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ABSTRACT

An experimental study of the combined Rayleigh–Taylor instability (RTI) and

Kelvin–Helmholtz instability (KHI) is presented at three different Atwood numbers

(0.05, 0.971, 0.147) and multiple velocity ratios to examine the morphological devel-

opment of the flow field. The Atwood number is the ratio of the difference between

the densities of the heavy and light streams to their sum. These experiments were

performed using the multilayer gas tunnel facility at Texas A&M University. The

tunnel is a convective type system, where gases of different densities flow parallel to

one another and are separated by a splitter plate until mixing is allowed downstream

in the test section. Three-wire hot-wire probe and particle-image velocimetry (PIV)

diagnostic techniques are used to set the velocities in the experiments. Visualization

is performed using a high resolution digital camera by injecting fog into one of the

streams and collecting scattered light from the illuminated fog particles. Shear effects

on the complex stratification are studied. Complex stratification occurs when there

is a non-constant density profile in the light fluid mixture, while the constant density

profile case is referred to as generic stratification. Transition was found to occur

between Richardson numbers of -0.25 and -1.0. Additionally, two different scenarios

with and without complex stratification are examined through the mixing layer

growth and the non-dimensional growth rate parameter αb,s. Complex stratification

was found to produce higher mixing layer growth and larger values of αb,s than generic

stratification.

The stratification experiments were also simulated using a one-dimensional, two-

equation K–ε Reynolds–averaged Navier–Stokes (RANS) model in collaboration with

Lawrence Livermore National Laboratory (LLNL). The model is implemented in a
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hydrodynamics code using a third-order weighted essentially non-oscillatory (WENO)

or central differencing method for the advection terms, a second-order central dif-

ferencing method for the gradients in the source, sink, and diffusion terms, and a

second-order implicit Crank–Nicolson (CN) method for the time evolution. Simula-

tions are compared to experiments through the mixing layer and non-dimensional

growth parameter αb,s. The overall trends shown by the simulations were consistent

with experimental data. Specific values for growth height and αb,s, however, were

found to be vastly under predicted.
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1. INTRODUCTION

1.1 Background

In this work, an experimental investigation of the combined Rayleigh–Taylor

and Kelvin–Helmholtz instabilities (RTI and KHI, respectively) has been performed.

Additionally, the effect of complex stratification has been studied both experimen-

tally and numerically. The computational studies were conducted in collaboration

with Lawrence Livermore National Laboratory (LLNL) using a one-dimensional

Reynolds-Averaged Navier–Stokes (RANS) model. Experiments were performed in

the multilayer gas tunnel facility at the Texas A&M Shock Tube and Advanced

Mixing Laboratory.

1.1.1 Rayleigh–Taylor Instability

The Rayleigh–Taylor instability occurs when two fluids of different densities are

accelerated normal to their interface [1, 2]. The unstable orientation causes the

pressure gradient to be misaligned with the density gradient, ~∇ρ · ~∇p < 0. This

misalignment creates vorticity through the baroclinic term in the inviscid vorticity

equation,

D~ω

Dt
= (~ω · ~∇)~V − ~ω(~∇ · ~V ) +

[
1

ρ2
~∇ρ× ~∇p

]
baroclinic term

(1.1)

where ~ω is the vorticity vector, ~V is the velocity vector, ρ is the fluid density, p is

the pressure, and ~∇ represents the gradient of a quantity. Thus, the RTI is driven

by baroclinic vorticity. The interface is seeded by small initial perturbations which

grow exponentially at time progresses, as predicted by linear stability theory [3]. The
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growth of the RTI is characterized by the Atwood number,

At =
ρH − ρL
ρH + ρL

(1.2)

where ρ is the density, and subscripts H and L denote the heavy and light fluids

respectively. A large difference in density between the fluids corresponds to an

Atwood number near 1, and low density differences result in an Atwood number close

to 0.

The growth of the mixing layer can be divided into three stages [4]. In stage 1,

the perturbation is defined by the most unstable wavelength (λm), and drives the

initial growth of the mixing layer. This stage lasts approximately until the amplitude

of the perturbation reaches ∼ λm/2. Stage 2 begins at this point, and a dominant

wavelength emerges (λd). During stage 2, the mixing layer growth rate decreases and

larger structures begin to dominate the mixing region. Dimonte et al. [5] have shown

that smaller wavelength modes combine to create larger wavelength modes. When

λd reaches ∼ 10λm, stage 3 begins, and memory of the initial conditions is lost. In

this stage, the mixing layer grows self-similarly, with a length scale gt2 where g is

gravity and t is time. Within the last twenty years, however, the three stage growth

description has been questioned.

The total mixing layer growth in the self similar regime can be characterized by

the solution,

hb,s = αb,sAtgt
2 (1.3)

where αb,s is a non-dimensional growth parameter and hb,s is the mixing height

of the bubbles and spikes, respectively, as characterized by the 5–95% criterion.

This measure of the mixing width is determined by using fog as a tracer in one of

2



the streams, the mixing layer is then measured from 95% to 5% light extinction.

In experiments using liquids, dye can be used instead of fog. Tracer particles are

illuminated using a LED back light, located behind the test section. The light fluid

rising into the heavy fluid is described as a bubble, while the heavy fluid falling down

into the light fluid is referred to as a spike. For Atwood numbers (At . 0.1), the

growth of the bubbles and spikes occurs symmetrically. For higher Atwood numbers,

however, it has been observed that the spikes grow faster than the bubbles.

1.1.2 Kelvin–Helmholtz Instability

The Kelvin–Helmholtz instability occurs when two stratified fluids flow tangential

to the interface at a velocity ratio other than unity. Whereas the RTI is described

by the non-dimensional Atwood number, the KHI is characterized by the velocity

ratio or the difference between the velocities,

Ur =
US
UF

(1.4)

∆U = UF − US (1.5)

respectively, where subscripts S and F denote the slow and fast velocity streams

respectively. The mixing height is determined by

h = β∆U t, (1.6)

where h is the mixing width, β is a dimensionless coefficient, ∆U is the velocity

difference between streams, and t = x/Um is time by Taylor’s hypothesis.

Even in a pure RTI case (where the flow has no velocity tangential to the interface),

the KHI will develop as a secondary instability from the viscous interactions between

3



the rising bubbles and falling spikes. This will further promote mixing between the

two fluids. In a combined RT and KH instability flow, the parameter of interest is

the Richardson number, which is the ratio of potential and kinetic energy [6],

Ri =
−g(∂ρ

∂z
)

ρ(∂u
∂z

)2
= − 2hg∆ρ

ρ(∆U)2
= − 4ghAt

(∆U)2
(1.7)

where 2h signifies the width of the mixing layer, g and ρ are respectively gravity and

mean density, ∆ρ and ∆U are the differences in density and velocity, and z is the

vertical direction (as required for potential energy). The initial Richardson number

will be positive for stable RT flow, and negative for unstable flow [6].

1.1.3 Relevance and Applications

The combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities are prevalent

in nature and technical applications. For example, the RTI and KHI occur in air/fuel

mixing in combustion chambers [7], the outer region of supernovae [8], and in the

hydrodynamics of lakes and reservoirs [9]. These instabilities are also prominent in

Z-pinch implosions and the compression of the fuel capsule in inertial confinement

fusion (ICF), which is the primary motivation for this research [8, 10].

In ICF, high powered lasers are used to heat the outer layer of a target capsule.

This outer layer then ablates, accelerating a shock wave into the fuel target which

provides the necessary compression for ignition. During this process, the RTI causes

interpenetration between the lower density shell and the higher density ablated

material [11, 12]. This interpenetration can grow non-linearly, causing the classical

RT bubble and spike structures to develop, resulting in an asymmetric pressure drive

which produces turbulent mixing between materials [11, 13, 14, 15]. Furthermore,

as the RTI grows, secondary KH vortices develop due to the growth of bubble and

spike structures [11]. Turbulent KH induced mixing further reduces the yield, which
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is one of the limiting factors for ignition of ICF capsules [12].

The growing global energy concern represents one of the defining engineering

challenges of our time. If ICF is successful, it could revolutionize the energy industry.

Additionally, the modeling of complex flows such as the RTI and KHI remains a

challenge for the turbulence community. Current numerical models used to simulate

ICF must be validated in order to ensure their accuracy; this validation requires

an understanding of the turbulence development. By better understanding how the

growth of the instabilities affect the hydrodynamic implosion of the fuel target, it

may be possible to manufacture a fuel target that minimizes the growth of the mixing

layer. This could increase the yield and lead to ignition of the ICF target capsule.

Currently, the combined Rayleigh–Taylor and Kelvin–Helmholtz instability has

not been well studied. Further, neither experiments nor simulations have been

conducted with complex stratification. This experimental configuration provides a

good test case for simulations and models, and can be used to determine the effect

that a non-constant density profile may have on the mixing layer behavior. Complex

stratification could be present in ICF capsules due to manufacturing impurities, which

may have a significant effect on instability growth.

1.2 Previous Experiments

Throughout the last half century, the Rayleigh–Taylor and Kelvin–Helmholtz

instabilities have been studied using a variety of experimental techniques, both

individually and combined. In this section, a brief summary of the work leading up

to the current research will be provided.

1.2.1 Rayleigh–Taylor Instability

One of the first experimental studies was conducted in 1950 by Lewis [2]. In the

experiment a vertical chamber was accelerated downwards with two fluids separated

5



by a diaphragm. The diaphragm ruptured at the onset of the acceleration, allowing

the fluids in the chamber to mix. A similar procedure was used by Emmons et

al. in 1960 [16]. These early experiments did not allow quantification of the initial

conditions, and also introduced particulate matter into the fluid. It was concluded,

however, that the early time growth agreed well with linear stability theory.

In an experiment performed by Read [17], a multi-mode perturbation was studied.

In this experiment the test chamber was accelerated by a rocket motor, and it was

concluded that the best estimate for the self-similar growth parameter, α, is 0.07.

Andrews and Spalding [18] proposed orienting the fluids in a stable configuration,

and then quickly rotating the test section by 180◦ to make them unstable. With this

setup, a large scale two-dimensional rotational motion was imposed on the interface.

This resulted in a reduction of the mix width, and a growth parameter value of 0.04.

In yet another experimental setup, Linden et al. and Dalziel et al. [19, 20, 21] used

a plate to initially separate the different fluids, which was then removed to allow

mixing. They discovered when removing the plate, that substantial effects were

imposed on the early and possibly late stage growth of the mixing layer.

Snider and Andrews [22] studied the RTI in a plexiglass water channel, where the

mixing layer grows as the flow moves downstream after initially being separated by a

splitter plate. This setup uses water at different temperatures, and therefore different

densities, to create the unstable stratification between the two streams. By using

cold/hot water, it is only practical to study very low Atwood numbers (∼ 10−3).

They measured the self-similar growth of the mixing layer using optical techniques,

which agreed with the earlier work of Snider and Andrews resulting in a self-similar

growth parameter of 0.07.

Using the same water channel, Wilson and Andrews [23] used thermocouples

and a temperature marker technique to obtain density data within the mixing layer.
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They concluded that there is an inertial range with a −5/3 power law, showing the

presence of a Kolmogorov microscale where kinetic energy is dissipated by viscous

effects. Ramaprabhu and Andrews [24] confirmed this scaling for both density and

velocity using thermocouples and PIV.

Banerjee and Andrews [25] constructed a gas channel to investigate the RTI. This

facility allowed for a much higher range of Atwood numbers (0 ≤ At ≤ 0.75) to be

studied since various amounts of helium gas could be premixed with the incoming air

stream. Additionally, two hot-wire and digital imaging techniques were used for data

collection [25, 26], which will be discussed later in § 2.2.3. Using these techniques,

velocity fluctuations were obtained providing the turbulent correlations u′2, v′2, w′2,

ρ′2, ρ′v′, where a turbulent fluctuation is defined as

q′ = q − q (1.8)

with q representing the time averaged value, and q′ the fluctuation from this average.

Using the same facility, Kraft et al. [26] obtained probability density functions (pdfs)

and energy density spectra for 0.03 ≤ At ≤ 0.04. Banerjee et al. [27] extended this

study to an Atwood number of 0.6 using air and an air/helium mixture as the heavy

and light fluids, respectively. They concluded that the growth of the bubbles and

spikes occurs asymmetrically for Atwood numbers greater than 0.1, and reported an

increase in the spike growth rate parameter, αs.

Mueschke [28] and Mueschke et al. [29] used a water channel and salt to create

the density gradient between streams (At ∼ 7.5 × 10−4) to examine the effects of

a high-Schmidt-number on molecular mixing, and also used a backlight technique

to measure the concentration of the mixture. They found that early time mixing is

greatly influenced by the Schmidt number, whereas late time mixing is less dependent.
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1.2.2 Kelvin–Helmholtz Instability

The Kelvin–Helmholtz instability, also commonly referred to as the plane mixing

layer problem, was first analytically solved by Görtler [30] using Prandtl’s hypothesis

and assuming a constant eddy viscosity. Liepmann and Laufer [31] performed an

experiment using a wind tunnel and hot-wire anemometry to analyze a flow over

stagnant air. They concluded that the assumptions made by Görtler et al. were

incorrect, and found that the kinetic energy production, diffusion and dissipation

terms are maximum at the center of the mixing layer. Yule [32] continued this

work and extended it to two velocity ratios. Yule further concluded that Görtler’s

solution neglected the asymmetry of the mixing region, and proposed a solution to

this problem. Bell and Mehta [33] used a blower wind tunnel to investigate the initial

conditions on the plane mixing layer. They determined a difference of 25% in the

linear growth rate for the tripped and untripped initial boundary layers.

Another important area of study in the plane mixing layer problem has been

the phenomena of vortex pairing, which occurs when two vortical structures ‘‘pair

up” to form one larger vortex. Wygnanski and Fiedler [34] studied the plane mixing

layer using a wind tunnel and proposed that the large eddies rotate like a solid body.

This was confirmed by Winant and Browand [35], who investigated vortex pairing

using a water tunnel and injecting one stream with dye for visualization. They also

concluded that the growth of the mixing layer is a result of vortex pairing. Browand

and Weidman [36] built upon this work using conditional sampling at moderate

Reynolds number. They found that significant increases in the production of the

Reynolds stress are associated with vortex pairing. Koochesfahani and Dimotakis

[37] observed fluid becoming trapped in the center of the vortical structures, with the

amount of entrained fluid increasing during the mixing transition, which is defined
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as the point at which a large increase in mixed fluid is observed. Beyond the mixing

transition, there is increased fluid mixing due to three-dimensional effects.

Brown and Roshko [38] investigated the effects of a shear mixing layer between

two fluids of different densities. They also observed entrained fluid in the center of

the vortex, and concluded that the density of the fluids did not have a large effect on

the spreading angle, which is associated with the growth of the mixing layer.

1.2.3 Combined Rayleigh–Taylor and Kelvin–Helmholtz Instabilities

There have been numerous experiments on the Kelvin–Helmholtz instability in

both stable and unstable stratifications. In stable stratification, Thorpe [39] used a

long rectangular test section that would first be rotated to induce the shear layer, and

then rotated back to its original orientation. Using shadowgraphy, Thorpe concluded

that the initial Richardson number does not affect the final Richardson number. He

also found that Ri ≈ 1/3 at the mix center, and at this point, striations begin to form.

This infers a collapse of vertical mixing and re-establishment of dominant vertical

density gradients. The vertical length scales of the final mean velocity and density

structure depend on the Richardson number at the onset of the instability [40, 41].

Performing experiments in a water channel, Browand and Winant [42] discovered

that, independent of the fluid densities, stratification prohibits the vortex pairing

phenomenon seen in unstratified shear flows, and therefore causes a decay in turbulence

production. In a similar setup, Koop and Browand [43] confirmed the Richardson

number of 1/3 at the mix center, originally measured by Thorpe. They also noted

that at low initial Richardson numbers (Ri . 0.125), the flow field can be divided

into two regions. In the first, turbulent growth results from fluid entrainment and

vortex pairing until the point of maximum mixing thickness. At this point the second

region begins, where large-scale entrainment processes are suppressed and the flow
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relaxes to a non-turbulent state.

Recently, studies on unstable stratification and shear mixing have been conducted.

Using a modified version of Koop and Browand’s facility, Lawrence et al. [44]

examined this case at various Richardson numbers and an Atwood number of 0.14.

They discovered a transition region from homogeneous growth to a quadratic growth,

and concluded that at early times, the flow resembles Kelvin–Helmholtz mixing and

later becomes dominated by the Rayleigh–Taylor instability. They also noted that

as the Richardson number becomes larger, this transition occurs at earlier times.

This result is apparent from equation 1.7. As ∆U becomes smaller (and therefore

transition occurs sooner due to a weaker KH component), Ri becomes larger.

In addition to their pure RTI experiments, Snider and Andrews [22, 45] also

studied the combined instability at low Atwood numbers (≤ 0.005). They also

observed the transition regime as seen by Lawrence et al. [44], who found that for

larger Richardson numbers, the transition point occurs closer to the splitter plate.

Additionally, Snider and Andrews [22], concluded that adding shear to the flow

did not contribute to the growth of the mixing layer beyond transition, and that

transition occurred for Richardson numbers between −5 and −11.

Akula et al. [6] used a gas tunnel facility capable of higher Atwood numbers

and velocity ratios than the water channel used by Snider and Andrews. In these

experiments, the pure RTI, pure KHI, and the combined instability at an Atwood

number of 0.035 and three velocity ratios were analyzed and compared. From these

experiments, as with the results from Snider and Andrews [22, 45], it was observed

that the addition of shear does little to increase the growth rate of the mixing layer

once buoyancy effects become dominant. Additionally, Akula et al. suggested that

for an Atwood number of 0.035, transition occurs at a Richardson number between

−1.5 and −2.5 and that the KHI vortical structures are more effective at molecularly
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mixing the fluids along the centerline of the mixing layer than the RTI structures.

Additionally, Akula et. al mention that for the combined case, the mixing width is

calculated by,

h = β∆Ut+ αAtgt
2 (1.9)

where β is the non-dimensional growth height of the shear layer, ∆U is the differ-

ence between in velocity between the streams, and t = x/Um is time (by Taylor’s

hypothesis).

1.3 Previous Simulations and Modeling

Numerical simulations have also been used extensively to predict the growth

of the Rayleigh–Taylor and Kelvin–Helmholtz instability. Many numerical tech-

niques such as large eddy simulation, (LES), direct numerical simulation (DNS),

and Reynolds–averaged Navier–Stokes (RANS) models have been employed. In this

section, works relevant to the present research will be discussed.

Youngs [4] conducted a monotone integrated large eddy simulation (MILES)

using the two-dimensional, incompressible TURMOIL hydrodynamics code to study

initial Rayleigh–Taylor perturbation growth of single and multiple wavelengths. The

TURMOIL code is a modified Eulerian model that introduces dissipation through

numerical truncation errors [46]. Later, Youngs [47] performed a three-dimensional

simulation using the TURMOIL3D code to simulate a pure RT case. These simulations

resulted in a growth rate parameter, α between 0.04 and 0.05. Youngs suggested

that the lost memory of the initial conditions and negligible viscosity dependence

could have contributed to the underpredicted values of α.

Linden et al. [20] used a similar three-dimensional simulation, and found that the

growth rate parameter in the self-similar regime ranged from 0.038 to 0.044, again
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underpredicting the experimentally accepted value of 0.07. Linden et al. suggested

that simulations at a finer grid resolution were required for more accuracy; however,

at the time of the publication such computing resources were not available. Again

using the TURMOIL3D code Dalziel et al. [21] found a disagreement in α between

experiments and simulations, and suggested that the experimental mean concentration

(ensemble average over multiple experiments) is a better characterization of the flow

than the growth parameter, α.

Ramaprabhu and Andrews [48] also used MILES to simulate the Rayleigh–Taylor

instability. They used the velocity fluctuations at the centerline of the mixing layer

to obtain the growth parameter, and similar to the simulations discussed above,

reported a smaller growth parameter than measured experimentally. Ramaprabhu

and Andrews suggested that the reason for the smaller growth parameter was be-

cause experiments have velocity perturbations that accelerate the initial density

interface. This hypothesis was then tested, and resulted in better agreement between

experimental and numerical results, showing α ≈ 0.06.

Ristorcelli and Clark [49] used direct numerical simulations in their analysis of

the RTI. They proposed that the flow is not self-similar (i.e., that only one length

scale describes the flow) and that the growth parameter α, is not a universal constant.

Rather, different length scales must be used for each of the three turbulent scales

(energy-containing length scale, Taylor microscale, and Kolmogorov dissipation scale).

Banerjee et al. [50] used the Besnard–Harlow–Rauenzahn (BHR) three-equation

k–S–a model (equations for turbulent kinetic energy, dominant eddy length scale,

and mass flux, respectively) to simulate the Rayleigh–Taylor and Kelvin–Helmholtz

instabilities separately. These simulations modeled the Bell and Mehta experiments

[33] and the previous Banerjee and Andrews experiments [25]. The simulation gave

good agreement with the velocity profile and the turbulent kinetic energy in the
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Kelvin–Helmholtz case and matched the volume fraction and turbulent mass flux

well in the Rayleigh–Taylor case. Other parameters such as the growth rate of the

mixing layer were not given.

In addition to their experimental work with the water channel, Snider and An-

drews [51] simulated the combined instability using a two-equation, two-dimensional

K–ε RANS model. First, they conducted a one-dimensional analysis of the pure

Rayleigh–Taylor instability. They reported, depending on turbulent model coeffi-

cients, α values between 0.05 and 0.077. For further simulations, the turbulent model

coefficients were set to give the corresponding α = 0.07 value. Two-dimensional

pure RTI and KHI simulations were then conducted and compared to experimental

data. Snider and Andrews then combined the buoyancy and shear mixing cases and

discovered that adding shear to the flow did not increase the mixing layer growth,

but decreased it. They attributed this to the skewing (due to shear) of the normally

vertical Rayleigh–Taylor bubbles and spikes. These simulations were carried out at

low Atwood numbers and velocity differences (2–5 cm/s).

Olson et al. [52] also simulated the combined instability using large eddy simula-

tions. They observed that adding shear changes the motion of the vortical structures

from the circular Rayleigh–Taylor vortices to increasingly two-dimensional rollers.

They arrived at the same conclusion as Snider and Andrews in that addition of small

amounts of shear reduce the mixing rate during the early non-linear regime. Olson

et al. proposed that the reduction in the mixing rate is due to less energy being

channeled into vertical mixing up to the minimum mixing rate. Further addition

of shear increases the amount of energy available and the mixing rate will again

increase.

Mueschke and Schilling [53] used direct numerical simulation and initial conditions

from previous experimental work [54] to model the Rayleigh–Taylor instability. They
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concluded that by using experimentally measured initial conditions, the simulation

data agreed well with experimental statistics and that in order to accurately simulate

a Rayleigh–Taylor mixing experiment, the initial conditions must be known. The

simulation data was also used to examine the structure of mean and turbulent

transport and mixing [55].

1.3.1 Objectives for this Work

The objective of this work is to further study the combined Rayleigh–Taylor and

Kelvin–Helmholtz instability, and specifically:

1. Build upon the work by Akula et al. [6], where transition for the combined

instability case was found to range between −1.5 and −2.5. By examining

a larger set of Atwood numbers, it will be possible to confirm whether these

values are true.

2. Provide experimental data to quantify the effect of a complex stratified flows, us-

ing the mixing layer and non-dimensional growth parameter αb,s for comparison

to a generic stratification.

3. Further develop the Reynolds–averaged Navier–Stokes model at Lawrence

Livermore National Laboratory to include the Crank–Nicolson method for the

time evolution: this allows the code to use larger time steps by bypassing the

CFL condition, and thus, will provide data at later times. This code will then

be used to produce initial simulation results in pure RT case with both generic

and complex stratifications.

The present work builds upon the experimental and numerical works described

above by investigating the effects of a higher Atwood number and velocity ratios.

The experimental facility along with the diagnostics used to accomplish this will be
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described in the next section, followed by a description of the code. Experimental

and numerical results will then be presented and compared. Finally, conclusions will

be discussed, as well as future work.
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2. EXPERIMENTAL WORK

The following section will discuss the experimental work completed, including the

experimental apparatus used, the procedure for conducting experiments, the problem

setup, and the results obtained from the test cases.

2.1 Experimental Apparatus

The experimental data presented in this work was obtained using the multilayer

gas tunnel facility in the Shock Tube and Advanced Mixing Laboratory (STAML).

The gas tunnel was initially designed by Ph.D student and lab mate Bhanesh Akula

in an attempt to construct an improved facility compared to the one used by Banerjee,

Andrews, and Kraft [25, 26, 27]. A schematic of the facility is shown in figure 2.1.

The gas tunnel is an open circuit suction tunnel, powered by a Joy Series 2000 model

38-21-1770CP axivane fan. The facility is capable of At . 0.84 and velocities in

excess of 5 m/s. All contraction sections are constructed of sheet metal (sections B,

D, E, and F), the test section is made of acrylic, and structural supports are square

steel tubes. The splitter plates used to separate the streams are made of aluminum.
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Figure 2.1: CAD model of facility. The flow direction shown corresponds to x, while
the vertical direction is y and z is in and out of the page.

The main tunnel is made up of three sub-streams, each measuring 91.44 cm by

91.44 cm at the inlet (section F). These sub-streams each have independently operated

louvers at the tunnel entrance to control the flow velocity through the respective

stream, which allows shear to be introduced into the flow field between the fluid

streams. Additionally, section F also has baffles, mixing fans, and a honeycomb to

first mix the fluids and then disperse the circulation induced by the fans. The splitter

plate terminates at the inlet of the test section (C), where all sub-streams are allowed

to mix. Prior to the test section is a mixing contraction (E) and a series of wire

screen separators (D). The screens (3 total) become finer further downstream and are

used to reduce the turbulence levels within the gas before entering the test section by

dissipating large eddy structures. An in depth study has been conducted to determine

the proper size of the meshes [56]. The furthest upstream screen has 14.17 by 14.17

meshes per cm with a wire diameter of 0.01651 cm The next two screens (moving

downstream) are 19.69 by 19.69 and 23.62 by 23.62 with diameters of 0.01143 and

0.00889 cm respectively. Additionally, the meshes increase the uniformity of the flow.

The test section walls, floor, and ceiling are made from 1.27 cm thick acrylic
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sheets, as transparency is required for light extinction and particle-image velocimetry

diagnostic techniques. These acrylic sheets are joined together using 6061 aluminum

L bars and fastened with 1/4− 20 and M6 bolts. The dimensions of the test section

measure 3.048 m long by 1.83 m high and 0.61 m wide. Further, the ceiling of the

test section has three parallel slots machined in the acrylic which allows a traverse

arm to be lowered into the channel at various span-wise locations. The traverse is

supported by two square aluminum tubes that run the length of the test section and

can be seen in figure 2.2(a).

(a) Original gas tunnel setup at STAML. (b) Test section with two camera tripod mounts
at two x locations used for PIV experiments.

Figure 2.2: Configuration of gas tunnel before modifications (a) and test section (b).
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Downstream of the test section, the flow passes through another honeycomb in the

contraction (section B in figure 2.1) which reduces the vorticity that can be imposed

by the fan on the upstream fluid. This helps to reduce the three dimensionality of

the flow.

To create the required unstable fluid stratification for an experiment, various

gases must be injected and premixed with air in the sub-sections of the tunnel.

This is achieved using an intricate PVC piping configuration to bring the gas from

compressed gas bottles [see figure 2.3(a)] into the upstream mixing section (F). In

each sub-stream of section F, there are three injection pipe systems. Each system

consists of three tubes with numerous holes, which distribute the helium throughout

the sub-stream. Depending on the conditions of the experiment, up to three gas

injection lines can be used, each with six gas bottle connections. For a complex

stratification experiment, only helium is hooked up to the bottle connections. This

allows pure helium to be injected into section F, causing pockets of helium to rise up

to the splitter plate and giving the complex density profile. For generic stratification

in the classical Rayleigh–Taylor case, one of the vacant gas lines will be outfitted with

nitrogen. With this setup, a mixture of helium is injected into section F, resulting in

a uniform density profile across the bottom stream.

An orifice divides the high and low pressure sides of the injection lines and controls

the amount of gas allowed into the tunnel (and therefore sets the Atwood number).

From one-dimensional gas dynamics, the choked mass flow rate through the orifice is

controlled by the upstream total pressure and the orifice area. The total pressure is

changed using two pressure regulators, and various orifices can be used to change

the area. A table giving the corresponding orifice size and Atwood number is given

in [56]. The high pressure section of the lines are made from 1.27 cm stainless steel

tubing, while the low pressure sides are constructed of 5.08 cm PVC.
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Valves are opened and closed accordingly in order to inject the gas into the

appropriate sub-section (bottom, middle, or top) and shown in figure 2.3(b). As

mentioned earlier, each sub-section uses baffles along with circulation fans to mix the

incoming air and the injected gas.

(a) Helium gas bottles hooked up to all three
lines (each row of bottles makes up a line, with
lines 2 and 3 running parallel to each other).

(b) PVC valve arrangement showing valve con-
trols for 2 of 3 lines. Each line has three valves,
allowing gas to be injected into any sub-stream.
The configuration shown is allowing gas from
lines 3 and 1 to enter the bottom sub-stream.

Figure 2.3: Gas injection network used for stratification.

To inject fog into the tunnel, two fog machines are located on a shelving tower

standing in front of the upstream nozzle, shown in figure 2.4. The High End Systems R©

F-100TM machine is used for light extinction experiments where a high volume and less

precise amount of fog is needed. A Pea Soup R© machine is used for PIV experiments,

where a precise fog concentration is required in both heavy and light fluid streams,

as well as consistent fog particle size.
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(a) Fog machine tower and flow adjustment lou-
vers at entrace of tunnel, showing both High End
F-100TM and Pea Soup R© machines.

(b) Louver adjustment control arm used to ma-
nipulate the flow velocity through a given sub-
layer.

Figure 2.4: Velocity and fog control system used to induce shear between streams
and inject fog for diagnostics.

Three diagnostic techniques were used to collect data from this facility. They

are light extinction using a DSLR camera and back light [shown in figure 2.2(a)],

particle-image velocimetry, and hot-wire anemometry. Light extinction experiments

are conducted to determine the growth of the mixing layer as the flow moves through

the tunnel, whereas PIV and hot-wire diagnostics are used to set the velocities for an

experiment. These techniques will be discussed in detail in § 2.2.1 through § 2.2.3.
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Additionally, thermocouples are installed in the beginning of the test section to

measure the temperature of each respective stream (K-type in the middle stream,

E-type in the bottom). It should be noted that since the experiments conducted in

this work were only two layer, no thermocouple was installed in the top stream.

Throughout the work presented in this thesis, the facility described above has

undergone numerous modifications which are outlined in the appendix. However, the

general operating principles have remained the same.

2.2 Experimental Procedure and Configurations

The experiments presented in this work were completed with the light fluid being

composed of a mixture of air and helium, and the heavy fluid being pure air. The

volume fraction of air to helium in the light mixture sets the Atwood number of the

experiment. The bulk velocity within the tunnel is controlled by the fan, located at

the exit of the tunnel. It is operated by a control box, pictured in figure 2.5, which

allows the fan to be powered on as well as the interior blade angle of attack to be

adjusted. Since this particular fan does not utilize a variable frequency drive, the

velocity in the tunnel can only be changed by manipulating these blades, opening

or closing the upstream louvers, or adjusting the position of the fan (moving it

closer/further from the final contraction section). Coarse velocity adjustment is

accomplished through fan modifications, while fine adjustment (such as modifying

shear during an experiment) is accomplished through louver manipulation.
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Figure 2.5: Power box used to operate fan and blade angles. The large white dial
displays the pitch angle of the blades, which ensures consistency between experiments.

Once the fan is running steadily, the velocities are set to their specific value for

a given experiment. To do this, hot-wire anemometry and PIV are used. When

the desired tunnel conditions are verified, gas is injected using the system described

in § 2.1. The three different diagnostic techniques used for data collection during

experiments are discussed in detail in the following subsections.

2.2.1 Light Extinction

To conduct light extinction experiments, fog is injected into either the light or

heavy stream using the High End Systems F-100TM fog generator. The test section is

then illuminated using a backlight composed of eight LED panels. As the fogged and

non-fogged streams mix due to instability growth, the fog becomes less concentrated

in the mixing region and therefore allows more light to pass through to the camera,

as described by the Beer–Lambert law,

I = I0 e
−µx (2.1)
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where I is the power of the transmitted light, I0 is the power of the light source, µ

is the attenuation coefficient, and x is the path length. For low levels of fog, the

transmission power of light through a medium follows a linear relationship with the

fog concentration and the attenuation. The purpose of the calibration is to determine

the correct amount of fog so that this linear relationship is satisfied.

Calibration experiments are conducted using a triangular prism that is filled with

fog, as done by [56]. The triangular cross section produces a linear fog concentration

in a given direction. This calibration is shown in figure 2.6.

Figure 2.6: Triangular prism inside test section used for calibration of concentration
curves with backlight. Image taken using Nikon R© D90TM camera. Fog concentration
increases linearly from right to left inside the prism.

Light extinction experiments are conducted using a Nikon R© D90TM DSLR camera

mounted to a tripod, which is then automated by a LabVIEWTM program to take

images at 2 Hz for 100 seconds. These images are then processed using MATLAB R©.
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An example of a processed instantaneous image and the result of image averaging is

given in figure 2.7.

(a) Corrected instantaneous experimental image for Atwood number 0.055 with
∆U = 0.16 m/s. The characteristic Rayleigh–Taylor plume structures are clearly
visible.

(b) Average image after processing for Atwood number 0.055 and ∆U = 0.16 m/s.
Image has been averaged over 100 images similar to the one shown above in figure
2.7(a).

Figure 2.7: Instantaneous and averaged images shown after MATLAB R© processing
for an experiment with Atwood number 0.055 and ∆U = 0.16 m/s.

This processing provides the mixing width, growth rate parameter, concentration

profiles, and the locations of the mixing width center and the transition region.

Additionally, these experiments allow visual verification that the tunnel is operating

as expected for the given setup. Light extinction experiments are used to measure
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the growth of the mixing layer. From the mixing layer data, the non-dimensional

growth parameter αb,s and the height gradient plots are obtained.

2.2.2 Particle-Image Velocimetry

Particle image velocimetry uses TSI R© model 630157 PowerView PlusTM 2 megapixel

cameras and a dual head Litron R© Nano-PIVTM model LPU550 laser with optical

arrangement to make measurements in the flow field. Using the Pea Soup R© fog

machine, particles are introduced into the light and heavy streams. For PIV, particles

are seeded in both the heavy and light fluid streams. Seeding is controlled using

a duct network with internal fans that splits the fog into two streams. The power

of the internal fans is adjusted using a variable transformer. If a larger number of

particles is needed in a given stream, the power of the fan can be increased, or the

power of the other fan can be reduced. This setup is shown in figure 2.8, and allows

a precise, consistent, and steady fog stream to be produced.
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Figure 2.8: Variable transformers used for controlling internal fans in the fog splitting
system. The voltage controls the fan power, and the seeding for the given stream
during PIV experiments.

To illuminate the fog particles, the Litron R© laser is used to generate a plane

parallel to the z-axis into the test section [shown in figure 2.9(c)]. Two cameras

are used at two x locations and are triggered simultaneously. To accomplish this

two-location setup while only using one laser, the beam must be split using a beam

splitter. This reflects 45% of the power in a specified direction, while allowing 55%

of the power to pass through. The 55% beam then travels through a 12.7 mm

plano-concave lens which causes the beam to diverge in a plane. This plane is then

reflected into the test section. A similar setup is used with the 45% beam at a

different x location in the test section. The optical setup is shown in figure 2.9.
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(a) Primary laser table (downstream location).
The laser fires the beam which is then split in
the beam splitter (45/55% power). The beam
then passes through a diverging plano-concave
lens before being reflected through the bottom
of the test section.

(b) Secondary laser table (upstream location).
The laser beam hits the first reflecting mirror
(right) after being split in the beam splitter, and
then passes through two lenses before being re-
flected into the channel by the second reflecting
mirror (left).

(c) Laser during PIV experiment, showing beam being split in beam
splitter, and laser plane being reflected into the test section.

Figure 2.9: Laser table optical arrangements at both stream-wise locations and during
an experiment.

28



The Litron R© laser is a dual head laser, which discharges light from each head

with a known time interval between discharges. When each laser head is fired, the

cameras take a picture: this results in two images at two different times for each

camera. A calibration image is then taken: this creates a conversion between pixels

and a length scale. These images are then processed using Insight4GTM software

from TSI R©. The velocity is obtained by using the calibration image to calculate

the distance the particle has traveled and the time between images. This process is

repeated for the duration of the experiment, and the data is again averaged over the

total time.

A sample PIV image taken during a shear experiment is given in figure 2.10. In

this image, the seeding is more dense in the top stream, allowing the large vortical

structure to appear. After processing with Tecplot R©, the vorticity field is obtained.

As expected, there is large positive vorticity at the center of the vortex, validating

the PIV technique.

(a) Sample PIV image taken during shear experi-
ment with ∆U = 0.06 m/s and Um = 0.66 m/s.

(b) Vorticity plot showing large positive vorticity
at the center of the vortex.

Figure 2.10: Sample experimental PIV image with analysis, showing good agreement
between raw image and post-processing.
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In order to acquire more data per experiment, two cameras are used simultaneously.

This allows data to be collected at two locations downstream of the splitter plate.

This diagnostic also allows the turbulent correlations u′2, v′2, u′v′ to be calculated.

The PIV diagnostic was used for setting the velocities in order to ensure the correct

shear value for a given experiment.

2.2.3 Hot and Cold-Wire Anemometry

The third diagnostic technique used in the gas tunnel is hot/cold-wire anemometry

with a density probe. Hot-wire, or constant-temperature anemometry (CTA), operates

by keeping an extremely thin wire at a constant temperature. Through convective

heat transfer, the wire will be cooled as a flow passes over it. The wire must then be

heated by increasing the voltage. As the flow velocity increases, the voltage must

further be increased to keep up with the wire cooling. Thus, a relationship between

voltage and flow velocity can be obtained. Cold-wire, or constant-current anemometry

(CCA), operates in a similar fashion except the wire is kept at a constant current

rather than temperature. This allows the temperature of the flow to be measured,

which is necessary to apply the appropriate correction factor to the velocity and

density data.

The hot/cold-wire with density probe configuration requires a three-wire hot-wire

probe to measure velocity data in the x, y, and z coordinates, a cold wire to measure

the temperature of the flow, and a x-probe to measure the concentration of the mixing

fluids. The probes in their experimental configuration are shown in figure 2.11, along

with a scale to show the spatial resolution.
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(a) Probe arrangement used for setting velocity
and measuring the density profile in the bottom
stream.

(b) Arrangement with scale to show spatial reso-
lution of probes.

Figure 2.11: Experimental hot-wire arrangement.

The output signal from the anemometers is given as a voltage, and thus, a

calibration is required to extract flow properties. This is completed by creating a

known mixture of gases with a known velocity in a calibration chamber as shown in

figure 2.12.
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(a) Three wire x-probe. This probe was not used
in the experiments presented in this work, but is
shown to demonstrate the calibration of a probe.

(b) Probe inside calibration chamber with ther-
mocouple. The thermocouple is necessary for
temperature corrections to ensure proper read-
ings from the probe.

(c) AALBORG R© model GFC57 flow controllers which are con-
trolled by a LabVIEWTM program. Flow controllers allow the
calibration to be automated, reducing the time required for cali-
bration.

Figure 2.12: Calibration of x-probe hot wire.
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For a complete calibration, the voltages must be measured for all conditions in the

experiment: this means concentrations from pure air to pure helium (for very high

Atwood numbers), and velocities from zero to the maximum experimental velocity.

Anytime a probe breaks or if the resistance of the BNC wire changes (due to faulty

connections) the probe must be re-calibrated. This can be difficult to detect, and so

calibrations are performed each day that an experiment is to be performed.

Gas concentrations and flow rates are regulated using two AALBORG R© model

GFC57 flow controllers through LabVIEWTM. Calibration curves are then generated

using King’s law,

E2 = A+Buc (2.2)

where E is output voltage, u is velocity, and A, B, and exponent c are constants

calculated during calibration. By using the calibration curves, the output voltages

obtained during an experiment are converted into fluid velocity. A detailed description

of hot-wire anemometry is given by Banerjee [56]. The hot-wire diagnostics are used in

conjunction with PIV to determine that the velocities are correct for the experiments.

PIV is used first, and then confirmed with the hot wires. The density probe is used

to measure the profile in the bottom stream, which is used to set the initial condition

of the simulations, and will be discussed in section 4.
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3. REYNOLDS–AVERAGED NAVIER–STOKES CODE

The model used to simulate the experiments in this work is a multicomponent

K–ε RANS model originally developed by Dr. Oleg Schilling at Lawrence Livermore

National Laboratory and previously used to simulate the Richtmyer–Meshkov insta-

bility with reshock [57, 58]. An extensive description of the RANS methodology is

given by Pope [59]. The code was further developed by the Author and lab mate

Bhanesh Akula in collaboration with Dr. Schilling. This section will describe the

numerical methods, governing equations solved by the code, and the initial conditions

with the problem setup.

3.1 Numerical Methods

In the earlier Richtmyer–Meshkov simulations performed by Morán-López and

Schilling, [57, 58], shock waves are present. Thus, the weighted essentially non-

oscillatory (WENO) scheme is used to capture discontinuities within the domain.

The governing equations are then implemented with advective flux reconstruction,

and time discretization is performed with a third-order total variation diminishing

(TVD) Runge–Kutta method. A detailed discussion of the WENO scheme and

TVD Runge–Kutta time discretization is given by Liu et al. [60]. Additionally, a

description of the numerical methods used in the explicit time evolution scheme is

given by Morán-López and Schilling [57].

Since the Rayleigh–Taylor instability does not have discontinuities in the flow

field, a central difference scheme can be used instead of the flux reconstruction. The

central differencing scheme uses linear interpolations to determine values at the face

of each cell [61]. However, in the results presented, the flux splitting scheme was

applied to the advection terms in the governing equations described above in § 3.2,
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while central differencing is used to compute the derivatives in the source and sink

terms. The implicit Crank–Nicolson formulation has replaced the third-order TVD

method for the time evolution.

3.2 Governing Equations

The RANS model describes the transport of the mean density ρ, and mean velocity

ṽ, mean total energy ẽ, and the mean heavy mass fraction m̃H , where the over bar and

tilde signifies a Reynolds average and Favre average, respectively. The code solves

seven equations corresponding to the conservation of mass, momentum, total energy,

heavy mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation

rate, and density variance. These equations are given below [58]. Since the code is

one-dimensional, indices have been omitted.

3.2.1 Explicit Model Equations

Equations for the mean density and momentum are given as

∂ρ

∂t
+

∂

∂x
(ρ ṽ) = 0 (3.1)

and

∂

∂t
(ρ ṽ) +

∂

∂x
(ρ ṽ2) = ρ g − ∂p

∂x
− ∂τ

∂x
+
∂σ

∂x
, (3.2)

where ρ is the mean density, ṽ is the mean velocity, p is the mean pressure, τ is the

Reynolds stress, and σ is the viscous stress,

τ =
2

3
ρK − 4

3
µt
∂ṽ

∂x
(3.3)

σ =
4

3
µ
∂ṽ

∂x
, (3.4)

35



and g is the acceleration.

The total mean energy equation is then given as

∂

∂t
(ρ ẽ) +

∂

∂x
(ρ ẽ ṽ) = ρ g ṽ − ∂

∂x
(p ṽ + p v′′) +

∂

∂x
(σ ṽ − τ ṽ) +

∂H

∂x

+
∂

∂x

[
(κ+ κt)

∂T̃

∂x
+
µt
σU

∂Ũ

∂x

]

+
∂

∂x

[(
µ+

µt
σK

)
∂K

∂x

]
,

(3.5)

where v′′ is the averaged Favre fluctuating velocity, H is the total mean enthalpy

diffusion, T̃ is the Favre averaged mean temperature, κ is the thermal conductivity,

and µ is the dynamic viscosity. The terms on the right hand side of equation 3.5

represent the gravitational pressure work, turbulent kinetic energy production, en-

thalpy diffusion, temperature diffusion, mean internal energy diffusion, and turbulent

kinetic energy diffusion, respectively (the subscript t denotes a turbulent quantity).

The turbulent thermal conductivity and viscosity are

κt =
cp µt
Prt

, (3.6)

νt =
µt
ρ

= Cµ
K2

ε
(3.7)

where K is the turbulent kinetic energy and ε is the turbulent kinetic energy dissi-

pation rate. Additionally the turbulent Prandtl number, Prt, is set to 0.7 and the

dimensionless model coefficient is Cµ = 0.09. The mean total energy is the sum of

the mean kinetic energy, mean internal energy Ũ , and turbulent kinetic energy

ẽ =
ṽ2

2
+ Ũ +K. (3.8)
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This code models the fluids as ideal gases with constant specific heats. Thus, the

mean internal energy can be written as

Ũ =
p

(γ − 1)ρ
= cvT̃ , (3.9)

where γ is the ratio of specific heats and can be expressed in terms of the heavy (mH)

and light (1−mH) mass fraction as

γ =
cp
cv

=
cpHm̃H + cpL(1− m̃H)

cvHm̃H + cvL(1− m̃H)
, (3.10)

where cp and cv are the specific heats at constant volume and pressure, and subscripts

H and L represent heavy and light fluid mixtures.

The total mean enthalpy diffusion in equation 3.5 is (indices r, s = 1, 2 are used

to denote fluids H and L respectively)

H = −
2∑
r=1

h̃rJr,j + h̃rJ ′′r,j + h′′rJ
′′
r,j. (3.11)

The mean enthalpy for an ideal gas r is

h̃ = cp,rT̃ (3.12)

where the mean diffusive flux

Jr = −ρ
(
Dr

∂m̃r

∂x
− m̃r

2∑
s=1

Ds
∂m̃s

∂x

)
. (3.13)
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Substituting equations 3.13 and 3.12 into equation 3.11 gives

H = ρ

2∑
r=1

h̃r

(
Dr

∂m̃r

∂x
− m̃r

2∑
s=1

Ds
∂m̃s

∂x

)
+ ρDt

2∑
r=1

h̃r
∂m̃r

∂x
(3.14)

where the turbulent diffusivity is Dt = νt/Sct, with the turbulent Schmidt number,

Sct = 0.7.

The molecular transport coefficients such as mass diffusivity and thermal conduc-

tivity (D and κ, respectively) are determined using the binary mixture relation

φ =

φHm̃H√
MWH

+ φL(1−m̃H)√
MWL

m̃H√
MWH

+ 1−m̃H√
MWL

, (3.15)

where MWH and MWL denote the molecular weights of the heavy and light mixtures

respectively.

The heavy mass fraction is obtained from

∂

∂t
(ρ m̃H) +

∂

∂x
(ρ m̃H ṽ) = −∂JH

∂x
+

∂

∂x

(
µt
σm

∂m̃H

∂x

)
, (3.16)

where JH is the diffusive flux (equation 3.13).

The turbulent equations will now be presented and discussed. In the K–ε model,

equations for the turbulent kinetic energy and its dissipation rate are also solved.

Beginning with the turbulent kinetic energy equation

∂

∂t
(ρK) +

∂

∂x
(ρK ṽ) =− v′′ ∂p

∂x
− τ ∂ṽ

∂x
− ρ ε+ ΠK

+
∂

∂x

[(
µ+

µt
σK

)
∂K

∂x

]
,

(3.17)

where ε is the turbulent kinetic energy dissipation rate and ΠK is the pressure
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dilatation (which is set to zero in the present work)

ΠK = p′
∂v′′

∂x
. (3.18)

The equation for the turbulent kinetic energy dissipation rate is then given as

∂

∂t
(ρ ε) +

∂

∂x
(ρ ε ṽ) =− Cε0

ε

K
v′′
∂p

∂x
− Cε1

ε

K
τ d
∂ṽ

∂x
− 2

3
Cε3 ρ ε

∂ṽ

∂x

− Cε2
ρ ε2

K
+ Cε4

ε

K
ΠK +

∂

∂x

[(
µ+

µt
σε

)
∂ε

∂x

]
,

(3.19)

where the first five terms on the right side are the pressure work, production,

divergence, destruction rate, and dilatation. The sixth term represents the diffusion

of the turbulent kinetic energy dissipation rate. The Boussinesq closure model is used

for the Reynolds stress:

τ =
2

3
ρK − 4

3
µt
∂ṽ

∂x
(3.20)

and the deviatoric part of the Reynolds stress is

τ d = −4

3
µt
∂ṽ

∂x
. (3.21)

The averaged Favre fluctuating velocity v′′ is computed using the closure

v′′ = −
(

νt
σρ(cpH − cpL)mH cpL

)
∂s̃

∂x
, (3.22)

where s̃ is the mean entropy.
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Finally, the density variance equation, where S = ρ′2 is

∂S

∂t
+

∂

∂x
(S ṽ) =2 ρ v′′

∂p

∂x
+ S

∂ṽ

∂x
+
ρ2

γ p
ΠK − 2Cρ S

ε

K

+
∂

∂x

[(
D +

νt
Sct σS

)
∂S

∂x

] (3.23)

can be used as a diagnostic, and allows for more quantities to be obtained such as

the molecular mixing parameter, θ. The molecular mixing parameter is a measure of

how well mixed the light and heavy fluids are. In equation 3.23, D represents the

mass diffusivity of the mixture. The terms on the right hand side of equation 3.23

are the production, divergence, dilatation, destruction, and diffusion of the density

variance. The density variance is not used in the present work, and is included for

completeness.

The dimensionless model coefficients Cε0 , Cε1 , Cε2 , Cε3 , and Cε4 are given in

table 3.1 along with σρ, σm, σU , σK , σε, and σS. These values were chosen to give a

theoretical α of 0.07.

Table 3.1: Model coefficients.

Cε0 0.90 σρ 0.90
Cε1 1.44 σm 0.70
Cε2 1.92 σU 0.70
Cε3 0.00 σK 0.70
Cε4 2.00 σε 0.70

σS 0.70

3.3 Code Development

As part of the work for this thesis, the code has been further developed in order

to better and more efficiently simulate the experiments conducted in the gas tunnel.
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These modifications include adding initial gas mixture capability, implementing a

new model for mixture viscosity, including an option for a central differencing scheme

for the advection terms, and solving the governing equations using the implicit

Crank–Nicolson method.

Too add mixture capability to the code, simple thermodynamic relations were

used based on the mole fraction of the mixture. This mole fraction is also used

to set the heavy and light fluid density (and consequently Atwood number) of the

simulation. This method does not, however, apply for the viscosity of a mixture.

For this, an empirical expression has been used from Buddenberg and Wilke [62] to

determine the constants in the Sutherland–Thiesen viscosity equation for a binary

gas mixture

µ =
µ1

1 + X2

X1

1.385µ1
D12ρ1

+
µ2

1 + X1

X2

1.385µ2
D12ρ2

, (3.24)

where subscripts 1 and 2 denote the components of the binary mixture, and µ1,2, X1,2,

D1,2, and ρ1,2 are the viscosity, mole fractions, mass diffusivity, and density of the

component fluids.

Finally, in order to simulate the gas tunnel experiments, an implicit time-evolution

method was used. The explicit scheme is limited by the Courant–Friedrichs–Lewy

(CFL) condition, which is required to ensure stability. The seven equations labeled

above in bold will now be given in their implicit form, as used in the Crank–Nicolson

scheme. To accomplish this, the equations must first be simplified according to term

discretization. The term fφ will be used to represent advection and additional terms

(discretized using the WENO or central differencing scheme), while Sφ will contain

the source/sink terms whose derivatives are discretized using central differencing.

Subscript φ will be assigned for the appropriate equation.
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3.3.1 Implicit Model Equations

Using the mechanism mentioned above, the momentum equation (equation 3.2)

can be represented as:

∂

∂t
(ρ ṽ) =

4

3

∂

∂x

[
(µ+ µt)

∂ṽ

∂x

]
+ fṽ + Sṽ, (3.25)

where

fṽ = − ∂

∂x
(ρṽ2)− ∂

∂x
(p+ pt),

Sṽ = ρg

Implementing equation 3.25 in the Crank–Nicolson formulation results in

ρn+1
j

ṽn+1
j − ṽnj

∆t
=

4
3
(µn+1

j+ 1
2

+ µtj+ 1
2
)(ṽn+1

j+1 − ṽn+1
j )

2(∆x)2

−
4
3
(µn+1

j− 1
2

+ µtj− 1
2
)(ṽn+1

j − ṽn+1
j−1 )

2(∆x)2

+ fnṽ,j + Snṽ,j,

(3.26)

where the exponent n represents the time step and subscript j the index location

within the 1D domain. The diffusion coefficients µj+ 1
2

and µj− 1
2

are taken as nodal

averages and are defined as

µj± 1
2

=
µj + µj±1

2
. (3.27)

Equation 3.27 represents the method used for all diffusion coefficients in the

Crank–Nicolson formulation. To solve equation 3.26, terms at the next time step

(n+ 1) are moved to the left hand side of the equation while the current time step
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(n) terms are kept on the right. The resulting equation is then written as:

−Dn
j+ 1

2
ṽn+1
j+1 + (ψn+1

j +Dn
j+ 1

2
+Dn

j− 1
2
)ṽn+1
j −Dn

j− 1
2
ṽn+1
j−1

= 2(∆x)2(fnṽ,j + Snṽ,j) + ψn+1
j ṽnj ,

(3.28)

where D is the diffusion coefficient, µj + µtj . The term ψj = 2ρn+1
j (∆x)2/∆t has

been introduced for simplicity. Since equation 3.28 represents a tri-diagonal matrix,

it can be solved by using the boundary conditions for ṽ and the well known Thomas

algorithm with the condition of ṽ = 0 at each boundary.

The pressure work, represented by the first term in equation 3.5, is discretized using

the central difference of flux splitting scheme. The other terms can be represented

in terms of ẽ by rearranging equations 3.8 and 3.9. Thus, turbulent kinetic energy

production is written as

4

3

∂

∂x

[
(µ+ µt)

∂ẽ

∂x

]
− 4

3

∂

∂x

[
(µ+ µt)

∂

∂x
(K + Ũ)

]
(3.29)

Enthalpy diffusion (equation 3.12) becomes

h̃ = cp,r
Ũ

cv
=⇒ h̃ =

cp,r
cv

(
ẽ−K − ṽ2

2

)
(3.30)

and when substituted into equation 3.14 gives

H =

(
ρ

2∑
r=1

cp,r
cv,mix

(
Dr

∂m̃r

∂x
− m̃r

2∑
s=1

Ds
∂m̃s

∂x

)
− ρDt

2∑
r=1

cp,r
cv,mix

∂m̃r

∂x

)
︸ ︷︷ ︸

A

(
e−K − ṽ2

2

)
,

(3.31)

where the coefficient of (e − K − ṽ2

2
) is labeled as A for simplicity and clarity in
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equations 3.36, 3.37 and 3.39 below.

The Favre averaged temperature is written as

T̃ =
1

cv

(
ẽ−K − ṽ2

2

)
, (3.32)

so that the temperature diffusion term becomes

∂

∂x

[
κ̃+ κt
cv

(
∂ẽ

∂x
− ∂K

∂x
− ṽ ∂ṽ

∂x

)
− κ̃+ κt

c2v

∂cv
∂x

Ũ

]
(3.33)

In a similar fashion, the mean internal energy diffusion is written as

∂

∂x

(
µt
σU

∂ẽ

∂x

)
− ∂

∂x

[
µt
σU

∂

∂x
(ṽ2 +K)

]
(3.34)

and the turbulent kinetic energy diffusion

∂

∂x

[(
µt
σK

+ µ

)
∂ẽ

∂x

]
− ∂

∂x

[(
µt
σK

+ µ

)
∂

∂x
(ṽ2 + Ũ)

]
. (3.35)
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Equations 3.29, 3.31, and 3.33 through 3.35 are combined to form the complete energy

equation

∂

∂t
(ρ ẽ) +

∂

∂x
(ρ ẽ ṽ) = ρ g ṽ − ∂

∂x
(p ṽ + p v′′)

+
∂

∂x

[
A

(
ẽ− ṽ2

2
−K

)]
+

4

3

∂

∂x

[(
µ+ µt

)
∂

∂x

(
ẽ− Ũ −K

)]
+

∂

∂x

[
µt
σU

∂

∂x

(
ẽ− ṽ2

2
−K

)]
+

∂

∂x

[(
µ+

µ

σK

)
∂

∂x

(
ẽ− ṽ2

2
− Ũ

)]
− ∂

∂x

[
κt + κ

c2v

∂cv
∂x

(
ẽ− ṽ2

2
+K

)]
.

(3.36)

Equation 3.36 is then reduced as done before, into terms discretized by central

difference or flux splitting and terms discretized with the Crank–Nicolson method.

This is shown below, with Sẽ representing source terms lagged by one time step.

∂

∂t
(ρ ẽ) =

∂

∂x

[
κ+ κt
cv

+
µt
σU

+ µ+
µt
σK

+
4

3
(µ+ µt)

]
︸ ︷︷ ︸

De

∂ẽ

∂x
+

∂

∂x
(B ẽ)

+ fẽ + Sẽ

(3.37)

with the new coefficient

B = A− κ+ κt
c2v

∂cv
∂x

,

and

fẽ = − ∂

∂x
(ρ ẽ ṽ)− ∂

∂x
(p ṽ + pt ṽ)
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Sẽ =ρ g ṽ − ∂

∂x
(ρ v′′)− ∂

∂x

[
A

(
ṽ2

2
+K

)]
− 4

3

∂

∂x

[
(µ+ µt)

∂

∂x

(
Ũ +K

)]
− ∂

∂x

[
µt
σU

∂

∂x

(
ṽ2

2
+K

)]
− ∂

∂x

[(
µ+

µt
σK

)
∂

∂x

(
ṽ2

2
+ Ũ

)]
− ∂

∂x

[
(κ+ κt)

∂

∂x

(
ṽ2 + 2K

2 cv

)]
.

Using equation 3.37, the energy equation can be arranged in the Crank–Nicolson

discretization. The term labeled as De represents the diffusion coefficient for the

energy equation in the Crank–Nicolson discretization

ρn+1
j

ẽn+1
j − ẽnj

∆t
=
De,n

j+ 1
2

(ẽn+1
j+1 − ẽn+1

j + ẽnj+1 − ẽnj )

2(∆x)2

−
De,n

j− 1
2

(ẽn+1
j − ẽn+1

j−1 + ẽnj − ẽnj−1)

2(∆x)2

+
Bn
j+ 1

2

(ẽn+1
j+1 − ẽn+1

j + ẽnj+1 − ẽnj )

2∆x

−
Bn
j− 1

2

(ẽn+1
j − ẽn+1

j−1 + ẽnj − ẽnj−1)

2∆x

+ fnẽ,j + Snẽ,j,

(3.38)

and in the tridiagonal formulation

(−De,n+1

j+ 1
2

−Bn+1
j+ 1

2

∆x)ẽn+1
j+1+(ψn+1

j +De,n+1

j+ 1
2

+De,n+1

j− 1
2

)ẽn+1
j − (De,n+1

j− 1
2

+Bn+1
j− 1

2

∆x)ẽn+1
j−1

= 2(∆x)2(fnẽ,j + Snẽ,j) + (De,n

j− 1
2

+Bn
j− 1

2
∆x)ẽnj−1

− (De,n

j− 1
2

+Bn
j− 1

2
∆x− ψn+1

j +De,n

j+ 1
2

+Bn
j+ 1

2
∆x)ẽnj

+ (De,n

j+ 1
2

+Bn
j+ 1

2
∆x)ẽni+1.

(3.39)
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In the heavy mass fraction equation, the diffusive flux is discretized using central

differencing or flux splitting, and therefore the second term in equation 3.16 must be

discretized using the Crank–Nicolson scheme. Equation 3.16 reduces to

∂

∂t
(ρm̃H) =

∂

∂x

(
µt
σm

∂m̃H

∂x

)
+ fm̃H

+ Sm̃H
(3.40)

with

fm̃H
= − ∂

∂x
(ρm̃H ṽ),

Sm̃H
= −∂JH

∂x

transforming equation 3.40 into the Crank–Nicolson formulation results in

ρn+1
j

m̃n+1
Hj
− m̃n

Hj

∆t
=
µn+1
t
j+1

2

(m̃n+1
Hj+1
− m̃n+1

Hj
)

σm2(∆x)2

−
µn+1
t
j− 1

2

(m̃n+1
Hj
− m̃n+1

Hj−1
)

σm2(∆x)2
+ fnm̃H ,j

+ Snm̃H ,j
.

(3.41)

The diffusion coefficients µt/σm are defined in a similar fashion to equation 3.27 and

represented as D

−Dn
j+ 1

2
m̃n+1
Hj+1

+ (ψn+1
j +Dn

j+ 1
2

+Dn
j− 1

2
)m̃n+1

Hj
−Dn

j− 1
2
m̃n+1
Hj−1

= 2(∆x)2(fnm̃H ,j
+ Snm̃H ,j

) + ψn+1
j m̃n

H,j.

(3.42)

In the turbulent kinetic energy equation (equation 3.17), the turbulent kinetic

energy production work, production, destruction rate, and dilation are source terms,

which are lagged by one time step. Thus, equation 3.17 can be reduced to

∂

∂t
(ρK) =

∂

∂x

[(
µ+

µt
σK

)
∂K

∂x

]
+ fK + SK , (3.43)

47



which in the Crank–Nicolson formulation is

ρn+1
j

Kn+1
j −Kn

j

∆t
=

(µj+ 1
2

+
µt

j+1
2

σK
)(Kn+1

j+1 −Kn+1
j )

2(∆x)2

−
(µj− 1

2
+

µt
j− 1

2

σK
)(Kn+1

j −Kn+1
j−1 )

2(∆x)2
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(3.44)

where

fK = − ∂

∂x
(ρKṽ)

SK = −v′′ ∂p
∂x
− τ ∂ṽ

∂x
− ρ ε+ ΠK ,

In the turbulent kinetic energy equation the diffusion coefficients are µj± 1
2

+µt
j± 1

2

/σK

which are again represented as D in

−Dn
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2
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j +Dn
j+ 1

2
+Dn

j− 1
2
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j −Dn
j− 1

2
Kn+1
Hj−1

= 2(∆x)2(fnK,j + SnK,j) + ψn+1
j Kn

j

(3.45)

The ε equation is formulated in a similar way to the K equation, where only the

diffusion term is discretized in the Crank–Nicolson formulation. The reduced version

of equation 3.19 is written as

∂

∂t
(ρ ε) =

∂

∂x

[(
µ+

µt
σε

)
∂ε

∂x

]
+ fε + Sε, (3.46)

with

fε = − ∂

∂x
(ρ ε ṽ),

and

sε = −Cε0
ε

K
v′′
∂p

∂x
− Cε1

ε

K
τ
∂ṽ

∂x
− 2

3
Cε3 ρ ε

∂ṽ

∂x
− Cε2

ρ ε2

K
+ Cε4

ε

K
ΠK .
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The resulting Crank–Nicolson formulation and discretization (equations 3.47 and

3.48, respectively) is

ρn+1
j

εn+1
j − εnj

∆t
=

(µj+ 1
2

+
µt

j+1
2

σε
)(εn+1

j+1 − εn+1
j )

2(∆x)2

−
(µj− 1

2
+

µt
j− 1

2

σε
)(εn+1

j − εn+1
j−1 )

2(∆x)2

+ fε + Sε

(3.47)
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2
εn+1
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j +Dn
j+ 1

2
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j− 1
2
)εn+1
j −Dn

j− 1
2
εn+1
j−1

= 2(∆x)2(fnε,j + Snε,j) + ψn+1
j εnj

(3.48)

Finally, the density variance equation is discretized with the Crank–Nicolson

scheme, as as before in § 3.2, S = ρ′2. This reduces equation 3.23 to

∂

∂t
(S) =

∂

∂x

[(
D +

νt
SctσS

)
∂S

∂x

]
+ fS + SS. (3.49)

with

fS = − ∂

∂x
(Sṽ),

and

SS = 2 ρ v′′
∂ρ

∂x
+ S

∂ṽ

∂x
+ 2

ρ2

γ p
ΠK − 2Cρ

ε

K
S.

The Crank–Nicolson formulation and discretization is then
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(3.50)
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The term Dj+ 1
2

in equation 3.50 represents the mass diffusivity of the mixture.

To avoid confusion in the Crank–Nicolson discretization for the density variance, the

diffusion coefficient is represented by Λ,

−Λn
j+ 1

2
Sn+1
j+1 + (

ψn+1
j

ρn+1
j

+ Λn
j+ 1

2
+ Λn

j− 1
2
)Sn+1

j − Λn
j− 1

2
Sn+1
j−1

= 2(∆x)2(fnS,j + SnS,j) +
ψn+1
j

ρn+1
j

Snj

(3.51)
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4. INITIAL CONDITIONS AND PROBLEM SETUPS

In order to complete the objectives outlined in section 1, a total of six cases

of experiments were created. Table 4.1 summarizes these experiments by giving

the Atwood number, velocity difference, and whether or not the case has complex

stratification. A complex stratified flow refers to when the density profile in the light

fluid is non-constant. For the experiments performed in this work, this means that

the density of the fluid increases with the distance below the splitter plate. If the

density profile is constant, it is referred to as generic stratification.

Table 4.1: Experimental summary.

Case At ∆U Complex Stratification
I(a) 0.055 0.16 YES
I(b) 0.055 0.39 YES
I(c) 0.055 0.75 YES
II(a) 0.0971 0.25 YES
II(b) 0.0971 0.94 YES
III(a) 0.147 0.27 YES
III(b) 0.172 1.0 YES

IV 0.07 − NO
V 0.132 − NO
VI 0.164 − NO

4.1 Objective 1

The first objective in § 1.3.1 is to build upon the work by Akula et al. [6] and

to examine whether or not the transitional Richardson number collapses to the

range of −1.5 to −2.5 for higher Atwood numbers. To accomplish this goal, cases

I, II, and III will be used. For each of these cases, the Atwood number remains
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constant [except III(a) and III(b), which will be discussed later], and the velocity

ratio between the streams is changed. By measuring the mixing layer width, the

gradient of the bubble height (dhb/dx) can be calculated (the bubble height is used

since the bubbles penetrate into the higher velocity flow). The gradient is taken

with respect to downstream tunnel position (x), and plotted against time, where

t = x/Um. From the gradient plot, the transition point is located by visual inspection.

This occurs where the gradient transitions from a constant value to linear growth,

which indicates the mixing layer transitioning from linear to quadratic growth, or

Kelvin–Helmholtz mixing to Rayleigh–Taylor mixing. The total mixing width at this

point is then used in equation 1.7 to determine the transitional Richardson number.

4.2 Objective 2

The second objective discussed in section 1 is to provide experimental data to

quantify the effect of a complex stratified flow, using the mixing layer and non-

dimensional growth parameter αb,s for comparison with a generic stratification case.

This objective will be completed by comparing Cases I(a), II(a), III(a) with IV, V, and

VI. To create the complex stratification [Cases I(a), II(a), and III(a)], pure helium

was injected into the tunnel through the pipe network. This causes pockets of helium

to rise up to the splitter plate, resulting in a non-constant density profile, referred to

as complex stratification. For the generic stratification (Cases IV, V, VI), nitrogen

was installed on one of the vacant gas lines. This allowed mixing to occur inside the

pipe network, resulting in a mixture being injected into the tunnel and creating a

constant density profile (referred to as generic stratification). Figures are provided

below showing the profiles.
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For Case I, the average experimental Atwood number was set at 0.055 using

one helium line (a total of six bottles) and an orifice of diameter 0.072” (0.183 cm).

As this was the lowest Atwood number, and therefore smallest amount of injected

helium, it was expected that this case should have the highest density variation in

the light fluid stream. With low volumes of helium, the fluid becomes more difficult

to mix, resulting in high concentrations of helium directly below the splitter plate,

and high concentrations of air near the bottom of the stream. This was confirmed

with the density probe, with the results shown in figure 4.1. For Case IV, nitrogen

bottles were used with a 0.110” (0.279 cm) diameter orifice in conjunction with the

helium line using the 0.072” (0.183 cm) orifice.

Figure 4.1: Profiles obtained with the density x-probe for Cases I and IV.

In Case II, two helium lines were used with orifices of 0.072” (0.183 cm) and 0.084”

(0.213 cm). This resulted in an average Atwood number of 0.0971. The density

profile is flatter in Case II than in Case I. For Case V, nitrogen was injected using the

third vacant gas line and an orifice of diameter 0.185” (0.470 cm), and the density

profile is shown in figure 4.2. This orifice was the largest available, and was required
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since the helium injection was much higher than in Case II.

Figure 4.2: Profiles obtained with the density x-probe for Cases II and V.

Finally in Case III, the average Atwood number reached its largest value. Helium

was again injected from two lines, with orifices of sizes 0.072” (0.183 cm) and 0.110”

(0.279 cm) which resulted in At = 0.147. For Case III(b), the Atwood number is

slightly higher due to the velocity of the bottom stream being set lower between

experiments. The lower velocity (less air entering the tunnel) effectively reduces the

dilution of the helium by increasing its concentration inside the tunnel. Again, the

0.185” (0.470 cm) orifice was used for nitrogen injection in Case VI, and the density

profiles are given in figure 4.3.
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Figure 4.3: Profiles obtained with the density x-probe for Cases III and VI.

4.3 Objective 3

4.3.1 Problem Setup

The third and final objective is to further develop the LLNL K–ε RANS model

to use the implicit Crank–Nicolson method and build a foundation for future simu-

lation work. Initial results are obtained from simulating the complex stratification

comparison completed for experiments in Objective 2. The development of the code

is discussed in detail in § 3.3. To simulate the experiments completed in Objective

2 where the effects of stratification were examined, a third-order best fit curve is

used to construct the initial density profile. The density plots shown previously are

again given below but scaled for simulation purposes. The corresponding simulation

profiles are also given.

To reduce the runtime for the Case IV simulation, the domain size was reduced

to a total of 40 cm. This is only done for the low Atwood number case, since the

growth of the mixing layer will not be as large as in the other two cases. The domain

boundaries are shown in light green in figure 4.4(a), along with the density profiles.
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(a) Simulation profile for Case I(a) and IV. (b) Scaled experimental profile for Case I with
third order curve fit for simulation.

Figure 4.4: Case I(a) and IV density profiles used in simulations. The experimental
profiles have been scaled in order to match the simulations while keeping the average
Atwood number consistent.

In the simulations of Case II(a) and V, the length scale was maintained between

the simulations and the experiment by extending the curve at a constant value in

figure 4.5(b) beyond 25 cm below the splitter plate. Density profile measurements in

Case I confirmed the validity of this assumption.

(a) Simulation profile for Case II and V. (b) Scaled experimental profile for case II using
a third order curve fit.

Figure 4.5: Case II and V density profiles used in simulations. As with Case I, the
experimental profile has been scaled to match the simulations while maintaining the
correct Atwood number for the simulation.
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Finally, the experimental profile is also extended in the simulation for Case III(a)

and VI, using the same assumption given in the setup for Case II(a) and V. The

simulation initial density profile is given below for both Case III(a) and VI shown in

figure 4.6. Again, it should be noted that the curve for Case III(a) does not exactly

match the density of Case III(a), but the Atwood numbers do match.

(a) Simulation profile for Case III and VI. (b) Scaled experimental profile for Case VI.

Figure 4.6: Case III density profiles for simulations.

4.3.2 Simulation Initial Conditions

For this code, the initial conditions are specified for the mean velocity ṽ, mean

energy ẽ, mean heavy mass fraction m̃H , turbulent kinetic energy K, turbulent kinetic

energy dissipation rate ε, and density variance ρ′2. The velocity ṽ is set to zero across

the domain, and the mean energy is set using equations 3.8 and 3.9 such that

ẽ =
P

(γ − 1)ρ
+
ṽ2

2
+K.

The heavy mass fraction is set using an error function profile, which represents the

diffusion layer between the streams, while the turbulent kinetic energy and dissipation
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rate are initialized by

K0 = KmultPEint,

ε0 = K0

√
|gAt|krms,

where Kmult is a multiplier set at 0.01, and PEint is the potential energy. In the ε

initialization, krms = 2π/λrms where λrms = 3 ∆x. These are shown together in the

figure 4.7.

Figure 4.7: Simulation initial conditions for mean density, mean total energy, mean
heavy mass fraction, turbulent kinetic energy and turbulent kinetic energy dissipation
rate. Gravity is in the negative x direction, and the interface is located at x = 50 cm.
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5. EXPERIMENTAL AND MODELING RESULTS WITH DISCUSSION

5.1 Experimental Results

The results from each of these cases will be presented in this section. The mixing

layer, growth rate parameter, and mixing layer height gradient in all cases are

obtained through image analysis with MATLAB R©. Images are taken using the

Nikon R© D90TM DSLR camera, with the LED backlight. Background images are

taken first, followed by fog only and finally fog with helium injection. A total of

100–150 images (depending on experiment) are taken in each set (background, fog

only, fog and helium) to ensure statistical convergence, shown in figure 5.1 for the

Case I(a) spike growth.

(a) Convergence of spike growth curve for Case
I(a).

(b) Maximum percent deviation as a function of
the number of averaged images.

Figure 5.1: Image convergence plots. A minimum of 100 images was used in a given
experiment (Case III(b) spike). Other experiments use ∼ 120–150 images.

In all experiments, 120–150 images were used when averaging (with the exception

of the Case III(b) spike, where 100 images were used). This gives a maximum of

∼ 2.5% deviation from the converged value. It should also be noted that error bars
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are not given in the plots. Since the curve is composed of raw data points, the error

associated with mixing width is the thickness of the curve, plus or minus one pixel

(±0.1 cm).

Velocity ratios are set and verified with hot-wire and PIV diagnostics prior to

running the experiment. Once the images have been captured, they are cropped and

averaged, as shown in § 2.2.1. From this image, curves are obtained from the fog

concentration. The concentration plot is shown below in figure 5.2 for Case I(a) with

profile.

Figure 5.2: Concentration variation along x. As the mixing layer grows further
downstream, the concentration gradients are diminished.

Using this curve, values for the mixing width at each downstream location are

determined using the 5–95%, which defines the width as the total height between

5% and 95% fog concentration. The averaged image [figure 2.7(b)] is converted to a

binary image based on 5% and 95% intensity. The resulting curves correspond to the

growth of the bubbles and spikes. Once these curves are obtained, the growth rate

parameter, α, and height gradient plots are generated.
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As there is inherent shear in the flow field, the growth rate parameter cannot be

obtained solely from the helium injection image set. As discussed by Akula et al.

[6], the total height for the combined instability must be calculated by equation 1.9.

Once β is obtained, α is calculated. Banerjee et al. [27] discuss numerous ways to

calculate α. One such method is the virtual origin (VO) method, first used by Snider

and Andrews [22]. Since the boundary layer effects cause a non-zero mixing layer

width at the splitter plate, a fictitious point is introduced upstream of the splitter

plate where the bubble and spike curves reach zero (thus giving the virtual origin a

negative value). A linear curve is then fitted to the mixing layer, where h = f(Atgt
2).

The corresponding slope of this curve is the growth rate parameter αb,s. Equation

1.9 is then modified for the VO criteria, and becomes

hb,s = β∆U(t− t0) + αV Ob,s
At g(t− t0)2, (5.1)

where t = x/Um and Um is the mean velocity of the flow field.

The second method (RC) used was proposed by Ristorcelli and Clark [49], and

was derived using a self-similar analysis resulting in the differential equation

αRCb,s
=

ḣ2b,s
4At g hb,s

(5.2)

For Case IV, both the VO and RC methods were used. Their corresponding plots are

shown in figure 5.3 for comparison. Error bars are not given in the figure, since the

curves are used for comparison purposes only. Values for the uncertainty associated

with αb,s are given at the end of this section.
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(a) Virtual origin (VO) method for αb. (b) Ristorcelli and Clark (RC) method for αb.

(c) Virtual origin (VO) method for αs. (d) Ristorcelli and Clark (RC) method for αs.

Figure 5.3: Alpha comparison between Virtual Origin (VO) and Ristorcelli and Clark
(RC) methods.

From these plots, the slope of the VO curve is similar to the oscillating value

from the RC method using a ninth-order polynomial. In fact, Banerjee et al. [27]

point out that equations 5.1 and 5.2 are actually equal. As a result, and since the

calculation of the VO method results in a definitive value, the VO method was used

in all alpha calculations to complete the objectives described in § 4.1 through § 4.3.

5.1.1 Objective 1

For Objective 1, Cases I(a,b,c) II(a,b) and III(a,b) will be used to examine the

effects of shear on the mixing layer width. In a combined flow, a transition between

linear and quadratic growth occurs. To determine the point at which this occurs, the

gradient of the bubble mixing height curve is used with a finite difference method

to calculate the derivative. Since the transition is from linear to quadratic growth,
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transition occurs where a constant curve changes to a linear curve.

The plots for mixing layer width in Case I are given in figure 5.4.

(a) Case I(a) ∆U = 0.16 m/s. (b) Case I(b) ∆U = 0.39 m/s.

(c) Case I(c) ∆U = 0.75 m/s.

Figure 5.4: Case I mixing layer widths are compared for each of the ∆U values
for At = 0.055. Early time growth (t < 0.6 s) is reduced as the shear is increased,
showing the shear effect inhibiting the growth of the mixing layer. Error bars are not
shown for clarity, as the error is the thickness of the curve, ±0.1 cm.

The plots shown are constructed from raw data points taken from the averaged

digitally processed image mentioned previously in this section. It is noted that the

spike curve in 5.4(c) has large error, and therefore is not suitable for calculations or

comparison, but is shown for completeness. The point of zero mixing layer is defined

as the geometric center of the tunnel, not the center of the mixing layer.

From inspection, late-time quadratic growth can be seen for all cases. Further,

the mixing layer growth at times greater than 1 second seems to be unaffected by
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the amount of shear in the flow, as all cases show very similar quadratic growth. At

times less than 1 second, however, the bubble height is reduced due to the shear,

while the spike height is increased. This is most apparent by comparing figures 5.4(a)

and 5.4(b). At t = 0.6 s, the mixing layer for Case I(a) is approximately 8 and 5 cm

for the bubbles and spikes, respectively. In Case I(b), the bubble height is ∼ 7 cm,

and the spike height is ∼ 8 cm. This growth effect can be explained by the shear

pushing the mixing width center below the geometric center (splitter plate) of the

tunnel. This trend continues for the bubble curve in Case I(c) figure 5.4(c). It can

be seen that this pushing of the mixing layer has caused the early time growth to be

symmetric in figure 5.4(b), where it is clearly asymmetric in figure 5.4(a). Plots for

the bubble height gradient obtained from the mixing layer curves in figure 5.4 are

given in figure 5.5.
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(a) Case I(a) ∆U = 0.16 m/s. (b) Case I(b) ∆U = 0.39 m/s.

(c) Case I(c) ∆U = 0.75 m/s.

Figure 5.5: Height gradient plots are given for each of the three mixing layer widths
from Case I.

For Case I(a) in figure 5.5(a), the curve agrees well with a linear fit, as expected.

This shows no transition, and therefore, the growth of the mixing layer is due to the

Rayleigh–Taylor instability rather than to the Kelvin–Helmholtz instability. When

more shear is added in figure 5.5(b), there is a region of constant value (0.35–0.6 s).

After this constant region, the gradient changes to linear growth, implying quadratic

mixing layer growth. This is also seen in the highest shear case, figure 5.5(c), where

transition also occurs at about 0.6 s. Table 5.1 shows the transition points and the

transitional Richardson number, as calculated by equation 1.7, where the minus sign

signifies unstable stratification.
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Table 5.1: Case I transition data.

Case Transition Time (s) Ri

I(a) − −
I(b) ∼ 0.55 (−)0.85−1.13
I(c) ∼ 0.65 (−)0.23−0.28

For Cases I(b) and (c), the transitional Richardson numbers fall below the range

of −1.5 to −2.5 as stated by Akula et al. [6]. The value for Case I(c), however,

should not be taken as definitive, as the spike data for Case I(c) has large error as

mentioned earlier.

Case II used a higher Atwood number of 0.0971, and due to helium consumption

rates, was only tested at two shear ∆U values, 0.25 and 0.94 m/s. The mixing layer

plots are given in figure 5.6.

(a) Case II(a) ∆U = 0.25 m/s. (b) Case II(b) ∆U = 0.94 m/s.

Figure 5.6: Case II mixing layer widths are compared for each ∆U and At = 0.0971.
Error bars are not given for clarity, the error is the thickness of the curve, ±0.1 cm.

With the higher Atwood number of Case II, the mixing layer grows larger in a

given amount of time, an obvious result when comparing the mixing layer width for

Cases I and II (5.4 and 5.6, respectively). In Case II(a), the growth appears to occur
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mostly symmetrically. At 0.8 seconds, the bubble height is larger by a few centimeters

than the spike curve, but after this point symmetric growth is re-established, as seen

in figure 5.6(a). With shear introduced, the mixing layer grows much faster. At 0.8

seconds, the mixing layer width of Case II(a) is ∼ 26 cm, while in Case II(b), this

value is ∼ 40 cm. At 1 second, the width has increased to ∼ 41 and 60 cm for Cases

II(a) and (b), respectively. The same effect mentioned in Case I, where the shear

seems to produce symmetric early time growth (less than 0.6 s), seems to also be

true in Case II.

The gradient plots shown in figure 5.7 also show similar trends to Case I, where

the low shear case follows a linear trend close to the beginning of the data set.

Additionally, since the Atwood number is higher in Case II, the slope of the linear

curve is greater.

(a) Case II(a) ∆U = 0.25 m/s. (b) Case II(b) ∆U = 0.94 m/s.

Figure 5.7: Case II height gradient.

Finally, the transition point and associated Richardson number are given in table

5.2, which are obtained from figure 5.7. As with Case I(c), the Richardson number is

below the −1.5 and −2.5 range.
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Table 5.2: Case II transition data.

Case Transition Time (s) Ri

II(a) − −
II(b) ∼ 0.5 (−)0.38−0.43

Finally in Case III, the highest Atwood number was tested with two values ∆U =

0.27 and 1.0 m/s for sets (a) and (b) respectively. The mixing layer plots are shown

in figure 5.8. As expected, the mixing layer grows larger than in the previous two

cases.

(a) Case III(a) ∆U = 0.27 m/s. (b) Case III(b) ∆U = 1.0 m/s.

Figure 5.8: Case III mixing layer widths for ∆U = 0.27 m/s and 1.0 m/s and At =
0.147. Error bars are not shown for clarity, and the error corresponds to the thickness
of the curve, ±0.1 cm.

Asymmetry is also evident in Case III(a) at both early and late times. For Case

III(b), early time growth is symmetric, which then transitions to asymmetric growth

at later times. The shear effect resulting in early time symmetric growth has been

observed in both the previous Cases I and II.

In the general stratification set, bubbles and spikes essentially have the same

value for αb and αs. However, with complex stratification and some shear, there
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is a 11.5% difference between the bubble and spike values. They are also larger,

consistent with the trend from the previous two cases.

The figures for the height gradient are given below in figure 5.9. As with Cases I

and II before, the low shear case does not clearly demonstrate a transition region.

Even though the low shear case still has 0.27 m/s of shear present, the higher Atwood

number of 0.147 promotes quadratic growth early on. In the high shear Case III(c),

there is an obvious transition point at 0.8 seconds. This is the time used to calculate

the transitional Richardson number.

(a) Case III(a) ∆U = 0.27 m/s. (b) Case III(b) ∆U = 1.0 m/s.

Figure 5.9: Case III height gradient.

As stated above, the transitional point and Richardson numbers are measured

and calculated using the values obtained at 0.8 seconds and the case parameters

given in table 4.1. At the point of transition, the Richardson number was determined

to be 0.87, which is again below the range presented by Akula et al. [6]. This result

is shown in table 5.3.
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Table 5.3: Case III transition data.

Case Transition Time (s) Ri

III(a) − −
III(b) ∼ 0.8 (−)0.86−1.01

5.1.2 Objective 2

To complete Objective 2, Cases I(a), II(a), and III(a) will be compared to Cases

IV, V, VI, respectively, to determine how a complex density profile (or stratification)

affects the mixing layer width and the non-dimensional growth parameter αb,s. As

mentioned at the end of § 5.1, the VO method will be used with β to determine the

growth rate parameter using equation 5.1.

Due to the low amounts of helium injected in Case I(a), this case has the largest

density variation across the light mixture. The same mixing width plot from Objective

1 is used here, and presented with the corresponding plot from Case IV in figure 5.10.

(a) Case I(a) mixing width obtained using a vary-
ing density profile (complex stratification) and
average Atwood number of 0.055.

(b) Case IV mixing width obtained using nitro-
gen injection, which produces a flat density pro-
file (generic stratification) and Atwood number
0.07.

Figure 5.10: Comparison between Cases I(a) and IV, depicting the effect of complex
stratification with a low average Atwood number.
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In figure 5.10, it is shown that both Case I and IV show symmetric late time

growth. This is expected, as the Atwood numbers are sufficiently low (At . 0.1).

However, Case I(a) shows substantially higher growth than Case IV beyond ∼ 1.0–1.1

seconds. At 1.4 seconds, the mixing layer width of Case I(a) reaches ∼ 57–58 cm. At

the same time for Case IV the mixing layer width is only ∼ 38 cm, a 51% difference.

This increase in growth will also have an effect on the growth parameter αb,s. These

values will be presented at the end of this section, where all of αb,s values will be

shown for comparison.

The same comparison procedure is used here in Case II(a) and V as above, and

the mixing layer plots for Cases II(a) and V are shown in figure 5.11.

(a) Case II(a) showing mixing layer width for
complex stratification with average Atwood num-
ber 0.0971.

(b) Case V mixing layer width with flat density
profile and Atwood number 0.132.

Figure 5.11: Comparison between Cases II(a) and V, showing how complex stratifica-
tion affects growth with an Atwood number At ∼ 0.1–0.13.

As with the comparison between Cases I(a) and IV, the complex stratified case

[Case II(a)] shows faster growth of the mixing layer than the case with the generic

profile (Case V). At ∼ 1.15 seconds, figure 5.11(a) shows a total mixing layer width

of ∼ 63 cm while figure 5.11(b) shows a value of ∼ 39 cm, a difference of 61%.
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The final comparison to complete Objective 2 is between Cases III(a) and VI. The

mixing layer plots are shown in figure 5.12.

(a) Case III(a) showing mixing width for com-
plex stratification with average Atwood number
0.147.

(b) Case VI mixing width with flat density profile
and Atwood number 0.164.

Figure 5.12: Comparison between Cases III(a) and VI, showing how complex stratifi-
cation affects growth with an Atwood number ∼ 0.15.

As expected, similar trends are seen for the highest Atwood case as in the two

previous case comparisons. Both spike curves appear to grow non-linearly, as does

the bubble curve for Case III(a). It is difficult to draw a conclusion on growth rate

from the bubble curve in figure 5.12(b), since only the late-time growth is available.

Growth height comparisons, however, can still be made. At 1.35 seconds, the mixing

width of Case III(a) is 82 cm, whereas the Case VI mixing width is 60 cm. This is a

difference of 37%. This lower percent difference is due to the higher Atwood number.

Since the helium is naturally more disperse in the bottom layer, the profile of Case

III(a) is closer to its counterpart (Case VI) than any of the other cases.
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The non-dimensional growth parameters αb,s for all of the cases compared for

Objective 2 will now be discussed and are presented in table 5.4. For comparison

purposes, the case numbers are not in sequential order. Since the growth of the

mixing width is driven by the light fluid below the splitter plate, the local Atwood

number, At,local, is used in the calculation. Uncertainties are obtained using the Kline

and McClintock method [63] and shown in parenthesis. Large values of uncertainty

are present for Case I(a) and II(a) due to velocity diagnostic issues. These were

corrected in subsequent cases, and thus have much less uncertainty. Values for the

shear mixing layer growth parameter, β, are obtained using the 5–95% criterion from

visualization and equation 1.6.

Table 5.4: Comparison of non-dimensional growth parameter αb,s using local Atwood
number below splitter plate. Uncertainty is given in parenthesis.

Case
Complex

Strat.
At,local β αb αs

I(a) YES 0.108 0.324 (±0.095) 0.096 (±0.016) 0.164 (±0.016)
IV NO 0.070 − 0.078 (±0.002) 0.078 (±0.002)

II(a) YES 0.151 0.358 (±0.101) 0.110 (±0.026) 0.147 (±0.024)
V NO 0.132 − 0.069 (±0.002) 0.062 (±0.002)

III(a) YES 0.198 0.207 (±0.012) 0.084 (±0.002) 0.093 (±0.003)
VI NO 0.164 − 0.087 (±0.002) 0.088 (±0.002)

Several trends can be seen in table 5.4. The αb,s values are always higher for

the cases with complex stratification when compared to the generic case. Generic

cases produce growth parameters close to the previously published value of 0.07,

while cases with complex stratification, at times, produce values over twice as high.

This is consistent with the mixing width results, where the complex stratification

caused larger mixing widths at a given time. Another interesting note is that as the
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average Atwood number of the complex stratification is increased, the values for αs

are consistently reduced. The same is nearly true for αb, but the value for Case II(a)

is slightly higher than the value in Case I(a).

5.1.3 Objective 3

Objective 3 is completed by implementing the Crank–Nicolson formulation and

simulating the cases used for comparison in § 5.1.2. Once the implementation of the

Crank–Nicolson formulation (§ 3.3) was completed, the code was validated using

the explicit time-evolution formulation. When agreement was confirmed, parametric

studies of the time step and number of grid points were conducted, the results of

which are shown in figure 5.13.

(a) Curves used to determine converged time
step. Curves for time steps of 5e-6,1e-6,5e-7,
and 1e-7 are overlapping.

(b) Curves used to select number of grid points.

Figure 5.13: Time step and grid point study for implicit formulation showing that
the mixing widths collapse at ∼ 5e-6 and n ∼ 1000. Case VI is shown (generic
stratification with At = 0.147). The domain length of the simulation is 20 cm,
corresponding to a ∆x of 0.02 cm. From this study, a time step of 5e-6 and a
∆x = 0.02 cm were selected for all simulations, except for Case I(a) and IV, where
∆t=1e-6 was used.

From figure 5.13(a), it can be concluded that the mixing widths collapse onto

the 5e-7 curve. Likewise in figure 5.13(b), the curves collapse onto n = 1000 points.
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Subsequently, a time step of 5e-6 and ∆x = 0.020 have been selected. These values

have a maximum deviation of less than 1% and 4%, respectively. The Atwood

number is set by inputing the densities of the heavy and light fluids. Further, the gas

properties for both the light and heavy fluids are set to the properties of air. Although

many quantities can be calculated with the code, only a high level comparison is given

in this section. Therefore, the parameters that will be used to relate the experimental

and computational data will be the mixing layer width and the self-similar mixing

layer growth rate parameter αb,s.

Shown below in figure 5.14 are the comparisons for the mixing width from the

simulation for an Atwood number of 0.055 between the complex [Case I(a)] and the

generic (Case IV) stratification.

(a) Atwood number 0.055 simulation results for
complex and generic stratification.

(b) Atwood number 0.055 experimental results
for complex and generic stratification.

Figure 5.14: Comparison for simulation and experimental results for complex stratifi-
cation Case I(a) and generic Case IV, using an Atwood number of 0.055.

Figure 5.14 initially shows a very short diffusion layer for both the generic and

profile initial conditions. The generic simulation then transitions to grow at a higher

power law rate, where the profile setup does not show this transition, but rather

continues to grow in a linear fashion. The curves also grow in a somewhat parallel
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manner between 0.5 and 1.25 seconds, where it changes and the profile case seems to

grow towards the generic curve.

The most apparent observation from figure 5.14 is that the generic stratification

has a larger mixing layer than the complex condition. This is in direct contrast to

what was discovered in Objective 2, where the complex stratified case consistently

showed higher growth than the generic stratification.

The same VO method used in Objective 2 is used to calculate the growth rate

parameter αb,s in Objective 3. These values will be presented together in a table at

the end of the section for comparison.

Similar to the previous simulation, a short diffusive regime dominates the growth

early on for both the generic and profile initial conditions, and the growth curves

appear to overlap early on. The Case II(a) width then begins to grow at a higher

rate, a characteristic mimicked by the Case V curve a very short time after. At ∼ 1

second, this higher order power law growth terminates, and the self-similar quadratic

growth is observed for both curves, with transitioning occurring ∼ 1.25 s. With an

average Atwood number of 0.0971, the growth of Case II(a) is ∼ 22% greater than

that of the Case V.
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Plots comparing simulations and experiments for Case II are given below in figure

5.15.

(a) Atwood number 0.0971 simulation results for
complex and generic stratification.

(b) Atwood number 0.0971 experimental results
for complex and generic stratification.

Figure 5.15: Comparison for simulation and experimental results for complex stratifi-
cation Case II(a) and generic Case V, with an Atwood number of 0.0971.

Although the plot in figure 5.15 shows the correct trend of the curves with Case

II(a) producing a higher growth rate, the simulation is still vastly under predicting

the experimental mixing width. At 1 second, the mixing width is at 10 and 8 cm for

Case II(a) and V simulations, respectively. From figure 5.11, these values are 41 and

40 cm for experimental Case II(a) and V, respectively.

As with Case II, the initial diffusion layer in Case III grows into a higher power

law before turning over into quadratic growth. Again, the complex stratification

case [Case III(a)] transitions to the higher order power law sooner than the generic

stratification case (Case VI). The transition to self-similar growth occurs at about

the same time (∼ 1.25s) for both generic and profiled runs.
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Finally, the comparison between simulations and experiments for Case III are

shown below in figure 5.16.

(a) Atwood number 0.147 simulation results for
complex and generic stratification.

(b) Atwood number 0.147 experimental results
for complex and generic stratification.

Figure 5.16: Comparison for simulation and experimental results for complex stratifi-
cation Case III(a) and generic Case VI, with an Atwood number of 0.147.

As with the simulations for Case II(a) and V, the simulations in figure 5.16

substantially underpredict the experimental values, although Case III(a) case is

correctly showing larger growths than Case VI. Additionally, the difference between

the III(a) and VI curves is smaller than the Case II(a) and V curves, ∼ 22% and

∼ 15% respectively.

As done with the experiments used for Objective 2, the growth rate parameter

αb,s is presented in table 5.5.

Values for the first simulation of Case I(a) and IV are not given since the curves

do not show quadratic growth. The other values in table 5.5 are significantly smaller

than the experimental values, which is an expected result since the mixing widths

are also under predicted. This could be a result of improper initial conditions.

More simulations are required to understand the poor comparisons between the

computational and experimental results.
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Table 5.5: Comparison of non-dimensional growth parameter from simulations.

Case Complex Stratification At αb αs

I(a) YES 0.06 0.037 0.027
IV NO 0.06 0.002 0.002

II(a) YES 0.1 0.030 0.024
V NO 0.1 0.031 0.026

III(a) YES 0.15 0.029 0.023
VI NO 0.15 0.026 0.023

5.2 Discussion

From Objective 1, the transition from linear Kelvin–Helmholtz growth to non-

linear Rayleigh–Taylor growth is observed. This is a result of the KH vortices

dominating the mixing early in time. As time progresses, more fluid is entrained in

the vortical structure, producing linear growth. Beyond the point of transition, the

buoyancy force dominates the shear, and thus the RT plumes drive the mixing layer

growth. When the initial shear is increased (and therefore more energy is input into

the system), this transition occurs later in time. The higher energy creates stronger

vortices to develop, which then has a stronger hold on the entrained lighter fluid.

This ‘‘hold” on the entrained light fluid exceeds the buoyant force, inhibiting the RT

growth in early times. As time progresses and more light fluid is entrained, buoyancy

forces become larger, and the ‘‘hold” is no longer strong enough to suppress them,

resulting in the RT plume structures.

In Objective 2, where the effects of a complex stratification are examined, the

mixing layer consistently grows faster than the generic stratification. This is a result

of the large buoyancy caused by the pocket of helium located directly below the

splitter plate. As time progresses, the light fluid passes through the mixing layer, and

the rising pocket defines the bubble height of the mixing width (the corresponding
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falling heavy fluid defines the spike growth). Because of the pocket, the local Atwood

number below the splitter plate is very high. The average Atwood number, however,

is used to calculate the growth parameter αb,s. Therefore, the complex stratification

αb,s is expected to be higher than the generic stratification value of ∼ 0.07.

For Objective 3, simulations were performed on the generic and complex stratifi-

cations studied in Objective 2. The simulations show a larger diffusion layer than

seen in experiments, and for the early Atwood case, the generic stratification grows

faster than the complex stratification. To obtain better simulation results, more

quantification of the initial conditions is needed. As Mueschke and Schilling [53]

discuss, accurate experimental initial conditions are required in order to perform

accurate simulations. One such initial condition that could be determined is the

initial wavelength of the perturbation.
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6. CONCLUSIONS

This section will now focus on the trends and comparisons observed by completing

each of the objectives described above. It is broken down into three parts: discussing

the effect of shear on the mixing layer and transition point, the complex versus generic

stratification, and finally the simulation of generic and complex stratifications.

6.1 Effects of Shear on Complex Stratification

There are numerous effects that result by adding shear between the stratified

layers. The most obvious is that the mixing growth is accelerated with higher amounts

of shear. Early time growth is driven by Kelvin–Helmholtz vortical roll ups, which

cause linear mixing layer growth. As time progresses, the Rayleigh–Taylor plume

structures will dominate these roll ups, resulting in quadratic growth of the mixing

layer. As the ∆U between the layers is increased, this transition occurs at later

times. The Richardson number is used to quantify this transition, and it was found

that transition occurs between the values of −0.25 and −1.0, rather than −1.5 and

−2.5 as proposed by Akula et al. [6]. This discrepancy in values is expected, as the

experiments performed by Akula et al. [6] used generic stratification. Thus, using the

average Atwood number in equation 1.7 may not be correct for complex stratification,

where the high local Atwood number corresponding to the fluid below the splitter

plate drives the transition.

It was also observed that the induced shear also promoted symmetrical mixing

layer growth at early times. In low shear cases, it was observed that the bubble

structures grew faster than the spikes. The shear layer corrects this by pushing the

mixing layer down (in the case of the top stream moving faster than the bottom).

By lowering the mixing width center, the mixing growth becomes more symmetric.
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This was evident in all three comparisons made in § 5.1.1. For low Atwood numbers,

the symmetry continues at late times. However, when the Atwood number is higher,

asymmetric growth can occur once the mixing is dominated by the Rayleigh–Taylor

instability.

6.2 Effects of Stratification

In the experimental cases with a complex stratification, the growth rates are

higher for the generic stratification sets, where the αb,s values are much closer to 0.07.

The larger growth rates can be attributed to the extremely high density gradient (and

therefore local Atwood number) below the splitter plate. This pocket of light fluid

located directly below the splitter plate rises through the mixing layer much faster

than the fluid in the bottom half of the stream. As the average Atwood number of the

case is increased, the values of αb,s seem to agree better with the generic stratification

experiment. This is expected, as the profile is not forced but rather created through

the natural buoyancy of the lighter fluid. Therefore, as more light fluid is injected,

the light fluid pocket will extend further below the splitter plate, which is essentially

the generic profile case. As with the equation for Richardson number, using the

average Atwood number in equation 5.1 to calculate the growth parameter, αb,s, may

not be correct. Since the low density fluid below the splitter plate drives the mixing

layer growth (and therefore h), using the lower average Atwood number in equation

5.1 results in a higher value of growth parameter, αb,s.

6.3 Simulations

The initial simulation results shown in this work did not agree well with experimen-

tal data from a numerical comparison. The trends however, were correctly predicted

where the complex stratification grew faster than the generic. The disagreement

could be a result of improper initial condition implementation, or incorrect model
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coefficients given in table 3.1. A parametric study must be performed to determine

correct coefficient values. The implicit time evolution scheme must also be tested

more rigorously to ensure accuracy.
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7. FUTURE WORK

Upon completion of this work, the author will be entering industry. However

further progress on this research can be made, which will be discussed in this section.

7.1 Future Experiments

Gas tunnel experiments will continue with the implementation of new diagnostic

techniques and the three-layer pure Rayleigh–Taylor experiment. As a result of this

research, it has been understood that a new diagnostic technique is required for both

accuracy and high Atwood number density measurements. Planar laser induced

fluorescence (PLIF) could be a viable alternative to the hot-wire technique. PLIF,

however, brings its own set of unique challenges, as discussed further in the appendix.

Additionally, the measurement of initial conditions must be performed in order to

ensure accuracy of turbulence models.

Another interesting experimental case that will be studied is the three-layer

Rayleigh–Taylor instability. The three-layer case has not been well studied, and

provides an interesting challenge for both the experimental and computational com-

munities. For the experiments, a third fluid marker must be introduced that is

distinguishable from the other two streams.

Finally, experiments testing Atwood numbers greater than 0.6 can be conducted.

Before this case can be done, however, the improvements mentioned in the appendix

must be addressed. Otherwise, project costs can dramatically increase due to high

volumes of helium consumption from re-running experiments.
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7.2 Future Code Development

Although improvement has been made, the code can be further developed by

converting to two-dimensions and adding parallelization capability to extend the

usefulness.

Additionally the Kelvin–Helmholtz problem setup needs to be completed and

tested. Once this problem is setup correctly with the one-dimensional code, work can

proceed on the combined Rayleigh–Taylor instability. Work has started on simulating

the experiments by Bell and Mehta [33], but has yet to be completed or verified.

Since the combined Rayleigh–Taylor and Kelvin–Helmholtz instability problem

has velocity components in both x and y directions, the code must be extended to

two-dimensions. Although the main equations are already in the code, this conversion

will take considerable time and effort. Additionally, with the addition of another

dimension, the code inherently becomes more computationally expensive to run.

Currently, the code can only run on one node. With a parallelization capability, the

wall time could be significantly reduced.
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APPENDIX A

IMPROVEMENTS

Throughout the completion of this work, areas of potential improvement were

noted with regard to the gas tunnel facility and diagnostic techniques. These

improvements and recommendations will now be described with the goal of providing

insight to future researchers that will be using this apparatus.

A.1 Gas Tunnel Improvements

The primary hardware component that should be replaced is the suction fan

located at the rear of the facility. This fan was recycled from another lab, and does

not operate well at low velocities. The air velocity through the fan is changed by

adjusting the pitch of the blades inside the fan. When setting the pitch at low angles,

the blades can reach an inflection point, and the fan will actually start blowing air

rather than sucking it. Additionally, at these low pitch angles, the flow becomes

very turbulent as it nears the blades, resulting in larger three-dimensional effects

upstream. Furthermore, the pitch adjustment is pneumatically controlled, which

lacks precision and requires considerable lag time between adjustments. The pitch

also changes as the fan is repeatedly switched on and off over time. To temporarily

resolve these problems, the flow velocity is adjusted by moving the fan away from

the contraction section. This allows bypass air to be pulled into the fan, reducing the

mass flow rate (and consequently velocity) through the tunnel. Given these issues, it

is recommended that a fan with a variable frequency drive, or another type of input

controller, be used. This will allow greater precision when adjusting flow velocities,

and also reduce the setup time between experiments.
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In earlier experiments, it was also found that the contraction section immediately

upstream of the fan was too close to the test section, imparting three dimensionality

into the flow field. To resolve this, a 1.22 m long extension was constructed and

placed between the test section and the contraction. This section also has a door

for easy entry into the tunnel. Although this extension reduced the effects of the

downstream fan and contraction, it was not possible to build it of adequate length

due to spatial constraints. When constructing a new section, it is imperative that

a door be included. Without this, entry into the tunnel can only be accomplished

through the rear of the contraction section, which requires the fan to be moved.

It has also been discovered that mixing in the mixing sections is not as uniform

as expected. Currently, a baffle and mixing fan is employed in the mixing section;

however, these systems are crude and there is much potential for optimization. It is

therefore recommended that a more permanent and properly sized system be designed.

Finally, a new traverse should be installed. Currently, there are two traverse

mechanisms: one is located atop the test section and the other must be manually

placed inside the tunnel. The traverse located above is too short to span the entire

stream-wise length of the test section without significant modification to its mounting

base. Furthermore, the required slots that allow the probe to be inserted into the

channel were found to induce undesired effects on the flow field. If these slots are

to be used, an air tight seal will need to be designed in order to prevent outside air

from entering the test section.

The other option is to use the manually inserted traverse. This method allows

the slots to be sealed. The traverse, however, is designed for a two-layer facility and

does not reach the bottom of the lower stream nor the top of the middle stream. If

this method is used in the future, a traverse with a larger throw should be purchased.
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A.2 Diagnostic Improvements

Through much experimentation it was discovered that hot-wire anemometry is

not the ideal method for measuring the velocity in the flow field. A total of three

different probe designs were tested extensively in velocity and density measurements.

The probes tested were a Dantec Dynamics three-wire probe, a TSI R© film and wire

x-probe (referred to as the density probe), and a TSI R© three-wire x-probe. The Dantec

three-wire probe is capable of measuring all three components of the velocity vector

simultaneously. It cannot, however, measure the temperature or the concentration

of the fluid. Therefore, it must be outfitted with a constant-current (CCA) probe.

The film and wire TSI R© probe consists of a thick wire (film) and a thin wire. The

film is used to measure concentration, while the wire measures velocity. Since the

velocity is measured by this single wire, it is not able to differentiate between velocity

in the x and y coordinates, and therefore does not give accurate measurements in a

turbulent flow. To circumvent this, the probe was modified by putting a brass sleeve

surrounding the wires, which is shown in figure 2.11(a). This effectively eliminated

the v component, but still allowed the concentration to be determined. The three-wire

TSI R© x-probe does allow for u and v velocity components to be measured, and also

has a CCA to measure temperature. It does not, however, have a film and therefore

cannot measure density.

Without the use of the density probe, a CCA must be present to measure

concentrations using a temperature marker technique. This technique can be effective

at low Atwood numbers, but is not effective otherwise. Breaking up temperature

gradients in the heated stream proved to be difficult. Additionally, adding heat will

change the Atwood number of the experiment.

Another issue arises when two gases are present in the test section. The hot-wire
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probes cannot differentiate between the new gas and a different velocity, resulting

in erroneous data. With the case of helium, this results in higher than expected

velocities and lower than expected helium volume fractions. This means that no

one single probe can measure all velocity components and the density: multiple

probes must be used simultaneously. This requires the design and manufacture of

a custom probe mount, and also results in a loss of spatial resolution. Additonally,

probes can also be damaged very easily, or fall out of calibration due to a change in

BNC cable resistance. This causes considerable time delays for either probe repair or

re-calibration.

For these reasons, it is recommended that future users of the facility use opti-

cal diagnostics such as PIV and planar laser induced florescence for velocity and

concentration measurements, respectively. These diagnostics, however, will provide

their own challenges. For example, acetone is currently used as the PLIF tracer.

Eventually, acetone will break down the acrylic walls of the test section, resulting in

a loss of clarity and possible loss of structural integrity. A new optical arrangement

will also need to be developed for PLIF experiments. One suggestion is to place the

laser on top of the gas tunnel. Currently, the laser is not powerful enough to fluoresce

through an entire seeded fluid stream. Placing the laser on top of the tunnel would

then allow the lower stream to be seeded.
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