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ABSTRACT 

 

 Aging has been a subject of interest throughout history. Scientific studies have 

focused on lifespan regulation, but ignored many other aspects of aging such as 

behavioral decline. Research using the model organism C. elegans has contributed 

significantly to the aging field. In this dissertation, I used C. elegans males to determine 

the molecular mechanisms of behavioral deterioration during aging. Through mating 

potency assays, I found that the mating behavior of C. elegans declines at early 

adulthood, as the mating potency of 3-day-old wild-type males is significantly lower 

than 1-day-old males. Meanwhile, using both pharmacological tests and calcium 

imaging, I showed that the excitability of the mating circuit increased during early 

adulthood. This is consistent with the observation that old males exhibit reduced control 

over their ability to mate. 

 Caloric restriction is an efficient non-genetic intervention to increase lifespan. I 

demonstrated here that it also improves mating behavior in 3-day-old males, possibly 

through reducing the excitability of the mating circuitry by up-regulation of potassium 

channels and additional metabolic enzymes.  

 To explore the relationship between metabolic status and behavioral deterioration, 

I characterized the dynamics of male mating deterioration in males containing a deletion 

in the metabolism-regulator sir-2.1. sir-2.1 encodes a NAD+ dependent histone 

deacetylase, which might be involved in regulating aging.  I discovered that sir-2.1(0) 

males have a premature decline in mating potency and an accelerated increase in the 
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excitability of the mating circuitry. Direct mating behavior observations indicated that a 

significant proportion of 2-day-old sir-2.1(0) males cannot transfer their sperm into their 

hermaphrodite mates. Through Ca2+ imaging, I found that the genital sex muscles are 

hyper-contracted during sperm transfer. This hyper-contraction blocks the vas deferens 

and obstructs sperm release. Furthermore, through qPCR, measurements of metabolites, 

and diet supplementation, I found that the potentially enhanced catabolism in 1-day-old 

sir-2.1(0) and 2-day-old wild-type males generates excess reactive oxygen species 

(ROS). ROS increases the excitability of the mating circuitry and leads to the mating 

potency decline in subsequent days. Meanwhile, anabolic processes such as 

gluconeogenesis/glyceroneogenesis are also elevated. These processes shunt pyruvate 

from oxidative processes to lipid synthesis, and serve as a potential compensatory 

mechanism to reduce energy and ROS production.  

 In conclusion, I demonstrated that a complex behavior in C. elegans deteriorated 

during early aging due to the physiological state change, which is possibly caused by 

ROS induced by both metabolic and stress-response alteration. 
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NOMENCLATURE 

 

ACh                          Acetylcholine  

AChR                       Acetylcholine receptor  

ARE                         Arecoline 

CFX                          Cycloheximide 

EC50                          Effective concentration to cause response in 50% of the population  

ETC                          Electron Transport Chain 

FRTA                       Free Radical Theory of Aging 

IIS                            Insulin/IGF-1 signaling 

LEV                          Levamisole  

mAChR                    Muscarinic acetylcholine receptor  

nAChR                     Nicotinic acetylcholine receptor  

NAC                         N-acetyl-cysteine 

NAD+                       Nicotinamide adenine dinucleotide  
Nam                          Nicotinamide 

OXPHOS                  Oxidative phosphorylation 

p.c.s.                         Postcloacal sensilla  

PEPCK                     Phosphoenolpyruvate carboxykinase 

prc                            Spontaneous spicule protraction 

ROS                          Reactive oxygen species 

SOD                         Superoxide dismutase 
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CHAPTER I  

INTRODUCTION 

 

Two major evolutionary theories of aging 

 

Aging is a complex and universal phenomenon, which is associated with 

progressive deterioration of physiological function, decline of fitness, and increased 

possibility of age-related diseases and eventually mortality (Rose 1991). Thus, aging is 

usually associated with lifespan. In nature, different species have different lifespans; the 

mechanism underlying this phenomenon is a mystery. Also, from an evolutionary point 

of view, why does natural selection favor survival and reproduction rather than stopping 

aging in the first place? In fact, aging may not be stopped. Even though lifespan can be 

significantly prolonged, there is no report of immortal organisms.  

These questions promote multiple theories to explain the relationship between 

aging and evolution/natural selection. From the 1940’s, evolutionary biologists argued 

that aging occurs because the force of natural selection becomes inefficient as organisms 

age, especially when they are in post-reproduction (Ljubuncic and Reznick 2009). This 

idea is later well supported by mathematical modeling and experiments (Williams 1957, 

Hamilton 1966, Charlesworth 2000). It is generally accepted that during evolution, 

extrinsic factors such as predators, food resources, parasites, and infectious 

bacteria/virus cause the death of organisms even before they had a chance to reach the 

limits of their natural lifespans. Therefore, reproduction is the best way to promote 
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species’ survival and would be the target of natural selection. Post-reproduction, the 

force of natural selection would decline over the aging process, unless such selection is 

related to the survival of the offspring. For instance, the parents should live long enough 

to take care of progeny, however, their death after maturation of progeny might benefit 

the species by saving resources (Fabian 2011). In addition, reproduction provides a 

mechanism for diversifying organisms to be more adaptive to the changes of the nature 

(Griffiths A 1999). Thus, the natural selection would mainly function at the relatively 

early stages in life to select those who reproduce. 

Based on the notion that the force of natural selection starts to decline during 

aging, Medawar developed the first complete written formulation and graphical model to 

explain the evolution of aging, known as the mutation accumulation hypothesis 

(Medawar 1952). According to this theory, deleterious mutations, such as those seen in 

many genes related to neurodegenerative disease, are hardly under selection during 

evolution, since they would only become a problem in the unlikely event that the 

organism lived for an extended amount of time.  

Since reproductive fitness is preferentially selected by natural selection during 

evolution, George C. William pushed the mutation accumulation theory a step further 

and developed the antagonistic pleiotropy hypothesis of aging (Williams 1957). In his 

theory, gene mutations selected for the benefit of reproduction during early age may 

display deleterious effects on fitness at advanced age. In other words, the deleterious 

genes are not selected against, instead they are selected for due to their beneficial 

contribution to reproduction. These contributions include but are not limited to 
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development of the reproductory system, and to the relocation of energy to maintain the 

germline cells. Thus, enrichment of fitness factors for reproduction might be a genetic 

trade-off for fitness at an older age.  

Both the mutation-accumulation and antagonistic-pleiotropy hypothesis of aging 

help to explain how aging evolves and why there are so many detrimental aspects of 

aging. However, with the advance of human civilization, the extrinsic factors that affect 

human aging are diminishing and human lifespan has extended tremendously. 

Unfortunately, this extended lifespan is associated with health problems arising from 

aging. These health problems not only cause personal pain but also are also social 

burdens. Thus, understanding the molecular mechanism of aging would definitely 

provide strategies to promote the span during which humans remain healthy and 

potentially cure or at least minimize the diseases related to aging.  

 

Molecular theories of aging 

 

 Is the aging process simply a wearing-out process analogous to the breaking 

down of a car or even a piece of paper? From all aging research conducted so far, and 

the work I will present, the answer is not straightforward. However, that wearing-out 

contributes to aging seems commonsense. The scientific questions to ask then are: (i) 

what cause the wearing-out process, (ii) do any mechanisms exist to counteract the 

wearing-out process, and if so, (iii) what are they?  Additionally, would minimizing 

wearing-out factors or amplifying detoxification decrease the chances of diseases, or 
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enhance fitness at an advanced age? To answer these questions, some important theories 

have emerged. 

 

Free radical theory of aging (FRTA)/Oxidative stress theory 

 

Free radicals are defined as molecules containing one or more unpaired electrons 

in their atomic orbitals. The unpaired electrons dramatically increase the reactivity of the 

molecule. In nature, strong radiation will generate a large amount of radicals, which are 

almost lethally detrimental to living organisms through inducing mutations, cancer and 

aging. Radiation’s devastating effects were unfortunately verified by irradiation of living 

organisms after nuclear explosions and rare nuclear accidents (Hempelmann and 

Hoffman 1953).  

In living organisms, spontaneous free radicals were first recorded in 1954 

(Commoner, Townsend et al. 1954). Through a newly developed technique called 

paramagnetic resonance absorption, free radicals were measured in lyophilized tissues 

such as leaf, liver and egg. Most intriguingly, the amount of free radicals are relatively 

higher in the metabolically active tissues such as leaf or liver than those metabolically 

non-active tissues, indicating that free radicals might be the intermediate products of 

metabolism processes and positively associated with the metabolism rate.  

Based on the chemistry of radiation and the fact that living organisms generate 

free radicals, in 1956, Dr. Harman proposed that aging is caused by the deleterious 



 

 5 

attacks to the cellular components including nucleotides, proteins, and lipids by the free 

radicals that are spontaneously generated in the living cell (Harman 1956). 

 Free radicals are generated during the cellular respiration process. For an 

organism to function, survive and reproduce successfully, efficient energy production is 

a necessity. During evolution, oxidative phosphorylation (OXPHOS) in the 

mitochondrion replaced anaerobic fermentation and served as a more efficient way to 

generate ATP, a uniform energy currency for all living organisms. During this oxidation-

reduction process, electrons donated from NADH and succinate travel through the 

electron transport chains (ETC) complexes I to IV to oxygen and the energy released 

from the series of redox reactions promote the generation of the proton gradient. ATP 

synthase then utilizes the energy released from the influx of protons back to the 

mitochondrial matrix to generate ATP via oxidative phosphorylation, a process known 

as chemiosmotic coupling (Mitchell 2011). However, the OXPHOS that occurs in the 

mitochondrion is not perfectly efficient and actually serves as a major contributor of 

endogenous oxidative stress. Up to 3% of the electrons can leak from respiratory 

complexes I and III under normal conditions and be transferred to oxygen prematurely. 

The addition of electrons to the oxygen forms the superoxide anion •O2
-, a primary form 

of reactive oxygen species (ROS). Additional oxygen-derived radicals as well as reactive 

molecules that are not radicals will be generated. For instance, hydrogen peroxide, is not 

a non-radical but is a highly and strong oxidant. In addition, through the Fenton reaction, 

hydrogen peroxide can produce hydroxyl radicals (HO•) (Stohs and Bagchi 1995), which 

can react with many biomolecules and change their functional properties. Oxidization of 
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lipid, a process referred as lipid peroxidation, generates fatty acid radicals. These 

radicals covalently modify proteins (Arguelles, Cano et al. 2011). Thus, oxygen 

originated radicals and reactive molecules are major contributors for oxidative stress, 

and the free radical theory is after referred to as the oxidative stress theory. 

To cope with both exogenous and endogenous reactive stress, organisms must 

optimize their metabolism to generate sufficient energy for reproductive success at the 

first place. Additionally, they must minimize the generation of detrimental ROS through 

developing an efficient antioxidant system by expressing a series of scavenger genes 

such as superoxide dismutase (SOD), peroxidase and catalases (McCord and Fridovich 

1969, Greenwald 1990). Meanwhile, organisms also need to evolve strategies to remedy 

the oxidative damage that occurs. Those machineries include the DNA repair system and 

protein quality control machinery (Sancar, Lindsey-Boltz et al. 2004, Buchberger, Bukau 

et al. 2010). 

Thus, by combining both evolutionary and molecular theories, aging can be 

viewed as an overall product of balance between maintaining efficient reproduction 

success and damaging effects of deleterious products.  The presence of oxidative 

phosphorylation as a major source of energy is essential for survival and reproduction in 

the animals, leads to the production of the deleterious byproducts such as ROS. In 

addition, living organisms unavoidably face environmental toxic molecules such as 

oxygen as an oxidant itself. To combat against both endogenous and exogenous stresses, 

they developed anti-stress systems. 
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Mitochondrial theory of aging 

 

 While the free radical theory of aging (FRTA) explains harmful factors 

potentially causing aging, it does not specify the mechanism of deterioration that the free 

radicals are responsible for. As an extension of the FRTA, the mitochondrial theory of 

aging specifies that mitochondria might be the primary target of ROS. Firstly, ROS are 

generated simultaneously along the electron transport chain during the production of 

ATP. They will preferentially attack biomolecules localized nearest to their sites of 

production, including mitochondrial DNA (mtDNA), proteins and phospholipids. 

Secondly, the mitochondrion does not have sophisticated machineries compared to the 

cytosol of the cell to repair damaged mtDNA nor for protein quality control. As a result, 

damage to mtDNA and direct modification of OXPHOS complex proteins by ROS, 

would affect the function of mitochondria. Eventually the mitochondria become less 

efficient and produce even more ROS. Thus a vicious cycle could be formed to amplify 

the damaging effects of ROS. With aging, mitochondrial function declines, which can no 

longer provide sufficient “power” for other essential cellular events, therefore eventually 

leading to senescence. 

  However, the mitochondrial theory of aging needs more direct experiments to be 

supported or dismissed (Jacobs 2003). In addition, during aging, biomolecules in other 

compartments are also unavoidably modulated by ROS. Even though these 

damage/modifications may not affect lifespan per se, they have the potential to 

pathologically contribute to many age-related diseases. In other words, ROS-mediated 
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modification of biomolecules beyond mitochondria may affect health-span if not 

lifespan. 

 

Mitohormesis theory 

 

Caloric restriction has been reported to efficiently extend lifespan in a 

remarkable range of organisms from yeast, worms and flies to rodents, although it is still 

controversial in primates (Heilbronn and Ravussin 2003, Colman, Anderson et al. 2009, 

Mattison, Roth et al. 2012). The mechanism underling caloric restriction is still a subject 

of debate (Koubova and Guarente 2003). According to the free radical theory of aging, 

one major effect of caloric restriction is through repressed mitochondrial respiration to 

reduce the generation of ROS and extend lifespan. However, recent studies showed that 

under caloric restriction, especially glucose restriction, mitochondrion respiration is 

enhanced due to utilization of lipid through fatty acid β-oxidation. As a result, the 

organism has an increased production of ROS, which is necessary for the lifespan 

extension, because eliminating ROS with antioxidants abolishes the lifespan extension 

(Schulz, Zarse et al. 2007, Ristow and Zarse 2010). The concept of adaptive response 

induced by the detrimental molecules is called hormesis, and because this specific 

phenotype is related to mitochondrial respiration, it is referred as mitohormesis (Yun and 

Finkel 2014). 

Superficially, it seems that the mitohormesis theory is contradictory to the free 

radical theory of aging, which states that the free radicals attack the biomolecules and 
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cause aging. However, the mitohormesis phenotype may actually still serve as evidence 

that free radicals are eventually detrimental to the organism, because anti-stress 

(including oxidative stress) responses provoked by ROS finally benefits the biological 

system (Liochev 2013). Therefore, the mitohormesis phenotype might still be supporting 

the free radical theory, although it adds one more dimension of the function of ROS due 

to the complexity of the biological system.  It also raises the question of how to properly 

use antioxidants as nutrient supplements.  

In this regard, ROS can function not only as damage inducers but also as 

physiological signaling molecules that are involved in the physiological regulation. 

These physiological processes include oxygen sensing, regulation of vascular tone, 

enhancement of several important signal transduction pathways such as EGF and insulin 

signaling, and immunological function to defend against pathogens (Droge 2002). ROS 

involved in the physiological regulation are majorly generated through NAD(P)H 

oxidase located on the membrane. More importantly, treatment of organisms with 

moderate amount of oxidant such as hydrogen peroxide promotes the protective 

responses against oxidative stress (Yang and Hekimi 2010).  

 

C. elegans as a model organism to study aging 

 

The nematode Caenorhabditis elegans (C. elegans) emerged as an experimental 

model organism after two publications by Sidney Brenner on its remarkable basic 

genetic features (Brenner 1974, Sulston and Brenner 1974). Due to its relatively small 
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genome size, transparency, sensitivity to mutagenesis/RNAi, mapped cell lineage and 

neuromuscular connections, and self-reproducing properties (hermaphrodite), studies 

using C. elegans have contributed significantly to understand variety of basic biological 

processes such as RNA interference, apoptosis, developmental and behavioral 

mechanisms.  

Additionally, due to its relatively short lifecycle and lifespan, C. elegans is an 

ideal organism to study these processes. Long-lived or short-lived mutants can be 

identified either through mutagenesis or RNAi to reveal the mechanisms of the aging 

process. Staring from fertilized embryo, it takes about two days for a worm to go 

through four larval stages and reach adulthood. The adult worm can live about 10 to 20 

days under standard laboratory conditions. During development, dauer, an alternative of 

larval stage three, can be formed due to a harsh environment such as lack of food 

(Cassada and Russell 1975).  

Mutagenesis of worms helps to identify genes involved in aging regulation. 

During the early 1980s, scientists used a mutagenesis screen to look for long-lived 

worms and recovered several candidate strains. However, those strains also displayed 

eating defects, suggesting that caloric restriction, rather than more specific genetic 

factors, were solely responsible for lifespan regulation. Later, through several rounds of 

outcrosses, age-1(hx546) was obtained without a feeding defect. These mutants had a 

longer lifespan but lower fertility, due to an additional mutation in the strain (Friedman 

and Johnson 1988) (also see review in (Kenyon 2011)).  
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It was not until 1993, when Cynthia Kenyon published in Nature that daf-2 

mutants can live twice as long as wild type (Kenyon, Chang et al. 1993), that studies on 

the molecular pathways regulating aging started to grow exponentially. daf-2(1370) is a 

dauer-constitutive mutation, which promotes dauer formation independent of food 

availability or population density at a non-permissive temperature. Dauer, as an 

alternative third larval stage, can survive almost 120 days, which is 10 times longer than 

wild type. After bypassing the critical period to form dauer, the daf-2(e1370) mutant will 

develop into adult, and live a significantly longer lifespan (Kenyon, Chang et al. 1993). 

This discovery opened up the door for identification of pathways and mechanisms 

involved in lifespan regulation. Analogous to the pathway that regulates dauer 

formation, daf-16 is required for daf-2(e1370) lifespan extension (Kenyon, Chang et al. 

1993, Lin, Dorman et al. 1997). Later, scientists found that the extension of lifespan in 

age-1 mutant also requires daf-16 (Dorman, Albinder et al. 1995).  

The molecular cloning of age-1, daf-2 and daf-16 was very informative and 

indicated that manipulating a conserved nutrient sensing pathway, the insulin/IGF-1 

pathway, could delay aging at least in term of lifespan. AGE-1 is a phosphatidylinositol 

3- kinase, a known down stream target of insulin/IGF pathway (Morris, Tissenbaum et 

al. 1996). daf-2 encodes a insulin/IGF-1 receptor (Kimura, Tissenbaum et al. 1997) and 

DAF-16 is a FOXO transcriptional factor (Lin, Dorman et al. 1997, Ogg, Paradis et al. 

1997). Both genetic screens and molecular cloning connect all three molecules to a 

conserved linear phosphorylation cascade pathway, insulin/IGF-1 signaling. The details 
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of this signaling pathway and its potential mechanisms in lifespan regulation are 

discussed in the following sections. 

 

Signaling pathways involved in aging regulation 

 

 Extensive studies on aging since 1993 indicate that nutrient sensing signaling 

pathways, which ultimately alter metabolism and stress responses, potentially regulate 

longevity. Caloric restriction promotes longevity through modulation of the nutrient 

sensing signaling pathways. Although the metabolic shifts are complicated, it seems that 

extension of lifespan is usually correlated with enhanced responses to stresses including 

oxidative damage, thermo-stress and microbial stresses. In the following sections, I 

briefly review several known molecular pathways that regulate aging (Figure 1). 
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Figure 1 Molecular signaling pathways involved in lifespan regulation and potential 
interactions between them. 
 
 
 
Reducing Insulin/IGF-1 signaling extends lifespan in animals ranging from worms to 

mammals 

 

 Since the discovery that reducing insulin/IGF-1 signaling (IIS) extends the 

lifespan in C. elegans, studies have determined the mechanisms involved. Sequencing 

results indicated that DAF-2 is the only insulin/IGF-1 receptors in C. elegans. DAF-2 

displays more than 30% similarity to the human insulin receptor, IGF-1receptor, and 
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insulin-receptor related receptor (Kimura, Tissenbaum et al. 1997, Pinkston-Gosse and 

Kenyon 2007). Upon activation by insulin/IGF-1, DAF-2 initiates a phosphorylation 

cascade mediated by PI3K (AGE-1) and AKT-1/AKT-2, which eventually 

phosphorylates DAF-16 and inhibits its translocation into nuclei (Kenyon 2005). 

However, in daf-2 mutants, hypophosphorylated DAF-16 can enter the nuclei to function 

as a transcription factor, which initiates the transcriptional program for dauer formation 

and lifespan extension. 

 Determining the transcriptional targets of DAF-16 is critical to decipher the 

mechanism of lifespan extension in worms with reduced IIS. Through comparing the 

mRNA levels in daf-2(-) and daf-16(-), Murphy and colleagues found that two sets of 

genes (about 100 genes in total) are potentially regulated by this signaling pathway 

(Murphy, McCarroll et al. 2003). Genes up-regulated in daf-2(-) but repressed in daf-

16(-) might contribute to the extension of the lifespan (Category I). Conversely, those 

genes with the opposite profile might shorten the lifespan (Category II). It turns out that 

many stress-response genes such as mitochondria superoxide dismutase (sod-3), mtl-1, 

catalase (ctl-1 and) and small heat shock proteins fall into the category I set of genes, 

potential candidates for the organism to defeat the free radicals and extend lifespan. 

Additionally, in daf-2(-) animals, other potential lifespan effectors such as antimicrobial 

genes are also up-regulated in a daf-16-dependent manner. Many insulin-like genes 

belong to category II, indicating a positive feedback loop to amplify IIS. 

 One prominent metabolic enzyme up-regulated in daf-2(-) is isocitrate 

lyase/malate synthase (GEI-7), which is a critical enzyme involved in the glyoxylation 
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cycle. Metabolic Shift from the TCA cycle towards the glyoxylation cycle, an anabolic 

pathway, is necessary for the lifespan extension in daf-2(-). This may occur through 

reducing the ROS generation from oxidative phosphorylation (Shen, Song et al. 2014). 

 Similar to DAF-16, another transcriptional factor, SKN-1, is also under the direct 

regulation of IIS signaling. SKN-1 functions in parallel to DAF-16 to extend lifespan, 

although DAF-16 is the prominent effector of lifespan extension in daf-2(-). 

 The subset of target genes regulated by SKN-1 includes many genes involved in the 

detoxification process such as glutathione-S-transferase (Tullet, Hertweck et al. 2008). 

In contrast to DAF-16, SKN-1 is not required for dauer formation in the IIS reduced 

worms. 

In summary, the insulin/IGF signaling pathway regulates the expression of both 

metabolisc and stress-response genes. Thus this signaling pathway potentially affects 

aging through regulation of oxidative stress. This regulation occurs through the 

modulation of metabolism to reduce the generation of ROS as well as through the 

reduction of ROS via scavenger enzymes.  

 

TOR pathway regulates aging 

 

 Another well-studied pathway that regulates aging is the TOR pathway. This 

conserved nutrient-sensor TOR (Target of Rapamycin) kinase integrates nutrient 

availability with regulation of growth in two protein complexes: TORC1 and TORC2. 

Under rich nutrient conditions, activated TORC1 promotes protein synthesis and inhibits 
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autophagy, while TOCR2 is activated through growth signals and activates kinases 

including AKT and SGK, which are also under the regulation of IIS (Loewith 2011). 

Both genetic and pharmacological inhibition of TOR activity after critical development 

periods promotes lifespan extension in yeast, nematodes, fruit flies and rodents (Kapahi, 

Chen et al. 2010). It is possible that the effect of lifespan extension by inhibition of TOR 

signaling is mediated through both inhibition of protein synthesis and promotion of 

autophagy. Inhibition of mRNA translation extends lifespan in a DAF-16 and SKN-

dependent manner, which is similar to reducing TORC1 activity (Pan, Palter et al. 2007). 

However, extension of lifespan by reducing TORC2 requires SKN-1 but not DAF-16. 

Although both TOR and IIS converge on the transcriptional factors SKN-1 and DAF-16, 

the molecular mechanisms might differ (Robida-Stubbs, Glover-Cutter et al. 2012). 

Autophagy is a process that recycles biomolecules and organelles. It is reported 

that dietary restriction and reduced IIS or TOR signaling promote autophagy, which is 

necessary but not sufficient to promote lifespan extension (Hansen, Chandra et al. 2008). 

DAF-16 is dispensable for the occurrence of autophagy under both dietary and reduced 

IIS situations. However, the FOXA transcription factor PHA-4 is required to promote 

autophagy during dietary restriction but not in response to reduced IIS (Hansen, Chandra 

et al. 2008). PHA-4 also up-regulates genes that encode ROS scavengers including sod-1, 

sod-2, sod-4, and sod-5, but not sod-3, which is a well-established target of DAF-16 

(Panowski, Wolff et al. 2007). In addition, similar to dietary restriction, both reduction 

the function of TOR and its target S6 kinase promote lifespan mediated by the PHA-4 

(Sheaffer, Updike et al. 2008). These results suggest that nutrients might activate TOR 
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signaling and its downstream effector S6 kinase to antagonize the activity of PHA-4, 

which is essential to promote stress response and autophagy. The mechanism of PHA-4 

regulation requires further study. 

 

AMPK increases lifespan 

 

 Another energy sensor, AMPK, is activated by a high AMP/ATP ratio, which is 

usually the consequence of dietary restriction. Indeed, AMPK is the mediator of lifespan 

extension in one dietary restriction regime, in which the dietary restriction is initiated at 

the fourth day of C. elegans adulthood. In this situation, both AMPK and DAF-16 are 

required to promote lifespan extension, although enhanced DAF-16 nuclear localization 

is not observed. This resembles the effect induced by inhibition of TORC1, raising the 

possibility that AMPK regulates TORC1. If this is true, it would be consistent with 

mammalian studies, in which AMPK inhibits the function of mTOR via direct 

phosphorylation (Bolster, Crozier et al. 2002). Additionally, in vitro experiments showed 

that AMPK directly phosphorylates DAF-16 at non-AKT sites, potentially enhancing the 

transcriptional function of DAF-16 (Greer, Dowlatshahi et al. 2007).  

 

Sirtuin proteins and aging 

 

 Sirtuin proteins, a class of histone deacetylase, are involved in metabolic 

regulation, stress responses and potentially in aging-related diseases (Houtkooper, 
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Pirinen et al. 2012). The first sirtuin discovered was silent information regulator 2 (SIR2) 

in yeast. Overexpression of SIR2 extends replicative lifespan possibly through its 

function as a regulator of transcriptional silencing of mating-type loci, telomeres and 

ribosomal DNA (rDNA). SIR2 prevents the homologous recombination that occurs 

during rDNA replication and thus reduces the formation of extrachromosomal rDNA 

circles. Such circles promote replicative aging (Kaeberlein, McVey et al. 1999). Later, 

Sir2 was identified as a NAD+-dependent histone deacetylase, consistent with its role in 

silencing the heterochromatin through deacetylating specific sites in histones (H3K9 and 

H4K16) and thus compacting the chromosome to limit the access of the transcriptional 

factors (Imai, Armstrong et al. 2000).  

 Although whether overexpression of the invertebrate sir2 ortholog extends 

lifespan is still under intensive debate (Burnett et al., 2011; Viswanathan and Guarente, 

2011), sirtuin family proteins have been shown to regulate glucose and fat metabolism 

(Houtkooper et al. 2012). In addition to histones, many metabolism regulators such as 

FOXO, PGC-1 α and PPAR-α are the substrates of sirtuin proteins (Morris 2013). Thus, 

sirtuin can potentially integrate metabolic status through NAD+/NADH with the global 

regulation of chromosome structure with adaptive metabolism alteration through 

modulation of FOXO, PGC-1 α and PPAR-α.  

During fasting, an increased NAD+ level activates SIRT1, the mammalian 

ortholog of Sir2. Activation of SIRT1 promotes PCG-alpha mediated gluconeogenesis 

gene expression to increase the secretion of glucose from the liver to maintain the 

glucose level in the blood stream. Meanwhile, SIRT1 inhibits glycolysis through PCG 
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and promotes fatty acid-β oxidation by activating PPAR-alpha. However, the role of 

SIRT1 in gluconeogenesis is controversial and requires further investigation (Liu, Dentin 

et al. 2008, Wang, Kim et al. 2011).  

In addition to the regulation of metabolism, sirtuin proteins mediate an oxidative 

stress response by regulating antioxidant gene expression through transcription factors 

such as FOXO in a 14-3-3 (a scaffold protein)-dependent manner (Berdichevsky et al., 

2006; Merksamer et al., 2013; Webster et al., 2012). Overall, sirtuin proteins could be 

involved in age-related diseases, such as type II diabetes and neurodegenerative diseases 

(Houtkooper et al., 2012; Satoh et al., 2011).  

 Although several signaling pathways are well characterized for regulation of 

lifespan, precise mechanisms of aging are unknown. Characterization the behavior 

decline and its underling mechanism will help to understand how organisms age. 

 

Locomotion deterioration during aging 

 

The decline of neuromuscular function that accompanies aging contributes to 

declines of performance in typical behaviors (Herndon, Schmeissner et al. 2002, Huang, 

Xiong et al. 2004). A relatively well-studied model for behavioral decline is C. elegans 

locomotion behavior (Huang, Xiong et al. 2004, Murakami, Bessinger et al. 2008, Iwasa, 

Yu et al. 2010). On a solid culture surface, C. elegans exhibits sinusoidal body 

movement by alternating the contraction and relaxation of the dorsal and ventral body 

wall muscles. The pattern of body wall muscle contraction is produced by interactions 



 

 20 

between cholinergic excitatory and GABAergic inhibitory motor neurons (McIntire, 

Jorgensen et al. 1993). A young adult animal moves continuously and exhibits a well-

coordinated, sinusoidal pattern. As it ages, the body movements become progressively 

less continuous and coordinated (Herndon, Schmeissner et al. 2002, Huang, Xiong et al. 

2004). Together with acetylcholine (Ach) and GABA, the neurotransmitters dopamine 

and serotonin regulate basal slowing of non-starved animals in response to food and 

enhanced slowing when the animal encounters food after starvation, respectively (Sawin, 

Ranganathan et al. 2000, Chase, Pepper et al. 2004). During aging, the basal slowing 

response is increased so that the difference between the two slowing responses is 

diminished (Murakami, Bessinger et al. 2008). In a liquid environment, C. elegans 

displays an alternative thrashing/swimming locomotory pattern (Pierce-Shimomura, 

Chen et al. 2008). As the animals age, the frequency of body wall muscle contractions 

during swimming is also decreased (Schreiber, Pierce-Shimomura et al. 2010).  

Reduced rate of motor decline during aging is used as a proxy in C. elegans to 

identify molecular pathways that extend lifespan. Interventions that extend lifespan 

usually delay the behavior deterioration that occurs during aging. For instance, reducing 

insulin-like signaling by limiting the activity of the insulin-like receptor, daf-2, can 

prominently extend lifespan and delay locomotory deterioration (Huang, Xiong et al. 

2004). By performing RNAi screens for aged animals with improved locomotory vigor 

in liquid, researchers have identified novel molecules that modify the rate of behavioral 

aging. Down-regulation of EGF signaling, through mutation of the two negative 

regulators, HPA-1 and HPA-2, or knocking down the level of RAS-related Rag GTPase 
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RAGA-1, can delay the age-related deterioration of swimming ability (Iwasa, Yu et al. 

2010, Schreiber, Pierce-Shimomura et al. 2010). These studies identified molecules that 

attenuate age-related locomotory decline. However, much less is known about the 

cellular mechanisms that result in this decline in the first place. 

 Research has shown that locomotory decline in C. elegans is associated with 

sarcopenia in body wall muscles, characterized by deformed nuclei and muscle fiber loss 

and disorganization (Glenn, Chow et al. 2004). This might explain the decline of 

behavior at an advanced age. However, the behavior begins to decline at an early phase 

of aging, when there is no significant loss of muscle fibers (Glenn, Chow et al. 2004, 

Murakami, Bessinger et al. 2008) or significant neuronal morphology change (Herndon, 

Schmeissner et al. 2002, Tank, Rodgers et al. 2011). Manipulation of serotonin signaling 

suppresses the increased basal slowing response at adult day 4 prior to the timing of 

sarcopenia onset (Glenn, Chow et al. 2004, Murakami, Bessinger et al. 2008). This raises 

the possibility that the physiological state, which determines the timing and coordination 

of muscle contraction, might be suboptimal prior to the onset of significant muscle 

contractile apparatus damage. However, locomotion behavior might be not sensitive 

enough to subtle physiological changes that occur prior to the deterioration of muscle 

structure, such that it won’t help to uncover these changes contributing to behavioral 

decline. 
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The neuromuscular basis of male mating behavior in C. elegans 

 

Relative to other general C. elegans behaviors such as pharyngeal pumping and 

locomotion behavior, the complexity of male mating might render it less robust as the 

male ages and the physiology of neuromuscular circuits change. The cellular and 

molecular mechanisms that regulate the spicule insertion step of mating are well 

described, allowing one to monitor the physiology and functional changes in the circuit 

as the male proceeds through adulthood (Gruninger, Gualberto et al. 2006, LeBoeuf, 

Gruninger et al. 2007, Gruninger, Gualberto et al. 2008, LeBoeuf, Guo et al. 2011, Liu, 

LeBeouf et al. 2011). C. elegans has two sexes, hermaphrodite and male. Male worms 

display a complex but stereotypical courtship behavior. C. elegans male mating requires 

precise coordination between the male genital muscles, in conjunction with the 

locomotion neuromuscular circuit, to be executed successfully.  

Mating behavior can be divided into the following steps: response, backing, 

turning, vulva location, spicule insertion and sperm transfer (Figure 2A) (Liu and 

Sternberg 1995). The backing and vulva location behaviors are initiated and executed by 

tail-located sensory neurons (ray neurons in Figure 2B). When the male’s fan-shaped tail 

contacts the cuticle of the hermaphrodite, he uses the locomotory neuromuscular circuit 

to move backwards, scanning along the hermaphrodite cuticle for the vulva. If the male 

fails to locate the vulva on one side, he will make a turn at the end of the hermaphrodite 

and continue backwards locomotion. Once he encounters the vulva, the sensory neurons 

including HOA, HOB, PCA, PCB, PCC and ray neurons are activated, the male will then 
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contract sex-specific muscles located in his tail, in order to press against the vulval lips. 

He then repetitively prods the vulva with his spicules, in an attempt to breach the tight 

vulval slit. This is achieved through rapid contractions of the protractor muscles, which 

are attached to his spicules (Figure 2B). Once his spicules partially penetrate the vulva, 

the protractor muscles fully contract allowing complete spicule insertion. Sperm transfer 

occurs following full spicule penetration (Barr and Garcia 2006, Liu, LeBeouf et al. 

2011).  

 

 

Figure 2 Male mating behavior and its neuromuscular basis.  
(A) A cartoon diagram of stereotypical steps during C. elegans male mating; (B) A 
simplified neuromuscular basis for the male mating behavior. 
 
 
 

Not only is the cellular basis of the mating behavior well described, but also the 

molecular basis has been explored in our lab. Acetylcholine (ACh) is the main excitatory 

neurotransmitter for spicule protraction. Cholinergic neurons PCB and PCC sense the 

vulva and cause contraction of the oblique muscles. As a result, the male can maintain 

his tail on the vulva, at the same time, the oblique muscles communicate with spicule 
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protractors via gap junction to promote spicule prodding. (Figure 2B). The prodding 

behavior requires a sarcoplasmic reticulum calcium channel during twitching of the 

spicule protractor muscles (ryanodine receptor, UNC-68). ACh released from cholinergic 

SPC neurons activates acetylcholine receptors (AChR) expressed on the membrane of the 

protractor muscles to promote their full contraction and spicule protraction. Different from 

twitching of the protractor muscles, the tonic contraction of these muscles requires a L-

voltage gated calcium channel/EGL-19 (Garcia, Mehta et al. 2001). We also characterized 

an ERG-like voltage-gated potassium channel /UNC-103 that plays a role in the regulation 

of the excitability of the mating circuitry. Loss of function of UNC-103 leads to the 

spontaneous contraction of the protractor muscles and permanent protraction of spicules 

(referred to as prc phenotype) in 30% of the male population even in the absence of 

hermaphrodite. Food deprivation suppresses the prc phenotype by up-regulation of 

EAG-potassium channel (EGL-2) in a CAMKII/UNC-43 dependent manner (LeBoeuf, 

Gruninger et al. 2007, LeBoeuf, Guo et al. 2011, LeBoeuf and Garcia 2012). Utilizing 

prior knowledge we obtained previously, I will explore the effects of aging on the 

mating circuitry and behavior as described in the Dissertation objectives. 

 

Dissertation objectives 

  

 Most studies in the aging field focus on the regulation of lifespan but ignore the 

physiological alterations that occur prior to drastic morphology deterioration during 

aging. C. elegans male mating behavior, a complex but stereotyped behavior, might be 
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sensitive to such physiological alterations and provide an efficient assay for fertility 

failure. In this dissertation, I used C. elegans male mating behavior as my model to 

characterize the molecular and cellular mechanism(s) underlying the behavioral 

deterioration that occurs during early aging.  

 Chapter II includes the detailed materials and methods I used throughout this 

research. In Chapter III, I first characterized the dynamics of the deterioration rate of 

wild type male mating behavior using a mating potency assay. Surprisingly, this 

complex behavior starts to decline in early adulthood, when no obvious morphology 

changes such as muscle disorganization or sperm dysfunction are observed. Direct 

observation of mating behavior suggested that the decline of mating potency is due to 

behavioral defects including ectopic prodding at non-vulva regions and abnormal turning. 

Through pharmacological tests and calcium imaging, I determined that during aging, the 

excitability of the mating circuitry is increased. It is possible that the hyper-excitability 

in the mating circuitry potentially causes the mating defects during aging.  

To further illustrate the correlated relationship between the hyper-excitability and 

mating behavior decline, in Chapter IV, I addressed the question of reducing the 

excitability to delay mating behavior deterioration. Using a quadruple heterozygous 

mutant stain of ACh receptors genes, which mediate the sensitivity to mating cues, 

improves mating at the third day of adulthood, when significant deterioration in mating 

ability is first observed. Another intervention I used is caloric deprivation during the L4 

stage that immediately proceeds adulthood. Caloric restriction has been shown to 

suppress the unc-103 and slo-1 loss of function induced prc phenotype. Indeed, transient 
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food deprivation for about 20 hrs as the male matures into an adult also significantly 

increases the mating ability of 3-day-old males. These males display a reduced 

neuromuscular excitability but not a prolonged lifespan. I further determined that the 

long-term effects of transient starvation on mating potency require protein synthesis 

during early adulthood, and the proteins synthesized that are potentially important for 

this are potassium channels.  

To determine the underlying mechanism(s) of increased excitability in the mating 

circuitry during aging, in Chapter V, I studied the function of a metabolism regulator 

SIR-2.1 in maintaining male mating behavior during aging. sir-2.1(0) males display a 

premature mating behavior decline compared to wild type males. At day 2 of adulthood, 

sir-2.1(0) males’ mating ability drops significantly due to an ejaculation deficiency but 

not a short lifespan, muscle disorganization, or sperm dysfunction. I further 

demonstrated using calcium imaging and pharmacological drug tests that the ejaculation 

might be the consequence of the hyper-excitability and hypertonic contraction of the 

dorsal sex muscles, which pinch closed the vas deferens.  

Inspired by the free radical theory of aging and complicated roles of SIR-2.1 in 

metabolism regulation and anti-oxidative stress, I tested whether ROS plays a role in 

altering the excitability of the mating circuitry. First, I confirmed that sir-2.1(0) males 

are more sensitive to oxidative stress induced by a ROS-generator, paraquat. Then I 

showed that manipulation of the ROS level does affect mating efficiency and the 

excitability of the mating circuitry. Boosting ROS by paraquat significantly reduces 

mating in even 1-day-old wild type males in a dosage-dependent manner, accompanied 
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by an increase in the excitability of the mating circuitry. Meanwhile, reducing ROS 

levels by feeding worms with an antioxidant (N-acetyl-cystein) can promote mating 

ability. 

In the last part of Chapter V, using qPCR and metabolic measurements, I 

demonstrate that both catabolism and anabolism processes in sir-2.1(0) are possibly up-

regulated. However, the anti-oxidative stress system is compromised. Combining all 

these data, I propose that enhanced catabolism promotes the generation of ROS, and 

with a compromised anti-oxidative stress system, sir-2.1(0) males suffer more oxidative 

stress, which increases the excitability of the mating circuitry and reduces mating ability. 

Interestingly, the anabolic pathway which is responsible for the synthesis of fat is also 

increased in sir-2.1(0) males. This increased anabolic level serves as a sub-optimal 

compensation mechanism to shunt pyruvate to fat synthesis and away from the oxidation 

through TCA and OXPHOS. 

In chapter VI, I summarized all the experiments and conclusions from Chapters 

III-V, and also discussed our results, significance of the discoveries, implications and 

potential future directions. 
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CHAPTER II  

EXPERIMENTAL PROCEDURES 

 

Strains and medium 

 

  Worms were grown at 20°C on nematode growth media (NGM) plates seeded 

with E. coli strain OP50, except for the pha-1(e2123) strain, which was maintained at 

15°C (Schnabel and Schnabel 1990). The alleles used in this work include: lite-1(ce314) 

(Edwards, Charlie et al. 2008) on LGX; unc-29(e193), pck-2(ok2586) on LGI (Lewis, 

Wu et al. 1980); pck-1(ok2098), pha-1(e2123) (Schnabel and Schnabel 1990), unc-

64(e240) (Brenner 1974) and unc-103(n1213) (Park and Horvitz 1986) on LGIII; sir-

2.1(ok434) on LGIV; him-5(e1490) (Hodgkin, Horvitz et al. 1979), acr-18(ok1258), gar-

3(gk305) (Liu, LeBoeuf et al. 2007), acr-16(ok789 and egl-2(rg4) (LeBoeuf, Gruninger 

et al. 2007) on LG V. Males containing only the him-5(e1490) mutation are referred to 

as wild type; him-5(e1490) males have been shown to mate efficiently as wild type 

(Hodgkin 1983). All the ok alleles were generated by the C. elegans Gene Knockout 

Consortium (Oklahoma). sir-2.1(ok434), pck-1(ok2098) and pck-2(ok2586) animals 

were out-crossed 4 times with the him-5(e1490) strain. The deletions in those three 

mutants were detected through PCR using primers listed in the appendix A. 

Modified media used here included NGM medium containing glucose (2%), 

paraquat, N-acetyl-cystine (NAC) (Sigma, MO), and nicotinamide (Nam) (Sigma, MO) 

respectively. The latter three were added at the indicated concentration when the 
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temperature of the medium cooled to about 60°C. E. coli OP50, used for the special 

medium containing glucose and NAC, was UV-killed and concentrated to make sure the 

worms were not food deprived. To assay the effects of translational inhibition on male 

behavior, cycloheximide (Sigma, St. Louis, MO), freshly dissolved in water at a 

concentration of 20 mg/ml, was added to the surface of NGM plates with or without E. 

coli. The drug was allowed to soak into the plate overnight. The final concentration of 

cycloheximide in the plates was 250 µg/ml. This concentration was either lethal to larvae 

or stalled larval growth. If the CHX treatment was required in an experiment, I waited 

until the males molted from their L4 cuticle, and then immediately placed them on the 

CHX-containing plates (LeBoeuf, Guo et al. 2011). I assume that the animals ingested 

these compounds as they feed on E. coli or absorbed them through their cuticle.  

 

Mating potency assay 

 

  Males were isolated from non-crowded plates, either at the late L4 stage (when 

cells in the male tail spike have completely migrated anteriorly) or for the cycloheximide 

assays (see below), after they newly crawled out of their L4 molt. They were kept 

individually or in groups of 20-30, on 1-2 cm diameter lawns of bacteria. ~30% of males 

that contain the unc-103(n1213) deletion (referred to as unc-103(0)) and ~70% of males 

that contain both the unc-103(n1213) and egl-2(rg4) deletions (the egl-2(rg4) deletion is 

referred to as egl-2(0)), respectively, display the constitutive protracted spicule 

phenotype (LeBoeuf, Gruninger et al. 2007, LeBoeuf, Guo et al. 2011). Exceptional 
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males, which did not display the abnormal behavior, were used for the mating potency 

assays. L4 pha-1(e2123) hermaphrodites were isolated and grown at 20°C, one day 

before the mating potency assays were conducted. A 1-day-old pha-1 hermaphrodite and 

an adult male were picked to 5 mm diameter lawns (10 µl of E. coli, grown overnight in 

LB media at 37°C without aeration, was spotted onto an 3.5 mm NGM agar plate to 

make a 5 mm diameter lawn) to increase the chance of mating. I scored the male as 

sexually potent if 2-3 days later the plate contained cross-progeny. The 0- or 1-day-old 

males’ mating potency under well-fed or starved conditions was set as 100%, and the 

normalized percentages of potent males were calculated as follows: normalized 

percentage of potent males = (non-normalized percent of potent (n)-day-old males/ non-

normalized percent of potent 1-day-old males) X 100%. 

  If males were required to be starved, they were serially transferred to E. coli-

less NGM agar plates, using a mouth pipette and water as a vehicle. To inhibit bacterial 

growth, the plates contained streptomycin at a final concentration of 30 µg/ml. An 8 M 

glycerol ring was applied to the edge of the agar to discourage males from crawling and 

desiccating on the sides of the plates. After the starvation period, males were transferred, 

using a worm pick, to NGM plates containing E. coli. 
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Lifespan and stress resistance assays 

 

L4 males were isolated from non-crowed plates and raised 20-30 per plate. The 

males that can respond to gentle touch with a platinum wire were counted and 

transferred to new plates every day. Males that dried on the wall of the Petri plate were 

censored from the assay on the day they died. Log-rank (Mantel-Cox) test was used to 

analyze the lifespan curves 

To assess males’ sensitivity to paraquat, L4 males were transferred to plates 

containing 10 mM paraquat and scored at 24 and 48 hrs. 

 

Sex muscle fiber observation  

 

To visualize the structure of the sex muscles during aging, I made transgenic C. 

elegans expressing actin tagged at the N-terminus with YFP. The plasmid was 

constructed as follows: I PCR-amplified the 1.2kb genomic sequence of act-1, using 

primers that contained homologous sequences around the insertion position (next to the 

YFP gene) of the vector pGW322YFP. The primers that were used to linearize the 

plasmid pGW322YFP removed the stop codon of the YFP gene. The primers used were 

included in the Appendix A. The linearized pGW322YFP vector was then recombined 

with act-1 DNA, using the Clontech in-fusion enzyme kit (Clontech, Mountain View, 

CA), to produce the plasmid pXG30. pXG30 additionally contains the gateway cassette 

in front of the YFP: actin gene fusion. To express YFP:actin in the sex muscles, I 
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replaced the gateway cassette with the unc-103E promoter (Reiner, Weinshenker et al. 

2006) in pXG30, using LR clonase (Invitrogen, Carlsbad, CA), to construct the plasmid 

pXG31. 50 ng/µl of pXG31 and 150ng/µl pUC18 were injected into him-5(e1490) 

males. The transgenic L4 males were picked and visualized at different ages using 

fluorescence microscopy.  

 

Staining sperm with SYTO-17 

 

  The red fluorescence dye SYTO-17 (Invitrogen, Eugene, OR) was diluted in a 

solution of 100 mM NaCl, 50 mM KH2PO4, 3 mM CaCl2, 3 mM MgSO4 to a final 

concentration of 70 µM. Males were incubated in 1 ml of the dye for three hours in the 

dark at 20°C. They were then removed from the dye and paired with hermaphrodites. 

The next day, sperm in the hermaphrodite’s spermatheca were visualized by 

fluorescence microscopy.  

 

In vitro sperm activation assay 

 

 Sperm activation assays were accomplished as described (L'Hernault and Roberts 

1995, Smith and Stanfield 2011). Briefly, three 2-day-old males, isolated at L4 stage, 

were cut at the posterior portion with a needle in 20µL sperm media (50mM Hepes, 

pH7.0, 45mM NaCl, 25 mM KCl, 1 mM MgSO4, and 5 mM CaCl2) on a slide. This 

media is freshly supplemented with polyvinylprolidone (PVP) 40,000 molecular weight 
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(Sigma, MO) and the activator pronase (Roche) at the final concentration of 10 mg/mL 

and 500 µg/mL. A coverslip with a thin layer of Vaseline applied around the edge was 

put on the top of the sperm media to form a chamber over the sperm. After 5 min 

incubation, activated sperm with pseudopods and inactive ones were counted using a 

compound microscope fitted with a 100X objective. ~50-60 sperm cells were counted in 

each sample section.  

 

Drug-induced spicule protraction 

 

  To assay agonist-induced spicule protraction, I dissolved the acetylcholine 

agonists levamisole (ICN Biomedicals, Aurora, OH) and arecoline in water to make a 

stock solution of 1 mM and 100 mM respectively. I then serially diluted the stock 

solution in water as needed. 1 ml of the drug was added to a three well round-bottom 

Pyrex titer dish. Five to ten males were then transferred to the drug bath. The males were 

observed for five minutes at 20°C with a stereomicroscope; they were considered 

responsive to the drug if their spicules remained protracted for ≥ 5 seconds. Drug baths 

were changed after 30 males were observed.  

 

Assessment of mating behaviors 

 

 Mating behavior was observed from two to five minutes for each male using a 

dissecting stereomicroscope. Ten 2-day-old unc-64(e246) adult hermaphrodites were 
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placed on a 5 mm diameter bacterial lawn. Using a mouth pipette and water as a vehicle, 

a male was transferred in the center of the hermaphrodite group. A hand-held timer or a 

lab-written Microsoft Excel macro was used to record certain aspects of mating behavior 

(Liu, LeBoeuf et al. 2007). During mating, the following parameters were recorded: 

when and how many times a male contacted a mate after he was introduced to the 

bacteria; how long he required to turn successfully at the end of a mate after he initiates 

the mating sequence; when and how many times a male contacted the vulva; when and 

how long the male spent attempting to insert his spicules. A different population of 

males was used to obtain data for each behavioral metric. The efficiency of spicule 

insertion, ESI, was calculated from recordings made during the first 120 seconds of 

contact between the male and the hermaphrodite. If the male successfully inserted his 

spicules before the 120 seconds were over, then the observation was stopped. ESI = (time 

(sec) spent at spicule insertion attempts / total time (sec) in contact with hermaphrodite, 

up to 120 sec) X (1/time (sec) in contact with the hermaphrodite, such as backing or 

turning, but not attempting insertion) X (1+ (0 if no penetration, otherwise time (sec) 

remaining after a successful penetration / 120 sec)). A hypothetical ESI of 1.99 would 

mean that the male located the vulva and inserted his spicules approximately 1 sec after 

contact with the hermaphrodite; whereas a hypothetical ESI of 0.0 meant that the male 

spent his first 120 seconds contact but not attempting spicule insertion. 

The ability of males to sense the vulva was calculated by counting the number of 

times he stopped at the vulva divided by the total number of times he stopped and/or 

passed by the vulva. The turning quality was calculated as: the number of smooth turns 
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(defined as the male tail keeping contact with hermaphrodite and turning without 

hesitation) divided by the total number of turns. Ejaculation assays were conducted in 

two ways. I directly observed sperm transfer after spicule insertion, and determined if 

sperm drained into the unc-64(e240) hermaphrodite's uterus. Additionally, cross-progeny 

were counted 1-2 days after spicules insertion. 

 

Ca2+ imaging 

 

The genetically encoded calcium indicator G-CaMP1.3 was used to visualize 

calcium transients in the male sex muscles. The Gateway reading frame cassette B 

(Invitrogen) was blunt-end cloned into the XbaI site of plasmid pTG29, a previously 

described vector containing the GFP-based calcium indicator G-CaMP1.3 (Gruninger, 

Gualberto et al. 2008). The resulting G-CaMP Gateway destination vector, pTG30 was 

then recombined using LR clonase (Invitrogen) with the Gateway entry vector pLR22, 

which contains the lev-11 promoter (LeBoeuf, Gruninger et al. 2007), to generate the 

plasmid pTG32. To visualize red fluorescence in the same cells as G-CaMP1.3, the 

gateway destination vector pGW322DsRed was recombined with pLR22 to generate the 

plasmid pLR132. pGW322DsRed was generated by cloning an AgeI-SplI fragment 

containing the mDSred gene from the plasmid pDC68 (a gift from Dr. Daniel Chase, 

University of Massachusetts) into the AgeI-SplI site of plasmid pGW322YFP (Garcia 

and Sternberg 2003), replacing the YFP gene with the monomeric DsRed gene. 
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Transgenic animals were generated using standard protocols (Mello, Kramer et 

al. 1991). To generate animals that contain G-CaMP expressed in all sex and body wall 

muscles, an injection mixture containing 10 ng/µl of pTG32, 10 ng/µl of pLR132, 50 

ng/µl of pBX1 and 130 ng/µl of pUC18 was injected into pha-1(e2123);him-

5(e1490);lite-1(ce314) (Granato, Schnabel et al. 1994). A stable transgenic line, which 

expressed green and red fluorescence at approximately the same intensity, pha-1(e2123); 

him-5(e1490); lite-1(ce314); rgEx430 [Plev-11: G-CaMP; Plev-11: mDsRed], was kept 

for analysis. 

 Construction of animals that contain G-CaMP expressed in all male sex muscles 

was previously described (Gruninger, Gualberto et al. 2008). In short, a mixture 

containing 12 ng/µl of pLR136 (a plasmid containing both G-CaMP expressed from the 

unc-103E promoter and pha-1(+)), 2 ng/µl of pLR132 (a plasmid containing DsRed 

expressed from the unc-103E promoter),50 ng/µl pBX1 and 136 ng/µl of pUC18 was 

injected into pha-1(e2123);him-5(e1490);lite-1(ce314) to generate the line pha-

1(e2123);him-5(e1490); lite-1(ce314; rgEx197[Punc-103E:G-CaMP; Punc-

103E:mDsRed]. 

  Transgenic males were separated from hermaphrodites at mid or late L4 stage (a 

stage when the tail spike hypodermal cells have finished their anterior retraction). At day 

1 and day 3, the males were either directly visualized during copulation (without a 

microscope coverslip), or they were immobilized between a microscope coverslip and 

10% (for 1-day-old males) and 8% (for 3-day-old males) Noble agar pads containing 

Polybead polystyrene 0.1µm microspheres (Polysciences, Inc., WA). Mating and 
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immobilized animals were visualized on an epifluorescence-equipped Olympus BX51 

microscope. Using a 40X long working distance objective, immobilized worms were 

imaged for approximately 1 minute and mating worms were imaged for about 5 minutes. 

The G-CaMP and DsRed fluorescence signals at the male tail were recorded, 

simultaneously, using a Dual View Simultaneous Image splitter (Photometrics, Tucson, 

AZ) and a Hamamatsu ImagEM Electron multiplier (EM) CCD camera, at the speed of 

approximately 30 frames per second.  

 Ca2+ data were analyzed using the Hamamatsu Simple PCI (version 6.6.0.0) 

software and Microsoft Excel, as described previously (LeBoeuf, Guo et al. 2011, Liu, 

LeBeouf et al. 2011). Four region-of-interests (ROIs), of equal area, were generated in 

the Simple PCI software. Two of the ROIs were used to measure the background signal 

in the green and red channels, and two ROIs were used to measure the fluorescence of 

the male anal depressor muscle and the male spicule protractor muscles in both channels. 

The mean pixel intensity (MPI) was measured for every ROI in every frame, in each 

recording. The data were then transferred from Simple PCI to Microsoft Excel. For each 

frame of the recordings, the values of the background ROIs were then subtracted from 

their respective ROIs that quantified the muscle fluorescence.  

The red channel was used as a reference to analyze the green channel. The 

fluorescence measured in the red channel, in theory, should not change during the course 

of the recording. However, flickering of the mercury arc lamp, movement/contraction 

artifacts and photobleaching will cause fluorescence changes from frame to frame 

independent of fluorescence changes due to calcium transients. To correct for these 



 

 38 

artifacts, in each frame, the background subtracted MPI in the red channel was plotted 

with respect to time and a one-phase decay curve (to correct for photobleaching) was 

fitted over the data points using GraphPad Prism (version 4.03). The fitted curve serves 

as an arbitrary reference to quantify the magnitude of non-interesting fluorescence. For 

each frame, the background subtracted red channel MPI was divided by the interpolated 

value to give a correction value. The inverse of that correction value, for each frame, 

was then multiplied by the subtracted green channel MPI of the respective frame. This 

corrects the values from the green channel, so that the fluorescence changes reflect 

calcium transients rather than experimental artifacts. The values for each frame of the 

recording was then calculated as ΔF/F0 = [(corrected MPI (frame n)-corrected MPI 

(frame 0(initial frame)))/corrected MPI (frame 0)] X 100. The values were then plotted 

with respect to time. Generally, photobleaching did not occur in the green channel, but 

when it was obvious, a one-phase decay curve was fitted over the data points using 

GraphPad Prism. The inverse proportion of decay, for each frame, was then multiplied to 

the respective experimental data point to re-adjust the plots. 

To compare the data between experiments, the mean ΔF/F0 and the standard 

deviation from the mean were calculated using Microsoft Excel and GraphPad Prism; 

the standard deviation was then plotted and compared using the Mann-Whitney non-

parametric statistical test. The standard deviation was used as a simple measure to reflect 

how much spontaneous activity occurred in the muscles during the recordings.  
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Transgenic constructs for sir-2.1(0) rescue 

 

 DNA primers are listed in the Appendix A. The sir-2.1 genomic sequence, plus 

2kb upstream of its ATG, was PCR-amplified from N2 DNA. The PCR product was 

digested and ligated between the SphI and SalI sites of pSX322YFP to obtain the 

plasmid pXG5. To obtain promoters for driving sir-2.1 expression, the sir-2.1 

endogenous promoter was removed via PCR-mutagenesis from pXG5 to construct 

pXG6. The Gateway ATTR cassette frame A was inserted in front of the sir-2.1 genomic 

sequence to make the destination clone pXG7. Plasmids (pXG8, pXG9 and pXG11) that 

promote neuronal, muscular and intestinal expression of sir-2.1 were obtained through 

Gateway LR reactions between pXG7 and pLR35 (Paex-3) (LeBoeuf, Gruninger et al. 

2007), pLR22 (Plev-11) (Gruninger, Gualberto et al. 2008) and pBL50 (Pges-1) (Urano, 

Calfon et al. 2002), respectively. pXG5 (25 ng/µL), pXG8 (10 ng/µL), pXG9 (1 ng/µL) 

or pXG11 (50 ng/µL) were injected to sir-2.1(0) hermaphrodites and transgenic animals 

were selected via YFP fluorescence. pXG5 (50 ng/µL) was injected into wild type 

hermaphrodites to obtains strains with overexpression of sir-2.1 (referred as sir-

2.1(OE)). 

 

Real-time PCR 

 

300 day 1 and day 2 adult males were frozen and accumulated over a period of 

time. RNA was extracted by Trizol, and cDNA was synthesized by SuperScript II (Life 
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technology, NY) using around 2 µg total RNA, as described in (LeBoeuf and Garcia 

2012). The RT-qPCR reactions were performed using BIO-RAD CFX96 real-time 

system and SsoFast EvaGreen supermix. 11 candidate reference genes were tested to see 

whether their expression changed from day 1 and day 2 in both wild-type and sir-2.1 

males (Hoogewijs, Houthoofd et al. 2008); from our analyses, act-1 and gpd-2 were 

selected as the reference to normalize the expression of the metabolic genes. Many of the 

primers used to detect the expression of metabolic enzymes are described in (Castelein, 

Hoogewijs et al. 2008). Other primers for additional metabolic and antioxidant stress 

genes are listed in the Appendix A. Three replicates were conducted on the same RNA 

samples. I used the t-test to determine which mRNA transcripts in sir-2.1(0) males were 

significantly different from their cognate wild type transcripts.  

 

ATP, glucose, glycogen and lipid measurements 

 

To measure ATP and glucose, 100 males were collected at different ages, frozen 

and thawed 3 times. The worms were homogenized, and the supernatant was collected 

and measured using an ATP determination Kit (Life technology, NY) and the Glucose 

Oxidase Assay Kit (Life technology, NY). The ATP and glucose were normalized to the 

amount of dsDNA quantified by picoGreen (Life technology, NY). 

To stain glycogen, 1-day-old sir-2.1(0) and wild-type virgin males were 

transferred to 2% agar pads. The pads containing both genotypes were then placed over a 

bottle of iodine crystals for 30 seconds (Frazier and Roth 2009). The pictures were taken 
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by a Leica compound miroscope mounted with OLYMPUS DP70 camera. The RGB 

images were then converted to 16-bit gray scale, and the mean gray levels of the isthmus 

regions were measured using the SimplePCI image quantification software 

(Hamamatsu). The mean gray level was reversely correlated with the red signal. 

Oil Red O staining was done according to (O'Rourke, Soukas et al. 2009). 

Briefly, males were collected and washed with PBS, and then fixed with Modified 

Ruvkuns witches brew (MRWB) buffer containing 1% paraformaldehyde (PFA) for 1hr. 

Worms were then washed with PBS and suspended in 60% isopropanol for 15 minutes at 

room temperature. The 60% isopropanol was removed and worms were bathed in 60% 

Red Oil O staining solution overnight. The RGB images were taken by a Leica 

compound mircoscope mounted with OLYMPUS DP70 camera. The images were 

quantified by ImageJ according to (Mehlem, Hagberg et al. 2013). 
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CHAPTER III  

CHARACTERIZATION OF MATING BEHAVIOR DETERIORATION IN 

WILD TYPE C. ELEGANS DURING AGING* 

 

The mating potency of C. elegans males significantly drops by the third day of 

adulthood 

 

  To measure how C. elegans male mating behavior changes during adulthood, I 

performed a male mating potency assay. Briefly, in this assay, an individual adult male 

of different ages was paired with a single 1-day-old adult hermaphrodite containing the 

pha-1(e2123) allele at 20°C. The e2123 temperature sensitive mutation in pha-1 allows 

one to score the presence of adult cross progeny as a rapid indicator of a successful 

mating event. Any self progeny that are homozygous for the recessive temperature 

sensitive e2123 mutation cannot undergo embryonic and early larval development at 

20°C. From the mating potency assays, I found that for N2 males (Most C. elegans labs 

use N2 as their wild-type reference), 90%, 68%, 37%, 37% and 36% (n=20 for each) of 

males were potent at adult day 1, 2, 3, 4 and 5, respectively (Figure 3A), relative to 

males that were paired with a hermaphrodite soon after adult molt (denoted as day 0). 

Statistical analysis indicates that at adult age day 3, the N2 males mating potency 

                                                

* Reprinted with permission from Xiaoyan Guo, Andrew Navetta, Daisy G. Gualberto, 
and L. René García (2012) Behavioral decay in aging male C. elegans correlates with 
increased cell excitability Neurobiol Aging. 33(7): 1483.e5–1483.23. (Copyright 2012 
Elsevier) 
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declines significantly (p=0.0031 for 3-day-old males versus 1-day-old males, and 

p=0.0001 for 3-day-old males versus 0-day-old males, Fisher’s exact test). 

  To obtain sufficient numbers of males for the experiment, N2 males must be 

maintained through continual large-scale crossings with hermaphrodites. For ease of 

further experiments, I tested if him-5(e1490) males have the same kinetics of mating 

behavioral decline as N2 males. The e1490 mutation in him-5 increases the incidence of 

spontaneous males from 0.1% to 30%, by increasing X-chromosome non-disjunction 

events during meiosis (Hodgkin, Horvitz et al. 1979, Goldstein 1986). From assaying the 

mating potency of him-5 males, I found that relative to 0-day-old males, 90%, 77%, 

54%, 24% and 10% (n=40 for each) of the males were potent at day 1, 2, 3, 4 and 5, 

respectively (Figure 3B). Similar to the behavior of N2 males, there was a significant 

drop of male mating potency in 3-day-old him-5 males compared either to 0-day-old 

males (p<0.0001) or 1-day-old males (p=0.0012). Because there was little difference 

between N2 males and him-5 males in the kinetics of mating potency, I used him-5 

males in the subsequent assays, and refer to them as the wild type for ease of 

comparison. 

  The percentage of males that are potent could vary due to the population density 

of the culture plate, where males originated, or the fluctuations of humidity and 

temperature of when the assay was conducted. Therefore, I asked at what age (day 2 or 

day 3 relative to day 1) the mating potency drops with consistent measureable statistical 

significance. I conducted four mating potency trials on separate days and found that 

consistent among the trials, male mating potency at day 3 significantly dropped relative 
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to day 1 or day 2, although the percentage of potent males varied ranging from 

approximately 30% to 60% (Figure 3C). The quantitative variation indicates that data 

obtained from experiments should be analyzed and compared within a self-contained 

experimental setting and not between different settings. Additionally, since the 

difference of mating potency between 1-day-old and 3-day-old males was robust, these 

two ages were used for further analysis. 

 

 

Figure 3 C. elegans mating potency declines significantly by the third day of 
adulthood. 
(A) Relative mating potency of N2 males normalized to 0-day-old males (n=20 for each 
day). The normalized percentage for each day is listed on the top of each bar. Fisher’s 
exact test was used to compare the mating potency between different aged males. 
Asterisks *, ** and *** indicate the p<0.05, 0.01 and 0.0001 respectively. (B) Relative 
mating potency of normalized him-5 males (n=40 for each day). (C) Four independent 
trials of mating potency assays in him-5 males (n=30 for each column). 
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Gems and Riddle reported that males raised together have shorter lifespan than 

males raised in isolation (Gems and Riddle 2000). This phenotype was confirmed 

(Figure 4A). It is possible that rearing males in groups might affect male mating 

potency. In the assays described above, 20-30 L4 males were reared together and 

allowed to develop to adults prior to using them in the potency assay; those adult males 

generally attempted to mate continuously with each other by crawling together and 

scanning each other, which could damage the males in some unknown aspects. To 

determine if males raised in a group artificially reduced the male mating potency, I 

conducted the mating potency assay using males reared in isolation and compared them 

with the males that were raised in groups of 20. I found that males raised in isolation or 

in groups have the same mating potency trend at day 1 and day 3 (Figure 4B). At day 5, 

the solitary-reared males have a slightly, but not significantly higher mating potency. 

These results indicated that the male mating potency decline at day 3 is not correlated to 

rearing density. 
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Figure 4 Male mating behavior decline is not dependent on culture conditions.  
(A) Adult lifespan of males maintained in isolation (triangles) or in groups of 20 per 
plate (squares). (n=97 for solitary males; n=205 for grouped males); *** p<0.0001, Log-
rank (Mantel-Cox) Test  (B) Normalized mating potency of him-5 males reared in 
groups of 20 or in isolation. The black bar represents males kept in isolation, whereas the 
light gray bar represents males kept in groups. The number of males assayed for each 
day is listed on the bottom of each bar.  
 
 
 
The mating behavior deterioration is not due to structural dysfunction 

 

 Advanced aging is accompanied with severe structural deformities such as 

sarcapenia and even cell death. To determine whether the mating behavior deterioration I 

observed at the third day of the adulthood is due to structural dysfunction, I construct a 

plasmid with the actin gene fused to yfp to observe the microfilament organization in the 

sex muscles of males at different ages. As 3-day-old males, they have similar 

microfilament orientation and mass compared to 1-day-old males (Figure 5A). However, 

8-day-old males display significant shrinkage phenotype and also disorganization of 

microfilament arrangement. Although I did not inspect the morphology of the neurons in 

3-day-old males, there is report that neurons in aging C. elegans can keep their integrity 

throughout their lifespan (Herndon, Schmeissner et al. 2002). 
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To exclude the possibility that the mating behavior deterioration is due to sperm 

dysfunction, I did two experiments: first, if the decline of a male’s ability to sire progeny 

is due to dysfunctional sperm, mating potency should drop even if hermaphrodites that 

are easier to mate with are used. The 1-day-old pha-1 hermaphrodites present a 

challenge to the males, as they are actively moving and their vulvas have not yet been 

stretched from repeated egg-laying. To make mating easier for the males, I conducted 

the mating potency assay using 4-day-old pha-1 hermaphrodites. These hermaphrodites 

are less active, have a more dilated vulval opening from extended egg-laying and are 

depleted of self-sperm. I found that the percentage of 3-day-old potent males was 

significantly increased from 37% to 70% (p=0.02) when I used older pha-1(e2123) 

hermaphrodite as mates (Figure 5B). Second, if the sperm are dysfunctional, for those 

males that displayed successful ejaculation, they might not produce viable progeny. To 

address this, sperm DNA in the male’s testis were stained with the red fluorescent dye 

SYTO-17 and tested if hermaphrodites that contained fluorescent sperm from 3-day-old 

adult males produced cross progeny (Hill and L'Hernault 2001). From overnight matings 

between stained 1-day-old males and pha-1 hermaphrodites, 27/30 hermaphrodites 

contained stained male sperm in their spermatheca; all 27 hermaphrodites produced 

cross progeny. From matings between stained 3-day-old males and hermaphrodites, 6/30 

hermaphrodites contained stained male sperm in their spermatheca; all 6 hermaphrodites 

produced cross progeny. These observations indicate that the sperm of 3-day-old males 

are still functional. This left the possibility that the reduction in mating potency could be 

due to a decline in some aspect of behavioral execution.  
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Figure 5 Mating potency decline is not due to sex muscle disorganization or sperm 
dysfunction. 
(A) Negative grey scale fluorescent images of the adult male tail muscles. The overall 
structure of male-specific sex muscles indicated by YFP:ACTIN in 3-day-old male 
shows no significant difference as compared to that of 1-day-old male. (1) and (3) show 
the male tail structure with noticeable striated oblique muscles of 1-day-old and 3-day-
old males respectively. (2) and (4) show diagonal muscles of 1-day-old and 3-day-old 
males respectively. Scale bar is 10 µm. (5), (6) and (7) show disorganized diagonal 
muscles of 8-day-old males. I observed hole-like structure in the diagonal muscles 
indicated by *. (ob) oblique muscles; (dgl) diagonal muscles. (B) Mating potency of 3-
day-old him-5 males using 1-day-old and 4-day-old pha-1 hermaphrodites as mates. 
Fisher’s exact test Asterisks * indicates the p<0.05 (N=40 for each case). 
 
 

Aberrant behavior displayed during mating of 3-day-old males 

 

Since it is unlikely that structural dysfunction is the primary cause of the 

deterioration of mating behavior during early aging, the altered physiological state in the 
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3-day-old of males likely plays an important role in the decline of mating potency. 

Determining which aspect of mating behavior is altered would provide a clue about how 

the physiology of the mating circuitry is changed. To address this, I observed the mating 

behavior of 1- and 3-day-old males, which were paired with 2-day-old paralyzed unc-

64(e240) hermaphrodites, to compare behavioral parameters more uniformly between 

copulation events. For a male to initiate the mating behavior, he has to rely on the 

functionality of his chemosensory cilia, which sense the chemical and mechanical cues 

from the hermaphrodites (Barr and Sternberg 1999, Barr and Garcia 2006). The male 

crawls backwards along the hermaphrodite after the ray sensory neurons, located in his 

tail, contact his mate (Koo, Bian et al. 2011). When 3-day-old males were introduced to 

the mating lawn, they took twice as long as 1-day-old males to contact a hermaphrodite 

(99 ± 52 secs for 1-day-old male, n=20; 182 ± 146 secs for 3-day-old males; mean ± SD, 

p=0.02, unpaired t-test) (Figure 6A). 3-day-old males did not initially explore the new 

lawn, but after 30 seconds they would initiate exploration and locate a mate within six 

minutes. Once a male’s tail contacted a hermaphrodite, his behavior was observed for up 

to 5 minutes and recorded how well he executed each step of mating behavior. 3-day-old 

males immediately initiated mating with the same efficiency as young males; the mean 

number of contacts before backing behavior was two for both young and old males 

(n=20 for each) (Figure 6B). Thus sufficient numbers of ray sensory neurons located in 

male’s tail are functional to mediate the contact response step of mating. During 

backward locomotion, if the male reaches the end of hermaphrodite, he will make a turn 

to continue scanning along the hermaphrodite cuticle (Loer and Kenyon 1993). After the 
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3-day-old males made contact, they took slightly longer than younger males to make a 

successful turn at the ends of the hermaphrodite (7 ± 3 secs for 1-day-old male, n=20; 15 

± 15 secs for 3-day-old males; mean ± SD, p=0.03, unpaired t-test) (Figure 6C). Instead 

of turning, the older males would rub their tails back and forth at the ends of the 

hermaphrodites or consecutively attempt, abort and reattempt a turn for a few seconds. 

They would make a successful turn with their tail, but then they would not carry through 

the turn with continued backward locomotion. Instead, they would move forwards and 

then backwards again to reattempt the turn. Interestingly, when the aged males were 

hesitant in their turns, the curvature of their body resembled that of a male trying to 

insert his spicules into the vulva (Figure 6D). More frequently, the 3-day-old males 

would stop their locomotion at non-vulva regions, which also accounts for why they 

took longer to make one turn after contact.  

Sensing the vulva is regulated by the hook and post-cloacal sensilla. After a 

successful turn, 3-day-old males had no trouble locating the vulva, as compared to young 

males (Figure 6E), indicating that these neurons still function at day 3. However, they 

were not as efficient as younger animals at maintaining their position over the vulva 

during spicule insertion attempts or breaching the vulva lips. After the postcloacal 

sensilla (p.c.s.) neurons and hook neurons sense the vulva, the male stops at the vulva 

and simultaneously initiates spicules prodding via rhythmic contractions of the 

protractor muscles (Garcia, Mehta et al. 2001). Once the spicules partially penetrate the 

vulva, the SPC neurons will stimulate the protractor muscles to fully contract. 

Consequently, the spicules will fully insert (Liu, LeBeouf et al. 2011). During the first 
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two minutes of mating, only 15% of 3-day-old males (n=20) were able to insert their 

spicule completely, whereas 50% of 1-day-old males (n=20) were able to penetrate their 

mates (Figure 6F). The efficiency of spicule insertion (ESI), a metric that combines how 

fast they initiate spicule insertion attempts, how tenacious they sustain reattempts and 

how fast they completely insert their spicules within two minutes (see Materials and 

methods), was higher for 1-day-old males compared to 3-day-old males (the average ESI 

was 0.04 for 1-day-old males, n=20 and 0.004 for 3-day-old males, n=20) (Figure 6F). In 

conclusion, while older males are capable of performing the specific steps of mating 

behavior, they do so at a lower efficiency than younger males. Therefore, the inefficient 

behavioral execution exhibited by 3-day-old males during mating with paralyzed 

hermaphrodites would magnify during copulations with moving hermaphrodites, which 

would be a likely cause for reduced mating potency. 
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Figure 6 Specific steps in mating behavior are affected as the male ages.  
(A) The time required for the males to initiate mating behavior. Each dot represents the 
metric of a single male observed. * p<0.05; unpaired t-test. (B) The number of contacts 
the males made prior to initiating backward locomotion along the hermaphrodites 
cuticle. (C) The time between the male initiating mating behavior and completing the 
first turn at the end of the hermaphrodite. * p<0.05; unpaired t-test. (D) The top panel (1) 
depicts a 1-day-old male moving backwards along the hermaphrodite and turning at the 
end of his mate. The posture of a 3-day-old male (2) during backward locomotion 
resembles a male attempting to insert his spicules (3). Scale bar is 100 µm. (E) The 
number of vulval contacts prior to successful insertion of spicules. (F) Spicule insertion 
efficiency (ESI) during 2-minutes of observation. Open symbols indicate that the males 
successfully inserted their spicules. The number of success insertion is listed on the top 
of each column. * p<0.05; ** p<0.001; *** p<0.0001; Mann-Whitney non-parametric 
test.  
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Spicule muscle excitability increases during adulthood 

 

During the behavioral observations, I noticed that 3-day-old males spent a 

significant amount of time at areas outside the vulva region and assumed a posture that 

was reminiscent of spicule insertion attempts (Figure 6D). I asked if this increase in 

apparent spicule insertion attempts outside the vulva region was correlated with 

increased sex muscle excitability. To address this question, I used G-CaMP, a GFP-

derived fluorescent calcium sensor to monitor the Ca2+ transients in the sex muscles 

during mating (Nakai, Ohkura et al. 2001). I observed Ca2+ transients in the sex muscles 

(Figure 7) of 3-day-old males, when they randomly stopped at non-vulval regions.  

 

 

Figure 7 An old male displays ectopic spicule insertion behavior at non-vulva 
regions.  
The arrows point to the hermaphrodite vulva and sex muscles of the male tail express G-
CaMP. The green indicates the background fluorescence of G-CaMP. Once Ca2+ is 
released into the muscle cytoplasm, the G-CaMP fluorescence becomes more intense, 
indicated by the yellow and red false colors.  
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These observations led me to hypothesize that components of the mating circuit 

might be hyper-excited, resulting in the ectopic spicule insertion behavior. If this was the 

case, mating relevant components such as the spicule muscles of older males might 

display more spontaneous Ca2+ transients, even when the males are not mating. To test 

this idea, I imaged the Ca2+ transients in the spicule-associated muscles from 

immobilized 1- and 3-day-old males (Figure 8A). Compared to 1-day-old males (Figure 

8B), 3-day-old males displayed more Ca2+ transients (Figures 8C, D, E). 

 
 

 

Figure 8 Immobilized older males display increased Ca2+ transients in the sex 
muscles.  
(A) A male was immobilized on an agar pad and recorded in the green (left) and red 
(right) fluorescence channels simultaneously. The mean gray pixel intensity was 
measured in the rectangular region of interest. (B) Plots of Ca2+ transients in 8 
representative 1-day-old males. (C) Plots of Ca2+ transients in 8 representative 3-day-old 
males. (D) Standard deviation from the mean ΔF/F0 for each male. N=18 for each group. 
** p<0.01; Mann-Whitney non-parametric Test. (E) No. of transient peaks with 
amplitude larger than 20% (p <0.05) change; Mann-Whitney non-parametric Test. 
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The increased incidence of Ca2+ transients in 3-day-old male sex muscles 

suggested the non-stimulated excitability level of the mating circuit increases as the male 

ages. I hypothesized that the increased excitability might result in hypersensitivity of the 

spicule-associated muscles to agonist stimulation. The cholinergic SPC motor neurons 

make direct synapses with the spicule muscles. To respond to secretions from these 

neurons, the muscles express levamisole (LEV)-sensitive ionotropic acetylcholine 

receptors (AChRs) made up of subunits encoded by the unc-38, unc-63, lev-8, lev-1 and 

unc-29 genes. To test the hypothesis that increased calcium transients might be related to 

hypersensitivity to cholinergic stimulation, I used the acetylcholine agonist LEV to 

stimulate protractor muscle contraction. Low concentrations of LEV can increase the 

acetylcholine receptors’ closed to open probability, causing excitable cells to fire. To 

ascertain the sensitivity of males to the drug, I bathed 1- and 3-day-old males for five 

minutes in various concentrations of LEV, and quantified how many males protracted 

their spicules for greater than 5 seconds. I found that the LEV sensitivity of the spicule 

muscles for 3-day-old males was approximately seven times greater than compared to 

younger males (LEV EC50: 884 µM for 1-day-old males, 100 nM for 3-day-old males) 

(Figure 9). This result is consistent with the mating behavior observations and increased 

calcium transients, indicating that the overall excitability of the male mating circuit 

increases as the male ages. 
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Figure 9 3-day-old wild type males are more sensitive to levamisole.  
≥30 males were assayed for each concentration. The EC50 for each treatment or strain 
was calculated and listed on the right of each corresponding line. 
 
 
 
Chapter summary 

  

           In chapter III, I characterized how wild type C. elegans male mating behavior 

deteriorates during aging. First, I utilized a very simple mating potency assay using pha-

1(e2123ts) hermaphrodite as mates, which allowed quick scoring of successful mating 

events through existence of viable cross progeny. Via the mating potency assay, I 

demonstrated that C. elegans males, either from the N2 or him-5(e1490) strains, display 

mating behavior deterioration at the the third day of the adulthood, after which they can 

still live about 7-13 days.  Also, the decline of mating potency is independent of the way 

I raised them. When the males were raised individually, although they can live 

significantly longer than males cultured in a group, isolated males still have a dramatic 
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drop of mating at the third day of adulthood. Thus, the lifespan extension is not 

necessarily correlated with a delay of behavior deterioration. 

           To determine the underlying mechanism of mating-behavior decline that occur 

during early aging, I observed the sex muscles structure of different aged males. 3-day-

old males have well-organized muscle filament arrangement, excluding the possibility of 

sarcopenia-caused mating behavior deterioration. Sperm dysfunction could also result in 

decreased mating success. However, this is unlikely, since I observed that 100% of 3-

day-old males who successfully transferred sperm produced viable progeny. Also, 

another group studying on C. elegans males reported that the sperm activity could be 

preserved at least up to day 5 of adulthood (Chatterjee, Ibanez-Ventoso et al. 2013). 

Therefore, I concluded that the deterioration of mating behavior at such an early age is 

not due to structural dysfunction but actually neuromuscular circuit disregulation. 

        Through direct observation of mating steps in 3-day-old and 1-day-old males, I 

found that although 3-day-old males required slightly more time to initiate mating, most 

of them could sense the hermaphrodite and initiate mating eventually. Considering that 

during a mating potency test, males remain with hermaphrodites for an unlimited amount 

of time, the time required to initiate mating may not be the limiting factor contributing to 

mating failure. After males start to scan for the vulva, 3-day-old males displayed ectopic 

spicule prodding behavior more often with more calcium transients observed during this 

ectopic behavior. Also, they turn with a posture that mimics that of insertion, indicating 

that the mating circuitry might be hyper-excitable. 3-day-old males can sense the vulva 

as efficiently as 1-day-old males indicating a full function of their sensory neurons. 
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Taken all together, it might be that the ectopic prodding and aberrant turning behavior 

contribute to the lower spicule insertion efficiency and thus lower mating potency. The 

hyper-excitability of the mating circuitry in the 3-day-old males is confirmed by the 

pharmacological drug tests. 
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CHAPTER IV 

REDUCING THE EXCITABILITY OF THE MATING CIRCUITRY 

PROLONGS THE MATING BEHAVIOR* 

 

Reducing the expression of ACh Receptor genes increases the mating potency in 3-

day-old males 

 

  My pharmacological assays and Ca2+ imaging experiments indicated that during 

aging, the excitability of male mating circuit components such as the male sex muscles is 

increased. Therefore, I asked if the hypersensitivity of the cholinergic mating circuit 

components was related to the mating potency decrease in 3-day-old males. To answer 

this, I reduced the expression levels of several acetylcholine receptor (AChR) genes and 

asked if the manipulation can increase the mating potency of older males. 

  The male sex muscles express the GAR-3, ACR-18, ACR-16 and UNC-29 

AChRs (Liu, LeBeouf et al. 2011). I assayed the mating potency of males that contain a 

single homozygous mutation in these AChR genes. Relative to 1-day-old males, the 

mating potency of 3-day-old gar-3(gk305) and acr-18(ok1258) males dropped 

significantly, and was similar in kinetics to wild-type males (Figure 10A). In this study, I 

found that for acr-16(ok789) males, there was also a significant drop at day 3 compared 
                                                

* Reprinted with permission from Xiaoyan Guo, Andrew Navetta, Daisy G. Gualberto, 
and L. René García (2012) Behavioral decay in aging male C. elegans correlates with 
increased cell excitability Neurobiol Aging. 33(7): 1483.e5–1483.23. (Copyright 2012 
Elsevier) 
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to 1-day-old males. unc-29 is expressed in the body wall muscles and the lack of 

functional UNC-29 makes the animals severely defective in locomotion, which 

obviously eliminates the ability of the mutant males to mate. To circumvent this 

problem, locomotion was restored to the mutant males by driving the expression of an 

unc-29 cDNA, using the acr-8 promoter that expresses in the body wall muscles, but not 

the male sex muscles (Liu, LeBeouf et al. 2011). Similar to acr-16 males, the body wall 

restored unc-29 male mating potency dropped significantly at day 3 relative to 1-day-old 

males (Figure 10A). Taken together, these results suggested that reducing the function of 

single AChR genes does not decrease the rate of mating potency decline by day 3.  

I then asked if reducing the expression of all four AChR genes could reduce the 

rate of mating potency decline. Males that are homozygous for mutations in all 4 genes 

cannot mate; therefore, males that are heterozygous mutant for all of these AChR genes 

were used to conduct the mating potency assays. I reasoned that one functional genomic 

copy of these four AChR genes would be sufficient to allow the males to mate.  But one 

copy of these genes might also reduce the sex muscle excitability in 3-day-old males and 

possibly increase mating potency. 
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Figure 10 Manipulation of AChR gene dosage can improve the mating potency of 3-
day-old males.  
(A) Relative mating potency in single AChR mutant homozygous males. (B) Relative 
mating potency in AChRs heterozygous mutants. The number of males assayed for each 
strain is listed within the bottom of each bar and the normalized percentages are listed 
within the top of each bar. *p<0.5; ** p<0.01; Fisher’s exact test. (C) AChRs 
heterozygous mutants have a lower sensitivity to levamisole at the third day of 
adulthood. ≥30 males were assayed for each concentration. The EC50 for each treatment 
or strain was calculated and listed on the right of each corresponding line. 
 

 

To test this hypothesis, I assayed the mating potency of the heterozygous mutant 

males at day 1 and 3. As expected, I observed a significant improvement of mating 

potency at day 3, 55% for heterozygous males compared to 27% for wild-type males 

(Figure 10B). I then assayed the 1- and 3-day old heterozygous AChR males’ response 
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to LEV and found that the LEV sensitivity of the spicule muscles for 3-day-old 

heterozygous males was significantly lower than that of similarly aged wild-type males 

(LEV EC50: 1 µM for 3-day-old heterozygous males, 100 nM for 3-day-old him-5 males) 

(Figure 10C). Thus, reducing one functional genomic copy of each AChR gene was 

sufficient to reduce the excitability of males mating circuit components on day 3. This 

observation suggests a correlation between the changes in the excitability of male mating 

circuit components and the efficiency of copulation behavior during aging.  

 
 
Transient starvation in 1-day-old males can reduce sex muscle excitability and 

increase mating potency in 3-day-old males 

 

Although genetic manipulation can reduce the excitability of sex muscles and 

increase mating potency in 3-day-old males, I asked if there is another less-invasive 

strategy that can be applied to wild-type males, in order to achieve the same outcome. 

Previous work has showed that caloric deprivation can reduce male sex muscle 

excitability. 3-18 hrs of transient starvation during early adulthood can suppress fictive 

spontaneous mating behavior and sex muscle spasms caused by deletion of the unc-103 

encoded ether-a-go-go related gene (ERG)-like K+ channel (Reiner, Weinshenker et al. 

2006, LeBoeuf, Gruninger et al. 2007, Gruninger, Gualberto et al. 2008). The 

suppressive effect can last for days after re-feeding, and is partly facilitated by the 

compensatory increased expression and function of the ether-a-go-go (EAG) K+ channel 

encoded by the gene egl-2 (LeBoeuf, Guo et al. 2011). 



 

 63 

 Since transient starvation can reduce the excitability of components of the 

mating circuit in young adult males, I asked if it has a similar effect on 3-day-old males. 

To address this question, I used LEV to stimulate the male spicule protraction circuit in 

3-day-old males that were transiently starved for the first 18~20 hr of adulthood. As 

expected, I found that the sensitivity to LEV of these transiently starved males was 

significantly lower than that of well-fed 3-day-old males (LEV EC50: 251nM for 

transiently starved, 3-day-old males; 100nM for 3-day-old males) (Figure 11A).  

  I then asked if transient starvation could also positively affect the mating 

behavior of 3-day-old males and found that male mating behavior can be improved by 

transient starvation during early adulthood. At day 1, 83% (n=69, 100% after 

normalization) of males after transient starvation can produce the cross progeny versus 

93% (n=60, 100% after normalization) of well-fed males. At day 3, a significant 

improvement in mating potency was observed in males that experienced transient 

starvation. 71% (n=70) of starved males can sire progeny; while only 41% (n=60) of 

well fed males can mate (Figure 11B). In agreement with the mating potency assay, 

during mating behavior, the efficiency of spicule insertion (ESI) of 3-day-old males that 

were transiently starved during early adulthood is significantly higher than their 

continuously fed cohorts. During 2 minutes of observation, 40% of the transiently 

starved 3-day-old males inserted their spicules, and the average ESI was 0.02, similar to 

18-24 hr males and significantly different from aged well-fed males (p=0.005, Mann-

Whitney U test) (Figure 6F).  
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Figure 11 Transient starvation can improve the mating behavior without extending 
lifespan.  
(A) Transient starvation reduces the sensitivity of 3-day-old males to levamisole. (B) 
Changes in mating potency of transiently starved and well fed aged males. ** p<0.01; 
Fisher’s exact test. (C) Adult lifespan of transiently starved and fed wild-type males 
(n=78). p=0.2 ns; Log-rank (Mantel-Cox) test.  

   

 
Since caloric restriction has been shown to extend lifespan in C. elegans (Klass 

1977, Hosono, Nishimoto et al. 1989), it is possible that the increased mating potency of 

3-day-old males by transient starvation is a consequence of lifespan extension rather 

than the modulation of cell excitability. Therefore, I conducted a lifespan assay for both 

well-fed males and males transiently starved for ~18hrs and then re-fed and found that 

the duration of transient starvation that can increase mating potency in 3-day-old males 
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is not sufficient to extend lifespan (Figure 11C). This result is consistent with my 

hypothesis that increase of the mating potency by transient starvation during early 

adulthood is correlated with the reduction of cell excitability in 3-day-old males. 

 

The long-term effect of transient starvation on mating potency requires protein 

synthesis during early adulthood 

 

  To address how transient starvation prolongs male mating potency, I first asked 

if food deprivation slows down the natural, yet undefined progressive changes in the 

physiology of the mating circuit, so that 3-day-old males can mate better. If so, 

transiently starving the males anytime from adult molt to day 3 should increase the 

mating potency of 3-day-old males. Since ~20 hrs starvation of males starting from late 

L4 or early adulthood was sufficient to improve male mating potency at day 3, I asked if 

~20 hrs of starvation at day 2 can also prolong male mating potency. Males were fed for 

the first 24 hrs of their adulthood, then starved for ~20 hrs, then re-fed for an additional 

24 hrs before they were assayed for their mating potency. I found that transiently 

starving the males at day 2 of adulthood cannot prolong mating potency (Figure 12), 

indicating that starvation needs to occur early in a males’ development to have lasting 

effects on mating potency.   
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Figure 12 The effect of a protein synthesis blocker, cycloheximide, on male mating 
potency.   
 
 
 

 I then asked if protein synthesis during starvation is required to increase the 

mating potency at the third day of adulthood. To address this, I starved the males 

(immediately after adult molt) in the presence of cycloheximide (CHX), a drug that 

reduces translation by blocking the ribosomal translocation step (Ernest 1982). After 18-

20 hrs on plates with CHX but lacking food, the males were removed from the drug and 

transferred to plates containing food. I then scored the 3-day-old male mating potency 

and found that the percentage of potent males was reduced from 73% (n=70) to 56% 

(n=57) (p<0.05) (Figure 12). This suggests that under normal conditions, protein 

synthesis occurs in young starving males that later improves mating potency in older 

males. One consequence of those newly synthesized proteins might be to offset or 

reprogram the physiological changes that occur in the mating circuit during aging.  

The protein synthesized or the protein synthesis process itself during early 

adulthood might play a negative role in maintaining mating potency during aging. In 

contrast to the negative effect of CHX on starved males, continual exposure to CHX 
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during one day of starvation and two days of re-feeding can restore the positive effect of 

transient starvation; the percentage of 3-day-old males that can sire progeny increased 

from 56% to 76% (Figure 12). This indicates that under normal well-fed conditions there 

might be molecules synthesized during adulthood that are detrimental to the 

physiological state of the mating circuit. I then asked if perturbing protein synthesis in 

continuous feeding conditions also positively affects the mating potency of 3-day-old 

males. I found that continuously blocking protein synthesis slightly, although not 

significantly, affects 3-day-old males (54% compare to 62% of 3-day-old males can sire 

progeny p=0.45), whereas exposure to CHX only at day 1 (54% compared to 50% of 3-

day-old males can sire progeny) or only at day 2 (54% compared to 40% of 3-day-old 

males can sire progeny) has no effect, suggesting that reducing protein synthesis in 

general does not increase the mating potency. Taken together, these results suggest that 

early adulthood is a sensitive period when new proteins, synthesized in response to 

transient starvation, can offset the deteriorative effect of protein synthesis during re-

feeding, to prolong the mating potency. 

 

UNC-103 and EGL-2 potassium channels mediate the effect of transient starvation 

on mating potency 

 

 Previous works from our lab demonstrated that 3 to 18 hrs of transient starvation 

could attenuate the excitability of the mating circuit for an extended period of time, 

through the activity of EAG family K+ channels. Deletion of the unc-103-encoded ERG-
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like K+ channel (unc-103(0)) leads to an unregulated increase in the excitability of the 

male mating circuit, causing a percentage of males to display spontaneous spicule-

muscle spasms. As a consequence, the attached spicules are protracted constitutively 

from the cloacal opening (Garcia and Sternberg 2003, Gruninger, Gualberto et al. 2006). 

The unc-103(0) spontaneous spicule protraction phenotype can be suppressed by 

starvation, partially through the up-regulation of unc-103’s paralog, the egl-2-encoded 

EAG K+ channel. In wild-type males, robust expression of egl-2 in the sex muscles 

occurs approximately two days after adulthood; however, its temporal expression can be 

expedited by starvation, and the effects on attenuating cell excitability can last for days 

(LeBoeuf, Gruninger et al. 2007, LeBoeuf, Guo et al. 2011). This led us to ask if the 

EGL-2 and UNC-103 K+ channels could be molecules that respond to short-term 

starvation, attenuate cell excitability, and consequently reduce the rate of male mating 

decline.  
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Figure 13 Potassium channels are required to mediate the effect of transient 
starvation on mating potency.  
Numbers at the top of the bars are normalized percentages. Below are the numbers of 
males assayed. The unc-103 mutation causes a certain percentage of males to protract 
their spicules constitutively, the Prc phenotype. Males used in the mating potency assay 
did not display the abnormal phenotype, and are referred to as non-Prc males. (A) 
Changes in mating potency of transiently starved and fed aged unc-103(0) males. ** 
p<0.001; Fisher’s exact test. (B) Changes in mating potency of transiently starved and 
well fed aged egl-2(0) males. * p<0.05; Fisher’s exact test. (C) Changes in mating 
potency of transiently starved and well fed aged wild-type males. (D) Changes in mating 
potency of transiently starved and well fed aged unc-103(0); egl-2(0) males. * p<0.05; 
Fisher’s exact test. 
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To address the hypothesis, I used unc-103(0) and egl-2(0) single- and unc-

103(0); egl-2(0) double-mutant males to test if transient starvation’s effect on mating 

decline is perturbed by mutations in these EAG family K+ channel genes. In wild-type 

males, egl-2 expression in the male sex muscles is robust at day 2 of adulthood, 

suggesting that the K+ channel might be important during that period (LeBoeuf, Guo et 

al. 2011). Therefore, I assayed the mating potency of wild type, unc-103(0) and egl-2(0) 

single and double mutant males on day 1, 2 and 3. The mating potency kinetics for unc-

103(0) single mutant males resembled wild type. Mating behavior did not significantly 

decline until day 3, and transient starvation improved the mating potency (from 18% to 

62%, p<0.05 n=40) (Figure 13A). Unlike wild type or unc-103(0) males, the mating 

potency of egl-2(0) males measurably declined by day 2. However, after starvation, 87% 

(n=40) of  mutant males were potent, which was significantly higher than their well fed 

cohorts (60% n=40) (Figure 13B). Therefore, single K+ channel mutations do not 

obviously interfere with processes that occur during and after transient starvation.  

Mutations in both K+ channels did affect the male’s mating potency after 

starvation. Similar to egl-2(0) males, the mating potency of unc-103(0); egl-2(0) animals 

significantly drops at day 2 (from 100% to 44%, n=39 and 34, respectively, p=0.02). 

However, unlike in egl-2(0) males, transient starvation did not improve the mating 

potency of the double mutants (45% for well-fed males vs. 47% for starved males, n=44 

and 48, respectively) (Figure 13D). I did observe a slight, but not statistically significant 

difference (probably due to the limited sample size) in mating potency of unc-103(0); 

egl-2(0) males at day 3 between well-fed and starved conditions. Therefore, I cannot rule 
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out that there are additional molecules that might have a minor involvement in the 

transient starvation response. I concluded that increase in K+ channels function during 

transient starvation might result in slowing the decline of mating potency during aging. 

 

Chapter summary 

 

        In this chapter, I explored two ways to improve the mating behavior of 3-day-old 

males. The first one is through manipulation of ACh receptors. Individual homozygous 

mutants of ACh receptors either do not affect mating at third day of adulthood, or they 

make males mate even worse. However, quadruple heterozygous mutations improved 

mating of 3-day-old males and reduce the excitability of the mating circuits. This 

suggests that the hyper-excitability might cause behavioral deterioration, which occurs 

during early aging. 

 The second way to extend the mating behavior is through transient food deprivation 

from late L4 to early adulthood for about 20 hrs. The time window for the starvation is 

critical, as transient starvation initiated at day 2 cannot prolong mating. By using a 

protein synthesis blocker, cycloheximide, I found that protein synthesis during the 

starvation at L4 to early adulthood is required to improve mating in the long term. 

However, continuing to supply worms with CFX can counteract the effects of blocked 

protein synthesis during food deprivation, suggesting that stage-dependent synthesis of 

protein played opposite roles in maintaining male mating ability. As important regulators 
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of excitability in the mating circuitry, potassium channels including UNC-103 and EGL-

2 are at least partially required to mediate the effects of transient starvation.  
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CHAPTER V  

SIR-2.1 REGULATES MATING BEHAVIOR THROUGH REGULATION OF 

METABOLIC HOMEOSTASIS AND STRESS RESPONSE* 

 

SIR-2.1 maintains male mating during early aging 

 

 C. elegans male mating behavior deteriorates during early aging. N2 and him-

5(e1490) C. elegans males' mating capability begins to decline at day 3 of their 

adulthood, although their median lifespan is 11 to 12 days (Guo, Navetta et al. 2012). I 

demonstrated that transient starvation of young males can extend their mating span, 

partially through up-regulation of ether-a-go-go K+ channels (LeBoeuf, Guo et al. 2011); 

however, our data also suggested that transient starvation can improve mating through 

additional mechanisms (Guo, Navetta et al. 2012). Considering that metabolism is 

altered in food deprived males (Tan, Luo et al. 2011), I tested whether perturbing the 

histone deacetylase metabolic regulator, sir-2.1, affects the functional span of copulation 

behavior in fed and transiently starved/re-fed males.  

 In adult hermaphrodites, animals that lack sir-2.1 have increased intestinal lipids 

(Walker, Yang et al. 2010), a phenotype opposite of starved animals. Likewise, I found 

that 1-day-old sir-2.1(ok434) null (0) males also contain more lipids than wild type 

(Figure 14). In addition, I observed that 2-day-old wild-type males have more fat (Figure 
                                                

* Reprinted with permission from Xiaoyan Guo, L. René García (2014) SIR-2.1 
integrates metabolic homeostasis with the reproductive neuromuscular excitability in 
early aging male C. elegans. eLife :e01730 (Copyright 2014 elife Science Publication) 
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14). Thus, I asked if sir-2.1(0) males might have altered mating due to metabolic 

dysregulation. Allowing the males to mate for five hours, I found that well-fed aging sir-

2.1(0) males' mating ability drops prematurely, compared to wild-type males (Figure 

15A). Even under unlimited mating conditions, the mating potency of 2-day-old sir-

2.1(0) drops to 42% (p < 0.0001, n = 47) (Figure 15B). 

 

 

Figure 14 sir-2.1(0) and older wild type males have more lipid content. 
 
 
 

I then asked if transient starvation can suppress the mating defect in sir-2.1(0). 

To do so, I starved sir-2.1(0) males for ~20 hours from L4, and conducted a 5 hours 

mating potency assay. Transient starvation improved mating of 2-day-old sir-2.1(0) 

males from 13% to 75% (p<0.0001, Figure 15C), but at day 3, the mating potency of 

transiently starved sir-2.1(0) males was still lower than wild type. Thus, similar to wild 
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type, the metabolic alteration and/or up-regulated EAG K+ channel functions caused by 

starvation alleviate some of the dysfunction caused by the sir-2.1 deletion. However, the 

mutant's reduced mating potencies between day 1 and 3 under both conditions indicate 

that SIR-2.1 contributes to the functionality of the mating circuits during this period. 

To confirm that premature mating deterioration in sir-2.1(0) males is caused by 

the ok434 allele, I introduced into sir-2.1(0) animals a rescuing transgene containing the 

sir-2.1 endogenous promoter driving the sir-2.1 genomic sequence fused to yfp. The 

extrachromosomal expression of sir-2.1 significantly improved the mating potency of 2-

day-old sir-2.1(0) males from 26% to 75% (p<0.0001, Figure 15D). sir-2.1 is expressed 

broadly in C. elegans (Bamps, Wirtz et al. 2009), thus I further conducted tissue specific 

rescue assays. However, I found that none of the tissue specific promoters driving the 

expression of sir-2.1, including neuronal, muscle and intestinal promoters can rescue the 

premature mating decline (Figure 15E). This suggests that sir-2.1 is required in multiple 

tissues to maintain male mating. 
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Figure 15 sir-2.1(0) mating ability deteriorates prematurely.  
Mating potency of wild-type and sir-2.1(0) males. Copulations were allowed to occur for 
5 hours (A) or for an unlimited time (B). The number of males in each assay is listed at 
the bottom of each bar. The numerical percentage of wild-type males that mated on day 
1 was normalized to 100%. The normalization factor was then applied to the other 
experimental conditions. The normalized percentages for each day are listed on the top. 
Fisher’s exact test was used to compare the mating potency prior to normalization. (C) 
Transient starvation reduces sir-2.1(0) mating deficiency. (D) Mating potency of sir-
2.1(0) and rescued strain sir-2.1(0); rgEX399 [Psir-2.1:sir-2.1::yfp]. ns, not significant. 
Asterisks *, ** and *** indicate the p < 0.05, 0.01 and 0.0001, respectively. (E) Tissue 
specific expression of sir-2.1 does not rescue the reduced mating potency of sir-2.1(0) 
males at day 2. The lev-11 promoter expresses sir-2.1 in all body wall and sex muscles. 
The ges-1 promoter expresses sir-2.1 in the intestine. The aex-3 promoter expresses sir-
2.1 in all neurons. 
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sir-2.1(0) males mating deterioration is not due to structural dysfunction 

 

 To exclude the possibility that sir-2.1(0) mating deficiency at day 2 is due to a 

shorter lifespan, I conducted a lifespan assay and found that sir-2.1(0) males lived as 

long as wild type (Figure 16A). Another possibility for the mating deterioration is 

morphological deformities of the sex musculature. However, in 2-day-old sir-2.1(0) 

males expressing a functional yfp:actin transgene (Figure16B),  I did not observe any 

obvious muscle fiber disorganization, which normally occurs in 8-day-old wild-type 

males (Guo, Navetta et al. 2012). Although I did not inspect neural morphology, 

published studies showed that neural morphology does not change in C. elegans during 

aging (Herndon, Schmeissner et al. 2002).  

 Another potential explanation for the lower mating efficiency is that sperm 

activation in 2-day-old sir-2.1(0) males is defective. C. elegans male sperm are stored in 

the seminal vesicle as a non-activated form and become activated after transfer into a 

hermaphrodite. Regulated by proteases, individual sperm goes through a morphological 

change to form a pseudopod. This pseudopod provides mobility for the sperm to fertilize 

the hermaphrodite oocyte (Smith and Stanfield 2011). To test whether the low mating 

potency of 2-day-old sir-2.1(0) males is due to failure in sperm activation, I did an in 

vitro sperm activation assay and found that similar to wild type, 92.0 ± 4.3% of sperms 

from 2-day-old sir-2.1(0) can be artificially activated by pronase (Figure 16C).Taken 

together, I speculate that the premature mating decline in sir-2.1(0) is due to 
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physiological changes, rather than the structural degeneration of either neuromuscular 

circuits or sperm. 

 
 

 

 
Figure 16 sir-2.1(0) males mating deterioration is not due to structural dysfunction. 
(A) Adult lifespan of wild-type (circles) and sir-2.1(0) (squares) males (n=50 for wild-
type males; n=76 for sir-2.1(0) males) (Log-rank (Mantel-Cox) Test). (B) Muscle fiber 
organization in the genital muscles of 1-day-old and 2-day-old sir-2.1(0) males. 
Asterisks indicate the diagonal muscles, arrow head indicates the oblique muscles. (C) In 
vitro sperm activation assays of 2-day-old wild-type and sir-2.1(0) males. Representative 
images are shown on the top of percentage bars. Arrow indicates the activated sperm 
with pseudopod, and solid arrowhead indicates the inactivated sperm. No significant 
differences were observed between wild type and sir-2.1(0) males (unpaired t-test, N=5 
trials). In each trial, 50-60 sperm cells were analyzed.  



 

 79 

sir-2.1(0) males mating circuit becomes more excitable 

 

I showed that wild-type mating deterioration at day 3 is correlated with an 

increased excitability in the mating circuitry (Chapter III, Figure 8 and 9)(Guo, Navetta 

et al. 2012). Hence, I hypothesized that sir-2.1(0) mating decline might also be due to a 

premature increase in cellular excitability. To test this, I used two acetylcholine (ACh) 

agonists, levemisole (LEV) and arecoline (ARE) to determine the response of wild-type 

and sir-2.1(0) males at multiple ages. In the male spicule intromission circuit, LEV binds 

to ionotropic ACh receptors, whereas ARE is a nonselective ACh agonist (Liu, LeBoeuf 

et al. 2007, Correa, LeBoeuf et al. 2012). Activation of ACh receptors depolarizes the 

male's neurons and muscles, and ultimately causes sex muscle contractions; as a result, 

males protrude their copulatory spicules. I found that at day 1, sir-2.1(0) and wild-type 

males had similar response to a sub-threshold effective concentration of ARE (50µM) 

(Figure 17A(i)). However, 2-day-old sir-2.1(0) males were more sensitive to agonist 

stimulation and required significantly less time to respond (Figure 17A (ii)).  

Additionally, 2-day-old sir-2.1(0) males were more sensitive to sub-threshold 

LEV stimulation. 58% sir-2.1(0) compared to 35% of wild type protracted their spicules 

in 500 nM LEV (P<0.05, n>30) (Figure 17B (ii)). These results indicate that loss of sir-

2.1 in males alters the spicule intromission circuit’s excitability during early aging. 
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Figure 17 sir-2.1(0) males’ sex circuitry becomes more excitable during aging.  
(A) 1-day-old wild-type and sir-2.1(0) males (n=30) have similar response to the ACh 
agonist arecoline (ARE). The time required for those males to protrude their spicules out 
in 50 µM ARE solution are not significantly different (i) (unpaired t-test), whereas 2-
day-old sir-2.1(0) males require significantly less time to respond to ARE (ii) (unpaired 
t-test). Mean and SEM are indicated. (B) 1-day-old wild-type and sir-2.1(0) males 
(n=30) have similar response to the ACh agonist levamisole (LEV) (i). However, 2-day-
old sir-2.1(0) males are more sensitive to LEV (ii). (Fisher’s exact test).  
 
 
 
Hyper-excitability leads to an ejaculation defect 

 

 To address how hyper-excitability disrupts copulation, I observed the mating 

behavior of 2-day-old sir-2.1(0) and wild-type males and found that 2-day-old sir-2.1(0) 

males performed most of the mating steps similarly to the wild-type control (Figure 18A, 

B, and C). Although 2-day-old sir-2.1(0) males can effectively insert their spicules, a 

significant number of them failed to transfer sperm into the hermaphrodite (Figure 18D). 
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Upon spicule insertion, sperm moved out from the seminal vesicle and traveled through 

the vas deferens; however, they remained stuck in the vas deferens and did not drain 

through the cloacal opening. Even the exceptional sir-2.1(0) males that successfully 

ejaculated, transferred less sperm and produced fewer progeny (Figure 18E). 

 

 

Figure 18 2-day-old sir-2.1(0) males display ejaculation defects.  
(A) 2-day-old sir-2.1(0) males have no defect in turning behavior, (B) sensing the vulva 
of the hermaphrodite and (C) staying at the vulva. (D) The percentages of 2-day-old 
wild-type and sir-2.1(0) males that ejaculated during copulation. (Fisher’s exact test). 
(E) The numbers of cross progeny produced by individual 2-day-old wild-type and sir-
2.1(0) with unc-64(e240) hermaphrodites. Mean and SEM are indicated (unpaired t-test). 
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 The male copulatory spicules are attached to 3 sets of sex muscles: the retractor, 

the protractor and the anal depressor muscles (Figure 2B). Contraction of the protractor 

muscles leads to spicules insertion into the vulva (Garcia, Mehta et al. 2001). During the 

normal ejaculation step of mating behavior, after spicule penetration, the posterior 

gubernaculum erector and retractor muscles contract, presumably to pull the proctodeum 

posteriorly, so that sperm can drain from the vas deferens (Figure 2B) (Liu, LeBoeuf et 

al. 2007). In sir-2.1(0) males, I speculated that after spicule insertion, the abnormal 

increased cell excitability causes the spicule protractor and anal depressor muscles to 

hyper-contract, which during sperm transfer, would pinch close the vas deferens 

opening. To test this, I imaged the Ca2+ in the spicule-associated dorsal protractor and 

anal depressor muscles (region-of-interest, ROI, indicated in figures 3A and 3B), by 

expressing G-CaMP3 in these sex muscles of both sir-2.1(0) and wild-type males (Tian, 

Hires et al. 2009, Guo, Navetta et al. 2012). During the mating behavior of 2-day-old 

wild-type males, the G-CaMP3 ΔF/F0 increased to 129.0 ± 32.5 % (n=5) at the time of 

spicule insertion, and the Ca2+ signal started to decline to 86.7 ± 30.8 % during the 10 

sec period after spicule insertion (Figure 19). This indicates that the spicule protractor 

muscles partially relax after spicule insertion. However, in 2-day-old sir-2.1(0) males, 

ΔF/F0 increased up to 204.3 ± 97.5 % (n=5) upon spicule insertion. Unlike wild type, 

Ca2+ transients did not decrease as much, and the ΔF/F0 fluctuated at about 129.8 ± 33.0 

% (Figure 19B). The sustained higher Ca2+ levels in 2-day-old sir-2.1(0) males suggest 
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that spicule protractor and anal depressor muscles are hyper-contracted and pinch the vas 

deferens opening, thus blocking sperm release. 

 

 

Figure 19 Ca2+ imaging of spicule-associated muscles in mating males.  
Pseudo-colored images of Ca2+ in the spicule muscles of 2-day-old wild-type and sir-
2.1(0) males during mating (A) and (B) are representative frames to show the Ca2+ levels 
of the spicule-associated muscles during spicule insertion attempts, penetration and the 
start of sperm transfer (~10 sec after insertion for wild type) or 19 seconds after insertion 
(for sir-2.1(0) males). The asterisks indicate the hermaphrodite vulva. Below the images, 
the Ca2+ transients in the protractor and anal depressor muscles (indicated by the black 
rectangle in A and B) are plotted for 5 individual wild type (A) and sir-2.1(0) males (B), 
respectively. 
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Reactive oxygen species (ROS) leads to the mating deterioration 

 

 C. elegans hermaphrodite studies showed that SIR-2.1 promotes the antioxidant 

genes expression through its association with the FOXO/DAF-16 transcription factor 

(Berdichevsky, Viswanathan et al. 2006). sir-2.1 null hermaphrodites are more sensitive 

to stresses such as reactive oxygen species (ROS) (Rizki, Iwata et al. 2011). Therefore, I 

asked if ROS-induced damage contributes to the premature mating deterioration. I 

confirmed that similar to hermaphrodites, sir-2.1(0) males are also more sensitive to 

paraquat, a ROS-generator. Mutant males are less viable in 10 mM paraquat after 24 hrs; 

89% of sir-2.1(0) males survived, compared to 99% of wild type (p<0.01, n>100) 

(Figure 4A). When exposure time reached 48 hours, the difference between two strains 

became more obvious, 39% of wild-type males survived, compared to 4% of sir-2.1(0) ( 

p<0.001) (Figure 20A). 

Since sir-2.1(0) males are more sensitive to oxidative stress, I hypothesized that 

during aging, accumulated ROS from metabolism might contribute to the decreased 

mating efficiency and to the increased excitability of the spicule intromission circuit. To 

test this, I grew wild-type males on plates containing 1 mM paraquat from late L4 to 

adult and assayed their mating ability and genital muscle excitability. After exposure to 

paraquat for 24hrs, males showed significant decline in mating potency (Figure 20B). 

Additionally, these males also displayed increased genital muscle sensitivity to the day 1 

EC50 concentration (1µM) of LEV. 56% of wild type protracted their spicules; however, 
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83% males exposed to paraquat responded to the ACh agonist (p<0.05, n=54) (Figure 

20C).  

 

 

Figure 20 ROS contributes to the mating deterioration.  
(A) Survival rates of wild-type and sir-2.1(0) males on NGM containing 10 mM 
paraquat at 24hrs and 48hrs post paraquat exposure. (B) Mating potency of 1-day-old 
wild-type males exposed to 0.01, 0.1 and 1 mM paraquat. (C) The percentages of males 
with their spicules protruding out (SpOUT) in response to 1µM levamisole (LEV) after 
treatment with 1mM paraquat. (D-G) Exposing males to N-acetyl-cystine (NAC) 
improves mating. The percentages of 3-day-old wild-type (D) and 2-day-old sir-2.1(0) 
(E) males that protrude their spicules out in response to 100 nM LEV after NAC 
exposure. Mating potency of 3-day-old wild-type (F) and 2-day-old sir-2.1(0) (G) males 
after NAC exposure (Fisher’s exact test). 
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To further test if ROS contributes to the copulation decline, I supplemented the 

males' media with the antioxidant N-acetyl-cysteine (NAC) (Schulz, Zarse et al. 2007), 

and asked if NAC can delay genital muscle excitability changes and improve fertility. 

Indeed, when I exposed wild-type and sir-2.1(0) males to NAC from L4 to adulthood 

day 3 and adulthood day 2, respectively, the antioxidant decreased the males' sensitivity 

to 100 nM LEV (the EC50 concentration for older males (Guo, Navetta et al. 2012)) 

(Figures 20D and 20E) and increased their mating potency (Figures 20F and 20G). 

These results are consistent with the idea that ROS contributes to the behavioral decline. 

 

sir-2.1(0) males might have altered metabolism and reduced ROS scavenge 

capability 

 

 Next, I asked why 2-day-old sir-2.1(0) males are more sensitive to ROS. 

Metabolism as a major source of endogenous ROS stress might contribute to behavioral 

decline. SIR-2.1's role in regulating metabolic processes has not been well described in 

C. elegans hermaphrodites, and scarcely in males. Therefore, I compared the expression 

levels of 55 genes involved in multiple metabolic processes including: glycolysis, 

gluconeogenesis/glyceroneogenesis, citrate acid cycle, glyoxylate cycle, fatty acid 

metabolism and electron transport chain (ETC)/oxidative phosphorylation (OXPHOS) 

(Castelein, Hoogewijs et al. 2008) between age-matched sir-2.1(0) and wild-type males. 
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Out of the 55 genes I surveyed, 17 showed statistically significant changes (Figure 21); 

the information for all the genes is tabulated in the Appendix B. 

 Through real-time PCR, I found that mRNAs encoding key enzymes involved in 

the initiation of glycolysis (hexokinase (F14B4.2) and glucose-6-phosphate isomerase 

(Y87G2A.8)) and fatty acid oxidation (fatty acid acyl-CoA synthetase (C46F4.2)) were 

up-regulated in 1-day-old sir-2.1(0) and 2-day-old wild-type males, relative to 1-day-old 

wild type (Figures 21A and 21B). This is consistent with the published observation that 

hexokinase is also up-regulated in the whole body of conditional sirt1 knock-out mice 

(Gomes, Price et al. 2013). Most enzymes involved in the TCA cycle did not change in 

their levels (Appendix B). In contrast, expression of ETC/OXPHOS components (cco-1, 

W09C5.8) was reduced in sir-2.1(0) (Figure 21F). Other genes that were significantly 

up-regulated include key anabolic enzymes like fatty acid desaturase (fat-5,6,7), 

pyruvate carboxylase (PC) (pyc-1) and phosphoenolpyruvate carboxykinase (PEPCK) 

(pck-1 and pck-2), isocytrate lysase (icl-1) and aconitase-cytosol (aco-1), which are 

important for fatty acid biosynthesis, gluconeogenesis, glyceroneogensis and glyoxylate 

cycle (Figures 21D and 21E) (Yang, Kalhan et al. 2009). Fatty acid desaturase plays a 

critical role in lipid/triglyceride biosynthesis (Van Gilst, Hadjivassiliou et al. 2005, 

Flowers and Ntambi 2008). PC catalyzes the carboxylation of pyruvate to oxaloacetate 

(OAA), the first step that shunts pyruvate from glycolysis to 

gluconeogenesis/glyceroneogenesis. Alternatively, OAA, an intermediate of TCA, can 

be converted to phosphoenolpyruvate (PEP) by PEPCK directly inside the 

mitochondrion or transported and converted to PEP by PEPCK in cytosol (Figure 22A). 
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The up-regulation of fatty acid desaturase is consistent with the increased lipid staining 

in sir-2.1(0) males (Figure 14) (Figure 22). 

  

 

Figure 21 sir-2.1(0) males have altered expression of metabolic genes.  
Relative mRNA expression level of genes involved in metabolic processes such as 
glycolysis (A), TCA cycle (B), fatty acid oxidation(C), 
Gluconeogenesis/glyceroneogenesis/lipid synthesis (D), Glyoxylate cycle (E) and ETC 
(F) in 2-day-old wild type, 1-day-old and 2-day-old sir-2.1(0) males relative to 1-day-old 
wild type. d1 WT refers to day1 wild type; d2 WT refers to day 2 wild type; d1 s2 refers 
to day1 sir-2.1(0); d2 s2 refers to day 2 sir-2.1(0) (unpaired t-test compared to 1-day-old 
wild type). 
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 To confirm if the changes in mRNA levels of those metabolic enzymes reflect 

functional alterations in the metabolic processes, I also measured ATP, glucose and 

glycogen accumulation in wild-type and sir-2.1(0) males. Consistent with increased 

expression levels of glycolysis and fatty acid oxidation genes, sir-2.1(0) males produced 

significantly more ATP at day 1. At day 2, wild type ATP levels increased to match the 

level of sir-2.1(0) males. But at day 3, sir-2.1(0) males again accumulated more ATP 

(Figure 22B). This data suggests that sir-2.1(0) and older wild-type males might have an 

enhanced catabolism, consistent with the potential to generate more ROS. 

 

 

 
Figure 22 sir-2.1(0) males might have enhanced metabolism.  
(A) Schematic illustration of main metabolic enzymes which have altered expression in 
sir-2.1(0) males. Red arrows indicate catabolic pathways. Blue arrows indicate anabolic 
pathways. (B) ATP content measured in 1, 2 and 3-day-old wild-type and sir-2.1(0) 
males. (C) Glycogen staining in 1-day-old wild type and sir-2.1(0). The glycogen 
staining level is quantified by measuring the mean gray level of the ROI indicated on the 
top right corner. The mean gray level is inversely correlated with the iodine stain.  
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Based on metabolic roles of PEPCK (Yang, Kalhan et al. 2009), up-regulation of 

pck genes could lead to excess glucose/glycogen in sir-2.1(0) males. Although similar 

amounts of glucose were detected in sir-2.1(0) and wild-type males (data not shown), 

more glycogen was synthesized in the mutant (Figure 22C). In addition to 

gluconeogenesis, PEPCK catalysis of OAA to PEP is also a key step for the synthesis of 

glycerol-3-phosphate, which is used in triglyceride biosynthesis (Figure 22A) (Nye, 

Hanson et al. 2008). Indeed, males lacking functional pck-2, but not pck-1 have less lipid 

content (Figure 23A). Additionally, sir-2.1(0) males that lack pck-2, but not pck-1, 

showed reduced lipid staining (Figure 23A), indicating that pck-2 is necessary for the 

up-regulation of fat synthesis in sir-2.1(0). Taking together the real-time PCR results, 

accumulation of metabolic products and hypersensitivity to paraquat, I propose that in 

sir-2.1(0) males, glycolysis and fatty acid oxidation are up-regulated to provide 

excessive NADH to the electron transport chain. Since I also measured reduced 

expression of ETC components cytochrome c oxidase, more ROS might be generated via 

electron leak (Lee, Hwang et al. 2010). However, I hypothesized that the enhanced 

expression of enzymes involved in anabolic processes might be a suboptimal self-

compensatory mechanism to shunt excess pyruvate from being oxidized in the TCA 

cycle. 

 To test if the up-regulation of pck genes in sir-2.1(0) is a compensatory response, 

I assayed the mating potency of pck-1(0) and pck-2(0) single mutants and sir-2.1(0); 

pck-1(0) and pck-2(0); sir-2.1(0) double mutants. At day 1, sir-2.1(0) and pck-2(0) males 

mated comparable to wild type (Figure 23B). However at day 2, the potency of pck-2(0) 
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males started to decline similarly to sir-2.1(0). In contrast, for males containing both sir-

2.1(0) and pck-2(0), their mating potency dropped at day 1 (Figure 23B). This indicates 

that without pck-2, males that contain or lack sir-2.1 display accelerated behavioral 

decline. Similar to the requirement for functional pck-2, males that lack sir-2.1 also 

needed pck-1 to maintain their mating potency at day 1; however, pck-1 was not required 

for sir-2.1(+) males to mate efficiently at day 2 (Figure 23C). 

 

 

 
Figure 23 Potentially enhanced anabolism as a compensatory mechanism.  
(A) Oil Red O staining of wild type and mutant C. elegans males. (B) sir-2.1(+) and sir-
2.1(0) need pck-2 to maintain their mating at day 2 and day 1  respectively. All 
percentages of mating potency are normalized to that of 1-day-old wild-type male. (C) 
sir-2.1(0) requires pck-1 to maintain their mating at day 1 and day 2, while sir-2.1(+) 
males do not need pck-2 to maintain their mating at either day 1 or day 2. 
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Next, I reasoned that if excessive glycolysis contributes to the behavioral 

deterioration, artificially adding extra glucose to the males’ media could accelerate their 

mating decline. To test this, I grew males on UV-killed-OP50 NGM plates supplemented 

with 2% glucose, from hatched larvae up to the adult age prior to behavioral decline, 

which is day 1 or day 2, for sir 2.1(0) and wild-type males, respectively. I found that the 

glucose reduced mating potency of 1-day-old sir-2.1(0), but not 2-day-old wild type 

(Figure 24), indicating that wild type can cope with the extra glucose better than sir-

2.1(0). 

 

 

 
Figure 24 Glucose reduces 2-day-old sir-2.1(0) mating.  
2% glucose reduces 1-day-old sir-2.1(0) mating potency, but not 2-day-old wild-type 
males (Fisher’s exact test). 
 
 
 
 I hypothesized that unlike wild type, sir-2.1(0) males cannot efficiently respond 

to the oxidative stress generated by the enhanced catabolism. To test this, I used qRT-

PCR to measure the mRNA levels of antioxidant genes: superoxide dismutase (sod-1, 2, 
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3, 4 and 5), catalase (ctl-1, 2) and glutathione transferase (gst-10 and gsto-1) relative to 

1-day-old wild-type males (Figure 25). As expected, the expression of sod-1, sod-5, gst-

10 and gsto-1 was reduced in 1-day-old sir-2.1(0) and 2-day-old wild type (Figure 25). 

For sod-2, day 1 expression was also reduced in sir-2.1(0), but this gene's expression 

increased in both wild type and sir-2.1(0) at day 2, possibly a stress response. For sod-3 

and ctl-2, their day 1 expression was similar in both strains; however at day 2, sod-3 

expression became higher and ctl-2 expression became lower in mutants. Finally, sir-

2.1(0) males displayed an increased ctl-1 expression at day 1, which is also reported in 

antioxidant-compromised daf-16(0) mutant. The enhanced expression of ctl-1 is 

considered as an adaptive response (Yanase, Yasuda et al. 2002). These results indicate 

that in addition to a potentially altered metabolism, which could generate excessive 

ROS, sir-2.1(0) males might also have a comprised antioxidant response, which is 

consistent with their hypersensitivity to excessive glucose intake (Figure 23) and to the 

ROS generator (Figure 20). 
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Figure 25 sir-2.1(0) males have compromised expression of anti-oxidant genes. 
Relative mRNA expression level of anti-oxidant genes superoxide dismutase (A), 
catalase (B) and glutathione transferase (C) in 1, 2-day-old wild type and sir-2.1(0) 
males (unpaired t-test). 
 

 

 



 

 95 

Nicotinamide delays the deterioration of male mating behavior 

 

 Based on the above results, one could hypothesize that increasing SIR-2.1 

expression or activity might delay mating deterioration during aging. However, I found 

that transgenic overexpression of sir-2.1 does not improve the mating potency of 3-day-

old wild type (Figure 26A). It is unlikely that the fusion with YFP disrupts SIR-2.1 

function, because the same transgene can rescue the sir-2.1(0) phenotype. Thus, I 

speculate that up to a point, the expression level of sir-2.1 is not rate limiting for SIR-2.1 

activity during early aging. However, one could also speculate that the normal 

endogenous levels of NAD+ limit the function of SIR-2.1. To test this, I grew males in 

the presence of the NAD+ precursor nicotinamide (Nam) at 200 µM concentration 

(Houtkooper, Canto et al. 2010), and then conducted the mating potency. Indeed, Nam 

exposure significantly improves 3-day-old wild-type mating potency, but not 2-day-old 

sir-2.1(0) males (Figure 26B and 26C). This result is consistent with the idea that excess 

NAD+ might stimulate SIR-2.1 activity. But additionally, excess NAD+ might also 

reduce ROS production by relaxing the demand of oxidizing NADH back to NAD+; as a 

corollary to this possibility, the lack of excess Nam to positively affect the sir-2.1(0) 

male's behavior might be aggravated by the abnormally high expression of catabolic 

enzymes in the mutant males. To further test if overexpressing SIR-2.1 activity can 

promote mating behavior in older males, I exposed 3-day-old transgenic SIR-2.1 over-

expressed males with exogenous Nam, but found that excess SIR-2.1 does not amplify 

the positive effect of Nam (Figure 26D). Thus I cannot exclude the possibility that Nam 
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or possibly NAD+ additionally promotes behavioral extension through mechanisms 

parallel to SIR-2.1 activity. 

 

 

Figure 26 Exogenous nicotinamide improves mating during aging. 
sir-2.1 overexpression cannot increase mating potency of 3-day-old wild type (A). 
However, feeding with a NAD+ precursor nicotinamide (Nam) significantly improve the 
mating potency of 3-day-old wild type (B) but not 2-day-old sir-2.1(0) males (C). 
Overexpression of sir-2.1 cannot further promote the effect of exogenous Nam (D). 
 
 
 
Chapter summary 

 

In chapter V, I determined the role of SIR-2.1 in maintaining male mating 

behavior during aging. Unlike wild-type males, sir-2.1(0) males display a premature 

decline of mating behavior. At day 2 of adulthood, only around 20 -40% of sir-2.1(0) 

males could mate successfully. Similar to wild type, 2-day-old sir-2.1(0) males have 

well-organized sex muscles structure and functional sperm. In addition, sir-2.1(0) males 

live as long as wild type, excluding the possibility that sir-2.1(0) premature behavioral 

decline is due to shorter lifespan.  
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sir-2.1(0) males display mating behavior deterioration due to behavior deficits. 

Through direct behavior observation, it seems that a significant proportion of 2-day-old 

sir-2.1(0) males fail to ejaculate. This phenotype can be explained by the hyper-

excitability of the mating circuitry. Pharmacological drug tests implicated that although 

1-day-old sir-2.1(0) males have similar sensitivity to both ACh agonists levamisole and 

arecoline, 2-day-old sir-2.1(0) males become more sensitive. By monitoring the sex 

muscle activity through calcium imaging, I found that the sex muscles, including the 

protractor and anal depressor, contract to insert the spicules into hermaphrodite vulva; in 

sir-2.1(0) males, the calcium increases significantly higher compared to wild-type males. 

After spicule insertion, in wild type, calcium in those sex muscles starts to decline 

followed by sperm transferring; however, in sir-2.1(0), the calcium signal sustains a 

higher level and the muscles stay contracted, blocking the transfer of sperm. 

In the last part of chapter V, I determined that ROS might be a potential cause for 

the hyper-excitability in the mating circuitry during early aging. Supplementing the 

worms’ food with the ROS generator paraquat increases the excitability and reduces the 

mating potency, however, feeding worms with an antioxidant has the opposite effect. sir-

2.1(0) males display a premature decline in mating behavior due to the fact that sir-2.1(0) 

males are under significantly more oxidative stress. I then determined that the excess 

ROS might be caused by altered metabolism status and compromised anti-oxidative 

stress response. Combining both qPCR data and quantitative measurements of the end-

products of metabolism pathways, I speculated that at least during early aging, the 

glycolysis process is enhanced, which promotes oxidative phosphorylation to produce 
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more than enough ATP and ROS. However, the anti-stress system is not keeping up. In 

sir-2.1(0) this alteration occurs even sooner, which leads to the mating behavior 

deterioration at the second day of the adulthood. Intriguingly, I discovered that in 

addition to enhanced catabolism, anabolism processes are also up regulated, especially 

leading to lipid genesis, consistent with the Red Oil O staining of fat. It turns out that 

enhancement of anabolism is a sub-optimal compensation mechanism. When it is 

abolished, sir-2.1(0) males can not even mate at the first day of adulthood. In summary, 

SIR-2.1 is required to maintain male mating ability during early aging through optimize 

the metabolism processes and stress response to reduce oxidative stress, which are 

responsible for the hyper-excitability in the mating circuitry. 
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CHAPTER VI 

SUMMARY OF EXPERIMENTS AND DISCUSSION* 

 

Summary of experimental results 

 

 To study the potential mechanisms underlying behavioral deterioration during 

aging, I used a simple mating potency assay to characterize the dynamics of mating 

behavior decline. Interestingly, the C. elegans males mating behavior displayed a 

dramatic deterioration at the third day of adulthood, prior to any drastic morphological 

alterations, such as muscle disorganization or sperm dysfunction. Observation of mating 

behavior, pharmacological drug tests and calcium imaging of the sex muscles during 

both non-mating and mating states suggest that the hyper-excitability of the sex muscles 

disrupts behavioral coordination and leads to reproduction failure.  

 Lowering the neuromuscular excitability of the mating circuit through genetic 

and non-genetic manipulations increases mating potency. Males that carried 

heterozygous mutations in four acetylcholine receptor (AChR) genes, which mediate the 

response of the sex muscles to the mating cues, displayed extended mating vigor. 

                                                

* Reprinted with permission from Xiaoyan Guo, Andrew Navetta, Daisy G. Gualberto, 
and L. René García (2012) Behavioral decay in aging male C. elegans correlates with 
increased cell excitability. Neurobiol Aging. 33(7): 1483.e5–1483.23. (Copyright 2012 
Elsevier) and Xiaoyan Guo, L. René García (2014) SIR-2.1 integrates metabolic 
homeostasis with the reproductive neuromuscular excitability in early aging male C. 
elegans. eLife :e01730 (Copyright 2014 elife Science Publication) 
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Transient starvation during the late L4 stage had a long-term effect on mating. This 

effect may be mediated by reprograming the expression of potassium channels to 

regulate the excitability of the mating circuitry.  

 Through studying males defective for the metabolic regulation via the mutation 

of histone deacetylase/SIR-2.1, I found that mating behavior was vulnerable to reactive 

oxygen species (ROS). Oxidative stress increased the excitability of the mating circuitry 

and reduced the mating efficiency. sir-2.1(0) males displayed a defect in ejaculation, 

which causes the premature decline in mating vigor. I observed that in 2-day-old sir-

2.1(0) males, calcium transients increased more in the dorsal sex muscles and remained 

higher after spicule insertion, which caused sex muscle hyper-tonic contraction. The 

hyper-contracted sex muscles blocked the vas deferens opening, inhibiting sperm 

transfer from the male into the hermaphrodite. 

SIR-2.1 is required to maintain male mating ability during aging, through 

regulation of both metabolism and the anti-stress response. qPCR data and quantification 

of the metabolic end-products indicate that in sir-2.1(0) males, the enhanced catabolism 

occurs one day earlier than wild type, accompanied by a comprised anti-oxidative stress 

response. As a result, sir-2.1(0) males suffer significantly more oxidative stress, which 

increases the excitability of the muscle and reduces the mating behavior. Meanwhile, the 

anabolism pathway, which ultimately synthesizes fat, is also up regulated, serving as a 

sub-optimal compensation mechanism to dampen the detrimental effects caused by the 

by-products generated from enhanced catabolism. 
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Using male mating behavior to discover the mechanism of behavioral decline prior 

to the drastic morphological changes that occur at an advanced age 

 

  Aging is associated with progressive behavioral decline that is relatively easier 

to investigate at an advanced age. In C. elegans, age-related behavioral decline is 

manifested through slower movement and decreased feeding, similar to other well-

studied invertebrate and vertebrate model organisms (Forster, Dubey et al. 1996, Huang, 

Xiong et al. 2004, Simon, Liang et al. 2006). The decline in those general behaviors is 

usually correlated with the loss of cell integrity, such as cytoskeletal disorganization in 

the worm’s body wall and pharyngeal muscle cells (Herndon, Schmeissner et al. 2002, 

Augustin and Partridge 2009). However, early indicators of behavioral decline can occur 

prior to the onset of gross morphological and structural changes to the cells. For 

example, people start losing memory capability in their late 20’s, when there are no 

obvious pathological changes to their brain structure (Salthouse 2003). Therefore, the 

study of decline at an advanced age may not allow the identification of mechanisms 

responsible for early-phase behavioral decline. It would be advantageous to identify and 

explore a behavioral model that is sensitive to early phase changes in the neuromuscular 

circuitry during aging. 

The complex mating behavior performed by C. elegans males offers an ideal 

model to study the early effects of aging on behavior. Male mating requires accuracy and 

coordination between the different groups of sex muscles; studying this behavior might 

uncover subtle physiological changes in the mating circuitry that reduce the efficiency of 
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copulation (Garcia, Mehta et al. 2001, Liu, LeBeouf et al. 2011). In contrast, a general 

behavior, such as locomotion on solid media, has been shown to be robust and require 

environmental manipulation, such as crawling into a food source or swimming in liquid 

media, to study the subtle or measurable changes that occur during early aging 

(Murakami, Bessinger et al. 2008, Hsu, Feng et al. 2009). Unlike general behaviors, the 

C. elegans male mating behavior starts to decline significantly at a very early stage of 

adulthood, when there is no obvious muscle structure disorganization or sperm 

dysfunction. Hence, I can use mating behavior, as a compliment to other successful 

behavioral models, to identify early manipulable factors that promote behavioral decline 

and, thus, provide potential therapeutic targets to delay the onset of structure dysfunction 

in neuromuscular cellular components. 

 

Loss of precise regulation of neuromuscular excitability during aging affects the 

execution of behavior 

 

To determine the physiological changes that occur in the C. elegans male mating 

circuit during aging, I carefully observed the sub-steps of mating in 1 and 3-day-old 

males. I found that ectopic spicule insertion behaviors, at non-vulval regions, were 

displayed in the older males. This suggests that the excitability state of the mating circuit 

might be increasing during early aging. I further confirmed that the excitability of the 

mating circuit increases during early aging, by showing that spicule muscles of non-

mating 3-day-old males displayed more spontaneous Ca2+ transients and are much more 
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sensitive to the ACh agonist LEV stimulation, relative to 1-day-old males. Therefore, it 

is possible that the increased excitability in the mating circuitry, during early phase 

aging, contributes to the decline of copulation success. 

The excitability of the neuromuscular circuitry is critical to control the execution 

of behavior. Changes in the excitability of neurons and muscles are associated with 

behavioral decline during aging among many organisms; reduced cell excitation would 

lead to the failure of initiating or maintaining behaviors, whereas increased excitability 

may result in exaggerated, promiscuous or uncoordinated behaviors. Similar to C. 

elegans males, other invertebrates, such as the mollusc Lymnaea stagnalis, display an 

increased sensitivity of excitable cell membranes to acetylcholine stimulation with age 

(Frolkis, Stupina et al. 1984). In contrast, many reports in vertebrate systems have 

demonstrated that the general excitability, in either neurons or muscles, is reduced 

during aging (De Luca, Mambrini et al. 1990, Karakelides and Nair 2005, Lopes, Smaili 

et al. 2007). For instance, the hippocampus-dependent learning ability decreases during 

aging, which is correlated with a decreased excitability in hippocampal neurons (Wu, Oh 

et al. 2002). Similarly, Ca2+ released from the sarcoplasmic reticulum is impaired during 

muscle contraction of old animals, resulting in feeble force generation (Jimenez-Moreno, 

Wang et al. 2008). However, similar mechanisms might be responsible for the 

differences in excitability states during aging between invertebrates and vertebrates. In 

the mammalian brain, calcium-imaging studies have demonstrated a significant increase 

of intracellular Ca2+ in response to a prolonged synaptic stimulation in hippocampal 

neurons of aged animals (Thibault, Hadley et al. 2001). Likewise, in the skeletal muscles 
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of aged animals, spontaneous intracellular Ca2+ leakage from oxidized sarcoplasmic 

reticulum ranodine receptor calcium channels contributes to the ultimate degradation of 

muscle activity (Andersson, Betzenhauser et al. 2011). This is consistent with our 

finding that there are increased Ca2+ transients in the male mating circuit. However, the 

Ca2+ current in mammals plays a signaling role, and the increase of Ca2+ activates 

calcium dependent potassium channels, which in turn hyperpolarizes the cell membrane 

to attenuate excitability (Murchison and Griffith 1995, Murchison and Griffith 1996, 

Thompson, Moyer et al. 1996). Whereas, in the muscles of invertebrates, such as C. 

elegans, the influx of Ca2+ through voltage-gated calcium channels (VGCCs) propagates 

depolarizing action potentials, and promotes excitation contraction coupling (Hagiwara 

and Byerly 1981, Maryon, Saari et al. 1998). Although the idiosyncratic cellular output 

may differ between aging cells of invertebrates and vertebrates, C. elegans male mating 

behavior can be used as a model to investigate the mechanism of increased Ca2+ 

transients, which appears to be conserved among species during aging. 

 

Manipulation of cell excitability benefits behavior during aging 

 

  Manipulation of cell excitability can be used as a strategy to delay the 

deterioration of behavior. Excitability can be affected by changes to neurotransmitter 

pathways or the ion channels that maintain appropriate polarization. In the C. elegans 

male mating circuitry, acetylcholine is used to promote sex muscle contractions. 

Through halving the gene dosage of AChR genes, I found that the excitability of the 
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mating circuitry decreased and, concurrently, mating behavior was significantly 

improved at the third day of adulthood. The promiscuous spicule insertion behavior 

displayed by 3-day-old males mirrors the previously reported observation that 4-day-old 

C. elegans hermaphrodites display an exaggerated locomotor behavioral response when 

they enter an area of solid media containing food (Murakami, Bessinger et al. 2008). 

When young starved hermaphrodites crawl into an area containing their food, E. coli, 

they greatly reduce their velocity; this behavior is termed, the enhanced slowing 

response, and is regulated by the neurotransmitter serotonin (Sawin, Ranganathan et al. 

2000). Well-fed 4-day-old C. elegans hermaphrodites inappropriately display this 

behavior, and reducing serotonin signaling, similar to our experiments when I reduce 

ACh signaling, attenuates the basal slowing response (Murakami, Bessinger et al. 2008). 

In addition to neurotransmitter signaling, many channels, such as sodium, potassium and 

calcium channels, also contribute to establishing and maintaining the membrane 

excitability. During aging, one potential reason for the decreased excitability in 

hippocampal neurons is increased intracellular Ca2+, possibly through modification of 

Ca2+ channels. The increased Ca2+ then activates the calcium dependent potassium 

channels, such as the voltage- and calcium-dependent BK channel, which hyperpolarizes 

the cell membrane (Murphy, Fedorov et al. 2004). Therefore, decreasing the function of 

potassium channels is a potential strategy to increase cell excitability and promote 

learning. Indeed, in aged mammals, increasing neuronal excitability, through targeted 

deletion of a potassium channel subunit, Kvβ 1.1, in learning-associated pyramidal 

neurons in the hippocampal area CA1, enhanced learning and memory functions 
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(Murphy, Fedorov et al. 2004). Taken collectively, the available research suggests that 

genetic manipulation of neurotransmitter pathways or cell membrane excitability 

components is a feasible method to delay the deterioration of behavior. 

In addition to genetic manipulation, our results demonstrate that transient food 

deprivation can reduce the excitability of the mating circuit and prolong copulation 

behavior after re-feeding. During starvation, the excitability of mating circuits is 

suppressed, probably to focus the animal’s attention towards searching for food 

(Gruninger, Gualberto et al. 2008). Once feeding is resumed, the male’s mating ability 

can be recovered within 1 hr (unpublished results) and, subsequently, mating ability is 

improved at the third day of adulthood. Caloric restriction has a positive effect on 

organisms ranging from yeast, worms and flies to mammals by extending lifespan. 

However, unlike in our experiments, prolonged dietary restriction has to be used to 

extend lifespan (Houthoofd and Vanfleteren 2006, Houthoofd, Gems et al. 2007, Greer 

and Brunet 2009). I was able to produce a positive, lasting effect on mating ability using 

about 20 hrs of food deprivation that does not affect males’ lifespan. Thus, the increased 

mating ability in aged males is not due to lifespan extension, but could be a result of 

permanent changes to the mating circuitry produced by transient starvation. 

A previous study suggests that the specific onset of food deprivation during C. 

elegans hermaphrodite adulthood is not critical to increase lifespan (Kaeberlein, Smith et 

al. 2006). Food deprivation either starting from the second, fourth or post-reproduction 

tenth day of adulthood would significantly increase the animal’s longevity. In contrast, I 

found that only newly molted adult males are responsive to short-term starvation, since 
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starving males later in adulthood does not confer any beneficial effects. Taken together, 

these results suggest that the mechanisms of improving male mating potency by food 

deprivation differ from that of increased lifespan by caloric restriction.  

Caloric restriction may extend lifespan through physiological changes such as 

increased autophagy, increased resistance to environmental stresses, decreased metabolic 

oxidative damage and overall decreased translation levels (Masoro 2005, Hansen, 

Chandra et al. 2008). However, protein synthesis is required during starvation to 

improve mating behavior. Young adulthood could be a critical developmental period that 

can be modified by transient starvation, to produce molecules, including potassium 

channels, which will offset the increased excitability. This hypothesis is consistent with 

our results that UNC-103 and EGL-2 potassium channels mediate the effect of transient 

starvation. Blocking protein synthesis during starvation and during re-feeding can restore 

the positive effect of starvation. These results suggest that during aging, signaling 

molecules might accumulate, which increase cell excitability. Combining the sir-2.1(0) 

study, it is possible that blocking protein synthesis might contribute to inhibiting the 

enhanced catabolism occurred during aging, thus reducing the generation of ROS.  

 

SIR-2.1 is required to maintain male mating behavior during early aging 

 

 SIR-2.1 is a modulator of behavior and is required to maintain mating in aging 

males. 1-day-old sir-2.1(0) males can mate similarly to wild type, suggesting that sir-2.1 

is not essential for mating. However, unlike wild-type males, the mating ability of sir-
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2.1(0) prematurely drops at day 2. This is due to hyper-excitability of the reproductive 

circuitry that coordinates spicule intromission and ejaculation. The hyper-excitability of 

the spicule muscles causes the male proctodeum to block the connection between the vas 

deferens and the cloacal opening, which indirectly obstructs the transfer of sperm. The 

mutant phenotype resembles the behavioral, physiological and pharmacological changes 

that occur in older wild-type males. This indicates that in wild type, SIR-2.1 maintains 

the functional excitability of the intromission and ejaculation circuit, possibly by 

slowing down the deteriorative events that accumulate during aging. I suggest that as the 

male ages, SIR-2.1 regulates the amounts of catabolic, anabolic and free radical 

scavenging enzymes to balance the energy demands needed for rapid reproductive motor 

responses, with the generation of damaging metabolic by-products, such as ROS. 

My work indicates that the male's cellular physiology is correlated with his 

ability to mate. Perturbation of the male’s physiology through genetic mutations or 

through dietary alterations during early adulthood will affect his ability to mate later in 

life. The physiology of wild-type males is likely changing from day 1 to day 2, as 

determined by the level of mRNAs encoding metabolic enzymes and the amount of 

terminal metabolic products. These physiological changes can ultimately lead to 

excessive carbon flow into the TCA cycle, and consequently, more NADH to be 

oxidized by ETC complexes (Figure 27). This promotes ROS generation via electron 

leak (Federico, Cardaioli et al. 2012), which can be  reflected by behavioral decay at day 

3. Analysis of sir-2.1(0) males allowed us to extrapolate how this protein deacetylase 

regulates male physiology. Lack of SIR-2.1 will induce these deleterious changes to 
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occur sooner, and degenerative behavioral responses in the mutant males are measured at 

day 2. Under standard laboratory conditions, wild-type males are raised constitutively on 

abundant E. coli until senescence. I speculate that since SIR-2.1 uses NAD+ as a cofactor 

to deacetylate proteins, the physiological changes that occur after two days of 

constitutive feeding in wild type adults might be due to reduction in SIR-2.1 function, 

via the lower ratio of NAD+ to NADH in wild type. The phenomenon of altering NAD+ 

to NADH levels in vertebrate cells is shown to reduce the activity of SIRT1 (Braidy, 

Guillemin et al. 2011). Decreased activity of SIR-2.1 will not only aggravate a bias 

towards catabolism, but will also decrease the levels of ROS scavengers. This is 

consistent with a hermaphrodite study, which showed that sir-2.1 overexpression can 

protect the organism from ROS, possibly via HCF-1 and FOXO/DAF-16, to regulate the 

expression of stress response genes (Rizki, Iwata et al. 2011). 
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Figure 27 A cartoon of the metabolism and behavior that occurs in wild-type and 
sir-2.1(0) males during early aging.  
For successful reproductive behavior, SIR-2.1 is required to maintain proper carbon flow 
to meet the male's energy demands and balance the generation of ROS. In 1-day-old old 
sir-2.1(0) males, catabolism such as glycolysis and fatty acid oxidation is enhanced, and 
consequently, oxidative phosphorylation and generation of ROS are also increased. 
Without SIR-2.1, ROS accumulation by day 2 of adulthood can lead to hyper-
excitability of the male's genital neuromuscular circuitry. This results in blocked 
ejaculation and impotency. It is possible that in 2-3 day-old wild-type males, the NAD+-
dependent SIR-2.1 activity declines due to a lower ratio of NAD to NADH; thus older 
wild-type males might have a similar physiology as 1-day-old sir-2.1(0) males. 
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Enhanced anabolism serves as a compensation mechanism  

 

Although our qPCR analyses suggest that enhanced catabolism might be 

occurring in 1-day-old of sir-2.1(0) and 2-day-old wild-type males, their mating ability 

could be facilitated via anabolic compensatory mechanisms. In addition to enhanced 

expression of catabolic genes, mRNAs encoding enzymes such as pyruvate carboxylase 

and phosphoenolpyruvate carboxykinase (PEPCK) are also up-regulated. This could be a 

likely reason for why the males contain more measurable lipids and glycogen. I propose 

that the up-regulation of anabolic processes is a self-compensatory mechanism to divert 

carbon from the TCA cycle (Figure 27). sir-2.1(0) males that are mutant for PEPCK 

genes, lose their ability to generate fat and fail to mate efficiently on day 1. Likewise sir-

2.1 (+) males with a mutation in PEPCK genes also display premature mating decline. I 

hypothesize that anabolic pathways could act as a homeostatic mechanism to reduce 

ROS production. This idea raises the possibility that obesity, as a phenotype might be a 

compensatory mechanism to alleviate the effects of other underlying metabolic 

dysfunctions. A recent study showed that non-obese diabetic patients have higher 

mortality than overweight ones (Carnethon 2012). Another study showed that a lifestyle 

intervention focusing on weight loss did not reduce the rate of cardiovascular events in 

obese adults with type II diabetes (Wing, Bolin et al. 2013), challenging the traditional 

viewpoint that obesity is a major contributor to metabolic disorders. 
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Future directions 

 

Does reproduction regulate the metabolic status? 

 

 Most studies in the aging field did not characterize alterations that occur during 

early aging, but instead focused on comparing differences between young and very old 

animals. In this work, I characterized changes that occur during the first three days of 

adulthood in worms. One obvious physiological change that occurs during this short 

period is an increase in ATP production, potentially indicating an enhanced catabolism. 

Additionally, males lacking the histone deacetylase/SIR-2.1 produce even more ATP. 

However, ATP production is reduced at an advanced age (Gruber, Ng et al. 2011). This 

is possibly due to the damaged mitochondria, which ultimately accelerates aging 

(mitochondrion theory of aging). Thus, perturbation of ATP production is one sign of 

aging in animals. In spite of this, ATP production cannot be used as a prediction for 

lifespan. Some lifespan extension mutants such as daf-2(e1370) have the ability to 

generate more ATP at both young and older ages. However, the anti-stress responses are 

also significantly elevated in these mutants (Murphy, McCarroll et al. 2003). Mild 

mutations in mitochondrion proteins extend lifespan by increasing the ROS companied 

with less ATP generation. In these mutants, the increased ROS serves as a stress signal 

to amplify the stress response. As a consequence, this promotes lifespan (Ristow and 

Zarse 2010, Hwang and Lee 2011). The C. elegans genome doesn’t contain the gene 

encoding the mitochondrion uncoupling protein (UCP), which uncouples protons 
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gradient with oxidative phosphorylation (OXPHOS) and thus generates heat via proton 

leakage. Expression of exogenous upc genes from zebrafish in worms extends lifespan, 

potentially by reducing the generation of ATP and ROS at the same time (Sagi and Kim 

2012). Thus, under different contexts, including genetic backgrounds, the production of 

ATP is not positively linked to the lifespan extension. A more important issue regulating 

aging is the sum of ROS generated and ability to the combat them.  

What is the mechanism of ATP increase during early aging? Under normal 

conditions, I propose that consistent with the antagonistic pleiotropy hypothesis of aging 

(Williams 1957), during early ages of adulthood, the increase of ATP production might 

be beneficial for reproduction, because maintaining reproduction and sexual behavior is 

a energy-expensive process. However, ROS, the byproduct generated during ATP 

production, will affect the cellular function, which eventually damages the 

mitochondrion function. Thus, at an older age, the cell cannot produce more ATP. 

Though, at this age, less ATP does not mean less ROS, because the inefficient electron 

transport chain might leak more electrons compared to younger animals.  

Prior mating experience may also impact ATP production and thus metabolic 

status. All C. elegans males I used in this study were virgins. It is possible that the lack 

of reproduction causes the males to generate more energy, so that they can anticipate the 

opportunity for reproduction. It is also possible that during early adulthood, the males 

are always generating more ATP until the mitochondria function is damaged. To test 

these possibilities, I will compare ATP levels between virgin and non-virgin males at 

different ages. More ATP produced in 2-day-old virgin males compared to non-virgin 



 

 114 

males would suggest a communication between mating success and energy production. 

Similar amount of ATP would suggest that reproduction status is not involved in energy 

regulation. Additionally, I will perform the mating potency assay with non-virgins males 

at the third day of adulthood to determine whether prior reproduction success has a 

positive effect on mating behavior at a later stage. All these experiments will help me to 

explore the communication between the reproduction system and the metabolism of the 

whole system. 

Reproductive success might regulate the metabolic status via SIRT-2.1. sir-2.1(0) 

virgin males, at least during early aging,  produce more ATP than wild-type males. The 

reproduction system of a virgin male  might send signals to other somatic tissues to 

generate ATP through inhibition of the function of SIR-2.1. To test this, I would 

compare ATP amount in virgin and non-virgin males lacking SIR-2.1. Additionally, I 

would like to find a way to develop an in vivo assay to monitor the activity of SIR-2.1 in 

virgin and non-virgin males.  

 

How are the metabolism status and anti-stress responses regulated by SIR-2.1? 

 

The coupling of metabolism and ROS production might explain why SIR-2.1 has 

a dual function in regulating both metabolism and stress responses. As a NAD+/NADH 

dependent metabolism regulator, it is possible that SIR-2.1 regulates the redox state. 

When OXPHOS is enhanced, the increased ratio of NAD+/NADH activates SIR-2.1 to 

fine-tune the activity of glycolysis to reduce OXPHOS. At the same time, SIR-2.1 up 
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regulates the expression of stress genes to minimize the detrimental effects of ROS 

generated during OXPHOS. Therefore, without sir-2.1, the system lost the ability to 

optimize the metabolism and oxidative stress. 

SIR-2.1 regulates metabolism and stress response through gene expression 

regulation. In sir-2.1(0) males,  the expression of many metabolic genes are altered. 

However, whether SIR-2.1 directly regulates the expression of these gene-functions has 

yet to be determined. One possibility is that SIR-2.1, as a histone deacetylase, globally 

inhibits gene expression through compacting the chromosome. If this were the case, 

removing sir-2.1 would cause global up-regulation of gene expression.  However, the 

data indicates that this possibility is unlikely. Of all genes I detected in sir-2.1(0), only a 

small portion of them were significantly up-regulated compared to wild type. Some 

scavenger genes are down regulated, indicating a more specific mechanism involved in 

SIR-2.1 regulation of gene expression. Thus it might be worthwhile to do Chromatin 

Immunoprecipitation Sequencing (ChIP-seq) to determine the direct and indirect targets 

of the SIR-2.1. 

Key enzymes of both catabolism and anabolism processes in sir-2.1(0) are up 

regulated. It is possible that enhanced catabolism is directly regulated by sir-2.1(0), as a 

primary response, while anabolism up-regulation might be an adaptive response, serving 

as a compensatory mechanism. Phosphoenolpyruvate carboxykinase (PEPCK), a key 

enzyme of gluconeogenesis, is significantly up regulated in sir-2.1(0). There are two 

forms of PEPCK, cytosol and mitochondrial forms. pck-1 is predicted to be the cytosol 

form, while pck-2 might be the mitochondrial form. Although the cytosol form of 
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PEPCK is well studied, the function of mitochondrion form is not. My work here 

suggests that PCK-1 and PCK-2 may function differently. 

Deletion of either pck genes significantly reduces the mating of sir-2.1(0) at day 

1, however,  they may play different roles because of the following two observations. 

First, unlike pck-2, lack of pck-1 does not affect day 2 mating of wild type. Second, pck-

2 is required to maintain the lipid genesis in both wild type and sir-2.1(0), while pck-1 is 

not. It is possible that in pck-1(0), pck-2 can be up-regulated/compensated in a SIR-2.1 

dependent manner. In pck-2(0) animals, however, pck-1 can not be up-regulated or up-

regulation of pck-1 fails to compensate for the loss of pck-2. Thus, I hypothesize that 

pck-2 might be under a complicated regulation: in the pck-1(0) context, SIR-2.1 up 

regulates PCK-2 function directly; while in sir-2.1(0) context, PCK-2 is also regulated 

possibly through other unknown regulation due to the altered catabolism. 

Understanding the interaction of pck genes and how they are regulated would 

help to determine the mechanism organisms use to cope with altered metabolism under 

different situations. As I discussed above, the up-regulation of pck-2 serves as an 

adaptive response, thus, determining how pck-2 is regulated might be a chance to 

discover how metabolic pathways can be changed to compensate for damage that arises 

in other metabolic pathways. To address this question, I generated a knock-in strain with 

the endogenous pck-2 tagged with yfp through the CRISPR-CAS9 system (Friedland, 

Tzur et al. 2013). Using this powerful tool, I can test the above hypothesis by comparing 

pck-2 expression level in pck-1(0), sir-2.1(0); pck-1(0) and wild-type males. Secondly, I 

can perform an EMS mutagenesis on the knock-in strain to screen for the mutants, in 
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which background pck-2 expression is significantly altered. The mutation can be mapped 

by combining traditional two-factors mapping, SNP mapping and whole genome 

sequencing. Genes identified from this mutation screen can help me to understand how 

anabolism pathways are regulated. 

 

How does oxidative stress contribute to mating behavior decline? 

 

The free radical theory of aging states that aging is the result of free radicals-

induced molecular damages (Harman 1956). Recently, this notion has been challenged 

by the hormesis theory, which posits that moderate amounts of physiological or 

environmental insults can reinforce cellular processes that reduce stress-induced damage 

(Schulz, Zarse et al. 2007, Afanas'ev 2010). However, in support of the free radicals 

theory of aging, artificially applied ROS is reported to change the excitability of cultured 

neurons and muscles through chemically damaging ion channels (Danson and Paterson 

2006). Therefore, aspects of this theory of aging might still apply to physiological 

changes in neural muscular systems and behavioral decay. Consistent with this, I showed 

here that genetic and environmental conditions, which can lead to oxidative stress, 

caused increased excitability of the male mating circuitry and behavioral decay during 

early aging. The question is then how does ROS affect cell excitability and eventually 

behavioral output? 

There is not a strict correlation between oxidative stress and changes in the 

electrical properties of neurons and muscles. Oxidation of different types of ion channels 
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changes their conductance and alters the cell’s excitability (Annunziato, Parmaccione et 

al. 2002). One mammalian study showed that oxidative stress hyperpolarizes the resting 

potential, but extends the duration of the action potential in cardiac ganglion (Whyte, 

Hogg et al. 2009). Mitochondria ROS has been shown to trigger Ca2+ increases in the 

pulmonary arterial myocytes (Waypa, Marks et al. 2002, Waypa, Guzy et al. 2006). In a 

study using glia, L-type voltage-gated Ca2+ channels (L-VGCC) were found to be a 

target of ROS. After modification by ROS, their conductance of Ca2+ was increased 

(Bond and Greenfield 2007). Different from vertebrate skeletal muscles, L-VGCC in C. 

elegans propagates action potentials, and the entry of external Ca2+ directly promotes 

excitation-contraction coupling (Lee, Lobel et al. 1997, Maryon, Saari et al. 1998). 

Previous work showed that the pore forming subunit of L-VGCC, EGL-19, in C. elegans 

is required for sustained tonic contraction of the copulatory spicule muscles (Garcia, 

Mehta et al. 2001). Therefore, oxidation of L-VGCC in C. elegans might contribute to 

the increased excitability of mating circuits.  

Other major targets of ROS are voltage-gated K+ channels. One C. elegans study 

indicates that oxidative stress reduces cell excitability by increasing the conductance of 

K+ channels (Sesti, Liu et al. 2010). In another C. elegans study, oxidation of voltage-

dependent potassium channel/KVS-1 slows down its inactivation, leading to 

hyperpolarization and sensory function loss (Cai and Sesti 2009). The ERG-like K+ 

channel UNC-103 is a major excitability regulator of the sex circuit (Reiner, 

Weinshenker et al. 2006). Although there is no report of oxidative modification on 

UNC-103, human encoded H-ERG channels can be activated by oxidative stress, so that 
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cells become hyperpolarized and less excitable (Cui and Zhang 2013). Considering that 

ROS increases the excitability of the mating circuit, it is possible that L-VGCC is more 

prone to be oxidized than K+ channels in male reproductive cells.  

To determine whether enhanced L-VGCC’s function due to the oxidative stress 

leads to mating failure, first I want to test if reducing the function of L-VGCC can 

improve mating behavior. I propose to treat worms with a L-VGCC blocker 

Nemadipine-A to mildly reduce the activity of the C. elegans L-VGCC, EGL-19, and 

ask whether this supplementation can improve mating in aged males (Kwok, Ricker et 

al. 2006). However, the dosages of the drug and time window of the treatment still need 

to be determined, as complete blocking EGL-19 will abolish mating behavior. 

Alternatively, I can use a genetic way to theoretically reduce EGL-19 function by testing 

the mating of males that carry one wild-type copy of egl-19 and one copy of the partial 

loss function of egl-19 allele n582. However, if improvement in mating behavior is 

observed, this might be due to the reduced excitability that occurs from lowering 

calcium influx.  

To further test how oxidative stress regulates the physiological properties of 

those channels, it might be necessary to clone the C. elegans versions of L-VGCC/EGL-

19 and ERG-like potassium channel/UNC-103 into Xenopus oocytes. This would allow 

me to to address if these channels are subjected to the regulation of oxidative 

modification and which amino acids are modified by the oxidative stress. I will address 

the later by through either injecting RNA transcribed from randomly mutagenized PCR 

products or site-directed mutation of cysteine, the potential target of oxidation 
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modification. I do need to test whether expression of egl-19 alone is sufficient to 

function autonomously without co-expression of other subunits, although there is a 

report that expression of the alpha subunit can form functional voltage-gated calcium 

channel (Catterall 1991). Knowing which amino acids are more sensitive to the oxidative 

modification would allow us to modify the gene accordingly and in vivo test whether 

reducing the sensitivity of the protein to oxidative stress benefits behavior. 

 

Conclusion 

 

 C. elegans is a powerful model organism to study molecular mechanisms 

regulating behavior decline as the organism ages. Due to its quick lifecycle, short 

lifespan, and easily amendable and conserved genome, extensive studies have focused 

on identifying signaling pathways that control lifespan. However, less research has 

focused on the functional decline that occurs during aging. In this dissertation, I took 

advantage of the accumulated knowledge on the regulation of a complex behavior 

displayed by male C. elegans. I characterized dynamics of male mating behavior 

deterioration as well as the physiological alterations, which potentially contribute to the 

behavioral decline. Prior to dramatic structural damage, physiological changes including 

altered metabolism, stress response, and hyper-excitability of the neuromuscular 

circuitry impact the males’ ability to sir progeny when they are only 3 days old. In 

conclusion, I have identified previous unknown mechanism that impact behavioral 
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decline as an organism ages. These mechanisms may offer conserved targets for 

alleviation of age-related behavioral dysfunction in human. 
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APPENDIX A 

PRIMERS USED IN THIS STUDY 

Primers used to construct actin:YFP: 
Actin-infbackbone(YFP) F CATTCGTAGAATTCCAACTGAGCGC 
Actin-infbackbone(YFP) R TTTGTATAGTTCATCCATGCCATGTGTAATC 

Actin-pGW322YFP inf F 
GGCATGGATGAACTATACAAAATGTGTGACGAC 
GAGGTTGCCGC 

Actin-pGW322YFP inf R 
CAGTTGGAATTCTACGAATGTTAGAAGCACTTG 
CGGTGAACGATGG 

Primers used to detect sir-2.1 deletion: 
Sir-2.1reverse GAAAATCCTGCTCCGTTCTACAATTTTGCGAGAG 
Sir-2.1forward CTAGATCAAATGAGCATTCGGCTCCAGGAAAGAC 
Primers used to detect pck-2 deletion: 
pck-2delF TGGGTTAGGAGTTGGTGGAG 
pck-2delinsideR TCTGGGTTGATAGCGTAGAG 
pck-2delR CAAACAAGTGTGTGAGGAGC 
Primers used to detect pck-1 deletion: 
W05G11.6-delF CCATGACCAGAATGGGAACC 
W05G11.6-delR GCGTGAACTCTCTTCTCAAG 
Primers used to PCR genomic sir-2.1 and ligate to pSX422YFP to generate pXG5: 

Sir-2.1Sphlforward 
CAGAGCATGCCCAATTCAAGTTCAGCAACCCGAG 
AAAGTGCAGAATGATG 

Sir-2.1SalIreverse 
ATGAGTCGACGATACGCATTTCTTCACACAAATG 
CGAGAATGTTTCAGGATCAATC 

Primers used to remove sir-2.1 promoter from pXG5: 
Cassette sir-2.1F ACGATGTCACGTGATAGTGGCAACGATTC 
Cassette sir-2.1R GCAAGCTTATCGATGATAAGCTGTCAAACATGAG 
Primers used to sequence sir-2.1 in pXG5: 
sir-2.1F1 CCGTTGACGCAGTTGGTTC 
sir-2.1F2 GACTTCTTGATGATGGTGCC 
sir-2.1F3 GAAAATCCTGCTCCGTTCTAC 
sir-2.1F4 CCAGGACAGTTCGTACCATC 
sir-2.1F5 GCTCGGAAATTGTGATGACATC 
sir-2.1F6 CTGCTCATCAAACCGTCTTTC 
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sir-2.1R1 CCGTATGTTGCATCACCTTC 
sir-2.1R2 CCTCGTCAGATAGTACAAAGTC 
sir-2.1R3 TCGTCAGCCACCGACATTC 
sir-2.1R4 TCCTCACGAATCTCATTCCC 
sir-2.1R5 TTCCGATATTCTGGCCCGC 
sir-2.1R6 TAAGTACCGCGTTCTCTGAC 
Primers not mentioned in the reference: 
qPCRsod-1F CATGGTGGACCAAAATCCGAG 
qPCRsod-1R TCCGGCATGAACAACCATAG 
qPCRsod-2F TCACCGCAATTAAGAGCGAC 
qPCRsod-2R GTTGCCTCAAGTGGATCCTG 
qPCRsod-3F GGCTGTTTCGAAAGGGAATC 
qPCRsod-3R GGTTCTCCACCATCCTTAG 
qPCRsod-4F ATATTGAGTCACCGGCTTCC 
qPCRsod-4R GCGTCCCAAGTCATCAGTTT 
qPCRsod-5F CATGGAGGAAGAGATTCCGT 
qPCRsod-5R ACGTCCGATAACAGTGTTCG 
qPCRgst-10F TGGGAAGAGTTCATGGCTTG 
qPCRgst-10R TTGTTGACACAATCCTCGCG 
qPCRctl-1F GTGATGACATTCGAACAAGCTG 
qPCRctl-1R CTTGTTCGACCTCAGCGAAA 
qPCRctl-2F GAACTACTTCGCTGAGGTTG 
qPCRctl-R GGATGTAGTTTGGTCCAAGG 
qPCRgsto-1F GACAGGTTAACTGCGGTAGC 
qPCRgsto-1R TAACCTGGTTGAGATCCAGC 
qPCRT20H4.5F GTTTCGGAGTGATGCTTGGT 
qPCRT20H4.5R GAAGAGCGTGTTCTCCTCTG 
qPCRW09C5.8F TCGTCTCGACTACTGGTATC 
qPCRW09C5.8R AAGCTGTAGCGGTACAAGAG 
qPCRcco-1F CTTGCTGGAGATGATCGTTAC 
qPCRcco-1R CGGAATCTTGCTCACACATG 
F1qPCR-W05G11.6 CTCGCCGAGCACATGTTGATCAT 
qPCR-W05G11.6R1 TTCATCCAGGCGATGTCGTCTCC 
FqPCR-R11A5.4  TGCTCATCCAAACTCGCGTTTCG 
qPCR-R11A5.4R AAATGAGTGGTACTCCCTGTGG 
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APPENDIX B 

SUPPLEMENTARY QPCR DATA 

 

In the following tables, d1 and d2 refer to day 1 and day 2 respectively; wt and s2 refer 
to wild-type control and sir-2.1(0). 
 
Expression of genes involved in the glycolysis process. 

Enzymes Genes   Expression SEM Mean Ct SEM 

Hexokinase 

Y77E11A.1 

d1wt 1 0.1064 30.38 0.11994 
d1s2 1.00096 0.09779 29.25 0.12784 
d2wt 1.77357 0.1901 28.34 0.14846 
d2s2 1.06502 0.10453 29.25 0.13744 

F14B4.2 

d1wt 1 0.1092 29.87 0.12506 
d1s2 2.37567 0.17308 27.49 0.07589 
d2wt 5.66306 0.18025 26.16 0.0154 
d2s2 3.0559 0.17532 27.22 0.07543 

H25P06.1 

d1wt 1 0.07682 29.3 0.07851 
d1s2 1.03449 0.0552 28.12 0.049 
d2wt 1.33519 0.07229 27.67 0.06967 
d2s2 0.93007 0.04654 28.37 0.06662 

Glucose-6-
phosphate 
isomerase 

Y87G2A.8 
(a+b) 

d1wt 1 0.06089 26.99 0.03998 
d1s2 1.60147 0.07027 25.17 0.02196 
d2wt 3.04774 0.37286 24.17 0.17293 
d2s2 1.55307 0.06019 25.31 0.0485 

Y87G2A.8 
(b) 

d1wt 1 0.10034 30.77 0.1218 
d1s2 1.72797 0.1772 28.85 0.13551 
d2wt 5.5517 0.17828 27.08 0.02998 
d2s2 3.62102 0.30323 27.87 0.11757 

 

 

 

 



 

 140 

Expression of genes involved in the glycolysis process. (Continued) 
Enzymes Genes   Expression SEM Mean Ct SEM 

Fructose-1,6-
bisphosphate 

aldolase 

F01F1.12 
(a) 

d1wt 1 0.07908 26.57 0.10628 
d1s2 0.33052 0.04283 27.06 0.174 
d2wt 0.49573 0.03912 26.02 0.09411 
d2s2 0.1619 0.0726 28.25 0.64688 

T05D4.1 

d1wt 1 0.05522 26.35 0.06802 
d1s2 1.21215 0.06225 24.96 0.02843 
d2wt 0.9874 0.11207 24.8 0.15068 
d2s2 1.2802 0.08237 25.04 0.09259 

Triosephosph
ate isomerase 

Y17G7B.7 

d1wt 1 0.17981 38.01 0.25607 
d1s2 1.20467 0.20831 36.63 0.23991 
d2wt 1.2318 0.33723 36.14 0.38974 
d2s2 0.82106 0.10723 37.34 0.18829 

C33D9.9 

d1wt 1 0.36286 37.33 0.52103 
d1s2 0.34533 0.23638 37.75 0.98517 
d2wt 1.24927 0.23692 35.43 0.26599 
d2s2 1.26672 0.51877 36.03 0.5908 

Glyceraldehy
de-3-

phosphate 
dehydrogena
se (GAPDH) 

T09F3.3 

d1wt 1 0.05407 26.1 0.06607 
d1s2 0.61891 0.03508 25.68 0.04481 
d2wt 1.25235 0.05681 24.2 0.01335 
d2s2 1.27157 0.0691 24.8 0.07812 

K10B3.8 

d1wt 1 0.10255 21.56 0.13909 
d1s2 1.02461 0.09314 20.26 0.02697 
d2wt 0.88932 0.04181 20.18 0.03537 
d2s2 0.88156 0.0594 20.25 0.07722 
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Expression of genes involved in the glycolysis process. (Continued) 
Enzymes Genes   Expression SEM Mean Ct SEM 

Enolase 

T21B10.2 
(a) 

d1wt 1 0.03624 23.39 0.01374 
d1s2 0.92983 0.0838 22.23 0.02081 
d2wt 1.38641 0.12321 21.37 0.11441 
d2s2 0.92294 0.11591 22.02 0.17129 

T21B10.2 
(a+b) 

d1wt 1 0.098 22.59 0.13208 
d1s2 1.23891 0.11034 21.02 0.00619 
d2wt 1.74328 0.08379 20.24 0.0382 
d2s2 1.56025 0.09918 20.46 0.07016 

Phosphofruct
okinase 

Y71H10A.1 

d1wt 1 0.16373 30.16 0.22288 
d1s2 0.97783 0.09276 29.06 0.1233 
d2wt 1.27875 0.03963 28.59 0.02741 
d2s2 0.55169 0.05507 29.98 0.14131 

C50F4.2 

d1wt 1 0.23574 31.69 0.33756 
d1s2 1.23372 0.07486 30.28 0.05462 
d2wt 3.78108 0.38765 28.2 0.13331 
d2s2 3.33461 0.11416 29 0.04894 

 

Expression of genes in the gluconeogenesis pathway. 
Enzymes Genes   Expression SEM Mean Ct SEM 

Pyruvate 
kinase 

F25WT.3 

d1wt 1 0.04235 23.25 0.03448 
d1s2 0.99869 0.10241 21.99 0.07359 
d2wt 1.63074 0.08157 20.99 0.0136 
d2s2 1.35219 0.13152 21.33 0.1273 

ZK593.1 

d1wt 1 0.03681 28.04 0.03934 
d1s2 1.21151 0.27977 26.5 0.29374 
d2wt 1.65971 0.20095 25.76 0.15965 
d2s2 1.02116 0.10231 26.53 0.12515 

Pyruvate 
carboxylase D2023.2 

d1wt 1 0.1063 28.39 0.14915 
d1s2 1.6859 0.29039 26.37 0.19247 
d2wt 5.151 0.40664 24.47 0.08915 
d2s2 2.72635 0.34155 25.45 0.16564 
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Expression of genes in the gluconeogenesis pathway. (Contiuned) 
Enzymes Genes   Expression SEM Mean Ct SEM 

phosphoenol
pyruvate 

carboxykinas
e 

 
R11A5.4(pc

k-2) 

d1wt 1 0.13312 24.78 0.18063 
d1s2 1.70055 0.06513 22.97 0.04305 
d2wt 2.48293 0.33331 22.23 0.18777 
d2s2 1.57492 0.07683 23.22 0.04714 

pck-2 

d1wt 1 0.14636 26.5 0.13719 
d1s2 4.7221 0.53461 22.89 0.01764 
d2wt 2.28587 0.2627 24.02 0.00603 
d2s2 2.55634 0.08994 24.04 0.01345 

pck-1 

d1wt 1 0.12249 26.84 0.05208 
d1s2 3.45599 0.70984 23.35 0.29409 
d2wt 2.115 0.1175 24.46 0.04725 
d2s2 3.17199 0.52016 23.99 0.21079 

F-1,6-
biphosphatas

e 
 K07A3.1 

d1wt 1 0.04266 24.32 0.03086 
d1s2 1.13446 0.0494 23.09 0.05241 
d2wt 1.43954 0.10222 22.55 0.09079 
d2s2 0.55338 0.09766 24.26 0.24918 

G-6-
phosphphate 
translocase 

F47B8.10 

d1wt N/A N/A N/A N/A 
d1s2 N/A N/A N/A N/A 
d2wt N/A 0.04342 39.29 0.13621 
d2s2 N/A N/A N/A N/A 

Pyruvate 
dehydrogena

se E1α 
T05H10.6 

d1wt 1 0.03834 26.09 0.01497 
d1s2 0.78968 0.03435 25.38 0.05234 
d2wt 0.60241 0.19084 25.58 0.45456 
d2s2 0.27711 0.10825 27.03 0.55994 
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Expression of genes in citrate acid cycle. 
Enzymes Genes   Expression SEM Mean Ct SEM 

Pyruvate 
dehydrogena

se E1β 
C04C3.3 

d1wt 1 0.07035 26.58 0.07776 
d1s2 1.26375 0.23267 25.19 0.26335 
d2wt 3.72248 0.43859 23.44 0.15974 
d2s2 0.00365 0.00735 33.77 2.90576 

Citrate 
synthase T20G5.2 

d1wt 1 0.10134 22.23 0.13616 
d1s2 1.31588 0.03924 20.79 0.02551 
d2wt 2.06941 0.08433 19.94 0.03471 
d2s2 1.31784 0.10372 20.93 0.10081 

Aconitase, 
mitochondria

l 
F54H12.1 

d1wt 1 0.13449 27.77 0.16436 
d1s2 1.53767 0.05131 25.21 0.03618 
d2wt 2.30131 0.71774 24.46 0.44261 
d2s2 1.90564 0.24451 24.98 0.18396 

Aconitase, 
cytosolic ZK455.1 

d1wt 1 0.12927 29.69 0.16641 
d1s2 2.05196 0.07236 26.72 0.03974 
d2wt 2.72634 0.17997 26.14 0.05017 
d2s2 1.89931 0.08 26.91 0.05718 

Isocitrate 
dehydrogena

se (NAD) 
F43G9.1 

d1wt 1 0.06922 23.73 0.05369 
d1s2 0.85378 0.01904 22.03 0.00514 
d2wt 1.05185 0.06683 21.56 0.04299 
d2s2 1.19415 0.02359 21.62 0.01973 

Isocitrate 
dehydrogena
se (NADP) 

F59B8.2 

d1wt 1 0.12679 28.09 0.16239 
d1s2 0.87492 0.06233 26.35 0.09774 
d2wt 1.02765 0.11557 25.95 0.14061 
d2s2 1.01594 0.10399 26.22 0.14624 
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Expression of genes in citrate acid cycle. (Continued) 
Enzymes Genes   Expression SEM Mean Ct SEM 

Ketoglutarate 
dehydrogena

se 
T22B11.5 

d1wt 1 0.0852 27.06 0.08955 
d1s2 0.92173 0.03518 25.25 0.04499 
d2wt 2.21564 0.15223 23.81 0.05721 
d2s2 1.1497 0.02662 25.01 0.02631 

Succinyl 
CoA 

synthetase 
C05G5.4 

d1wt 1 0.06868 28.91 0.05225 
d1s2 0.57666 0.07992 27.77 0.1974 
d2wt 0.58982 0.10811 27.57 0.25174 
d2s2 0.46495 0.05514 28.16 0.16987 

Succinate 
dehydrogena

se (iron-
sulfur 

protein) 

F42A8.3 

d1wt 1 0.04333 30.83 0.01041 
d1s2 1.14911 0.10651 28.95 0.07013 
d2wt 0.67775 0.04777 29.66 0.06432 
d2s2 1.2025 0.19453 29.23 0.22579 

Succunate 
dehydrogena

se 
(cytochrome 

b) 

T07C4.7 

d1wt 1 0.16323 34.83 0.22728 
d1s2 0.87279 0.09869 33.35 0.13406 
d2wt 0.32814 0.05253 34.71 0.21708 
d2s2 0.82808 0.10891 33.78 0.18031 

Fumarase H14A12.2 

d1wt 1 0.13212 35.9 0.18385 
d1s2 1.36871 0.25682 33.77 0.25424 
d2wt 0.95472 0.0582 34.24 0.03914 
d2s2 1.7979 0.26381 33.73 0.20328 

Melate 
dehydrogena
se (organelle) 

F20H11.3 

d1wt 1 0.06461 23.99 0.07847 
d1s2 0.94151 0.06889 22.4 0.05003 
d2wt 0.987 0.06123 22.28 0.04249 
d2s2 1.21334 0.06002 22.38 0.04004 

Melate 
dehydrogena
se (cytosolic) 

F46E10.10 

d1wt 1 0.11714 24.37 0.16133 
d1s2 0.71597 0.06565 23.17 0.09411 
d2wt 0.55651 0.08463 23.49 0.20477 
d2s2 0.6839 0.11868 23.59 0.24329 
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Expression of genes in the lipid hydrolysis process. 
Enzymes Genes   Expression SEM Mean Ct SEM 

Lipase F28H7.3 

d1wt 1 0.04352 25.49 0.03754 
d1s2 0.81159 0.05886 24.12 0.04801 
d2wt 0.77005 0.04925 24.14 0.04806 
d2s2 0.70344 0.11261 24.67 0.22327 

Glycerol 
kinase R11F4.1 

d1wt 1 0.17583 28.3 0.24236 
d1s2 1.1224 0.21894 26.92 0.27667 
d2wt 2.46814 0.31071 25.36 0.1728 
d2s2 0.9673 0.13902 27.22 0.20304 

Glycerol-3-
phosphate 

dehydrogena
se 

K11H3.1 

d1wt 1 0.42698 24.96 0.61143 
d1s2 1.7284 0.07835 22.96 0.04039 
d2wt 1.70531 0.17698 22.55 0.1389 
d2s2 2.81157 0.22471 22.34 0.10737 

F47G4.3 

d1wt 1 0.14307 29.92 0.19233 
d1s2 1.4549 0.07836 28.17 0.05824 
d2wt 1.485 0.08642 27.71 0.06264 
d2s2 1.39296 0.16464 28.32 0.16525 

3-
hydorxyacyl-

CoA 
dehydrogena

se 

F54D5.7 

d1wt 1 0.06274 28.11 0.05079 
d1s2 0.88408 0.03712 27.07 0.03201 
d2wt 1.10091 0.08902 26.33 0.10239 
d2s2 1.16959 0.10188 26.75 0.11842 

 

Expression of genes involved in the fatty acid oxidation process 
Enzymes Genes   Expression SEM Mean Ct SEM 

Enoyl-CoA 
hydroatase F38H4.8 

d1wt 1 0.09907 34.37 0.12172 
d1s2 0.66258 0.10765 33.75 0.22867 
d2wt 1.16806 0.16251 32.51 0.19277 
d2s2 0.79939 0.26406 33.57 0.4747 

Acyl-CoA 
Synthase C46F4.2 

d1wt 1 0.09066 32.49 0.10721 
d1s2 4.53407 0.4092 29.1 0.11961 
d2wt 6.76741 0.82569 28.09 0.16691 
d2s2 5.5156 0.35384 28.9 0.08245 
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Expression of genes in the glyoxylate cycle. 
Enzymes Genes   Expression SEM Mean Ct SEM 

Isocitrate 
lyase/malate 

synthase 
C05E4.9 

d1wt 1 0.07561 26.81 0.09335 
d1s2 3.36432 0.22589 23.8 0.02909 
d2wt 7.41247 1.14013 22.61 0.20872 
d2s2 5.58599 0.36158 23.25 0.07998 

Malic 
enzyme Y48B6A.12 

d1wt 1 0.06434 26.52 0.0737 
d1s2 1.67237 0.11601 24.52 0.03847 
d2wt 4.06895 0.24001 23.18 0.03954 
d2s2 2.33602 0.38009 24.21 0.22974 

 

Expression of genes in anaerobic pathways. 
Enzymes Genes   Expression SEM Mean Ct SEM 

Cytosolic 
SDH/Fumara
te reductase 

F48E8.3 

d1wt 1 0.20048 35.2 0.28367 
d1s2 1.90932 0.12751 33.01 0.02731 
d2wt 3.57631 0.25556 32.05 0.07036 
d2s2 1.43598 0.43968 33.6 0.4391 

Lactate 
dehydrogena

se 
F13D12.2 

d1wt 1 0.04483 27.56 0.03158 
d1s2 0.82503 0.06495 26.58 0.06605 
d2wt 0.70204 0.08217 26.76 0.15111 
d2s2 0.41437 0.09562 27.75 0.32943 

Alcohol 
dehydrogena

se 
K12G11.3 

d1wt 1 0.07593 26.97 0.09389 
d1s2 0.66419 0.10877 26.3 0.21745 
d2wt 1.99339 0.19172 24.66 0.11651 
d2s2 0.46046 0.01733 27.01 0.02496 

6-
phosphogulc
onolactonase 

Y57G11C.3 

d1wt 1 0.07334 28.8 0.0895 
d1s2 0.50309 0.03407 28.53 0.03179 
d2wt 1.2089 0.12347 27.21 0.12662 
d2s2 0.58388 0.03114 28.49 0.05998 
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Expression of genes in the pentose phosphate shunt pathway 
Enzymes Genes   Expression SEM Mean Ct SEM 

Ri(bul)ose-5-
phophate 
isomerase 

B0280.3 

d1wt 1 0.29004 37.88 0.39933 
d1s2 0.98072 0.15028 36.31 0.21248 
d2wt 1.39019 0.18323 35.88 0.17428 
d2s2 1.435 0.1554 36.15 0.12427 

Transketolas
e F01G10.1 

d1wt 1 0.07753 29.1 0.04574 
d1s2 1.38374 0.09912 27.03 0.0834 
d2wt 2.9183 0.14019 26.03 0.03079 
d2s2 3.00048 0.21047 26.31 0.03571 

Transaldolas
e 

Y24D9A.8 
(a+b) 

d1wt 1 0.07997 26.09 0.05376 
d1s2 0.80874 0.07255 24.8 0.11414 
d2wt 1.12486 0.05587 24.4 0.03578 
d2s2 1.57824 0.10407 24.23 0.00915 

Y24D9A.8 
(a) 

d1wt 1 0.07972 32.08 0.053 
d1s2 1.47371 0.08766 29.92 0.06034 
d2wt 2.05191 0.46138 29.52 0.3184 
d2s2 3.05124 0.37824 29.26 0.15172 

 

Expression of genes in the electron transport chain. 
Enzymes Genes   Expression SEM Mean Ct SEM 

Mitochondria 
complex I T20H4.5 

d1wt 1 0.11492 25.03 0.116 
d1s2 1.08133 0.07415 23.34 0.01035 
d2wt 1.78884 0.12983 22.35 0.10434 
d2s2 1.12046 0.01721 24.1 0.01899 

Cytochrome 
C oxidase I cco-1 

d1wt 1 0.01801 21.46 0.01243 
d1s2 0.58967 0.0349 20.86 0.02543 
d2wt 1.49174 0.05977 19.97 0.03664 
d2s2 0.87353 0.02486 20.43 0.04069 

Cytochrome 
C oxidase I W09C5.8 

d1wt 1 0.02702 21.65 0.03438 
d1s2 0.43065 0.0191 21.5 0.02114 
d2wt 1.24058 0.32254 20.43 0.37241 

 


