI and ADG are 

good indicators of overall health in growing animals. Healthy calves have more frequent 

feeding bouts and spend 33% more time at the bunk than morbid calves (Daniels et al., 

2000). The same authors reported sick cattle lost weight, while healthy calves gained 

0.78 kg/d and were 20 kg heavier than sick cattle after 21 d; sick cattle lost 0.03 kg/d. 

Morck et al. (1993) reported that healthy cattle gained 16 kg more than cattle requiring a 

first treatment for BRD, and cattle requiring a first BRD treatment gained 14 kg more 

than cattle requiring additional BRD treatments. Blood et al. (1996) reported calves 

gaining 0 to 5% of initial body weight during the first treatment regimen were 2.7 times 
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less likely to be pulled for a second treatment compared to calves that lost weight. 

Additionally, sick cattle gaining more than 5% of their bodyweight after treatment were 

11 times less likely to be repulled than cattle losing weight. Regarding ADG as an 

indicator of BRD, the Texas A&M Ranch to Rail program reported that animals 

suffering from health complications during the finishing period gained an average of 1.2 

kg while healthy animals gained 1.4 kg (McNeill, 2000). Although a definitive test does 

not exist for the diagnosis BRD, DMI and ADG may provide indicators of an animal’s 

overall health. 

 Once an animal becomes sick with BRD, the economic costs can carry through to 

harvest. Gardner et al. (1999) reported that final body weight for steers diagnosed and 

treated for BRD during the finishing period averaged 9 kg less compared to healthy 

cattle, resulting in 7.5 kg lighter hot carcass weight. Additionally, cattle with active lung 

lesions and active lymph nodes at harvest (indications that respiratory disease was 

occurring at harvest) had 27.9 kg lighter HCW and 1.8% lower dressing percentage. This 

suggests that illness during life can negatively affect the value of animal even after 

harvest. 

There are many economic incentives to prevent BRD. In 2000, the Texas A&M 

Ranch to Rail program reported the leading cause of death to be pneumonia at 67% of 

mortalities. Morbid steers in the study returned an average of $123.86 less than healthy 

cattle. Only $26.78 of this reduction came from medicine and treatment costs, while 

$97.08 was lost due to reduced efficiency and overall animal performance (McNeill, 

2000). Permanent changes in the animal following BRD coupled with a decrease in 
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animal value imply that prevention of BRD is more beneficial than treatment once the 

animal becomes ill.  

Diagnosis of respiratory disease 

Recent advancements in technology may allow for either early detection or a 

more quantitative approach to predicting and diagnosing BRD. Ideally, a chute side test 

would be available to ascertain the risk of an individual animal developing BRD. 

Alternatively, quantitative assessment could be developed to determine if metaphylaxis 

would be economically beneficial in a specific group of cattle. Multiple challenges have 

inhibited development of metaphylactic thresholds or decision points, despite the 

inherent value of such a tool to the beef industry. An initial challenge is identifying the 

causative agents for BRD, a complex viral and bacterial disease that is impacted by 

various environmental factors. Bacterial pathogens found to contribute to BRD include 

Mannheimia (Pasteurella) haemolytica and Mycoplasma bovis (Ellis, 2001; Confer, 

2009). A second challenge is the lack of an industry definition for “high risk” or a more 

exact way to quantify a percentage of cattle within a group that will get BRD. Finally, 

even when BRD is treated therapeutically, it is almost impossible to verify BRD. Such 

challenges, and a need for a more accurate way to diagnose BRD, have made it difficult 

to decide whether metaphylaxis should be used in a specific group of animals. 

Narrow spectrum antibiotics targeting specific bacterial species are typically 

more effective, and minimize the chance of broad antimicrobial resistance, according to 

the United States Food and Drug Administration (2014). Therefore, identifying the 

pathogen or causative agent of BRD symptoms within a specific group of cattle is 
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advantageous, allowing for specificity of treatment. Laboratory tests performed on nasal 

or transtracheal swabs or blood samples are feasible for identifying a specific causative 

agent of BRD (DeRosa et al., 2000). However, the isolates often can only be detected in 

an acutely ill animal; therefore, this information may act as a diagnostic tool but not as a 

means of prediction. Additionally, some level of these pathogens may reside in healthy 

animals not having succumbed to the previously described stressor. Therefore, isolation 

of such pathogens may not be enough to confirm BRD. These and other tests are rarely 

used in practice due to slow reporting time, high cost, and inaccuracies. Therefore, using 

a broad spectrum antibiotic is typically the preferred method of treatment as pinpointing 

a specific causative agent to treat the disease is not currently feasible. 

Subjective diagnosis of BRD has long been called into question. Wittum et al. 

(1996) reported that in a group of 469 feedlot steers, 35% were treated for respiratory 

disease at some point between birth and slaughter. However, 78% of treated and 68% of 

untreated cattle had pulmonary lesions at slaughter, indicating that BRD, especially 

subacute BRD, may be more prevalent than previously considered. Additionally, cattle 

that had pulmonary lesions also had a 0.08 kg reduction in ADG. This is similar to the 

results of Schneider et al. (2009), who reported that 8.2% of cattle were treated for BRD 

during the feeding period, while 61.9% had lung lesions at the time of harvest. This is a 

particularly important consideration if cattle are being sold on a carcass merit basis 

rather than a live basis, thereby further increasing the value of both disease prevention 

and rapid treatment.  
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Chute-side technology with the ability to accurately and rapidly diagnose BRD 

would have tremendous value. Allen et al. (1991) used nasopharyngeal swabs and a 

bronchoalveolar lavage via an endoscope into the trachea to isolate bacteria from live 

cattle. These observations were used to assign a risk level for developing BRD. 

Respiratory tracts of sick cattle harbored more species of bacteria than BRD free cattle. 

However, this was not statistically significant, indicating such a test may not lead to an 

accurate diagnosis. Pasteurella multicoda and Mannheimia haemolytica were isolated 

more frequently from the respiratory tracts of cattle showing symptoms of BRD than 

from non-morbid animals. In contrast, DeRosa et al. (2000) suggested potential for 

efficacy of the nasal swab procedure, reporting that transtracheal and nasal swabs that 

were bacteriologically positive identified the same bacterial species 96% of the time. 

Matched pairs were genetically identical 70% of the time. Accordingly, nasal swab 

cultures can successfully identify the causative agent of BRD in a specific calf 70% of 

the time. Bacteria most frequently isolated were Manheimma haemolytica and 

Pasteurella multicoda. Among the M. haemolytica isolates, all but 2.1% of the isolates 

were from the same two ribotype profiles, suggesting its involvement in the cause and 

transmission of BRD. Isolated bacteria from other isolates in this study almost always 

had different ribotypic profiles, meaning that they were genetically different, yet they 

were similarly susceptible to each antibiotic tested. In vitro susceptibility of each 

bacteria isolated to a certain antibiotic resulted in similar susceptibilities for ceftiofur 

and tilmicosin regardless of bacteria ribotype, securing the place of each product in the 

broad spectrum category. The weakness of the process, however, lies in that the 



 

8 
 

nasopharyngeal and bronchial swabs were only able to detect bacteria from acutely sick 

animals, meaning that such a method can be used as a diagnostic tool but not as a 

predictor of morbidity risk. 

Decreasing antimicrobial use is a widely discussed topic. The World Health 

Organization (WHO) in 2011 created a list of antimicrobials ranked by their importance 

in human medicine. They concluded that the four most important classes of antibiotics in 

human medicine were fluoroquinolones, third and fourth generation cephalosporins, and 

macrolides. Each of these classes includes an antimicrobial that is currently used in 

veterinary medicine to control or treat BRD. Previously, WHO (1998) expressed concern 

regarding antibiotic use in food animals, specifically fluoroquinolone antibiotics. 

Enrofloxacin, a bactericidal antibiotic in the fluoroquinolone class, is used to treat BRD 

by destroying causal bacteria and has been reported to be more cost effective and more 

efficacious in preventing BRD relapses and mortalities than ceftiofur (Abutarbush et al., 

2012), making this an important antibiotic class for treating BRD. In 2011, the federal 

Food and Drug Administration reported that cephalosporins were the second most 

commonly reported class of antibiotic sold in the United States (FDA, 2010). Excede, a 

product discussed below with the active ingredient ceftiofur crystalline free acid, is 

classed as a second or third generation cephalosporin.   

Theoretically, if the predicted level of morbidity and treatment failure rates in a 

group of arriving cattle is expected to be high, the possibility may exist to decrease total 

antimicrobial use by controlling an outbreak of BRD. Therefore, it stands to question 

whether less total antimicrobials are used in metaphylactic therapy, or in highly stressed 
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cattle that do not receive metaphylaxis and must be treated when subsequent illness 

occurs. Research is also needed to determine a definition for exactly how high of 

percentage morbidity would be required for the total antimicrobial use in a negative 

control group to exceed that of a metaphylaxis group, or if such a decrease is even 

possible. Additionally, if a specific class of antimicrobial could be ranked as “less 

important” in human medicine, potential would exist to develop a protocol to treat BRD 

that minimizes use of antibiotics that are critical to human medicine.  

Metaphylaxis  

Metaphylaxis is the on-arrival mass medication of a group of highly stressed, 

newly received calves for the control of BRD. When deciding to use metaphylaxis, the 

level of disease risk must be sufficient to offset the initial cost. As it is impossible to 

predict exactly how many cattle will become sick without metaphylaxis, evaluating 

incoming cattle and assessing if metaphylaxis will be advantageous is a challenge. A 

group of cattle can be assessed and a level of risk established based on the known “risk 

factors” previously outlined. From these parameters, an estimated prediction of BRD 

morbidity is derived. 

To create a basis for knowledgeable decision making, literature regarding the 

efficacy of tilmicosin phosphate or ceftiofur crystalline free acid as metaphylaxis 

products to reduce BRD morbidity was collected. Basic principles in studies discussed in 

this review include the use of a “morbidity score” as a basis for determining health of 

individual animals and treating animals with a rectal temperature ≥ 39⁰C. This follows 

the proper study design for clinical feedlot trials to minimize observational bias (Perino, 
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1998). It is important to follow these guidelines for multiple reasons: to minimize 

observational bias when deciding to pull and treat morbid cattle and to create a sound 

trial design that can be utilized when looking at data across multiple metaphylaxis 

studies. Existent data using tilmicosin phosphate or ceftiofur crystalline free acid are not 

homogeneous in that data collection differs between studies. For example, studies use 

different threshold for treatment, while others use divergent dosages. Additionally, there 

is no standard for moratorium periods, the amount of time following metaphylaxis 

before an animal can be treated for BRD symptoms. Moratorium periods range from 1 to 

8 d. Differences in protocol affects both the total morbidity and number of d until peak 

morbidity is observed in treatment groups, making comparisons across data sets difficult.  

Although previously collected metaphylaxis data is heterogeneous, value exists 

in consolidating existent data and predicting a result of using a specific metaphylactic 

product on newly received beef calves. For the purpose of this review, results of twelve 

studies using tilmicosin phosphate and six studies using ceftiofur crystalline free acid 

were consolidated and used to create a prediction equation for morbidity reduction when 

either of these products is utilized for metaphylaxis. Criteria for inclusion were that the 

study must include a negative control (or untreated group) to provide a baseline for 

evaluation of percentage change in morbidity. Each of the studies included used either a 

6.6 mg/kg dose of ceftiofur crystalline free acid, or a 10 mg/kg dose of tilmicosin 

phosphate. Morbidity (%) from each study was plotted as the percentage improvement in 

the treatment group over the negative control group in the same study. Results for 

tilmicosin phosphate are displayed in Figure 1.1, using 12 studies. Only 6 studies using 
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ceftiofur crystalline free acid were available, therefore the line could be more robust if 

future research continues to test the efficacy of this product (Figure 1.2).  

For the purposes of these models, morbidity is defined as an estimation of a 

percentage of cattle that will become ill with respiratory disease. Previously specified 

risk criteria for newly received cattle may allow for an approximation of morbidity or 

internal data may be used to predict morbidity. Once a prediction of expected morbidity 

has been made, the percentage reduction in morbidity if metaphylaxis using tilmicosin 

phosphate or ceftiofur crystalline free acid is implemented can be calculated (Figures 1.1 

and 1.2). Calculation of percentage reduction in morbidity allows the subsequent 

calculation of the medicinal cost of a particular group of cattle, which may be contrasted 

with the cost of metaphylaxis. This series of calculations allows a producer to make the 

most informed decision possible. Additional data would allow more accurate prediction 

by including treatment failure rates, or the percentage of cattle that would require 

treatment multiple times. Additional data would also allow similar decision support tools 

to include performance improvements and total antibiotic usage to provide a more 

accurate decision support system when choosing whether to implement metaphylaxis 

and what specific products to use. 
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Figure 1.1: Percentage reduction in morbidity for cattle given a tilmicosin phosphate injection on arrival, compared to a 

negative control (untreated) group. 
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Figure 1.2: Percentage reduction in morbidity for cattle given a ceftiofur crystalline free acid injection on arrival, compared to 

a negative control (untreated) group 
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Response to tilmicosin phosphate vs. ceftiofur crystalline free acid 

Reduction in morbidity is well documented in newly received cattle provided 

either ceftiofur crystalline free acid or tilmicosin phosphate on arrival. Current literature 

does not consistently support an improvement in the performance of growing cattle due 

to the implementation of a metaphylactic regimen.  

Due to longer-standing FDA approval and earlier release to the market, more 

published data exists for tilmicosin phosphate than for ceftiofur crystalline free acid. 

Bremer et al. (2007) compared ceftiofur crystalline free acid when given either on-

arrival or at revaccination 16-27 d following arrival. Incidence of BRD was highest 

when cattle were given ceftiofur at revaccination, although only 2.8% higher than the 

negative control group. Cattle given ceftiofur on-arrival had the lowest morbidity, 4.7% 

versus 11% for the negative control. However, there were no differences between any 

treatment group in ADG or final BW. Ceftiofur crystalline free acid was most effective 

at controlling BRD when given on-arrival. Mass-medication with ceftiofur at 

revaccination was most likely ineffective because cattle had already experienced 

morbidity due to BRD prior to being given ceftiofur. Also in this study, cattle with 

lighter initial BW were more likely to be subsequently diagnosed with BRD, suggesting 

initial BW is a risk factor worth considering higher risk.  

Benton et al. (2008) reported that a ceftiofur crystalline free acid injection on 

arrival compared to a negative control group decreased BRD morbidity from 12.5% to 

4.4%. Cattle given the ceftiofur injection had a 0.07 kg greater ADG compared to the 

negative control; final body weight and feed efficiency were not affected. Maximum 
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number of first treatment BRD pulls occurred between 0-10 d after arrival for the 

negative control group, while the ceftiofur group expressed peak BRD symptoms 

between d-21-25. However, this may have been affected by an 8 d moratorium period 

for the group that received ceftiofur on-arrival.  

Encinias et al. (2006) reported that a ceftiofur crystalline free acid injection on 

arrival compared to a negative control reduced morbidity from 85.1% to 35.8%. 

Furthermore, ADG of the treated group tended to be greater than the control group by 

0.22 kg. Johnson et al. (2008) tested ceftiofur crystalline free given on-arrival, prompted 

by pen morbidity, prompted by a decline in feed intake, or on-arrival compared to a 

negative control group. Ceftiofur on-arrival did not change ADG or efficiency. 

However, morbidity was reduced by 15%, from 42 to 27%. This study included a cost 

analysis on each treatment group and a numerical reduction in mortality (from 3.4 to 

0.9%) was not a sufficient reduction to make on-arrival metaphylaxis more cost effective 

than treatment based on displayed BRD symptoms. However, this result was calculated 

using treatment product and cattle costs in 2006, and the same result may not be 

obtained using these costs today. Additionally, total antimicrobial use was greater in 

cattle given ceftiofur on-arrival. Each of these studies used the same dose of ceftiofur 

crystalline free acid, 6.6 mg/kg of BW. Although there is a clear reduction in morbidity 

when ceftiofur crystalline free acid is administered on-arrival, more research is needed to 

determine the direct effects of an on-arrival injection of ceftiofur crystalline free acid on 

performance of growing cattle. 
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Tilmicosin phosphate has been used in production settings for longer than 

ceftiofur crystalline free acid and therefore more published data are available. As 

discussed previously with ceftiofur crystalline free acid, the ideal timing of metaphylaxis 

to control BRD has been tested. In two studies comparing tilmicosin phosphate given 

either prior to shipping or on-arrival, Duff et al. (2000) reported conflicting results. In 

one study, morbidity was 1.7% less when cattle were given tilmicosin phosphate pre-

shipping as compared to on-arrival, while the second study reported that a pre-shipping 

tilmicosin injection resulted in 11.2% greater morbidity. Overall, both studies reported a 

significant decrease in the on-arrival treatment as compared to the negative control 

group (25% and 32.5%, respectively). Although the results were variable, they imply 

that pre-arrival mass medication with tilmicosin phosphate was equal or less effective as 

on-arrival medication. Frank and Duff (2000) similarly reported variable results between 

cattle given tilmicosin phosphate pre-shipping or on-arrival, compared to a negative 

control. Cattle given tilmicosin phosphate pre-shipping in the first study had a 5% 

reduction in morbidity while pre-shipping injection resulted in an 11% greater morbidity 

in the second study. Similar to Duff et al. (2000), these studies showed that on arrival 

metaphylaxis resulted in a 22% or 32% reduction in morbidity as compared to a negative 

control group. Both results imply that tilmicosin phosphate, when given as metaphylactic 

therapy for the control of BRD, is most effective when given on-arrival. 

Tilmicosin phosphate has also been investigated for use post-arrival. Klemesrud 

et al. (1997) compared a negative control group to groups receiving tilmicosin phosphate 

on-arrival or 6 d following arrival. The authors reported that morbidity did not differ 
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when cattle were treated on-arrival (13%) or on day 6 (14%). However, increased labor 

costs and increased animal stress associated with bringing the cattle up for treatment on 

d-6 make this an undesirable process. The authors also reported that on-arrival 

medication decreased morbidity by 9% compared to the negative control group. 

Similarly, Schumann et al. (1991) compared tilmicosin phosphate given on-arrival or 3 d 

following arrival to a negative control group. On-arrival medication resulted in a 

reduction of morbidity from 20% in the negative control group to 2%, while morbidity 

for the group given tilmicosin 3 d later was reduced to 1%. Both of the medicated groups 

had 0.18 kg greater ADG compared to the negative control, resulting in a 10.5 kg greater 

BW at the end of the 60 d feeding period. These results also suggest that on-arrival 

treatment is the “ideal” option. 

 Two studies compared treatment with injectable tilmicosin phosphate on-arrival 

to a negative control group (Galyean et al., 1995). In one of these trials, morbidity was 

reduced from 46.4% to 0% when cattle were housed in confinement pens. Both ADG 

and DMI were unaffected by the on-arrival injection. The other study housed cattle on 

pasture, where tilmicosin led to a decrease in BRD from 32.8% to 12.1%. Again, ADG 

was unaffected by tilmicosin phosphate. Brazle et al. (1997) also reported a decrease in 

morbidity when tilmicosin phosphate was given on-arrival to both bulls (15.8%) and 

heifers (25.3%). Tilmicosin phosphate led to 6.9% decrease in bull and a 5.4% decrease 

in heifer mortality. However, in contrast to Galyean et al. (1995), this study reported that 

ADG was 0.08 kg higher when heifers were given metaphylaxis with tilmicosin 

phosphate, although the ADG for bulls was not different. Final BW was not reported in 



 

18 
 

 

the study results but would be the best indicator of whether this increase in ADG was 

worth the cost of metaphylaxis. 

Daniels et al. (2000) compared metaphylaxis using tilmicosin phosphate or 

florfenicol to a negative control group. Statistical analysis was not completed to directly 

compare the tilmicosin group to the negative control; however, they reported a 16.3% 

decrease in morbidity and a 3.5% reduction in mortality over the negative control group 

when tilmicosin phosphate was used. Average daily gain was improved by 0.15 kg. The 

control group had higher percentage morbidity and mortality compared to the combined 

metaphylaxis groups; however, no significant differences were observed in any of these 

parameters when tilmicosin phosphate was compared to florfenicol. Healthy calves in 

the study gained 0.78 kg/d more and were 20 kg heavier than sick cattle after 21 d, while 

sick cattle lost weight on average. Accordingly, increased performance after 

metaphylaxis administration may be the result of an improvement of overall health status 

as opposed to a direct result of the product, as healthy cattle tend to perform better than 

morbid cattle.  

Morck et al. (1993) compared tilmicosin phosphate or oxytetracycline given on-

arrival with a negative control and reported that morbidity decreased by 22% when 

tilmicosin phosphate was used and by 14% when oxytetracycline was used. Average 

number of d to first treatment was extended from 10.5 to 14.5 d when tilmicosin was 

given compared to a negative control. Cattle that remained healthy throughout the study 

gained 16 kg more than cattle requiring a first BRD treatment. Additionally, cattle 

requiring first BRD treatment gained 14 kg more than cattle requiring further BRD 
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treatment. Cattle administered tilmicosin gained 4 or 6 kg more than cattle in the 

negative control group or cattle given oxytetracycline, respectively. Tilmicosin 

phosphate was more efficacious than oxytetracycline when used as a metaphylactic 

product for the control of BRD morbidity, although it is important to consider that 

tilmicosin phosphate is generally more expensive. 

Guthrie et al. (2004) reported that morbidity decreased from 56% to 25% when 

tilmicosin phosphate was used for metaphylaxis. There was no difference in treatment 

failure rates between the metaphylaxis and control groups, meaning the retreatment or 

repull rate for cattle already treated once for BRD were similar between the two groups. 

Although they reported no significant difference in DMI or efficiency, cattle given 

metaphylaxis gained approximately 0.08 kg/d more than the negative control for the first 

102 d of the study. Similarly, Schumann et al. (1990) reported that cattle given 

metaphylaxis gained 0.21 kg per day more than a negative control group, and that feed 

efficiency was improved by 18%. Vogel et al. (1998) also reported a 0.11 kg increase in 

ADG when tilmicosin phosphate was given on-arrival compared to a negative control, 

resulting in 21.8 kg heavier final BW after the 211 day feeding period. Additionally, this 

study reported a 6% improvement in feed efficiency in the tilmicosin on-arrival group. 

All of the studies discussed used tilmicosin phosphate at 10 mg/kg BW dose. 

Few studies have directly compared the efficacy of tilmicosin phosphate and 

ceftiofur crystalline free acid. Booker et al. (2006) compared ceftiofur crystalline free 

with either a 3 or 7 day moratorium period to tilmicosin phosphate with a 3 day 

moratorium period. Initial BRD treatment rate did not differ in cattle given ceftiofur or 
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tilmicosin on-arrival and eligible to be treated for BRD 3 d after arrival. However, BRD 

mortality was 2.9% higher and overall mortality was 3.5% higher in the tilmicosin group 

compared to the ceftiofur group that underwent a 3 day moratorium.  Feed efficiency did 

not differ between treatment groups; however, ADG was 0.3 kg greater in the ceftiofur 

group. Step et al. (2007) also reported no significant difference between cattle treated 

with ceftiofur or tilmicosin on-arrival for morbidity or ADG. Both of these studies did 

not include a negative control group, making it difficult to determine a baseline level for 

morbidity or to compare these studies to other metaphylaxis studies using this product. 

Because of this, these studies were not included in the regression analysis previously 

discussed.  

Each of the studies discussed suggests that a reduction in morbidity can be 

expected when cattle are given metaphylaxis with either of these products, while data 

demonstrating performance improvements due to the administration of these products is 

limited. However, there are known benefits to performance, carcass quality, health costs, 

and animal well-being when disease is avoided (Larson, 2005). Future research 

regarding metaphylaxis should produce an industry standard definition for “high-risk” 

and continue to research means to decide when metaphylaxis is economically 

advantageous for a specific group of cattle.   

Energy concentration in growing cattle diets 

Beef cattle that undergo multiple stressors, such as transport and commingling, 

are at risk of becoming morbid (Duff and Galyean, 2007). Currently, it is unknown 

whether receiving diet contributes to stress and thereby negatively affects immune 



 

21 
 

 

function (Galyean, 1999). Although dietary energy is required for the immune system to 

function properly (Tizard, 2004), limited data has shown that excess dietary energy 

could also lead to a compromised immune system (Galyean, 1999). Nutritional 

manipulation may therefore provide a non-invasive strategy for mitigating disease and 

improving animal health.  

When young, lightweight cattle (typically 400-550 lb) arrive at a feedyard or 

backgrounding operation, emphasis is typically placed on growth (Peel, 2003). In order 

to accomplish this growth, these cattle may undergo an increase in dietary energy 

concentration, either as a supplement to forage or as a total mixed ration in a 

confinement setting. High-energy diets consist of readily fermentable carbohydrates that 

may act as an additional stressor and suppress immune function (Owens et al., 1998). 

Vasconcelos and Galyean (2007) reported the average NEg concentration of a finishing 

diet to be 1.5 Mcal/kg, which they say reflects low roughage concentration. There are 

three potential ways that energy  acts as a stressor: 1) level of ME intake (Mcal/d), 2) 

concentration of ME (Mcal/kg), or 3) source of ME (starch versus fiber).  

 Diet manipulation during the growing phase may provide a simple and non-

invasive approach to improve animal well-being, while reducing antibiotic use and the 

cost of treating sick animals through BRD prevention. Research is needed to determine 

if receiving period nutrition can be manipulated for the optimization of both animal 

health and performance. A recent and so far under-investigated management strategy to 

prevent immune suppression is to limit dietary energy during the growing phase, 

potentially alleviating an additional stress during the receiving period. If limiting dietary 
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energy intake or concentration is found to decrease incidence of disease, additional 

savings may be realized through lower feed costs during the receiving period. 

Energy restriction in multiple species has been related to improved immune 

function. In aged rodents, caloric restriction increased lymphocyte proliferation and 

expression of interleukin-2 (IL-2) as compared with rats fed energy ad libitum 

(Pahlavani, 2000). This is important because IL-2 is a cytokine signaling molecule that 

regulates lymphocyte proliferation, and lymphocytes are responsible for the immune 

system’s response to a specific infection. Binding activity of nuclear factor of activated 

T-cell transcription, a component in IL-2 transcription, also increased in calorie 

restricted rats. Stabel et al. (2003) naturally infected dairy cows with Myobacterium 

paratuberculosis while feeding either an ad libitum diet or an ad libitum diet plus 

additional energy added through a ruminal cannula. Control cows not receiving 

supplemental energy had greater lymphocyte proliferation responses to all T cell 

mitogens studied, suggesting an increase in immune response over cattle receiving 

higher energy levels. In beef cattle, Lofgreen et al. (1981) reported that cattle fed a 75% 

concentrate diet tended to have more total sick d than those fed hay alone (324 vs. 248 d, 

respectively). This data suggests a relationship between dietary energy intake and 

immune function. 

Restricted dietary energy during the growing phase has minimal impact on 

finishing performance or the final carcass characteristics, and potentially improves 

efficiency during the finishing phase (Felix et al., 2011). Steers were fed to gain 0.9 or 

1.4 kg of BW/d from diets containing 65% of either dried distillers grains with solubles 
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or corn during the 98 d growing phase. During the finishing phase, cattle that were limit 

fed (fed to gain 0.9 kg BW/d) from either energy source grew 14% faster and were 8% 

more efficient than cattle fed to gain 1.4 kg BW/d. Cattle that were limit fed also had 

0.105 cm decrease in backfat and a decrease USDA yield grades, and a 2.5 cm2 greater 

longissimus muscle area. Limit feeding energy during the growing phase, regardless of 

source, may positively impact finishing performance and carcass characteristics. 

Few studies have been designed to investigate if changes in energy intake are 

connected with morbidity. Results regarding source of energy have been variable. Calves 

fed 38% of ME from starch had a 9% lower morbidity rate and tended to require fewer 

antimicrobial treatments than calves fed 48% of ME from starch when ME 

concentrations were the same (Berry et al., 2004b). However, there was no morbidity 

change when calves were fed a high or low energy diet, implying that source of energy 

may play a larger role in immunological changes than energy concentration.  

The immunological competence of a specific animal may be quantified when 

exposed to an immunological challenge. Individual acute phase protein responses are 

measured to model variation in disease response between animals. In a study limit-

feeding the same high concentrate diet and evaluating breed differences in acute phase 

protein response to an endotoxin challenge, dietary energy restriction affected rectal 

temperatures, serum cortisol concentration, and TNF-α concentration independent of 

breed (Carroll et al., 2011). Endotoxin challenge may have caused a redistribution of 

dietary energy to the immune system, thereby decreasing the dietary energy available to 

be used for performance (such as gain). Because the authors did not measure 
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performance responses after the challenge, it is difficult to determine if limit feeding the 

steers was detrimental to their immunological response due to this redistribution of 

energy. An inclusion of the time required to return to performance parameters equivalent 

to before the challenge would determine if limit-feeding the steers negatively affected 

their ability to elicit an immunological response.   

Humoral immunity is a subdivision of acquired immunity that is mediated by the 

secretion of antibodies from B lymphocytes to defend against a specific antigen (Tizard, 

2004). Exposure to antigens, as occurs during vaccine administration, helps an animal 

acquire humoral immunity. Theoretically, interference with this acquisition due to diet or 

other stress factors would interfere with vaccine efficacy. Many of the studies discussed 

are based on measuring humoral immunity through lymphocyte-derived cytokines. To 

our knowledge, no data have been published to quantify effects of divergent energy 

levels on the humoral immune response of growing cattle through antibody response, 

specifically immune response to a vaccine. Doing so would provide insight into the role 

of nutrition on vaccine efficacy, as well as contribute to the body of knowledge 

suggesting that dietary energy concentration could affect the immune system. 

Limited research has suggested that humoral immunity and diet may be linked. 

Chen et al. (2013) described immune response in diet-induced obese (DIO) mice. Mice 

fed a high calorie diet had increased concentrations of the pro-inflammatory cytokines 

tumor necrosis factor-α and interferon-γ after immunocytes were cultured with the 

mitogens lipopolysaccharide and concanavalin A. An increase in production of these 

cytokines is a known trigger for inflammation and generally symbolizes a suppressed 
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humoral immune response. Additionally, when both groups were given a Hepatitis B 

(HB) vaccine, anti-HBs antibody production was significantly less in DIO mice that 

were still receiving a high-calorie diet compared to control mice. Antibody production 

was still significantly less than control mice when vaccine dose was doubled in DIO 

mice. These findings indicate that both cellular and humoral immune responses are 

affected by high calorie diets and obesity. Further research is needed to gain insight into 

the direct effect of the high calorie diets on the immune system.  

Energy concentration in growing rations can affect all phases of beef cattle 

production, from growing and finishing to carcass quality. Too little dietary energy 

intake is known to negatively affect the immune system (Tizard et al., 2004), while 

research is not sufficient to conclude if too much dietary energy could also carry 

negative effects. Current research is also not sufficient to make a conclusion about the 

ideal window of energy concentration during the growing phase to optimize both cattle 

performance and cattle health during both the growing and finishing phases. If an 

optimal window could be found, benefits would be seen from both an economic 

standpoint and an animal health standpoint. 
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 CHAPTER II 

EFFECT OF METAPHYLAXIS ON PRODUCTION RESPONSES AND 

ANTIMICROBIAL USAGE IN HIGH-RISK STEERS 

 

Overview 

  A trial was conducted to determine the effects of on-arrival metaphylaxis in beef 

cattle for controlling bovine respiratory disease (BRD) and determining subsequent 

effects on health and performance. Male calves in a randomized complete block design 

(n=198, arrival weight= 231 kg ± 2.4) received either 3.3 ml/100 kg (6.6 mg/kg) 

ceftiofur crystalline free acid (EXC), 4.4 ml/100 kg (13.2 mg/kg) tilmicosin phosphate 

(MIC), or were not treated (CON). Cattle receiving metaphylaxis had 25.2% lower 

morbidity rates than CON (P = 0.01; 51.5 versus 76.7%). Significant differences were 

not observed in morbidity rates (P = 0.14) between MIC (46.4 ± 4.3%) or EXC 

treatments (56.5 ± 4.3%). Of cattle requiring BRD therapy, the CON group displayed 

symptoms approximately 5 d earlier than cattle in the metaphylaxis group (P = 0.01). 

Cattle displaying BRD symptoms in the MIC group required treatment 3 d earlier than 

those in the EXC group (P = 0.02, 8 versus 12 d, respectively). Metaphylaxis improved 

ADG (1.63 versus 1.28 kg/d; P = 0.06) and G:F (0.29 versus 0.22, P = 0.01) during the 

first 14 d compared to CON, but differences between EXC and MIC were not significant 

(P > 0.40) during the first 14 d. Despite differences at 14 d, no differences were 

observed in ADG (P = 0.20) or G:F (P = 0.18) between CON and treatment groups 
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across the 42 d trial. Total antimicrobial usage was 6.03 vs. 6.16 of g active ingredient 

per animal for CON vs. metaphylaxis (P = 0.88), and 5.99 vs 6.33 for MIC vs EXC (P = 

0.74). These results suggest that both tilmicosin phosphate and ceftiofur crystalline free 

acid effectively reduce overall morbidity and delay onset of clinical illness in newly 

received beef cattle. Furthermore, this reduction in overall morbidity was achieved with 

minimal increase in total antimicrobial usage. While overall performance outcomes were 

not different, animal health was improved with metaphylaxis.  

Introduction 

Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality 

in feedlots in the United States (NAHMS, 2013). An estimated 16.2% of cattle placed in 

feedlots experience symptoms of respiratory disease at some point in the feeding period. 

Of the cattle displaying symptoms, 87.5% are treated, increasing the costs associated 

with BRD. Dry matter intake decreases of 50% or more are reported in cattle with BRD 

and it takes 10-14 d to return to normal following treatment (NRC, 2000). Post weaning 

transportation stress, receiving period management, and nutrition coupled with pre-

weaning management and nutrition may each play a role in the development of this 

disease (Duff and Galyean, 2007). 

Metaphylactic therapy is on-arrival mass medication of a group of newly 

received calves for the control of BRD. Several factors contribute to the development of 

BRD, including viral and bacterial agents. The bacterial species most commonly 

associated with BRD is Manheima (Pasturella) haemolytica (R.J. Callan et al., 2002). 
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Both ceftiofur crystalline free acid and tilmicosin phosphate are labeled for control of 

BRD associated with this species.  

Metaphylactic therapy is often an effective means of decreasing BRD incidence 

in a group of highly stressed, newly received calves (Duff and Galyean, 2007). 

Tilmicosin phosphate on arrival resulted in a 22% lower morbidity rate and an 18% 

increase in ADG in one group as compared to a negative control (Galyean et al., 1995). 

Ceftiofur on arrival compared to a negative control decreased BRD morbidity by 14% 

(Johnson et al., 2008). Our objective is to evaluate the effects of tilmicosin phosphate 

and ceftiofur crystalline free acid on morbidity and performance of newly received 

cattle. We will also evaluate the effects of these metaphylactic products on total 

antimicrobial usage and animal health and well-being.  

Materials and methods 

 The experimental protocol was approved by the Institutional Animal Care and 

Use Committee at Texas A&M University. 

Three treatments were evaluated in a receiving cattle system:  1) control 

receiving no arrival treatment (CON), 2) ceftiofur crystalline free acid (Excede, Pfizer 

Animal Health) on arrival at 6.6 mg/kg (EXC), 3) tilmicosin phosphate (Micotil, Elanco 

Animal Health) on arrival at 13.2mg/kg (MIC). Doses were selected to provide a cost-

neutral evaluation of each product, and both doses fall within the labeled range for 

effectiveness. Male calves (n=198) were purchased from an order buyer in Caldwell, 

Texas and shipped to the Texas A&M Agrilife Research Beef Cattle Systems Center, 

Burleson County, Texas. Twenty-four bulls were included in the study; the remaining 
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174 cattle were steers. Cattle were shipped by truck in two groups with each group 

arriving 14 d apart, the first 91 cattle arrived on February 26 and the remaining 107 

arrived on March 12, 2013. Arrival weights ranged from 223 to 239 kg, with an average 

of 231 kg. Cattle were stratified by weight and randomly assigned a treatment such that 

each treatment group had a similar average pen weight. Each treatment group was 

randomly assigned to a pen, for a total of 12 pens and 4 replications per treatment. 

Animal health personnel and the veterinarian were blind to treatments. Housing facilities 

were open air, dirt floor pens, 10 measuring 10 × 20 m and 2 measuring 12 × 26 m. 

Cattle arrived in the late afternoon and were allowed to rest overnight in the pens. On the 

following day, cattle underwent initial processing where they were identified by a 

number with an eartag (tag did not indicate treatment to prevent bias).  Cattle received 

MIC or EXC. They were then vaccinated with labeled dosage of: a 7-way clostridial 

(Barr-Vac 7, Boehringer Ingelheim) and a modified live virus vaccine (Pyramid 5) and 1 

mL/50kg Moxidectin (Cydectin, Boehringer Ingelheim) and were implanted with a 

Component TEG with Tylan implant (Elanco Animal Health). A consulting veterinarian 

visited once weekly to assess overall health and confirm correct diagnosis of BRD 

symptoms. 

  Pens were monitored daily by two animal health personnel, who were blind to 

treatment. Animals diagnosed with anything other than BRD were removed from the pen 

and treated according to the consulting veterinarian, and were returned to the pen after 

treatment. Per the standard industry clinical trial design, (Perino, 1998) cattle suspected 

of BRD received a morbidity score of 0-4 based on signs of BRD including: labored 
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breathing, nasal or ocular discharge, lethargic or depressed behavior, or emaciated body 

condition. Cattle given a score of 0 displayed no signs of illness and 1-4 showed 

increasingly severe signs. Cattle with an illness score of 1-4 were pulled from pens, 

symptoms were assessed and rectal temperatures recorded, and the animal was treated if 

the rectal temperature was ≥ 40.6° C. At first pull, cattle were treated with 12.5 mg/kg 

enrofloxacin (Baytril, Bayer Animal Health), cattle not responding within 48 h were 

removed and treated a second time with 40 mg/kg florfenicol (Nuflor, Merck Animal 

Health), and cattle not responding within 96 h received a third treatment with 19.8 

mg/kg oxytetracycline (Bio-Mycin, Boehringer Ingelheim). After medical treatments 

cattle were returned to their respective pens. A fourth pull was considered “chronic” and 

the steer was no longer pulled from the pen. Cattle in both the EXC and MIC groups 

underwent a three day moratorium following initial treatment on study day 0, and 

therefore were not eligible to receive Enrofloxacin for BRD symptoms until study day 4. 

 A receiving diet (Table 2.1) including 100 mg·hd-1
·d-1 of monensin (Rumensin, 

Elanco Animal Health) was delivered once daily and fed to allow for ad libitum intake. 

Ration samples were collected from each bunk at feeding, composited into one sample 

and subsequently analyzed to determine DM, CP, ADF, and NDF. Cattle were provided 

unrestricted access to water at all times. Performance responses measured included ADG 

and morbidity. Both were calculated as a mean for each pen.  

 Body weight was measured individually on d 0, 14, 28, and 42 to determine 

ADG and G:F. Morbidity was measured as a percentage of calves in each treatment 

group that required treatment for symptoms of BRD. Efficiency (G:F) was calculated as 
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the amount (kg) an animal gained over an experimental time period divided by the 

average of the amount fed to the pen·hd-1. All data were analyzed as a randomized 

complete block design using the Mixed procedure in SAS version 9.3, with pen as the 

experimental unit and arrival group as a block effect. Orthogonal contrasts 

(metaphylaxis versus control, or EXC versus MIC) were used to compare among 

treatments.  

 
 

Table 2.1: Composition of the receiving ration. 

Feedstuff 
Percentage  

(as fed basis) 

Cracked Corn 31.80 

Dried Distillers Grains 24.40 

Alfalfa 18.15 

Oat Hay 18.15 

Molasses 5.00 

Premix 2.50 

Dry Matter, % 88.7 

--------------------% DM-------------------- 

CP       15.5 

NDF       32.1 

ADF       21.4 

 
 
 
Results and discussion 

Morbidity due to respiratory disease for cattle given metaphylaxis was 25.2% 

lower than the control group (P = 0.01; 51.5 versus 76.7%, Table 2.2). Mortality rate 

was 0% for all treatments (data not shown). Brazle et al. (1997) and Duff et al. (2000) 

also reported a 25% improvement in morbidity over a negative control in cattle 

administered tilmicosin phosphate on arrival, while Frank and Duff (2000) reported a 
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34% improvement in cattle treated with tilmicosin phosphate on arrival. Encinias et al. 

(2006) reported a 49.3% improvement in morbidity over a negative control in cattle 

administered ceftiofur crystalline free acid on arrival. 

 
 

Table 2.2: Morbidity and average number of d (after arrival) until first pull. 

 Treatment1  Contrast P – Values2 

Item CON EXC MIC SEM CON vs TRT EXC vs MIC 

Morbidity, % 76.7 56.5 46.4 4.3 0.01 0.14 
Calves treated       
   Twice, %3 36.3 29.7 17.9 5.8 0.12 0.19 
   Thrice, %3 15.3 12.7 1.4 4.4 0.16 0.11 
       
Success rate4, % 53.2 47.1 61.4 8.2 0.92 0.25 
       
Days to first pull5 5 12 8 1.1 0.01 0.02 
1Treatment: CON, no metaphylaxis at arrival; EXC, 6.6 mg/kg ceftiofur crystalline free acid at 
arrival; MIC, 13.2 mg/kg tilmicosin phosphate at arrival. 
2Contrast P – Values: CON vs TRT, control vs EXC plus MIC. 
3Calves treated twice or thrice: Includes calves treated for BRD symptoms only. 
4Success rate: number of morbid animals in a pen (animals treated once for BRD), minus the 
number treated greater than one time for BRD, divided by the number morbid in a pen. 
5Days to first pull: average number of d until an animal required BRD treatment. EXC and MIC 
groups underwent a three day moratorium following metaphylactic treatment on study day 0. 

 
 
 
Morbidity in this experiment was higher than expected. Previous experiments 

evaluating tilmicosin phosphate or ceftiofur crystalline free acid as metaphylactic 

products reported morbidity rates for the control groups varying between 32% (Duff et 

al., 2000) and 56.5% (Guthrie et al., 2004). Based on these data, morbidity rates for 

control cattle in this study were expected to be approximately 40%. Notably, Brazle 

(1997) reported average morbidity rates of 76% in negative control groups across two 

experiments. This author attributed the high morbidity to the stress the freshly weaned 
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calves underwent when they were held at the auction barn for 48 hours or more and 

heavy rain both at the auction barn and at study facilities. Encinias et al. (2006) also 

reported a high morbidity rate (85% in a negative control group), as well as a reduction 

of morbidity in the group given ceftiofur crystalline free acid on-arrival (36%). 

Analogous to the current study, Encinias et al. (2006) also reported 0% mortality in all 

treatment groups. 

 An average of 7% of metaphylaxis cattle and 15% of control cattle required a 

third antibiotic treatment, suggesting that some individual morbidity cases persisted. 

Therefore, it is possible that symptoms were caused by a virus rather than a bacterial 

pathogen. Viral agents are known contributors to BRD. The exact amount of time each 

calf spent at the auction barn is unknown, although it is known to be less than a week. 

Cattle were most likely not transported long distances, although they met other criteria 

for being “high-risk” cattle in that they were lightweight, young, and commingled. 

Despite this, high morbidity rates observed (76.7% in the control group) were not 

expected. However, animal health personnel heavily pulled animals that were suspected 

to be infected with BRD, which may have contributed to a higher morbidity rate. 

The average number of d to first pull was 5 d greater in cattle given metaphylaxis 

as compared to the control (10 versus 5 d; P < 0. 01), and 4 d greater in the EXC group 

than in the MIC group (12 versus 8 d; P = 0.02).  These results support label indications 

of efficacy for each drug. “Success rate”, or the number of cattle diagnosed with BRD 

that responded to the first antimicrobial treatment, did not differ between cattle given 

metaphylaxis and CON (P = 0.92). This result is similar to Duff et al. (2000), who 
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compared an on-arrival tilmicosin phosphate injection to a negative control and found no 

difference in the percentage of steers that required more than one BRD treatment. These 

data suggest that cattle given metaphylactic treatment may not differ in chronicity of 

bacterial diseases compared to a negative control group after being treated once for 

BRD. 

Performance differences were limited between groups (Table 2.3). During the 

first 14 d, ADG tended to be greater for cattle given metaphylaxis than for the control 

(1.63 versus 1.28 kg·hd-1
·d-1; P = 0.06). Similarly, feed efficiency was greater for cattle 

given metaphylaxis during d 0-14 (0.29 versus 0.22 kg; P = 0.01). However, these 

differences were not maintained during the remaining 28 d, and there was no difference 

in final body weight on day 42 or feed efficiency over the entire 42 day feeding period. 

Dry matter intake did not differ between treatments during the 42 day feeding period. 

However, intake was measured across the entire pen; therefore, a decrease in intake by 

individuals was not able to be observed.   

 Performance response to metaphylactic treatment with these two products has 

varied between existing experiments. In one experiment, Galyean et al. (1995) reported 

that calves treated with tilmicosin phosphate on arrival tended to gain more and be more 

efficient during the first 14 d, but no differences remained at the end of the 28 day period 

in intake, feed efficiency, or ADG.  Benton et al. (2008) reported no significant 

differences in intake or final body weight of cattle either given ceftiofur crystalline free 

acid on-arrival or in a negative control group, although ADG was greater for the group 

given ceftiofur. Similarly, Duff et al. (2000) reported no difference in DMI, ADG, or 
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G:F ratio in calves treated or not treated on arrival with tilmicosin phosphate. These 

results, along with data from the current study, suggest that changes in performance 

measured as ADG or feed efficiency with metaphylactic treatment may be limited. As 

results have varied between experiments, positive performance response could be the 

direct result of a decrease in overall morbidity. Early clinical identification and treatment 

of disease may also minimize the negative impacts of morbidity and thus minimize 

performance differences.  

There was no difference in DMI between treatment groups in this study, and 

previous data suggesting changes in DMI due to metaphylaxis is varied. In a study 

evaluating the intake of healthy and morbid cattle in a GrowSafe System, Sowell et al. 

(1999) reported that healthy steers spent more time at the feed bunk than morbid steers. 

However, significant differences were not observed in a second trial. When evaluating 

tilmicosin phosphate or florfenicol as metaphylactic products and measuring intake in a 

GrowSafe System, Daniels et al. (2000) found no differences in DMI in cattle given 

metaphylaxis compared to a negative control in one trial. In another trial, the same 

authors reported that calves given metaphylaxis had approximately 2 more feeding bouts 

per day than a negative control group. Duff et al. (2000) found that DMI was 0.26 

kg/steer greater in the first 7 d in cattle receiving tilmicosin phosphate on arrival 

compared to a negative control, but that there was no difference in DMI during the entire 

35 day feeding period.  
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Total antibiotic use was calculated based on the grams of active ingredient given 

with each treatment (Table 2.4) and was averaged across each treatment group. This 

calculation included the metaphylactic drug where applicable. There was no difference 

in total antibiotic use between the metaphylaxis or CON treatments (6.16 versus 6.03 g; 

P = 0.88) or between the EXC and MIC groups (5.99 versus 6.33 g; P = 0.74). However, 

fluoroquinolone use was lower in groups receiving metaphylaxis and requiring only a 

first treatment than in the control group that required only one treatment to recover (1.44 

Table 2.3: Performance traits for cattle treated or not treated with metaphylaxis. 

Treatment1  Contrast P-Value2 

Item CON EXC MIC SEM TRT vs CON EXC vs MIC 

No. of calves     67     64     67 

BW, kg 

   D 0   232   233   229 2.4 0.66 0.27 

   D 42   300   305   302 4.9 0.62 0.65 

ADG, kg/d 

   D 0-14 1.28 1.63 1.62 0.13 0.06 0.95 

   D 14-28 1.90 1.95 2.03 0.14 0.61 0.71 

   D 28-42 1.66 1.59 1.58 0.12 0.65 0.95 

   D 0-42 1.61 1.73 1.74 0.07 0.20 0.87 

Gain:Feed 

   D 0-14 0.22 0.28 0.30 0.02 0.01 0.41 

   D 14-28 0.25 0.25 0.26 0.02 0.86 0.74 

   D 28-42 0.20 0.18 0.17 0.01 0.19 0.60 

   D 0-42 0.22 0.23 0.23 0.01 0.21 0.80 

Intake, kg/d 

   D 0-14 5.87 5.93 5.43 0.39 0.70 0.39 

   D 14-28 7.48 7.71 7.80 0.26 0.40 0.80 

   D 28-42 8.48 8.76 9.19 0.25 0.14 0.27 

   D 0-42 7.28 7.47 7.47 0.19 0.42 0.98 
1Treatment: CON, no metaphylaxis at arrival; EXC, 6.6 mg/kg ceftiofur crystalline free acid at 
arrival; MIC, 13.2 mg/kg tilmicosin phosphate at arrival. 
2Contrast P – Values: CON vs TRT, control vs EXC plus MIC. 
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versus 2.13 g; P = 0.01). It is likely that this result is due to 76% of cattle in the negative 

control group requiring a first treatment compared to 51% of cattle in the metaphylaxis 

group that required a first treatment. Additionally, the relative concentration of the first 

treatment product (enrofloxacin) may contribute to these differences. Enrofloxacin, 

when given in labeled dose, contains more active ingredient than either tilmicosin 

phosphate or ceftiofur crystalline free acid. Therefore, cattle given metaphylactic 

treatment and subsequently requiring no antibiotic treatment used less total antibiotic 

than individuals in the control group that required a Baytril treatment. High morbidity in 

this study was a driver of high total antibiotic use in all groups. Such a calculation 

should be made in future studies that observe lower morbidity rates in order to determine 

if a difference in antimicrobial usage exists.  

 
 
 

Table 2.4: Total antibiotic use, calculated based on g of active ingredient given within each 
treatment. 

Treatment1 Contrast P – Value2 

CON EXC MIC SEM TRT vs. CON EXC vs. MIC 

Total Antibiotic Use3 6.03 6.33 5.99 0.70 0.88 0.74 
Enrofloxacin Use  
(1st Treat) 2.13 1.58 1.30 0.17 0.01 0.26 
Florfenicol Use  
(2nd Treat) 3.29 2.69 1.62 0.51 0.11 0.58 
Oxytetracycline Use 
(3rd Treat) 0.62 0.56 0.07 0.20 0.24 0.11 
1Treatment: CON, no metaphylaxis at arrival; EXC, 6.6 mg/kg ceftiofur crystalline free acid at 
arrival; MIC, 1 mg/kg tilmicosin phosphate at arrival. 
2Contrast P – Values: CON vs TRT, control vs EXC plus MIC. 
3Total antibiotic use: includes g of active ingredient given via metaphylaxis (includes 6.6 mg/kg 
ceftiofur crystalline free acid or 10 mg/kg tilmicosin phosphate given on-arrival, where 
applicable). 
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CHAPTER III 

 EFFECTS OF A LIMIT-FEEDING REGIMEN ON THE IMMUNE FUNCTION OF 

GROWING STEERS 

 

Overview 

A trial was conducted to determine the effects of limit-feeding growing steers on 

immune function. Thirty-two steers (average BW= 262 kg ± 3.9) were fed the same 

ration at one of three intake levels: 4.5 (LOW), 5.7 (MED), or 6.8 kg·hd-1
·d-1 (HIGH). 

All steers were vaccinated on study d 0 with a five-way modified live vaccine, which 

acted as an immunological challenge to measure immune function. Blood samples were 

collected on study d 0 prior to vaccination and every 7 d following to measure antibody 

titers and hematological measurements to quantify animal response to the vaccine. By 

design, ADG (0.50, 0.95, and 1.14 kg/d for the LOW, MED, and HIGH steers, 

respectively) and 28 d BW of steers increased linearly (P < 0.04) as intake level 

increased. Steers fed MED and HIGH had the greater gain to feed than LOW (0.19 and 

0.12, respectively), with a tendency towards a quadratic response (P = 0.11). While there  

was no treatment × day interaction for serum neutralizing antibody titers (P > 0.3), a day 

effect was observed for all antibody responses measured (P < 0.01). Bovine herpes 

virus-1 serum neutralizing antibody concentrations (log2) decreased linearly (2.64, 2.12, 

and 1.49; P = 0.03) as energy intake increased. Bovine viral diarrhea virus type-1b 

serum neutralizing antibody concentrations (log2) responded quadratically (P = 0.03) by 

increasing from LOW to MED then decreasing from MED to HIGH (6.93, 7.36, and 
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6.36). Hematological measures, including white blood cell, hemoglobin, and mean 

corpuscular volume counts, did not differ between treatment groups (P ≥ 0.65), although 

fibrinogen concentration was responded quadratically and was highest for the MED 

treatment group (434.9, 467.1, and 388.5 mg/dL, P = 0.01). These results suggest that 

energy intake does affect antibody response to vaccines, and overall immune function, in 

growing cattle. Future research should establish an ideal window of energy intake for 

growing cattle where both performance and health are optimized. 

Introduction 

Humoral immunity is a subdivision of acquired immunity that is mediated by the 

secretion of antibodies from B lymphocytes to defend against a specific antigen (Tizard, 

2004). Exposure to antigens, as occurs during vaccine administration, helps an animal 

acquire humoral immunity. Humoral immunity and diet have been linked when mice fed 

a high calorie diet to induce obesity had lower serum neutralizing antibody 

concentrations in response to a Hepatitis B vaccine (Chen et al., 2013). Further research 

is needed to gain insight into the direct effect of energy intake on immune function.  

High-energy diets consist of readily fermentable carbohydrates that may act as an 

additional stressor to already stressed growing cattle and thus suppress immune function. 

An adequate level of dietary energy is required for proper immune function (Tizard, 

2004). However, limited data has shown that excess dietary energy can lead to a 

compromised immune system (Galyean, 1999). Nutritional manipulation may therefore 

provide a non-invasive strategy for mitigating disease and improving animal health and 

well-being.  
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Production of growing cattle depends on vaccines to stimulate immune function, 

prevent epidemic disease, and maintain animal well-being (Peel, 2003). The most 

common vaccinations given to cattle placed in feedyards include bovine viral diarrhea 

virus (BVD) vaccine and bovine herpes virus-1 (BHV-1) vaccine (USDA-APHIS, 

2013). The objective of this study is to determine if limit-feeding growing cattle 

positively contributes to immune function and assists in disease prevention, by 

administering a proxy immunological challenge through the most common vaccinations 

given in US feedlots. Such information would contribute to the investigation of an ideal 

concentration of dietary energy to optimize both animal health and performance. 

Materials and methods 

 The experimental protocol was approved by the Agricultural Animal Care and 

Use Committee at Texas A&M Agrilife Research. 

Thirty-two male calves were born, weaned, and moved to a Calan Gate barn at 

the Texas A&M Agrilife McGregor Research Center, McLennon County, Texas. Steers 

had previously been vaccinated: at approximately 60 d of age, calves were given 2 mL 

of a 7-way clostridial vaccine (Clostri-Shield 7, Novartis Animal Health); at 

approximately 170 d of age, calves were revaccinated with 2 mL of the same vaccine 

and 5 mL of an inactivated product (Vira-Shield 6, Novartis Animal Health); and at 

approximately 190 d of age, calves were given 2 mL of a multivalent modified-live 

vaccine (BRD Shield, Novartis Animal Health). At the beginning of the feeding period, 

steers weighed between 200 and 312 kg, with an average initial BW of 262 kg. Steers 

were trained to the Calan Gate barn for 10 d prior to study d-0. Steers were fed 5.44 
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kg·hd-1
·d-1 as-fed of the same receiving ration used for the duration of the study during 

the training period (Table 3.1). Steers were then stratified by weight and assigned to 

treatment such that each treatment group had a similar average initial BW. Steers were 

then assigned to a pen such that each pen had a similar average initial BW. Steers were 

placed on three dietary treatments on d-0. Treatments were: 1) low dietary intake (4.5 

kg·hd-1
·d-1; LOW) 2) medium dietary intake (5.7 kg·hd-1

·d-1; MED), or 3) high dietary 

intake (fed 6.8 kg·hd-1
·d-1; HIGH). These intakes allowed for predicted ADG of 0.57, 

0.91, and 1.25 kg·hd-1
·d-1, respectively. Cattle were provided unrestricted access to water 

at all times. A receiving diet was delivered once daily at 0800. By study design, DMI 

was limited in each treatment group beginning on study d-0. Orts were weighed and 

sampled once per week. Ration samples were collected at feeding every 7 d and 

subsequently analyzed to determine DM, CP, NDF, ADF, and TDN. Ort samples were 

also analyzed. 

On study d-0, cattle were given a second dose, 2 mL (revaccination) of the five-

way modified live vaccine (BRD Shield, Novartis Animal Health) containing BVD type-

1 and BVD type-2, infectious bovine rhinotracheitis (IBR, caused by BHV-1), bovine 

parainfluenza type 3, and bovine respiratory syncytial virus. Blood was collected on d 0, 

7, 14, 21, and 28 from the jugular vein into both a 10 ml Vacutainer tube containing 18 

mg of K2-EDTA for hematological measurements via a partial blood count and a 10 ml 

Vacutainer tube containing a clot activator and gel for serum neutralizing antibody titer 

analysis. Hematological measurements quantified were white blood cell count, red blood 

cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular 
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hemoglobin, mean corpuscular hemoglobin concentration, and fibrinogen. Serum 

neutralizing antibody concentrations measured were bovine herpes virus-1 (BHV-1) and 

bovine viral diarrhea virus type-1b (BVD-1b). These were selected because both were 

included in the vaccine given on study d-0, and BVD-1b is the predominant BVD 

subtype reported in calves with respiratory disease (Fulton et al., 2002). Blood was 

transported on ice from McGregor, Texas to College Station, Texas. Blood containing 

the clotting agent was then centrifuged to obtain serum and transferred into 1.5 ml 

microtube. Both whole blood and serum samples were then hand delivered to the Texas 

Veterinary Medical Diagnostic Laboratory, College Station, Texas for analysis. Five 

whole blood samples clotted prior to delivery (four from d-0 and one from d-7); 

therefore, hematological measurements could not be made and those samples were 

excluded from statistical analysis.  

  Body weight was measured individually on d-0, 7, 14, 21, and 28 to determine 

ADG and efficiency. Efficiency (gain to feed) was calculated as the amount (kg) an 

animal gained over the experimental time period divided by feed consumed. All data 

were analyzed using the repeated measures procedure in SAS 9.4 for Microsoft 

Windows (SAS Inst., Cary, NC). Terms in the model were treatment, day, and treatment 

× day interaction, with animal (treatment) serving as the subject. The LSMEANS option 

was used to calculate treatment means. Orthogonal polynomial contrasts (linear and 

quadratic) were used to partition treatment sums of squares. Terms in the intake and 

performance model were treatment with animal (treatment) serving as the subject. The 
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LSMEANS option was used to calculate treatment means. Orthogonal polynomial 

contrasts (linear and quadratic) were used to partition treatment sums of squares. 

 
 

Table 3.1: Composition of the ration. 

Feedstuff 
Percentage  

(as fed basis) 

Cracked Corn 38.0 

DDG 25.5 

Cottonseed Hulls 30.0 

Molasses   4.0 

Premix   2.5 

Dry Matter, % 90.1 

--------------------% DM-------------------- 

CP 10.2 

NDF 38.9 

ADF 29.8 

TDN 65.3 

ME (Mcal/kg)1     2.36 

NEm (Mcal/kg)1     1.76 

NEg (Mcal/kg)1     0.82 
1ME, NEm, and NEg were calculated based on TDN values 

 
 
 

Results and discussion 

Intake was linearly increased (P < 0.01) as per the design of the study (Table 

3.2). Steers consumed slightly less than projected, with the LOW, MED, and HIGH 

treatments consuming 4.05, 5.1, and 6 kg·hd-1
·d-1, respectively. Steers consumed less 

than expected due to both selection against various components of the diet. Crude 

protein intake was lower than expected for all treatment groups due to lower than 

expected CP content of the ration (10.2% versus 13% formulated). Also by design, ADG 

and final BW increased linearly (P < 0.01, Table 3.3) as DMI increased. Steers in the 
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MED or HIGH treatment groups had greater gain to feed during the 28 d study period 

than steers in the LOW treatment group (0.19 vs. 0.12; quadratic,  P = 0.11). On study d-

0, average initial BW was the same for each treatment group (P = 0.83). Body weight 

then increased linearly over the 28 d study period as DMI increased (276, 286, and 297 

kg; P = 0.04).  

 
 
 
Table 3.2: Average actual nutrient intake per animal per day. 

 Treatment1  Contrast P – Value2 

Item, kg/d Low Medium High SEM Linear Quadratic 

DMI 4.05 5.10 6.00 0.27 0.01 0.03 

CP 0.42 0.52 0.61 0.01 0.01 0.73 

NDF 1.50 1.90 2.25 0.03 0.01 0.56 

ADF 1.05 1.33 1.72 0.03 0.01 0.11 

TDN 2.69 3.39 3.98 0.02 0.01 0.08 

ME 7.12 8.91 10.56 0.06 0.01 0.07 
1Treatment: Low (fed 4.5 kg·hd-1

·d-1); Medium (fed 5.7 kg·hd-1
·d-1); High (fed 6.8 kg·hd-

1
·d-1). 

2Contrast P – Value: Linear, linear effect of intake level; Quadratic, quadratic effect of 
intake level. 
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Table 3.3: Growth and performance of steers. 

 Treatment1  Contrast P – Value2 

Item Low Medium High SEM Linear Quadratic 

BW, kg       
Day 0  262  259  265 7.13 0.73 0.62 
Day 7  262  266  278 7.17 0.12 0.63 
Day 14  266  271  285 7.35 0.06 0.57 
Day 21  274  283  295 7.20 0.04 0.86 
Day 28  276  286  297 7.20 0.04 0.93 
ADG, kg/d 0.50 0.95 1.14 0.07 0.01 0.16 
G:F 0.12 0.19 0.19 0.01 0.01 0.11 
1Treatment: Low (fed 4.5 kg·hd-1

·d-1); Medium (fed 5.7 kg·hd-1
·d-1); High (fed 6.8 kg·hd-

1
·d-1. 

2Contrast P – Value: Linear, linear effect of intake level; Quadratic, quadratic effect of 
intake level. 
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Figure 3.1: Bovine herpesvirus-1 (BHV-1) serum neutralizing antibody titers of cattle provided either 
Low (fed 4.5 kg·hd-1

·d-1); Medium (fed 5.7 kg·hd-1
·d-1); or High (fed 6.8 kg·hd-1

·d-1) dry matter intake. 

Treatment × day P = 0.25. 

Day 
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Figure 3.2: Bovine viral diarrhea virus (BVD-1b) serum neutralizing antibody titers of cattle provided 
either Low (fed 4.5 kg·hd-1

·d-1); Medium (fed 5.7 kg·hd-1
·d-1); or High (fed 6.8 kg·hd-1

·d-1) dry matter 
intake. Treatment × day P = 0.36. 
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There were no treatment × day interactions for serum neutralizing antibody titers 

(P = 0.25). There was a significant day effect (P < 0.01). On study d-0, all cattle were 

seronegative for BHV-1 (serum antibody titer < 2) and positive for BVD-1b (serum 

antibody titer ≤ 9). Steers on the low intake treatment had the greatest concentrations of 

BHV-1 serum neutralizing antibody concentrations on every day of the study after d-0, 

while HIGH treatment had the lowest (Figure 3.1). In contrast, MED cattle had the 

greatest BVD-1b serum neutralizing antibody concentrations (log2) on each day of the 

study while HIGH treatment had the lowest (Figure 3.2). Cattle fed the MED treatment 

also had the greatest BVD-1b serum neutralizing antibody concentration on study d-0 

prior to vaccination or beginning of treatment, which may have affected the response. 

Future research should increase the DMI to see if a quadratic response exists at higher 

total energy intake for BHV-1 serum neutralizing antibody concentrations. If such a 

response is found to exist, DMI can be adjusted to limit-feed growing cattle in order to 

optimize immune function regarding these two parameters. 

Concentrations (log2) of serum neutralizing antibodies for BHV-1 decreased 

linearly (P = 0.03) as DMI increased (2.64, 2.12, or 1.49, Table 3.4). In contrast, 

concentrations (log2) of serum neutralizing antibodies for BVD-1b responded 

quadratically as intake increased (P = 0.03). Seroconversion for BVD-1b antibody 

concentrations increased as intake increased from the LOW to MED treatment groups 

then decreased as intake increased from the MED to HIGH treatment groups. To our 

knowledge, no previous data exists to determine immune function using a vaccine as an 

immunological challenge in growing beef cattle. Results from the current study are 
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similar to Chen et al. (2013), who described immune function in mice fed a high calorie 

diet to induce obesity. When diet-induced obese mice were given a Hepatitis B (HB) 

vaccine, anti-HBs serum neutralizing antibody production was significantly less in obese 

mice receiving a high-calorie diet compared to control mice. Antibody production 

remained significantly less than control mice when the vaccine dose was doubled in 

obese mice, implying a connection between caloric intake and antibody production. 

Future studies should increase intake level and measure serum neutralizing BHV-1 

antibody concentrations again to determine if a quadratic response would occur at a 

higher level of energy intake.  

Biological value of vaccination lies in increasing serum neutralizing antibody 

concentrations in response to exposure to BHV-1, as this response is essential in 

recovery from infection or exposure to viral pathogens (Babiuk, 1996). Serum 

neutralizing antibodies function by neutralizing the extracellular virus, preventing virus 

attachment to the host cell. They also assist polymorphonuclear neutrophils in antibody 

dependent cytotoxicity, a process within cell mediated immunity that limits the spread of 

an infection by lysing a target cell (Tizard, 2004). In this study, exposure to a modified 

live BHV-1 virus occurred when the vaccine was given on study-d 0; therefore, an 

increase in the concentration of serum neutralizing antibodies after vaccination can be 

associated with a positive change in the seroconversion point in the current study. Such a 

change suggests an improvement in immune function.   
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Table 3.4: Serum antibody and hematological measurements.  

 Treatment1  Contrast P – Value2 

Item Low Medium High SEM Linear Quadratic 

BHV-1, Log2
3 2.64 2.12 1.49 0.35 0.03 0.90 

BVD-1b, Log2
4 6.93 7.36 6.36 0.27 0.13 0.03 

WBC, µL5 9766 9594 10466 506 0.31 0.98 
RBC, M/µL6 9.45 8.97 9.06 0.27 0.30 0.40 
HGB, d/dL7 14.70 11.64 12.44 1.5 0.26 0.29 
HCT, % 8 35.96 33.44 34.05 1.05 0.19 0.22 
MCV, fL9 38.20 37.40 37.40 0.73 0.42 0.65 
MCH, pg10 12.52 13.02 13.59 1.42 0.31 0.37 
MCHC, g/dL11 47.19 34.91 36.36 5.09 0.11 0.27 
Fibrinogen mg/dL 434.9 467.1 388.5 15.6 0.03 0.01 
1Treatment: Low (fed 4.5 kg·hd-1

·d-1); Medium (fed 5.7 kg·hd-1
·d-1); High (fed 6.8 kg·hd-1

·d-1). 
2Contrast P – Value: Linear, linear effect of intake level; Quadratic, quadratic effect of intake level. 
3IBR: Infectious Bovine Rhinotracheitis (IBR) serum titers. 
4BVD-lb: Bovine Viral Diarrhea type 1b (BVD-1b) serum titers. 
5WBC: White blood cell count.  
6RBC: Red blood cell count.  
7HGB: Hemoglobin.  
8HCT: Hematocrit. 
9MCV: Mean corpuscular volume. 
10MCH: Mean corpuscular hemoglobin. 
11MCHC: Mean corpuscular hemoglobin concentration. 
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Hematological measures were not different (P > 0.19, Table 3.4) between 

treatment groups except for fibrinogen concentration. There was a significant day effect 

for red blood cell concentrations (RBC), hematocrit concentrations (HCT), and mean 

corpuscular volume (MCV);(P < 0.01, data not shown). A treatment × day interaction 

occurred for RBC and HCT (P < 0.03). Serum fibrinogen concentration decreased 

quadratically as DMI increased (P < 0.01, Figure 3.3). This result is in contrast to Berry 

et al. (2004b) who measured the response of acute phase proteins to different dietary 

energy and starch concentrations and found no differences in serum fibrinogen 

concentration. Fibrinogen, an acute phase protein, is considered an inflammatory marker 

and concentrations are typically increased when exogenous threats are presented to the 

immune system (Conner, 1988). The result may have been affected by serum fibrinogen 

concentration being lowest on d-0, prior to vaccination or the beginning of treatments, 

for the HIGH treatment group. As the fibrinogen response is similar to the BVD-1b 

antibody production response, it is also possible that the MED treatment group better 

identified and responded to the immune threat. Future research should further investigate 

the relationship of fibrinogen with stress and morbidity, and energy intake.    
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Figure 3.3: Serum fibrinogen concentrations of cattle provided either Low (fed 4.5 kg·hd-1
·d-1); 

Medium (fed 5.7 kg·hd-1
·d-1); or High (fed 6.8 kg·hd-1

·d-1) dry matter intake. Treatment P < 0.01. 
Treatment × day P = 0.68. 

 

Day 
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While results of the current study are the first known to use a vaccine as a 

challenge to quantify immune function, other researchers have investigated a connection 

between dietary energy and immune function via other measurements. The current study 

fed 1.76 Mcal/kg of ME to all treatment groups (7.12, 8.91, or 10.56 Mcal/d of dietary 

energy intake·hd-1
·d-1). Lofgreen et al. (1981) also investigated changes in immune 

function based on dietary energy intake and reported that cattle fed lower levels of 

dietary energy, (6.62 or 8.31 Mcal/d of ME, calculated based on the reported DE) had 76 

more total sick days that cattle fed 11.37 or 12.15 Mcal/d of ME. Possibly, such a wide 

range of energy intake allowed for a greater total number of sick days to appear in the 

calves. However, steers in Lofgreen’s work were not all fed the same ration, indicating 

that the change in ME source may be involved in the increase in total number of sick 

days. 

Several studies have investigated dietary energy concentration as a means of 

affecting morbidity and immune function (Berry et al., 2004a, Lofgreen et al., 1975). 

Berry et al. (2004a) fed two different dietary energy levels as well as two different 

dietary energy concentrations in a 2 × 2 factorial, allowing a low energy diet similar to 

the diet used in the current study that was 2.35 Mcal/kg of ME, as well as a high energy 

diet that was 2.6 Mcal/kg of ME. There was no difference in morbidity of calves based 

on total dietary energy intake; however, there was a tendency for calves fed a greater 

percentage of ME from starch to become morbid with respiratory disease. Lofgreen et al. 

(1975) fed rations with increasing levels of ME from 2.25 to 2.84 Mcal/kg, and reported 

that total calves requiring treatment and total number of treatments per calf increased as 
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energy level in the ration increased in two of three experiments. In the third experiment, 

numerically fewer calves that were fed the high energy ration required treatment than 

those fed the low energy ration. Each of these studies fed a narrow range of dietary ME 

intake relative to the current study and Lofgreen et al (1981).  

In the current study, all calves were fed the same ration; therefore, energy intake 

was adjusted by changing DMI. Intake of all other nutrients followed energy and the 

results of the current study cannot be solely attributed to a change in energy intake alone. 

Although previous research has suggested that dietary energy intake is associated with 

immune function (Galyean, 1999), it is unknown if other dietary factors also play a role 

in cattle health. In the current study, CP intake increased linearly (P = 0.01) as DMI 

increased. Nissen et al. (1989) reported a linear increase in number of calves that 

responded to a BHV-1 vaccine as metabolizable protein intake increased. This result is 

in contrast to that of the current study, where serum neutralizing BHV-1 antibody 

concentrations decreased linearly as DMI (and therefore CP intake) decreased.  

Existent data is insufficient to clearly elucidate the connection between dietary 

energy and immune function. While changes in immune markers, such as acute phase 

proteins, did not reveal a direct connection and no change in morbidity (Berry et al., 

2004a), a wider range of energy differences revealed a change in morbidity (Lofgreen et 

al., 1981). As limit-feeding during the growing phase does not negatively affect feedlot 

performance or carcass characteristics (Felix et al., 2011) future research should feed a 

wider range of energy intake and measure immune markers to determine an ideal 

“window” of energy intake where both health and  performance are optimized.  
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CHAPTER IV 

 CONCLUSIONS 

 

Bovine respiratory disease is the primary cause of morbidity and mortality in 

feedyards. Prevention of respiratory disease has the potential to improve economic 

returns, carcass quality, and animal health and well-being. Metaphylactic therapy is an 

effective means to reduce morbidity in highly stressed, newly received cattle that are 

more susceptible to illness. Further investigation is needed to find non-invasive means to 

prevent respiratory disease and to determine the relationship between dietary energy 

concentration and morbidity. 

Results of the current study along with previous reports indicate that tilmicosin 

phosphate or ceftiofur crystalline free acid given as metaphylactic treatment to newly 

received calves decreases the percentage of calves requiring treatment for BRD. 

According to the current data, this decrease in animal health and well-being may be 

achieved with minimal effect on total antimicrobial usage. Overall weight gain of cattle 

given either product did not improve over cattle not given metaphylaxis. There was no 

difference in the efficacy of the two products for decreasing morbidity or increasing 

performance.  

The current study established a connection between receiving period nutrition 

and immune function through nutritional effect on antibody production in response to 

vaccine exposure. Future research should provide a wider range of intake levels than the 

current study to test for a quadratic response for BHV-1 serum neutralizing antibody 
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production, and should evaluate the effects of energy source and concentration on 

immune function. 
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