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ABSTRACT 

 

 Fire suppression policies implemented in the early 20th century led to a decrease 

in fire-associated species and ecosystems in the southern Appalachian Mountains. As 

managers work towards restoration, a greater understanding of the pre-suppression fire 

regime is needed. Fire frequency and seasonality can be determined from physical fire 

records, such as fire scars, but fire size, fire cycle, ignition density, and ignition source 

are more difficult to ascertain. Using FARSITE, a spatially explicit fire model, I 

predicted past fire spread in the western Great Smoky Mountains National Park 

(GSMNP). Results showed a mean pre-suppression fire size of over an order of 

magnitude larger than fires on current landscape conditions (567 ha vs. 45 ha). Large fire 

sizes would have encouraged fire-associated vegetation and continuous flammable 

fuelbeds. In addition, the current lightning ignition rate within the study area resulted in 

a 120-135 year pre-suppression lightning fire cycle, which indicates that natural fires 

were influential on the landscape. This fire cycle is shorter than the lightning fire cycle 

experienced today (approx. 25-30,000 years). Using the mean fire return interval from 

previous research, I determined the potential contribution of lightning and anthropogenic 

ignitions to the fire cycle. This contributes to the debate on the importance of lightning 

versus anthropogenic ignitions to the pre-suppression fire regime. Most importantly, the 

estimation of mean fire size, fire cycle, and ignition density for lightning and 

anthropogenically ignited fires may aid federal resource managers as they use lightning 
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ignitions and prescribed burns to restore fire-associated ecosystems in the GSMNP and 

other areas of the southern Appalachians. 
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1. INTRODUCTION 

 

Knowledge of pre-suppression landscape patterns of fire will help managers 

make better land management decisions concerning the southern Appalachian 

Mountains, especially through more effective use of lightning-ignited fires and 

controlled burns. Improved management practices will lead to ecosystems that more 

closely resemble the landscape before fire suppression. In at least some parts of the 

Appalachian Mountains, the pre-suppression landscape had open canopy woodlands 

with grass understories that were maintained by frequent fire (Harrod et al. 2000). Fire 

suppression practices in the early 20th century led to drastic changes on the North 

American landscape (Harrod et al. 2000; Bond and Keeley 2005; Nowacki and Abrams 

2008). In the southern Appalachian Mountains, effects of suppression include a loss of 

biodiversity and fire-associated species (Nowacki and Abrams 2008). Also, increased 

moisture content and decreased flammability of fuels resulting from fire suppression has 

changed how fire can spread on the current landscape (Harrod et al. 1998; Lafon 2010).  

 Resource managers now understand that fire is necessary for the maintenance of 

many landscapes in the United States. Fire acts to encourage fire-associated species and 

remove competitors. It can lead to a more open landscape structure that allows for an 

increased herbaceous understory. Managers increasingly use fire in restoration efforts, 

but a more complete understanding of pre-suppression fire patterns is needed to help 

mangers make the most effective use of fire as a tool. Current fire history research in this 

area demonstrates that fires occurred frequently before the early 20th century and leads 
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to questions about the spatial extent of fires, ignition density, and ignition source 

necessary to generate the frequent fire record that researchers have found (Harmon 1982; 

Hoss et al. 2008; Aldrich et al. 2010; Lafon 2010).  

 My study enhances our understanding of the spatial extent of fires on the 

complex terrain of the southern Appalachian Mountains, where researchers have only 

recently begun to recognize the importance of fire prior to suppression. An increased 

understanding of fires’ spatial extent will allow us to draw conclusions about ignition 

density and sources. Both lightning and anthropogenic ignitions occurred in the southern 

Appalachian Mountains (Brose et al. 2001; Lafon 2010). However, the relative 

importance of anthropogenic versus lightning ignitions is debated (Nowacki and Abrams 

2008; Lafon 2010). Historic accounts provide evidence for anthropogenic ignitions 

(Pyne 1982; Denevan 1992; Nowacki and Abrams 2008), but they do not tell us what 

percentage of pre-suppression ignitions was anthropogenic. Likewise, lightning ignitions 

were important actors on the landscape (Petersen and Drewa 2006; Lafon 2010), but 

without information on the spatial extent of fires, their relative importance cannot be 

determined. As managers try to determine the frequency, size, and ignition 

considerations for burns in the southern Appalachian Mountains, an increased 

understanding of the historic frequency, size, and ignition sources can be used to create 

more effective management plans in order to reverse some of the undesired vegetation 

effects that fire suppression has caused. 
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1.1 Hypotheses and objectives 

 The overall objective of my research is to expand our understanding of the spatial 

extent and ignition density of pre-suppression fires by modeling pre-suppression fire 

behavior and spread using FARSITE. Two hypotheses drive this study:  

1) Pre-suppression fire sizes predicted by fire modeling will be larger than those on 

the current landscape.  

2) Ignition density required to support the pre-suppression fire regime for the 

western Great Smoky Mountains National Park (GSMNP) will be greater than 

can be accounted for by lightning ignitions alone.  

To test my two hypotheses, I pursued three research objectives: 

1) Calibrate FARSITE to accurately model fires in the western GSMNP.  

2) Simulate the spatial extent of fires on a pre-suppression landscape.  

3) Estimate the percentage of pre-suppression fire frequency that could be 

accounted for by lightning and anthropogenic ignitions.  
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2. BACKGROUND 

 

2.1 Fire in the southern Appalachian Mountains 

 Wildfires, both anthropogenic and natural in origin, have been actors on the 

southern Appalachian Mountains landscape dating back at least 4,000 years ago 

(Delcourt et al. 1986; Delcourt and Delcourt 1997). Evidence for the presence of fire 

comes from multiple sources. Historical records, including eye-witness accounts and 

survey witness tree records, indicate that fire was a significant shaper of the southern 

Appalachian landscape prior to European settlement up until the early 20th century (Pyne 

1982; Nowacki and Abrams 2008; Lafon 2010). Native Americans in the eastern 

deciduous forests used fire as a tool for managing their landscape and manipulating the 

vegetation composition of the area (Pyne 1982; Denevan 1992; Delcourt and Delcourt 

1997; Nowacki and Abrams 2008). As European settlers moved into the area in the mid-

18th to early 19th century, they displaced the Native American population (Brose et al. 

2001). Many maintained the practice of burning they had observed from the Native 

Americans (Pyne et al. 1996). Some areas experienced periods of depopulation between 

Native American habitation and European settlement. Industrialized logging had a large 

economic and ecological impact in the region ca. 1880-1930 (Pyne 1982; Brose et al. 

2001). The slash left behind was easily ignited, often causing large, intense, stand-

replacing wildfires that were difficult to control (Brose et al. 2001; Lafon 2010). Starting 

in the 1920s and 1930s, the United States Forest Service (USFS) and other agencies 

instituted a policy of fire suppression and prevention to avert the catastrophic fires that 
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were occurring due to logging activity. The attempt during most of the 20th century to 

extinguish all wildfires immediately significantly altered the southern Appalachian 

landscape. 

 

2.2 Vegetation and landscape conditions in the southern Appalachian Mountains 

 Current landscapes in the southern Appalachians reflect the fire suppression 

policies of the 20th century. Both the structure and composition of the vegetation is 

different than what was found on the landscape prior to suppression and logging (Bond 

and Keeley 2005; Nowacki and Abrams 2008). The pre-suppression landscape 

apparently was a pyrogenic landscape with flammable patches of open woodlands 

(Denevan 1992; Harrod et al. 1998; Harrod et al. 2000; Nowacki and Abrams 2008). 

Frequent fires promoted many fire-associated species prior to European settlement 

(Wright and Bailey 1982; Abrams 1992; Lafon 2010). These species remain on the 

current landscape, providing evidence for the historic role of fire on the southern 

Appalachian landscape. 

 Fire-associated species found in the southern Appalachians include plants such as 

Peters Mountain mallow (Iliamna corei) and mountain golden heather (Hudsonia 

montana). Peters Mountain mallow requires fire for seed germination (Buttrick 1992). 

Fires remove the competitor sand myrtle (Leiophyllum buxifolium) and promote 

mountain golden heather seedling establishment by removing surface litter and exposing 

mineral soil (Frost 1990). Fire-associated species also include several pine (Pinus) and  
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oak (Quercus), which formed the greater composition of the pre-suppression landscape 

(Abrams 2003).  

 

2.2.1 Pine forests 

 Pine-dominated forests are commonly associated with fire (Agee 1998). Many 

pines have specific adaptations that allow them to survive and thrive in fire-associated 

ecosystems (Agee 1998). Four pine species found in the southern Appalachians show 

adaptations associated with fire, but Table Mountain pine (P. pungens) and pitch pine 

(P. rigida) are considered the most fire-dependent. Pitch pine and shortleaf pine (P. 

echinata) experience basal resprouting after fire (Keeley and Zedler 1998; Williams 

1998; Brose and Waldrop 2006). Adult Table Mountain pine and pitch pine have thick 

bark that protects them from fires and self-prune lower branches to prevent fire from 

moving up into the canopy (Williams 1998; Brose and Waldrop 2006). Table Mountain 

pine, an endemic species to the central and southern Appalachians, and pitch pine have 

serotinous cones (Lamont et al. 1991; Williams 1998). They remain closed past maturity, 

sealed with resins that prevent the cones from opening and releasing seeds until melted 

by heat (Barden 1979; Williams 1998). In the southern Appalachians, forests dominated 

by Table Mountain pine and pitch pine are typically found on xeric, exposed ridgetops 

and south-facing slopes (Whittaker 1956; Williams 1998; Lafon 2010). Table Mountain 

pine and pitch pine are shade-intolerant; require open, scarified sites to establish and 

germinate; and thrive on nutrient-poor soils or areas where competitors have been 

removed (Williams and Johnson 1992; Williams 1998). Fires trigger regeneration for 
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Table Mountain pine and pitch pine in several ways (Williams 1998; Brose and Waldrop 

2006). Fires open serotinous cones, which distributes seeds onto the mineral soil, where 

seedlings can establish. Seedlings are more successful at establishing on exposed soils 

where fires have removed leaf litter and duff. By removing competitors, fires allow 

existing pines to have access to resources.  

 

2.2.2 Oak forests 

 Oaks have been dominant in the deciduous forests of the eastern U.S. for 10,000 

years (Abrams 1992). Oak dominated forests cover a wide range of topographic 

positions, from dry upper slopes to submesic lower slopes. As early to midsuccessional 

species, oaks are typically not a dominant species in later successional forests due to 

their low to intermediate shade tolerance (Abrams 1992). The presence of oak species in 

the southern Appalachians is thought to be associated with frequent fires (Abrams 1992). 

Frequent burning maintains stands of species such as chestnut oak (Quercus prinus) and 

white oak (Quercus alba) by removing competing species that are less resistant to fire 

(Nowacki and Abrams 2008; Lafon 2010). Many oak species have adaptations that allow 

them to survive on a landscape that experiences frequent fire. Fire adaptations include 

thick, protective bark, which can compartmentalize fire damage to prevent decay from 

spreading, and the ability to resprout after fire (Lorimer 1985; Abrams 1992; Lafon 

2010). Fire also creates a more favorable seedbed for seed germination and 

establishment (Lorimer 1985; Abrams 1992).  
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2.2.3 Historic conditions 

 Prior to European settlement, frequent fires appear to have maintained oak and 

pine stands in open woodland conditions with flammable herbaceous understories 

(Wright and Baily 1982; Abrams 1992; Frost 1998; Harrod et al. 2000; Nowacki and 

Abrams 2008). Fires restricted woody fuel accumulation and maintained low basal area 

and density of canopy trees (Harrod et al. 2000). Open conditions allowed shade-

intolerant, fire-dependent species, such as oaks, pines, and grasses, to thrive. Pine-

dominated forests probably expanded following the fires associated with logging in the 

late 19th century and early 20th century, establishing on more mesic sites than may have 

been typical historically (Williams 1998; Williams and Johnson 1992; Harrod et al. 

1998).  

 

2.2.4 Fire exclusion effects and mesophication 

 Fire suppression has resulted in a shift from open woodlands to dense forests and 

shrub thickets; from shade-intolerant, fire-associated species to shade-tolerant, fire-

sensitive species in many areas. The forest experienced a rapid increase in canopy 

density and basal area in the first decades of fire exclusion (Harmon 1980). The current 

forest structure is significantly denser than what was found prior to suppression (Harrod 

et al. 1998; Nowacki and Abrams 2008). Harrod et al. (1998) found that stem density 

had increased almost threefold, and basal area almost twofold, after 40 years of fire 

exclusion in xeric forests in the western GSMNP. As density and basal area increase, so 

do canopy cover and shading. Shade-intolerant oak and pine species cannot survive on 



 

9 
 

the forest floor and are being outcompeted by shade-tolerant, fire-sensitive species. 

Thus, oak and pine regeneration and recruitment have declined (Abrams 1992; Brose 

and Waldrop 2006; Nowacki and Abrams 2008).  

 Pine forests are being replaced by oaks and other hardwoods, especially on mesic 

sites (Harmon 1982; Williams and Johnson 1992; Williams 1998; Nowacki and Abrams 

2008). Oak forests are being replaced by mixed mesophytic species (Nowacki and 

Abrams 2008). Instead of open pine and oak stands, the region is now dominated by 

more mesophytic, closed canopy stands with little herbaceous cover (Harrod et al. 2000; 

Nowacki and Abrams 2008). Fire-sensitive, shade-tolerant species like red maple (Acer 

rubrum), sugar maple (Acer saccharum), black cherry (Prunus serotina), white pine 

(Pinus strobus), hemlock (Tsuga), beech (Fagus spp.), birch (Betula spp.), sassafras 

(Sassafras albidum), tulip poplar (Liriodendron tulipifera), and black gum (Nyssa 

sylvatica) are found in many areas previously dominated by fire-associated, shade-

intolerant species (Harmon 1980; Harmon 1982; Harrod et al. 1998; Abrams 1992; 

Nowacki and Abrams 2008). Much of this replacement has taken place within one tree 

generation after the removal of fire (Nowacki and Abrams 2008; Abrams 1992; Abrams 

2003). While many fire-sensitive, shade-tolerant species were historically found in coves 

and on mesic sites (Whittaker 1956; Harrod et al. 1998), their spread onto xeric sites and 

mesic sites that had historically been burned is a product of fire exclusion. Nowacki and 

Abrams (2008) termed this process “mesophication.” 

 The moist, shaded conditions that encourage fire-sensitive species also 

discourage fire ignitions and spread, providing positive feedback loops for the 
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mesophication process (Nowacki and Abrams 2008). The dense configuration and high 

leaf area of fire-sensitive species causes little light to reach the forest floor to dry fuels, 

decreases drying winds, and increases relative humidity. Fire-sensitive species also tend 

to produce fuels that hold more moisture and decay more rapidly than fuels produced by 

fire-associated species. Higher fuel moisture reduces the flammability of the understory, 

limiting fire spread (Nowacki and Abrams 2008). 

 

2.3 Fire regimes in the southern Appalachian Mountains 

 While the presence of fire-associated species and historical accounts indicate the 

existence of fire on the southern Appalachian landscape, they do not provide a complete 

picture. A single fire can affect current conditions, but landscapes are shaped by the 

occurrence (or nonoccurrence) of multiple fires over time. Fire regimes are a 

“generalized description of the role fire plays in an ecosystem” (Agee 1993). They are 

defined by a list of typical parameters. Depending on the available evidence, the 

parameters listed can vary (Krebs et al. 2010). Fire regimes generally include temporal, 

magnitude, and spatial characteristics of fire within the ecosystem. Three distinct fire 

regimes are thought to have existed in the southern Appalachian mixed oak forests 

during recent centuries: 1) frequent, low-intensity surfaces fires ignited during the period 

of Native American and then European settler habitation; 2) stand-replacing, high-

intensity fires caused by logging and industrial activities during the late 19th and early 

20th centuries; 3) ‘no-fire’ regime that has led to the replacement of oaks and pines by 
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mesophytic species under modern fire prevention policies since the 1930s (Brose et al. 

2001; Lafon 2010). 

 

2.4 Fire frequency and seasonality 

 Little is known about the fire regime(s) prior to logging and fire suppression. Fire 

history reconstructions can help illuminate the fire regime that existed during Native 

American habitation and European settlement. Researchers have used fire-scarred trees 

and charcoal in pond/bog sediments and soils to determine the presence, density, and 

frequency of fires (Abrams 1992; Delcourt and Delcourt 1998; Hoss et al. 2008; Aldrich 

et al. 2010; Bowman et al. 2011). Sediment cores from the southern Appalachians show 

charcoal, indicating the presence of fire, as far back as 4,000 years ago (Delcourt and 

Delcourt 1998). Pollen records from cores indicate that fire corresponded with open oak, 

pine, and chestnut forests (Delcourt et al. 1986; Delcourt et al. 1998). To answer more 

detailed questions about the frequency and seasonality of pre-suppression fires in the 

southern Appalachians, researchers have reconstructed fire histories from fire-scarred 

trees, which is the most suitable way to determine fire history in fire regimes dominated 

by surface fires (Swetnam and Baisan 1996) 

 The three physiographic regions of the southern Appalachian Mountains show 

similar fire frequencies using reconstructed fire histories from fire scars for years prior to 

logging and suppression (Tables 1 and 2). Fire frequency is often reported using mean 

fire return interval (MFI) for a specific area and time period (Pyne et al. 1996). MFI is 

the average interval for all trees, or the sum of all intervals from all trees divided by the 
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Table 1. Fire history reconstructions in the southern Appalachian Mountains 

Author 
Physiographic  
Province Community Study Location Logging history 

Elevation 
(m) 

Harmon 1982  BR Pine forests 
9,100 ha in westernmost part of 
GSMNP, Eastern TN Relatively unlogged 260–942 

Flatley et al. 2013 BR and RV 
Pine stands within an oak-hickory 
forest TN and NC Unlogged 520-1115 

Aldrich et al. 2010 RV 
Xerophytic pine-oak stands with 
hardwood understory 

Mill Mountain, George Washington 
National Forest, VA 

Apparently 
unlogged ca. 785 

Hoss et al. 2008 RV 
Oak dominated forest with some pines 
and other hardwoods 

Narrows Preserve 
Peters Mountain, VA 

Previously logged 
and apparently 
unlogged 610-820 

Sutherland et al. 
1993 RV 

Oak dominated forest with Table 
Mountain Pine 

Northern flank of Brush Mountain, 
Southwestern VA 

Apparently 
unlogged 750-840 

      

Schuler and 
McClain 2003 RV 

Oak-pine forest, northern hardwood 
forest, grass balds, and the 
southernmost stands of red-pine 

Southwest aspect near Pike Knob,  
North Fork Mountain, near 
Circleville, WV  1224 

McEwan et al. 2007 AP Mixed oak forest Southeastern OH and eastern KY 
Large-scale land 
clearing ca. 1870  

Shumway et al. 
2001 AP Old-growth mixed oak forest 

Big Savage Mountain Savage River 
State Forest, Western MD 

Apparently 
unlogged 600-670 

Sutherland 1997 AP Mixed-oak stand 
Raccoon Ecological Management 
Area, Vinton Co, OH Uncut after 1850s  

 

*BR = Blue Ridge, AP = Appalachian Plateau, RV = Ridge and Valley 
 

 
 
 
 



 

13 
 

Table 2. Mean return fire intervals from fire history reconstructions 

Author 
Physiographic  
Province 

Range of 
Dates Used Fire Interval Interval Method 

Number 
of stands 

Number of 
dated cross 
sections 

Number 
of scars 

Number of 
fire years 

Harmon 1982  BR 1856-1940 12.7 Arithmetic MFI 26 43 115 
 

Flatley et al. 2013 
        

Licklog Ridge BR 
1773-fire 

suppression 4.6/4.4 MFI/WMI** 3 116 593 91 

Linville Mountain BR 
1756-fire 

suppression 6.5/5.8 MFI/WMI** 2 44 181 30 

House Mountain RV 
1797-fire 

suppression 7.9/6.5 MFI/WMI** 3 82 304 37 

Aldrich et al. 2010 RV 1726-1930 7.8/7.5 MFI/WMI** 4 63 209 42 

Hoss et al. 2008 RV 1867-1976 12.5/12.3  MFI/WMI** 1 73 171 53 

Sutherland et al. 1993 RV 1798-1944 9-11 
 

2 14 
  

Schuler and McClain 2003 RV 1869-1962 15.5/14.8 MFI/WMI 1 20 17 7 

McEwan et al. 2007 AP 1875-1954 7.3/6.6 MFI/WMI 9 225 
 

33 

 
AP 1917-1936 2.1/1.7 MFI/WMI 1 26 

 
10 

Watch Rock AP 1875-1934 8.4/8.2 MFI/WMI 1 33 
 

8 

Ball Diamond AP 1878-1931 6.6/6.3 MFI/WMI 1 22 
 

9 

Arch Rock AP 1900-1936 9.0/8.1 MFI/WMI 1 31 
 

5 

Raccoon Creek AP 1889-1931 6.4/5.7 MFI/WMI 1 25 
 

6 

Shawnee AP 1889-1931 5.3/4.7 MFI/WMI 1 20 
 

9 

Road Branch AP 1885-1954 8.6/6.7 MFI/WMI 1 20 
 

9 

Dickerson Hollow AP 1893-1954 12.2/11.1 MFI/WMI 1 20 
 

6 

Silver Creek AP 1879-1900 n/a MFI/WMI 1 28 
 

2 

Shumway et al. 2001 AP 1616-1959 7.6 WMI 1 19 121 42 

Sutherland 1997 AP 1856-1995 5.4/3.6 MFI/WMI 1 14 48 23 
 *BR = Blue Ridge, AP = Appalachian Plateau, RV = Ridge and Valley **MFI and WMI calculated using filtered composite fire interval.
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number of intervals (Innes et al. 2000). MFI is most representative when fires are 

normally distributed (Pyne et al. 1996). Many studies also report the Weibull median fire 

interval (WMFI), which is the median fire return interval modeled by fitting a Weibull 

distribution to the observed fire intervals (Grissino-Mayer 2001). Reconstructions in the 

Appalachian Plateau show an MFI of 5.4-7.1 years and a WMFI of 3.6-7.6 years 

(Sutherland 1997; Shumway et al. 2001; McEwan et al. 2007). Reconstructions in the 

Ridge and Valley show a MFI and WFMI of 7.8-12.5 years and 6.5-12.3 years 

(Sutherland et al. 1993; Hoss et al. 2008; Aldrich et al. 2010; Flatley et al. 2013). 

Reconstructions in the Blue Ridge show a MFI and WFMI of 4.6-12.7 years and 4.4-5.8 

years (Harmon 1982; Flatley et al. 2013). It should be noted that Harmon (1982) only 

calculated the MFI. Across the regions of the southern Appalachians, there is agreement 

from reconstructions that fires occurred frequently. Reconstructions can underestimate 

fire frequency since not all fires cause scars (Abrams 1985). Low intensity fires might 

not cause scarring, whereas higher intensity fires are more likely scar trees (Mutch 1980; 

Guyette and Cutter 1991; Pyne et al. 1996). 

 Seasonality of fire events can often be determined from the position of the scar 

within the annual ring. If the fire scar is in the earlywood, the fire occurred early in the 

growing season (spring). If the fire scar is in the latewood, the fire occurred late in the 

growing season (late spring to summer). If the fire scar is in the dormant area, the fire 

occurred in the dormant season (fall or before wood growth was initiated in spring). 

 As with frequency, the three physiographic regions of the southern Appalachians 

show relatively consistent fire seasonalities (Table 3). Most fires occurring in the 
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 Table 3. Fire seasonality from fire history reconstructions 

Author 
Physiographic 
province Dormant Season (%) Early season (%) Late season (%) 

Harmon 1982  BR not determined not determined not determined 
Flatley et al. 2013** 

    Licklog Ridge BR 90.6 9.0 0.4 
Linville Mountain BR 75.2 24.8 0.0 

House Mountain RV 75.4 23.7 0.9 
Aldrich et al. 2010** RV 89.6 9.7 0.7 
Hoss et al. 2008 RV 93.6 1.8 4.6 
Sutherland et al. 1993 RV majority not determined not determined 
Schuler and McClain 2003 RV majority not determined not determined 
McEwan et al. 2007 AP 84 13 3 
Shumway et al. 2001 AP 91 6.4 2.9 
Sutherland 1997 AP 69 25 6 

 *BR = Blue Ridge, AP = Appalachian Plateau, RV = Ridge and Valley 
 **Seasonality could not be determined for all trees. 
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Appalachian Plateau took place during the dormant season (69-91%), as did most fires 

occurring in the Ridge and Valley (75.4-93.6%) and Blue Ridge (75.2-90.6%). Early 

season fires accounted for 6.4-25% of fires in the Appalachian Plateau, 1.8-23.7% of 

fires in the Ridge and Valley, and 9.0-24.8% of fires in the Blue Ridge. Late season fires 

accounted for 2.9-6% of fires in the Appalachian Plateau, 0.7-4.6% of fires in the Ridge 

and Valley, and 0-0.4% of fires in the Blue Ridge. Burning conditions in the southern 

Appalachians are best during the dormant season, when there is the highest amount of 

dry, dead fuel on the ground due to leaf-off, low precipitation, and high winds (Lafon et 

al. 2005). Growing season fires are the least common due to moist fuel conditions and 

increased canopy cover (Lafon et al. 2005).  

 

2.5 Spatial extent, ignition density, and fire cycle 

 Although its presence and frequency have been established, the spatial extent and 

ignition density of pre-suppression fires remain elusive. An understanding of both 

frequency and mean spatial extent is needed to determine the ignition density. If the 

mean fire sizes are smaller, then more ignitions, or a higher ignition density, are needed 

to maintain the observed frequency. Likewise, a larger mean spatial extent requires a 

smaller ignition density. While pre-suppression fires are thought to have grown larger 

than fires on the current landscape (Harrod et al. 2000), determining the magnitude of 

the change has proven difficult because paleo-ecological evidence has limited ability to 

inform about fire size and ignition density. Without an awareness of pre-suppression fire 

size, our understanding of the influence of fire on the landscape is limited. Fire size 
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influences vegetation and fuel configuration. Burned-over areas provide exposed soil 

and more favorable seedbeds for early successional plants to establish (Lorimer 1985; 

Abrams 1992), influencing the patch shape and size of vegetation communities. As fires 

encourage highly flammable, herbaceous fuel beds, these fuel beds in turn encouraged 

more fire spread (Harrod et al. 2000). Areas of continuous fuels and no natural fire 

breaks have the potential to burn unimpeded from one or few ignitions (Frost 1998). If 

large fires created large areas of continuous fuel beds, they could influence the size of 

subsequent fires. 

The influence of fire size is often interpreted through fire cycle. Fire cycles are 

generally more effective at conveying the ecological importance of fire than fire 

frequency. The fire cycle, or natural fire rotation, is defined by Heinselman (1973) as 

“the average number of years required in nature to burn-over and reproduce an area 

equal to the total area under consideration.” Fire cycle differs from fire rotation in that 

fire cycle is calculated using tree cross-sections and fire scars, while fire rotation is 

typically determined through historical records (Innes et al. 2000). Fire cycle is useful 

for both scientist and managers because it provides a measure of the amount of fire 

within a system that can be used to elucidate the age structure of a forest stands 

(Heinselman 1973). It allows direct comparisons between ecosystems or between time 

periods within the same ecosystem (Heinselman 1973). While useful, it must be 

remembered that fire’s impact on any landscape is the combination of many factors 

including fire size, fire size distribution, ignition source, ignition location, intensity, 

severity, fuel patterns, vegetation, topography, climate, prior disturbance history, etc. 
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(Heinselman 1973). While fire cycle gives us a useful quantification, scientists and 

managers must also investigate the patterns that compose the fire cycle to understand 

how fire is interacting with the landscape. Fire cycles can be determined using the 

average stand age of a forest (Wagner 1978) or by dividing the study area by the total 

area burned and multiplying that by the number of years observed (Cleland et al. 2004).  

 Fire cycle = (Study Area / Total Area Burned) x Years Observed 

For example, if fires that burned unimpeded for 100 years at a rate of approximately 0.5 

ignitions a year for a 35,000 ha study area produced a 0.1 ha mean fire size, the fire 

cycle would be (35,000 ha / 5 ha) x 100 years, or 700,000 years. In other words, it would 

take 700,000 years for an area equivalent to that of the study area to burn. If the mean 

fire size were 7,000 ha, the area would have a 10 year fire cycle. It should be noted that 

fire cycles do not imply that every hectare of the area will burn during that time. Some 

areas will burn multiple times and some will not burn, but the total area burned will 

equal the size of study area. Considering a reconstructed MFI of approximately 10 years, 

the 10 year fire cycle would be consistent with historic fire frequencies. The 700,000 

year fire cycle would not be consistent with the reconstructed MFI, indicating that the 

role of fire for the 100 year observational period is different than its role historically. 

During the time period of the reconstructed fire history, the landscape must have 

experienced either fires with a larger mean size, more ignitions, or both. 

Current fire cycles have been calculated for areas of the central and southern 

Appalachians (Table 4) using current fire size and ignition density information (Tables 5 

and 6). The long fire cycles found on the current landscape do not reflect the fire 



 

19 
 

Table 4. Current fire cycle in the southern Appalachians 
    Fire Cycle (years) Physiographic     

Author Lightning Anthropogenic Both province Area Years 
Flatley et al. 
2011 25,397 1,257 1,197 BR Great Smoky Mountains National Park 1930-2003 

 
- - 204 BR Shenandoah National Park 1930-2003 

Harmon 1982  30,000 840 2,000+ BR Western Great Smoky Mountains National Park 1940-1979 
Harmon 1981 30,400 844 - BR Great Smoky Mountains National Park 1942-1979 
Lafon and 
Grissino-Mayer 
2007 96,637 12,216 10,845 AP Monongahela National Forest 1970-2003 

 
9,461 1,472 1,274 RV George Washington and Jefferson National Forests 1970-2003 

 1,560 347 284 BR Shenandoah National Park 1970-2003 

Lafon et al. 2005 6,138 1,196 1,001 AP, RV, BR 
Central Appalachians (same as Lafon and Grissino-
Mayer 2007 1970-2003 

*BR = Blue Ridge, AP = Appalachian Plateau, RV = Ridge and Valley**Includes suppressed fires. 
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Table 5. Current fire sizes in the southern Appalachians 
  Mean Fire Size (ha) Physiographic     

Author Lightning Anthropogenic Both province Area Years 
Flatley et al. 
2011 8.2 28.3 25.6 BR Great Smoky Mountains National Park 1930-2003 

 
- - 42.7 BR Shenandoah National Park 1930-2003 

Harmon 1982  3.4 5.4 - BR Western Great Smoky Mountains National Park 1940-1979 
Harmon 1981  3.3 17.6 - BR Great Smoky Mountains National Park 1940-1979 
Lafon and 
Grissino-Mayer 
2007 7.8 5.3 5.5 AP Monongahela National Forest 1970-2003 

 
9.1 12.6 36.9 RV 

George Washington and Jefferson National 
Forests 1970-2003 

 27.2 40.0 12.0 BR Shenandoah National Park 1970-2003 

Lafon et al. 2005 16.7 19.6 19.1 AP, RV, BR 
Central Appalachians (same as Lafon and 
Grissino-Mayer 2007 1970-2003 

*BR = Blue Ridge, AP = Appalachian Plateau, RV = Ridge and Valley 
**Includes suppressed fires. 
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Table 6. Current ignition density in the southern Appalachians 
 

  

Ignition Density  
(N/100,000 ha/year) Physiographic     

Author Lightning Anthropogenic Both Province Area Years 
Flatley et al. 
2011 0.9 5.5 6.3 BR Great Smoky Mountains National Park 1930-2003 

 
- - 13.5 BR Shenandoah National Park 1930-2003 

Harmon 1982  2.8 7.3 - BR Western Great Smoky Mountains National Park 1940-1979 
Harmon 1981 0.1 0.6 - BR Great Smoky Mountains National Park 1940-1979 
Lafon and 
Grissino-Mayer 
2007 0.1 1.5 1.6 AP Monongahela National Forest 1970-2003 

 
1.0 4.7 5.7 RV 

George Washington and Jefferson National 
Forests 1970-2003 

 2.0 6.3 8.3 BR Shenandoah National Park 1970-2003 

Lafon et al. 2005 1.0 4.5 5.5 AP, RV, BR 
Central Appalachians (same as Lafon and 
Grissino-Mayer 2007 1970-2003 

*BR = Blue Ridge, AP = Appalachian Plateau, RV = Ridge and Valley 
**Includes suppressed fires. 
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frequency determined through fire history reconstructions (Lafon et al. 2005). Either the 

mean fire size today is smaller; there are fewer current ignitions; or a combination of 

both. If the mean spatial extent of fires was larger on the pre-suppression landscape, then 

a lower density of ignitions was required to burn the same area. By determining pre-

suppression mean fire size, researchers can ascertain how dense ignitions would have to 

have been to burn at observed frequencies. Ignition density will also help illuminate the 

contribution of lightning and anthropogenic ignitions. In light of changing human 

activities in the southern Appalachians, was lightning alone sufficient to maintain the 

observed frequency? If not to what extent did humans affect the structure of the 

landscape through fire? 

 

2.6 Anthropogenic and lightning ignitions 

Debate exists around historic fire ignition sources in North America. Some 

researchers argue that anthropogenic ignitions were not a significant source of fire 

(Russell 1983; Vale 1998; Barrett et al. 2005). Historical accounts, fire suppression 

effects, and fire history reconstructions provide evidence for anthropogenic use of fire 

(Denevan 1992; Delcourt et al. 1998; Nowacki and Abrams 2008) with some authors 

even suggesting that lightning was an insignificant ignition source (Kay 2007). Both 

lightning and anthropogenic ignitions are seen on the current landscape (Table 7). If 

lightning ignitions cannot account for the reconstructed fire frequencies, then other 

ignition sources must have been acting on the pre-suppression landscape, most likely 

anthropogenic ignitions. Current lightning ignitions are an important ignition source in  
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Table 7. Current ignition source in the southern Appalachians   

Author Lightning Anthropogenic 
Physiographic 
province Area Years 

Flatley et al. 
2011 13.6% 86.4% BR Great Smoky Mountains National Park 1930-2003 

 
- - BR Shenandoah National Park 1930-2003 

Harmon 1982  27.7% 72.3% BR Western Great Smoky Mountains National Park 1940-1979 
Harmon 1981 13.6% 86.4% BR Great Smoky Mountains National Park 1940-1979 
Lafon and 
Grissino-Mayer 
2007 7.5% 92.5% AP Monongahela National Forest 1970-2003 

 
17.6% 82.4% RV George Washington and Jefferson National Forests 1970-2003 

 24.3% 75.7% BR Shenandoah National Park 1970-2003 

Lafon et al. 2005 16.5% 83.5% BR 
Central Appalachians (same as Lafon and Grissino-
Mayer 2007 1970-2003 

*BR = Blue Ridge, AP = Appalachian Plateau, RV = Ridge and Valley 
**Includes suppressed fires
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some parts of the eastern deciduous forest, though they are less frequent than 

anthropogenic ignitions (Harmon 1981; Harmon 1982; Lafon et al. 2005; Cohen et al. 

2007; Lafon and Grissino-Mayer 2007; Flatley et al. 2011). Lightning fires can cause 

more mortality than dormant fires since they are more likely to ignite during summer 

months (Sutherland et al. 1993; Lafon et al. 2005). Thus, lightning fires may cause more 

lasting effects than anthropogenic fires.  

Lightning ignitions are most common in the growing season when the weather 

supports thunderstorm activity (Lafon 2010). Anthropogenic fires are most common in 

the dormant season when fuel conditions are most conducive to fire ignition and spread 

(Lafon 2010; Hoss et al. 2008). Lightning and anthropogenic fires can overlap during the 

spring when conditions are conducive to burning and lightning activity is increasing 

(Lafon 2010). The seasonality found in southern Appalachian fire history reconstructions 

is consistent with the current understanding of the importance of anthropogenic ignitions 

in the pre-logging, pre-suppression fire regime in the southern Appalachians. The 

reconstructed fire-scar seasonality matches what is seen in anthropogenic fires today 

(Lafon 2010).  

 The majority of the fire history reconstructions performed in the southern 

Appalachians includes periods of European population. However, several include 

periods of Native American habitation and subsequent depopulation (Aldrich et al. 2010; 

Shumway et al. 2001; Flatley et al. 2013). There does not appear to be a difference in 

fire frequency and seasonality during the depopulated periods. It is possible that 

lightning ignitions were more of a factor during the depopulated period (Lafon 2010).  
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2.7 Re-introduction of fire 

 The recognition of the negative consequences of fire exclusion has led managers 

within some areas of the southern Appalachians to reintroduce fire (Brose et al. 2001). 

Managers use prescribed burns and some lightning ignited fires. Under current Wildland 

fire use (WFU) policies, lightning ignited fires that achieve resource management 

objectives are allowed to burn unsuppressed (Lafon and Grissino-Mayer 2007; Cohen et 

al. 2007). Management objectives include promoting the fire-associated landscape and 

vegetation that existed prior to fire suppression (Brose et al. 2001). With the recognition 

that the landscape cannot be restored to exactly its pre-suppression conditions, 

knowledge of the pre-suppression fire regimes is still used to help inform management 

decision (Lafon 2010). An understanding of what fire behaviors maintained the pre-

suppression landscape will allow managers to use fire more effectively. While previous 

research described several characteristics including frequency and seasonality, questions 

of fire size, ignition density, and ignition source still need to be answered.  With this 

information, managers can draw a more complete picture about the pre-suppression role 

of fire on the southern Appalachian landscape and use fire more effectively as a 

restoration tool.  
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3. STUDY AREA 

 

 GSMNP is approximately 209,000 ha within the Unaka Range of the Blue Ridge 

physiographic province. The Blue Ridge province forms the eastern part of the 

Appalachian Mountains and experiences infrequent heavy precipitation events and its 

lowest relative humidity during the spring and summer that encourage lightning ignitions 

(Whittaker 1956; Lafon and Grissino-Mayer 2007). GSMNP is located in western 

Tennessee and eastern North Carolina, running along part of the border between the two 

states. It has highly variable topography, characterized by steep slopes, deep valleys, and 

little flat area (Whittaker 1956) with elevations ranging from 265 to 2025 meters 

(National Park Service 2014b). It is one of the world’s most diverse temperate forests 

(Madden et al. 2004). The GSMNP has a generally humid climate, but the high relief of 

the topography causes microclimatic variation that result in many different species 

finding niches in which to thrive (Whittaker 1956). Vegetation ranges from xeric pine 

stands to oak-dominated submesic to subxeric forests to mesic and cove areas with 

mesophytic conifers and hardwoods (Flatley et al. 2011). At the Gatlinburg 2 SW 

weather station, the National Climatic Data Center reports 1981-2010 mean annual 

precipitation of 1404 mm, mean annual temperature of 13.39°C, mean January 

maximum and minimum temperatures of 10°C and -3.89° C, and mean July maximum 

and minimum temperatures of 30°C and 16.11° C. (1981-2010 US Normals Data, 2013). 

At higher elevations, the annual precipitation can reach more than 2032 mm (Whittaker 

1956) and temperatures decrease 10-20°F between the base of the mountains to the top 
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(National Park Service 2014b). My study area is 34609.27 ha of the western GSMNP 

(Fig. 1). It includes the study areas of Harmon (1982), Harrod et al. (1998), and Flatley 

et al. (2013). I used the findings from these three studies as inputs within this project. 

  Evidence of human settlement in the western GSMNP goes back as far as 6000 

BC (Bass and Quentin 1977). An increase in charcoal in bog sediments southeast of 

GSMNP corresponds to the Cherokee arrival between 1450 and 1600 AD (Lynch and 

Clark 1996). Euro-Americans settled the Cades Cove area as early as the 1820s (Shields 

1977; Dunn 1988). While not all areas of GSMNP were affected, settlers engaged in 

logging, clearing, agriculture, and grazing (Pyle 1988). Between 40 and 80% of the park 

was cleared by settlers or logged in the logging boom of the late nineteenth century 

(National Park Service 2014a; Pyle 1988) and that 20-40% of GSMNP has experienced 

no non-fire anthropogenic disturbance (Braun 1950; Pyle 1988). GSMNP was officially 

established as a national park in 1934 (Pyle 1988; MacKenzie and White 1998). With the 

establishment of GSMNP, policies of fire exclusion were enacted, changing many areas 

from fire-associated to fire-sensitive landscapes. In addition to fire use or non-use and 

other anthropogenic disturbances, the GSMNP vegetation also experienced changes due 

to the chestnut blight of the 1920s and 1930s that resulted in almost no living chestnuts 

by the early 1940s (Whittaker 1956). 

 Throughout European settlement (1820s-1934), many areas in the GSMNP were 

relatively unlogged (Shields 1977; Pyle 1988).This means that prior to suppression we 

can assume that these areas looked much as it had prior to European settlement. This is  



 

28 
 

 
Figure 1. Study area in the western GSMNP. 
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important because after GSMNP was established, from 1935-1937, Frank H. Miller 

conducted a vegetation survey and sampling of GSMNP (MacKenzie and White 1998). 

Therefore, Miller’s work provides a record of the landscape and vegetation that can be 

assumed to be relatively similar to the historic landscape. Harrod et al. (1998) used 

Miller’s data to investigate the effects of fire suppression on the western GSMNP. 

 The fire history within the western GSMNP has been reconstructed from fire-

scarred trees, returning a MFI of 12.7 years from 1856-1940 (Harmon 1982) and 9.1 

years from 1773-fire suppression (Flatley et al. 2013). Flatley et al. (2013) includes the 

period of Cherokee habitation, which did not have significantly different mean fire scars 

per recording tree per decade than the Euro-American settlement period or the Industrial 

period. Therefore, we know that fire was frequent and active on their site. Current 

lightning ignitions within GSMNP are 0.9 ignitions per 1000 km2 per year (Flatley et al. 

2011), and for the study area are 0.463 ignitions per year. Because anthropogenic and 

lightning ignitions have been historically active within this area, it is an appropriate site 

to use as a model for pre-suppression fires and to explore the influence of anthropogenic 

and lightning ignitions.  
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4. METHODS 

 

4.1 FARSITE 

 Our knowledge of historic fire regimes in the southern Appalachian Mountains 

has expanded through fire history reconstructions such as dendroecological and pollen 

analysis, but these are not able to explain all aspects of historic fire behavior. The 

introduction and calibration of the Fire Area Simulator model (FARSITE) as a research 

tool on the southern Appalachian landscape provides the opportunity to add to the 

understanding of the spatial extent of historic fires, ignition density, and ignition source 

that cannot be easily garnered through other means.  

 FARSITE is a 2-dimensionsal fire modeling system that simulates fire spread 

spatially and temporally on the landscape based on topography, weather, and fuels 

(Finney and Ryan 1995; Finney et al. 1997; Missoula Fire Sciences Laboratory 2010a; 

Stratton 2006). It is a deterministic model using defined mathematical relationships to 

predict fire behavior (Finney and Ryan 1995; Phillips et al. 2006). Released in 1995, 

FARSITE was developed to predict fire spread, shape, and intensity in real time to aid 

fire managers and firefighters make more informed suppression and management 

decisions (Finney and Ryan 1995; Finney et al. 1997; Phillips et al. 2006). It is currently 

used by the USFS, NPS, and other federal and state land management agencies to inform 

management decisions about fire spread in both wild and prescribed fires (Missoula Fire 

Sciences Laboratory 2010a). 
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 Fire spread within FARSITE is based on Rothermel’s fire spread equation 

(Finney 1998). As a vector model based on the Huygens’ principle of wave propagation, 

FARSITE generates fire spread at different timesteps as expanding polygons (Finney 

and Ryan 1995). Huygens’ principle considers fire spread as a wave generated at each 

vertex on the outer edge of a fire expansion polygon independently of the other vertexes 

(Finney and Ryan 1995; Finney 1998). Thus, mathematical relationships are applied to 

each vertex individually, then the outputs at each vertex are combined to predict the 

behavior of the fire as a whole (Finney 1998). FARSITE outputs time of arrival, 

intensity, flame length, rate of spread, heat per area, and direction in table, vector, or 

raster formats (Finney 1998; Stratton 2006). One of the advantages of FARSITE is that 

its vector and raster outputs are spatial and ready to be input into a GIS to perform 

spatial analysis and produce maps that capture the temporal and spatial change of the 

fire.  

 As its use became more widespread, managers began to implement FARSITE for 

more than just real time fire management and control. FARSITE has been effectively 

used to plan prescribed burns and evaluate proposed fuel treatments (Finney et al. 1997; 

Duguy et al. 2007). In addition it can be used to provide cause and effect relationships 

between inputs and fire behavior to better understand fire behavior (Finney et al. 1997; 

Andrews and Queen 2001; Duncan and Schmalzer 2004). Spatial outputs are analyzed to 

see how different landscapes produce different fire behavior and spread (Phillips et al. 

2006; Ryu et al. 2007). Recently, researchers have begun to investigate historic fire 

regimes through FARSITE (Bean and Sanderson 2008). Using FARSITE as a research 
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tool has expanded our understanding of fire behavior. With its proven predictive ability, 

FARSITE’s use on historic landscapes is a promising new application.  

 

4.2 FARSITE limitations and assumptions 

 All modeling systems are simplifications or generalizations of the real world. To 

appropriately use any model, its limitations and assumptions must be understood to 

accurately use and interpret the model outputs (Stratton 2006). As Box et al. (1978) said 

“All models are wrong, but some are useful.” While FARSITE’s validity as a tool has 

been demonstrated, there are a few limitations that need to be acknowledged in 

consideration of this study.  

 If a simulation is inaccurate in the beginning, that error will increase as the 

simulation continues. To avoid compounding errors, researchers should use the 

maximum spatial and temporal resolution and appropriately calibrate FARSITE 

(Missoula Fire Sciences Laboratory 2010b). In addition, all inputs to be used with 

FARSITE should be carefully examined for accuracy and appropriateness. The quality 

of the topography, weather, and fuel characteristic inputs will affect the quality of 

FARSITE’s outputs (Finney and Ryan 1995). The southern Appalachians are a complex 

landscape. While research has shown FARSITE’s predictive ability on this landscape 

(Phillips et al. 2006), FARSITE’s limitations and assumptions documentation 

acknowledges the need for further research to determine how well FARSITE operates on 

complex landscapes (Missoula Fire Sciences Laboratory 2010b). 
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 FARSITE has difficulty accounting for large dead fuels that can maintain fire 

activity through smoldering after the fire has moved beyond that area (Andrews and 

Queen 2001). The fuel loads used within FARSITE are 1 hour, 10 hour, 100 hour, and 

live. With large dead snags, the smoldering effects could be longer than 100 hours and 

could contribute to re-ignition. Thus, FARSITE has a limited ability to model fires with 

a long timespan but minimum conditions for burning (Finney and Ryan 1995). 

FARSITE’s limited ability to account for smoldering large dead fuels should have little 

effect on its use for suppression (Finney and Ryan 1995), but these fuels could be an 

important ignition factor when modeling historic fires or determining appropriate fuel 

treatments to minimize fire hazard.  

 FARSITE’s “Limitations and Assumptions” (2010b) states that “The FARSITE 

model is not designed to determine if a fire will spread or not.” It can be used for this 

purpose when additional parameters are set to determine when environmental conditions 

would logically stop fire spread. Forcing fire spread to stop under certain conditions or 

after certain timespans could lead to an underprediction of fire spread, however, due to 

large dead snags that cannot be accounted for by FARSITE or by the researchers. No 

model is perfect or able to accurately make predictions at all scales and for all purposes. 

With an understanding of the assumptions underlying the FARSITE, it can be used to 

elucidate our understanding of fire behavior on the Southern Appalachian landscape 

(Missoula Fire Sciences Laboratory 2010b).  
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4.3 FARSITE inputs 

 FARSITE requires spatial inputs of elevation, slope, aspect, canopy cover, and 

fuel models (Finney 1998). The spatial inputs affect fire behavior in several ways. Slope 

is the elevation change over varying horizontal location (Bolstad 2005). It can increase 

the fire spread rate when the fire is moving upslope by pre-heating the upslope fuels that 

are in closer contact to the flames than they would be on a flat landscape (Whelan 1995). 

Therefore, slope affects the rate at which fire spreads. Aspect is the “steepest downhill 

direction” from a particular point (Bolstad 2005). It affects fire spread by influencing the 

amount of solar radiation a particular site receives thus influencing fuel moisture 

(Bolstad 2005). Fuel moisture has a significant effect on the rate of fire spread (Pyne et 

al. 1996). Before fuels can ignite, the water must be vaporized by heat in the pre-ignition 

phase of combustion (Pyne et al. 1996). Thus, high fuel moisture content means that it 

takes longer for those fuels to dry out and then ignite, thus slowing fire spread (Pyne et 

al. 1996). Increased solar radiation decreases the amount of time it takes to dry fuels 

prior to ignition, thus leading to higher rates of spread. Elevation can affect weather 

conditions, including temperature and humidity (Finney 1998; Phillips et al. 2006), 

which influences fuel moisture. Temperature and humidity are adjusted within FARSITE 

based on elevation (Phillips et al. 2006). Canopy cover refers to the amount of ground 

that is blocked from view of the sky by the canopy, or the percentage of the ground that 

is shaded (Finney 1998). Canopy cover affects fuel moisture similar to aspect in that it 

influences the amount of solar radiation that reaches fuels, contributing to how quickly 
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they dry out, affecting speed of ignition and rate of spread (Finney 1998). Higher canopy 

cover also decreases wind speeds, thus decreasing rate of spread (Finney 1998). 

 FARSITE also requires wind and weather data, composed of daily minimum and 

maximum temperature and humidity, precipitation, wind speed and direction, cloud 

cover, and initial fuel moisture, as well as ignition location and burn duration (Finney 

1998). Temperature and humidity influence fire behavior primarily through their 

influence on fuel moisture (Finney and Ryan 1995). Precipitation data, including 

amount, type, and duration influences fuel moisture as well as moisture of extinction. 

Moisture of extinction is the fuel moisture at which fire spread will no longer be uniform 

(Rothermel 1983; Pyne et al. 1996). When fuel moisture exceeds the moisture of 

extinction, the fire will not continue to spread until conditions decrease fuel moisture 

below the moisture of extinction. Wind is a major factor in fire behavior influencing the 

direction, rate, and distance of fire spread (Whelan 1995).  

  

4.4 Fuel models 

  Fuel models are representations of the vegetation structure and fire-carrying 

capacity of the landscape. They are classified by vegetation type (e.g. grass, brush, 

timber, slash) and described by live fuel load, dead fuel load (1 hr, 10 hr, and 100 hr), 

surface-area-to-volume (SAV) ratio, heat content, fuel bed depth, and dead fuel moisture 

of extinction (Anderson 1982; Rothermel 1983; Scott and Burgan 2005). Based on these 

characteristics, fuel models are expected to produce certain fire behaviors, including rate 

of spread and flame length (Anderson 1982; Scott and Burgan 2005). 
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 There are 13 commonly used fuel models developed by Anderson and Brown 

(Rothermel 1972) and Albini (1976) that are used within FARSITE and other fire 

modeling systems to predict fire behavior (Anderson 1982; Rothermel 1983). These 

modeling systems were designed based on fire behavior in the western US and “for the 

severe period of the fire season when wildfires pose greater control problems” 

(Anderson 1982). Thus, when used outside of a “severe period of the fire season” or in 

high-humidity areas, they tend to overpredict fire spread (Rothermel 1972; Scott and 

Burgan 2005). 

 The 13 fuel models listed by Rothermel (1972) and Albini (1976) do not 

accurately represent the fuel conditions of the southern Appalachian Mountains due to 

the high moisture content of fuels in this area (Andrews and Queen 2001; Phillips et al. 

2006; Waldrop et al. 2007; Stottlemyer et al. 2009). Fuel moisture is the primary 

limitation on fire in the southern Appalachian Mountains (Lafon et al. 2005) and needs 

to be accurately represented when modeling fire behavior on this landscape. In the 

southern Appalachian Mountains, Phillips et al. (2006) produced reasonable results with 

FARSITE using 3 of the 13 fuel models listed by Rothermel (1972) and Albini (1976) 

and customized fuel models created for their study. However, Phillips et al. (2006) had 

to adjust the spread rates for the fuel models used beyond an acceptable range according 

to the parameters recommended by Stratton (2006). They are, therefore, not considered 

suitable fuel models to use for the southern Appalachian landscape. Phillips et al. (2006) 

emphasized that while they generated reasonable results using a combination of adjusted 

and customized fuel models to represent an area within the southern Appalachian 
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Mountains, the fuel conditions of the landscape are not fully represented and new fuel 

models need to be developed. 

 In 2005, Scott and Burgan published “Standard Fire Behavior Fuel Models” 

which introduced 45 new fuel models to account for differences in climate and 

vegetation and to improve our ability to model fire behavior. While these models appear 

to better predict fire behavior in more humid climates, they need additional verification 

for use on the southern Appalachian landscape. 

 

4.5 Objective 1: Calibrate FARSITE to accurately model fires in the western GSMNP 

 To appropriately generate and interpret their results, researchers must first 

calibrate FARSITE for their study area (Stratton 2006). Calibration is accomplished by 

comparing FARSITE outputs to known fire behavior and adjusting inputs so the 

simulation more closely matches the observed (Finney 2000; Phillips et al. 2006; 

Stratton 2006). When calibrating, researchers choose the output that is the most relevant 

for their research question as FARSITE may simulate different outputs with different 

accuracy (Stratton 2006). Since my research hypotheses are related to fire size, I am 

using fire size for my calibration.  

 

4.5.1 Acquire and process inputs 

 Elevation, slope, aspect, canopy cover, and fuel models are input as ASCII grid 

files and incorporated into one FARSITE landscape file (.lcp) (Finney 1998; Stratton 

2006). I derived elevation, slope, and aspect from USGS National Elevation Dataset 
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(NED) 1/3 arc-second raster elevation files for the western GSMNP downloaded from 

the U.S. Geological Survey (U.S. Geological Survey 2012; Finney 1998; Phillips et al. 

2006; Stratton 2006). National Elevation Datasets are a type of Digital Elevation Model 

(DEM). The NED is in NAD83, NAVD883 at 1/3 arc-second, or approximately 10 

meters, of resolution. I projected and resampled the NED to NAD 83, UTM Zone 17N at 

10 meter resolution using a bilinear technique in ArcGIS 10 (ESRI Inc. 2011). I derived 

slope and aspect in ArcGIS 10 using Spatial Analyst tools. I used the percent estimates 

of canopy cover produced by Welch et al. (2002) and provided to GSMNP as GIS vector 

shapefiles. Canopy cover is divided into the following four classes: 1 (0-25%), 2 (26-

50%), 3 (51-75%), 4 (76-100%). Welch et al. (2002) determined percent canopy cover 

for both leaf-on and leaf-off conditions from a combination of remotely sensed data and 

field verification (Welch et al. 2002). FARSITE allows for the inclusion of barriers to 

fire growth.  I added road, stream, and trail shapefiles for the GSMNP (National Park 

Service 2012).  These vector files act to stop fire growth and are overlayed on top of the 

existing landscape inputs. 

 I acquired weather, wind, and fuel moisture data through Fire Family Plus (FFP) 

version 4.1 (Bradshaw and Tirmenstein 2010). FFP summarizes and analyzes daily 

weather observations and can be used to generate weather (.wtr), wind (.wnd), and fuel 

moisture (.fms) files for use in FARSITE (Bradshaw and Tirmenstein 2010). FARSITE 

weather files include daily minimum and maximum temperature and humidity, and 

precipitation amount and timing (Finney 1998).  FARSITE wind files include hourly 

wind speed, wind direction, and cloud cover (Finney 1998). FARSITE fuel moisture 



 

39 
 

files include initial fuel moisture (Finney 1998). Using FFP, I obtained remote 

automated weather station (RAWs) weather data for the western GSMNP from Indian 

Grave weather station. Indian Grave weather station is located at 35°37’25” N, 

83°48’30” W, 823 meters of elevation, with mid slope position (26-40%), a southern 

aspect, and an average precipitation of 114.3 centimeters (Fig. 2). From FFP, I also 

downloaded the Wildland Fire Management Information (WFMI) data on all fires 

occurring in the GSMNP from 1972-2011, including ignition location, burn period, and 

total acres burned (Bradshaw and Tirmenstein 2010).  

  
 
 

Figure 2. Location of Indian Grave weather station. 
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4.5.2 Select fuel models 

 The most commonly adjusted inputs during calibration are fuel models due to 

their tendency to cause FARSITE to overpredict fire spread (Rothermel 1972; Scott and 

Burgan 2005).  Welch et al. (2002) produced digital vegetation maps as GIS vector 

shapefiles for GSMNP. These were created based on a combination of remotely sensed 

data and field identification and verification (Welch et al. 2002). In addition to 

classifying the general vegetation for the GSMNP, Welch et al. (2002) also classified the 

area into the 13 fuel models listed by Rothermel (1972) and Albini (1976). Instead of 

using the fuel model map classified by Welch et al. (2002), I used the reclassification of 

Welch et al. (2002) vegetation map using Scott and Burgan (2005) fuel models 

conducted by Munoz (2009) with some alterations and clarifications. Fuel models were 

selected for an area by considering 1) the general fire-carrying fuel type - nonburnable, 

grass, grass-shrub, shrub, timber-understory, timber litter, slash-blowdown, 2) the dead 

fuel extinction moisture (based on climate), 3) fuel characteristics such as depth, size, 

and amount of living fuel, and 4) an evaluation of predicted fire spread compared to the 

expected or observed fire spread (Scott and Burgan 2005).  

Fuel models are selected based on vegetation maps and researchers’ knowledge 

of the areas and fuel models in question (Duncan and Schmalzer 2004; Duguy et al. 

2007; Bean and Sanderson 2008). Selecting fuel models that agree with observed fire 

behavior is the most important factor (Scott and Burgan 2005). 

Once appropriate fuel models are selected spread rate adjustment factors are 

assigned to the different fuel models (Rothermel and Rinehart 1983). Adjustment factors 
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adjust the spread rate to more accurately reflect observed fire behavior (Phillips et al. 

2006; Duguy et al. 2007; Missoula Fire Sciences Laboratory 2010b). If a fuel model is 

overpredicting fire spread, an adjustment factor of 0.9 (90%) can be applied to reduce its 

fire spread by 10%. FARSITE has a specific adjustment file to hold the adjustment 

factors.  

 FARSITE’s “Limitations and Adjustments” (2010b) states that adjustment 

factors should be based on fire spread at the head of the fire. When using FARSITE for 

suppression purposes, it is evident why it is most important for head fires to be 

accurately represented. FARSITE’s “Limitations and Assumptions” (2010b) also states 

that adjustment factors may change throughout a fire. However, for my study, I based 

adjustment factors on spread in all directions over the entire fire because I am most 

interested in the total fire size simulated. Using fire spread at the head of the fire to 

inform adjustment factors would lead to an overprediction of fire size.  

 

4.5.3 Simulate recent unsuppressed wildland fires in the western GSMNP 

 To calibrate FARSITE for the western GSMNP, I obtained fire information and 

perimeters from GSMNP for recent, lighting-ignited unsuppressed wildland fires (Rob 

Klein, personal communication 11/9/2012). I received perimeters for five fires, but 

determined that only Cattail 2 was appropriate to use for calibration (Table 8). Cattail 2 

was a 185 acre lightning-ignited fire in the western part of GSMNP. It ignited at 

35.513237°N, 83.981908°W at 1800 hours on 8/5/2007 and was extinguished at 1830 

hours on 8/18/2007. The elevation of the burned area ranged from 299 to 463 m. I 
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received nine fire NPS perimeter shapefiles (Rob Klein, personal communication 

11/9/2012). Cattail 2 did have minor holding actions taken at the end of the fire (Rob 

Klein, personal communication 11/9/2012), so I did not use the final perimeter (timestep 

9) in my calibration. 

 The other four fires I received from NPS were not appropriate for the current 

calibration for multiple reasons (Table 8). Beard Cane burned over an area that had 

previously burned and been hit by a tornado (Rob Klein, personal communication 

11/9/2012). Therefore, its fuels were not reflective of the rest of the western GSMNP. 

Calderwood was outside of GSMNP so I did not have vegetation data for the area burned 

with which to determine fuel models. Chilly Springs did not have complete perimeters, 

and several of the perimeters were contradictory. With only two perimeters, there were 

not enough timesteps to get an accurate picture of how fire spread was affected by fuel 

model selection and adjustment factors for Big Medicine. Therefore, I eliminated Big 

Medicine from my calibration as well. 

 Three landscape compositions were tested for Cattail 2 to determine the 

appropriate fuel models for the western GSMNP. I first grouped Welch et al. (2002) 

vegetation ecogroups into three forest groups – mesophytic forest, oak forest, and pine 

forest (Table 9). I then assigned fuel models to these forest groups to create different 

landscape scenarios (A, B, C) reflecting current vegetation cover (Table 10 and 11, Fig. 

3-5). All fuel models for the three forest groups were chosen from the Timber Litter 

(TL) fuel type models. Within the GSMNP, the understory does not typically carry fire 

(Rob Klein, personal communication 2/12/13). Therefore, Timber Litter fuel models,
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Table 8. Western GSMNP fires considered for calibration 
 

Fire Name 

Date & 
Time of 
Ignition 

Date & 
Time of 
Extinction 

Days 
Active 

NPS 
Perimeter 
Shapefiles 

Total 
Acreage 
Burned 

Appropriate 
for 
Calibration Notes 

Beard Cane 
7/25/2011 
0245 

9/12/2011 
1500 50 3 316 No 

Fuels not reflective of 
western GSMNP 

Big Medicine 
8/17/2007 
1600 

8/27/2007 
0800 10 2 34 No Too few perimeters 

Cattail 2* 
8/5/2007 
1800 

8/18/2007 
1830 13 9 185 Yes 

Minor holding action taken at 
end of fire 

Calderwood 
08/17/2010 
1709 

09/23/2010 
1800 38 9 291 No No vegetation data 

Chilly 
Springs 

4/5/2006 
0800 

4/18/2006 
0800 13 6 913 No 

Perimeters incomplete and 
contradictory 

*Fire chosen for calibration 
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Table 9. Vegetation Ecogroups and Short Names from Welch et al. (2002) 
grouped into forest groups for fuel model assignment 

Forest Groups Ecogroup Short Name 

Mesophytic Forest Alluvial vegetation 
Alluvial vegetation (non-
forested) 

Mesophytic Forest Floodplain forests Floodplain forests 

Mesophytic Forest Hemlock forests Hemlock forest (typic type) 

Mesophytic Forest Montane cove forests Acid cove forest (typic type) 

Mesophytic Forest Montane cove forests Cove forest (rich type) 

Mesophytic Forest Montane cove forests Cove forest (typic type) 

Mesophytic Forest Montane cove forests Red oak cove forest 

Mesophytic Forest Successional hardwood forests Successional hardwood forest 

Oak Forest Chestnut oak forests Chestnut oak forest 

Oak Forest Montane oak-hickory forests 
Oak-hickory forest (red oak 
type) 

Oak Forest Montane oak-hickory forests Oak-hickory forest (rich type) 

Oak Forest Montane oak-hickory forests 
Oak-hickory forest (typic acidic 
type) 

Pine Forest Hemlock forests 
Hemlock forest (white pine 
type) 

Pine Forest White pine forests White pine forest 

Pine Forest White pine forests White pine-xeric oak forest 

Pine Forest White pine-mesic oak forests White pine-mesic oak forest 

Pine Forest Yellow pine forests Yellow pine forest 

Ericaceous shrubs 
Ericaceous shrubs (non-heath 
bald type) 

Ericaceous shrubs (non-heath 
bald type) 

Nonburnable Surface Human influence Human influence 

Nonburnable Surface Roads Roads 

Nonburnable Surface Rock Rock 

Nonburnable Surface Sparse vegetation Sparse vegetation 

Nonburnable Water Water Water 
*Fuel models not calibrated   
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Table 10. Landscape scenarios tested by calibration 
 

Landscape 
Scenario 

Mesophytic 
Forest Oak Forest Pine Forest 

Ericaceous 
Shrubs 

Nonburnable 
Surface 

Nonburnable 
Water 

Landscape A 182 (TL2) 186 (TL3) 183 (TL3) 143 (SH3)* 99 (NB9)* 98 (NB8)* 

Landscape B 182 (TL2) 182 (TL2) 181 (TL1) 143 (SH3)* 99 (NB9)* 98 (NB8)* 

Landscape C 182 (TL2) 182 (TL2) 188 (TL8) 143 (SH3)* 99 (NB9)* 98 (NB8)* 
*Fuel models not calibrated         

 
 
 

Table 11. Fuel Model Descriptions from Scott and Burgan (2005) 

Fuel Model Fuel Model Name 
Spread 
Rate 

Flame 
Length Fuel Load Primary Carrier of Fire 

143 (SH3) Moderate Load, Humid Climate Shrub Low Low Moderate Woody shrubs and shrub litter 

181 (TL1) Low Load Compact Conifer Litter Very Low 
Very 
Low 

Light to 
moderate Compact forest litter 

182 (TL2) Low Load Broadleaf Litter Very Low 
Very 
Low Low 

Compact broadleaf (hardwood) 
litter 

183 (TL3) Moderate Load Conifer Litter Very Low Low Moderate 
Moderate load conifer litter, 
light load of coarse fuels 

186 (TL6) Moderate Load Broadleaf Litter Moderate Low Moderate 
Broadleaf litter, less compact 
than TL2 
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Figure 3. Landscape A fuel model configuration.        Figure 4. Landscape B fuel model configuration. 
 
 



 

47 
 

  
Figure 5. Landscape C fuel model configuration.
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where “the primary carrier of fire in the TL fuel models Is dead and down woody fuel” 

(Scott and Burgan 2005, p 56) is the most appropriate type of fuel model for the study 

area.  

I used each fire perimeter as the ignition location and ran the simulation until the 

next perimeter. Each of these I will refer to as a simulation timestep (Table 12). Using 

timesteps instead of the entire fire length is a unique way to attempt calibration of 

FARSITE, as most previous research used only an initial ignition location and final fire 

perimeter (Finney and Ryan 1995). This calibration method should avoid compounding 

errors (Stratton 2006) and result in more accurate fuel model and adjustment file 

selection. 

 
 
 

Table 12. Cattail 2 Timesteps 

Timestep Ignition Location Burn Start Burn End 
Final Perimeter 
Comparison 

1 CT_Ign_1.shp 8/5 1800 8/6 2300 6Aug07_perimeter 

2 6Aug07_perimeter 8/7 0000 8/8 0000 7Aug07_perimeter 

3 7Aug07_perimeter 8/8 0000 8/9 0000 8Aug07_perimeter 

4 8Aug07_perimeter 8/9 0000 8/10 0000 9Aug07_perimeter 

5 9Aug07_perimeter 8/10 0000 8/11 0000 10Aug07_perimeter 

6 10Aug07_perimeter 8/11 0000 8/12 0000 11Aug07_perimeter 

7 11Aug07_perimeter 8/12 0000 8/14 0000 13Aug07_perimeter 

8 13Aug07_perimeter 8/14 0000 8/15 0000 14Aug07_perimeter 

9 14Aug07_perimeter 8/15 0000 8/18 1830 Final 



 

49 
 

 I ran simulations for each landscape scenario adjusting the spread rate for each 

fuel model from a factor of 0.6 to 1.4. Stratton (2006) recommends that for a fuel model 

to be appropriate, it should not need an adjustment of more than 0.3 to 0.4 in either 

direction. Therefore, during calibration the adjustment files were not altered past 0.6 or 

1.4. I compared the size of the simulated fire to the size of the next timestep’s actual 

perimeter and the amount of overlap between the simulated and actual fire. I calculated 

the area of the simulated fire relative to the actual fire (“Percent Area”). I also calculated 

“Percent Overlap” based on the portion of the actual burned polygon that was burned in 

the simulation. I used Percent Area and Percent Overlap to compare the different 

landscape scenarios and determine the appropriate adjustment factors. 

 

4.5.4 Calibrate FARSITE to best match burn perimeter 

 FARSITE overpredicted fire size for Landscapes A and C. Landscape B 

consisted of only two fuel models: 181 (TL1) for pine forest and 182 (TL2) for both 

mesophytic forest and oak forest. Landscape B most accurately simulated the actual fire 

size. The primary carrier of fire for both fuel models was compact litter, and they had the 

lowest fire spread within Timber Litter fuel models for conifer and broadleaf fuel types 

respectively.  

I ran 81 simulations of Landscape B to include every adjustment file combination 

from 0.6 to 1.4 for fuel models 181 (TL1) and 182 (TL2). To determine the appropriate 

adjustment factors, I selected the timesteps where the Percent Area was within 10% and 

the Percent Overlap was greater than 75%. Eight simulations out of 81 had three 
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timesteps where the Percent Area was between 90 and 110% (Table 13). I calculated the 

median and mean adjustment factors using only these eight simulations to determine the 

final fuel model adjustment factors. The results were fuel model 181 (TL1) with an 

adjustment factor of 0.8 and fuel model 182 (TL2) with an adjustment factor of 0.6. In 

other words, calibration shows that fuel model 181 (TL1) spreads at a rate that is 80% of 

its default spread rate. Fuel model 182 (TL2) spreads at a rate that is 60% of its default 

spread rate. 

 

4.6 Objective 2: Simulate the spatial extent of fires on a pre-suppression landscape 

 After calibrating FARSITE, I then used it to explore the spatial extent of fires on 

the pre-suppression GSMNP landscape. I selected a 36,964 ha area of the western 

GSMNP as my study area (Fig. 1). Because the vegetation composition of the western 

GSMNP is different from the eastern portion, the calibration I performed and the fuel 

models and adjustments selected are most appropriately applied to the western GSMNP. 

Eighty-nine percent of the study area is composed of vegetation ecogroups from Welch 

et al. (2002) that were calibrated during Objective 1. Also, within the GSMNP, most 

lightning ignitions occur in the western portion of the park. I ran multiple simulations 

within the study area on different potential pre-suppression landscape scenarios to 

estimate the range of fire sizes that could have occurred on the pre-suppression 

landscape in the southern Appalachian Mountains. 
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Table 13. Landscape B simulations used to determine the final adjustment factors 

Simulation 
No. 

181 
(TL1) 

182 
(TL2) Timestep 1 

Timestep 
2 

Timestep 
3 

Timestep 
4 

Timestep 
5 

Timestep 
6 

Timestep 
7  

Timestep 
8 

033 0.8 0.7 10.7% 73.5% 110.2% 121.3% 129.0% 98.3%* 123.6% 107.7%* 

034** 0.7 0.7 9.3% 72.4% 108.9%* 120.1% 127.6% 97.2%* 122.5% 107.3%* 

035** 0.6 0.7 8.0% 71.3% 107.7%* 118.9% 126.3% 96.0%* 121.3% 106.9%* 

141** 1.1 0.6 15.3% 73.7% 109.8%* 119.4% 127.3% 98.2%* 124.0% 107.5%* 

041** 1 0.6 13.6% 72.6% 108.5%* 118.2% 126.0% 97.1%* 123.1% 107.1%* 

042** 0.9 0.6 12.0% 71.5% 107.5%* 117.1% 124.8% 96.0%* 122.2% 106.7%* 

043** 0.8 0.6 10.5% 70.4% 106.1%* 116.1% 123.5% 95.0%* 121.1% 106.3%* 

044** 0.7 0.6 9.1% 69.3% 104.8%* 115.0% 122.3% 93.9%* 119.9% 105.9%* 

045** 0.6 0.6 7.9% 68.2% 103.5%* 113.8% 121.0% 92.8%* 118.7% 105.5%* 

Average 

Adjustment 

Factor 0.8 0.63 

        

Median 

Adjustment 

Factor 0.75 0.6 

                

* Percent Area between 90% and 110% 
      **Used for calculation of final adjustment factors 
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4.6.1 Set FARSITE inputs 

 I used the same digital elevation model for the simulations as used for the 

calibration. I derived elevation, slope, and aspect from USGS National Elevation Dataset 

(NED) 1/3 arc-second raster elevation files for the western GSMNP downloaded from 

the U.S. Geological Survey (U.S. Geological Survey 2012; Finney 1998; Phillips et al. 

2006; Stratton 2006). I used the adjustment factor from calibration (Table 13). I included 

the current stream vector shapefile as a barrier to fire growth. Unlike during calibration, 

I did not include roads or trails as barrier files, because these are recent modifications to 

the landscape. 

 I acquired 16 years (1997-2013) of weather and fuel moisture data through Fire 

Family Plus (FFP) version 4 (Bradshaw and Tirmenstein 2010). In cases where 

FARSITE could not account for the gaps in the recorded weather data, I used the mean 

from the other recorded years (Table 14).  

 
 

Table 14. Percent of simulations in which at least one weather, 
wind, or fuel moisture input was based on averaged values 
from the other years. 

Weather Input 
% of Simulations with Averaged 
Inputs*   

Weather 1.20% 
 Wind 12.00% 
 Fuel Moisture 7.40% 
 Total 13.80%   

*Simulations were included in count if any inputs were 
averaged. 
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4.6.2 Create pre-suppression landscape scenarios 

 To estimate the pre-suppression landscape, I created three potential pre-

suppression landscape scenarios by modifying the current fuel models and canopy cover 

(Table 15). The first scenario (Hx1) assumes the pre-suppression landscape is exactly the 

same as the current landscape but without Roads and areas of Human Influence. I used 

the fuel model crossovers created during calibration (Table 9 and 10), to assign fuel 

models for Hx1 based on the Welch et al. (2002) vegetation map. I then reclassified any 

areas defined as “Roads” or “Human Influence” to the fuel model making up its largest 

border. I used the current measure of percent canopy cover produced by Welch et al. 

(2002).  

 I then created the second and third scenarios (Hx2 and Hx3) to represent 

vegetation conditions of the western GSMNP prior to fire suppression in the 1930s 

(MacKenzie and White 1998, Harrod et al. 1998). The pre-suppression landscape was 

characterized by yellow pine and oak stands and patches of open-canopy woodlands 

with flammable grass understories (Harrod et al. 2000). Scenario Hx2 is a conservative 

estimate of the pre-suppression landscape conditions. I assumed the fuel models are the 

same as Hx1, but I adjusted the canopy cover to accommodate more open vegetation. 

Harrod et al. (1998) found canopy density (stems/ha) increased by 272% and basal area 

(m2/ha) increased by 196% from the 1930s to the 1970s in the western GSMNP. While 

no direct measurements of canopy cover were made, I used Harrod et al. (1998) as a 

guide for the proportion of change applied to the current canopy cover from Welch et al. 

(2002). Canopy cover is divided into the following four classes and their corresponding 
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Table 15. Fuel model and canopy cover description of pre-suppression scenarios. For each scenario (Hx1, Hx2, Hx3), the 
% of Study Area lists the percentage of the total study area this forest type and its associated fuel model compose. Canopy 
Cover lists the percentage of the total study area this canopy cover class (1: 0-25%, 2: 26-50%, 3: 51-75%, 4: 76-100%) 
composes under leafon and leafoff conditions. 

 

Oak Forest  
(Fuel Model: 182) 

Pine Forest  
(Fuel Model: 181) 

Grass/shrub Understory  
(Fuel Model: 163) 

Other 
(Fuel Models: 98, 99, 143,  

150, 202) 

Scenario 

% of 
Study 
Area 

Canopy 
Cover 
(leafon) 

Canopy 
Cover 
(leafoff) 

% of 
Study 
Area 

Canopy 
Cover 
(leafon) 

Canopy 
Cover 
(leafoff) 

% of 
Study 
Area 

Canopy 
Cover 
(leafon) 

Canopy 
Cover 
(leafoff) 

 % of 
Study 
Area 

Canopy 
Cover 
(leafon) 

Canopy 
Cover 
(leafoff) 

Hx1  72.85% 

1: 0.17% 
2: 10.69% 
3: 9.71% 
4: 52.27% 

1: 61.40% 
2: 9.82% 
3: 0.01% 
4: 1.61% 24.04%  

1: 0.04% 
2: 11.21% 
3: 11.35% 
4: 1.44% 

1: 0.15% 
2: 12.90% 
3: 9.63% 
4: 1.36% n/a n/a n/a  3.11% 

1: 3.11% 
2: 0.00% 
3: 0.00% 
4: 0.00% 

1: 3.11% 
2: 0.00% 
3: 0.00% 
4: 0.00% 

Hx2 72.85% 

1: 10.87% 
2: 38.75% 
3: 1.98% 
4: 21.25% 

1: 66.49% 
2: 4.75% 
3: 0.00% 
4: 1.61% 24.04%  

1: 11.25% 
2: 12.79% 
3: 0.00% 
4: 0.00% 

1: 13.05% 
2: 10.99% 
3: 0.00% 
4: 0.00% n/a n/a n/a 3.11% 

1: 3.11% 
2: 0.00% 
3: 0.00% 
4: 0.00% 

1: 3.11% 
2: 0.00% 
3: 0.00% 
4: 0.00% 

Hx3 46.06% 

1: 5.01% 
2: 17.81% 
3: 1.98% 
4: 21.25% 

1: 39.70% 
2: 4.74% 
3: 0.00% 
4: 1.61% 11.07% 

1: 5.17% 
2: 5.90% 
3: 0.00% 
4: 0.00% 

1: 6.00% 
2: 5.07% 
3: 0.00% 
4: 0.00% 39.77% 

1: 11.94% 
2: 27.82% 
3: 0.00% 
4: 0.00% 

1: 33.83% 
2: 5.93% 
3: 0.00% 
4: 0.00% 3.11% 

1: 3.11% 
2: 0.00% 
3: 0.00% 
4: 0.00% 

1: 3.11% 
2: 0.00% 
3: 0.00% 
4: 0.00% 

              



 

55 
 

canopy cover percentages: 1 (0-25%), 2 (26-50%), 3 (51-75%), 4 (76-100%). I divided 

the percent canopy cover by 2 for the areas classified as Oak Forest and Pine Forest. 

Therefore, I reclassified classes 4 (76-100%) and 3 (51-75%) to class 2 (26-50%), and 

classes 2 (26-50%) and 1(0-25%) to class 1 (0-25%). I left the Mesophytic Forest, 

Ericaceous Shrubs, and Nonburnable Surface canopy cover percentages unchanged. 

 Scenario Hx3 assumes open Oak and Pine Forests characterized by grass/shrub 

understories. I used the same canopy cover values as in Scenario Hx2, but altered the 

fuel models to represent the grass/shrub understory. Harrod et al. (2000) measured 

herbaceous and shrub cover 3, 4, and 8 years following fires on xeric sites in the western 

GSMNP. They found a mean herbaceous cover of 22% and a mean shrub and woody 

vine cover of 32% (Harrod et al. 2000). I therefore randomly reclassified 54% (i.e. 22% 

+ 32%) of the Oak and Pine Forest vegetation to fuel model 163 (TU3) in ArcGIS 10 

(ESRI Inc. 2011). TU3 is the “Moderate Load, Humid Climate Timber-Grass-Shrub” 

fuel model. Fire is primarily carried in the moderate forest litter, grass, and shrubs of 

TU3 (Scott and Burgan 2005). Therefore, TU3 appears to appropriately reflect the fuel 

conditions found on the pre-suppression landscape. I used the canopy cover percentages 

determined for Hx2 within the Hx3 landscape. 

 

4.6.3 Run multiple simulations 

 I ran 500 simulations on each pre-suppression landscape scenario (Hx1, Hx2, and 

Hx3) to determine the mean fire size for each landscape. I randomly generated 500 

ignition locations within the study area using ArcGIS 10 Create Random Points tool 
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(ESRI Inc. 2011). Ignition locations located on nonburnable fuel models were 

eliminated. Using R statistical software (R Development Core Team 2008), I randomly 

generated which year of weather and fuel moisture to use for each simulation. Cohen et 

al. (2007) determined the frequency of lightning-caused fires by month within GSMNP 

for 1940-2006. I randomly generated start month for each simulation based on the 

monthly fire frequency distribution from Cohen et al. (2007). Within each month, I 

randomly generated the starting day and beginning and end time (0-2300) of each 

simulation.  

 FARSITE will not end a simulation on its own. Li (2000) stopped simulations 

when non-flammable land cover was encountered, when the fire ran into the boundary of 

the region, or when rainfall exceeded a critical amount. Li (2000) defined the critical 

amount as 30 mm within west-central Alberta, Canada. After investigating the weather 

data for the Cohen et al. (2007) fires I could find no critical amount of rainfall that led to 

extinction. Several fires burned through periods of 30+ mm of rainfall, and several fires 

extinguished without rainfall. This led me to decide that picking a critical rainfall at 

which to extinguish fires was an inappropriate way to determine duration.  

 Instead of using previously set criteria to stop my simulations, I set the duration 

for each simulation based on the frequency distribution for the durations of 35 

unsuppressed fires from the GSMNP during 1985 to 2008, compiled from the Wildland 

Fire Management Information (WFMI) database (Table 16) (Cohen et al. 2007). These 

fires were listed as unsuppressed in the WFMI database and/or included in Cohen et al. 

(2007), which contained an analysis of the ten GSMNP fires managed under the  
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Table 16. Unsuppressed fires used to determine duration. 

Fire Name 
Duration 

(days) 
Extent 
(acres) Year Duration known Cohen et al. 2007 

Barnes 1 0.1 1987 no 
 Big Medicine 11 34 2007 yes 
 Blacksmith 35 523 1999 yes yes 

Butterfl6 1 0.1 2002 no 
 Cane 1 0.1 2000 no 
 Cattail 2 14 185 2007 yes 
 Cave Ridge 6 0.1 2000 yes yes 

Chestnut 1 0.1 1985 yes 
 Chilly Spring 

Knob 38 913 2006 yes yes 

Chimney Top 7 0.1 2008 yes 
 Collins 2 9 130 1999 yes yes 

Dinky 1 0.1 1987 yes 
 Ekaneetlee 13 6 2001 yes yes 

Enloe Ridge 3 0.1 1998 yes yes 

February 1 0.1 1988 no 
 Fizzle 1 0.1 1987 no 
 Foothills 1 0.1 1991 no 
 Fork Snag 1 0.1 1988 no 
 Forney 1 1 1992 no 
 Forney Creek 22 370 1998 yes yes 

Fort Harry 8 0.2 2000 yes yes 

Jet Fire 1 0.1 1992 no 
 Johns Ridge 2 0.1 2008 yes 
 Mitchell Branch 13 35 2008 yes 
 Overlook 1 0.1 1987 no 
 Parkview 1 0.1 2000 no 
 Purchase1 1 0.1 1994 no 
 Shot Beech 35 0.1 2004 yes yes 

Small 1 0.1 1994 no 
 Snag 1 0.1 1989 no 
 Spring 1 0.1 1990 no 
 Tarkiln Ridge 28 16 2008 yes 
 Thunderhead 1 1 1995 no 
 Turtle 1 1 1988 no 
 Wolfpen 5 3 2001 yes yes 
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wildland fire use policy from 1998 to 2006. In cases where the duration or extent 

differed between Cohen et al. (2007) and the WFMI database, Cohen et al. (2007) was 

used because they had error-checked the WFMID data. Seventeen of the 35 fires had an 

unknown duration because only the start time was reported in the WFMI database. 

Therefore, I listed the duration for these fires as 1 day because the probability of a fire 

lasting longer than 1 day but not being discovered was low (Rob Klein personal 

correspondence 9/23/13).  

 The unsuppressed fires were binned into durations of 5 days, and an exponential 

curve was fitted using a nonlinear least-squares estimation performed with R Statistical 

Software for all except the first bin (Fig. 6) (R Development Core Team 2008). The first 

bin, which contained fire durations of 1-5 days, included 62.86% of all the fires (22/35). 

The first bin was not used in the nonlinear regression because it would skew the line to 

such an extent it no longer accurately reflected the distribution of durations. The 

nonlinear regression model equation is: 

 y = exp(a + b * x) where a = -0.73517 and b =0.07084 

This equation was used to solve for y until the number of fires predicted was less than 

0.01% of the total number of fires (Table 17). Sixty-three percent of the durations were 

within the first bin (1-5). I generated random durations between 1 and 5 for 63% of the 

simulations using R statistical software (R Development Core Team 2008). The 

remaining 37% of the durations were based on the nonlinear regression. For each bin, I 

generated random numbers within that bin that were used for the corresponding 

percentage of simulations (e.g. approximately 11% of the simulations had randomly 
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generated durations between 6 and 10) using R statistical software (R Development Core 

Team 2008). While I acknowledge that using only 35 fires on which to base my 

durations is not as many as would be preferred, but it was the most reasonable solution 

based on the information available. 

 
 
 

 
 
Figure 6. Unsuppressed fires from 1985 – 2008 within GSMNP that were used to 
determine simulation durations. 
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Table 17. Fire duration percentages. 
 

Bin 
Number of fires from nonlinear 
regression formula 

Percentage of total fires within 
bin 

 1-5* 5.721494* 62.86% 
 6-10 4.014971 11.47% 
 11-15 2.817444 8.05% 
 16-20 1.977098 5.65% 
 21-25 1.387398 3.96% 
 26-30 0.9735851 2.78% 
 31-35 0.6831984 1.95% 
 36-40 0.4794239 1.37% 
 41-45 0.3364284 0.96% 
 46-50 0.2360834 0.67% 
 51-55 0.1656679 0.47% 
 56-60 0.1162549 0.33% 
 61-65 0.08158009 0.23% 
 66-70 0.05724757 0.16% 
 71-75 0.0401726 0.11% 
 76-80 0.02819051 0.08% 
 81-85 0.01978225 0.06% 
 86-90 0.01388189 0.04% 
 91-95 0.009741404 0.03% 
 96-100 0.00683588 0.02% 
 101-

105 0.004796974 0.01% 
 106-

110 0.003366203 0.01% 
 111-

115 0.002362181 0.01% 
 * Bin 1-5 percentage was not determined using line function. 
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4.7 Objective 3: Estimate the percentage of pre-suppression fire frequency that could be 

accounted for by lightning and anthropogenic ignitions 

 With the spatial extent of fires on the three landscape scenarios, I then explored 

the implications for fire cycle and ignition density. An understanding of ignition density 

and fire cycle is needed to determine the contributions of lightning and anthropogenic 

ignitions to the observed fire frequency on the pre-suppression landscape. 

 

4.7.1 Determine total area burned and lightning fire cycle 

 Using the simulations on the three different pre-suppression landscape scenarios, 

I next determined the fire cycle for the study area. Fire cycle can be calculated by 

dividing the study area by the total area burned and multiplying that by the number of 

years observed for the study area.  

  Fire cycle = (Study area / Total area burned) x Years observed 

To determine the total area burned, I created overlays of the simulation areas and 

calculated the number of fires per 10m cell (resolution and location of cells matched 

FARSITE inputs). I determined the number of years represented for the study area based 

on current lightning ignition observations. From 1942 to 2008, there were 124 recorded 

lightning ignitions in GSMNP. Of those, 31 were within the study area. Lightning 

ignitions (31) divided by the number of years recorded (67) equals a rate of 0.463 

lightning ignitions per year. At that ignition rate, five-hundred lightning fires (i.e. the 

number of simulations run) would require a span of 1080 years. Twenty-two of the 
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simulations showed no fire growth, but they were still included in the calculations. 

Eliminating those 22 simulations would lead to a 1033 year time span of observed fires. 

 During the 1080 years observed for this study, fires would have ignited outside 

of the study area and burned into the study area. Fires with ignitions outside the study 

area are not represented by my simulations. This leads to an underestimation of the total 

area burned. To account for this underestimation I created a subset of the landscape. The 

subset landscape experienced fires ignited within the subset landscape and fires that 

ignited outside of the subset landscape and burned into it, giving us a better 

representation of the amount of fire experienced within this area. I created buffers at 500 

meter intervals from the study area boundary and determined the mean number of fires 

per cell for each 500 meter buffer. The mean number of fires per cell increased until the 

2500-3000 meter buffer (Fig. 7). Therefore, I subset the study area by 2500 meters (Fig. 

8). I then calculated the number of fires for each 10m cell for just the subset area, and I 

calculated the lightning fire cycle for the subset study area. 

 After calculating fire cycle for the total and subset study area, I tested if 

topographic position affected fire cycle. I used the slope position classification Flatley et 

al. (2011) calculated for the GSMNP using the GIS application LANDFORM  

(Klingseisen et al. 2008). The landscape was classified based on topographic wetness 

into ridge (driest), upper slope, lower slope, and bottom (wettest). I calculated fire cycle 

for each topographic position. 
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Figure 7. Mean number of 10 m grid cell fire occurrence count for each 500 meter buffer 
for the Hx3 landscape. 
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Figure 8. Subset study area compared to total study area. Subset study area boundary is 
2500 meters from total study area boundary. 
 
 
 
4.7.2 Determine ignition density 

 Using two different MFIs calculated from fire scarred trees, I then calculated the 

ignition density for the study area. Flatley et al. (2013) found a point MFI of 9.1 years 

for Licklog Ridge. Point MFI is calculated based on individual trees as opposed to other 

MFI calculations that create composites (Hoss et al. 2008). Point MFI is a useful, but 

conservative, estimate of the frequency of fire at any point on the landscape since fires 

do not usually scar every tree they burn (Hoss et al. 2008). Since point MFI represents 

how often any point on the landscape burned, it should approximately equal the fire 

cycle (Larsen 2000). Harmon (1982) found an arithmetic MFI of 12.7 years for the 

westernmost portion of GSMNP. I determined the average hectares that would have to 
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burn yearly to maintain the recorded MFI by dividing the study area by 9.1 and 12.7. To 

determine the ignition density, I then divided the average acres by the mean burned area 

per fire. The mean burned area is the area per study area or topographic region that 

would burn during a fire. It was determined by dividing the total area burned per study 

area or topographic region by 500.  

  Ignition density = (Study area / MFI) / (Total area burned / 500) 

Flatley et al. (2013) collected most samples on the ridge and upper slope, but a few were 

in the lower slope (Flatley personal communication 3/6/2014).Therefore, I determined 

the ignition density per topographic region because the 9.1 MFI is most appropriate to 

compare to the ridge, upper slope, and lower slope regions. Since I do not have the 

topographic position data for the sampling sites from Harmon (1982), I chose to only 

apply the 12.7 MFI to the total study area and the subset study area. 

 

4.7.3 Determine percentage of pre-suppression lightning fire frequency 

 With the ignition density and fire cycle determined above, I calculated the 

percentage of ignitions that could be accounted for by lightning. Two formulas that 

return the same results can be used to determine the percentage of lightning ignitions. 

The first formula divides the current lightning ignition density for the study area by the 

ignition density required to maintain the total burned area generated by the different 

landscape scenarios. 

 Lightning ignitions (%) = Current lightning ignition density / Ignition density 
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The second formula divides the MFI by the lightning fire cycle to determine the 

potential percentage of lightning ignitions that acted on the pre-suppression landscape. It 

uses the MFI from Flatley et al. (2013) or Harmon (1982), and both formulas assume 

that anthropogenic ignitions have the same mean fire size as lightning ignitions. 

  Lightning ignitions (%) = MFI / Lightning fire cycle 

The ignitions that are not accounted for by lightning must be anthropogenic in origin. 

  Anthropogenic ignitions (%) = 1 – Lightning ignitions (%)  
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5. RESULTS 

 

5.1 Spatial extent of fires on pre-suppression landscape 

 Most simulated fires on Hx1 and Hx2 were of small sizes, with 57% less than 10 

hectares, whereas 54% of Hx3 fires were between 100 and 1000 ha (Fig. 9-12). Fire size 

differed among the historic scenarios (Friedman’s test, x2 = 860.1248, df = 2, p < 0.01) 

(Table 18). Post-hoc Nemenyi tests yielded significant differences in mean fire sizes 

generated among all three landscapes (Table 19). The mean fire size of scenario Hx3 is 

an order of magnitude larger than either of the other two scenarios. However, the mean 

fire size generated by averaging the simulated fire sizes for the total study area is an 

underestimation of what would have been seen on the landscape historically because the 

study area boundary truncated some of the fires (Fig. 12). Hx1 had 5.6 % of the total 

simulations stopped by the study area boundary. Hx2 had 6.0%, but Hx3 had 25.4% 

because the mean fire size for Hx3 was much larger than Hx1 or Hx2. The study area 

boundary, therefore, led to an underestimation of the mean fire size.  

 

5.2 Total area burned and lightning fire cycle for the study area 

 The overlays generated by counting the number of fires each 10m cell burned 

showed a much larger range of times burned for Hx3 than for the Hx1 or Hx2 scenarios 

(Fig. 13-15). The number of fires per 10m cell ranged from 0 to 6 for Hx1 and Hx2 and 

0 to 32 for Hx3. The total area burned created from overlays was slightly higher than if I 

had added up the burned area from each simulation due to the entire area of a partially   
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Figure 9. Fire perimeters generated on the Hx1 landscape. Grey polygons are areas 
burned in individual simulations. Areas could have burned in multiple simulations. Total 
area burned is 22,472.07 ha. 
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Figure 10. Fire perimeters generated on the Hx2 landscape. Grey polygons are areas 
burned in individual simulations. Areas could have burned in multiple simulations. Total 
area burned is 23,797.10 ha. 
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Figure 11. Fire perimeters generated on the Hx3 landscape. Grey polygons are areas 
burned in individual simulations. Areas could have burned in multiple simulations. Total 
area burned is 276,400.40 ha. 
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Figure 12. The fire size distribution from the Hx1, Hx2, and Hx3 landscape scenarios. 
Lighter colors represent simulations that were truncated by the study area boundary. The 
total number of simulations in each bin is listed above each column.



 

72 
 

Table 18. Descriptive statistics of the three landscape scenarios. 
 

Landscape 
Mean 
(Ha) 

Median 
(Ha) SD Min Max 

Mean 
Rank 

Rank 
Sum Skewness 

Hx1 44.94 6.52 114.54 0.00 1275.41 1.14 571.5 5.63 
Hx2 47.59 7.00 118.82 0.00 1275.01 1.95 975.5 5.47 
Hx3 567.20 264.00 925.43 0.00 8125.87 2.91 1453.0 4.10 

 
 
 
 

Table 19. Nemenyi post-hoc results between the three landscape scenarios.  

Comparison Difference in Mean Rank 
Difference in Rank 
Sums Significance 

Hx1 v. Hx3 1.763 881.5 p < 0.001* 
Hx1 v. Hx2 0.808 404.0 p < 0.001* 
Hx2 v. Hx3 0.955 477.5 p < 0.001* 
*Starred values are significantly different. 
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Figure 13. Count of fire occurrence for each 10 m grid cell for the Hx1 landscape. Range 
of counts is 0 to 6.
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Figure 14. Count of fire occurrence for each 10 m grid cell for the Hx2 landscape. Range 
of counts is 0 to 6.
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Figure 15. Count of fire occurrence for each 10 m grid cell for the Hx3 landscape. Range 
of counts is 0 to 32. 
 
 
 
burned cell counting towards the total burned area for the overlays. However, this only 

led to a 3% increase in total burned area. Thus, it had a negligible effect on my results. I 

also calculated the lightning fire cycle for each cell (Fig. 16-18). A cell experiencing 32 

fires in 1080 years indicates that a lightning fire burned that area on average every 34 

years, whereas cells experiencing 1 fire in 1080 years indicates that a lightning fire 

burned that area every 1080 years.  

 The subset landscape was created to account for fires igniting outside the study 

area and burning into it. The subset landscape experienced 56.2% of Hx1 and Hx2 

simulations and 74.6% of Hx3 simulations (Fig. 19-22) I calculated the number of fires 

and lightning fire cycle per 10m cell for the subset study area (Fig. 23-28).   
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Figure 16. Fire cycle for each 10 m grid cell for the Hx1 landscape. Range of fire cycles 
is 34 to 1080 years.
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Figure 17. Fire cycle for each 10 m grid cell for the Hx2 landscape. Range of fire cycles 
is 34 to 1080 years. 
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Figure 18. Fire cycle for each 10 m grid cell for the Hx3 landscape. Range of fire cycles 
is 34 to 1080 years.
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Figure 19. Fire perimeters on the Hx1 landscape that intersect the subset study area. 
Grey polygons are areas burned in individual simulations. Areas could have burned in 
multiple simulations.
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Figure 20. Fire perimeters on the Hx2 landscape that intersect the subset study area. 
Grey polygons are areas burned in individual simulations. Areas could have burned in 
multiple simulations.
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Figure 21. Fire perimeters on the Hx3 landscape that intersect the subset study area. 
Grey polygons are areas burned in individual simulations. Areas could have burned in 
multiple simulations.  
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Figure 22. The fire size distribution from the Hx1, Hx2, and Hx3 landscape scenarios. 
Lighter colors represent simulations that are outside of the subset study area. The total 
number of simulations in each bin is listed above each column. 
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Figure 23. Count of fire occurrence for each 10 m grid cell for the subset Hx1 landscape. 
Range of counts is 0 to 6.
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Figure 24. Count of fire occurrence for each 10 m grid cell for the subset Hx2 landscape. 
Range of counts is 0 to 6.
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Figure 25. Count of fire occurrence for each 10 m grid cell for the subset Hx3 landscape. 
Range of counts is 0 to 32.
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Figure 26. Fire cycle for each 10 m grid cell for the subset Hx1 landscape. Range of fire 
cycles is 34 to 1080 years.  
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Figure 27. Fire cycle for each 10 m grid cell for the subset Hx2 landscape. Range of fire 
cycles is 34 to 1080 years.
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Figure 28. Fire cycle for each 10 m grid cell for the subset Hx3 landscape. Range of fire 
cycles is 34 to 1080 years. 

 

 
 
 
 Using the total area burned from the overlays, the lightning fire cycle for the 

entire study area, the subset study area, and the different landform classifications were 

between 1100 and 1900 for Hx1 and Hx2 and 100 and 150 for Hx3 (Table 20). As 

expected, the bottom land had the longest fire cycle for all landscapes and all 

topographic regions and the ridge had the shortest. I also calculated the subset fire cycle 

using the 1033 year time span. When using only the 478 simulations that produced fire 

growth, the lightning fire cycle for Hx3 showed approximately a 5 year shorter fire cycle 

than the 1080 year span, while the fire cycle for Hx1 and Hx2 showed approximately 65 

year shorter fire cycles.  



 

89 
 

Table 20. Lightning fire cycle by landform classification 
 

      Area Burned (ha)   

Lightning Fire Cycle 
(Study Area/Area 

burned*1080 Observed 
years)   

  
Study 
area (ha)   Hx1 Hx2 Hx3   Hx1 Hx2 Hx3   

Total Study Area 34609.27 

 

23246.11 24610.9 292629.65 

 

1607.93 1518.76 127.73 

 Ridge 9266.44 
 

7078.45 7545.25 85002.28 
 

1413.83 1326.36 117.74 
 Upper slope 11868.63 

 
8102.97 8580.65 103243.83 

 
1581.90 1493.84 124.15 

 Lower slope 7429.41 
 

4652.43 4904.28 60891.14 
 

1724.64 1636.07 131.77 
 Bottom land 6031.88 

 
3406.28 3574.63 43422.26 

 
1912.47 1822.41 150.03 

 
           Subset Study 

Area 17875.47 

 

13888.97 14689.3 168730.85 

 

1389.99 1314.26 114.42 

 Ridge 4876.09 
 

4179.79 4451.53 49582.52 
 

1259.91 1183.00 106.21 
 Upper slope 6076.37 

 
4729.52 4999.90 58909.99 

 
1387.56 1312.52 111.40 

 Lower slope 3801.77 
 

2810.03 2955.27 34875.84 
 

1461.16 1389.35 117.73 
 Bottom land 3121.24   2169.63 2282.61 25362.49   1553.69 1476.79 132.91   

 



 

90 
 

5.3 Fire size distribution 

 The majority of fires from Hx1 and Hx2 were small in size and a negative 

exponential curve was fit to their distributions (Fig. 29). Hx3 simulations consistently 

burned at a larger size, with the majority burning between 100 and 1000 ha, but a 

negative exponential curve still fit their distributions (Fig. 29). Over 70% of fires on the 

Hx3 landscape were larger than 100 ha, while over 80% of fires on the Hx1 and Hx2 

landscapes were less than 100 ha. The majority of the area burned for Hx1, Hx2, and 

Hx3 were from the largest fires (Fig.30). 

 

5.4 Ignition density 

 The ignition density required to maintain a 9.1 MFI for Hx1 and Hx2 ranged 

from 60 to 97 ignitions per year for the study area (Table 21). For the Hx3 landscape, 

only 5 to 8 ignitions are required. The ignition density required to maintain a 12.7 MFI 

for Hx1 and Hx2 ranged from 48 to 59 ignitions per year for the study area (Table 22). 

For the Hx3 landscape, only 4 to 5 ignitions are required. With a current ignition density 

of 0.46 ignitions per year for the study area, approximately 47 to 97 non-lightning 

ignitions would be required on the Hx1 or Hx2 landscapes to maintain the fire frequency 

reconstructed from fire scars. On the Hx3 landscape, 4 to 7 non-lightning ignitions 

would be required to maintain the observed frequency. These non-lightning ignitions 

would have to be anthropogenic in origin. 
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Figure 29. The fire size distribution for Hx1, Hx2, and Hx3 for different fire size 
categories. 
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Figure 30. The percent area burned for Hx1, Hx2, and Hx3 for different fire size 
categories. 
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Table 21. Ignition density by study area and topographic region using MFI from Flatley et al. (2013) 

          
Mean Burned Area  

Per Fire (ha)   
Ignition Density 

Required   

Anthropogenic 
Ignition Density 

Required 

  
Study 
area (ha) 

MFI 
(years) 

Current 
Ignition 
Density 

Average 
yearly 
burn area 
(ha) Hx1 Hx2 Hx3   Hx1 Hx2 Hx3   Hx1 Hx2 Hx3 

Total Study Area 34609.27 9.1 0.46 3803.2 46.48 49.21 585.12 

 

81.82 77.29 6.50 

 

81.36 76.82 6.04 

Ridge 9266.44 9.1 0.46 1018.3 14.16 15.09 170.00 
 

71.93 67.48 5.99 

 
71.47 67.02 5.53 

Upper slope 11868.63 9.1 0.46 1304.2 16.21 17.16 206.49 
 

80.48 76.00 6.32 

 
80.02 75.54 5.85 

Lower slope 7429.41 9.1 0.46 816.4 9.30 9.81 121.78 
 

87.74 83.24 6.70 

 
87.28 82.77 6.24 

Bottom land 6031.88 9.1 0.46 662.8 6.81 7.15 86.84 
 

97.30 92.71 7.63 

 
96.83 92.25 7.17 

                Subset Study 

Area 17875.47 9.1 0.46 1964.3 27.78 29.38 337.46 

 

70.72 66.86 5.82 

 

70.25 66.40 5.36 

Ridge 4876.09 9.1 0.46 535.8 8.36 8.90 99.17 
 

64.10 60.19 5.40 

 
63.64 59.72 4.94 

Upper slope 6076.37 9.1 0.46 667.7 9.46 10.00 117.82 
 

70.59 66.77 5.67 

 
70.13 66.31 5.20 

Lower slope 3801.77 9.1 0.46 417.8 5.62 5.91 69.75 
 

74.34 70.68 5.99 

 
73.87 70.22 5.53 

Bottom land 3121.24 9.1 0.46 343.0 4.34 4.57 50.72   79.04 75.13 6.76   78.58 74.67 6.30 
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Table 22. Ignition density by study area using MFI from Harmon (1982) 

          
Mean Burned Area  

Per Fire (ha)   
Ignition Density 

Required   

Anthropogenic 
Ignition Density 

Required 

  
Study 
area (ha) 

MFI 
(years) 

Current 
Ignition 
Density 

Average 
yearly 
burn area 
(ha) Hx1 Hx2 Hx3   Hx1 Hx2 Hx3   Hx1 Hx2 Hx3 

Total Study 

Area 34609.27 12.7 0.46 2725.1 46.48 49.21 585.12   58.63 55.38 4.66   58.17 54.92 4.19 

Subset Study 

Area 17875.47 12.7 0.46 1407.5 27.78 29.38 337.46   50.67 47.91 4.17   50.21 47.45 3.71 
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5.5 Percentage of pre-suppression lightning fire frequency 

 The percentage of lightning ignitions was under 1% for both Hx1 and Hx2 for 

the total study area, the subset study area and for all topographic positions when using 

either the 9.1 or 12.7 year MFI (Table 23 and 24). For Hx3, the percentage of lightning 

ignitions was between 6 and 11% for the total study area, the subset study area and for 

all topographic positions when using either the 9.1 or 12.7 year MFI. When using only 

the 478 simulations that produced fire growth, the percentage of lightning ignitions was 

approximately 0.03% more for Hx1 and Hx2 and 0.34% more for Hx3.
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Table 23. Potential ignition source using Flatley et al. (2013) 

        
Lightning Fire Cycle 

(years)   
Percentage Lightning 

Ignitions   
Percentage Anthropogenic 

Ignitions 

  
Study 
area (ha) 

MFI 
(years)   Hx1 Hx2 Hx3   Hx1 Hx2 Hx3   Hx1 Hx2 Hx3 

Total Study 

Area 34609.27 9.1 

 

1607.93 1518.76 127.73 

 

0.57% 0.60% 7.12% 

 

99.43% 99.40% 92.88% 

Ridge 9266.44 9.1 
 

1413.83 1326.36 117.74 
 

0.64% 0.69% 7.73% 
 

99.36% 99.31% 92.27% 
Upper slope 11868.63 9.1 

 
1581.90 1493.84 124.15 

 
0.58% 0.61% 7.33% 

 
99.42% 99.39% 92.67% 

Lower slope 7429.41 9.1 
 

1724.64 1636.07 131.77 
 

0.53% 0.56% 6.91% 
 

99.47% 99.44% 93.09% 
Bottom land 6031.88 9.1 

 
1912.47 1822.41 150.03 

 
0.48% 0.50% 6.07% 

 
99.52% 99.50% 93.93% 

               Subset Study 

Area 17875.47 9.1 

 

1389.99 1314.26 114.42 

 

0.65% 0.69% 7.95% 

 

99.35% 99.31% 92.05% 

Ridge 4876.09 9.1 
 

1259.91 1183.00 106.21 
 

0.72% 0.77% 8.57% 
 

99.28% 99.23% 91.43% 
Upper slope 6076.37 9.1 

 
1387.56 1312.52 111.40 

 
0.66% 0.69% 8.17% 

 
99.34% 99.31% 91.83% 

Lower slope 3801.77 9.1 
 

1461.16 1389.35 117.73 
 

0.62% 0.65% 7.73% 
 

99.38% 99.35% 92.27% 
Bottom land 3121.24 9.1   1553.69 1476.79 132.91   0.59% 0.62% 6.85%   99.41% 99.38% 93.15% 

 
 
 

Table 24. Potential ignition source using Harmon (1982) 

        
Lightning Fire Cycle 

(years)   
Percentage Lightning 

Ignitions   
Percentage Anthropogenic 

Ignitions 

  
Study 
area (ha) 

MFI 
(years)   Hx1 Hx2 Hx3   Hx1 Hx2 Hx3   Hx1 Hx2 Hx3 

Total Study 

Area 34609.27 12.7 

 

1607.93 1518.76 127.73 

 

0.79% 0.84% 9.94% 

 

99.21% 99.16% 90.06% 

Subset Study 

Area 17875.47 12.7   1389.99 1314.26 114.42   0.91% 0.97% 11.10%   99.09% 99.03% 88.90% 
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6. DISCUSSION 

 

6.1 Hypothesis 1: Spatial extent 

 The smaller mean fire size from the Hx1 landscape scenario is consistent with 

my expectations of fire size on a landscape representing current vegetation conditions. 

Hx1 is the most conservative of my three landscape scenarios, assuming that the 

landscape prior to suppression was the same as the current landscape. Because Hx1 

represents the current vegetation, its mean fire size should be similar to that seen on the 

current landscape. Flatley et al. (2011), in a review of 643 anthropogenic and 101 

lightning ignited fires in the entire GSMNP from 1930 to 2003, found a mean fire size of 

25.6 ha for all fires, 8.2 ha for lightning fires, and 28.3 ha for anthropogenic fires. 

Harmon (1982), in a review of anthropogenic and lightning ignited fires from 1940-1979 

in approximately 9,100 ha of the westernmost GSMNP, found a mean fire size of 3.4 ha 

for lightning fires and 5.4 ha for anthropogenic fires. The Hx1 simulations produced a 

mean fire size of 44.94 ha, over 5 times what Flatley et al. (2011) found and 13 times 

what Harmon (1982) determined for lightning-ignited fires. However, this does not 

indicate that Hx1 overestimated fire spread. During the time periods for both studies, the 

GSMNP was practicing fire suppression. Therefore, suppression efforts limited the 

spread of almost all of the fires included in these studies. In addition, trails and roads, 

which were not included in the Hx1 scenario, potentially acted as fire breaks impeding 

fire spread. The 35 unsuppressed lightning fires from GSMNP from 1985 to 2008 had a 

mean fire size of 78.7 ha. Thirty-five is a small sample size, but this mean fire size is of 
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the same order of magnitude of my simulations. Therefore, fire behavior on Hx1appears 

to be a reasonable representation of actual fire behavior. While I expected Hx2 to show 

more fire spread due to its open canopy conditions, its mean fire size is closer to Hx1 

than Hx3. The little change between Hx1 and Hx2 when compared to Hx3 indicates that 

canopy opening without associated vegetation changes does not have as much effect on 

fire spread as canopy opening with vegetation change. 

 The larger mean fire size and short fire cycle on the Hx3 landscape scenario is 

consistent with my expectations of fire spread on a more open landscape with flammable 

herbaceous understories. Hx3 was the least conservative and most realistic scenario of 

the landscape conditions prior to suppression. Based on studies of current lightning fires 

in the GSMNP (Flatley et al. 2011, Harmon 1982, Cohen et al. 2007), the mean fire size 

of Hx3 was considerably larger. The mean fire size of Hx3 was 67 times larger than 

Flatley et al. (2011), 163 times larger than Harmon (1982), and 7 times larger than the 35 

unsuppressed fires from 1985 to 2008. This confirms my first hypothesis that historic 

fire sizes predicted by fire modeling will be larger than those on the current landscape. 

This is in line with previous hypotheses that pre-suppression fires were larger than those 

on the current landscape (Harrod et al. 2000; Lafon 2010). 

 

6.2 Lightning fire cycle 

 The three landscape scenarios were created to represent different vegetation 

conditions that could have existed prior to suppression. Hx1 and Hx2 produced 

significantly different fire sizes. However, the similar lightning fire cycles for the Hx1 
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and Hx2 scenarios indicate that lightning-ignited fires would have similar effects on both 

landscapes. While lightning fire cycles of 1000-2000 years are shorter than what the 

GSMNP has experienced during the period of fire suppression (25,000-30,000) (Harmon 

1982; Flatley et al. 2011), they indicate that lightning-ignited fires would not be 

important shapers of the Hx1 or Hx2 landscape. On Hx1 and Hx2, lightning-ignited fires 

would not have been able to maintain the fire-associated species and landscape that 

appear to have existed prior to suppression (Wright and Baily 1982; Abrams 1992; Frost 

1998; Harrod et al. 2000; Nowacki and Abrams 2008). 

 The lightning fire cycle for Hx3 (100-150 years) is such that the dominant tree 

species would have experienced at least one to two fire events within their lifespan 

(Lafon and Grissino-Mayer 2007). Therefore, lightning-ignited fires would be common 

enough and burn enough area to influence the vegetation and succession of the western 

GSMNP. However, the lightning fire cycle for Hx3 would still not be short enough to 

maintain the fire-associated species and landscape typical of the southern Appalachians 

throughout the entire study area or maintain the observed frequency calculated from fire 

scars (Harmon 1982; Flatley et al. 2013). Additional ignitions from anthropogenic 

sources would be required to maintain these species and landscapes. 

 It is apparent that active suppression by managers has changed the lightning fire 

cycle. The suppression-era fire cycles (25,000-30,000) (Harmon 1982; Flatley et al. 

2011) indicate that lightning fires were ecologically inconsequential on the landscape 

during this time. By relying on suppression-era information, some researchers and 

managers have incorrectly concluded that lightning fires did not impact the southern 
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Appalachian landscape historically (Cohen and Dellinger 2006). Under current WFU 

policies, some lightning-ignited fires have been allowed to burn unsuppressed. Thirty-

five lightning-ignited fires burned unsuppressed from 1985-2008. These fires produced a 

lightning fire cycle of approximately 5,300 years. While much shorter than the 

suppression-era fire cycle, the current unsuppressed lightning fire cycle is still thousands 

of years longer than the lightning fire cycle indicated by fire history reconstructions or 

produced by the Hx3 scenario. 

 

6.3 Fire size distribution 

 Individual fires create burned-over patches on the landscape. Large fires create 

large patches, and small fires create small patches (Gill et al. 2003; Cui and Perera 

2008). Early successional species establish on recently burned patches (DiBari 2004), 

transitioning to mid then later successional species as time-since-fire increases. On 

landscapes with shorter fire cycles, like the pre-suppression GSMNP, frequent fires 

maintain patches dominated by early successional species (Harrod et al. 2000; Wimberly 

and Reilly 2007). The frequency and distribution of fire sizes influences the patch size 

and age-structure of the forest (Gill et al. 2003; Cui and Perera 2008).  

 The same mean fire size, and consequent fire cycle, can be the result of several 

fire size distributions (Li et al. 1999). Therefore, a small number of large fires and many 

small fires, or a mixture of large, medium, and small fires can produce the same fire 

cycle. However, different fire size distributions will create different patterns, patch sizes, 
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and tree age-structure on the landscape. These different patterns will influence both the 

ecological effects of fire and the subsequent fire behavior (Li et al. 1999). 

 Current literature indicates that fire sizes in the North American boreal forest, 

northwestern United States, Rocky Mountains, Spain, and modeled landscapes generally 

follow power law, negative exponential, or Pareto distributions (Malamud et al. 2005; 

Cui and Perera 2008). In other words, the majority of fires are small with few large fires. 

As the number of small fires increases and the number of large fires decreases, the slope 

of the distribution becomes steeper. Fire size distribution varies both spatially and 

temporally. The steepness of the slope is affected by regional conditions and 

anthropogenic actions (Cui and Perera 2008). Fire suppression is associated with an 

increased occurrence of small fires, leading to a steeper slope (Weber and Stocks 1998; 

Cui and Perera 2008). The eastern U.S. appears to have a larger ratio of small to large 

wildfires, or a steeper slope, than the western part of the country (Malamud et al. 2005). 

 On landscapes where flammable and less flammable fuels are interspersed, fire 

spread is hindered, resulting in few large fires and many smaller fires (Cui and Perera 

2008). Currently, the southern Appalachians are consistent with this fuel configuration 

and fire size distribution. Current fires show a characteristic fire size distribution with 

many small fires and few large fires (Lafon et al. 2005; Lafon and Grissino-Mayer 2007; 

Flatley et al. 2011). Approximately 80% of lightning ignited fires burned under 10 ha 

and approximately 15% burned 10-100 ha for areas in the central Appalachians (Lafon et 

al. 2005; Lafon and Grissino-Mayer 2007). However, power law or negative exponential 

distributions have not been fit to these data to determine the steepness of their slope. 
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Since the majority of these fires are suppressed, they should show a steeper slope than 

may have existed for unsuppressed fires or prior to suppression.  

 Because Hx1 is representative of the current vegetation condition, it would be 

expected to show a similar fire size distribution to current fires. The fire size distribution 

for Hx1 and Hx2 are somewhat consistent with the currently observed fire size 

distributions on the southern Appalachians (Fig. 28). The majority of fires from Hx1 and 

Hx2 were small in size and a negative exponential curve was fit to their distributions. 

With their shorter fire cycle, the fire size distributions of Hx1 and Hx2 are consistent 

with Li et al (1999), who found that landscapes with longer fire cycles would have more, 

smaller fires than landscapes with shorter fire cycles. However, there are fewer small 

fires than are seen on the current landscape. This is potentially due to active suppression 

causing more small fires on the current landscape than was seen within the simulations 

(Weber and Stocks 1998; Cui and Perera 2008). Hx3 simulations consistently burned at 

a larger size, with the majority burning between 100 and 1000 ha, but a negative 

exponential curve still fit their distributions. Hx3 has what appears to be an uncommon 

fire size distribution, but since it fits a negative exponential curve, it is a realistic result. 

 A pre-suppression fire size distribution that is similar to that of Hx3 indicates that 

the landscape was shaped by more medium to large fires. This fire size distribution 

would lead to many medium to large, early successional patches that provide continuous 

fuel beds, leading to conditions that favored fire spread. In addition, larger fires appear 

to have more lasting ecological effects as smaller patches are likely in-filled more 

quickly than larger patches (Sousa 1984). The fire size distribution and the frequency 
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experienced by the Hx3 landscape seems capable of maintaining the fire-associated 

ecosystems characteristic of the pre-suppression landscape.  

 An important fire regime characteristic that fire size distribution indicates is what 

size class of fires is burning the most area. In the GSMNP, 39% of the area burned from 

1930 to 2003 was burned by the few fires larger than 1,000 ha, and approximately 80% 

of the area burned was burned by the approximately 10% of fires larger than 100 ha 

(Flatley et al. 2011). Thus, in the current GMSNP it appears that few large fires will burn 

most of the landscape. Hx1 and Hx2 exhibited similar patterns.   

 Similar to the current landscape, Hx1, and Hx2, the majority of the area burned 

on the Hx3 landscape was from the largest fires. However, Hx3 shows more burned area 

from both medium and larger fires than the current fire size distribution (Flatley et al. 

2011). Therefore, Hx3 does not appear consistent with the fire size distribution seen on 

the current landscape. The pre-suppression fire size distribution may have resulted in 

more medium to large fires and did not rely only on a few large fires to burn the majority 

of area. There is a need for future research on the potential fire size distribution of the 

pre-suppression landscape to corroborate these results. With current unsuppressed fire 

information, the potential to detect a change in fire size distribution could inform the 

magnitude of fire regime change that has resulted from active fire suppression policies.  

 

6.4 Hypothesis 2: Ignition density 

 As previously discussed, lightning was not the only ignition source that was 

affecting the landscape (Denevan 1992, Delcourt et al. 1998; Nowacki and Abrams 
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2008). Native Americans and European settlers used fire to manipulate the landscape 

(Denevan 1992; Delcourt et al. 1998; Nowacki and Abrams 2008). Assuming that 

lightning and anthropogenic fires produced the same mean fire size, to maintain a 9.1 

MFI to a 12.7 MFI (Harmon 1982; Flatley et al. 2013), 4 to 7 ignitions a year are 

needed. Assuming that the pre-suppression rate of lightning ignitions is the same as the 

current rate of lightning ignitions (0.463), this confirms my second hypothesis that 

ignition density required to support the observed pre-suppression fire regime will be 

larger than can be accounted for by lightning ignitions alone. 

 

6.5 Ignition source 

 For Licklog Ridge in the western GSMNP, Flatley et al. (2013) found that 90.6% 

of fires where seasonality could be determined from 1773 to pre-suppression occurred 

during the dormant season and 9.4% of fires occurring in the spring to summer. Since 

lightning ignitions are most common in the growing season and anthropogenic fires are 

most common in the dormant season, this could indicate that 9.4% of ignitions were 

caused by lightning and 90.6% were caused by human activity (Hoss et al. 2008; Lafon 

2010). The percentage of lightning (6-11%) and anthropogenic (89-94%) ignitions for 

Hx3 agree with the seasonality from the fire history performed by Flatley et al. (2013). 

This lends support to the assertion that Hx3 reasonably represents the pre-suppression 

landscape. It also helps validate my study and is consistent with the current 

understanding of the importance of anthropogenic ignitions in the pre-suppression fire 

regime in the western GSMNP. The percentage of lighting (< 1%) and anthropogenic 
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(>99%) ignitions on Hx1 and Hx2 do not agree with the seasonality from Flatley et al. 

(2013), indicating that these are likely not accurate representations of the pre-

suppression landscape. 

 Studies of current lightning and anthropogenic fire sizes (Harmon 1981; Harmon 

1982; Lafon et al. 2005; Lafon and Grissino-Mayer 2007; Flatley et al. 2011,) generally 

agree that anthropogenic fires are larger than lightning fires. It is unknown whether this 

was the case prior to suppression since current studies include suppressed fires. In 

addition, the spatial pattern of anthropogenic ignitions has likely changed. Current 

anthropogenic ignitions are typically accidental or arson and tend to occur at lower 

elevations and near park boundaries (Harmon 1981). If pre-suppression lightning and 

anthropogenic fire sizes followed the same ratio of fire sizes as found on the current 

landscape, anthropogenic fires in GSMNP could be up to 2.5 times as large as lightning 

fires (Flatley et al. 2011; Harmon 1982). If this was the case, the mean fire size for 

anthropogenic ignitions would be 1385.86 ha. On the Hx3 landscape, a 1385.86 ha fire 

size would take only approximately 2.56 anthropogenic ignitions, in addition to lightning 

ignitions, per year to maintain the fire cycle for the study area. Under this scenario, 85% 

of ignitions would be anthropogenic and 15% of ignitions would be caused by lightning. 

These percentages still agree with the seasonality found by Flatley et al. (2013), i.e. that 

dormant season burns were far more common than growing season burns. 

 While lightning apparently was not the main ignition source on the pre-

suppression landscape, lightning fires can have a disproportionate effect on the 

landscape because summer fires often cause greater mortality than dormant season fires 
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(Sutherland et al. 1993; Lafon et al. 2005). Their seasonality, frequency, and size show 

that lightning fires contributed to the structure and composition of the western GSMNP 

forest, with additional manipulation by Native Americans and European settlers.  

 

6.6 Management 

 For over 4,000 years (Delcourt and Delcourt 1997), fire has been shaping the 

southern Appalachians. The frequent use of fire by Native Americans and European 

settlers, the extreme fires associated with logging and the Industrial Revolution in the 

late 19th century, and almost a century of attempted fire exclusion have determined the 

southern Appalachian vegetation composition and structure. The current landscape 

appears to be different than what existed prior to fire suppression. The dominant 

vegetation communities existed for thousands of years until active fire exclusion (Frost 

1998; Nowacki and Abrams 2008). These communities were maintained by a 

combination of lightning and anthropogenic ignitions.  

Today, many managers seek to restore the pre-suppression landscape with its 

fire-associated species. By altering the current fire cycle and fire size distribution to be 

more in line with those on the pre-suppression landscape, managers hope to alter the 

current forest composition. My study indicates that if allowed to burn, lightning fires 

would influence the current landscape. Under the current WFU policy, lightning ignited 

fires that achieve resource management objectives are allowed to burn unsuppressed 

(Lafon and Grissino-Mayer 2007, Cohen et al. 2007). However, lightning fires are not 

enough either to restore or subsequently maintain a pre-suppression landscape especially 



 

107 
 

under current fuel conditions. Anthropogenic fires are also needed to effectively manage 

the southern Appalachian landscape. Acknowledging that the current landscape cannot 

be restored to exactly its pre-suppression state, the increased use of the WFU policy and 

prescribed burns can aid in the protection of endemic species and ultimately alter the 

forest composition to a more fire-associated landscape (Brose et al. 2001; Lafon et al. 

2005; Lafon and Grissino-Mayer 2007). This fire-associated landscape will be more 

consistent with the pre-suppression vegetation conditions within GSMNP and other 

areas of the southern Appalachians (Brose et al. 2001; Lafon et al. 2005; Lafon and 

Grissino-Mayer 2007). Current WFU managed fires burn on average 75 ha/year in 

GSMNP (Rob Klein personal communication 2/24/2014). With current prescribed burns 

covering approximately 400 ha/year within the GSMNP, more fire use is needed (Rob 

Klein personal communication, 2/21/2014). Current management goals are to increase 

prescribed burning to 1200 to 2000 ha/year (Rob Klein personal communication, 

2/21/2014). While the use of more fire is in line with current research and supported by 

studies like this one which indicate that both anthropogenic and lightning fires were 

important in maintaining the pre-suppression southern Appalachian landscape, burning 

only 1275 to 2075 ha/year does not seem sufficient to have the effects management 

desires.  

 

6.7 Limitations 

 There are several limitations that should be addressed considering this research. 

Since random ignition locations were used, they are not consistent with the distribution 
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of actual ignitions. From 1942 to 2008, there were 124 recorded lightning ignitions in 

GSMNP. Of those ignitions, 68% were located on ridges, 16% on upper slopes, 6% on 

lower slopes, and 10% on bottom lands. My random ignition locations were 27% on 

ridges, 35% on upper slopes, 20% on lower slopes, and 18% on bottom lands. My 

simulation ignitions represent a more even distribution of locations across the 

topographic regions, which do not appear to be consistent with actual ignition locations 

which favor ridges. Within my simulations upper slopes ignition locations resulted in 

almost double the mean fire spread than ridge, lower slope, or bottom land for Hx1 and 

Hx2 and one and a half times for Hx3, potentially causing an overprediction in overall 

fire spread (Table 25).  

 
 
 

Table 25. Mean fire size (ha) per 
topographic region ignition location 

  Ridge 
Upper 
Slope 

Lower 
Slope 

Bottom 
Land 

Hx1 34.15 67.63 33.33 29.07 
     
Hx2 36.45 71.04 35.55 31.21 
     
Hx3 499.83 746.53 471.30 418.81 

 
 
 
 The pre-suppression rate of lightning ignitions may have been more than the 

current rate if lightning was striking more flammable fuels. Thus using the current rate 

may underestimate the contribution of lightning ignitions in comparison to 

anthropogenic ignitions. 
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Fuel configuration could have affected the mean fire size. Multiple spatial 

configurations of the simulations performed on the pre-suppression landscape might 

have added robustness to my results. However, the random configuration of the fuels 

should not affect the magnitude of the results because the large number of simulations 

on a large study area burned many different fuel model configurations on the landscape.  

 My results do not appear to be affected considerably by topographic region. This 

was surprising since more xeric areas tend to be more flammable. The lightning fire 

cycle increased in length for all three landscape scenarios based on topographic wetness 

from ridge (driest) to upper slopes, lower slope, then bottom land (wettest). However, 

the difference did not seem of a magnitude that would indicate that lightning ignited 

fires were having different effects based on topographic region on the landscape. If this 

is not a realistic result, it could be due to random ignition locations or to FARSITE not 

being sensitive enough to the complex topography of the southern Appalachians. 

 

6.8 Future research 

Previous fire regime models incorporate mortality and regeneration of vegetation 

change after individual fires (Li et al. 1999; Bean and Sanderson 2008). Future research 

including mortality and regeneration on a pre-suppression landscape would help 

researchers understand more about how fire sizes are maintained. Future research 

investigating whether and the magnitude that compositional change would have affected 

fire size and fire size distribution is warranted. The Hx3 fires would leave patches of 

burned areas where highly flammable vegetation would establish. These patches could 
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either act to spread throughout the entire patch from one or few ignitions (Frost 1998) or 

as a fire break if the ignition occurred soon after the initial fire (Cui and Perera 2008). 

Thus, since the simulated pre-suppression landscape had random distribution of highly 

flammable grass/shrub understories that carried fire at the 10m cell level, it is possible 

that patches that more closely resembled the burned-over areas left by fire could have 

affected the fire size.  

Performing similar studies on different areas of the southern Appalachians could 

indicate the feasibility of my results, especially if conducted on areas where lightning 

currently has a greater effect on the landscape, such as Shenandoah National Park (Lafon 

and Grissino-Mayer 2007; Flatley et al. 2011). In addition, further research investigating 

ignition location and topographic region on fire size is warranted to either confirm or 

expound on my findings. 
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7. CONCLUSION 

  

 Previous hypotheses and research have indicated that fires were larger and that 

both lightning and anthropogenic ignitions were important shapers of the pre-

suppression landscape. By using fire modeling, I was able to quantify potential mean fire 

size, fire cycle, fire size distribution, ignition density, and ignition source on the pre-

suppression landscape. While further modeling studies are warranted, my results indicate 

that fire sizes on the pre-suppression landscape were up to an order of magnitude larger 

than fire sizes on the current landscape and that the pre-suppression landscape could 

have sustained many larger fires than are seen on the current landscape. My results also 

indicate that Native Americans and European settlers could have been burning up to 

3500 ha/year in addition to the approximately 250 ha/year burned by lightning ignited 

fires. This demonstrates that lightning was active on the landscape. However, without 

anthropogenic ignitions, lightning would be unable to maintain the pre-suppression 

vegetation conditions indicated by historic accounts.  

My research validates new methods that can be used in the southern 

Appalachians to investigate fire regime characteristics that are difficult to ascertain 

otherwise. My study shows that FARSITE is an appropriate tool for exploring historic 

fire regimes in the southern Appalachians. In addition, my research contributes to the 

larger body of work on the role of fire in the southern Appalachians historically. This 

research has important implications for both the fire history and management of 

GSMNP. Understanding the mean fire size, fire cycle, fire size distribution, ignition 
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density, and ignition source that existed on the pre-suppression landscape will help 

researchers and managers understand the ecological processes behind the maintenance of 

the pre-suppression landscape, informing our understanding of the many effects of fire 

suppression and informing management decisions as they seek to restore fire-associated 

species and landscapes.  
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