DIRECT NUMERICAL SIMULATION OF THE

FLOW IN A PEBBLE BED

A Thesis

by

PAUL D. WARD

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Yassin Hassan

Committee Members, Andrew Duggleby
William Marlow

Head of Department, Yassin Hassan

August 2014

Major Subject: Nuclear Engineering

Copyright 2014 Paul D. Ward

ABSTRACT

The flow in a tightly packed array of spheres is important to various engineering
fields. In nuclear engineering applications, for instance, researchers have proposed core
geometries of the pebble bed reactor (PBR) type cooled by gas or molten salt. Proper
core cooling, both at operation and during accident conditions, is a key issue that must
be addressed in any reactor design; and the limited amount of data available for the
complicated geometry of PBR cores makes this task even more complex. A detailed
understanding of coolant flow patterns and properties must be developed in order to
meet safety requirements and ensure core longevity.

We addressed this issue by using the spectral-element computational fluid
dynamics code Nek5000, developed at Argonne National Laboratory, to conduct both
large eddy simulation (LES) and direct numerical simulation (DNS) of fluid flow
through a single face-centered cubic sphere lattice with periodic boundary conditions.
Multiple LES were conducted with varying Reynolds numbers in an effort to determine
how the Reynolds number affects the development of asymmetries within the flow
patterns. The DNS focused on the development of turbulence and were used to compute
the turbulent kinetic energy budgets. A set of statistical analyses were also conducted to

support the validity of the results.

i

ACKNOWLEDGEMENTS

This work was supported by U.S. Department of Energy (DOE) Office of Nuclear
Energy as part of the NEAMS Program. Argonne is a U.S. Department of Energy (DOE)
Office of Science laboratory, operated under contract DE-AC02-06CH11357.

I would like to extend special thanks to Elia Merzari for his help, training, and
advice, without which, this project would not have been completed. I am also grateful to
Yassin Hassan for organizing this research opportunity and for his advice and support

throughout the process.

111

TABLE OF CONTENTS

Page

A B ST R A CT ettt ettt eeeeeenena ii
ACKNOW L LEDGEMENTS e e e e e e e e e e e e e e e eaeaeaeaaeaaeaaaeaaeaaaaaaaaaaaaaaans 111
1 INTRODUCGCTION....oottitiieeeareaeeeeeeeeaeannne 1
1.1 Project DESCTIPLIONcoiuuieiieiiieiieeiie ettt ettt ettt e as 1

2 U THEORY ettt ettt e e nnnnennnennnne 6
2.1 GOVerning EQUAtIONScccuieriieriieiiieeieesiie et eiee ettt eve e ereesseesseesaeeesseenens 6
2.2 TKE BUAZELS ..cuveieniieiiieiieee ettt ettt ettt st 7
2.3 SOIVET DELALLS .o et ee e e e e e e et e e e e e e eranaaaas 9

3 MODULE DEVELOPMENT AND VERIFICATION......oottttieieeeeeeeeeeeeeeeeen 10
3.1 DIETIVALION ..ottt e e e e e e e e e e e e e e e e e e e aaeeeeeeeeaenaaaeeaaeaaes 10
3.2 Primary ROULINESccueiiiieiieeiieiiecie ettt ettt e s e 11
3.2.1 BUAEELS @VE .ottt et 11
3.2.2 BUAEEt LEIIMNS ...eeiiiiiieiieeciie ettt ettt re e e ite e ae e et e e eree e snbeeenanee e 11

3.3 VETICAtION .o 13

4 SIMULATION PARAMETERS eaaeeee 20
4.1 Mesh Characteristics and GENETAtIONevvveeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeanes 20
4.2 Simulation Details and PIrOCESS ...coovuumeeeeeee et eeeeeees 22

S RE S UL T S 24
6 CONCLUSIONS ettt eee e e aeeeaeaeeeaeaeeeeeneeaneneeannne 32
REFERENCES ...ttt ettt eeeeemeneeeenenen 33
APPENDIX A CODE ...t ee e aeeeeeeeeeeaeeeeseeeeeaeeeeeeaeeee 34
AVEraging ROULINEGooeviiieiiiieiiiieciie ettt e et et eeeae e st e e saeeesnaeeensseeennnas 34
Term Calculation ROULINEeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e eeeeeeans 41
APPENDIX B MESH SAMPLE ... 60

v

LIST OF FIGURES

Page
Figure 1. Prismatic Core Diagram [1]......cccccceeiiiieiiiiiiieiieciieiecieee et 3
Figure 2. PBR Core EXample [2] ...c.oooiiiiiieiieiieeiieeieeiee ettt e 3
Figure 3. Turbulent Production — uu Tensor Componentcceceeveeeeneenenseeneenueene. 14
Figure 4. Turbulent Production — vv Tensor Componentccccceveeeeereenerneeneeneeenne. 15
Figure 5. Turbulent Production — ww Tensor Component............cccceceeeereeneneeneeneeenne. 15
Figure 6. Turbulent Dissipation — uu Tensor COmponent............ccecceveeceereenierreeneeneeenne. 16
Figure 7. Turbulent Dissipation — vv Tensor COmponent............ccccceeeeceeneenerneereeneeenne 16
Figure 8. Turbulent Dissipation — ww Tensor Component.............ccoceeeeereenerveneeneeenne. 17
Figure 9. Turbulent Diffusion — uu Tensor Component............ceceeeerveeeeneenenseenceneeenne. 17
Figure 10. Viscous Diffusion — uu Tensor Componentccoceeevueenieniieenieeneeneennen. 18
Figure 11. Pressure Diffusion — uu Tensor Component............cccceevueenieniieeniceneeneennen. 18
Figure 12. Pressure Transport — uu Tensor Component............ceeeeeeeeneeniieenieeneeeneennenn 19
Figure 13. Simulation Domain and Interpolation Plane............cccccooininiiinninnnnn. 20
Figure 14. Interpolation LiNecccoceiiiiiiiiiiiiiiiceeeee e 21
Figure 15. Velocity Magnitude Profiles from DNS ..., 24
Figure 16. LES Velocity Magnitude COmMPariSON..........c.eeveeriieenienieenienieeniieeieesieesaeee 25
Figure 17. Velocity Distributions Throughout Domain............cccceeveiiiiiiiinicnienienen. 26
Figure 18. Velocity Vectors on Selected Planescccooeeiiiiniiiiiniiiiiicceeeee, 27
Figure 19. Turbulent Productioncccooiiiiiiiiiiii e 28

file:///C:/Users/wardpauld/Dropbox/Research/Thesis/Paul%20Ward's%20Thesis%20-%20final%20draft%20-%20revisions.docx%23_Toc390091255

Figure 20. Turbulent DiSSIPAtioncceecuereerierienienieeienieie et
Figure 21. Viscous DiffuSioncoveriiiiiiiiiieiiiierieieteeeeeseee e

Figure 22. Turbulent Diffusionc.ccooeiieiiiiiiiinieecieeeeceeeee e

Vi

1 INTRODUCTION

1.1 Project Description

The last two decades have seen a resurgence in nuclear research fueled by the
ever-increasing demand for cheap energy. New reactor designs are being developed to
replace the aging reactors currently in service. These new designs must be both safer and
more efficient than their predecessors and a particularly large emphasis has been placed
on passive safety measures. One of the more promising designs to come out of this
resurgence is the High Temperature Gas Reactor (HTGR).

The vast majority of nuclear reactors in operation today use water as the primary
coolant. This water is either boiled directly in the core or kept as a liquid in a pressurized
system and used to boil water in a secondary loop. In both cases, the resulting steam is
used to turn a turbine and produce electricity. Generally, this process takes place at
temperatures that peak around 300 C. The HTGR is designed to operate at much higher
outlet temperatures up to 1000 C. This increased outlet temperature allows for better
efficiency in the power generation cycle and drives a number of design changes. Water
is not a practical coolant at these temperatures and, as a result, most HTGR’s are
designed to use helium as a coolant. The choice of helium as a coolant has added
benefits. Helium is inert meaning it will not react with any other materials in the system.
Additionally, helium is not activated, or made radioactive, by exposure to the radiation
in the core. Certain high temperature reactors use liquid metal or salts as coolants, but

this study will focus solely on gas-cooled designs.

The fuel elements in HTGR’s are also quite different than their counterparts in
water-cooled reactors. Water cooled reactors generally use pellets of fissionable material
clad in a protective coating. These pellets are stacked forming rods and arranged in the
core. The water coolant often acts as the neutron moderator in these reactors. HTGR’s
use microspheres of fissionable material coated with multiple protective layers. These
layers include graphite which also acts as a moderator. By including the moderator in the
fuel elements, this design is more stable than water reactors which can lose moderator in
accident scenarios, exacerbating the situation. The microspheres are packed into a matrix
and formed into whatever fuel element shape is desired.

The higher operating temperatures require changes to be made to the reactor
structure as well. Many high-temperature designs use graphite as a primary structural
material. Graphite is heat-resistant, strong, and capable of withstanding the heavy
radiation found in the core environment. It also provides further moderation where
necessary. High-temperature alloys similar to those used in turbine engines must be used
in place of steel for other structural components.

HTGR reactors tend to fall into two broad categories based on core designs:
prismatic and pebble bed. Prismatic designs use hexagonal rods of fuel elements and
reflector material to create the core structure. The prismatic design has the advantages of
having a fixed structure, simple flow patterns, and a much greater pool of simulated and
experimental data from which to draw from. An example of a prismatic core and a

pebble bed core can be seen in Figures 1 and 2, respectively.

Annular Core Arrangement

Replaceable
Reflector

)

'{3'5
23

Permanent
Reflector

Fuel Columns

Metallic Core
Barrel

Control Rods

Reserve
Shutdown
Channels A

AREVA Near-Term HTR Concept — Lommers — 18-20 October 2010 — Prague AREVA

Figure 1. Prismatic Core Diagram [1] R b
Figure 2. PBR Core

Example [2]

Pebble bed reactors (PBR) use spherical fuel elements composed of many
microspheres packed into a larger spherical shell. These so-called pebbles are poured
into and circulate through the reactor vessel. Fuel elements may make multiple passes
through the core allowing for the ability to monitor their condition mid-cycle. This
configuration naturally benefits from easy fuel replacement, but is more complicated to
design and study.

Unfortunately, these designs are not without drawbacks. Chief among them is the
material deterioration caused by reactor’s high temperature and radioactive flux
environment. While there exist a number of candidate materials that may be able to
withstand such an environment, a significant amount of testing must be done to ensure

acceptable structural longevity. Additionally, the pebble arrangement results in complex

coolant flow patterns that are difficult to model and may result in areas of insufficient
flow leading to the formation of hot spots. Such hot spots can cause non-uniform
expansion and wear of the pebbles and lead to structural failure.

The goal of this project is to perform various simulations of the flow between
these pebbles in an attempt to characterize the details of the expected flow patterns. Two
different computational approaches will be used: large-eddy simulation (LES) and direct
numerical simulation (DNS). The two methods are differentiated based on scale. Energy
is transported within a fast-flowing fluid by whorls and vortices in a process known as
turbulence. These vortices are characterized by size ranges, or length scales, with energy
flowing from larger to smaller until it is eventually dissipated as heat. This process is
expanded upon in the following theory section.

LES only models the larger vortices and uses filtering or averaging to take the
place of the smaller flow structures. This allows the simulation resolution, and therefore
the required computational time, to be much lower while producing generally accurate
results. This project will perform a number of LES at varying Reynolds numbers in an
attempt to both verify the results of the DNS and to analyze the effect of Reynolds
number on the flow pattern. These LES will complement the study’s primary focus
which consists of two DNS. DNS resolves the smallest turbulent eddies and, when
properly conducted, produces nearly perfect simulations of the flow characteristics. The
two DNS will be conducted at different resolutions and focus on the development of

turbulence within the domain.

These simulations will characterize the fluid’s velocity profiles and give insight into
the transfer of energy throughout the flow. Such characterization of the flow will allow
for the prediction of hot spot formation which would, in turn, aid in the modification of
flow parameters to prevent such developments, making future reactors safer. The
analysis will be performed using Nek5000, a Computation Fluid Dynamics (CFD) code
developed at Argonne National Laboratory (ANL). The analysis will also be used to
confirm and expand upon the results of similar simulations and relevant experiments
such as those conducted by Shams et al. at NRG [3] and Hassan and Dominguez-
Ontiveros[4]. Specifically, the NRG study found high levels of asymmetry in the
velocity profiles across the central gap. A major focus of this study was the attempt to
determine why the NRG simulations developed such asymmetries and whether or not

Nek will produce similar results.

2 THEORY

2.1 Governing Equations

The behavior of a fluid can be described using equations formulated from the laws
of conservation, specifically the conservation of mass, momentum, and energy. This
study will focus primarily on the conservation of momentum, as the behaviors of interest

are governed by this law. Mass conservation is expressed in the continuity equation:

dp
E-l- V-(pU) =0

Where p is the density of the fluid and U is the velocity of the fluid. The continuity
equation arises from the fact that the mass flow rates in and out of a system must be
equal in a steady-state situation. If the fluid is incompressible, having constant density,
then continuity equation shows that the divergence of the fluid is zero. The fluid
considered in this study is assumed to be incompressible.

The law of conservation of momentum can be modified for the case of
incompressible Newtonian fluids, which describes most fluids of interest, to form the

Navier-Stokes equation:
6U+U VU) = 1V + VWU +
(5) = Svpt v f

Here, p is the pressure, v is the kinematic viscosity, and f represents body forces acting
on the fluid. The Navier-Stokes equation compares the acceleration of the fluid,
represented by the unsteady and convective terms on the left side of the equation, to the
pressure gradient and viscous effects, which make up the stress divergence, along with

the body forces on the right side of the equation.

A few key assumptions are made in addition to that of incompressible flow. The
first is that the fluid, while composed of many individual particles, acts as a continuum
and properties such as temperature, pressure, and velocity are continuous throughout the
fluid. Additionally, the fluid is constrained to be stationary where it contacts a surface.

Even with these assumptions and conditions, it is often prohibitively
computationally expensive to find a numerical solution to the Navier-Stokes equation.
This difficulty arises from the development of turbulence. Turbulence is characterized
by chaotic and varied pressure and velocity changes that develop as kinetic energy is
transferred throughout a fluid. These changes often appear as vortices or eddies of
varying length. Kinetic energy is transferred from larger to smaller eddies until the scale
decreases to a point where viscous effects transform the rotational energy to heat. Many
different models are employed to simulate the effect of these smaller eddies without
actually resolving them, thereby decreasing the computational cost. This study will
attempt to resolve the finest turbulent length scales without using any models in a

process known as Direct Numerical Simulation (DNS).

2.2 TKE Budgets

It is important to understand how turbulence is formed and how it transfers energy
throughout the fluid. One of the most useful descriptions of this process is the turbulent
kinetic energy balance equation:

D 0
0= —E—t(uiuk) - a—xk(uiujuk) + vVZ(uiuj) + Pl] + HU — Sij

The notation presented here is taken from Turbulent Flows by Stephen B. Pope
[5]. In order, the terms are known as the mean convection, turbulent convection, viscous
diffusion, production, pressure effects, and dissipation. The variable U represents the
fluctuating velocity components, v is the viscosity, and the subscripts i and j are
directional components. The subscript K iterates through each of the directional
components such that Uk is equal to Ux + Uy + U;. Each term is a tensor with two
directional components denoted by i and j.

The mean convection is considered to be zero for fully developed steady-state
flows. The turbulent convection term represents the transfer of kinetic energy by
turbulent motion. The viscous diffusion term describes the dispersal of energy by

viscous forces. The production term is expanded to yield:

0(,) 0(U>

__<lk> (]k)

Here, U, is the fluid velocity and the term represents the transfer of energy from the
fluid’s mean motion to the turbulent eddies. The pressure term represents the transfer of
energy by pressure forces and can be divided into two parts: the pressure transport, Tij,

and the pressure strain, Rjj:

0
I = Ryj — a_kakij
p Ou; au] 1 1
where Ry = (= (ax] axl)) and Tijk = ;(uip)(sjk +E(ujp>5ik

Here, p, represents the pressure. The final term is the dissipation of turbulent kinetic

energy and is represented by the tensor quantity:

aui au]

U= 2 G om,

These terms quantify the behavior of turbulence within a specified domain and

computing them allows for a detailed analysis of this important flow parameter.

2.3 Solver Details

Nek5000 simulates unsteady incompressible Navier-Stokes equations using the
spectral element method of spatial discretization with either implicit or explicit time-
stepping. A detailed description can be found in the Nek5000 notes and Fischer [6] and
Deville et al. [7]. Information regarding the validation of the code and related studies can
be found in Obabko et al. [8] and Merzari et al. [9]. In simple terms, the spectral element
method differs from the more common finite difference and finite element methods by
dividing the domain into quad or hex elements and approximating the governing
equations using a trigonometric series. This approach allows for much higher order
approximations and, consequently, much higher numerical accuracy.

Nek is also capable of performing LES using the filter developed by Fischer and
Mullen [10]. This method explicitly filters the solution after every time step using the

filter operator F, defined as:
Fao= aly_1+(1—a)
Where 1 is the identity operator and In is the interpolation parameter at N+1 GLL nodes.

This filter preserves the spectral convergence and goes to zero exponentially as N goes

to infinity.

3 MODULE DEVELOPMENT AND VERIFICATION

3.1 Derivation

The first goal of this project was to develop a module for Nek that could compute
the averaged tensor quantities that are used to calculate the budget terms. The first step
towards accomplishing this goal was the derivation of the budget terms as a function of
the average velocities. This was accomplished by making the substitution u =U - <U>
and solving for each individual tensor. This is known as the Reynolds Decomposition
and represents the velocity fluctuations as the difference between the instantaneous and

mean velocities. For example:

o uaav, aU—UY) AV — (V)
Euwv = 2v (O—XRE) = 21/(axk X axk

)

ou oV oU o(V) o(U) oV +6(U)6(V)

=2 — —_
V<axk axk axk axk axk axk axk axk

ou ov a(U) o(V)
axk axk axk axk

= 2v |{

ouov. oUadV _~ auoVv_ o{U)o(V) oU)o(V) o(U)o(V
- o[, 2000, (WYOW) aU)yaV) aU) V)
x 0x dy dy

0z 0z ox, 0x, 0x, 0x, 0x, 0x,
Some terms are more complex, but because the instantaneous and average velocity
components are easily accessible in Nek, this separation and expansion process is not

difficult to implement and allows for the average quantities to be calculated with a

10

minimum of round-off error. In total, 60 quantities were averaged at every time step.
With the average quantities in place, a series of subroutines were created to calculate
each budget term. Due to symmetry, a number of tensor terms can be ignored leaving 30

individual terms.

3.2 Primary Routines
The full code can be found in Appendix A. Selected routines are explained below.

3.2.1 Budgets avg

The budgets _avg routine calls a series of averaging subroutines that compute the
time average of a given variable at each time step. The computed averages include
standard averages, averages that are used to compute the root mean squared, or RMS,
values in post-processing, averaged of velocity gradients, and multiplicative
combinations of the above. These averaged quantities are then outputted in Nek’s .fld
format.
3.2.2 Budget terms

The budget terms routine loads the .fld files produced by the averaging routine

using the load avgs subroutine. The load avgs subroutine syntax works as follows:
- call load avgs (urms,vrms,wrms,namef,numf)

This opens a series of .fld files from one to a number, numf , each with a name, namef,
pulls the three variables urms, vrms, and wrms, and averages the content of each .fld file
for each variable. This step is necessary because the simulation is too large to be
completed in one run and must be divided into multiple steps resulting in multiple .fld

files.

11

Once the averaged quantities have been loaded, a series of subroutines are called to
compute the individual turbulent budget terms. An example of this process being used to

calculate the uu production term is presented below:

- call ke prod(prd uu,uavg,vavg,wavg,uavg,uavg,urms,uvms,wums,
S urms,uvms , wums)

Where the ke prod subroutine does the following:

- subroutine ke prod(prd,u,v,w,a,b,aums,avms,awms,bums,bvms,bwms)

call gradml (adx,ady,adz,a)
call gradml (bdx,bdy,bdz,b)

do e=1,1elt

do k=1,1z1

do j=1,1yl

do i=1,1x1

prd(i,j,k,e) = (a(i,j,k,e)*u(i,j, k,e)-aums(i,j, k,e))*bdx(i,7, k,e)+

S (a(i,j,k,e)*v(i,j, k,e)-avms(i,j,k,e))*bdy(i,j, k,e)+
S (a(i,j,k,e)*w(i,j, k,e)-awms(i,7,k,e))*bdz(i,7,k,e)+
S (b(i,j,k,e)*u(i,j, k,e)-bums(i,j, k,e))*adx(i,j, k,e)+
$ (b (i/j/k/e) *V(i/j/k/e) -bvms (i/j/k/e)) *ad_y(i/j/k/e)+
$ (b (i/j/k/e) *W(i/j/k/e) -bwms (i/j/k/e)) *adz (i/j/k/e)
enddo

enddo

enddo

enddo

return

end

The variable declarations have been omitted for brevity’s sake. The variables are passed
based on position within the two calling statements. The gradients of the average u-
velocity are taken and combined with the other previously computed quantities to
produce the turbulent production. This is the standard form for each of the budget term
subroutines.

After each of the budget terms has been calculated, the results are output as .fld files.

These files can be loaded in a visualization program such as Vislt or used as a restart

12

parameter in Nek. The terms themselves are fed into the interp var subroutine whose

syntax follows:
- call interp var(vell,xyzl,n interp,uavg,vavg,wavg)

This subroutine outputs a variable, vell, which contains the values produced by
interpolating uavg, vavg, and wavg at a number of points, n_interp, with locations
specified by xyz1. This is useful for producing profiles of the desired variables over
different spaces within the domain. The actual interpolation routine is included in the
Nek distribution and the interp _var subroutine presented here is a modified way of
initiating the process with more generalized calling statements. Finally, the interpolation
results are written to text files in the .csv format so they can be easily loaded in

spreadsheet form.

3.3 Verification
The results were compared to the data in the University of Tokyo DNS database

[11], available online at http://thtlab.jp/DNS/dns_database.html. Their data was taken

from DNS analysis of two-dimensional flow between two parallel plates. They used a
domain with dimensions of 2=« - delta, 2 - delta, and 5= - delta in the X, y, and z directions
respectively. Here, delta is the half-channel height. They discretized their domain using
128x128 Fourier series in the x and z directions and a 96 order Chebyshev polynomial
in the y direction. We matched this geometry and subdivided it into 12 elements in each
direction. 13" order polynomials were used to discretize these elements.

Periodic boundary conditions were used in the x and z directions so, statistically,

the flow should not have any meaningful variations in those directions. Therefore, the

13

http://thtlab.jp/DNS/dns_database.html

flow was averaged over both directions leaving it only as a function of y. This drastically
decreased the amount of time averaging required for statistical convergence.

The Reynolds number used in the simulation was 4560 based on the channel
height of two and an average u-velocity of one. Filtering was turned off allowing for the
resolution of the smallest turbulent scales. The flow was allowed to develop for 300
seconds using a polynomial order (Ix1) of five. The order was raised to 13 and run for
another 100 seconds before the budget subroutine was called and the required averages
taken over a period of 75 seconds, equating to just over 4.5 run through times. As
expected, the spatial averaging yielded much better results in much less time.

Figures 3-12 compare the terms calculated by Kasagi to those obtained through

this module and are shown on the following pages.

Production (uu)

0.45
0.4
0.35
0.3
0.25
0.2 @ nek
0.15
0.1
0.05

B kasagi

-0.05 0.2 0.4 0.6 0.8 1 1.2
y/delta

Figure 3. Turbulent Production — uu Tensor Component

14

Production (vv)

0.0003
R >
0.0002
0.0001
0 @ nek
0.2 0.4 0.6 0.8 1 12 gkasagi
-0.0001
-0.0002
el
-0.0003
y/delta
Figure 4. Turbulent Production — vv Tensor Component
Production (ww)
0.0001
0
2 : . . 1 1.2
0.0001 0 0.4 0.6 0.8
-0.0002
© KR KRR QK>
-0.0003
& nek
-0.0004 o kasagi
R asagi
-0.0005 e @
-0.0006
-0.0007 —4@»
-0.0008
y/delta

Figure 5. Turbulent Production — ww Tensor Component

15

0.3

0.25

0.2

0.15

0.1

0.05

Dissipation (uu)

@ nek

® kasagi

0 0.2 0.4 0.6 0.8 1 1.2
y/delta

Figure 6. Turbulent Dissipation — uu Tensor Component

0.018
0.016
0.014
0.012

0.01
0.008
0.006
0.004
0.002

Dissipation (vv)

@ nek

B kasagi

0 0.2 0.4 0.6 0.8 1 1.2
y/delta

Figure 7. Turbulent Dissipation — vv Tensor Component

Dissipation (ww)

0.08

0.07

0.06
0.05

0.04

@ nek
0.03

B kasagi
0.02

0.01

0 0.2 0.4 0.6 0.8 1 1.2
y/delta

Figure 8. Turbulent Dissipation — ww Tensor Component

Turbulent Diffusion (uu)

0.15

0.1

0.05

@ nek

® kasagi

1.2

-0.05

y/delta

Figure 9. Turbulent Diffusion — uu Tensor Component

17

0.3
0.25
0.2
0.15
0.1
0.05

-0.05
-0.1
-0.15

Viscous Diffusion (uu)

@ nek

® kasagi

y/delta

Figure 10. Viscous Diffusion — uu Tensor Component

0.01

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

Pressure Strain (uu)

0.2 0.4 0.6 1.2

@ nek

m kasagi

y/delta

Figure 11. Pressure Diffusion — uu Tensor Component

18

Pressure Transport (uu)

0.00035

0.0003

0.00025

0.0002

0.00015 ¢ nek

0.0001 B kasagi

0.00005

0

0.2 0.4 0.6 0.8 1 1.2
y/delta

-0.00005

Figure 12. Pressure Transport — uu Tensor Component

In each figure, the horizontal axis is normalized by the channel half-height, which is
one in this case. Most of interesting behavior occurs in or near the boundary layer. Most
terms are in very good agreement with Kasagi’s data. However, the vv and ww
production terms as well as the pressure transport term , Figures 4,5, and 12 respectively,
wildly differ. This is because these terms are expected to be on the order of 107'° or
smaller and random statistical noise generated in the simulation is being displayed
giving a nonsense result. Nek gives very small values for these terms, but they are not as
small as the essentially zero values produced by Kasagi. The turbulent diffusion differs
slightly, possibly because the triple average term required more time to statistically

converge.

19

4 SIMULATION PARAMETERS

With the budgets module verified, the focus shifted to analyzing the velocity

distribution and development of turbulence within the pebble bed lattice.

4.1 Mesh Characteristics and Generation

The spherical pebbles are arranged in a face-centered cubic (FCC) distribution across a
domain ranging from negative to positive one in each direction. This domain is shown in
Figure 13, on the following page, along with the primary plane from which

interpolations were taken.

Figure 13. Simulation Domain and Interpolation Plane

Four half-spheres are located on the x and y boundaries while eight quarter spheres are
found in the corners of the domain. The spheres have a diameter of 1.305 with a gap of

0.1088 between them. The flow has a volume-averaged magnitude of one in the z

20

direction. Figure 14 highlights the line over which the following graphs were

interpolated.

Figure 14. Interpolation Line

The mesh used in this simulation was generated by Paul Fischer in Prenek, a
module included in the Nek5000 distribution, using the FCC option in the three-
dimensional meshing section. There are 28672 fully hexahedral elements in total with
periodic boundary conditions on each side. A depiction of the central region of the mesh
can be found in Appendix B. Two simulation runs were conducted: one with a
polynomial order of seven, resulting in just under 15 million total divisions; and one
with an order of 11, yielding slightly less than 50 million divisions. Heat transfer was not

simulated and no filtering or turbulence modeling was used.

21

4.2 Simulation Details and Process

Initially, both DNS runs were run on 2048 processors each for roughly 25 flow-
through times (FTT) to allow the flow to develop. One FTT represents the time required
for fluid to pass through the entirety of the domain. The polynomial order was increased,
filtering turned off, and each production run began. Data on fluid velocity, both
instantaneous and averaged, along with the RMS terms were saved at specified time
steps for every point in the domain. For the 7"-order case, these time steps occurred at
intervals of 10 FTT, while the 11™-order case saved outputs every 1.25 FTT.
Additionally, the velocity components at five selected points spaced throughout the
domain, the volume-averaged velocity components, and the volume-averaged kinetic
energy were computed each time step and saved in .csv format.

After 15 runs, 65 FTT for 7" order and ~19 for 11" order, we began computing
and saving the average quantities required to calculate the terms in turbulent kinetic
energy budget. These terms are the production, dissipation, turbulent convection, viscous
diffusion, pressure strain, and pressure transport, and each is composed of averaged
tensor quantities of velocity components and their gradients. In total, 230 and 57.5 FTT
worth of data was collected for the 7% and 11"-order simulations, respectively.

The DNS were conducted with a Reynolds number of 3898 based on the sphere
diameter of 1.305, an inlet flow rate of 1.2628, a density of one, and viscosity of
4.2293E-4. These values are all non-dimensionalized and were picked to produce a

volume-averaged flow rate of one, which can be held constant in nek5000, and so that

22

the only parameter that needed to be changed to adjust the Reynolds number was the
viscosity.

In addition to the DNS, a series of LES were conducted at varying Reynolds
numbers to compare how such variations affected the development of turbulence. One
simulation was conducted with Re = 2445, another with Re = 4551, and the final
simulation used Re = 5867. The Reynolds numbers were adjusted by varying the
viscosity. These LES were conducted with a polynomial order of eight and the filtering
parameter set to 5%. The number of processors and run-time characteristics were the
same as those in the 7"-order DNS. Data was collected for 100 FTT for each LES. Later
studies determined that similar results could be attained with only 50 FTT. While not
quite as smooth, the 50-FTT results matched the behavior of the 100-FTT results well

allowing future studies to make comparisons using less processing time.

23

5 RESULTS

The results presented in this section are interpolated across the large central gap
between pebbles on the yz-plane. The profiles of the velocity magnitude taken from the

DNS are presented in Figure 15:

===]1th Order e===7th Order

19
1z

P
) f\
= 08
: \\ /
'c
o0
g \ ﬁn 6 =//
U.U
=
‘S
o
o 04
>
02
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Central Span

Figure 15. Velocity Magnitude Profiles from DNS

The horizontal axis has been normalized using the maximum width of the central
gap and the vertical axis normalized using the maximum observed velocity for each
interpolation. The 7"-order profile is much smoother due to the greater amount of

lth

averaging time. One should also note that the 11™-order result displays a small amount

of asymmetry in the magnitude of the two peaks and the location of the central

24

minimum. We have estimated the Kolmogorov scale at the center of the domain to be
~0.03 pebble diameters while the maximum distance between points in the 11"-order
simulation is ~0.007 pebble diameters and 0.013 for the 7-order simulation.

Figure 16 explores the development of this asymmetry by depicting velocity profiles

computed in the LES runs as well as the quasi-DNS results published by NRG.

o= | ES Re@ = 5867 em===|ES Re = 2445 e====|ES Re =455]1 ====NRG g-DNS Re =9308

19
1z

Velocity Magnitude

o)
S

o)
N

[en]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Normalized Center Span

Figure 16. LES Velocity Magnitude Comparison

The Re=2445 profile is nearly symmetric across the gap, but as the Re increases, the

flow pattern becomes more asymmetric. This trend supports the data produced by NRG.

25

This asymmetry may be explained in the following set of images in Figure 17, showing
the velocity fields at various planes throughout the domain. These figures were taken

from the 7M-order DNS, using an intermediate Re of 4551.

|

0.5+

5

—
Max 2065

Z-Axis

0.0

T T T T T
-1.0 -0.5 0.0 0.5 1.0
Y-Axis

YZ-Plane, X-Axis out of the Page

| >\\'/, :

_1.04 .

T T T T T T T
0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X-Axis X-Axis

XZ-Plane, Y-Axis into Page XY-Plane, Z-Axis out of Page

0.5

Y-Axis

0.0

Z-Axis

T T
-1.0 -0.5

Figure 17. Velocity Distributions Throughout Domain

26

The same slight asymmetries can be seen in these sections. The section from the xy-
plane gives the clearest view of what appears to be a rotational flow pattern developing
around the z-axis, the direction of flow. This rotational pattern is highlighted in the

series of sections presented in Figure 18:

L

— 1.549 0.8
. 1.032

05162
—
Max: 2065 00 Z-Axis
Min: 0.0000

0.5

> N
<

-10

Figure 18. Velocity Vectors on Selected Planes

These velocity vector plots show how the flow passes around the entrance pebble

in a relatively straight manner, but is rotating in the center gap and continues to rotate as

it passes around the exit pebble. Rotational patterns were also experimentally observed

27

in a similar geometry by Hassan and Dominguez-Ontinveros (2008). They measured
little to no rotation in low-Re flows and full vortex formation in higher-Re flows.

As DNS attempts to resolve turbulence at its smallest scales, it is possible to
calculate the turbulent kinetic energy budgets to a high degree of precision. The two
studies, with varying levels of resolution as determined by the spectral polynomial order
in each element, have provided insight into how fine a mesh is needed to capture the
minute turbulent details. Unfortunately, during the computation of the turbulent terms, it
became clear that the 7"-order results were under resolved resulting in their omission.
Each profile is interpolated across the central gap of the YZ-plane. The horizontal axis is
normalized using the maximum gap width so that the edges of the channel occur at
positive and negative one. The profiles represent the sum of the uu, vv, and ww tensor
components divided by two. The pressure terms displayed odd behavior and have been

omitted until further verification can be done.

w

N
(€,

No

/
/
/

 ——— /

0.2 \4 0.6 As 1
. ~N_ /
4 N~

1 LC
L.J

[REY
i

‘
-
o)
[REY

(€]

Production
1
S O\ ¢

o]
Normalized Central Span

Figure 19. Turbulent Production

28

o)
i)

o)
(o)

o)
L

for)
>

4
D
n

Dissipation

\
/
L

o)
N

o)
[REY

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized Central Span

Figure 20. Turbulent Dissipation

o)
4

o)
>

o
{n

o
S

o)
w

o)

Viscous Diffusion
D
BN

v - =g ‘
-1 r -0.8 w -0.4 -0.2 0 : 0.4 0.6 0.8 1

o)
[REY

o)
%

02

Normalized Central Span

Figure 21. Viscous Diffusion

29

8
A
yil
»)
0

-08\ 06 -04 M 0.4 0.6 7[8 1
)

Turublent Diffusion

F-N

Normaliz;d Central Span

Figure 22. Turbulent Diffusion

Figure 19 depicts the production of turbulence within the center of the pebble
bed. This profile bears some similarities to those seen in channel flow. As expected, the
peak production occurs near the boundary layer. Figure 20 shows the turbulent
dissipation. Again, the results make sense if the central gap is viewed as a type of
channel. Peak dissipation occurs at the walls then rapidly decreases. Figure 21 depicts
the viscous diffusion, which is essentially zero throughout most of the domain except for
sharp peaks located near the walls where viscous forces come to dominate. Figure 22
presents the turbulent diffusion which appears to be the dominant effect within the
central gap. Unlike channel flow, the two prominent peaks are both positive with the
largest peak being closer to the wall. It is possible that the negative peak closest to the
wall was missed by the interpolation routine, but the reasons for the differences are, as of

yet, unknown.

30

Various statistical analyses were performed in an attempt to ensure the validity of
the above data. The first identified 5 points within the domain, collected a long time
history of the instantaneous velocities at these points, and computed the correlation
coefficients between them. Point 1 was located at the center of the domain at (0,0,0)
while Points 2-5 were located on the upper surface at (0,0.8,1), (0,-0.8,1), (0.8,0,1), and
(-0.8,0,1), respectively.

The instantaneous velocity magnitude was recorded at each of these points for
100000 time steps. The correlation coefficient between each of the points was than
calculated. The highest coefficient for the 7"-order simulation was 0.0521 with most

1"-order simulation had maximum correlation at

falling around 0.01 or smaller. The 1
0.0862 with the rest falling between 0.055 and 0.01. These low values argue that the

flow within the domain is uncorrelated on a point-to-point basis.

31

6 CONCLUSIONS

The primary goal of this study was to create a DNS data reference for fluid flow in a
pebble bed. One of our main points of interest was determining why other groups were
reporting asymmetric velocity profiles given the symmetric geometry and boundary
conditions. We found that asymmetries in the velocity profile did arise and the
magnitude of these asymmetries was linked to the flow’s Reynolds number. These
effects appear to be the result of a rotational flow pattern that is most pronounced in the
central gap. The experimental data of Hassan supports the formation of vortices within
these inter-pebble gaps. The trends we observed appear to match those found in the NRG
study and future simulations will be run in an attempt to match their results directly.

The turbulent kinetic energy budgets show some similarities to those developed
for channel flow, but further testing will have to be done to ensure their validity. The 7%-
order velocity results appear to be useful and can be achieved in far less time than that
required to complete the 11"-order simulation. However, the 7"-order turbulent budget
terms appear to miss much of the information captured by the 11%-order simulation and,
as a result, are not useful. Future studies will analyze the data in other parts of the

domain focusing on the narrow inter-pebble gaps and the predicted stagnation zones.

32

REFERENCES

[1] LJ. Lommers, F. Shahrokhi, JA. Mayer III, FH. Southworth, AREVA Near-Term
HTR Concept, HTR 2010- Prague - 18-20 October 2010

[2] C. H. Rycroft, T. Lind, S. Giintay, and A. Dehbi, Granular flows in pebble bed
reactors: dust generation and scaling, proceedings of ICAPP 2012, Chicago, June 24-28,
2012

[3] A. Shams, F. Roelofs, EMJ. Komen, E. Baglietto, 2013. “Quasi-direct numerical
simulation of a pebble bed configuration. Part I: Flow (velocity) field analysis ,” Nuclear
Engineering and Design, Vol. 263, pp. 473-489

[4] Y. Hassan, EE. Dominguez-Ontiveros, 2008. “Flow visualization in a pebble bed
reactor experiment using PIV and refractive index matching techniques,” Nuclear
Engineering and Design, Vol. 238, pp. 3080-3085

[5] SB. Pope, 2000. “Turbulent Flows”, Cambridge: Cambridge University Press

[6] P. F. Fischer, 1997. “An overlapping Schwarz method for spectral element solution
of the incompressible Navier-Stokes equations,” J. of Comp. Phys. Vol. 133, pp. 84-101.

[7] M. O. Deville, P. F. Fischer, and E. H. Mund, 2002. “Higher Order Methods for
Incompressible Fluid Flow,” Cambridge: Cambridge Univ. Press.

[8] AV Obabko, PF Fischer, TJ Tautges, S Karabasov, VM Goloviznin, MA Zaytsev,
VV Chudanov, VA Pervichko, AE Aksenova, 2011, “CFD validation in OECD/NEA t-
junction benchmark”™, Report ANL/NE-11/25

[9] E Merzari, WD Pointer, P Fischer, 2013, “Numerical simulation and proper
orthogonal decomposition of the flow in a counter-flow t-junction”, Journal of Fluids
Engineering, 135 (9), 091304

[10] P. Fischer and J. Mullen, 2001. Filter-based stabilization of spectral element
methods. Comptes rendus de [’Academie des sciences, Serie I Analyse numerique, Vol.
332, pp. 265-270.

[11] N. Kasagi, K. Horiuti, Y. Miyake, T. Miyauchi and Y. Nagano, 1990,

"Establishment of the Direct Numerical Simulation Data Bases of Turbulent Transport
Phenomena", 1990 - http://thtlab.jp

33

http://www.sciencedirect.com/science/journal/00295493/263/supp/C
http://www.osti.gov/bridge/product.biblio.jsp?osti_id=1024601
http://www.osti.gov/bridge/product.biblio.jsp?osti_id=1024601
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=6p8NWHIAAAAJ&sortby=pubdate&citation_for_view=6p8NWHIAAAAJ:0izLItjtcgwC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=6p8NWHIAAAAJ&sortby=pubdate&citation_for_view=6p8NWHIAAAAJ:0izLItjtcgwC

APPENDIX A: CODE

Averaging Routine:

n o000 a0aaa0n
(w
()]
e}

Q0 000aa0aQn

U Ur Ur Ur U U O Uy

subroutine budgets avg

This routine is based on avg all and computes the terms of the
turbulent kinetic energy equation. These terms are dumped in a
series of .fld files and can be interpolated over a set of user-
defined points with the results outputted in .csv files.

E denotes the expected value operator and X,Y two
real valued random variables.

variances and covariances can be computed in a post-processing

var (X) = E(X*™"X) - E(X)*E (X)
cov(X,Y) := E(X*Y) - E(X)*E(Y)

Note: The E-operator is linear, in the sense that the expected
value is given by E(X) = 1/N * sum[E(X) i], where E(X) i
is the expected value of the sub-ensemble i1 (i=1...N).

include 'SIZE'
include 'TOTAL'
include 'AVG'

logical ifverbose
integer icalld,i,j,k,e

save icalld

data icalld /0/
real vis, rho
parameter (interp=1)
parameter (ninp=400)
parameter (vis=4.386E-4)
parameter (rho=1)

common /ugradtens/
dudx (1x1,1yl,1z1,1lelt),
dudy (1x1,1y1l,1z1,1lelt),
dudz (1x1,1y1l,1z1,1lelt),
dvdx (1x1,1y1l,1z1,1lelt),
dvdy (1x1,1yl,1z1,1lelt),
dvdz (1x1,1yl,1z1,1lelt),
dwdx (1x1,1y1l,1z1,1lelt),
()

dwdy (1x1,1y1l,1z1,1lelt),

34

$ dwdz (1x1,1yl,1z1,1lelt)

common /dissipation/

udxavg (1lx1l,1yl,1z1,1lelt
udzavg (1lx1l,1yl,1z1,lelt
vdyavg (1x1,1yl,1z1,lelt
wdxavg (1x1,1yl,1z1,lelt
wdzavg (1x1l,1yl,1z1,1lelt
udyrms (1x1,1yl,1z1,1lelt
vdxrms (1x1,1yl,1z1,lelt
vdzrms (1x1,1yl,1z1,lelt

uvdxms (1x1,1yl,1z1,1lelt
uvdzms (1x1,1yl,1z1,1lelt

U Ur U»r U U O Uy Uy O O O Uy Oy Oy O O Oy

eps vw(lxl,1lyl,1z1l,lelt

common /production/

) yudyavg (1x1,1yl,1z1,1lelt

(), vdxavg (1x1,1yl,1z1,1lelt

() ,vdzavg (1x1,1yl,1z1,1lelt

() ywdyavg (1x1,1yl,1z1,1lelt

() yudxrms (1x1,1yl,1z1,1lelt

() ,udzrms (1x1,1yl,1z1,1lelt

() ,vdyrms (1x1,1yl,1z1,1lelt

() ywdxrms (1x1,1yl,1z1,1lelt

wdyrms (1x1,1yl,1z1,1lelt),wdzrms (1x1,1yl,1z1,lelt

() yuvdyms (1x1,1y1l,1z1,1lelt

() yuwdxms (1x1,1yl,1z1,1lelt

uwdyms (1x1,1yl,1z1,1lelt),uwdzms (1x1,1y1l,1z1,lelt),

vwdxms (1x1,1yl,1z1,1lelt),vwdyms(1lx1l,1yl,1z1,1lelt),

vwdzms (1x1,1yl,1z1,1lelt),eps uu(lxl,1lyl,1zl,lelt),

eps vv(lxl,1lyl,1z1l,1lelt),eps ww(lxl,1lyl,1z1l,1lelt),

eps uv(lxl,1lyl,1z1l,1lelt),eps uw(lxl,1lyl,1zl,lelt),
()

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

4

4

4

4

4

4

4

4

4

4

4

S prd uu(lx1l,1yl,1z1,1lelt),prd vv(lx1l,1lyl,1z1,1lelt),
S prd ww(lxl,1yl,1z1,1elt),prd uv(lxl,1lyl,1z1l,1lelt),
$ prd uw(lxl,1lyl,1lzl,lelt),prd vw(lxl,1lyl,1zl,lelt)

common /pdiffusion/

upavg (lxl,1lyl,1z1,1lelt),vpavg(lxl,1lyl,1z1,1elt),

wpavg (1x1,1yl,1z1,1lelt),pdf uu(lxl,1lyl,1zl,lelt),

pdf uv(lxl,1lyl,1lzl,lelt
pdf vw(lxl,1lyl,1lzl,lelt

$
$
$ pdf vv(lxl,lyl,1lzl,lelt),pdf ww(lxl,1lyl,1zl,lelt
$
$

)
)

common /vdiffusion/

;pdf uw(lxl,1lyl,1zl,lelt

)
)

4

4

$ vdf uu(lxl,lyl,1lzl,lelt),vdf vv(lxl,1lyl,1zl,lelt),
$ vdf ww(lxl,lyl,1lzl,1lelt),vdf uv(lxl,1lyl,1zl,lelt),
$ vdf uw(1lx1l,1yl,1z1,1elt),vdf vw(lx1l,1yl,1z1,1lelt)

common /tdiffusion/

uwwavg (1x1,1yl,1z1,lelt
vvvavg (1x1,1yl,1z1,1lelt),vvwavg

) (

() (

() (

() (
vwwavg (1x1,1yl,1z1,1lelt) ,wwwavg (
() (

() (

() (

vy Ur U Uy Ur U U Uy

common /pstrain/

)
pudzavg(lxl,1lyl,1z1,1lelt),pvdxavg
pvdyavg (1x1,1yl,1z1,1lelt),pvdzavg
pwdxavg (1x1,1yl,1z1,1lelt)

Uy Uy U Ur

(
(
(
(

35

uuuavg (lxl,1lyl,1z1,1lelt),uuvavg(lxl,1lyl,1lzl,lelt),
uuwavg (1lx1l,1yl,1z1,1lelt),uvvavg(lxl,1lyl,1lzl,lelt),
,uvwavg (1x1,1yl,1z1,1lelt
1x1,1y1l,1z1,1lelt
1x1,1y1l,1z1,1lelt
tdf uu(lxl,lyl,1zl,lelt),tdf vv(lxl,1lyl,1zl,lelt),
tdf ww(lxl,lyl,1zl,1lelt),tdf uv(lxl,1lyl,1lzl,lelt),
tdf uw(lx1l,1lyl,1z1,lelt),tdf vw(lxl,1lyl,1z1,lelt

)
)
)
)
)
)
)
)

4

4

4

pudxavg(lxl,1lyl,1lzl,lelt) ,pudyavg(lxl,1lyl,1zl,lelt),
1x1,1y1,1z1,1lelt),
1x1,1yl,1z1,1lelt
ypwdyavg (1x1,1yl,1z1,1lelt

)
)
)
)

4

4

pwdzavg (1x1,1yl,1z1,1lelt),pst uu(lxl,1lyl,1z1l,1lelt),
pst vv(lxl,1lyl,1zl,1lelt),pst ww(lxl,1lyl,1zl,lelt),
pst uv(lxl,1lyl,1z1,1lelt),pst uw(lx1l,1lyl,1z1,1lelt),
pst vw(lxl,1yl,1z1,1elt)

Uy Uy Uy U

common /plane/
eps uu_avg(lxl,lyl,1zl,lelt),eps vv _avg(lxl,lyl,1zl,1lelt),
eps ww_avg(lxl,1lyl,1zl,1lelt),eps uv avg(lxl,1lyl,1zl,lelt),
eps uw_avg(lxl,1lyl,1lzl,lelt),eps vw avg(lxl,lyl,1zl,lelt),
prd uu avg(lxl,1lyl,1zl,lelt),prd vv_avg(lxl,lyl,1lzl,lelt),
prd ww_avg(lxl,1lyl,1zl,lelt),prd uv_avg(lxl,lyl,1lzl,lelt),
prd uw_avg(lxl,1lyl,1zl,lelt),prd vw avg(lxl,lyl,1lzl,lelt),
tdf uu avg(lxl,lyl,1lzl,lelt),tdf vv avg(lxl,lyl,1zl,lelt),
tdf ww avg(lxl,lyl,1lzl,lelt),tdf uv avg(lxl,lyl,1zl,lelt),
tdf uw_avg(lxl,lyl,1lzl,lelt),tdf vw avg(lxl,lyl,1zl,lelt),
) ()
pdf ww_avg(lxl,1lyl,1lzl,lelt),pdf uv avg(lxl,lyl,1lzl,lelt),
pdf uw avg(lxl,1lyl,1zl,lelt),pdf vw avg(lxl,1lyl,1lzl,lelt),
vdf uu avg(lx1l,1lyl,1z1l,1lelt),vdf vv avg(lxl,1lyl,1lzl,lelt),
vdf ww_avg(lxl,1lyl,1zl,lelt),vdf uv avg(lxl,lyl,1lzl,lelt),
vdf uw_avg(lxl,1lyl,1zl,lelt),vdf vw avg(lxl,lyl,1lzl,lelt),
pst uu avg(lxl,1lyl,1zl,lelt),pst vv avg(lxl,lyl,1lzl,lelt),
pst ww_avg(lxl,1lyl,1zl,1lelt),pst uv avg(lxl,lyl,1lzl,lelt),
pst uw_avg(lxl,1lyl,1zl,1lelt),pst vw avg(lxl,1lyl,1lzl,lelt),
u pl avg(lxl,lyl,1zl,lelt),udy pl avg(lxl,lyl,1zl,lelt),
v_pl avg(lxl,1lyl,1z1l,1lelt),vdy pl avg(lxl,1lyl,1lzl,lelt),
w pl avg(lxl,1lyl,1zl,1lelt),wdy pl avg(lxl,1lyl,1zl,lelt)

(
(
(
(
(
(
(
(
pdf uu avg(lxl,1lyl,1zl,lelt),pdf vv avg(lxl,lyl,1lzl,lelt),
(
(
(
(
(
(
(

r U U Ur Uy 0 Oy Uy Oy O O Oy Oy Oy O Oy Oy Oy O O Oy

common /scratch interp/
xyzl(3,ninp),vell (3,ninp),dvel (3,ninp),
epsl (3,ninp),eps2(3,ninp),prdl (3,ninp),
prd2 (3,ninp), tdfl (3,ninp),tdf2 (3,ninp),
pdfl (3,ninp),pdf2(3,ninp),pstl (3,ninp),
pst2 (3,ninp),vdfl (3,ninp) ,vdf2 (3, ninp)

U U Uy Uy Oy

if (axl.ne.lxl .or. ayl.ne.lyl .or. azl.ne.lzl) then
if(nid.eq.0) write(6,%*)
S 'ABORT: wrong size of axl,ayl,azl in avg all(), check
SIZEu!'
call exitt
endif
if (ax2.ne.lx2 .or. ay2.ne.ay2 .or. az2.ne.lz2) then
if(nid.eq.0) write(6,*)
$ '"ABORT: wrong size of ax2,ay2,az2 in avg_all(), check
SIZEu!'
call exitt
endif

ntot nxl*nyl*nzl*nelv
ntott = nxl*nyl*nzl*nelt
nto2 = nx2*ny2*nz2*nelv

36

! initialization

if (icalld.eg.0) then
icalld = icalld + 1
atime 0.
timel = time

call rzero(uavg,ntot)
call rzero(vavg,ntot)
call rzero(wavg,ntot)
call rzero(pavg,nto?2)
call rzero (udxavg,ntot)
call rzero(udyavg,ntot)
call rzero(udzavg,ntot)
call rzero(vdxavg,ntot)
call rzero(vdyavg,ntot)
call rzero(vdzavg,ntot)
call rzero(wdxavg,ntot)
call rzero(wdyavg,ntot)
call rzero(wdzavg,ntot)
call rzero (udxrms,ntot)
call rzero(udyrms,ntot)
call rzero(udzrms,ntot)
call rzero(vdxrms,ntot)
call rzero(vdyrms,ntot)
call rzero(vdzrms,ntot)
call rzero (wdxrms,ntot)
call rzero(wdyrms,ntot)
call rzero(wdzrms,ntot)
call rzero (upavg,ntot)
call rzero(vpavg,ntot)
call rzero (wpavg,ntot)
call rzero(uuuavg,ntot
call rzero (uuvavg,ntot
call rzero (uuwavg,ntot
call rzero(uvvavg,ntot
call rzero (uvwavg,ntot
call rzero (uwwavg,ntot
call rzero(vvvavg,ntot
call rzero(vvwavg,ntot
call rzero(vwwavg,ntot
call rzero (wwwavg,ntot
do i = 1,1dimt

call rzero(tavg(l,1,1,1,1i),ntott)
enddo
call rzero(urms,ntot)
call rzero(vrms,ntot)
call rzero(wrms,ntot)
call rzero(prms,nto?2)
do i = 1,1dimt

call rzero(trms(1,1,1,1,1i),ntott)
enddo
call rzero(vwms,ntot)
call rzero (wums,ntot)
call rzero (uvms,ntot)

)
)
)
)
)
)
)
)
)
)

37

endif

dtime = time - timel
atime = atime + dtime

' dump freq

iastep = param(68)

if (iastep.eq.0) iastep=param(l5) ! same as iostep
if (iastep.eqg.0) iastep=500

ifverbose=.false.
if (istep.le.l10) ifverbose=.true.
if (mod(istep,iastep) .eq.0) ifverbose=.true.

if (atime.ne.0..and.dtime.ne.0.) then
if(nid.eq.0) write(6,*) 'Compute statistics !
beta = dtime/atime

alpha = 1.-beta

! compute averages E (X)

call avgl (uavg,vx,alpha,beta,ntot ,'um ',ifverbose)
call avgl (vavg,vy,alpha,beta,ntot ,'vm ',ifverbose)
call avgl (wavg,vz,alpha,beta,ntot ,'wm ',ifverbose)
call avgl (pavg, pr,alpha,beta,nto2 ,'prm ',ifverbose)
call avgl (tavg,t ,alpha,beta,ntott,'tm ',ifverbose)

call gradml (dudx,dudy,dudz, vx)
call gradml (dvdx,dvdy,dvdz, vy)
call gradml (dwdx, dwdy,dwdz, vz)

do i = 2,1dimt
call avgl (tavg(l,1,1,1,i),t(1,1,1,1,1i),alpha,beta,
& ntott, 'psav',ifverbose)
enddo

! compute averages E (X"2)
call avgz (urms, vx,alpha,beta,ntot ,'ums ',ifverbose

)
call avgz (vrms, vy, alpha,beta,ntot ,'vms ',ifverbose)
call avgz (wrms,vz,alpha,beta,ntot ,'wms ',ifverbose)
call avg2 (prms, pr,alpha,beta,nto2 ,'prms',ifverbose)
call avg2 (trms,t ,alpha,beta,ntott, 'tms ',ifverbose)
do i = 2,1dimt

call avg2 (trms¢(1,1,1,1,i),t(1,1,1,1,1i),alpha,beta,
& ntott, 'psms',ifverbose)
enddo
! compute averages E (X*Y) (for now just for the velocities)
call avg3 (uvms, vx,vy,alpha,beta,ntot, 'uvm ', ifverbose)
call avg3 (vwms,vy,vz,alpha,beta,ntot, 'vwm ', ifverbose)
call avg3 (wums,vz,vx,alpha,beta,ntot, '"wum ', ifverbose)

38

c -=-—== Dissipation ————-—-—-—-—-——————————

call avgl (udxavg,dudx,alpha,beta,ntot ,'dudxm ',ifverbose
call avgl (udyavg,dudy,alpha,beta,ntot , 'dudym ',ifverbose
call avgl (udzavg,dudz,alpha,beta,ntot , 'dudzm ',ifverbose
call avgl (vdxavg,dvdx,alpha,beta,ntot , 'dvdxm ',ifverbose
call avgl (vdyavg,dvdy,alpha,beta,ntot , 'dvdym ',ifverbose
call avgl (vdzavg,dvdz,alpha,beta,ntot ,'dvdzm ',ifverbose
call avgl (wdxavg,dwdx,alpha,beta,ntot ,'dwdxm ',ifverbose
call avgl (wdyavg,dwdy,alpha,beta,ntot , 'dwdym ',ifverbose
call avgl (wdzavg,dwdz,alpha,beta,ntot , 'dwdzm ',ifverbose

call avg2 (udyrms,dudy,alpha,beta,ntot , 'dudyms ',ifverbose
call avg2 (udzrms,dudz,alpha,beta,ntot , 'dudzms ',ifverbose
call avg2 (vdxrms,dvdx,alpha,beta,ntot ,'dvdxms ',ifverbose
call avg2 (vdyrms,dvdy,alpha,beta,ntot , 'dvdyms ',ifverbose
call avg2(vdzrms,dvdz,alpha,beta,ntot , 'dvdzms ',ifverbose
call avg2 (wdxrms,dwdx,alpha,beta,ntot , 'dwdxms ',ifverbose
call avg2 (wdyrms,dwdy,alpha,beta,ntot , 'dwdyms ',ifverbose
call avg2 (wdzrms,dwdz,alpha,beta,ntot , 'dwdzms ',ifverbose
call avg3 (uvdxms,dudx,dvdx,alpha,beta,ntot, 'uvxms

', ifverbose)
call avg3 (uvdyms,dudy,dvdy,alpha,beta,ntot, 'uvyms

', ifverbose)
call avg3(uvdzms,dudz,dvdz,alpha,beta,ntot, 'uvzms

', ifverbose)
call avg3 (uwdxms,dudx,dwdx,alpha,beta,ntot, 'uwxms

', ifverbose)
call avg3 (uwdyms,dudy,dwdy, alpha,beta,ntot, 'uwyms

', ifverbose)
call avg3(uwdzms,dudz,dwdz,alpha,beta,ntot, 'uwzms

', ifverbose)
call avg3 (vwdxms,dvdx,dwdx,alpha,beta,ntot, 'vwxms

', ifverbose)
call avg3 (vwdyms,dvdy,dwdy,alpha,beta,ntot, 'vwyms

', ifverbose)
call avg3(vwdzms,dvdz,dwdz, alpha,beta,ntot, 'vwzms

', ifverbose)

c ————- Pressure Diffusion ------—----"""-"-""""-—————————— -
call avg3(upavg,pr,vx,alpha,beta,nto2, 'upavg ',ifverbose)
call avg3(vpavg,pr,vy,alpha,beta,nto2, 'vpavg ',ifverbose)
call avg3(wpavg,pr,vz,alpha,beta,nto2, 'wpavg ',ifverbose)

c ————- Turbulent Diffusion -------"-""""""""""""-"-"-""-"-"-"—"—"—"-"--"-"-"—"—--"—-——
call avg4 (uuuavg,vx,Vvx,Vvx,alpha,beta,ntot, "uuuavg',ifverbose
call avg4 (uuvavg,vx,vx,vy,alpha,beta,ntot, '"uuvavg',ifverbose
call avg4 (uuwavg,vx,vx,vz,alpha,beta,ntot, '"uuwavg',ifverbose
call avg4 (uvvavg,vx,vy,vy,alpha,beta,ntot, 'uvvavg', ifverbose
call avg4 (uwwavg,vx,vz,vz,alpha,beta,ntot, "uwwavg',ifverbose

(
(
(
(

— — = — — — — — = — — — — — — — — ~—

(
(
(
(
(
(
(
(
call avg2 (udxrms,dudx,alpha,beta,ntot , 'dudxms ',ifverbose
(
(
(
(
(
(
(
(
(

call avg4 (uvwavg,vx,vVvy,vz,alpha,beta,ntot, "uvwavg',ifverbose
call avgi4 (vvvavg,vy,vy,vy,alpha,beta,ntot, 'vvvavg', ifverbose
call avg4 (vvwavg,vy,vy,vz,alpha,beta,ntot, 'vvwavg', ifverbose
call avgéd (vwwavg,vy,vz,vz,alpha,beta,ntot, 'vwwavg',ifverbose
call avg4 (wwwavg,vz,vz,vz,alpha,beta,ntot, '"wwwavg',ifverbose
c —-==== Pressure Strain —-----—-—————-——————-——— -

_— — — — — — — — — —

39

call
call
call
call
call
call
call
call
call
endif

c —-—-—-- Outpu

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

return
end

subrouti
include
include

real avg
characte

logical

do k=1,n

avg3 (pudxavg, pr,dudx, alpha, beta,ntot, 'pudxavg', ifverbose
avg3 (pudyavg, pr,dudy, alpha, beta, ntot, 'pudyavg', ifverbose
avg3 (pudzavg, pr,dudz, alpha, beta,ntot, 'pudzavg', ifverbose
avg3 (pvdxavg, pr,dvdx, alpha, beta,ntot, 'pvdxavg', ifverbose
avg3 (pvdyavg, pr,dvdy, alpha, beta, ntot, 'pvdyavg', ifverbose
avg3 (pvdzavg, pr,dvdz, alpha, beta,ntot, 'pvdzavg', ifverbose
avg3 (pwdxavg, pr,dwdx, alpha, beta,ntot, 'pwdxavg', ifverbose
avg3 (pwdyavg, pr,dwdy, alpha, beta,ntot, 'pwdyavg', ifverbose
avg3 (pwdzavg, pr,dwdz, alpha, beta,ntot, 'pwdzavg', ifverbose

—_— — — — — — — — —

t .fld files for visualization ----——--"-"""""""“"-------———

outpost?2 (uavg, vavg, wavg, pavg, tavg, 1dimt, 'avg')
outpost2 (urms, vrms, wrms, pavg, tavg, ldimt, 'rms"')
outpost2 (uvms, wums, vwms, pavg, tavg, 1dimt, 'rm2")
outpost?2 (udxavg,udyavg,udzavg, pavg, tavg, 1dimt, 'uda'
outpost2 (vdxavg, vdyavg, vdzavg, pavg, tavg, ldimt, 'vda'
outpost?2 (wdxavg, wdyavg, wdzavg, pavg, tavg, 1dimt, 'wd
outpost?2 (udxrms, udyrms, udzrms, pavg, tavg, 1dimt, 'udr
outpost?2 (vdxrms, vdyrms, vdzrms, pavg, tavg, 1dimt, 'vd
outpost?2 (wdxrms,wdyrms, wdzrms, pavg, tavg, 1dimt, 'wdr'
outpost?2 (uvdxms, uvdyms, uvdzms, pavg, tavg, 1dimt, d
outpost?2 (uwdxms, uwdyms, uwdzms, pavg, tavg, 1dimt, "uwd
outpost?2 (vwdxms, vwdyms, vwdzms, pavg, tavg, 1dimt, 'vwd
outpost?2 (upavg, vpavg, wpavg, pavg, tavg, ldimt, 'vpa')
outpost?2 (uuuavg,uuvavg, uuwavg, pavg, tavg, 1dimt, 'uuu')
outpost2 (uvvavg, uvwavg, uwwavg, pavg, tavg, ldimt, 'uvv')
outpost2 (vvvavg, vvwavg, vWwwavg, pavg, tavg, 1dimt, 'vvv')
outpost2 (wwwavg, wwwavg, wwwavg, pavg, tavg, 1dimt, 'www')
outpost?2 (pudxavg, pudyavg, pudzavg, pavg, tavg, 1dimt, "'pud')
outpost?2 (pvdxavg, pvdyavg, pvdzavg, pavg, tavg, 1dimt, 'pvd')
outpost?2 (pwdxavg, pwdyavg, pwdzavg, pavg, tavg, 1dimt, 'pwd')

ne avgé (avg,f,qg,h,alpha,beta,n, name, ifverbose)
'SIZE'
'TSTEP'

(n),f(n),g(n),h(n)
r*4 name
ifverbose

avg (k) = alpha*avg (k) + beta*f (k)*g(k)*h (k)

enddo

40

if (ifverbose) then
avgmax = glmax (avg,n)

avgmin = glmin (avg,n)
if (nid.eq.0) write(6,1) istep,time,avgmin,avgmax
S ,alpha,beta, name
1 format (19, 1p5e13.5,1x,a4,"' avdmnx')
endif
c
return
end

Term Calculation Routine:

subroutine budget terms

c

c This subroutine takes the outputs from budget avg and computes
the

c tensor components of each turbulent kinetic energy term before
c outputting them in both tabular .csv format and graphical .fld
c format

c

c E denotes the expected value operator and X,Y two

c real valued random variables.

c

41

0 Q
prt
0]
T

Q000 0a0aQn

variances and covariances can be computed in a post-processing

var (X) := E (X"X)
cov(X,Y) := E(X*Y)

Note: The E-operator
value is given
is the expecte

include 'SIZE'
include 'TOTAL'
include 'AVG'

logical ifverbose

integer icalld,i,j,k
save icalld

data icalld /0/
real vis, rho

character namef*7

parameter
parameter
parameter
parameter

interp=1)
ninp=400)

—~ e~~~

rho=1)

common /ugradtens/

dudx (1x1,1yl,1z1,1le
dudy (1x1,1y1l,1z1,1le
dudz (1x1,1yl,1z1,1le
dvdx (1x1,1yl,1z1,1le
dvdy (1x1,1yl,1z1,1le
dvdz (1x1,1yl,1z1,1le
dwdx (1x1,1y1l,1z1,1le
dwdy (1x1,1y1l,1z1,le
dwdz (1x1,1y1l,1z1,1le

U U U Uy Ur O O U
A~~~ o~ o~~~ —~

common /dissipation/

wdxavg (1x1,1yl,1z1,
wdzavg (1x1,1yl,1z1,

(

(

(

(

(

(

vdzrms (1x1,1yl,1z1,

wdyrms (1x1,1y1l,1z1,

uvdxms (1x1,1yl,1z1,
(
(
(
(
(

vy Ur U Ur Ur O O Uy Uy Uy Oy O Oy O Oy

- E(X) *E (X)
- E(X)*E(Y)

is linear, in the sense that the expected
by E(X) = 1/N * sum[E(X) i], where E(X)_
(i=1...N).

d value of the sub-ensemble i

,e,11

vis=4.2293E-4)

1t),
1t),
1t),
1t),
1t),
1t),
1t),
1t),
1t)

lelt
lelt

,wdyavg (1x1,1yl,1z1,1lelt
;udxrms (1x1,1yl,1z1,1lelt

lelt),wdzrms (1x1,1yl,1z1,lelt

) (
) (
) (
) (
) (
) (
) (
lelt),wdxrms (1x1,1yl,1z1,1lelt
) (
lelt),uvdyms (1x1,1yl,1z1,1lelt
) (
) (
) (
) (
) (

42

udxavg(lxl,1lyl,1z1,1lelt),udyavg(lxl,1lyl,1zl,lelt),
udzavg(lxl,1lyl,1z1,1lelt),vdxavg(lxl,1lyl,1zl,1lelt),
vdyavg (1x1l,1yl,1z1,1lelt),vdzavg(lxl,1lyl,1z1,1lelt),

udyrms (1x1,1yl,1z1,1lelt),udzrms (1x1,1yl,1z1,1lelt),
vdxrms (1x1,1yl,1z1,1lelt),vdyrms(1lx1l,1yl,1z1,1lelt),

uvdzms (1x1,1yl,1z1,1lelt) ,uwdxms (1x1,1y1l,1z1,1lelt),
uwdyms (1x1,1yl,1z1,1lelt) ,uwdzms (1x1,1yl,1z1,lelt),
vwdxms (1x1,1yl,1z1,1lelt),vwdyms(1lx1l,1yl,1z1,1lelt),
vwdzms (1x1,1yl,1z1,1elt),eps uu(lxl,1lyl,1zl,lelt),
eps vv(lxl,1lyl,1z1,1lelt),eps ww(lxl,1yl,1z1,1lelt),

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

4

4

4

4

4

i

$ eps_uv(lxl,lyl,1lzl,lelt),eps uw(lxl,1lyl,1lzl,lelt),
$ eps_vw(lxl,lyl,1lzl,lelt)

common /production/

$ prd uu(lxl,lyl,lzl,lelt),prd vv(lxl,1lyl,1zl,lelt),
$ prd ww(lxl,1lyl,1lzl,lelt),prd uv(lxl,lyl,1zl,lelt),
$ prd uw(lxl,lyl,1lzl,lelt),prd vw(lxl,1lyl,1zl,lelt)

common /pdiffusion/

upavg (1x1,1yl,1z1,1lelt),vpavg(1lxl,1lyl,1z1,1lelt),
wpavg (1x1,1yl,1z1,1lelt),pdf uu(lxl,1lyl,1zl,lelt),
pdf vv(lx1l,1lyl,1zl,lelt),pdf ww(lxl,1lyl,1zl,lelt),
pdf uv(lx1l,1yl,1z1,1lelt),pdf uw(lx1l,1lyl,1zl,lelt),
pdf vw(lx1l,1yl,1z1,1lelt)

Uy Ur U Uy U

common /vdiffusion/

S vdf uu(lx1l,1yl,1z1,1lelt),vdf vv(lx1l,1lyl,1z1l,1lelt),
S vdf ww(lxl,1yl,1z1,1elt),vdf uv(lx1l,1lyl,1z1l,1lelt),
$ vdf uw(lxl,1lyl,1lzl,lelt),vdf vw(lxl,1lyl,1zl,lelt)

common /tdiffusion/
uuuavg (1lx1l,1yl,1z1,1lelt)
uuwavg (1x1,1yl,1z1,1lelt)
uwwavg (1lx1l,1yl,1z1,1lelt) ,uvwavg
vvvavg (1xl,1yl,1z1,1lelt),vvwavg
vwwavg (1x1,1yl,1z1,1lelt),wwwavg
()
()
()

,uuvavg
,uvvavg

1x1,1yl,1z1,lelt
1x1,1yl,1z1,lelt

)
)
1x1,1y1l,1z1,1lelt),
1x1,1y1l,1z1,1lelt),
1x1,1y1,1z1,1lelt),
1x1,1yl,1z1,1lelt)
1x1,1yl,1z1,1lelt)
1x1,1y1l,1z1,1lelt)

tdf uu(lxl,lyl,1zl,1lelt),tdf vv
tdf ww(lxl,1lyl,1z1,1lelt),tdf uv
tdf uw(lxl,lyl,1zl,lelt),tdf vw

4

4

U Uy Ur Oy O U Uy U
A~~~ o~ o~~~ —~

common /pstrain/
pudxavg (1x1,1yl,1z1,lelt
pudzavg (1x1,1yl,1z1,lelt

,pudyavg (1x1,1yl,1z1,1lelt),
,pvdxavg (1x1,1yl,1z1,1lelt),
pvdyavg (1x1l,1yl,1z1l,1lelt),pvdzavg(lxl,1lyl,1zl,lelt)
pwdxavg (1x1l,1yl,1z1,1lelt),pwdyavg(lxl,1lyl,1z1,1lelt),
pwdzavg (1x1,1yl,1z1,lelt),pst uu(lxl,1lyl,1zl,lelt),
pst vv(lxl,1yl,1z1,1lelt),pst ww(lx1l,1lyl,1z1,1lelt),
pst uv(lxl,1lyl,1z1,1lelt),pst uw(lx1l,1yl,1z1,1lelt),
pst vw(lxl,1lyl,1zl,lelt)

4

Ur Uy Ur Ur O O Uy U
—_ — — —

common /plane/

eps uu_ avg(lxl,lyl,1zl,lelt),eps vv_avg
eps ww_avg(lxl,1lyl,1zl,lelt),eps uv_avg
eps uw_avg(lxl,lyl,1zl,lelt),eps vw _avg
prd uu avg(lxl,1lyl,1zl,lelt),prd vv_avg
prd ww_avg(lxl,1lyl,1lzl,lelt),prd uv_avg
prd uw_avg(lxl,1lyl,1z1,lelt),prd vw_avg

) 1x1,1y1l,1z1,1lelt
()
()
()
()
()
tdf uu avg(lxl,lyl,1lzl,lelt),tdf vv_ avg
()
()
()
()
()

1x1,1yl,1z1,lelt

)

)
1x1,1y1l,1z1,1lelt),
1x1,1y1l,1z1,1lelt),
1x1,1y1l,1z1,1lelt),
1x1,1yl,1z1,1lelt),
1x1,1yl,1z1,1lelt),
1x1,1y1l,1z1,1lelt),
1x1,1y1l,1z1,1lelt),
1x1,1y1l,1z1,1lelt),
1x1,1yl,1z1,1lelt)
1x1,1yl,1z1,1lelt)

4
tdf ww _avg(lxl,lyl,1lzl,lelt),tdf uv avg
tdf uw avg(lxl,lyl,1lzl,lelt),tdf vw avg
pdf uu avg(lxl,1lyl,1zl,lelt),pdf vv avg
pdf ww_avg(lxl,1lyl,1z1,1lelt),pdf uv_avg
pdf uw avg(lx1l,1lyl,1z1,lelt),pdf vw avg

4

vy U»r U U Uy O Oy O Uy Uy O >
A~~~ o~~~ o~~~ o~~~

4

43

U Ur U Uy Uy O Oy Uy Oy

vdf uw_

common /scratch interp/

Uy U U Uy Ux

(
(
pdf1l (
(

if (axl.

epsl (3,ninp) (

prd2 (3, ninp) (
3,ninp),pdf2 (3,ninp),pstl (3,ninp),

pst2 (3, ninp),vdfl (3,ninp),vdf2 (3,ninp

,£df1(3,ninp

ne.lxl .or. ayl.ne.

if(nid.eq.0) write(6,*)
$ '"ABORT: wrong size of

SIZEu!'
call
endif

if (ax2.

exitt

ne.lx2 .or. ay2.ne.

if(nid.eq.0) write(6,*)
S 'ABORT: wrong size of

SIZEu!'
call
endif

ntot
ntott =
nto2

exitt

= nxl*nyl*nzl*nelv

nxl*nyl*nzl*nelt
nxz2*ny2*nz2*nelv

if (icalld.eqg.0) then
icalld = icalld + 1

atime
timel

call
call
call
call
call
call
call
call
call
call
call
call
call

0.
= time

rzero (uavg,ntot)
rzero (vavg,ntot)
rzero (wavg,ntot)
rzero (pavg,nto?2)
rzero (udxavg,ntot)
rzero (udyavg,ntot)
rzero (udzavg, ntot)
rzero (vdxavg, ntot)
rzero (vdyavg,ntot)
rzero (vdzavg,ntot)
rzero (wdxavg,ntot)
rzero (wdyavg,ntot)
rzero (wdzavg,ntot)

xyzl (3,ninp),vell (3,ninp),dvel (3,ninp),
eps2 (3,ninp) ,prdl (3,ninp),

()
()
,tdf2 (3, ninp),
()
()

lyl .or. azl.ne.lzl) then

axl,ayl,azl in avg all(),

ay2 .or. az2.ne.lz2) then

ax2,ay2,az2 in avg all(),

44

)
)
lelt)
)
)
)

check

check

vdf uu avg(lxl,1lyl,1zl,lelt),vdf vv avg(lxl,lyl,1lzl,lelt),
vdf ww_avg(lxl,1lyl,1zl,lelt),vdf uv avg(lxl,lyl,1lzl,lelt),
avg(lx1l,1yl,1z1,1lelt),vdf vw avg(lxl,1lyl,1zl,
() (
() (

4

pst uu avg(lxl,1lyl,1z1l,1lelt),pst vv avg(lxl,1lyl,1lzl,lelt),
pst ww_avg(lxl,1lyl,1zl,lelt),pst uv_avg(lxl,lyl,1lzl,lelt),
pst uw_avg(lxl,1lyl,1zl,lelt),pst vw avg(lxl,lyl,1lzl,lelt),
u pl avg(lxl,lyl,1zl,1lelt),udy pl avg(lxl,1lyl,1zl,1lelt),
v_pl avg(lxl,1lyl,1z1l,1lelt),vdy pl avg(lxl,1lyl,1zl,lelt),

w pl avg(lxl,1lyl,1z1,1lelt),wdy pl avg(lxl,1lyl,1zl,lelt)

call rzero (udxrms,ntot)
call rzero (udyrms,ntot)
call rzero(udzrms,ntot)
call rzero(vdxrms,ntot)
call rzero(vdyrms,ntot)
call rzero(vdzrms,ntot)
call rzero (wdxrms,ntot)
call rzero(wdyrms,ntot)
call rzero(wdzrms,ntot)
call rzero (uvdxms,ntot)
call rzero (uvdyms,ntot)
call rzero (uvdzms,ntot)
call rzero (uwdxms,ntot)
call rzero (uwdyms,ntot)
call rzero (uwdzms,ntot)
call rzero (vwdxms,ntot)
call rzero (vwdyms,ntot)
call rzero(vwdzms,ntot)
call rzero (upavg,ntot)
call rzero(vpavg,ntot)
call rzero (wpavg,ntot)
call rzero (uuuavg,ntot)
call rzero(uuvavg,ntot)
call rzero (uuwavg,ntot)
call rzero(uvvavg,ntot)
call rzero (uvwavg,ntot)
call rzero (uwwavg,ntot)
call rzero(vvvavg,ntot)
call rzero(vvwavg,ntot)
call rzero (vwwavg,ntot)
call rzero (wwwavg,ntot)
call rzero(pudxavg,ntot)
call rzero (pudyavg,ntot)
call rzero(pudzavg,ntot)
call rzero(pvdxavg,ntot)
call rzero(pvdyavg,ntot)
call rzero(pvdzavg,ntot)
call rzero (pwdxavg,ntot)
call rzero (pwdyavg,ntot)
call rzero(pwdzavg,ntot)
do i = 1,1dimt
call rzero(tavg(l,1,1,1,1i),ntott)
enddo
call rzero(urms,ntot
call rzero(vrms,ntot
call rzero(wrms,ntot
call rzero(prms,nto2
do i = 1,1dimt
call rzero(trms(1l,1,1,1,1i),ntott)
enddo
call rzero(vwms,ntot)
call rzero (wums,ntot)
call rzero (uvms,ntot)
endif

)
)
)
)

45

————— Velocity Averages —mmmmm -
namef = 'avgpbr8'
call load avgs (uavg,vavg,wavg,namef, numf)

————— Velocity RMS -
namef = 'rmspbr8'
call load avgs(urms,vrms,wrms,namef, numf)

————— Velocity RM2 e
namef = 'rm2pbr8’'
call load avgs (uvms,wums, vwms, namef, numf)

————— Grad u Average e
namef = 'udapbr8'
call load avgs (udxavg,udyavg,udzavg,namef, numf)

————— Grad v Average b
namef = 'vdapbr8'
call load avgs (vdxavg,vdyavg,vdzavg,namef, numf)

————— Grad w Avergae b
namef = 'wdapbr8'
call load avgs (wdxavg,wdyavg,wdzavg,namef, numf)

————— Grad u RMS ————
namef = 'udrpbr8'
call load avgs (udxrms,udyrms,udzrms,namef, numf)

————— Grad v RMS ——
namef = 'vdrpbr8'
call load avgs (vdxrms,vdyrms,vdzrms,namef, numf)

————— Grad w RMS ————
namef = 'wdrpbr8'
call load avgs (wdxrms,wdyrms,wdzrms,namef, numf)

————— Grad uv RMS -
namef = 'uvdpbr8'
call load avgs (uvdxms,uvdyms, uvdzms, namef, numf)

————— Grad uw RMS -
namef = 'uwdpbr8'
call load avgs (uwdxms, uwdyms, uwdzms, namef, numf)

————— Grad vw RMS e

namef = 'vwdpbr8'
call load avgs (vwdxms, vwdyms, vwdzms, namef, numf)

46

- Pressure*Velocity Averages ——————————————————
namef = 'vpapbr8'
call load avgs (upavg,vpavg,wpavg,namef, numf)

- Velocity*3 Averages -————————————————--—
namef = 'uuupbr8'
call load avgs (uuuavg,uuvavg,uuwavg,namef, numf)

- Velocity*3 Averages ——-———————-——-——-—--—--
namef = 'uvvpbr8'
call load avgs (uvvavg,uvwavg,uwwavg,namef, numf)

- Velocity*3 Averages —-——-————-—-—-—--—--
namef = 'vvvpbrg'
call load avgs(vvvavg,vvwavg, vWwwavg,namef, numf)

- Velocity*3 Averages —--—-————-—-—-—--—--
namef = 'wwwpbr8'
call load avgs (wwwavg,wwwavg, wwwavg,namef, numf)

- Grad P*u ——————————————————
namef = 'pudpbr8'
call load avgs (pudxavg, pudyavg, pudzavg,namef, numf)

- Grad P*v -
namef = 'pvdpbr8'
call load avgs (pvdxavg,pvdyavg, pvdzavg,namef, numf)

- Grad P*w ——————-———————————
namef = 'pwdpbr8'
call load avgs (pwdxavg,pwdyavg, pwdzavg,namef, numf)

if ((mod(istep,iastep).eqg.0.and.istep.gt.l) .or.lastep.eq.l) then
Dissipation ---=-------"-"-"""""""""""""""""""""“"“"“"“"“"“~"“~"—~"—~—~———————-
uu
call ke diss(eps_uu,udxrms,udyrms,udzrms,udxavg,udyavg,
udzavg,udxavg, udyavg,udzavg)
vv
call ke diss(eps_vv,vdxrms,vdyrms,vdzrms, vdxavg, vdyavg,

47

$ vdzavg, vdxavg, vdyavg, vdzavg)

WW
call ke diss(eps_ww,wdxrms,wdyrms,wdzrms, wdxavg, wdyavg,
$ wdzavg, wdxavg, wdyavg, wdzavg)
uv
call ke diss(eps_uv,uvdxms,uvdyms,uvdzms, udxavg,udyavg,
$ udzavg, vdxavg, vdyavg, vdzavg)
uw
call ke diss(eps_uw,uwdxms,uwdyms,uwdzms, udxavg,udyavg,
$ udzavg,wdxavg,wdyavg, wdzavg)
VW
call ke diss(eps_vw,vwdxms,vwdyms, vwdzms, vdxavg, vdyavg,
$ vdzavg, wdxavg, wdyavg, wdzavg)
-—— Production ——-———mmmmm e
uu
call ke prod(prd uu,uavg,vavg,wavg,uavg,uavg,urms, uvis, wums,
S urms, uvms, wums)
Aal
call ke prod(prd vv,uavg,vavg,wavg,vavg,vavg,uvis, vrms, VWwns,
S uvms, vrms, vwms)
WW
call ke prod(prd ww,uavg,vavg,wavg,wavg,wavg, wums, Vvwis, wrms,
S WUms, VWms , wrms)
uv
call ke prod(prd uv,uavg,vavg,wavg,uavg,vavg,urms, uvis, wums,
S uvms, vrms, vwms)
uw
call ke prod(prd uw,uavg,vavg,wavg,uavg,wavg,urms, uvins, wums,
$ WUums, Vwms , wrms)
VW
call ke prod(prd vw,uavg,vavg,wavg,vavg,wavg,uvims, vrms, vwns,
$ WUms, Vwms , wrms)

--- Pressure Diffvusion ------------ - - - - - - - - - - - - -~- -~ -~ -~ -~~~ —~—~(—(—(—(—(—(—(—(——

uu
call ke pdif (pdf uu, pavg,uavg,uavg, upavg, upavg)
vV

call ke pdif (pdf vv,pavg,vavg,vavg,vpavg, vpavg)
WW

call ke pdif (pdf ww,pavg,wavg,wavg,wpavg,wpavg)
uv B a

call ke pdif (pdf uv,pavg,uavg,vavg,upavg,vpavg)
uw

call ke pdif (pdf uw,pavg,uavg,wavg,upavg,wpavg)
VW

call ke pdif (pdf vw,pavg,vavg,wavg, vpavg, wpavg)

—-—— Pressure Strain ——————mmmmm

uu
call ke pstr(pst_uu,pavg,udxavg,udxavg,pudxavg, pudxavg)

48

vV
call
WW
call
uv
call
uw
call
VW
call

ke pstr(pst vv,pavg,vdyavg, vdyavg, pvdyavg, pvdyavg)
ke pstr(pst ww,pavg,wdzavg,wdzavg, pwdzavg, pwdzavg)
ke pstr(pst uv,pavg,udyavg, vdxavg, pudyavg, pvdxavg)
ke pstr(pst uw,pavg,udzavg,wdxavg, pudzavg, pwdxavg)

ke pstr(pst vw,pavg,vdzavg,wdyavg, pvdzavg, pwdyavg)

Viscous Diffusion —-------—-—-—-—-——————————~——~—~—~—~—\—~———————————

uu
call
vV
call
ww
call
uv
call
uw
call
vw
call

ke vdif (vdf uu,uavg,uavg,urms)
ke vdif (vdf vv,vavg,vavg,vrms)
ke vdif (vdf ww,wavg,wavg,wrms)
ke vdif (vdf uv,uavg,vavg,uvms)
ke vdif (vdf uw,uavg,wavg,wums)

ke vdif (vdf vw,vavg,wavg,vwms)

Turbulent Diffusion ------- - - - - - - - - - - - - —\—— """

uu
call

vV
call

wwW
call

uv
call

uw
call

AVA'N
call

ke tdif (tdf uu,uavg,vavg,wavg,uavg,uavg,urms,uuuavg,
uuvavg, uuwavg, urms, uvms, wums, Urms, uvims, wums)

ke tdif (tdf vv,uavg,vavg,wavg,vavg,vavg,vrms, uvvavg,
vvvavg, vvwavg, Uvms, Vrms, Vvwms, uvims, Vvrms, VWms)

ke tdif (tdf ww,uavg,vavg,wavg,wavg,wavg,wrms, uwwavg,
VWWavg, wwwavg, wums, VWms , Wrms, wums , VWms , wrms)

ke tdif (tdf uv,uavg,vavg,wavg,uavg,vavg,uvms, uuvavg,
uvvavg, uvwavg, urms, uvins, wums, Uvms, Vvrms, VWIs)

ke tdif (tdf uw,uavg,vavg,wavg,uavg,wavg,wums, uuwavg,
uvwavg, uwwavg, urms, uvms, wums, wums , VWwms , wrms)

ke tdif (tdf vw,uavg,vavg,wavg,vavg,wavg, VvWwms, uvwavg,
vvwavg, vWwwavg, UVms, VIms, VWIms, wums , VWms , wrms)

Output .fld files for visualization ----—-——-"-""""""""""""-"-"-——-

49

c call outpost2 (udyavg, vdyavg,wdyavg, pavg, tavg, 1dimt, 'vdy"')
call outpost2 (eps_uu,eps_vv,eps_ww,pavg,tavg,ldimt, 'epl")
call outpost2(eps uv,eps _uw,eps vw,pavg,tavg, ldimt, 'ep2")
call outpost2 (prd uu,prd vv,prd ww,pavg,tavg,ldimt, 'prl'")
call outpost2 (prd uv,prd uw,prd vw,pavg,tavg,ldimt, 'pr2")
call outpost2 (tdf uu, tdf vv,tdf ww,pavg,tavg,ldimt, 'tdl")
call outpost2 (tdf uv,tdf uw,tdf vw,pavg,tavg,ldimt, 'td2")
call outpost2 (pdf uu,pdf vv,pdf ww,pavg,tavg,ldimt, 'pdl")
call outpost2 (pdf uv,pdf uw,pdf vw,pavg,tavg,ldimt, 'pd2")
call outpost2(pst uu,pst _vv,pst ww,pavg, tavg,ldimt, 'psl'")
call outpost2 (pst_uv,pst _uw,pst vw,pavg,tavg,ldimt, 'ps2")
call outpost2(vdf uu,vdf vv,vdf ww,pavg,tavg,ldimt, 'vdl")
call outpost2(vdf uv,vdf uw,vdf vw,pavg,tavg,ldimt, 'vd2")

c ---- Interpolate desired variables and write to csv files - -------

if (interp.eg.l) then

n_interp=ninp
do j=1,ninp

xyz1l(1l,j) = 8.0

xyz1(3,3j) = 5.0

if (j.LE.100) then
xyz1l(2,3) = 0+0.001*7

elseif ((j.GT.100) .and. (j.LT.301)) then
xyz1(2,3) = 0.1+0.009*(3-100)

else
xyz1l(2,3) = 1.9+0.001*(3-300)

endif

enddo

call interp var
call interp var
call interp var
call interp var
call interp var
call interp var
call interp var
call interp var
call interp var
call interp var
call interp var
call interp var
call interp var
call interp var

vell,xyzl,n interp,uavg,vavg,wavg)

dvel,xyzl,n interp,udyavg, vdyavg, wdyavg
epsl,xyzl,n interp,eps_uu,eps vv,eps ww
eps2,xyzl,n _interp,eps_uv,eps uw,eps_Vvw
prdl,xyzl,n interp,prd uu,prd vv,prd ww
prd2,xyzl,n interp,prd uv,prd uw,prd v
tdfl,xyzl,n interp, tdf uu,tdf vv,tdf w
tdf2,xyzl,n interp, tdf uv,tdf uw,tdf v
pdfl,xyzl,n interp,pdf uu,pdf vv,pdf w
pdf2,xyzl,n interp,pdf uv,pdf uw,pdf v
pstl,xyzl,n interp,pst uu,pst vv,pst w
pst2,xyzl,n interp,pst uv,pst uw,pst vw
vdfl,xyzl,n interp,vdf uu,vdf vv,vdf ww
vdf2,xyzl,n interp,vdf uv,vdf uw,vdf vw

5 5 5 5 35 %

N~ o~~~ o~~~ o~~~ o~~~

)
)
)
)
)
)
)
)
)
)
)
)
)

open (197, file="'data eps.csv', form='formatted',6 status="replace')

do j=1,ninp
write(197,10)73,xyzl(2,73),epsl(1l,]),epsl(2,3),epsl(3,7),
$ eps2(1,3),eps2(2,3),eps2(3,73)
enddo

50

10 format(14,',',¥8.5,"',',¥8.5,',',F¥8.5,',',F8.5,',"',F8.5,"',",
$ F8.5,',',F8.5)
close (197)

open (198, file="'data prd.csv',6 form='formatted',6 status="replace')

do j=1,ninp
write(198,10)3,xyz1(2,3),pxrdl(1,73),prdl(2,73),pxdl(3,7),
S prd2(1,3),prd2(2,3),prd2(3,3)
enddo
close (198)

open (199, file="'data tdf.csv', form='formatted',6 status='replace')

do j=1,ninp
write(199,10)3,xyz1(2,73),tdfl(1,3),tdf1(2,73),tdf1l(3,7),
$ tdf2(1,3),tdf2(2,3),tdf2(3,3)
enddo
close (199)

open (200, file="'data pdf.csv', form='formatted',6 status="replace')

do j=1,ninp
write (200,10)73,xyz1(2,73),pdfl(1,3),pdfl(2,73),pdfl(3,7),
$ pdf2(1,3),pdf2(2,3),pdf2(3,3)
enddo
close (200)

open (201, file="'data pst.csv', form='formatted',6 status="replace')

do j=1,ninp
write(201,10)3,xyz1(2,3),pstl(1l,3),pstl(2,7),pstl(3,3),
$ pst2(1,3),pst2(2,3),pst2(3,73)
enddo
close (201)

open (202, file="'data vdf.csv', form='formatted',6 status='replace')
do j=1,ninp
write (202,10)3,xyz1(2,3),vdfl1(1,3),vdf1(2,3),vdfl(3,73),
S vdf2(1,3),vdf2(2,3),vdf2(3,7)
enddo
close (202)

open (203, file="'data vel.csv',6 form='formatted', status="'replace"')

do j=1,ninp
write (203,10)73,xyz1(2,3),vell(1,5),vell(2,5),vell(3,7),

51

Q0 0QQaQ0

$ dvel(1l,3]),dvel(2,3),dvel(3,3])

enddo
close (203)

endif
endif

return
end

subroutine interp var (intvar,xyz,n,wrkl,wrk2,wrk3)

General version of interp v, interpolates desired variables
wrk(1-3) at points xyz

intpts to get rid off " WARNING: point on boundary or ..."

include 'SIZE'
include 'TOTAL'

real intvar(3,n),xyz(ldim,n),wrkl (1x1,1yl,1z1,1lelt),

S wrk2 (1x1,1yl,1z1,1lelt),wrk3(1x1l,1yl,1z1,1lelt)

logical ifjac,ifpts

parameter (nmax=lpart,nfldmax=3)

common /rv_intp/ pts(ldim*nmax)

common /iv_intp/ ihandle

common /outtmp/ wrk(lxl*lyl*lzl*lelt,nfldmax)

integer icalld,e

save icalld

data icalld /0/
nxyz = nxl*nyl*nzl
ntot = nxyz*nelt

nflds = 3 !velocity
if (n.gt.nmax) call exitti ('ABORT: interp v () n > nmax!$',n)

if (nelgt.ne.nelgv) call exitti

$ ("ABORT: interp v () nelgt.ne.nelgv not yet supported!S$',nelgv)
do i=1,n ! ? not moving -> save?
pts (i) = xyz(1l,1)
pts(i + n) = xyz(2,1)
if (1if3d) pts(i + n*2) = xyz(3,1)
enddo
if (icalld.eqg.0) then ! interpolation setup

52

icalld = 1

tolin = 1.e-8

call intpts setup(tolin,ihandle)
endif

! pack working array

do i=1,ntot
wrk (i, 1)=wrkl (i, 1,1,1)
wrk(i,2)=wrk2(i,1,1,1)
wrk(i,3)=wrk3(i,1,1,1)

4 4

enddo

! interpolate

ifjac = .true. ! output transpose (of Jacobian)
ifpts = .true. ! find points

call intpts(wrk,nflds,pts,n,intvar,ifjac,ifpts,ihandle) !
copy array instead?

return
end

subroutine laplacian (gradd,u)

include 'SIZE'

c Computes the laplacian of variable u using gradml

real gradd(lxl,1lyl,1z1l,lelt),u(lxl,1yl,1z1,1lelt),
udx (1x1,1y1l,1z1,lelt),udy(1lx1l,1yl,1z1,1lelt),
udz (1x1,1yl,1z1,1lelt) ,udxx(1x1,1yl,1z1,1elt),
udxy (1x1,1y1l,1z1,1lelt),udxz(1x1,1yl,1z1,1lelt),
udyx (1x1,1yl,1z1,1lelt),udyy(1lx1l,1yl,1z1,1lelt),
udyz (1x1,1yl,1z1,1lelt),udzx(1lx1l,1lyl,1z1,1lelt)
udzy (1lx1l,1yl,1z1,1lelt),udzz(1lx1l,1yl,1z1,1lelt)

4

Ur U U Uy Ur >

integer 1i,3j,k,e

call
call
call
call

gradml
gradml
gradml
gradml

do
do
do
do

e=1,lelt
k=1,1z1
j=1,1y1l
i=1,1x1

udx,udy,udz,u)

—~ e~~~

udxx, udxy,udxz, udx)
udyx,udyy,udyz, udy)
udzx,udzy,udzz,udz)

gradd(i,j, k,e) udxx (1,3, k,e)+tudyy(i,j,k,e)+udzz (1,7, k,e)

enddo
enddo
enddo

53

enddo

return
end

subroutine ke diss(eps,abx,aby,abz,adx,ady,adz,bdx,bdy,bdz)

include 'SIZE'

integer 1i,3j,k,e

real eps(lxl,1yl,1z1,1lelt),abx(1x1l,1yl,1z1,1lelt),
aby(lxl,1yl,1z1,1lelt),abz(1x1,1yl,1z1,1lelt),

adx (1x1,1yl,1z1,1lelt),ady(1lx1l,1y1l,1z1,1lelt),

adz (1x1,1yl,1z1,1lelt),bdx(1x1,1y1l,1z1,1lelt),

() ()

bdy(lx1l,1yl,1z1,1lelt),bdz(1x1,1yl,1z1,1lelt),
vis

Uy U U U Uy

vis = 4.2293E-4

do e=1,1lelt
do k=1,1z1
do j=1,1yl
do i=1,1x1
eps(i,J,k,e) = 2*vis* (abx(i,j,k,e)+aby(i,]J,k,e)+abz(i,3,k,e)~-
S adx(i,J,k,e) *bdx(i,3,k,e) -
ady(j—ljlkl e) *bdy(iljlkl e)
$ adz (i,7,k,e) *bdz (1,7, k, e)
enddo
enddo
enddo
enddo

)

Ur

return
end

subroutine ke prod(prd,u,v,w,a,b,aums,avms, awns, bums, bvms, bwms)
include 'SIZE'
integer 1i,3j,k,e

real u(lxl,1lyl,1z1,lelt),v(1lxl,1yl,1z1,1lelt),w(lxl,1lyl,1z1,1elt),
a(lxl,1lyl,1z1,1lelt),b(1lx1l,1yl,1z1,1lelt),
aums (1x1,1y1l,1z1,1lelt),avms(1lx1l,1yl,1z1,1lelt),
awms (1x1,1y1l,1z1,lelt),bums(1x1,1yl,1z1,1elt),
bvms (1x1,1yl,1z1,1elt),bwms (1x1,1yl,1z1,1elt),
adx (1x1,1yl,1z1,1lelt),ady(1lx1l,1y1l,1z1,1lelt),
adz (1x1,1yl,1z1,1lelt),bdx(1x1,1y1l,1z1,1lelt),
bdy(lx1l,1yl,1z1,1lelt),bdz(1x1,1yl,1z1,1lelt),
prd(lx1l,1yl,1zl,1lelt)

vy Ur U Uy Ur O U U

54

call gradml (adx,ady,adz, a)
call gradml (bdx,bdy,bdz,b)

do e=1,1lelt

do k=1,1z1

do j=1,1yl

do i=1,1x1

prd(iljlkle) = (a(iljlkle)*u(iljlkle)_
aums (i,j,k,e)) *bdx(i,J,k,e)+

$ (a(i,J,k,e)*v(i, i, k,e)-
avms (i,j,k,e))*bdy(i,J,k,e)+

$ (a(iljlkle)*w(iljlkle)_
awms (1,73,k,e)) *bdz (1i,73,k,e) +

$ (b(i,3,k,e)*u(i,j, k,e)-
bums (i, j, k,e)) *adx(i,]j,k,e)+

$ (b(i,3,k,e)*v(i,j,k,e)-
bvms (i, j,k,e))*ady(i,j, k,e)+

$ (b(i,3,k,e)*w(i,j, k,e)-bwns(i,]J,k,e))*adz(i,], k,e)

enddo

enddo

enddo

enddo

return

end

subroutine ke pdif (pdf,p,a,b,pa,pb)
include 'SIZE'

integer 1i,3j,k,e

real rho

real pdf(lxl,1lyl,1z1,1lelt),p(1lx1l,1yl,1z1,1lelt),

S a(lxl,1lyl,1z1,1lelt),b(1lx1l,1yl,1z1,1elt),
S pa(lxl,1lyl,1z1l,1lelt),pb(1lx1l,1yl,1z1l,1lelt)
rho = 1

do e=1,1lelt

do k=1,1z1

do j=1,1lyl

do i=1,1x1

pdf(i,j,k,e) = 1/rho*(pa(i,j,k,e)-p(i,j,k,e)*a(i,j, k,e)+
$ pb(i/j/kle)_p<i1jrkre)*b<i1jrkre))
enddo

enddo

enddo

enddo

return

55

end

subroutine ke pstr(pst,p,adb,bda,padb, pbda)
include 'SIZE'
integer 1i,3j,k,e

real rho
real pst(lxl,1lyl,1zl,lelt),p(1x1,1yl,1z1,1lelt),

S adb(1lx1,1yl,1z1,1lelt),bda(lxl,1yl,1z1,1lelt),
S padb(1lx1,1yl,1z1,1lelt),pbda(lxl,1yl,1z1l,1lelt)
rho = 1

do e=1,1lelt

do k=1,1z1

do j=1,1yl

do i=1,1x1

pst(i,j,k,e) = 1/rho*(padb(i,j,k,e)-p(i,],k,e)*adb(i,j, k,e)+
$ pbda (i,3,k,e)-p (i, j,k, &) *bda(i,j, k,e))
enddo

enddo

enddo

enddo

return
end

subroutine ke vdif (vdf,a,b,abms)
include 'SIZE'

integer i,7j,k,e

real vis

real vdf(1xl,1yl,1zl,lelt),a(lxl,1yl,1z1,lelt),
$ b(lxl,1lyl,1lzl,lelt),abms (1x1,1yl,1zl,lelt),
$ vdf temp(lx1l,1lyl,1lzl,lelt)

vis = 4.2293E-4

do e=1,1lelt

do k=1,1z1

do j=1,1yl

do i=1,1x1

vdf temp(i,j,k,e) = vis*(abms(i,j,k,e)-a(i,j,k,e)*b(i,],k,e))
enddo

enddo

enddo

enddo

call laplacian(vdf,vdf temp)

56

return
end

subroutine
ke tdif(tdf,u,v,w,a,b,ba,abu,abv,abw,au,av,aw,bu,bv,bw)

include 'SIZE'
integer 1i,3j,k,e

real tdf(lxl,1yl,1zl,1lelt),a
b(lx1l,1yl,1z1,1lelt),u(lxl,1yl,1z1,1lelt),
v(lxl,1lyl,1z1,lelt),w(lxl,1lyl,1z1l,1lelt),
au(lxl,lyl,1z1l,lelt),av(lxl,1lyl,1z1,1elt),
aw(lxl,1lyl,1z1,1lelt),bu(lxl,1yl,1z1,1lelt),
bv(lxl,1lyl,1z1,1lelt),bw(lxl,1yl,1z1,1elt),
abu(lxl,1yl,1z1,1lelt),abv(1lxl,1yl,1z1,1lelt),
abw(lxl,1yl,1z1,1lelt),ba(lxl,1yl,1z1,1lelt)

(1x1,1y1l,1z1,1lelt),

Ur Uy Ur O U O U

common /tdif calc/
tdfl (1x1,1yl,1z1,1lelt),tdf2(1x1,1yl,1z1,1elt),
tdf3(1x1,1yl,1z1,1lelt),tdfldx(1x1,1yl,1z1,1lelt),

tdfldy (1x1,1yl,1z1,lelt),
tdf2dx (1x1,1yl,1z1,lelt),
tdf2dz (1x1,1yl,1z1,lelt),
tdf3dy (1x1,1yl,1lzl,lelt),

vy U Uy Uy O >

tdfldz (1x1,1yl,1z1,lelt),
tdf2dy (1x1,1yl,1z1, lelt),
tdf3dx (1x1,1yl,1z1,lelt),
tdf3dz (1x1,1yl,1lzl,lelt)

do e=1,1lelt
do k=1,1z1
do j=1,1yl
do i=1,1x1
tdfl(i,3,k,e)

U U U U

tdf2(i, 3, k,e)

Uy Uy U Ur

tdf3(i,3,k,e)

U Uy Uy Uy

enddo
enddo
enddo

abu(i,j, k,e)-
au(i,j,k,e)*b (i
a(i,j,k,e)*bu(
ba (i, j, k,e) *u (1
2*a(i,j,k,e)*b

i,j,k,e
i,3,k,e
i, 3, k e
(i,3

*u(i,j,k,e)

= abv(i,j,k,e)-

av(i,j,k,e)*b(i,3,k,e
a(i,j,k,e) *bv(l,j,k,e

ba(i,j, k,e)*v (i, j k e

2*a(i,j, k,e)*b (1,

*v(i,j, k,e)

= abw(i,j, k,e)-

aw(i,j,k,e)*b

a(i, i, k,e)*bw
ba(i,j, k,e)*w
2*a(i,j,k,e)*

O"AAA

57

enddo

call gradml (tdfldx, tdfldy, tdfldz, tdfl)
call gradml (tdf2dx, tdf2dy, tdf2dz, tdf2)
call gradml (tdf3dx, tdf3dy, tdf3dz, tdf3)
do e=1,1lelt

do k=1,1z1

do j=1,1yl

do i=1,1x1

tdf(i,3,k,e) = tdfldx (i, Jj, k,e)+tdf2dy(i,j, k,e)+tdf3dz (1,7, k,e)
enddo

enddo

enddo

enddo

return
end

subroutine load avgs(avgqgl,avgqg2,avgqg3,namef, numf)
include 'SIZE'

include 'ZPER'
include 'TOTAL'

real avgqgl (1x1l,1yl,1z1,1elt),avgqg2(1lxl,1lyl,1lzl,lelt),
S avgqg3 (1x1l,1yl,1z1,lelt)

character namef*7

integer i, j, k, e, ii, numf

ntot = 1lxl*lyl*lzl*lelt

call rzero(avggl,ntot)

call rzero(avgg2,ntot)

call rzero(avgg3,ntot)

do ii=1,numf

call blank(initc(1l),80)

write (initc(1l),7)ii,namef

7 format ('/intrepid-
fs0/users/wardpaul/persistent/test pbr/run’,

& i2.2,'/',A7,"'.f1d401',"' U")

call setics

do i=1,1x1

58

do j=1,1yl

do k=1,1z1

do e=1,1lelt
avgql (i,]j, k,e)=avggl(i,j, k,e)+vx(i,J, k,e)*(1.0/numf)
avgg2 (i, j, k,e)=avgqg2(i,j, k,e)+vy(i,J, k,e)*(1.0/numf)
avgqg3 (i, Jj, k,e)=avgg3 (i, J, k,e)+vz (i, 3, k,e)*(1.0/numf)

enddo

enddo

enddo

enddo

enddo

return
end

59

APPENDIX B: MESH SAMPLE

e e et i ol B e =
T =1
Tt —=—T7
[S
T T =ttt
i S e e S

Mesh Sample from Y-Z Plane

60

