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ABSTRACT

The purpose of this study was to research the geographical structure and time

evolution of spatial correlations of general circulation models, energy balance models,

observations and reanalysis, as well as provide comparisons amongst them. This

study analyzed five GCM pre-industrial control runs of at least 500 years, 132 years

of observational data and 65 years of reanalysis data. After the seasons were removed

the data were averaged in several different time scales and the correlation structures

were calculated at several locations on the planet. Comparisons of the results revealed

both similarities and differences between the models, stochastic theory and reanalysis

data, with the largest differences occurring over ocean at long time averages. Several

models show drastic differences between correlation structures and their evolution.
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NOMENCLATURE
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1. INTRODUCTION AND LITERATURE REVIEW

This study considers the second moment statistics, specifically spatial correlations

in the surface temperature field, taken from simulations of several general circulation

models (GCMs), an energy balance model (EBM), reanalysis based on observations

and direct observational data. We are interested in the geographical structure of these

second moments as well as how these structures are affected by different lengths of

time averaging of the raw fields. Also, we are interested in how the second-moment

statistics of GCMs compares to observations and reanalysis, stochastic EBMs and

how the models compare with each other. Spatial correlation is the measure of how

much one site “feels” another. There are large differences in the correlation structures

depending on land or sea surface of the site-pairs. Thus, the type and size of the

surrounding area for which a given station’s data represents may provide significant

information [5].

As shown by both theoretical considerations and by examples using data, when

solving the various problems in the averaging of meteorological fields in space and

time it is necessary to take into account the correlation structure of the fields. Failure

to do so may lead to incorrect estimates of sampling characteristics obtained from

averaging and to incorrect conclusions about their accuracy [10]. [15] argued that

obtaining good agreement among second-order statistics, such as spatial correlations,

is a necessary condition for trusting a model for various purposes. [11] gave several

reasons for using second-moment statistics as a quantitative measure of the behaviour

of the climate system. First, they provided an important test of our climate models

beyond the conventional tests such as geographical distributions of selected monthly

averaged snapshots or seasonal or annual means. Also, a reason for studying second-
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moments in various frequency bands is that their characteristics might provide a

clue as to the ability of models to predict the correct sensitivity of climate to small

externally imposed forcings.

The statistical structure of meteorological variables has been studied over the

past several decades in an effort to better understand and simulate the fluctuations

in the dynamic atmosphere-ocean climate system. Variability and correlation (both

spatial and temporal) in the climate are of paramount importance in the determi-

nation of long-term trends, large-scale averages and in general, predictability of the

system. Whether the variability is a “natural” part of the system (North Atlantic

Oscillation, Atlantic Multidecadal Oscillation, El Nino Southern Oscillation, etc.)

or externally forced (such as anthropogenically induced climate change) needs to be

differentiated [11].

The temporal structure of the climate system has long been better studied than

the spatial structure for several reasons. First, temporal averaging is much simpler

than spatial averaging because time intervals are usually equally spaced which cannot

be said for the spatial coverage of the current observation network. [16] summarized

this problem by saying that a function in time that describes a process in nature

is known to depend only on the past but not on the future (causality). However,

this notion of causality has no analog in space. A function describing a process in

one dimensional space can depend on values from the left and right of a reference

point. In higher dimensions even more freedom exists for the locations having in-

fluence on the value at a reference point. The greatest difficulties arise in higher

dimensional averaging. These difficulties are to a considerable extent connected with

the indeterminate nature of the areas to which the measured data at each point

should be related. From this follows uncertainty in the method of selecting weights

for the measured data, even if the territory is totally homogeneous [10]. Another
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problem that arises in spatial averaging is that the measurements involve a variety

of observation points that generally record a variety of conditions using a variety of

instruments, and the data may relate to a climatically heterogeneous area. This is

a stark difference from temporal averaging, for which the measured data used are

from one and the same instrument registering the same conditions from the same

location.

Near surface air temperature is the variable under investigation in this study. It

is one of the most accurately measurable elements in meteorology and is an essential

output variable of all climate models. Its spatial and temporal correlation are high

so it has been the subject of detailed study and requires little averaging. However,

a number of problems exist which do call for averaging. A particularly important

role is in climatic theory, where it is required to discover the real significance of

temperature changes of as small as a fraction of a degree. These problems call

for spatial averaging of temperature over large areas extending over many millions

of square kilometers, and averaging accuracy essentially depends on the selection

of averaging method [10]. Although temperature is the most widely investigated

variable, the methods described in this paper can and have been applied to pressure,

height, wind, precipitation and any other consistently sampled variable. Multivariate

correlation models could also be investigated to determine dependence of certain

variables on others (e.g. temperature and precipitation).

[5] and [12] (herein referred to as HL87 and KNH96 respectively) provide the

groundwork for this study. Although the motivations and methods used in each

study are different, they are analogous and comparisons can be reasonably made.

HL87 used annually averaged observed surface air temperature taken from available

meteorological stations for the period 1880-1985 and calculated the spatial correla-

tion coefficients for station pairs with at least 50 years of common records in certain
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latitudinal bands. It should be noted that they did not discriminate between ocean

sites and land sites which inherently makes their results different from those in this

study where large uniform surface areas are investigated. Additionally, their study

considered sites in the tropics which have not been included in this paper. HL87 de-

scribed the problem of inconsistent spatial and temporal coverage of the observation

network, which will be elaborated upon in Section 3. KNH96 used two coupled GCMs

and an EBM along with observations, all of which were cast in Fourier-spherical har-

monic space and filtered into various frequency bands. Because spherical harmonics

were used, they needed a continuous series in both time and space. Missing values

were replaced with a zero temperature anomaly for that time, which was meant to

suppress spurious spatial variance, although it did introduce some spurious temporal

variability and bias. KNH96 only used the last 100 years of observations (1890-1989)

because they considered earlier records too sparse for analysis. In this study, in an

attempt to mitigate the problems arising from an inconsistent observation network,

observation reanalysis is included for comparison. Further comparisons between these

studies will be presented in Section 5.

In the next section of this paper, the applications of spatial correlations are

presented and the motivations of this study described. Optimal averaging and in-

terpolation are discussed as well as the distinction between homogeneous, isotropic

fields and heterogeneous, anisotropic fields.

Section 3 will detail the data used in this study, sources and any noteworthy

characteristics. The problems involved with the global observation network will be

described.

In Section 4 the methods used will be described. The filters that were used to

categorize the data will be illustrated and the segmenting of the data into different

boxes will be explained. There will be a brief note on stationary time series and how it
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pertains to this study as well as assumptions used and their associated implications.

The statistical theory as it applies to this study will be discussed in a stochastic

framework.

Section 5 will contain the results and discussion. Comparisons will be made

between the GCMs, EBM, observations and reanalysis.

The conclusions will be presented in Section 6 as well as possible future research

topics and recommendations.
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2. MOTIVATIONS

There have been great efforts in the history of meteorology to construct smooth

fields of meteorological variables from the spatially and temporally uneven observa-

tion network. Climatologists have been hampered by the given locations of gauges

comprising the observation network. These strongly favor the inhabited and more

developed parts of the world and in particular, the oceans, the southern hemisphere

and other poorly accessible areas are typically badly represented [6]. One problem

lies in the fact that the gauges which are in place, are separated by finite spatial

distances and that these spatial gaps lead to an inevitable “sampling error”. Com-

plicating the problem is the fact that the field has correlations from one point on

the sphere to another and that these correlations depend on the length of temporal

averaging employed [14]. Further complications can arise from instrument errors,

topography differences and urban heat islands which cannot feasibly be extracted

from the data [4]. With these difficulties in mind it is not hard to see why the topics

of optimal averaging and interpolation have been so widely studied. Section 2.1 will

describe the evolution of correlation functions and list some of their applications

pertaining to modelling and data assimilation. Section 2.2 will introduce several

questions as to what this study intends to find. These questions will be revisited in

Section 6.

2.1 Correlation Functions

First consider how spatial correlations are computationally estimated. Most cor-

relation functions of two dimensional fields, such as temperature that have been

developed and studied assume that the data being modelled (temperature, precipi-

tation, pressure, etc.) are homogeneous and isotropic at the length scales in question.
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Some examples of these candidate correlation functions are described in [1], [9], [10]

and [16] amongst others.

In these homogeneous, isotropic models the correlation function depends only on

Euclidian distance (or great circle distance on a sphere) between two points in the

domain and is directionally invariant. These univariate functions are the building

blocks of correlation theory in meteorology and can be representative enough of the

real atmosphere that residual errors will be minimum. The main advantage of these

correlation functions is that they are computationally simple to integrate into data

assimilation, however their simplicity is also a drawback that must be acknowledged.
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Figure 2.1: Correlation as a function of station separation for monthly averaged surface
temperature observation data for Asia (red). The blue line is modified Bessel function
rK1(r) using a decorrelation length of 1500 km.

In general, the assumptions of homogeneity and isotropy are clearly violated
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for many, if not most, applications in the atmospheric sciences [3]. In the global

temperature field, heterogeneity and anisotropy can arise for may reasons including:

(1) directional dependency, for example, the prevalence of frontal phenomena (see

[9]), (2) proximity to land-sea boundaries, (3) topography and (4) different surface

types.

 

 

Correlation Strength

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Figure 2.2: Contours of constant correlation of surface temperatues at various sites with
a central point in Mid-Asia for monthly averaged surface temperature observation data for
Asia. Thin contours are 0.9, 0.7, 0.5 and the thick contour is e−1.

In Figures 2.1 and 2.2 the effects of (1), (2) and (3) can be clearly seen with the

biggest contribution to anisotropicity coming from the presence of the Himalayas

along the southern boundary of the correlation contours. The impact of (4) will be

seen in the size, shape and evolution of e-folding contours for land and ocean sites,

which will be presented fully in Section 5.

8



2.2 Why Are We Doing This?

The main motivation of this study is to serve as a comparison point among

several current GCMs. We are attempting to quantify the second moment statistical

structure of the surface temperature field (more specifically the e-folding spatial

autocorrelation distances) at various time averages on the raw data. The next section

will describe the body of data that was used for this study, including sources and

descriptions, and Section 4 will outline the methods used. Sections 5 and 6 will

provide evidence and attempt to answer the following questions:

1. Is there a relation between these correlation length scales and GCM equilibrium

sensitivity?

2. Do the second moment statistics of recent GCMs:

(a) behave similar to observations and Reanalysis?

(b) behave according to stochastic EBM theory?

(c) agree with each other?
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3. DATA SOURCES AND BACKGROUND INFORMATION

For this study 5 different GCMs were chosen from the Coupled Model Intercom-

parison Project Phase 5 (CMIP5). Established under the World Climate Research

Programme (WCRP) and the Working Group on Coupled Modelling (WGCM),

CMIP is a standard experimental protocol for studying the output of coupled at-

mosphere ocean GCMs. It provides a community-based infrastructure in support

of climate diagnosis, validation, intercomparison, documentation and data access al-

lowing scientists to systematically analyze GCMs and aid in model improvement. In

this study models from the National Center for Atmospheric Research (NCAR), Geo-

physical Fluid Dynamics Laboratory (GFDL), Max Planck Institute for Meteorology

(MPI), Institute Pierre-Simon Laplace (IPSL) and the Commonwealth Scientific and

Industrial Research Organization (CSIRO) were used. The models are described in

Table 3.1.

Observations were taken from The National Climatic Data Center (NCDC). For-

merly known as the National Weather Records Center (NWRC), NCDC is the world’s

largest active archive of weather data archiving 99 percent of all National Oceanic

and Atmospheric Administration (NOAA) data. The data are received from a variety

of sources including satellites, radar, automated airport weather stations, National

Weather Service (NWC) observers, aircraft, ships, radiosondes, wind profilers, rock-

etsondes and solar radiation networks.

Reanalysis data were taken from the National Centers for Environmental Predic-

tion’s (NCEP) Climate Prediction Center (CPC) division. Formerly known as the

Climate Analysis Center (CAC), the CPC consolidated NOAA’s climate diagnostics,

monitoring and extended range forecasts.
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Table 3.1: Model Information

Source Model Name Resolution (∆φ,∆λ) Time Length (Years)
NCAR CCSM4 1◦ × 1.25◦ 1300
GFDL CM3 2◦ × 2.5◦ 500
MPI ESM 1.9◦ × 1.9◦ 1000
IPSL CM5A 1.9◦ × 3.75◦ 1000
CSIRO MK3 3.2◦ × 5.6◦ 1000
NCDC OBS 5◦ × 5◦ -
NCEP REA 2.5◦ × 2.5◦ 65

3.1 General Circulation Models

GCMs are useful tools for understanding the roles of the major climate system

components. Analyses of GCM simulations also play a key role in the decision mak-

ing process for environmental policy at all scales (local, state, national, etc.). Water

resource management, agriculture, transportation and urban planning are just a few

of the areas in which examination of the behavior of GCMs can be helpful. The

main components of coupled GCMs are the atmosphere, land, ocean and sea ice.

The advantage of GCMs is that they allow researchers to perform experiments based

on synthetic external conditions or “forcings” that cannot be directly performed on

Earth. Continued experience with these models has led to advancement in our un-

derstanding of climate variables and their evolution at various time scales (monthly,

seasonal, annual, decadal, etc.).

Each GCM inherently has its own unique characteristics owing to its particular

historical evolution. Some of the operational differences between models include

different numerical methods, grid spacing (resolution), scale parameterizations and

initialization techniques especially for the oceans. The main source of discrepancy

between models however, is how they simulate the various feedback mechanisms
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(water vapor, clouds, radiation, ice albedo, dynamics of air-sea interaction, etc.). For

this reason, different GCMs may simulate different sensitivities to the same forcing

simply because of the way certain processes and feedbacks are modelled. On the other

hand, all models are based on the same fundamental set of equations and variables

and are designed to simulate the dynamics and processes of the atmosphere and

ocean. Hence, they are not independent of one another, with many sharing common

components and algorithms, which can be seen in climate model responses sharing

common patterns [8].

For this study, the raw data for the GCMs under investigation were downloaded

from The Program for Climate Model diagnosis and Intercomparison (PCMDI) data

access portal, part of the Earth System Grid data distribution project. All models

are coupled atmosphere-ocean models and only pre-industrial control runs (picontrol)

were used for their respective experiment. Picontrol runs contain no anthropogenic or

natural forcings (such as volcanic dust veils) and are usually run for at least 100 years

after spin-up. We used the picontrol runs because we wanted to test the underlying

spatial statistics to see how the models compare at simulating the second moments

of the unforced climate system. Presumably such a time series meets criteria for

stationarity after removal of the seasonal cycle for monthly averages. Models were

chosen with picontrol runs of at least 500 years.

3.2 Energy Balance Model

At the other end of the complexity spectrum of climate models we have EBMs,

which are the simplest models of the global climate system. The zero dimensional

models represent the entire climate system with just one number, the global average

surface temperature, that researchers use as a basic indicator of the Earth’s climate.

The total rate of radiation absorbed must equal the rate of emission to space. To
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simulate the climate in more dimensions on the spherical surface horizontal heat

transport must be added in the form of diffusion. The basic physical driver for the

two dimensional EBMs is the balance between incoming solar radiation absorbed by

a column of air over a particular small grid box at the surface being balanced by

the rate of release of radiation to space from the same column added to the net flux

density of heat leaving the column to enter surrounding columns. EBMs treat two

dimensional geography explicitly by using a different (uniform) heat capacity over

land than over ocean [11].

Currently there is no working two dimensional EBM that is available at Texas A&M

for research purposes. We will rely on published EBM results. On the one hand, we

try to simulate by capturing as much of the dynamics as we can in comprehensive

numerical models. On the other hand, we try to understand by simplifying and

capturing the essence of a phenomenon in idealized models [7]. Presently, GCMs are

the primary tools by which theory confronts observations and there is less emphasis

on simple stochastic models.

The two dimensional EBMs we refer to are linear stochastic models. The linear

model is forced by uniform white noise in space and time over the spherical surface.

Our thinking here is that the noise represents “weather.” This kind of model works

well in mid and polar latidudes, the so-called “storm belts.” Obviously, it is not

expected to work in the tropics (where “weather” is not white); hence, we restrict

this study to the extra-tropics.

The lowest order of the so-called Matern correlation model (see [15]) leads to

the rK1(r) function shown in Figure 2.1. This happens to be the exact solution

for the stochastic linear EBM on a uniform plane if the raw data are averaged over

times longer than the relaxation time of the model (i.e. the low frequency limit)[15].

this model then provides an intuitive basis for the intercomparison of different GCM
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performances.

Ideally for this research, EBM output would have been examined alongside the

GCMs, observations and reanalysis under the same methodology presented in Section

4. In the absence of EBM output, e-folding distances have been estimated from [12]

(see Figure A.1).

3.3 Observations and Reanalysis

The observations were taken from the NCDC. The data set is a merged land, air

and sea surface temperature anomaly analysis based on surface temperature data

from The Global Historical Climatology Network (GHCN) version 3.1.0 and sea

surface temperature data from The International Comprehensive Ocean-Atmosphere

Data Set (ICOADS). This dataset is on a 5◦ × 5◦ grid starting in January 1880 and

ending in December 2011.

Reanalysis data were taken from NCEP. It is a joint product from NCEP and

NCAR which incorporates observations and numerical weather prediction (NWP)

model output to produce a retroactive record of more than 60 years of global analyses

of atmospheric fields in support of the needs of the research and climate monitoring

communties. This effort involved the recovery of land surface, ship, rawinsonde,

pibal, aircraft, satellite, and other data [13]. The dataset is on a continually updated

2.5◦ × 2.5◦ grid.

3.3.1 Some Uncertainties

The principal limitation of the observational dataset for global temperature anal-

ysis is the incomplete spatial and temporal coverage. Figure 3.1 shows the total

number of missing monthly average temperature observations globally with the red

dots indicating grid sites with no missing data for the time series.
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Figure 3.1: Missing data (color) from observation dataset. Sites with no missing data
are marked with (•)

The observational dataset employed in this study has a total of 1584 entries (132

years). It can be seen that the poles are very poorly sampled with some sites having

no observations on record. The interior area of Africa, Asia and South America as

well as portions of the South Pacific Ocean are better sampled than the poles but still

have long periods of time before observations were taken. In general, the Northern

Hemisphere is better sampled than the Southern and land is better sampled than

ocean.

To facilitate the computation of continuous spatial correlation structures, missing

observation values were replaced with a (local) temperature anomaly of zero for that

time step as in KNH96. This was intended to suppress ambiguities involved with

comparing time series of different lengths (i.e. incomplete contours, underestimation,
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etc.). However, this procedure does introduce some spurious overestimation of the

correlation coefficients in poorly sampled areas. Unfortunately, it is impossible to

suppress them both.

Reanalysis data were included in this study because of the intrinsic problems with

the global observation network. Although it is a much shorter time series (65 years)

than the longest observation record, it is both spatially and temporally complete.

It should be noted that Reanalysis data were initialized with a mix of observations,

hindcasting and forecasting so some of the drawbacks in the observation dataset

“leak” into the Reanalysis data. These data are likely to be smoother (without false

or “ghost” correlations) than a data set at all locations.

Gridded variables used in the reanalysis have been classified into three classes:

type A variables, including upper-air temperatures, rotational wind and geopoten-

tial height, are generally strongly influenced by the available observations and are

therefore the most reliable product of the reanalysis. Type B variables, including

moisture variables, divergent wind and surface parameters, are influenced both by

the observations and by the model, and are therefore less reliable. Type C variables,

such as surface fluxes, heating rates and precipitation, are completely determined

by the model (subject to the constraint of the assimilation of other observations).

They should be used with caution and whenever possible compared with model-

independent estimates. It is frequently noted that even when the model estimates

are biased, the interannual variability tends to be correlated with independent ob-

servations [13].
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4. METHODOLOGY

This section details the formulas and methods used in the study.

4.1 Filtering

The data for each model were run through two filters for standardizing. First,

the seasonal cycle was removed from the data by the methods discussed below. This

insures that the time series is as temporally stationary as possible. The seasonal

cycle will induce much higher correlation calculations if not removed because of the

repetitive pattern. For this, the data (which are sampled monthly) was partitioned

into months (i = 1..12). Each month will have tdim/12 (j = 1..tdim/12) data points

for each latitude (φ) and longitude (λ) combination, where tdim is the total time

dimension (e.g. for 1000 years sampled monthly, tdim = 1, 000× 12 = 12, 000).

Month1,j,φ,λ = Janj,φ,λ

Month2,j,φ,λ = Febj,φ,λ

...

The mean for the entire time series at each point is then calculated.

Meanφ,λ =

tdim∑
k=1

Tempk,φ,λ

tdim
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Next, the mean for each month is calculated for each location.

MonthMeani,φ,λ =

tdim
12∑
j=1

Monthi,j,φ,λ

tdim
12

The anomaly away from the mean time series is then calculated for each month at

each location by subtracting the full mean from the monthly mean.

MonthAnomi,φ,λ = MonthMeani,φ,λ −Meanφ,λ

This monthly anomaly is then subtracted away from the original data to remove the

seasonal cycle.

Tempk,φ,λ = Tempk,i,φ,λ −MonthAnomi,φ,λ

The next filter was used to partition the data and find the anomaly from the local

long term mean at each point for each time step. The partitioning of the data

was done by taking different time average intervals of the original data (1 month, 3

months, 6 months, 1 year, 5 years, 10 years, 20 years). For most of the data sets we

will only be looking in the 1 month to 5 year range, although the long term averages

(10 and 20 years) will be useful when doing model comparisons to see how they deal

with low-frequency climate variations. To find the anomalies, the time mean of each

newly created dataset is found for each location. Using the one month average as an

example:

TimeMeanφ,λ =

tdim∑
k=1

Tempk,φ,λ

tdim

Tempk,φ,λ = Tempk,φ,λ − TimeMeanφ,λ
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To estimate the correlation coefficient, a sample covariance matrix must be con-

structed based on the two time series being compared. The covariance is defined as

the (sample) expected value of the product of their deviations from their means [2]:

Cov(x, y) =

n∑
i=1

(xi − x)(yi − y)

n
(4.1)

Showing that the covariance is non-zero suggests (subject to sampling error) that the

two time series are not independent. The sample correlation coefficient, r, is then

calculated as the covariance divided by the product of the standard deviations of the

two distributions:

r =

∑
(xi−x)(yi−y)

n√∑
(xi−x)2
n

∑
(yi−y)2
n

=

∑
(xi − x)(yi − y)√∑

(xi − x)2(
∑

(yi − y)2

Or simply:

r(x, y) =
Cov(x, y)

SxSy
(4.2)

where S is the standard deviation of the respective time series. This will give a

dimensionless quantity which can therefore be used, with certain reservations, as

an absolute measure of the relationship between the two variables [2]. If x and y

were independent, r would be zero. If large values of x are accompanied by large

values of y they are positively correlated with the maximum being +1 for a perfect

correlation. If large values of x are accompanied by negative values of y they are

negatively correlated with a minimum being -1 for an exact opposite correlation. P -

values were also calculated to test the significance of our calculations, all of which fall

in the 0.01 significance level. This assumes no autocorrelation in the two time series.

Roughly speaking the time series length has to be shortened by a factor of 1
2τ

, where
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τ is the autocorrelation time (Figure 4.1). This reduces the number of independent

samples. It makes the significance level larger.

Autocorrelation functions were also calculated for each site and model. This is the

cross-correlation of a time series with itself as a function of the lag time (τ) between

observations. Assuming xt is a stationary process the mean (x) and variance (σ) are

time-independent and autocorrelation (R) is expressed as a function of time lag only

R(τ) =
〈(xt − x)(xt+τ − x)〉

σ2
(4.3)

where 〈·〉 is the expected value. Here lag time is expressed in months. Autocorrelation

was calculated for each point inside the reference boxes for each site (Figure 4.2)

up to a lag of 20 months and averaged to produce the curves seen in Figure 4.1.

Autocorrelation time as discussed herein refers to the number of lags it takes for the

autocorrelation function to fall to a value of e−1. Note the great spread of lagged

correlation times. This will show up again in interpreting the frequency dependence

later.

The absolute distance, ∆d, between two latitude-longitude pairs, (φ1, λ1) and

(φ2, λ2) was calculated using the great circle length

∆d = Re ∗ arccos(cos(φ1) cos(φ2) cos(|∆λ|) + sin(φ1) sin(φ2)) (4.4)

where |∆λ| = |λ1 − λ2| and Re = 6374 km.

The linear warming trend of observations and reanalysis was not removed from

the data because of the uncertainty of its magnitude. This trend means that the data

will be slightly non-stationary, which causes a minimal overestimation of correlation

structure.
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(a) Asia
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(b) North America
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(c) Antarctica
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(d) North Atlantic Ocean
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(e) Indian Ocean

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Lag [Months]

A
u

to
co

rr
e

la
tio

n

(f) South Pacific Ocean

Figure 4.1: Autocorrelation functions for all models
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4.2 Correlation Calculations

In this study the data were examined in two separate ways. First, a rectangular

grid was taken around the area of interest in a way that maximized the amount

of coverage of the location under examination. Within this box, 10,000 random

latitude-longitude pairs were created and the correlation between the two time series

was calculated as well as the distance separating the two sites. This was done to see

what the large scale representative structure of correlation (or decorrelation length)

is for a relatively uniform land or ocean surface. The second and more interesting

evaluation of the data was constructed by choosing a point as close as possible to the

center of the uniform land or ocean mass and correlating the time series of that site

in all directions to find where the correlation falls to the e-folding threshold (e−1) at

which the correlation is no longer considered significant. For this study we are only

interested in the statistics of the large uniform land or ocean surfaces, so we are only

interested in the first instance of the e-folding contour and everything outside of that

was ignored.

4.2.1 Random-Pair Correlations

The limits for the boxes used in the random-pair correlation calculations are

represented in Table 4.1 and Figure 4.2. The bounding boxes were made as close as

possible to these limits. However, because each model has a different grid spacing

the actual limits will vary around these values by about ±5◦.

After the data were read in respecting these boundaries, 10,000 random latitude-

longitude pairs were generated to get a representative sample of the mostly uniform

surface. Inevitably, in every grid box there will be a combination of land and water

surfaces. However, these usually lie on the outside of these boxes so their contribution

to the whole will be minimal.
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Table 4.1: Limits for random-pair correlation boxes and central point

Site [Abbreviation] Latitude Longitude Central Point
Asia [ASIA] 25N - 70N 35E - 130E 50N 90E
North Atlantic Ocean [NAT] 35N - 70N 60W - 5E 50N 30W
North America [NAMC] 20N - 60N 125W - 75W 40N 100W
Indian Ocean [IND] 70S - 25S 30E - 120E 40S 80E
South Pacific Ocean [SPAC] 70S - 25S 130E - 80W 45S 140W
Antarctica [ANT] 90S - 70S All 90S 0E

For each of these 10,000 combinations the correlation coefficient and distance

were calculated as detailed above. Duplicate combinations were removed from the

calculations so the maximum iteration of any combination would be one. The data

were then scatter-plotted with the sample correlation coefficient on the ordinate and

distance on the abscissa (see Figure 2.1). For the average line, the data was binned

by distance into 100 bins and averaged. Next, the e-folding distance was found by

evaluating at what distance the average line fell to a value of e−1. This was done for

each model, site and time average to provide a representative correlation curve and

e-folding distance for the uniform areas of interest.

4.2.2 Central Correlations

For the central correlations the procedure was different. Here, we try to show

how the correlation falls off with respect to distance from the central site. It may be

easier to think of this as a surface or dome of correlation with the maximum of +1 at

the center point and falling off in each direction until it reaches the e−1 contour. A

point was chosen at the most central point possible in the uniform areas mentioned

above. These points were chosen as close to the coordinates listed in Table 4.1 as

possible.

The time series for each point inside the gridded area was then compared to
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Figure 4.2: Limits for random-pair correlation boxes (black) and central reference point
(+)

the central point to find the correlation coefficient and distance as described earlier,

however, because each point is being compared to a central point the results are

stored in a grid matching the bounding box for the site in question. With this

gridded data, the correlation coefficient was then plotted as contours on a map at

the intervals of 0.9, 0.7, 0.5 and a thicker contour at the e-folding distance, e−1.

The Mollweide projection was used for the maps in this study because accurate

representation of area should take precedence over shape.

The shape and features of these contours are unique to each model and will

therefore be a good means of comparison. Some features that are not unique are the

flattening of the contours at coastal boundaries such as in North America showing

a decoupling of temperature between land and ocean. This happens because of the

difference in heat capacity between land and ocean, being the determining factor

in the spatially lagged autocorrelation. Also there is, in most models, a flattening

of contours near the Himalayan Mountains (also in [15] and [12]). Over land the
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autocorrelation time is on the order of less than a month, while over the ocean it is

on the order of months or a few years (longer if the frequency is low enough to activate

the deeper ocean). Because of this, mostly the one month, one year and five year

averages will be discussed in this study when comparing models and observations,

although, the remaining averaging options were calculated and included in several

figures in Section 5.

4.3 More About Stochastic EBMs

[11] showed that stochastically forced EBMs were successful at modelling the spa-

tial patterns of variability when compared to observations with a few caveats. This

section will use the simple defining equations of a noise-driven EBM as a mathemat-

ically convenient analog to describe the climate system and model simulations.

The surface temperature T (r̂, t) (r̂ is a unit vector pointing from the center of

the Earth to a point on the surface and t is time), satisfies the noise-forced damped

diffusive equation

C
∂T

∂t
−D∇2T +BT = F (4.5)

where C is a uniform heat capacity per unit area of surface, B is a radiative-damping

coefficient and D is a thermal diffusion coefficient. F = F (r̂, t) is a stochastic function

which is white in time and whose statistics are rotationally invariant on the sphere.

〈F (r̂, t)F (r̂′, t′)〉 = σ2
Fρ(r̂ · r̂′)δ(t− t′) (4.6)

where 〈·〉 denotes ensemble averaging and ρ is the spatial autocorrelation function

which depends on the great circle distance or opening angle θ = arccos(r̂ · r̂′), sepa-

rating the two points; σ2
F is the total variance of the forcing noise F at a point and

δ(·) is the Dirac delta function.
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The e-folding distance described in this study is reasonably close to the EBM

low-frequency diffusive length scale (λL ∼
√
D/B). The correlation length scale,

λL, is smaller for higher frequency (shorter time average) temporal fluctuations and

is larger over uniform land masses than over the ocean. This is because the very

definition of high- versus low-frequency depends on the relevant relaxation time of

the surface medium. Typically for EBMs it is about one month for a uniform all-land

area and about 5 years over the equivalent open mixed-layer ocean [11]. This is much

longer than the length scales seen in Figure 4.1 due to the fact that for EBMs the

correlation length scales were calculated on an all land or all ocean planet while the

models use a more realistic distribution of geography. Also, the models use multiple

vertical layers which introduces multi-level advection effects.

The correlation length scale increases upon averaging the surface temperature

field over longer times. This is simply expressed in the EBM as the lengthening of

the correlation length scale towards its low frequency limit
√
D/B. Once a site has

reached its corresponding low frequency limit, longer time averages (lower frequen-

cies) will not increase λL further. This will be an important factor when comparing

the model performance in Section 5.

26



5. RESULTS AND DISCUSSION

5.1 Results

5.1.1 Correlation of Random-Pairs

For the random-pair correlation calculations the results for each model, site and

time average are shown in this section. Note that for the random correlation cal-

culations, no distinction is made on direction of separation between the two sites,

although some anisotropy in the fields is known to exist. For example, two sites that

are taken at the same latitude and are only separated in the east-west direction will

usually have a higher correlation coefficient than two sites on the same longitude

band and are separated by the same distance only in the north-south direction. This

arises due to the shape and prevalence of frontal phenomena which usually have

a southwest to northeast orientation and move in a southeasterly direction in the

Northern Hemisphere. Latitudinal dependence of solar insolation also plays a small

role in the anisotropic structure of correlation.

Table 5.1: Length scales (km) (e-folding correlation distances), monthly averaged data
relating random-pairs.

Land Sites Ocean Sites
Model ASIA NAMC ANT NAT IND SPAC
NCAR - CCSM4 1653 1475 1235 1014 1233 1514
GFDL - CM3 1585 1383 913 944 1551 1746
MPI - ESM 1575 1318 881 720 836 1048
IPSL - CM5A 1607 1486 1030 968 1166 1336
CSIRO - MK3 1155 1187 764 787 893 1148
NCEP - REA 1793 1578 1530 1314 1580 1557
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Table 5.2: See Table 5.1, yearly averaged data relating random-pairs.

Land Sites Ocean Sites
Model ASIA NAMC ANT NAT IND SPAC
NCAR - CCSM4 1797 1493 1157 1278 1574 1854
GFDL - CM3 1849 1513 1967 1209 2753 2549
MPI - ESM 1717 1373 975 925 937 1098
IPSL - CM5A 1737 1621 1513 1149 1498 1499
CSIRO - MK3 1265 1315 804 979 1066 1277
NCEP - REA 2280 1784 2243 1619 2278 1763

Table 5.3: See Table 5.1, five year averaged data relating random-pairs.

Land Sites Ocean Sites
Model ASIA NAMC ANT NAT IND SPAC
NCAR - CCSM4 1835 1485 1177 1685 1949 2356
GFDL - CM3 2412 1763 - 1746 - -
MPI - ESM 1910 1395 1022 1290 1062 1129
IPSL - CM5A 1873 1654 2160 1321 1649 1614
CSIRO - MK3 1388 1419 802 1253 1222 1348
NCEP - REA 3515 2617 - 2624 3280 1833

In Tables 5.1, 5.2 and 5.3 and Figures 5.1 and 5.2 the e-folding distances for

the random-pair correlation boxes have been separated out into land sites (Figure

5.1) and ocean sites (Figure 5.2). Even in the 1-month average, which is about the

autocorrelation time of a uniform land area and also the sampling rate of the models,

there is quite a large spread in the e-folding distances ranging from around 700km

to 1700km. This spread not only depends on the type of surface enclosing the site

pairs but the model as well. The “genealogy” of each model differs, each using its

own ocean-atmosphere coupling method, dynamics, deep ocean mixing, feedbacks,

mixing layer depth, seasonality, etc.

Some initial inferences can be made simply by looking at these figures. (1) The
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(a) Random Pairs - Asia
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(b) Random Pairs - North America
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(c) Random Pairs - Antarctica

Figure 5.1: e-folding correlation distances for various time averages for land sites. NCEP
- REA was only calculated up to 5 years because of the shorter time length. Lines that
terminate before 20 years had an e-folding distance of more than 4000 km or did not fall
to the value of e−1 at all.

GFDL - CM3 consistently has the highest e-folding distances amongst the GCMs for

most of the sites, especially the ocean sites (note the growth for long time averages).

(2) The MPI - ESM and the CSIRO - MK3 exhibit mostly smaller e-folding distances

for all sites especially in the longer time averages. (3) There is in general less agree-

ment between models over ocean sites than over land sites with the largest spread

in the Southern Hemisphere oceans. Keep in mind that these are random latitude-
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(a) Random Pairs - North Atlantic Ocean
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(b) Random Pairs - Indian Ocean
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(c) Random Pairs - South Pacific

Figure 5.2: e-folding correlation distance for various time averages for ocean sites.

longitude pairs in a box of uniform surface type and are similar but not directly

related to a central point which will be discussed in the next section. Because the

random-pair method contains more data, there is less sampling error for estimating

correlations. However, the use of random-pairs means that the correlation structure

and evolution can be different in sequential tests.

Disregarding the magnitude of the random-pair e-folding distances for a moment

and focusing on the shape of the lines made by connecting these points (as in Figure

5.1) the datasets can be roughly partitioned into two groups: (1) nearly vertical lines
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indicate models whose e-folding distances do not increase with longer time averages

and (2) curved lines indicate models whose e-folding distances do increase with longer

time averages. Group (1) would consist of models for which their autocorrelation

time is much less than the time averages employed while models in Group (2) have

autocorrelation times greater than the time averages. This can also be seen in Figures

5.8, 5.9, 5.10 and 5.11.

5.1.2 Correlation Relative to Central Point

The central correlations will mostly be represented in maps with the correlation

contoured about a central point described in Table 4.1. The results are grouped based

on time average and separated into individual sites when overlapping of correlation

contours would cause confusion.
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1 Month Averages - Central Correlations

(a) NCEP - REA - All Sites (b) NCAR - CCSM4 - All Sites

(c) GFDL - CM3 - All Sites (d) MPI - ESM - All Sites

(e) IPSL - CM5A - All Sites (f) CSIRO - MK3 - All Sites

Figure 5.3: Central correlations about a proto-site nearly centered in a reasonably uniform
surface region for 1 month averaging. The contour lines are at 0.9, 0.7, 0.5 and the thick
contour at e−1
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1 Year Averages - Central Correlations

(a) NCEP - REA - ASIA, NAMC,
ANT, NAT, SPAC

(b) NCEP - REA - IND (c) NCAR - CCSM4 - All Sites

(d) GFDL - CM3 - ASIA, NAMC,
NAT, IND

(e) GFDL - CM3 - SPAC (f) GFDL - CM3 - ANT

(g) MPI - ESM - All Sites (h) IPSL - CM5A - All Sites (i) CSIRO - MK3 - All Sites

Figure 5.4: Central correlations for 1 year averaging
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In Figure 5.3 the spread of e-folding distances as discussed in the previous para-

graph can be seen. For the 1-month average, the largest correlation contours are

over land while the smallest are over ocean. All models and the reanalysis show a

flattening of the contours south of the Asia central protopoint associated with the

presence of the Himalayas as well as a southeastern tendency of “higher” correlations.

The models seem to agree with one another on the general shape of these correlation

contours as compared to the NCEP - REA except none mimic the northward ten-

dency of the Southern Indian Ocean site. It should be emphasized that the NCEP

- REA is an analysis/forecast based on observations, and although it can be shown

to have a good fit to observations in areas of high sampling, no inferences can be

made in places where observations are few or non-existent as in most of the southern

hemisphere. Moreover, a good fit to raw observations need not lead to a good fit to

statistical correlations.

Figures 5.4, 5.5 and 5.5 begin to show the expansion of these e-folding correlation

contours in some of the models. Some noteworthy observations can be noted from

comparing these maps. (1) The westward expansion of correlations for the Southern

Indian Ocean site in the GFDL - CM3, IPSL - CM5A and to a lesser extent the

NCAR - CCSM4 which has a smaller and more southerly expansion. Not until the

5-year average do the CSIRO - Mk3 and MPI - ESM begin to show this expansion.

(2) The southern hemisphere sites for the GFDL - CM3 “blow up” to being very

highly correlated to some distance north of the equator. (3) Correlation falls faster

away from unity as distance increases over ocean sites than over land sites.
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5 Year Averages - Central Correlations

(a) NCEP - REA - ASIA (b) NCEP - REA - NAMC (c) NCEP - REA - ANT

(d) NCEP - REA - NAT (e) NCEP - REA - IND (f) NCEP - REA - SPAC

(g) NCAR - CCSM4 - ASIA, NAMC,
ANT, NAT, SPAC

(h) NCAR - CCSM4 - IND (i) MPI - ESM - All Sites

Figure 5.5: Central correlations for 5 year averaging
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5 Year Averages - Central Correlations (cont’d)

(j) GFDL - CM3 - ASIA (k) GFDL - CM3 - NAMC (l) GFDL - CM3 - ANT

(m) GFDL - CM3 - NAT (n) GFDL - CM3 - IND (o) GFDL - CM3 - SPAC

(p) IPSL - CM5A - ASIA, NAMC,
NAT, IND, SPAC

(q) IPSL - CM5A - ANT (r) CSIRO - MK3 - All Sites

Figure 5.5: Continued

36



500 1000 1500 2000 2500 3000 3500 4000

1 month

3 months

6 month

1 year

5 year

10 year

20 year
T

im
e

 A
ve

ra
g

e

Distance [km]

 

 

NCAR − CCSM4
GFDL − CM3
MPI − ESM
IPSL − CM5A
CSIRO − MK3
NCEP − REA

(a) Central Correlation - Asia
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(b) Central Correlation - North America
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(c) Central Correlation - Antarctica

Figure 5.6: e-folding correlation distance for land sites. NCEP - REA was only calculated
up to 5 years because of the shorter time length. Lines that terminate before 20 years had
an e-folding distance of more than 4000 km or did not fall to the value of e−1 at all.

5.2 Discussion

This study attempted to quantify the second moment statistical structure of

the surface temperature field (more specifically the e-folding spatial autocorrelation

distances) at various time averages on the raw data. The remainder of this section

will provide evidence that will be used to answer the questions proposed in Section 2.

The interpretation of results of this study will be discussed from a stochastic
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(a) Central Correlation - North Atlantic Ocean
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(b) Central Correlation - Indian Ocean
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(c) Central Correlation - South Pacific

Figure 5.7: e-folding correlation distance for ocean sites.

EBM point of view because of their simplicity and robustness as shown from previous

studies. As for nomenclature, the terms time average lengths and frequencies will

be used interchangeably with long time averages relating to low-frequencies and vice

versa.

5.2.1 Sensitivity

Although no strong connection was found between the spatial correlation struc-

ture and equilibrium climate sensitivity, this does not mean that a relationship does
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not exist. Transient sensitivity is the amount of warming after doubling CO2 as it

increases at a rate of one percent per year. The global climate system will not have

come to equilibrium; hence it is less than the equilibrium sensitivity.

Table 5.4: Equilibrium climate sensitivity values.

Model Sensitivity (K)
NCAR - CCSM4 3.20◦

GFDL - CM3 3.97◦

MPI - ESM 3.63◦

IPSL - CM5A 4.13◦

CSIRO - MK3 4.08◦

Transient sensitivity is closely tied to vertical heat exchange in the ocean, since

τ = C/B and the effective thermal inertia is C, the thermal inertia of the deep ocean

is much greater than that of the upper ocean (mixed-layer). In the case that there

is no heat exchange between the upper ocean and the deep ocean, a model can be

integrated to a new equilibrium in a few tens of years. However, if there is heat

exchanged between the upper ocean and deep ocean, this can delay equilibration

by many decades or even centuries. Moreover, the depth of the upper ocean and

upward/downward diffusion parameterizations are different for each model. It is not

clear in this study whether the frequencies in question were low enough to “activate”

the deeper ocean layers although looking at the e-folding times of the autocorrelation

functions (Figure 4.1) one would expect a much longer autocorrelation time (on the

order of a few years as opposed to several months) had there been deep ocean heat

exchange.

39



5.2.2 GCMs vs. Observations/Reanalysis

Unfortunately, for the temporal and spatial scales used in this study, observational

sampling was insufficient for an accurate comparison. The observational network

is simply too sparse (in both time and space) to get meaningful results without

introducing results that could be misleading. For this reason reanalysis data were

included as an analog to to observations, however, its performance is also open to

question. Hence, any comparison made to the statistical structure of the real climate

should be considered as speculative, depending on one’s confidence in reanalysis

process.

At the 1-month average (which is also the sampling rate of model and reanalysis

archived data), all models seem to agree with reanalysis on the general shape of

contours when mapped as in Figures 5.3-5.5 with a few small exceptions. Over land

these differences are smaller. In North America the NCAR - CCSM4, GFDL - CM3

and IPSL - CM5A have a southwesterly expansion of the contours along the western

coastline that NCEP - REA does not show. Over Asia the southeasterly expansion

which exists in NCEP - REA is shown in all the models except the GFDL - CM3

and CSIRO - MK3. In Antarctica the CSIRO - MK3 largely underestimates the size

of the contours when compared with NCEP - REA, but all other models seem to be

in good agreement. Over the North Atlantic Ocean all the models underestimate the

magnitude of the contours except for the NCAR - CCSM4, with the biggest difference

being in the MPI - ESM. None of the models show the northward expansion of

contours over the Indian Ocean and all underestimate the size as compared to NCEP -

REA, although the GFDL - CM3 comes closest. The GFDL - CM3 overestimates the

e-folding distance for the Southern Pacific Ocean and the MPI - ESM underestimates

it while all other models are close to one another.
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Looking at 1-month data in Figures 5.6 and 5.7, there is a large disparity in the

e-folding distance when compared to NCEP - REA with the largest disagreements

occurring over the Southern Hemisphere oceans. The NCAR - CCSM4 and GFDL

- CM3 are consistently the closest which is not a surprise since they are the models

with the longest heritage.

At the 1-year and 5-year time averages larger differences between the models and

reanalysis start to show. In the NCEP - REA correlation contours “blow up” to being

highly correlated at large distances over Asia, the Indian Ocean, South Pacific Ocean

and to a lesser extent the North Atlantic Ocean, although it is most prominent in the

Southern Hemisphere. The magnitude of this expansion is not informative in itself,

however, the occurrence of this expansion might be. The only model that seems to

come close to imitating this phenomenon over the Southern Hemisphere ocean sites

is the GFDL - CM3. Over Antarctica the IPSL - CM5A most closely resembles the

NCEP - REA and none of the models match the expansion of contours shown over

the North American or North Atlantic Ocean sites.

At first it was thought that this large expansion of the correlation contours in

the NCEP - REA was related to the autocorrelation times shown in Figure 4.1

because the NCEP - REA had the shortest autocorrelation times over the Southern

Hemisphere ocean sites (1-2 months). However, the GFDL - CM3, which most closely

mimicked this expansion, had the longest autocorrelation times over the same sites

(3-5 months) which leads to more questions as to the origin of this expansion.

5.2.3 GCMs vs. EBMs

For this study we would expect from stochastic EBM thinking that (1) as the time

average gets longer for the e-folding distances to increase [15], approaching a limit

related to the relative low-frequency limit and autocorrelation time. Similarly, we
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would expect (2) the rate at which the correlation falls away from unity to decrease

with ocean sites falling away from unity faster than land sites. We also expect that

(3) the e-folding distances would increase faster over ocean than over land as the time

averages increase. Figures 5.10 and 5.11 include the estimated e-folding correlation

distances taken from [12] for comparison. Also taken from this study are the e-folding

contour maps (Figure A.2).

As mentioned earlier, EBMs treat two dimensional geography explicitly by using

a different (uniform) heat capacity over land than over ocean, which is why there is

no flattening of the contours over Asia related to the Himalayas as seen in the models

and reanalysis. Additionally, in KNH96 the e-folding correlation distances were cal-

culated in Fourier-spherical harmonic space. The remainder of this section will focus

on the shape and evolution of correlation structure over Asia, North America and

the North Atlantic Ocean as it relates to stochastic EBM theory and will disregard

magnitudes of e-folding distances.

Over Asia, the NCAR - CCSM4, IPSL - CM5A and CSIRO - MK3 have nearly

vertical lines in Figure 5.6a meaning that they have reached their low-frequency limit

and will not expand more with time averages of increasing duration. Interestingly,

the IPSL - CM5A actually shows a large decrease in its e-folding distance at the

twenty year average for unknown reasons (recall that with 20 year averages, there

can be a sampling problem). The MPI - ESM shows a small increase after the 1-year

average while the GFDL - CM3 shows the largest increase. These effects can also be

seen in Figure 5.8 with tightly packed lines corresponding to small increases in the

e-folding distances and widely spread lines corresponding to large increases. Over

North America the lines from all the models are nearly vertical except for the GFDL

- CM3 which shows a small increase. Over the North Atlantic (Figures 5.7a and 5.9)

the IPSL - CM5A and the MPI - ESM exhibit nearly vertical lines while the rest of
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the models show a large increase at lower frequencies.

The rate at which the correlation falls away from unity decreases in all the models

that exhibit increasing e-folding distances as expected. Models that do not show an

increase in e-folding distances have no change in the rate in which they fall away. In

all the models the rate at which the correlation falls away from unity is faster over

ocean than over land except for the CSIRO - MK3 which shows the same rate of

decrease over ocean and land.

5.2.4 GCMs vs. GCMs

This section will highlight the main motivation for this study, a comparison among

the second moment statistics of current GCMs from the recent CMIP5 simulations.

Care has been taken to insure that all models have been treated objectively. No

judgment has been made as to right or wrong only that there is a difference, some-

times very large, among the models. This study does not attempt to explain why

such differences exist in the climate models. In general there is better agreement

between models over land than over ocean. Secondly, there is greater agreement

in the Northern Hemisphere than in the Southern Hemisphere. The GFDL - CM3

consistently has the largest e-folding distances at longer time averages, however it

has the shortest run time of the models at 500 years so sampling may be an issue at

low-frequencies.

The North American site has the best model agreement in this study (Figures

5.1b and 5.6b). Only the GFDL - CM3 shows an increase in the e-folding distance

after the 1-year average. Over Asia, the model behavior is similar except that the

CSIRO - MK3 has a much smaller magnitude of e-folding distance although the

structure and evolution is similar. Also the MPI - ESM e-folding distances begin

to increase after the 1-year average, but to a lesser extent than the GFDL - CM3.
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The Antarctic site has the least agreement among land sites. The CSIRO - MK3 has

the smallest e-folding distances but has the same structure as the NCAR - CCSM4

and MPI - ESM. The IPSL - CM5A and GFDL - CM3 e-folding distances exhibit

large increases after the 1-month average, but the IPSL - CM5A line begins to go

vertical after the 5-year average while the GFDL - CM3 continues to increase. The

autocorrelation times (Figure 4.1) are very similar for all land sites.

The North Atlantic Ocean site has the best model agreement for ocean sites

(Figures 5.2 and 5.9). The IPSL - CM5A is the only model that has a nearly vertical

line. The MPI - ESM begins to exhibit a small expansion after the 6-month average

but it is not as drastic as the CSIRO - MK3, GFDL - CM3 or NCAR -CCSM4. The

South Pacific and Indian Oceans show the least amount of model agreement. Over

the Indian Ocean the CSIRO - MK3 and MPI - ESM lines structures are nearly

identical, differing only in magnitude. The IPSL - CM5A is similar except that it

exhibits a small increase in e-folding distance after the 5-year average. The NCAR -

CCSM4 and GFDL - CM3 have much larger e-folding distances than the other models

and show a greater increase at lower frequencies with the GFDL - CM3 having the

largest increase. For the South Pacific Ocean site the MPI - ESM has the smallest

e-folding distances by a large margin and they begin to decrease after the 5-year

average. The IPSL - CM5A and the CSIRO - MK3 are nearly identical and vertical

with a very small increase after the 5-year average. The NCAR - CCSM4 shows a

large increase in e-folding distances after the 1-year average but not as drastic as the

GFDL - CM3.
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Figure 5.8: Correlation structures for various time averages for Asia.
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North Atlantic Ocean
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Figure 5.9: Correlation structures for various time averages for the North Atlantic Ocean.
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(c) Antarctica

Figure 5.10: Summary of the 1-month (blue), 1-year (green) and 5-year (red) e-folding
distances for land sites. Central correlation distances are hatched with black lines and
laid over the random-pair correlations, which are solidly colored. Also included in these
figures is the estimated e-folding correlation length for the EBM used in Kim, North and
Hegerl [1996], which were calculated in a Fourier-spherical harmonic space in the 2-month
to 1-year frequency band (magenta) and the 1-year to 10-year frequency band (cyan).
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Ocean Sites
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Figure 5.11: Summary of the 1-month (blue), 1-year (green) and 5-year (red) e-folding
distances for ocean sites
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6. CONCLUSIONS

6.1 Summary

In this study we estimated the second-moment statistics (specifically the spatial

correlation structure) of five GCMs, observations and reanalysis. The five coupled

models we considered were the NCAR - CCSM4, GFDL - CM3, MPI - ESM, IPSL

- CM5A and the CSIRO - MK3. Only pre-industrial model control runs of at least

500 years were examined with the longest run being 1,300 years. The NCDC ob-

servational dataset was determined to be too sparse in space and time for a fair

comparison so reanalysis data from NCEP were considered as an alternative. The

reanalysis dataset included 65 years of monthly data on a 2.5◦× 2.5◦ grid. After

removal of the seasonal cycle the datasets were assumed to be stationary which is a

prerequisite for calculating spatial correlation.

As demonstrated, comparison of the second-moment statistics at various time av-

erages revealed similarities and differences between the models and reanalysis data,

stochastic EBM theory and also among the climate models themselves. The largest

differences occurred at long time averages (lower frequencies), especially in the South-

ern Hemisphere oceans. Northern Hemisphere sites showed better model agreement

with the best agreement over the North American site.

6.2 Questions Revisited

Returning to the questions proposed in Section 2, this section will attempt to

answer these questions based on the evidence provided in Section 5.

Is there a relation between the correlation length scales found in this study and

GCM equilibrium sensitivity? In this study there was no discernible relation found

between a model’s correlation length scale and its equilibrium sensitivity. This does
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not mean that a relationship definitely does not exist, only that the procedures used

in this study did not uncover one. Perhaps at even longer time averages (50-years,

100-years or even 1,000-years) the relation would be evident. Unfortunately, no

current GCMs have picontrol runs that have a long enough time scale to study this.

Do the second moment statistics of recent GCMs behave similar to observations

and Reanalysis? Because the observational network was too spars in both time and

space to have meaningful results in this study, Reanalysis data was included in its

place. Although some of the drawback in the observational network “leak” into the

Reanalysis data it is a complete dataset in both space and time which means fewer

assumptions must be made while doing calculations.

In general the GCMs do not behave similar to Reanalysis with a few exceptions.

Most models underestimate the correlation structure as compared to the NCEP -

REA except for the GFDL - CM3 in North America, Antarctica and the South

Pacific Ocean.

Do the second moment statistics of recent GCMs behave according to stochastic

EBM theory? At each site there are models that evolve in time exactly as a stochastic

EBM would. This means that as the time average gets longer the e-folding correlation

distance increases, with larger increases happening over the ocean. However there

are also models at each site whose e-folding distances show no change at longer time

averages. No generalization can be made for all models for this question.

Do the second moment statistics of recent GCMs agree with each other? With

only a few exceptions it can be said that the second moment statistics of the GCMs

used in this study do not agree with each other. Neither the magnitude of e-folding

distances, evolution of these distances at various time averages or structure of the

calculated correlation functions is consistent between the models.
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6.3 Future Research

Although this study did not attempt to describe the reason for differences in the

models, continuing this research could give insight as to why the second-moment

statistics of models differ so greatly. First, since the open Southern Hemisphere

oceans showed the greatest differences between the models, it would stand to reason

that the treatment of the mixed-layer and deep oceans as well as mixing between

the two affect results greatly. Investigation into how different mixing schemes are

employed and the various atmosphere-ocean coupling methods could hold the great-

est value. Additionally, various grid resolutions should be tested within the same

model to see how a finer or courser resolution affects results and different variables

(pressure, precipitation, wind, etc.) should be included in a multivariate test simi-

lar to the one described in this paper. Also, analyzing upper air temperature data

would yield different results due to the lack of diffusive damping that is present at

the surface. Likely there would be oscillations not seen in this study. Repeating

the methods used in this study on model data at shorter time averages (e.g. hourly,

daily or weekly) would most likely show even larger differences among the models

than was shown in this study.

6.4 Recommendations

There are opportunities for understanding the Earth’s dynamic climate system

by developing simple stochastic energy balance models. In Isaac Held’s 2005 essay

The Gap between Simulation and Understanding in Climate Modeling he highlighted

the need for a model hierarchy in which the gap between comprehensive models and

more idealized models is less biased towards complexity. What does it mean, after all,

to understand a system as complex as the climate, when we cannot fully understand

idealized nonlinear systems with only a few degrees of freedom [7]?
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APPENDIX A

ADDITIONAL FIGURES

Figure A.1: Global distribution of meteorological stations with surface air temperature
records for the four indicated dates. A circle of 1200-km radius is drawn around each
station. Taken from [5].
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(a) (b)

Figure A.2: Spatial correlation functions at six selected sampling points in the 2-mo to
1-yr (a) and 1-yr to 10-yr (b) frequency bands. The test points are (50◦N, 90◦E), (40◦N,
120◦W), (20◦N, 10◦E), (0◦, 150◦W), (90◦S, 0◦). The contour lines are at 0.9, 0.7, 0.5, and
e−1 (thick contour). Taken from [12].
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