A Thesis
 by
 AMANDA D. VAN DIGGELEN

Submitted to the Office of Graduate and Professional Studies of Texas A\&M University and the Graduate Faculty of The Texas A\&M University - Corpus Christi in partial fulfillment of the requirements for the joint degree of

MASTER OF SCIENCE

Chair of Committee, Paul Montagna
Committee Members, Kim Withers
Jennifer Pollack
Head of Department, Joe Fox

May 2014

Major Subject: Marine Biology

IS SALINITY VARIABILITY A BENTHIC DISTURBANCE?

A Thesis

Prepared by

Amanda D. Van Diggelen

> Submitted to the Office of Graduate Studies of
> Texas A\&M University-Corpus Christi
> in partial fulfillment of the requirements for the joint degree of

MASTER OF SCIENCE

May, 2014

Major Subject: Marine Biology
Journal Format Style: Estuaries and Coasts

IS SALINITY VARIABILITY A BENTHIC DISTURBANCE?

A Thesis
by

Amanda D. Van Diggelen

Submitted to the Office of Graduate Studies of Texas A\&M University and Texas A\&M University-Corpus Christi in partial fulfillment of the requirements for the joint degree of

MASTER OF SCIENCE

Approved as to style and content by:

Dr. Paul Montagna
(Chair of Committee)

Dr. Kim Withers

Dr. Joe Fox
(Department Chair)

(Dean, College of Science \& Engineering)

May, 2014

Major Subject: Marine Biology

Abstract
 IS SALINITY VARIABILITY A BENTHIC DISTURBANCE?

Amanda D. Van Diggelen, B.S., Sonoma State University
Chair of Advisory Committee: Dr. Paul Montagna

Estuaries are subjected to variable salinity regimes governed by variable freshwater inflow and tidal regimes. Estuaries are less saline near the river (source of fresh water); salinities increase towards the inlet of the adjacent sea or ocean. Freshwater inflow is a driver to the functioning of estuaries, and average salinity is usually measured to identify the effects of inflow. However, salinity variability could act as a disturbance by producing unstable habitats. The purpose of this research was to determine if salinity variance is an indicator of benthic disturbance, and therefore a driver of community stability. The macrofauna communities of the five most southern estuaries on the Texas coastline were analyzed using a long-term data set. The estuaries lie in a climatic gradient and have different long-term salinity dynamics, thus salinity variance within and between estuaries can be compared. Benthic diversity, evenness, and richness (i.e., total number of species) were calculated and compared to salinity average and salinity variance to determine the efficacy of each diversity measure for determining community changes within and between estuarine systems. Salinity variance, rather than salinity average, was found to be more correlated to benthic diversity for each estuarine system. Freshwater inflow acts as a benthic disturbance both within and between estuaries. As salinity variance decreased (i.e. reduced freshwater inflow) diversity levels of benthic
communities increased, while areas with more freshwater inflow displayed lower levels of benthic diversity. These findings advance a general theory of diversity maintenance. When communities are not influenced by persistent stressors, such as salinity variance, multiple stages of succession may occur with more species available to occupy the resulting open niches, thereby increasing diversity.

Table of Contents

Abstract iii
List of Figures vi
List of Tables vi
List of Appendices vii
Acknowledgements viii
Introduction 1
Methods 4
Study Sites 4
Sampling. 5
Statistical Analysis 9
Results 11
Salinity Measures 11
Salinity Measures without Laguna Madre 12
Macrofaunal Community Structure 13
Discussion 18
References 30
Sources of Unpublished Materials 34
Appendices 35

List of Figures

Fig. 1 Map of study sites along Texas coast with station locations within each site 6
Fig. 2 Average estuary-wide salinity by year over the course of the present study 7
Fig. 3 Relationship between salinity measures and dependent variables with Laguna Madre Estuary 14
Fig. 4 Relationship between salinity measures and dependent variables without Laguna Madre Estuary 15
Fig. 5 Multidimensional scaling (MDS) plot and cluster analysis of macrofauna community similarity 19

List of Tables

Table 1 Texas coastline estuarine gradients 7
Table 2 Location of sampling stations and time periods 10
Table 3 Probabilities of 2-way ANOVA testing for differences on the three dependent variables $\mathrm{S}, \mathrm{H}^{\prime}$, and J^{\prime} among dates, estuaries, and the interaction 12
Table 4 Dominant species in each estuary 20
Table 5 Dominant species at each station 21
Table 6 Average dissimilairty values and the top 3 associated discriminating species between estuaries. 22
Table 7 Average dissimilairty values and the top 3 associated discriminating species between stations 23
Table 8 Tukey's Studentized Range (HSD) Test for the three dependent variables S, H', and \mathbf{J}^{\prime} for estuary 23

List of Appendices

Appendix 1 Coordinates of Stations within Estuaries 35
Appendix 2 Species Distribution (\#//m ${ }^{2}$) in the Lavaca-Colorado and Guadalupe Estuaries for Entire Study Period (1988-2013) 36
Appendix 3 Species distribution (\#/m2) of Mission-Aransas, Nueces, and Laguna MadreEstuaries for the entire study period (1988-2012).50
Appendix 4 Overall Species Abundance ($\# / \mathrm{m}^{2}$) and Overall Species Ranking. 64

Acknowledgements

This data collection has been funded by an accumulation of agencies over several years. The Texas Water Development Board (TWDB) provided the initial funding that kick started the project in the inception stages. Further funding has come from the US Environmental Protection Agency (Gulf of Mexico Grant MX954526), The National Oceanic and Atmospheric Administration (CAMEO Grant NA09NMF4720179), and the Harte Research Institute for Gulf of Mexico Studies. This research would not be possible without the diligent and consistent sampling and identification of benthic organisms of the Benthic Ecology Lab, led by Rick Kalke and Larry Hyde. A final thanks to Terry Palmer for helping me with the statistical analysis in SAS and for generating the map of the study area.

Introduction

Ecologists frequently assert that stability can be directly correlated to relative diversity within a given community. This idea stems from seminal papers that form the foundation of modern ecology. For example, Watt (1964, p. 1434) stressed that "a rich flora and fauna, as in tropical rain forests, tends to be very stable because of a multiplicity of ecological checks and balances..." and MacArthur (1955, p. 535) claimed, "stability increases as the number of links increase". The diversity-stability relationship is proposed as a potential safeguard that keeps communities from collapsing in times of stress and change (Doak et al. 1998, Ives et al. 2000, Ives and Hughes 2002).

Diversity within a community can be defined in two distinct ways: genetic diversity and species diversity. Genetic diversity increases the likelihood for a species to persist when experiencing extreme stressors, and is especially crucial with small, potentially bottlenecked populations (Roman and Darling 2007). Genetic diversity provides greater potential for uncommon genes to become dominant within a changing environment and allow the species to cope and adjust with a persistent disturbance. Conversely, species diversity can be a measure of the likelihood of a particular organism being present within an ecosystem (Roman and Darling 2007). While effects of stressors in terms of maintaining specific ecosystem processes may be diminished in a more diverse ecosystem, disturbance and stress are fundamental processes encountered by all organisms.

Disturbances are defined by the nature of their properties such as frequency (i.e., predictability), timing, size (i.e., magnitude), and duration (i.e., length of time) (Lake 2000). Disturbance is a process that has shaped communities into what they are today.

During a disturbance, organisms can be killed or displaced, consumable resources can be exhausted, and essential habitat may be lost (Tilman 1999). Temporal patterns of disturbances can be either a pulse event or a press event. Pulses are characterized as short-term events that have a sudden on-set such as hurricanes, floods or oil spills (Lake 2000). Conversely, press events are disturbances that are chronic, and may ultimately level off and become a constant force in the environment (Lake 2000). Examples of press events are global warming, droughts, or fishing pressures. Marine environments are subject to both press disturbances and pulse disturbances, so there is a growing need to ascertain the implications these events have on community dynamics and how systems can overcome or outlast the stress.

The stability and health of a community can be studied based on its inherent ability to either resist or recover from a disturbance. There is a rich literature on the link between stability of an ecosystem and diversity (Doak et al. 1998, Tilman 1999, Ives et al. 2000, McCann 2000, Ives and Carpenter 2007, Thébault and Loreau 2005). Differing concepts of stability can apply, depending on the dynamics and disturbances that are exhibited within a system. If a system is stable because it is resistant to disturbance, then it may be able to bend without breaking. Specifically, resistance is a measure of a system's tipping point, or the amount of pressure or stress that it can withstand before succumbing to a given pressure (Whitford et al.1999). A system will be more resistant when it is more diverse because there are more species to offset the stress. Conversely, a resilient system is able to bounce back following a disturbance. Measurements of recovery time and what exclusively can be recovered within a system form the basis of resilience metrics (Whitford et al. 1999). Unlike resistance, a highly resilient community
typically has low species diversity, which allows it to return to pre-disturbance conditions in a shorter time (Thompson et al. 2009). A system's ability to both resist and recover are contributing factors to ecosystem health and stability. Stability however, can have many definitions and the specific definition can give rise to different stability-diversity relationships (McCann 2000). Here we define community stability as low salinity variance, determined by freshwater input.

Freshwater inflows are an ideal way to study abiotic fluxes in an estuary because the effects of flow are multifaceted (Pollack et al. 2009, Montagna et al. 2013). Because inflow arrives in pulses, it can be viewed as a disturbance or stress. Typically, the mean salinity is calculated to represent environmental quality levels in freshwater inflow studies (McIvor et al. 1994, Montagna et al. 2002, Alber 2002, Montagna et al. 2008). But the variability of salinity as expressed as the variance of salinity could be an indicator of a disturbance that is presented by freshwater inflow pulses. By using salinity as an indicator, we can identify habitats that are specific to certain salinity zones. Thus, across habitats, both within estuaries (i.e., distinct stations) and between estuaries, the variability in salinity can provide a direct link to the stability of the salinity zone habitat.

The primary purpose this study was to determine if freshwater inflow variability is a disturbance that affects benthic community stability and diversity within estuaries. Thus, the primary null hypothesis is that salinity variance is not related to benthic community structure and diversity. The secondary purpose of this study is to determine if community stability, as defined by salinity variance, is influenced by press disturbance events (climatic freshwater gradient) or pulse disturbance events (floods). The approach used here is to examine the relationship between diversity and stability through the use of
long-term data on estuarine benthos, freshwater inflow, and salinity across multiple spatial scales.

Methods

Study Sites
Texas has seven major estuaries along its coastline, but this study analyzed the five most southern estuaries: Laguna Madre Estuary (LM), Nueces Estuary (NC), Mission-Aransas Estuary (MA), Guadalupe Estuary (GE), and Lavaca-Colorado Estuary (LC) (Fig. 1). While each estuary is distinct, they share similar geomorphological structural traits. The estuaries form at the mouth of a river, where freshwater from a river flows into a secondary bay. Navigating towards the Gulf of Mexico, secondary bays are connected to primary bays that are open to the ocean and tides, so this environment has more marine influence. Thus, within each estuary there is a gradient of lower salinity secondary bays, and higher salinity primary bays. However, Laguna Madre is a reverse estuary and is therefore subjected to hydrographic influences unseen in the other estuaries. This estuary is classified as a hypersaline lagoon, governed by greater evaporation rates than freshwater runoff into the system (Kjerfve and Magill 1989). Contrary to a typical estuary, reverse estuaries have higher salinities associated with the secondary bay, while the more marine influenced primary bay has lower salinity. It is an uncommon system, but an excellent "test" estuary to determine the efficacy of hydrographic disturbance indicators. When present in the analysis, Laguna Madre may act as an outlier, influencing both the average and variance of a variable's distribution (Hendra and Staum 2010). Although each estuary shares common structural attributes
with the others, these sites offer a good spatial comparison because salinity within each bay varies due to differences in freshwater inflow (Montagna et al. 2011a).

Variation in salinity among estuaries is driven by differing freshwater inflow and climatic regimes (Montagna and Kalke 1995, Montagna et al. 2007, Montagna et al. 2011a, Montagna et al. 2011b). Generally, rainfall is sparsest in the southwestern region, and increases towards the northeast. The southwestern region of Texas is also subjected to variable rainfall on an annual basis, thereby producing a series wet and dry years over time (Fig. 2). The amount of freshwater inflow entering an estuary is subsequently driven by this climatic regime, and the southwestern estuaries receive markedly lower inflow levels compared to their northeastern counterparts (Table 1).

Sampling

Due to the structural similarities of Texas estuaries, Montagna and Kalke (1992, 1995) established 4-6 stations (A-F) within each estuary, where each sampling station varies in distance from the source of freshwater. To maintain a balanced experimental design only 4 stations, A-D, were used in this research. Stations (A-D) were assigned along a salinity gradient, with stations A and B closest to the freshwater inflow and stations C-D are closest to the Gulf of Mexico (Fig. 1). By having stations A and B within a region subjected to freshwater influence, and stations C and D in a region under stronger marine influence, the problem of pseudoreplication addressed by Hurlbert (1984), is mitigated (Montagna and Kalke 1995) (Fig. 1). For Laguna Madre, stations were renamed into the same letter format where: station 6 represents A, station 24 represents B, station 189G (seagrass bottom) represents C, and station 189S (sand bottom) represents D (Table 2).

Fig. 1 Map of study sites along Texas coast with station locations within each site. Estuaries identified within parentheses underneath associated primary and secondary bays: Laguna Madre Estuary (LM), Nueces Estuary (NC), Mission-Aransas Estuary (MA), Guadalupe Estuary (GE), and Lavaca-Colorado Estuary (LC). Station coordinates located in Appendix 1.

Fig. 2 Average estuary-wide salinity by year over the course of the present study. Estuary abbreviations same as Fig. 1.

Table 1 Texas coastline estuarine gradients. Estuaries are listed from north to south; area at mean low tide (Diener 1975), average annual rainfall (1951-1980, Larkin and Bomar 1983), and average annual freshwater inflow balance (1941-1999, Texas Water Development Board http://www.twdb.state.tx.us/data/bays_estuaries/bays_estuary_ toc. htm), average estuary-wide salinity (Orlando et al. 1993). Original table outlined in Montagna et al. 2007.

Estuary	Area $\left(\mathrm{km}^{2}\right)$	Rainfall $\left(\mathrm{cm} \mathrm{yr}^{-1}\right)$	Inflow $\left(10^{6} \mathrm{~m}^{3} \mathrm{yr}^{-1}\right)$	Salinity (ppt)
Lavaca-Colorado	1,158	102	3,801	18
Guadalupe	551	91	2,664	16
Mission-Aransas	453	81	265	15
Nueces	433	76	298	23
Laguna Madre	1,139	69	-893	36

At each of the stations, samples for the benthic fauna were collected quarterly each year in the months of January, April, July, and October. Kalke and Montagna (1991) established this sampling regime, and numerous studies (Montagna and Kalke 1992, Montagna 2000, Palmer et al. 2011, Kim and Montagna 2012) have demonstrated the efficacy of quarterly sampling for capturing temporal benthic dynamics in Texas estuaries.

To sample benthic macrofauna, 3 replicate sediment cores are taken within a 2 meter radius at each station within an estuary. Macrofauna are collected with a 6.7 cm diameter coring tube ($35.4 \mathrm{~cm}^{2}$ area) attached to a long pole, to reach the bay floor from a boat. As the core is pulled onto the boat, the bottom is capped off before leaving the water so the sample is not lost. Following collection the cores are split into two depths for sampling ($0-3 \mathrm{~cm}$ and $3-10 \mathrm{~cm}$). Benthic macrofauna from the cores are preserved in the field using 5% buffered formalin. When returned to the lab these cores are sieved on 0.5 mm mesh screens. Biota are then sorted, counted, and identified to the lowest taxonomic level for abundance measures (species distribution data for Lavaca-Coloardo and Guadalupe estuaries are found in Appendix 2, species distribution data for MissionAransas, Nueces, and Laguna Madre estuaries are found in Appendix 3). Following laboratory separations, relative measures of species richness (S), Shannon-Weiner Diversity $\left(\mathrm{H}^{\prime}\right)$, and Pielou's Evenness Index $\left(\mathrm{J}^{\prime}\right)$ were calculated for each date/station combination. Shannon-Weiner's Diversity index was chosen due to its familiarity and frequency of appearance in the ecological literature. Richness (i.e., total species number) and evenness were included to provide a different perspective of benthic community structure within and among the estuaries. Both species richness (S) and evenness (J^{\prime})
describe the two general aspects that contribute to diversity. Richness is simply the total number of species present, while evenness calculations illuminate how abundance is distributed among the total number of individuals within a community (Heip et al. 1998).

Hydrographic data were collected concurrently starting with the initial sampling period in 1987, and measurements include: salinity, pH , dissolved oxygen, temperature, conductivity, oxidation-reduction potential, and depth (Monatgna and Kalke 1992, 1995). Measurements were collected both at depth (0.1 m above bay bottom) and at the surface using a sonde. The initial instrument was a Hydrolab 4000 later replaced by a YSI 6920. For this study, the only hydrographic parameter of interest is salinity, which is reported in practical salinity units (psu). Both hydrographic and macrofauna data from each station, within the 5 estuaries of interest, are available dating back to 1988. Statistical Analysis

Statistical analyses were performed with SAS software version 9.3 (SAS Institute Inc. 2013). PROC UNIVARIATE was used to analyze the distribution and normality of the diversity data. There was no need to adjust for normality so the raw data were used in the subsequent analyses. A 2-way partially hierarchical Analysis of Variance (ANOVA) was run using PROC GLM. This ANOVA was used to test for differences in the three dependent variables $\mathbf{S}, \mathrm{H}^{\prime}$, and J^{\prime} among dates, estuaries, and stations nested within estuaries, and the interaction. Tukey's Standardized Range Test was run in tangent with the ANOVA as a post-hoc analysis in order to determine the relationship between location and the diversity indices. Following PROC GLM, scatterplots were created using PROC SGSCATTER to show the relationship of both salinity average and salinity variance on the three variables of interest. Two scatterplots were created to show the

Table 2 Location of sampling stations and time periods. Stations in parentheses renamed for the current study. Station coordinates located in Appendix 1.

Estuary	Bay Type	Bay Name	Stations	Sampling Period
Lavaca-	Secondary	Lavaca Bay	A, B	1988-2009
Colorado	Primary	Matagorda Bay	C, D	
Guadalupe	Secondary	Upper San Antonio Bay	A, B	$\begin{aligned} & \text { 1987-2000, } \\ & 2004-2013 \end{aligned}$
	Primary	Lower San Antonio Bay	C, D	
Mission-	Secondary	Copano Bay	A, B	$\begin{aligned} & \text { 1988, 1990, } \\ & 1994-1999 . \end{aligned}$
Aransas	Primary	Aransas Bay	C, D	$\begin{aligned} & 1994-1999 \\ & 2002,2003 \end{aligned}$
Nueces	Secondary Primary	Nueces Bay Corpus Christi Bay	$\begin{aligned} & \text { A, B } \\ & \text { C, D } \end{aligned}$	1987-2002, 2012
Laguna	Secondary	Baffin Bay	6(A), 24(B)	1988-2000
Madre	Primary	Laguna Madre	189G(C), 189S(D)	

differences between the measures when the Laguna Madre Estuary was present and removed. Laguna Madre is a reverse estuary and potentially an anomalous system, so it was imperative to determine if it had a significant effect on the outcome. Finally, PROC CORR was used in order to determine the strength and significance of each relationship between both salinity measures and the three dependent variables in the generated scatterplots.

After determining the relationship's strength and significance for each diversity and salinity measure, non-metric multi-dimensional scaling (MDS) was used to analyze macrofaunal community structure. The MDS plot was created using a Bray-Curtis similarity matrix among estuaries and stations using Primer software (Clarke and Gorley 2006). The data were root transformed before calculating the Bray-Curtis similarity. A root transform reduces the weight of dominant species, thereby allowing less common species to impact the similarity calculation (Clarke and Warwick 2001). Cluster analysis
and salinity vectors were subsequently used to illustrate the relationship between macrofaunal community composition and the response to salinity. Finally a SIMPER analysis was done following the cluster analysis also using Primer software (Clarke and Gorley 2006). Samples were disaggregated from their multivariate structure in order to identify which species primarily drive the sample groupings in the cluster analysis (Clarke and Warwick 2001). By calculating average dissimilarity between all samples for two groups, and then breaking this dissimilarity down into contributions of each species to the dissimilarity (Clarke and Warwick 2001) we were able to find good discriminating species. A good discriminating species is determined by how significantly it contributes to the dissimilarity between two groups (Clarke and Warwick 2001); here groupings were established between estuaries and between stations.

Results

The 2-way ANOVA produced no significant interaction between the factors, dates and estuaries, for the three diversity measures (Table 3). However, the factor estuary does have a significant relationship with each of the diversity measures independent of the factor date (Table 3). Taking this independent influence of estuary, salinity regimes can be measured solely on location, without examining influences potentially imposed at the time of collection.

Salinity Measures

There is a strong inverse relationship between salinity variance and diversity measures: $\mathrm{S}, \mathrm{H}^{\prime}$, and J^{\prime} (Fig. 3). As salinity variance increases within an estuary the diversity of the system decreases. Concurrently, species richness and community evenness also decrease. More marine influenced stations (C and D) tend to have lower
variance and higher diversity than the freshwater influenced stations (A and B). With the exception of stations C and D for LC , there is an additional diversity gradient with highest diversity in southwestern estuaries and decreasing diversity toward northeastern estuaries. Each relationship between salinity variance and diversity was significant for the Pearson-Correlation test (all p-values < 0.05).

There is no linear relationship between average salinity and the dependent variable J^{\prime} (Fig. 3f), and the Pearson correlation test found no significant relationship between average salinity and $\mathrm{J}^{\prime}(\mathrm{p}>0.05)$. However, average salinity shows a slight positive linear relationship for both S and H^{\prime} (Fig. 3d, e). The Pearson correlation test found a significant relationship for S with a p-value <0.05, while the relationship between average salinity and H^{\prime} was insignificant ($\mathrm{p}>0.05$).

Salinity Measures without Laguna Madre
Coinciding with the first analysis, which includes LM, as salinity variance increases the dependent variables decrease (Figs. 4a, b, c). Again, marine-influenced stations are less variable and diversity is higher. The same climatic distribution is observed with higher diversity in southwestern estuaries compared to their northeastern counterparts (with the exception of stations C and D in LC). Even with the removal of LM the salinity variance relationship with all 3 diversity measures remains significant when determining the Pearson-correlation values (p -values < 0.05). In the absence of LM there is a positive correlation generated between estuarine salinity averages and the dependent variables: $\mathrm{S}, \mathrm{H}^{\prime}$, and J^{\prime} (Figs. 4d, e, f). Diversity at marine-influenced stations (C and D) is higher, corresponding to higher average salinity. There is also a climatic gradient that is manifest in the higher average salinity in the southwest that decreases to

Table 3 Probabilities of 2-way ANOVA testing for differences on the three dependent variables $\mathrm{S}, \mathrm{H}^{\prime}$, and J^{\prime} among dates, estuaries, and the interaction. Abbreviations: $\mathrm{S}=$ species richness, $\mathrm{H}^{\prime}=$ Shannon-Weiner Diversity, and $\mathrm{J}^{\prime}=$ Pielou's Evenness Index.

Factor	S	H^{\prime}	J^{\prime}
Dates	<0.0001	0.1327	0.0003
Estuaries	<0.0001	<0.0001	<0.0001
Dates*Estuaries	0.9999	0.9993	0.4516

the northeast (excluding stations C and D in LC). While the Pearson correlation analysis affirmed this linear relationship with corresponding significant values for average salinity and both S and $\mathrm{H}^{\prime}, \mathrm{J}^{\prime}$ still remains statistically insignificant.

Macrofaunal Community Structure
The Multidimensional scaling (MDS) Cluster Analysis split macrofaunal communities into three distinct groups (Fig. 5a). Within each of the three groups, there is at least a 40% similarity among stations. MDS Group 1 contained the two stations within the upper Laguna Madre's proper. Within MDS Group 1 the macrofaunal communities of stations C and D of Laguna Madre were at least 60% similar to one another. MDS Group 2 contained Baffin, Copano, Aransas, upper San Antonio, lower San Antonio, Lavaca, and Nueces bays. Within MDS Group 2, stations A and B of Laguna Madre were at least 60% similar in their macrofanual community composition. Within MDS Group 2, stations A and B of Mission Aransas Estuary were at least 50\% similar to one another in their marcofaunal community structure while stations C and D of Mission Aransas Estuary were at least 60% similar to one another. Within MDS Group 2, there was at least a 50% similarity between all stations within the Guadalupe Estuary, stations A and B of the Lavaca-Colorado Estuary, and station A of the Nueces-Corpus Estuary. Within MDS Group 2, of the four stations found within the Guadalupe Estuary, stations A and B were at least a 60% similar to one another and stations C and D were 60% similar to one

Salinity Variance vs. Salinity Average
With Laguna Madre

Fig. 3 Relationship between salinity measures and dependent variables with Laguna Madre Estuary. Estuary abbreviations same as Fig. 1, r=Pearson correlation coefficient, $\mathrm{p}=\mathrm{p}$-value.

Fig. 4 Relationship between salinity measures and dependent variables without Laguna Madre Estuary. Estuary abbreviations same as Fig. 1, r=Pearson correlation coefficient, $\mathrm{p}=\mathrm{p}$-value.
another for their macrofaunal community structures. Within MDS Group 2, stations A and B of the Lavaca-Colorado Estuary and station A of the Nueces-Corpus Estuary had at least a 60% similarity in their macrofaunal community structure. MDS Group 3 contained Nueces, Corpus Christi, and Matagorda bays. All stations within MDS Group 3 share at least a 50% similarity in macrofaunal community structure. Within MDS Group 3, stations C and D of the Nueces-Corpus Estuary and station C of the LavacaColorado Estuary have at least a 60% similarity in their macrofaunal community structure. Figure 5 b displays MDS ordination of changing salinities along the 5 estuaries and 4 stations in relation to benthic community assemblages. The line denotes salinity trajectory by linking values sequentially among site locations from lowest salinity (GE-A, $10 \mathrm{psu})$ to highest salinity (LM-A, 39 psu).

The Simper analysis revealed particularly influential species between samples. While each estuary had a unique set of dominant organisms, Mediomastus ambiseta and Streblospio benedicti were consistently two of the top three dominant organisms found throughout all estuaries (Table 4). Other dominant species included Apseudes sp. A for LC, Texadina sphinctostoma for GE, Paraprionopio pinnata for MA (not a top overall dominant species), Polydora caulleryi for NC, and unidentified species of Oligochaeta for LM. Coinciding with estuaries, comparisons of station locations revealed that both M. ambiseta and S. benedicti were again two of the top three dominant organisms (Table 5). Unidentified species of Oligochaeta, was the third dominant species for the primary bays, and Texadina sphinctostoma and Mulinia lateralis rounded out the top three dominants for stations A and B respectively. These dominant species comprised over 75% of the abundance over the course of the study.

While estuaries share common dominant species, all of the comparisons done through the Simper analysis revealed a unique combination of discriminating species with the top 3 discriminating species between two estuaries consistently varied (Table 6). The average dissimilarity values reveal how different two estuaries are with the lowest overall dissimilarity value seen between LC and NC at 45.68 and the greatest overall dissimilarity value between LM and MA at 67.19. Laguna Madre is the most dissimilar estuary with all dissimilarity values over 60 . There is no relationship between the dissimilarity values and geographic location of each estuary.

Similarly, the comparisons between stations reveal a distinct grouping of the top 3 discriminating species, with only a few of the dominant species presented as a strong discriminating species (Table 7). Unlike the comparisons between estuaries, stations demonstrate a spatial relationship, where dissimilarity values are lower the closer two stations are to one another. Stations A and B are most similar with a dissimilarity value of 35.15 . This comparison is followed closely by stations C and D, which have a dissimilarity value of 36.8 . Stations A and D are the most dissimilar at 60.58. The remaining "intermediate" combinations are comprised of groupings associated with either station B or C.

Finally, a post-hoc test using Tukey's Standardized Range Test was used to determine how similar the estuaries were to one another for the three diversity measures (Table 8). For species richness (S) NC was significantly different from all other estuaries, LC and LM were not significantly different from one another but were significantly different from the remaining three estuaries, and GE and MA were not significantly different from one another, but were significantly different from LC, LM,
and NC. For Shannon-Weiner diversity (H^{\prime}) NC was significantly different from all other estuaries, and LC and LM were not significantly different from one another. While LC was significantly different from MA, GE, and NC for H^{\prime}, LM was not significantly different from MA and GE. For Pielou's Evenness Index (J') estuaries NC, LC, and MA were not significantly different from one another but were significantly different from GE and LM. GE and LM were not significantly different in the evenness of their species abundances.

Discussion

Average salinity is one of the most common ancillary measures used in ecological research efforts to monitor benthic disturbance (McIvor et al. 1994, Montagna et al. 2002, Alber 2002). However, the primary purpose of this study was to determine if salinity variance could be used as an indicator of benthic disturbance. The results from this longterm analysis show that salinity variance may be better than average salinity at capturing the same disturbance. When compared against one another, salinity variance was able to capture the same community diversity trends, with or without the anomalous Laguna Madre System (Fig. 3a, b, c, and Fig. 4a, b, c). However, salinity average showed a significant correlation between salinity levels and diversity trends only in the absence of Laguna Madre. While average salinity can be used to measure diversity of benthic communities, salinity variance may be a better indicator of diversity, and therefore stability, due to its ability to capture significant trends across different estuarine systems.

Disturbance regimes are well known for having a significant impact on biodiversity within a given community (Connell 1978, Huston 1994). Therefore, a

Fig. 5 Multidimensional scaling (MDS) plot and cluster analysis of macrofauna community similarity. A With stations as labels and B with overall average salinity as label and salinity trajectory (i.e. seriation from lowest to highest salinity). Estuary abbreviations same as Fig. 1.

Table 4 Dominant species in each estuary ($>1 \%$ overall contribution) with remaining species ($<1 \%$ overall contribution) combined. Abundance ($\mathrm{n} / \mathrm{m}^{2}$) of dominant species provided in parentheses, and an asterisk indicates top 3 species within an estuary. Overall species abundances and rankings located in Appendix 4.

Rank	Taxa	Overall	Lavaca-Colorado	Guadalupe	Mission-Aransas	Nueces	Laguna Madre
1	Mediomastus ambiseta	27.1\%	41.6\%	41.1\%	38.6\%	29.4\%	4.7\%
		$(10,671)$	(11,895*)	(18,391*)	(7,995*)	(12,207*)	(2,865*)
2	Streblospio benedicti	19.4\%	6.3\%	21.4\%	36.8\%	11.2\%	23.9\%
		$(7,639)$	(1,807*)	(9,579*)	(7,623*)	(4,648*)	(14,537*)
3	Oligochaeta (unidentified)	5.7\%	3.4\%	0.9\%	0.9\%	1.1\%	15.1\%
		$(2,243)$	(980)	(407)	(189)	(468)	(9,173*)
4	Mulinia lateralis	4.4\%	3.0%	8.2\%	0.7\%	5.8\%	2.8\%
		$(1,745)$	(848)	$(3,649)$	(142)	$(2,403)$	$(1,683)$
5	Polydora caulleryi	3.0\%	2.9\%	0.6\%	0.7\%	11.3\%	0.0\%
		$(1,189)$	(840)	(265)	(142)	(4,697*)	(0)
6	Texadina sphinctostoma	2.9\%	0.1\%	12.4\%	0.4\%	0.0\%	0.0\%
		$(1,128)$	(16)	(5,548*)	(77)	(0)	(0)
7	Ampelisca abdita	2.3\%	1.1\%	1.2\%	2.4\%	1.0\%	4.5\%
		(904)	(319)	(528)	(502)	(402)	$(2,766)$
8	Prionospio heterobranchia	2.3\%	0.0\%	0.0\%	0.0\%	0.0\%	7.4\%
		(902)	(0)	(0)	(0)	(0)	$(4,512)$
9	Syllis cornuta	1.9%	0.0%	0.0%	0.0%	0.1%	6.0%
		(747)	(1)	(1)	(0)	(54)	$(3,678)$
10	Tharyx setigera	1.7\%	0.9\%	0.0\%	0.1\%	7.5\%	0.0\%
		(676)	(245)	(15)	(12)	$(3,108)$	(0)
11	Nemertea (unidentified)	1.6\%	2.4\%	1.2\%	1.8\%	1.5\%	1.6\%
		(638)	(699)	(553)	(366)	(611)	(959)
12	Apseudes species. A	1.4\%	9.7\%	0.0\%	0.0\%	0.0\%	0.0\%
		(557)	(2,786*)	(0)	(0)	(0)	(0)
13	Exogone species.	1.2\%	0.0\%	0.0\%	0.0\%	0.0\%	4.0\%
		(491)	(0)	(2)	(0)	(13)	$(2,442)$
14	Capitella capitata	1.2\%	0.2\%	0.9\%	0.5\%	0.2\%	2.8\%
		(467)	(70)	(381)	(112)	(67)	$(1,706)$
	Remaining species percent	23.7\%	28.4\%	12.1\%	17.2\%	31.0\%	27.2\%
	Total percent	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
	Remaining species count	375	226	185	75	265	161
	Total species count	389	238	197	85	276	171

Table 5 Dominant species at each station ($>1 \%$ overall contribution) with remaining species ($<1 \%$ overall contribution) combined. Abundance ($\mathrm{n} / \mathrm{m}^{2}$) of dominant species provided in parentheses, and an asterisk indicates top 3 species at a station. Overall species abundances and rankings located in Appendix 4.

Rank	Taxa	Overall	Station A	Station B	Station C	Station D
1	Mediomastu ambiseta	27.1\%	31.1\%	29.5\%	21.7\%	28.2\%
		$(10,671)$	(10,138*)	(10,575*)	(10,222*)	(11,748*)
2	Streblospio benedicti	$\begin{gathered} 19.4 \% \\ (7.639) \end{gathered}$	$\begin{gathered} 32.7 \% \\ (10,639 *) \end{gathered}$	$\begin{gathered} 33.4 \% \\ (11,977 *) \end{gathered}$	$\begin{gathered} 8.2 \% \\ \left(3,869^{*}\right) \end{gathered}$	$\begin{gathered} 9.8 \% \\ (4,070 *) \end{gathered}$
3	Oligochaeta (unidentified)	5.7\%	0.7\%	0.4\%	10.3\%	9.0\%
		$(2,243)$	(215)	(147)	(4,875*)	(3,735*)
4	Mulinia lateralis	4.4\%	8.1\%	7.5\%	2.3\%	1.4\%
		$(1,745)$	$(2,651)$	(2,675*)	$(1,084)$	(570)
5	Polydora caulleryi	3.0\%	0.0\%	2.5\%	1.1\%	8.0\%
		$(1,189)$	(3)	(907)	(503)	$(3,342)$
6	Texadina sphinctostoma	2.9\%	10.3\%	2.2\%	0.6\%	0.2\%
		$(1,128)$	(3,347*)	(801)	(288)	(77)
7	Ampelisca abdita	2.3\%	5.9\%	4.2\%	0.2\%	0.2\%
		(904)	$(1,912)$	$(1,494)$	(111)	(97)
8	Prionospio heterobranchia	2.3\%	0.0\%	0.0\%	5.7\%	2.2\%
		(902)	(14)	(0)	$(2,684)$	(912)
9	Syllis cornuta	1.9\%	0.0\%	0.1\%	4.6\%	1.9\%
		(747)	(4)	(30)	$(2,152)$	(800)
10	Tharyx setigera	1.7\%	0.0\%	2.3\%	2.3\%	1.9\%
		(676)	(8)	(834)	$(1,085)$	(777)
11	Nemertea (unidentified)	1.6\%	0.8\%	0.9\%	2.6\%	1.8\%
		(638)	(253)	(339)	$(1,214)$	(743)
12	Apseudes species. A	1.4\%	0.0\%	0.0\%	0.0\%	5.4\%
		(557)	(0)	(0)	(1)	$(2,228)$
13	Exogone species.	1.2\%	0.1\%	0.0\%	3.7\%	0.4\%
		(491)	(18)	(6)	$(1,763)$	(178)
14	Capitella capitata	1.2\%	1.0\%	0.5\%	1.0\%	2.1\%
		(467)	(332)	(162)	(494)	(880)
	Remaining species percent	23.7\%	9.4\%	16.5\%	35.7\%	27.5\%
	Total percent	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
	Remaining species count	375	149	207	286	291
	Total species count	389	162	219	300	305

Table 6 Average dissimilairty values and the top 3 associated discriminating species between estuaries.

Estuary	Lavaca-Colorado	Guadalupe	Mission-Aransas	Nueces
Guadalupe	47.28 Cyclaspis varians Axiothella mucosa Pyramidella crenulata			
Mission-Aransas	49.74 Sphaerosyllis species. A Streblospio benedicti Mysidopsis bahia	51.89 Neanthes succinea Rictaxis punctostriatus Tellina texana		
Nueces	45.68 Ogyrides limicola Oxyurostylis salinoi Drilonereis magna	53.80 Maldanidae (unidentified) Mysidopsis species. Acteocina canaliculata	59.34 Corophium ascherusicum Lumbrineris parvapedata Oligochaeta (unidentified)	
Laguna Madre	$\begin{gathered} 65.09 \\ \text { Listriella barnardi } \\ \text { Gastropoda (unidentified) } \\ \text { Sigambra bassi } \end{gathered}$	62.17 Polydora socialis Anaitides erythrophyllus Nudibranchia (unidentified)	67.19 Pycnogonida (unidentified) Grandidierella bonnieroides Anaitides erythrophyllus	65.40 Oxyurostylis salinoi Glycinde solitaria Mediomastus ambiseta

Table 7 Average dissimilairty values and the top 3 associated discriminating species between stations.

Station	A	B	C
B	35.15		
	Capitella capitata		
	Ampelisca abdita		
	Mediomastus ambiseta		
C	57.34	48.88	
	Turbonilla species.	Mulinia lateralis	
	Ampelisca abdita	Tellina species	
	Branchioasychis americana	Mitrella lunata	
D	60.58	56.04	36.80
	Mulinia lateralis	Mulinia lateralis	Axiothella mucosa
	Turbonilla species.	Nereididae	Haploscoloplos fragilis
	Axiothella mucosa	(unidentified)	Branchioasychis
		Listriella barnardi	americana

Table 8 Tukey's Studentized Range (HSD) Test for the three dependent variables S, H', and J^{\prime} for estuary. Means with the same letter are not significantly different.
Abbreviations: $\mathrm{S}=$ species richness, $\mathrm{H}^{\prime}=$ Shannon-Weiner Diversity, and $\mathrm{J}^{\prime}=$ Pielou's Evenness Index.

Estuary	S		H^{\prime}		J^{\prime}	
	Average Value	Tukey Grouping	Average Value	Tukey Grouping	Average Value	Tukey Grouping
LavacaColorado	13.619	B	1.561	B	0.645	A
Guadalupe	10.140	C	1.232	C	0.569	B
MissionAransas	8.646	C	1.261	C	0.639	A
Nueces	18.876	A	1.858	A	0.669	A
Laguna Madre	14.356	B	1.414	BC	0.546	B

secondary pursuit of this research was to determine the impact of freshwater related disturbance events to benthic communities. In order to evaluate two types of disturbance events, pulse and press, the two distinct salinity gradients established in this study must be considered when interpreting the results. One of these gradients is within an individual estuary, while the second gradient is between estuaries. Within an estuary, there were two distinctions made: 1) a freshwater influenced region, defined by stations A and B, located within a secondary bay nearest the source of freshwater input, and 2) a marine influenced region defined by stations C and D , located within a primary bay closer to the Gulf of Mexico. The second gradient is a natural climatic gradient imposed on the estuaries. Southwestern estuaries are situated in a more arid region, and have less freshwater input than their northeastern counterparts (Table 1). As estuaries transition northward, they receive more freshwater input naturally due to this climatic gradient. Additionally, the annual amount of freshwater input each estuary receives is also highly variable with an oscillation between wet and dry years (Fig. 2).

The acute behavior associated with pulse disturbances can be analyzed using the first gradient, which looks at benthic communities within individual estuaries. In this scenario a pulse of freshwater inflow simulates short-term flooding events. Under this disturbance condition the station closest to the point source of inflow (Station A) is the most susceptible to the disturbance, with relative impacts dissipating away from the river outflow (Station D least susceptible). As shown by salinity variance in Fig. 3b, every station A within an individual estuary has lower diversity than D stations within the same estuary. This behavior is also apparent in species richness (Fig. 3a) and evenness (Fig. 3c). In conjunction with these diversity measures are the individual species present
within each estuary. One notable species is Mulinia lateralis, which is a dominant species for stations A and B (Table 5). Mulinia lateralis is a clam which has demonstrated a strong ability to take advantage of disturbances such as increased freshwater (Flint and Younk 1983). Key behaviors associated with this opportunist are a strong ability to persist in a range of salinity levels (Parker 1975, Montagna and Kalke 1995), continual settling from the water column following a spawning event (Holland et al. 1977), and a short generation time (Calabrese 1969). These attributes are likely driving factors that make this clam an excellent discriminating species when comparing stations in a secondary bay to primary bay stations (Table 7).

However, it is not only discriminating species that can be used to differentiate between benthic communities within an estuary. In frequently disturbed systems fewer species are found because it requires special adaptations to persist in an unpredictable environment (Menge 1976). With more frequent or severe disturbances, resource monopolization is reduced, and instead abiotic conditions act as a diversity filter rather than biotic conditions (Sousa 1979). Stations A and D are not only the most dissimilar in species composition, but the total species count as well (Table 5). Station A has the fewest total species and is closest to the source of the disturbance. As stations progress towards the Gulf of Mexico the total species count increases, and the effect of a pulse of freshwater dissipates. It may therefore be concluded that community stability and diversity of benthic communities can be significantly affected by pulse disturbance events such as freshwater inflow.

Press disturbance events can also be determined using salinity variance but will be determined between estuaries using the secondary gradient oriented along the freshwater
climate regime. Southwestern estuaries are situated in a climatically drier area than their northeastern counterparts, and are therefore subjected to less rainfall. When examining Fig. 3b, estuaries in the southwest, Laguna Madre and Nueces, have greater diversity, than those to the northeast. Exceptions to this trend are stations C and D located in the Lavaca-Colorado estuary. Lavaca-Colorado is the most northeastern estuary, and therefore contradicts this climatic gradient. A potential explanation to this result is that the climatic gradient in this study may not be a stronger driver of a disturbance than an actual pulse of freshwater within an estuary. Stations C and D are already subjected to more saline waters, so the within estuary trend may have a stronger influence on the system than seasonal rainfall. Based on the size of the Lavaca-Colorado estuary (Table 1) the input of freshwater may be more negligible, and have a weaker effect on the more saline stations. Overall, the Nueces estuary displayed the highest average diversity while the Guadalupe estuary displayed the lowest diversity (Table 8).

Cluster analysis of the MDS plot revealed the strong similarity in benthic community assemblages within bays (Fig. 5a). All stations located within the same bay system are at least 50% similar in benthic community composition, with the exception of stations A and B of the Nueces estuary. However, these community similarities are driven by the particular bay type, either primary or secondary, which indicates long-term average salinity does not drive overall community structure. Stations A and B of the Laguna Madre estuary have the greatest average salinity (Fig. 5b), but these high saline waters are at least a 40% similar to the stations with the lowest average salinity levels (Fig. 5a, b). Additionally, Laguna Madre stations C and D are in a grouping of their own,
and these two stations are located in the only environment associated with seagrass beds (Montagna and Kalke 1995).

In the face of these disturbance events this research appears to challenge the intermediate disturbance hypothesis proposed by Connell (1978). When a disturbance occurs along a gradient within this long-term analysis, either within or between estuaries, there is no peak level of diversity at the intermediate locations. The only consistent trend within estuaries for freshwater disturbance events is that the most susceptible locations (station A) had lower diversity than the least susceptible location (station D) (Fig. 3b). Additionally, disturbance between estuaries along the climatic gradient showed that the estuaries located at the ends of the gradient demonstrated the highest levels of diversity, while the intermediate estuaries brought in the lowest levels of diversity (Table 8).

The community of every estuary must cope with both press disturbances and pulse disturbances, and there is a growing need to ascertain the implications these events have on community dynamics and how stable a system can remain when responding to the stress. The diversity-stability relationship has long been proposed as a contributing force that keeps communities from collapsing in times of stress and change (MacArthur 1955, Watt 1964). For both pulse and press disturbances, as diversity decreases stability of the system may decrease; freshwater inflow may be viewed as a benthic disturbance. This stability can be linked back to salinity variance and benthic communities establishing in certain niche salinity regimes (Pollack et al. 2009, Telesh et al. 2013). Brackish estuarine areas are dominated by a few organisms that can tolerate the constant salinity fluctuations (Montagna and Kalke 1995). Harsh environments filter out organisms incapable of establishing due to the constant stress imposed by abiotic
processes, thereby decreasing diversity (Menge 1976). In the present study the more marine influenced stations in primary bays provided a more benign habitat as evidenced by increased diversity, while freshwater influenced secondary bays displayed decreased diversity.

However, it is not enough to view freshwater inflow as a benthic disturbance, but an important and essential feature shaping benthic communities in Texas estuaries. Episodic flooding of the Mission-Aransas Estuary is essential to the long-term population maintenance of the subtidal eastern oyster, Crassostrea virginica (Pollack et al. 2011). While flooding events are initially detrimental to populations of C. virginica, the low salinities introduce a harsh environment to both predators (e.g., oyster drills) and disease (Perkinsus marinus) bolstering the recovery of oysters in the estuary. Additionally, Montagna and Kalke (1995), showed that only estuaries with high inflow rates supported productive shellfish populations and salinity variability was more essential that absolute salinity values. They found that key recruitment events of Mulinia lateralis are initiated by significant changes in salinity levels instead of being structured around absolute salinity levels. However in 1992, Monatagna and Kalke determined that freshwater inflow had deleterious effects on meiofaunal populations within the same estuaries. These competing results illustrate the complex dynamics of freshwater inflow to estuarine systems.

Water resource planners have long been interested in managing salinity in estuaries. The Texas Water Planning Act was passed in 1957 to control and direct the effects upstream development had on coastal waters. An additional bill was passed in 1985 building further information into the original act to guide and inform water
management decisions (Alber 2002). In section 11.147 of the Texas Water code "beneficial inflows" are defined as a "salinity, nutrient, and sediment loading regime adequate to maintain an ecologically sound environment in the receiving bay and estuary system that is necessary for the maintenance of productivity of economically important and ecologically characteristic commercial fish and shellfish species and estuarine life upon which such fish and shellfish are dependent" (Texas Water Code § 11.147 (a) [2013]). While the findings presented here could be used to argue that all freshwater inflow should be stopped because it is a disturbance that decreases diversity in an area, this line of reasoning is incorrect, as demonstrated by the outlier effects represented by Baffin Bay and Laguna Madre (Fig. a, b, c). In fact, inflow pulses act to stimulate the communities by bringing in pulses of nutrients and stimulating primary productivity. Also, the intermediate disturbance hypothesis (Connell 1978) and succession model (Rhoads et al. 1978) predict disturbance is important to the complex functioning of estuarine systems.

While average salinity can be appropriate to monitor diversity in estuarine systems, the current findings show the value of salinity variance in studying diversity across multiple estuarine systems. Salinity variance captured significant diversity relationships for both univariate and multivariate diversity measures, in the presence and absence of the anomalous estuary Laguna Madre (Fig. 3a, b, c, and Fig. 4a, b, c). However, average salinity showed a sole significant relationship to species richness in the presence of Laguna Madre (Fig. 3d), and even with the removal of Laguna Madre still did not capture a significant relationship with Pielou's Evenness Index (Fig. 4f). This study shows the potential strength of one indicator over the other and it is imperative that
other coastal systems test the success of salinity variability in monitoring community diversity in future studies. This research also outlined the effect freshwater inflow can have on benthic organisms in the form of a disturbance. Both within and between estuaries overall diversity decreased as freshwater input increased. But these estuarine tendencies do not apply to specific organisms and more research should be focused on individual species in the face of inflow events. Due to its success as a more accurate indicator of benthic disturbance, this work demonstrates the importance of implementing salinity variance as an indicator of disturbance.

References

Alber, Merryl. 2002. A conceptual model of estuarine freshwater inflow management. Estuaries 25.6: 1246-1261.

Calabrese, A. 1969. Individual and combined effects of salinity and and temperature on embryos and larvae of the coot clam, Mulinia lateralis, in Long Island Sound. The veliger 12:265-269.

Clarke, K. R., and R. M. Warrwick. 2001. Change in marine communitites: an approach to statistical analysis and interpretation, $2^{\text {nd }}$ Edition. PRIMER-E: Plymouth.
Connell, Joseph H. 1978. Diversity in tropical rain forests and coral reefs. Science 199.4335: 1302-1310.

Diener, R. A. 1975 Cooperative Gulf of Mexico Estuarine Inventory and Study- Texas" Area Description. U.S. Department of Commerce, NOAA Technical Report, NMFS Circular 393. 125 pp.
Doak, D. F., D. Bigger, E. K. Harding, M. A. Marvier, R. E. O'Malley, and D. Thompson. 1998. The statistical inevitability of stability-diversity relationshps in community ecology. American Naturalist 151: 264-276.

Flint, R. W. and J. A. Younk. 1983. Estuarine benthos: long-term variations, Corpus Christi, Texas. Estuaries 6:126-141.

Heip, C.H.R, Peter M. J. Herman and Karline Soetaert. 1998. Indices of Diversity and Evenness. Océanis 24.4: 61-87..

Hendra, Richard, and Paulette W. Staum. 2010. A SAS® Application to Identify and Evaluate Outliers. NESUG: 1-16.
http://www.nesug.org/Proceedings/nesug 10/ad/ad07.pdf. Accessed 17 November 2013.

Holland, F. A., N. K. Mountford, and J. A. Mihursky. 1977. Temporal variation in upper bay mesohaline benthic communities the $9-\mathrm{m}$ mud habitat. Chesapeake Science 18:370-378.

Hurlbert, Stuart H. 1984. Pseudoreplication and the Design of Ecological Field Experiments. Ecological Monographs 54.2: 187-211.

Huston, Michael A., and Michael Alan Huston. 1994. Biological diversity: the coexistence of species. Cambridge University Press.

Ives, A. R., and S. R. Carpenter. 2007. Stability and Diversity of Ecosystems. Science 317.5834: 58-62.

Ives, A. R., and J. B. Hughes. 2002. General relationships between species diversity and stability in competitive systems. American Naturalist 159:388-395.

Ives, A. R., J. L. Klug, and K. Gross. 2000. Stability and species richness in complex communities. Science 286:542-544.

Kalke, R.D., Montagna, P.A., 1991. The effect of freshwater inflow on macrobenthos in the Lavaca River Delta and Upper Lavaca Bay, Texas. Contributions in Marine Science, 49-71.

Kim, Hae-Cheol, and Paul A. Montagna. 2012. Effects of climate-driven freshwater inflow variability on macrobenthic secondary production in Texas lagoonal estuaries: A modeling study. Ecological Modeling 235: 67-80.

Kjerfve, Björn, and K. Eo Magill. 1989. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Marine geology 88.3: 187-199.
Lake, P. S. 2000. Disturbance, Patchiness, and Diversity in Streams. The North American Benthological Society 19.4: 573-592.
Larkin, T. J. and G. W. Bomar. 1983. Climatic Atlas of Texas. Texas Department of Water Resources, Austin, Texas. 151 pp.

MacArthur, Robert. 1955. Fluctuations of Animal Populations and a Measure of Community Stability. Ecology 36.3: 533-36. J Stor. http://www.jstor.org/stable/1929601. Accessed 13 October 2013.
Menge, Bruce A. 1976. Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecological Monographs 46.4: 355-393.

McCann, Kevin S. 2000. The Diversity-Stability Debate. Nature 405: 228-33.
McIvor, Carole C., Janet A. Ley, and Robin D. Bjork. 1994. Changes in freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes: a review. Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, Florida: 117-146.

Montagna, P. A., 2000. Effect of freshwater inflow on macrobenthos productivity and nitrogen losses in Texas estuaries. Final Report to Texas Water Development Board, Contract No. 2000 483-323, University of Texas Marine Science Institute Technical Report Number TR/ 00-03, Port Aransas, TX: 78 [available on internet at http://www.twdb.state.tx.us/rwpg/rpgm_rpts/ 2000483323.pdf].

Montagna, P.A., J. Brenner, J. Gibeaut, and S. Morehead. 2011a. Coastal Impacts. In: Schmandt, J., G.R. North, and J. Clarkson (eds.), The Impact of Global Warming on Texas, second edition. University of Texas Press, Austin, Texas, pp. 96-123.

Montagna, P.A., E.D. Estevez, T.A. Palmer, and M.S. Flannery. 2008. Meta-analysis of the relationship between salinity and molluscs in tidal river estuaries of southwest Florida, U.S.A. American Malacological Bulletin 24:101-115.

Montagna, P. A., J. C. Gibeaut and J.W. Tunnell Jr. 2007. South Texas Climate 2100: Coastal Impacts. In South Texas Climate 2100: Problems and Prospects, Impacts and Implications, eds. J. Norwine and K. John, 57-77, Crest-Ressaca Texas A\&M University- Kingsville, Kingsville, Texas

Montagna, Paul A., and Richard D. Kalke. 1992 The Effect of Freshwater Inflow on Meiofaunal and Macrofaunal Populations in the Guadalupe and Nueces Estuaries, Texas. Estuaries 15.3: 307-26.
Montagna, Paul A., and Richard D. Kalke. 1995. Ecology of Infaunal Mollusca in South Texas Estuaries. American Malacological Bulletin 11.2: 163-75.

Montagna, Paul A., Richard D. Kalke, and Christine Ritter. 2002. Effect of restored freshwater inflow on macrofauna and meiofauna in upper Rincon Bayou, Texas, USA. Estuaries 25.6: 1436-1447.

Montagna, P.A., T.A. Palmer, and J. Beseres Pollack. 2013. Hydrological Changes and Estuarine Dynamics. SpringerBriefs in Environmental Sciences, New York, New York. 94 pp.

Montagna, P., G. Ward and B. Vaughan. 2011b. The importance and problem of freshwater inflows to Texas estuaries. In Water Policy in Texas: Responding to the Rise of Scarcity, ed. R.C. Griffin, 107-127, The RFF Press, Washington, D.C.

Palmer, Terence A., Paul A. Montagna, Jennifer B. Pollack, Richard D. Kalke, and Hudson R. DeYoe. 2011. The Role of Freshwater Inflow in Lagoons, Rivers and Bays. Hydrobiologia 667: 49-67.

Parker, R. H. 1975. The Study of Benthic Communities: a Model and a Review. Elsevier Oceanography Series. Elsevier, New York. 279 pp.

Pollack, Jennifer Beseres, H-C, Kim, E. K., Morgan, P. A. Montagna. 2011. Role of flood disturbance in natural oyster (Crassostrea virginica) population maintenance in an estuary in south Texas, USA. Estuaries and Coasts 34(1):187-197.

Pollack, Jennifer Beseres, Julie Kinsey, and Paul Montagna. 2009. Freshwater Inflow Biotic Index (FIBI) for the Lavaca-Colorado Estuary, Texas. Environmental Bioindicators 4.2: 153-69.

Rhoads, D. C., P. L. McCall, and J. Y. Yingst. 1978. Disturbance and production on the estuarine seafloor. American Scientist 66:577-586.

Roman, Joe, and John A. Darling. 2007. Paradox Lost: Genetic Diversity and the Success of Aquatic Invasions. Trends in Ecology \& Evolution 22.9: 454-64.

SAS Institute Inc., 2013. SAS/STAT_9.3 User's Guide, $2^{\text {nd }} e d$. SAS Institute Inc., Cary, NC, USA: 7886 pp.

Sousa, Wayne P. 1979. Disturbance in marine intertidal boulder fields: the nonequilibrium maintenance of species diversity. Ecology 60.6: 1225-1239.

Thébault, Elisa, and Michel Loreau. 2005. Trophic interactions and the relationship between species diversity and ecosystem stability. American Naturalist 166(4):E95E114.

Texas Department of Water Resources. 1982. The Influence of Freshwater Inflows Upon the Major Bays and Estuaries of the Texas Gulf Coast. Vol. 8, Executive Summary ($2^{\text {nd }}$ ed.). Texas Department of Water Resources, Austin, Texas. 133 pp .

Telesh, Irena, Hendrik Schubert, and Sergei Skarlato. 2013. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern. Estuarine, Coastal and Shelf Science 135: 317-327.

Thompson, I., Mackey, B., McNulty, S., Mosseler, A. 2009. Forest Resilience, Biodiversity, and Climate Change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series no. 43, 67 pages.

Tilman, David. 1999. The Ecological Consequences of Changes in Biodiversity: A Search for General Principles. Ecology 80.5: 1455-1474.

Watt, K.E.F. 1964. Comments on Fluctuations of Animal Populations and Measures of Community Stability. The Canadian Entomologist 96.11: 1434-442.

Whitford, W. G., D. J. Rapport, and A. G. DeSoyza. 1999. Using Resistance and Resilience Measurements for 'fitness' Tests in Ecosystem Health. Journal of Environmental Management 57: 21-29.

Sources of Unpublished Materials
Texas Water Development Board. 2013. Texas Water Development Board http://www.twdb.texas.gov/surfacewater/flows/freshwater/index.asp

Appendices

Appendix 1 Coordinates of Stations within Estuaries

Estuary	Bay	Bay Type	Station	Latitude	Longitude
Lavaca-Colorado	Lavaca	Secondary	A	28.67467	-96.58268
Lavaca-Colorado	Lavaca	Secondary	B	28.63868	-96.58437
Lavaca-Colorado	Matagorda	Primary	C	28.54672	-96.46894
Lavaca-Colorado	Matagorda	Primary	D	28.48502	-96.28972
Guadalupe	Upper San Antonio	Secondary	A	28.39352	-96.77240
Guadalupe	Upper San Antonio	Secondary	B	28.34777	-96.74573
Guadalupe	Lower San Antonio	Primary	C	28.24618	-96.76488
Guadalupe	Lower San Antonio	Primary	D	28.30210	-96.68435
Mission-Aransas	Copano	Secondary	A	28.07460	-97.21910
Mission-Aransas	Copano	Secondary	B	28.13228	-97.03443
Mission-Aransas	Aransas	Primary	C	28.08882	-96.96253
Mission-Aransas	Aransas	Primary	D	27.97975	-97.02868
Nueces-Corpus	Nueces	Secondary	A	27.86069	-97.47358
Nueces-Corpus	Nueces	Secondary	B	27.85708	-97.41025
Nueces-Corpus	Corpus Chrisit	Primary	C	27.82533	-97.35213
Nueces-Corpus	Corpus Christi	Primary	D	27.71280	-97.17872
Laguna Madre	Baffin	Secondary	A	27.27697	-97.42690
Laguna Madre	Baffin	Secondary	B	27.26388	-97.55142
Laguna Madre	Laguna Madre	Primary	C	27.34990	-97.39238
Laguna Madre	Laguna Madre	Primary	D	27.34990	-97.39238

Appendix 2 Species Distribution (\#//m²) in the Lavaca-Colorado and Guadalupe Estuaries for Entire Study Period (1988-2013). A, B, C , and D are the stations in the estuaries that were used in the analysis and represent a gradient from less saline (A) to more saline (D); see Fig. 1 for approximate locations.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Mediomastus ambiseta	12134	9357	12172	13916	22869	20456	15114	15126
Streblospio benedicti	3106	2480	1090	553	13665	18795	3267	2590
Oligochaeta (unidentified)	76	17	107	3718	910	636	16	65
Mulinia lateralis	1159	861	1304	69	5034	5009	3108	1446
Polydora caulleryi	0	0	1294	2065	6	0	65	988
Texadina sphinctostoma	59	7	0	0	16370	3999	1440	383
Ampelisca abdita	1034	166	52	24	1755	137	41	181
Prionospio heterobranchia	0	0	0	0	0	0	0	0
Syllis cornuta	0	0	0	3	0	0	0	3
Tharyx setigera	0	7	920	52	0	0	0	59
Nemertea (unidentified)	270	277	792	1456	542	555	517	598
Apseudes species A	0	0	7	11138	0	0	0	0
Exogone species	0	0	0	0	0	0	0	6
Capitella capitata	190	73	17	0	982	374	90	78
Cossura delta	156	865	1660	1411	3	56	78	334
Paraprionospio pinnata	38	190	522	401	12	47	206	199
Brania furcelligera	0	0	0	0	0	0	0	3
Gyptis vittata	28	42	612	387	12	34	69	171
Sphaerosyllis species A	10	7	59	69	0	0	0	0
Caecum pulchellum	0	0	0	0	0	3	0	3
Glycinde solitaria	214	176	453	166	106	175	352	443
Cerapus tubularis	0	0	0	0	3	0	0	0
Grandidierella bonnieroides	3	0	0	0	6	0	0	0
Cerithium lutosum	0	0	0	0	0	0	0	0
Spiochaetopterus costarum	17	14	169	14	3	3	137	1842

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Mysella planulata	14	17	38	169	6	0	0	156
Naineris laevigata	0	0	14	439	0	0	0	0
Macoma mitchelli	398	280	28	17	171	352	221	259
Clymenella torquata	7	0	163	24	0	3	6	349
Anthozoa (unidentified)	10	17	55	253	9	3	25	16
Minuspio cirrifera	0	0	311	2221	0	0	0	12
Amphiodia atra	0	0	346	934	0	0	19	34
Branchioasychis americana	3	7	221	42	0	0	3	47
Heteromastus filiformis	48	14	0	0	16	0	0	0
Paleanotus heteroseta	0	0	73	266	0	0	0	22
Haploscoloplos foliosus	83	142	149	52	84	290	312	218
Nuculana acuta	3	3	197	73	0	6	3	62
Anomalocardia auberiana	0	0	0	0	0	0	0	0
Periploma cf. orbiculare	0	0	118	1090	0	0	0	31
Polydora ligni	38	3	3	0	324	3	0	34
Schizocardium species	0	3	287	391	0	0	0	9
Lumbrineris parvapedata	0	0	360	138	0	0	0	16
Schistomeringos rudolphi	0	0	3	35	0	0	0	9
Axiothella species A	0	0	107	7	0	6	6	561
Chone species	0	0	0	0	0	0	0	0
Corbula contracta	0	0	0	1712	0	0	0	0
Mediomastus californiensis	17	0	194	232	22	12	12	814
Cyclaspis varians	83	45	52	10	243	159	231	302
Elasmopus species	0	0	0	0	0	0	3	0
Acteocina canaliculata	118	131	100	7	84	87	90	224
Erichsonella attenuata	0	0	0	0	0	0	0	0
Parandalia ocularis	228	45	21	0	408	47	87	502
Caprellidae (unidentified)	3	0	10	7	47	0	56	16

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Melinna maculata	7	14	52	24	6	37	47	75
Lepton species	3	7	35	1342	0	0	0	0
Phoronis architecta	0	35	17	62	0	0	137	78
Rangia cuneata	38	0	0	0	1050	56	16	3
Hobsonia florida	28	3	7	31	997	122	6	44
Diopatra cuprea	24	24	42	86	19	9	41	87
Aligena texasiana	0	0	138	10	0	0	3	237
Nereididae (unidentified)	17	3	24	45	0	0	9	22
Leucon species	38	90	73	17	0	6	34	0
Amygdalum papyrium	0	0	0	0	3	0	0	0
Paraonidae Group B	0	0	654	287	0	3	0	0
Drilonereis magna	0	3	550	80	0	0	3	0
Monoculodes species	14	10	35	0	246	140	131	59
Sarsiella zostericola	0	0	3	0	0	0	0	0
Aricidea bryani	0	0	311	14	0	0	0	0
Rictaxis punctostriatus	7	3	3	0	12	6	6	19
Sphaerosyllis cf. sublaevis	0	0	3	3	0	0	0	3
Pomatoceros americanus	0	0	0	0	0	0	0	0
Schistomeringos species A	0	0	24	28	0	0	0	0
Maldanidae (unidentified)	0	31	201	52	0	0	28	128
Turbonilla species	0	10	118	7	0	0	6	94
Scoloplos rubra	0	0	0	0	0	0	0	0
Chironomidae (larvae)	42	10	0	0	309	44	6	3
Haploscoloplos fragilis	21	42	24	7	3	41	69	44
Lyonsia hyalina floridana	0	3	10	3	22	3	9	9
Vitrinellidae (unidentified)	0	0	0	0	0	0	0	19
Cymodoce faxoni	0	0	0	0	0	0	0	0
Ostracoda (unidentified)	17	69	0	0	31	0	0	0

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Listriella barnardi	3	3	45	142	0	0	3	41
Turbellaria (unidentified)	7	21	83	73	59	6	97	47
Hemicyclops species	7	0	0	24	53	3	6	365
Euclymene species B	0	0	21	0	0	0	0	112
Notomastus latericeus	7	0	10	52	0	0	0	62
Opisthosyllis species	0	0	0	0	0	0	0	0
Axiothella mucosa	21	28	152	7	0	0	19	94
Gastropoda (unidentified)	3	3	7	0	411	0	3	9
Cymadusa compta	0	0	0	0	0	0	0	6
Oxyurostylis species	0	3	66	21	44	75	78	69
Corophium louisianum	14	3	0	0	25	3	12	16
Edotea montosa	38	0	3	0	37	6	6	0
Sigambra bassi	7	3	69	62	0	0	3	6
Syllidae (unidentified)	0	0	24	3	0	0	0	0
Microprotopus species	45	10	21	14	9	28	44	25
Sabellidae (unidentified)	0	0	232	7	0	6	0	3
Eteone heteropoda	14	3	3	14	34	62	19	37
Periploma margaritaceum	0	0	107	166	0	0	3	31
Nassarius acutus	17	21	31	31	0	0	12	12
Erichthonias brasiliensis	0	0	0	14	0	0	0	28
Crepidula plana	0	0	0	0	12	0	252	3
Batea catharinensis	7	0	0	0	12	0	41	22
Malmgreniella taylori	0	0	59	86	0	0	3	0
Amphilochus species	0	0	3	0	0	0	0	3
Cirrophorus lyra	0	0	339	118	0	0	0	0
Polydora socialis	3	0	73	24	9	3	31	19
Chione cancellata	0	0	0	0	0	0	0	3
Ceratonereis irritabilis	0	0	24	0	0	0	0	47

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Listriella clymenellae	0	0	10	0	0	0	0	0
Scolelepis texana	3	7	0	0	19	6	56	75
Haminoea antillarum	0	0	0	0	0	0	0	0
Bivalvia (unidentified)	17	3	10	14	3	3	6	28
Sigambra tentaculata	0	0	45	239	0	0	3	6
Leptochelia rapax	0	0	0	0	0	0	0	3
Oxyurostylis salinoi	0	0	55	0	0	9	9	9
Eupomatus protulicola	0	0	3	0	3	0	0	0
Diastoma varium	0	0	0	0	0	0	0	0
Tellina texana	0	0	0	3	6	6	3	12
Phascolion strombi	0	0	28	54	0	0	0	0
Spiophanes bombyx	0	0	0	0	0	0	0	0
Eulimastoma species	28	86	69	0	9	19	22	19
Megalomma bioculatum	0	3	17	3	0	12	9	22
Pinnixa species	0	0	10	66	0	0	0	37
Oxyurostylis smithi	35	7	17	3	6	16	106	97
Paraonidae Group A	0	0	159	14	0	0	0	0
Magelona pettiboneae	0	0	14	7	0	0	0	3
Brachidontes exustus	3	3	0	0	0	62	0	0
Amaeana trilobata	0	0	31	17	0	0	0	3
Pectinaria gouldii	3	0	17	24	34	19	44	34
Lysidice ninetta	0	0	0	0	0	0	290	0
Aricidea catharinae	0	0	218	10	0	0	0	0
Cyclopoida (commensal)	38	10	66	0	6	12	9	9
Pseudodiaptomus pelagicus	7	17	31	31	9	12	19	6
Mysidopsis bahia	10	3	17	14	3	0	3	19
Asychis species	3	0	111	0	0	0	6	37
Anaitides erythrophyllus	3	0	14	7	0	0	6	0

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Corophium ascherusicum	0	0	0	3	0	6	0	3
Nuculana concentrica	10	21	59	31	0	0	0	28
Abra aequalis	0	0	0	104	0	0	0	0
Sarsiella texana	7	0	21	3	0	0	3	9
Laeonereis culveri	21	3	0	0	0	0	0	0
Tellina species	28	21	7	10	0	3	0	6
Syllis falgens	0	0	0	0	0	0	0	0
Glycera americana	0	3	28	52	0	0	6	37
Molgula manhattensis	0	0	24	0	109	0	0	34
Isolda pulchella	0	0	0	3	0	0	0	9
Brania clavata	0	0	183	3	0	0	0	0
Asychis elongata	0	0	42	0	3	0	3	0
Eudorella species	0	28	52	93	0	0	0	0
Mysidopsis almyra	14	3	7	0	25	28	3	3
Armandia maculata	0	0	3	90	3	0	0	9
Caecum johnsoni	3	0	45	17	0	0	6	62
Neanthes succinea	7	3	7	0	28	19	19	72
Neosamytha gracilis	0	0	0	0	0	0	0	9
Mactra fragilis	0	0	0	0	0	0	0	0
Pycnogonida (unidentified)	0	0	0	0	0	0	0	0
Pista palmata	0	0	10	0	0	3	62	9
Ogyrides limicola	3	17	10	21	0	0	0	6
Ancistrosyllis jonesi	0	0	3	55	0	0	0	0
Spionidae (unidentified)	0	0	14	131	0	3	0	0
Spio setosa	0	0	0	0	0	0	0	0
Balanus eburneus	0	0	0	0	47	9	47	0
Sthenelais boa	0	0	0	14	0	0	0	0
Crepidula fornicata	0	0	0	10	0	0	3	0

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Podarke obscura	0	0	7	21	0	0	3	0
Laevicardium mortoni	0	0	0	0	0	0	0	0
Pandora trilineata	0	10	35	3	0	6	9	37
Spirorbis species	0	0	0	0	0	0	0	0
Ensis minor	52	0	0	0	0	3	9	44
Mysidopsis species	10	10	10	7	19	3	3	6
Boonea impressa	0	0	0	0	0	0	22	0
Parahesione luteola	0	0	0	0	0	0	0	0
Ampelisca verrilli	0	0	10	0	0	0	0	0
Chione species	0	0	0	0	0	0	0	0
Polychaeta juv. (unidentified)	0	7	10	28	0	3	3	0
Hauchiella species	0	0	0	0	0	0	0	16
Pagurus annulipes	0	0	3	10	0	0	0	0
Aricidea fragilis	0	0	24	0	0	0	0	0
Apoprionospio pygmaea	0	0	7	0	0	0	0	9
Sabella microphthalma	0	0	7	0	0	0	0	0
Pomatoleios kraussi	0	0	0	0	0	0	0	0
Callianassa species	3	0	0	3	44	6	12	22
Polydora websteri	7	0	0	0	59	3	3	16
Magelona phyllisae	0	0	24	17	0	0	0	3
Glycinde nordmanni	7	28	10	0	0	12	3	9
Megalops	3	3	3	14	3	3	3	0
Autolytus species	0	0	0	0	0	0	0	0
Diastylis species	0	0	3	0	3	0	6	3
Pyramidella crenulata	0	0	0	0	6	3	16	9
Sabella melanostigma	0	0	0	0	0	0	0	0
Eudorella monodon	0	0	0	0	0	0	0	0
Ancistrosyllis papillosa	0	0	21	10	0	0	0	0

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Aricidea taylori	0	0	3	0	0	0	0	0
Pinnixa chacei	0	0	14	55	0	0	0	3
Dyspanopeus texana	0	0	0	0	0	0	0	0
Tagelus divisus	0	0	0	0	0	0	0	0
Tellina tampaensis	0	0	0	0	0	0	0	0
Nudibranchia (unidentified)	0	0	0	0	3	6	3	6
Spio pettiboneae	0	0	0	0	0	0	0	0
Terebellidae (unidentified)	0	0	7	17	0	0	0	3
Eupomatus dianthus	0	0	0	0	0	0	3	3
Polydora species	0	0	0	10	25	0	0	6
Platynereis dumerilii	0	0	0	0	0	0	0	0
Scoloplos texana	0	0	3	0	6	3	0	6
Scolelepis squamata	7	0	0	0	3	6	25	9
Pyramidella species	0	0	0	0	19	3	0	12
Holothuroidea (unidentified)	0	0	0	3	0	0	0	0
Eunoe cf. nodulosa	0	0	0	59	0	0	0	0
Dorvilleidae (unidentified)	0	0	7	0	0	0	0	0
Ischadium recurvum	0	0	0	0	31	0	0	0
Paranaitis speciosa	0	0	3	3	0	0	0	3
Haploscoloplos species	7	3	7	0	0	0	6	0
Eumida sanguinea	0	0	0	0	0	0	0	0
Tagelus plebeius	28	0	0	0	0	0	12	16
Ancistrosyllis groenlandica	0	0	21	35	0	0	0	0
Sigalionidae (unidentified)	0	0	24	28	0	0	0	3
Pista cristata	0	0	0	0	0	0	0	0
Ophryotrocha species (unidentified)	0	0	0	0	0	0	0	0
Vitrinella floridana	0	0	0	0	0	0	0	9
Leptostylis species	0	0	0	0	0	0	0	0

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Xenanthura brevitelson	0	0	0	0	0	0	0	22
Gammarus mucronatus	3	0	0	0	9	0	9	0
Notomastus cf. latericeus	0	0	10	21	0	0	0	0
Maldane sarsi	0	0	0	0	0	0	0	0
Sarsiella species	0	0	0	0	0	0	0	0
Paramya subovata	0	0	0	14	0	0	0	0
Xanthidae (unidentified)	0	0	3	0	0	0	0	0
Brada cf. villosa capensis	0	0	0	3	0	0	0	0
Ampelisca species B	0	0	3	35	0	0	0	0
Unidentified	0	0	0	0	0	0	0	0
Caecum glabrum	0	0	0	0	0	0	0	0
Lembos species	0	0	0	0	0	0	0	0
Sayella crosseana	0	0	0	0	0	0	0	0
Pilargiidae (unidentified)	0	0	14	10	0	0	0	0
Mystides rarica	0	0	0	0	0	0	0	0
Macoma tenta	0	0	0	17	0	0	0	3
Anachis obesa	0	0	0	0	0	0	0	0
Melita nitida	0	0	0	0	6	0	9	3
Fabricia species A	0	0	0	0	0	0	0	0
Mercenaria campechiensis	0	0	0	3	0	0	3	3
Ceriantharia (unidentified)	0	0	0	0	0	0	0	0
Capitellidae (unidentified)	0	3	7	3	0	0	0	9
Odostomia species	10	7	0	0	9	0	3	0
Serpulidae (unidentified)	0	0	0	0	0	0	0	9
Bowmaniella brasiliensis	0	0	0	0	0	0	0	0
Cabira incerta	0	0	10	0	0	0	0	0
Bowmaniella species	0	0	0	0	3	0	0	0
Photis species	0	0	7	0	0	0	0	0

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Thompsonula species	0	0	0	0	16	3	3	9
Corophium species	0	0	0	10	0	0	0	0
Potamilla reniformis	0	0	0	0	0	0	0	0
Ninoe nigripes	0	0	0	17	0	0	0	3
Aricidea species	0	0	0	0	0	0	0	0
Microphthalmus abberrans	0	0	0	0	0	3	0	6
Nassarius vibex	0	7	0	7	0	0	0	0
Mysidopsis bigelowi	0	0	28	0	0	0	0	0
Hesione picta	0	0	0	3	0	0	0	0
Mytilidae (unidentified)	0	0	0	0	0	0	0	3
Paranaitis polynoides	0	0	0	0	0	0	0	0
Crassostrea virginica	0	3	0	0	0	0	12	0
Petricola pholadiformes	0	0	0	0	0	0	0	0
Anachis semiplicata	0	0	0	0	0	0	0	0
Naineris bicornis	0	0	0	0	0	0	0	0
Chaetozone setosa	0	0	0	0	0	0	0	0
Marphysa sanguinea	0	0	0	0	0	0	0	0
Ascidiacea (unidentified)	0	0	0	0	0	0	0	0
Pilargis berkelyae	0	0	0	0	0	0	0	0
Sarsiella spinosa	0	0	7	7	0	0	0	0
Anomia simplex	0	0	0	0	0	0	0	0
Callinectes sapidus	0	0	0	0	0	0	0	0
Mitrella lunata	3	0	3	0	0	0	3	3
Pinnixa retinens	0	0	7	0	0	0	0	0
Serpulidae A	0	0	0	0	0	0	0	0
Glycera capitata	0	0	0	3	0	0	0	3
Magelona rosea	0	0	21	0	0	0	0	0
Sigambra cf. wassi	0	7	0	14	0	0	0	0

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Glyceridae (unidentified)	17	3	0	0	0	0	0	0
Euclymene species A	0	0	0	0	0	0	0	0
Owenia fusiformis	0	0	7	3	0	0	0	0
Dentalium texasianum	0	0	3	7	0	0	0	0
Brachyuran zoea	0	0	0	0	0	0	0	0
Lumbrineris latreilli	0	0	0	14	0	0	0	0
Polinices duplicatus	0	3	10	0	0	0	0	0
Texadina barretti	0	0	0	0	3	0	0	16
Phyllodocidae (unidentified)	3	0	0	0	0	0	0	0
Parametopella species	0	0	0	0	0	0	0	3
Lumbrineris branchiata	0	0	0	0	0	0	0	3
Capitellides jonesi	7	0	0	0	0	0	0	0
Clibanarius vittatus	0	0	0	0	0	0	3	3
Synchelidium americanum	0	0	0	0	0	0	0	16
Amphipoda (unidentified)	0	0	3	7	0	0	0	0
Piromis arenosus	0	0	0	0	0	0	0	0
Synsyllis longigularis	0	0	0	0	0	0	0	0
Ophiuroidea (unidentified)	0	0	0	0	0	0	0	0
Pomatoleios caerulescens	0	0	0	0	0	0	0	0
Sarsiella capsula	0	0	0	0	0	0	0	0
Sipuncula (unidentified)	0	0	0	3	0	0	0	6
Sphaerosyllis erinaceus	0	0	10	3	0	0	0	0
Sarsiella disparalis	0	0	3	0	0	0	0	0
Pinnotheridae (unidentified)	0	0	3	7	0	0	0	3
Nephtys species	0	0	0	0	9	0	0	3
Bulla striata	0	0	3	0	0	0	0	3
Ampharetidae (unidentified)	0	0	3	0	0	0	0	3
Hesionidae (unidentified)	0	0	0	0	0	0	0	3

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Trachypenaeus constrictus	0	0	3	7	0	0	0	0
Amphinomidae (unidentified)	0	0	10	0	0	0	0	0
Listriella species	0	0	10	0	0	0	0	0
Solen viridis	0	0	0	0	0	0	0	0
Nereis lamellosa	0	0	0	0	0	0	0	0
Onuphis eremita	0	0	0	0	0	0	0	0
Ancistrosyllis species	0	0	0	0	0	0	0	0
Euceramus praelongus	0	0	0	0	0	0	0	0
Brada species	0	0	0	0	0	0	0	0
Crassinella lunulata	0	0	0	0	0	0	0	0
Odostomia canaliculata	0	0	0	0	0	0	0	0
Pinnixa cristata	0	0	7	0	0	0	0	3
Allothyone mexicana	0	0	0	7	0	0	0	3
Henrya goldmani	0	0	0	0	0	0	0	0
Cyclaspis species	0	0	0	0	0	0	0	9
Martesia species	0	0	0	3	0	0	0	0
Tellidora cristata	0	0	3	0	0	0	0	0
Fargoa cf. gibbosa	0	0	0	0	0	0	0	3
Aglaophamus verrilli	0	0	0	7	0	0	0	0
Paguridae (juvenile)	0	0	7	0	0	0	0	0
Paramphinome jeffreysii	0	0	7	0	0	0	0	0
Polynoidae (unidentified)	0	0	0	7	0	0	0	0
Macoma species	0	0	0	7	0	0	0	0
Neopanope texana	0	0	0	0	6	0	0	0
Fabriciola trilobata	0	0	0	0	0	0	0	6
Lepidophthalamus louisianensis	0	0	0	0	0	0	3	3
Hydrozoa (unidentified)	0	0	0	0	0	0	0	0
Eteone lactea	0	0	0	0	0	0	0	0

Appendix 2. Continued.

Species	Lavaca-Colorado Estuary				Guadalupe Estuary			
	A	B	C	D	A	B	C	D
Macoma brevifrons	0	0	0	0	0	0	0	0
Callinectes species A	0	0	0	0	0	0	0	0
Cantharus cancellarius	0	0	0	0	0	0	0	0
Magelonidae (unidentified)	0	0	0	0	0	0	0	0
Labidocera aestiva	0	0	0	0	0	0	0	0
Truncatella caribaeensis	0	0	0	0	0	0	0	0
Epitonium species	0	0	0	0	0	0	0	0
Penaeus aztecus	0	0	0	0	0	0	0	0
Mollusca (unidentified)	0	0	0	0	0	0	0	0
Tharyx species	0	0	0	0	0	0	0	0
Balanus trigonus	0	0	0	0	0	0	0	0
Nematonereis hebes	0	0	0	0	0	0	0	0
Clymenella mucosa	0	0	0	0	0	0	0	0
Eupolymnia species	0	0	0	0	0	0	0	0
Nereis pelagica occidentalis	0	0	0	0	0	0	0	0
Doridella obscura	0	0	0	0	0	0	0	0
Anadara transversa	0	0	0	0	0	0	0	0
Dentalium species	0	0	0	0	0	0	0	0
Episiphon sowerbyi	0	0	0	0	0	0	0	0
Eulimastoma cf. teres	0	0	0	0	0	0	0	0
Turbonilla portoricana	0	0	0	0	0	0	0	0
Trypanosyllis gemnipara	0	0	0	0	0	0	0	0
Crepidula species	0	0	0	0	0	0	0	0
Synelmis albini	0	0	0	0	0	0	0	0
Tellina versicolor	0	0	0	0	0	0	0	0
Pilargis species	0	0	0	0	0	0	0	0
Dispio uncinata	0	0	0	0	0	0	0	0
Bowmaniella dissimilis	0	0	0	0	0	0	0	0

Appendix 2. Continued.

	Lavaca-Colorado Estuary				Guadalupe Estuary		
Species	A	B	C	D	A	B	C
Littorina ziczac	0	0	0	0	0	0	0
Prionospio treadwelli	0	0	0	0	0	0	0
Nephtys picta	0	0	0	3	0	0	0
Onuphis species	0	0	0	3	0	0	0
Alpheus heterochaelis	0	0	0	3	0	0	0
Anadara ovalis	0	0	0	3	0	0	0
Echiuridae (unidentified)	0	0	0	3	0	0	0
Cyrtopleura costata	0	0	0	3	0	0	0
Lumbrineris tenuis	0	0	0	3	0	0	0
Goniadidae (unidentified)	0	0	3	0	0	0	0
Lumbrineridae (unidentified)	0	0	0	3	0	0	0
Sthenelais species	0	0	0	3	0	0	0
Munna hayesi	0	0	0	3	0	0	0
Callinectes similis	0	0	3	0	0	0	0
Ancistrosyllis cf. falcata	0	0	0	3	0	0	0
Munnidae (unidentified)	0	0	0	3	0	0	0
Eurythoe species	0	0	0	3	0	0	0
Paramphinome pulchella	0	0	3	0	0	0	0
Agriopoma texasianum	0	0	0	3	0	0	0
Malmgreniella species	0	0	0	3	0	0	0
Potamanthidae (unidentified)	3	0	0	0	0	0	0
Cyclinella tenuis	0	0	0	3	0	0	0
Diptera (unidentified)	3	0	0	0	0	0	0
Arenicola cristata	0	0	0	0	0	0	0
Chironomidae (pupae)	0	0	0	0	0	0	0
Cassidinidea lunifrons	0	0	0	0	0	0	0
Insecta (unidentified)	0	0	0	0	0	0	0
Rithropanopeus harrisi	0	0	0	0	0	3	0

Appendix 3 Species distribution (\#/m2) of Mission-Aransas, Nueces, and Laguna Madre Estuaries for the entire study period (19882012). A, B, C, and D are the stations where data were collected that were used in the analysis and represent a gradient from less saline (A) to more saline (D); see Fig. 1 for approximate locations.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Mediomastus ambiseta	2978	4869	10377	13757	9778	13682	11888	13481	2931	4511	1557	2460
Streblospio benedicti	8178	4798	7847	9667	6389	5023	1950	5229	21855	28789	5193	2308
Oligochaeta (unidentified)	71	0	47	638	15	77	319	1459	5	5	23888	12793
Mulinia lateralis	425	0	95	47	3289	4992	577	753	3349	2515	335	533
Polydora caulleryi	0	0	0	567	10	4533	1155	13089	0	0	0	0
Texadina sphinctostoma	307	0	0	0	0	0	0	0	0	0	0	0
Ampelisca abdita	1702	260	47	0	1239	330	25	15	3832	6578	392	264
Prionospio heterobranchia	0	0	0	0	0	0	0	0	70	0	13419	4558
Syllis cornuta	0	0	0	0	10	150	51	5	10	0	10711	3991
Tharyx setigera	0	0	0	47	40	4162	4503	3729	0	0	0	0
Nemertea (unidentified)	236	189	378	662	204	516	1109	614	15	158	3275	386
Apseudes species A	0	0	0	0	0	0	0	0	0	0	0	0
Exogone species	0	0	0	0	0	31	20	0	90	0	8793	885
Capitella capitata	307	118	24	0	45	191	10	21	134	55	2331	4304
Cossura delta	0	0	24	355	493	376	1935	433	0	0	0	0
Paraprionospio pinnata	0	260	1087	2127	10	134	648	727	20	93	0	0
Brania furcelligera	0	0	0	0	0	196	15	5	0	0	4445	841
Gyptis vittata	24	71	355	709	249	1227	851	526	25	0	10	20
Sphaerosyllis species A	0	0	0	0	194	799	304	67	50	0	2218	1413
Caecum pulchellum	0	0	0	0	0	0	0	5	0	0	2955	2083
Glycinde solitaria	0	142	473	213	254	469	476	490	154	142	31	103
Cerapus tubularis	24	0	0	0	0	36	5	10	0	5	4595	166
Grandidierella bonnieroides	0	0	0	0	10	52	0	0	134	393	3068	675
Cerithium lutosum	0	0	0	0	0	0	0	0	0	5	3816	264
Naineris laevigata	0	0	0	0	0	5	243	144	0	0	2486	186

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Spiochaetopterus costarum	0	95	307	473	0	150	162	108	0	0	0	0
Mysella planulata	0	0	0	0	169	2651	56	26	0	0	0	10
Macoma mitchelli	95	307	213	0	597	160	5	0	0	0	0	0
Clymenella torquata	0	0	118	0	294	1918	10	108	0	0	0	5
Anthozoa (unidentified)	0	0	0	0	0	701	309	77	85	38	1263	59
Minuspio cirrifera	0	0	0	118	0	0	96	124	0	0	0	0
Amphiodia atra	0	0	189	213	0	72	841	227	0	0	0	0
Branchioasychis americana	0	0	47	118	20	98	162	62	40	0	748	1095
Heteromastus filiformis	47	0	0	0	5	0	5	31	0	5	1423	1003
Paleanotus heteroseta	0	0	0	0	0	144	1661	392	0	0	0	0
Haploscoloplos foliosus	0	0	0	0	55	124	25	459	25	5	21	381
Nuculana acuta	0	0	0	24	65	882	1003	98	0	0	0	0
Anomalocardia auberiana	0	0	0	0	0	0	0	0	30	0	1233	1115
Periploma cf. orbiculare	0	0	0	0	5	52	815	21	0	0	0	0
Polydora ligni	0	0	0	0	0	10	0	0	194	420	887	205
Schizocardium species	0	0	24	236	0	0	501	407	0	0	0	5
Lumbrineris parvapedata	0	0	71	284	45	170	734	15	0	0	0	0
Schistomeringos rudolphi	0	0	0	24	30	284	157	72	0	0	799	372
Axiothella species A	0	0	95	0	318	309	162	15	0	0	10	156
Chone species	0	0	0	0	0	15	5	5	0	0	995	729
Corbula contracta	0	0	0	0	0	0	0	0	0	0	0	0
Mediomastus californiensis	0	0	0	0	5	273	106	10	0	0	0	0
Cyclaspis varians	24	0	47	47	30	160	61	41	5	11	21	112
Elasmopus species	0	0	0	0	0	170	25	0	0	0	1351	29
Acteocina canaliculata	24	165	47	0	55	201	20	93	25	60	0	24
Erichsonella attenuata	0	0	0	0	0	0	0	0	0	0	1516	20
Parandalia ocularis	0	24	118	24	5	0	0	0	0	0	0	0
Caprellidae (unidentified)	0	0	0	0	25	258	106	129	20	0	727	78

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Melinna maculata	0	0	0	24	50	413	238	21	60	0	227	142
Lepton species	0	0	0	0	0	0	15	0	0	0	0	0
Hobsonia florida	0	0	0	0	0	0	0	0	0	0	0	0
Phoronis architecta	0	0	0	0	15	433	157	273	30	0	0	0
Rangia cuneata	0	0	0	0	0	0	0	0	0	0	0	0
Diopatra cuprea	0	0	71	118	10	83	187	113	114	5	46	73
Aligena texasiana	0	0	24	0	15	536	0	180	0	0	0	5
Nereididae (unidentified)	0	0	0	24	0	5	15	72	15	0	877	15
Leucon species	0	189	24	71	40	0	380	21	10	55	0	0
Amygdalum papyrium	0	0	0	0	0	5	0	0	0	5	861	137
Paraonidae Group B	0	0	0	0	0	0	25	15	0	0	0	0
Drilonereis magna	0	0	24	71	10	88	137	10	0	0	0	0
Monoculodes species	189	0	0	24	25	46	15	0	0	0	0	0
Sarsiella zostericola	0	0	0	0	0	0	5	0	5	0	763	127
Aricidea bryani	0	0	0	213	0	15	228	119	0	0	0	0
Rictaxis punctostriatus	0	0	24	0	10	15	0	160	274	278	62	15
Sphaerosyllis cf. sublaevis	0	0	0	0	0	0	0	5	0	0	382	469
Pomatoceros americanus	0	0	0	0	20	304	537	0	0	0	0	0
Schistomeringos species A	0	0	0	0	0	139	304	325	0	0	10	24
Maldanidae (unidentified)	0	0	142	0	25	98	127	5	0	0	5	5
Turbonilla species	0	0	24	24	0	67	116	88	0	0	175	112
Scoloplos rubra	0	0	0	0	0	0	0	0	0	0	232	602
Chironomidae (larvae)	402	0	0	0	5	0	0	0	0	0	0	0
Haploscoloplos fragilis	0	0	142	189	55	31	10	52	80	0	0	10
Lyonsia hyalina floridana	0	0	0	0	10	645	46	36	0	0	0	10
Vitrinellidae (unidentified)	0	0	0	0	5	717	0	41	0	0	0	0
Cymodoce faxoni	0	0	0	0	0	5	0	0	0	0	717	39
Ostracoda (unidentified)	0	0	0	0	5	0	0	0	40	0	361	205

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Listriella barnardi	0	0	0	47	15	222	91	62	25	0	0	29
Turbellaria (unidentified)	0	0	0	0	0	52	101	62	0	0	52	59
Hemicyclops species	0	0	0	0	0	227	0	0	5	0	0	10
Euclymene species B	0	0	0	0	304	191	61	10	0	0	0	0
Notomastus latericeus	0	0	0	47	15	217	147	129	0	0	5	0
Gastropoda (unidentified)	0	0	0	0	0	10	25	98	15	11	77	10
Opisthosyllis species	0	0	0	0	0	5	0	0	0	0	655	20
Axiothella mucosa	0	0	0	24	0	88	122	26	0	0	0	93
Cymadusa compta	0	0	0	0	0	0	0	5	0	0	562	83
Oxyurostylis species	0	0	71	0	30	10	10	21	10	0	31	117
Corophium louisianum	24	0	0	0	0	21	0	0	104	365	46	5
Edotea montosa	24	0	0	24	0	5	5	5	30	33	299	108
Sigambra bassi	0	95	0	355	0	0	5	10	0	0	0	0
Syllidae (unidentified)	0	0	0	0	0	0	46	5	0	0	454	64
Microprotopus species	0	0	0	47	0	67	41	160	25	5	5	49
Sabellidae (unidentified)	0	0	0	0	0	52	61	5	0	0	211	15
Eteone heteropoda	0	0	0	0	0	0	10	26	45	5	41	259
Periploma margaritaceum	0	0	0	0	5	77	132	46	0	0	0	0
Nassarius acutus	0	0	47	355	0	0	15	10	0	0	5	0
Erichthonias brasiliensis	0	0	24	0	0	139	76	36	65	125	10	10
Crepidula plana	0	0	0	0	0	155	15	21	0	0	52	10
Batea catharinensis	0	0	0	118	35	139	101	41	0	0	0	0
Malmgreniella taylori	0	0	71	24	0	0	253	10	0	0	0	0
Amphilochus species	0	0	0	0	5	119	30	0	0	0	315	0
Cirrophorus lyra	0	0	0	0	0	0	15	0	0	0	0	0
Polydora socialis	0	0	0	0	0	248	5	41	0	0	0	0
Chione cancellata	0	0	0	0	0	10	0	0	0	0	356	73
Ceratonereis irritabilis	0	0	0	47	5	186	66	62	0	0	5	0

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Listriella clymenellae	0	0	0	0	15	397	10	5	0	0	0	0
Scolelepis texana	0	0	71	0	10	36	0	31	0	5	0	93
Haminoea antillarum	0	0	0	0	0	0	0	0	0	0	304	73
Bivalvia (unidentified)	24	0	0	24	0	0	25	41	0	0	175	0
Sigambra tentaculata	0	24	0	24	0	0	20	10	0	0	0	0
Leptochelia rapax	0	0	0	0	0	5	0	0	0	0	278	83
Oxyurostylis salinoi	0	0	0	0	5	15	5	57	0	0	72	132
Eupomatus protulicola	0	0	0	0	0	144	157	0	0	0	15	29
Phascolion strombi	0	0	0	47	0	0	149	62	10	0	0	0
Diastoma varium	0	0	0	0	0	0	0	0	0	0	325	24
Tellina texana	0	0	0	0	0	0	0	15	0	0	180	108
Spiophanes bombyx	0	0	0	0	0	10	5	315	0	0	0	5
Eulimastoma species	0	0	24	24	0	5	0	10	0	0	0	0
Megalomma bioculatum	0	0	0	0	15	191	25	15	0	0	0	0
Pinnixa species	0	0	24	24	0	62	51	26	10	0	0	5
Oxyurostylis smithi	0	0	0	0	0	0	25	0	0	0	0	0
Paraonidae Group A	0	0	0	0	0	0	66	67	0	0	5	0
Magelona pettiboneae	0	0	0	0	0	0	20	5	0	0	144	112
Brachidontes exustus	0	0	0	0	0	36	0	0	0	0	191	10
Amaeana trilobata	0	47	0	0	0	186	10	5	0	0	0	0
Pectinaria gouldii	0	0	24	0	0	10	5	5	50	11	10	5
Lysidice ninetta	0	0	0	0	0	5	0	0	0	0	0	0
Aricidea catharinae	0	0	0	0	0	5	30	10	0	0	0	0
Cyclopoida (commensal)	0	0	0	0	15	52	0	5	30	16	0	0
Pseudodiaptomus pelagicus	0	0	0	0	0	15	15	10	40	49	0	5
Mysidopsis bahia	0	0	0	0	35	31	10	5	15	0	0	98
Asychis species	0	0	0	0	0	26	76	0	0	0	0	0
Anaitides erythrophyllus	0	0	0	0	0	15	20	41	20	22	77	24

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Corophium ascherusicum	0	0	0	0	5	15	20	10	0	180	5	0
Nuculana concentrica	0	0	71	0	0	0	25	0	0	0	0	0
Abra aequalis	0	0	0	24	0	10	91	5	0	0	0	0
Sarsiella texana	0	0	0	0	0	26	116	15	5	0	0	20
Laeonereis culveri	142	0	0	24	0	21	0	5	0	0	0	10
Tellina species	0	0	0	0	0	15	61	52	0	0	10	0
Syllis falgens	0	0	0	0	0	0	0	0	0	0	186	20
Glycera americana	0	0	47	0	0	0	15	15	0	0	0	0
Molgula manhattensis	0	0	0	0	0	31	5	0	0	0	0	0
Isolda pulchella	0	0	0	0	0	134	35	0	0	0	0	5
Brania clavata	0	0	0	0	0	0	0	0	0	0	0	0
Mysidopsis almyra	47	0	24	0	20	0	5	0	0	5	0	0
Asychis elongata	0	0	0	0	5	36	35	0	60	0	0	0
Eudorella species	0	0	0	0	0	0	10	0	0	0	0	0
Armandia maculata	0	0	0	0	0	0	25	52	0	0	0	0
Caecum johnsoni	0	0	0	0	0	10	30	0	0	0	0	0
Neanthes succinea	0	0	0	0	0	0	0	5	10	0	5	0
Neosamytha gracilis	0	0	0	0	45	119	0	0	0	0	0	0
Mactra fragilis	0	0	0	0	0	46	0	0	0	0	119	5
Pycnogonida (unidentified)	0	0	0	0	0	15	0	21	5	5	103	15
Pista palmata	0	0	0	0	0	36	5	15	0	0	15	0
Ogyrides limicola	0	24	24	47	0	0	0	0	0	0	0	0
Ancistrosyllis jonesi	0	0	0	24	0	10	10	46	0	0	0	0
Spionidae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Spio setosa	0	0	0	0	0	0	0	0	0	0	0	147
Balanus eburneus	0	0	0	0	0	36	0	0	0	0	0	0
Sthenelais boa	0	0	0	0	0	5	106	10	0	0	0	0
Crepidula fornicata	24	0	0	0	0	0	0	0	5	0	72	15

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Podarke obscura	0	0	0	0	0	31	15	46	0	0	0	5
Laevicardium mortoni	0	0	0	0	0	0	0	0	0	0	57	68
Pandora trilineata	0	0	0	0	0	0	0	21	0	0	0	0
Spirorbis species	0	0	0	0	0	0	0	5	0	0	108	5
Ensis minor	0	0	0	0	0	10	0	0	0	0	0	0
Mysidopsis species	0	0	0	0	5	0	20	0	15	0	0	0
Boonea impressa	0	0	0	0	0	0	0	0	0	0	72	15
Parahesione luteola	0	0	0	0	0	0	0	21	0	0	88	0
Ampelisca verrilli	0	0	0	0	0	26	5	67	0	0	0	0
Chione species	0	0	0	0	0	0	0	0	5	0	103	0
Polychaeta juv. (unidentified)	0	0	0	0	0	0	5	10	0	0	31	10
Hauchiella species	0	0	0	0	0	62	20	5	0	0	0	0
Pagurus annulipes	0	0	0	47	0	10	30	0	0	0	0	0
Pomatoleios kraussi	0	0	0	0	0	0	101	0	0	0	0	0
Aricidea fragilis	0	0	0	0	0	0	56	21	0	0	0	0
Apoprionospio pygmaea	0	0	0	0	0	0	0	83	0	0	0	0
Sabella microphthalma	0	0	0	0	0	0	91	0	0	0	0	0
Callianassa species	0	0	0	0	0	0	0	5	0	0	0	0
Polydora websteri	0	0	0	0	0	5	0	0	0	0	0	0
Magelona phyllisae	0	0	0	0	0	5	35	5	0	0	0	0
Glycinde nordmanni	0	0	0	0	10	5	5	0	0	0	0	0
Megalops	0	0	0	0	0	0	20	15	0	0	15	0
Autolytus species	0	0	0	0	65	10	5	0	0	0	0	0
Diastylis species	0	0	24	0	0	0	0	5	5	0	0	29
Pyramidella crenulata	0	0	0	24	0	5	0	0	0	0	10	5
Sabella melanostigma	0	0	0	0	0	15	51	0	0	0	10	0
Eudorella monodon	0	0	0	0	0	0	76	0	0	0	0	0
Ancistrosyllis papillosa	0	0	0	24	0	0	0	21	0	0	0	0

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Aricidea taylori	0	0	0	0	0	21	41	10	0	0	0	0
Pinnixa chacei	0	0	0	0	0	0	0	0	0	0	0	0
Dyspanopeus texana	0	0	0	0	0	0	0	0	0	0	72	0
Tagelus divisus	0	0	0	0	0	31	41	0	0	0	0	0
Tellina tampaensis	0	0	0	0	0	10	0	0	0	0	36	24
Nudibranchia (unidentified)	0	0	0	0	0	10	5	0	0	0	36	0
Spio pettiboneae	0	0	0	0	0	0	0	0	0	0	0	68
Terebellidae (unidentified)	0	0	0	0	0	10	25	5	0	0	0	0
Eupomatus dianthus	0	0	0	0	0	5	25	0	0	0	26	5
Polydora species	0	0	0	0	0	0	15	10	0	0	0	0
Platynereis dumerilii	0	0	0	0	0	0	0	0	0	0	67	0
Scoloplos texana	0	47	0	0	0	0	0	0	0	0	0	0
Scolelepis squamata	0	0	0	0	0	0	0	0	0	0	0	15
Pyramidella species	0	0	0	0	5	0	0	26	0	0	0	0
Holothuroidea (unidentified)	0	0	0	0	0	10	15	5	5	0	26	0
Eunoe cf. nodulosa	0	0	0	0	0	0	0	5	0	0	0	0
Haploscoloplos species	0	0	0	0	20	0	10	5	5	0	0	0
Dorvilleidae (unidentified)	0	0	0	0	0	5	10	21	0	0	15	5
Ischadium recurvum	0	0	0	0	0	31	0	0	0	0	0	0
Paranaitis speciosa	0	0	0	0	0	15	0	36	0	0	0	0
Eumida sanguinea	0	0	0	47	0	5	0	5	0	0	0	0
Tagelus plebeius	0	0	0	0	0	0	0	0	0	0	0	0
Ancistrosyllis groenlandica	0	0	0	0	0	0	0	0	0	0	0	0
Sigalionidae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Pista cristata	0	0	0	0	0	10	0	5	0	0	0	39
Ophryotrocha sp. (unidentified)	0	0	0	0	0	0	0	0	0	0	15	39
Vitrinella floridana	0	0	0	0	40	5	0	0	0	0	0	0
Leptostylis species	0	0	0	0	0	0	0	0	0	0	0	54

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Xenanthura brevitelson	0	0	0	0	10	21	0	0	0	0	0	0
Gammarus mucronatus	0	0	0	0	10	5	0	5	0	0	0	10
Notomastus cf. latericeus	0	0	0	0	0	15	0	5	0	0	0	0
Maldane sarsi	0	0	0	0	0	10	35	5	0	0	0	0
Sarsiella species	0	0	0	0	0	0	0	0	0	0	26	24
Paramya subovata	0	0	0	0	0	0	0	36	0	0	0	0
Xanthidae (unidentified)	0	0	0	0	0	10	10	0	5	0	21	0
Brada cf. villosa capensis	0	0	0	0	0	26	20	0	0	0	0	0
Ampelisca species B	0	0	0	0	0	0	5	5	0	0	0	0
Unidentified	47	0	0	0	0	0	0	0	0	0	0	0
Caecum glabrum	0	0	0	0	0	0	0	46	0	0	0	0
Lembos species	0	0	0	0	0	10	5	26	0	0	0	5
Sayella crosseana	0	0	0	0	0	0	0	0	0	0	21	24
Pilargiidae (unidentified)	0	0	0	0	0	0	0	5	0	0	5	10
Mystides rarica	0	0	0	0	0	36	5	0	0	0	0	0
Macoma tenta	0	0	0	0	0	0	10	10	0	0	0	0
Anachis obesa	0	0	0	0	0	5	30	0	0	0	5	0
Melita nitida	0	0	0	0	0	0	0	0	0	0	10	10
Capitellidae (unidentified)	0	0	0	0	0	5	0	0	0	0	10	0
Fabricia species A	0	0	0	0	0	0	0	0	0	0	36	0
Mercenaria campechiensis	0	0	0	0	0	15	0	10	0	0	0	0
Ceriantharia (unidentified)	0	0	0	0	0	0	35	0	0	0	0	0
Odostomia species	0	0	0	0	0	0	0	0	0	0	5	0
Serpulidae (unidentified)	0	0	0	0	0	0	25	0	0	0	0	0
Bowmaniella brasiliensis	0	0	0	0	0	0	0	0	0	0	0	34
Cabira incerta	0	0	0	24	0	0	0	0	0	0	0	0
Bowmaniella species	0	0	0	0	0	0	0	0	0	0	0	29
Photis species	0	0	0	0	0	0	0	21	0	0	0	5

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Thompsonula species	0	0	0	0	0	0	0	0	0	0	0	0
Corophium species	0	0	0	0	0	5	0	0	0	5	5	5
Potamilla reniformis	0	0	0	0	0	31	0	0	0	0	0	0
Ninoe nigripes	0	0	0	0	0	5	0	5	0	0	0	0
Aricidea species	0	0	0	0	0	0	15	15	0	0	0	0
Microphthalmus abberrans	0	0	0	0	0	15	0	5	0	0	0	0
Nassarius vibex	0	0	0	0	0	0	5	0	0	0	10	0
Mysidopsis bigelowi	0	0	0	0	0	0	0	0	0	0	0	0
Hesione picta	24	0	0	0	0	0	0	0	0	0	0	0
Mytilidae (unidentified)	24	0	0	0	0	0	0	0	0	0	0	0
Paranaitis polynoides	0	0	0	0	0	0	0	0	0	16	10	0
Crassostrea virginica	0	0	0	0	0	10	0	0	0	0	0	0
Petricola pholadiformes	0	0	0	0	0	26	0	0	0	0	0	0
Anachis semiplicata	0	0	0	0	0	0	0	0	0	0	26	0
Naineris bicornis	0	0	0	0	0	0	0	0	0	0	26	0
Chaetozone setosa	0	0	0	0	0	0	5	21	0	0	0	0
Marphysa sanguinea	0	0	0	0	5	15	5	0	0	0	0	0
Ascidiacea (unidentified)	0	0	0	0	0	0	15	0	0	0	10	0
Pilargis berkelyae	0	0	0	0	0	0	0	0	0	0	10	15
Sarsiella spinosa	0	0	0	0	0	0	10	0	0	0	0	0
Anomia simplex	0	0	24	0	0	0	0	0	0	0	0	0
Serpulidae A	0	0	24	0	0	0	0	0	0	0	0	0
Callinectes sapidus	0	0	0	24	0	0	0	0	0	0	0	0
Mitrella lunata	0	0	0	0	0	5	0	0	0	0	5	0
Pinnixa retinens	0	0	0	0	0	0	0	10	0	0	5	0
Glycera capitata	0	0	0	0	0	0	0	15	0	0	0	0
Magelona rosea	0	0	0	0	0	0	0	0	0	0	0	0
Sigambra cf. wassi	0	0	0	0	0	0	0	0	0	0	0	0

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Glyceridae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Euclymene species A	0	0	0	0	0	21	0	0	0	0	0	0
Owenia fusiformis	0	0	0	0	0	0	5	5	0	0	0	0
Dentalium texasianum	0	0	0	0	0	0	10	0	0	0	0	0
Brachyuran zoea	0	0	0	0	0	0	0	0	20	0	0	0
Lumbrineris latreilli	0	0	0	0	0	5	0	0	0	0	0	0
Polinices duplicatus	0	0	0	0	0	0	0	5	0	0	0	0
Texadina barretti	0	0	0	0	0	0	0	0	0	0	0	0
Phyllodocidae (unidentified)	0	0	0	0	0	0	0	0	0	0	10	5
Parametopella species	0	0	0	0	0	10	5	0	0	0	0	0
Lumbrineris branchiata	0	0	0	0	0	0	15	0	0	0	0	0
Capitellides jonesi	0	0	0	0	0	0	5	5	0	0	0	0
Clibanarius vittatus	0	0	0	0	0	0	10	0	0	0	0	0
Synchelidium americanum	0	0	0	0	0	0	0	0	0	0	0	0
Amphipoda (unidentified)	0	0	0	0	0	5	0	0	0	0	0	0
Piromis arenosus	0	0	0	0	0	15	0	0	0	0	0	0
Synsyllis longigularis	0	0	0	0	0	0	10	5	0	0	0	0
Ophiuroidea (unidentified)	0	0	0	0	0	0	15	0	0	0	0	0
Pomatoleios caerulescens	0	0	0	0	0	0	15	0	0	0	0	0
Sarsiella capsula	0	0	0	0	0	0	5	0	0	0	5	5
Sipuncula (unidentified)	0	0	0	0	0	0	5	0	0	0	0	0
Sphaerosyllis erinaceus	0	0	0	0	0	0	0	0	0	0	0	0
Sarsiella disparalis	0	0	0	0	0	0	0	0	0	0	10	0
Pinnotheridae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Hesionidae (unidentified)	0	0	0	0	0	10	0	0	0	0	0	0
Nephtys species	0	0	0	0	0	0	0	0	0	0	0	0
Bulla striata	0	0	0	0	0	0	0	0	0	0	5	0
Ampharetidae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	5

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Trachypenaeus constrictus	0	0	0	0	0	0	0	0	0	0	0	0
Amphinomidae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Listriella species	0	0	0	0	0	0	0	0	0	0	0	0
Solen viridis	0	0	0	0	0	0	0	10	0	0	0	0
Nereis lamellosa	0	0	0	0	0	0	0	0	0	0	10	0
Onuphis eremita	0	0	0	0	0	5	5	0	0	0	0	0
Ancistrosyllis species	0	0	0	0	0	5	5	0	0	0	0	0
Euceramus praelongus	0	0	0	0	0	0	10	0	0	0	0	0
Brada species	0	0	0	0	0	0	10	0	0	0	0	0
Crassinella lunulata	0	0	0	0	0	0	10	0	0	0	0	0
Odostomia canaliculata	0	0	0	0	0	0	10	0	0	0	0	0
Pinnixa cristata	0	0	0	0	0	0	0	0	0	0	0	0
Allothyone mexicana	0	0	0	0	0	0	0	0	0	0	0	0
Henrya goldmani	0	0	0	0	0	0	0	0	0	0	0	10
Cyclaspis species	0	0	0	0	0	0	0	0	0	0	0	0
Martesia species	0	0	0	0	5	0	0	0	0	0	0	0
Tellidora cristata	0	0	0	0	5	0	0	0	0	0	0	0
Fargoa cf. gibbosa	0	0	0	0	0	0	5	0	0	0	0	0
Aglaophamus verrilli	0	0	0	0	0	0	0	0	0	0	0	0
Paguridae (juvenile)	0	0	0	0	0	0	0	0	0	0	0	0
Paramphinome jeffreysii	0	0	0	0	0	0	0	0	0	0	0	0
Polynoidae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Macoma species	0	0	0	0	0	0	0	0	0	0	0	0
Neopanope texana	0	0	0	0	0	0	0	0	0	0	0	0
Fabriciola trilobata	0	0	0	0	0	0	0	0	0	0	0	0
Lepidophthalamus louisianensis	0	0	0	0	0	0	0	0	0	0	0	0
Hydrozoa (unidentified)	0	0	0	0	0	5	0	0	0	0	0	0
Eteone lactea	0	0	0	0	0	0	0	5	0	0	0	0

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Macoma brevifrons	0	0	0	0	0	0	0	5	0	0	0	0
Labidocera aestiva	0	0	0	0	0	5	0	0	0	0	0	0
Callinectes species	0	0	0	0	0	5	0	0	0	0	0	0
Cantharus cancellarius	0	0	0	0	0	0	0	5	0	0	0	0
Magelonidae (unidentified)	0	0	0	0	0	0	0	5	0	0	0	0
Truncatella caribaeensis	0	0	0	0	0	0	0	0	0	0	5	0
Epitonium species	0	0	0	0	0	0	0	5	0	0	0	0
Penaeus aztecus	0	0	0	0	0	5	0	0	0	0	0	0
Mollusca (unidentified)	0	0	0	0	0	0	0	5	0	0	0	0
Tharyx species	0	0	0	0	0	5	0	0	0	0	0	0
Balanus trigonus	0	0	0	0	0	5	0	0	0	0	0	0
Nematonereis hebes	0	0	0	0	0	5	0	0	0	0	0	0
Clymenella mucosa	0	0	0	0	0	5	0	0	0	0	0	0
Eupolymnia species	0	0	0	0	0	5	0	0	0	0	0	0
Nereis pelagica occidentalis	0	0	0	0	0	0	5	0	0	0	0	0
Doridella obscura	0	0	0	0	0	0	5	0	0	0	0	0
Anadara transversa	0	0	0	0	0	0	5	0	0	0	0	0
Dentalium species	0	0	0	0	0	0	5	0	0	0	0	0
Episiphon sowerbyi	0	0	0	0	0	0	5	0	0	0	0	0
Eulimastoma cf. teres	0	0	0	0	0	0	5	0	0	0	0	0
Turbonilla portoricana	0	0	0	0	0	0	5	0	0	0	0	0
Trypanosyllis gemnipara	0	0	0	0	0	0	5	0	0	0	0	0
Crepidula species	0	0	0	0	0	0	5	0	0	0	0	0
Synelmis albini	0	0	0	0	0	0	5	0	0	0	0	0
Tellina versicolor	0	0	0	0	0	0	5	0	0	0	0	0
Pilargis species	0	0	0	0	0	0	0	0	5	0	0	0
Dispio uncinata	0	0	0	0	0	0	0	0	0	0	0	5
Bowmaniella dissimilis	0	0	0	0	0	0	0	0	0	0	0	5

Appendix 3. Continued.

Species	Mission-Aransas Estuary				Nueces Estuary				Laguna Madre Estuary			
	A	B	C	D	A	B	C	D	A	B	C	D
Littorina ziczac	0	0	0	0	0	0	0	0	0	0	0	5
Prionospio treadwelli	0	0	0	0	0	0	0	0	0	0	0	5
Nephtys picta	0	0	0	0	0	0	0	0	0	0	0	0
Onuphis species	0	0	0	0	0	0	0	0	0	0	0	0
Cyrtopleura costata	0	0	0	0	0	0	0	0	0	0	0	0
Alpheus heterochaelis	0	0	0	0	0	0	0	0	0	0	0	0
Anadara ovalis	0	0	0	0	0	0	0	0	0	0	0	0
Echiuridae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Lumbrineris tenuis	0	0	0	0	0	0	0	0	0	0	0	0
Goniadidae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Lumbrineridae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Sthenelais species	0	0	0	0	0	0	0	0	0	0	0	0
Munna hayesi	0	0	0	0	0	0	0	0	0	0	0	0
Callinectes similis	0	0	0	0	0	0	0	0	0	0	0	0
Ancistrosyllis cf. falcata	0	0	0	0	0	0	0	0	0	0	0	0
Munnidae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Eurythoe species	0	0	0	0	0	0	0	0	0	0	0	0
Paramphinome pulchella	0	0	0	0	0	0	0	0	0	0	0	0
Agriopoma texasianum	0	0	0	0	0	0	0	0	0	0	0	0
Malmgreniella species	0	0	0	0	0	0	0	0	0	0	0	0
Potamanthidae (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Cyclinella tenuis	0	0	0	0	0	0	0	0	0	0	0	0
Diptera (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Arenicola cristata	0	0	0	0	0	0	0	0	0	0	0	0
Chironomidae (pupae)	0	0	0	0	0	0	0	0	0	0	0	0
Cassidinidea lunifrons	0	0	0	0	0	0	0	0	0	0	0	0
Insecta (unidentified)	0	0	0	0	0	0	0	0	0	0	0	0
Rithropanopeus harrisi	0	0	0	0	0	0	0	0	0	0	0	0

Appendix 4 Overall Species Abundance $\left(\# / \mathrm{m}^{2}\right)$ and Overall Species Ranking

Rank	Species	Species Name	Percent	Cumulative	Overall
	No.				
1	562	Mediomastus ambiseta	27.1465%	27.1465%	10,671
2	81	Streblospio benedicti	19.4333%	46.5797%	7,639
3	8	Oligochaeta (unidentified)	5.7069%	52.2866%	2,243
4	162	Mulinia lateralis	4.4394%	56.7260%	1,745
5	72	Polydora caulleryi	3.0239%	59.7499%	1,189
6	504	Texadina sphinctostoma	2.8704%	62.6202%	1,128
7	197	Ampelisca abdita	2.2991%	64.9194%	904
8	86	Prionospio heterobranchia	2.2955%	67.2149%	902
9	545	Syllis cornuta	1.8996%	69.1145%	747
10	92	Tharyx setigera	1.7196%	70.8340%	676
11	7	Nemertea (unidentified)	1.6219%	72.4559%	638
12	509	Apseudes species A	1.4177%	73.8736%	557
13	547	Exogone species A	1.2498%	75.1233%	491
14	111	Capitella capitata	1.1885%	76.3118%	467
15	110	Cossura delta	1.0403%	77.3520%	409
16	82	Paraprionospio pinnata	0.8552%	78.2072%	336
17	546	Brania furcelligera	0.7004%	78.9076%	275
18	32	Gyptis vittata	0.6896%	79.5972%	271
19	382	Sphaerosyllis species A	0.6602%	80.2575%	260
20	424	Caecum pulchellum	0.6423%	80.8998%	252
21	55	Glycinde solitaria	0.6400%	81.5398%	252
22	359	Cerapus tubularis	0.6163%	82.1561%	242
23	396	Grandidierella bonnieroides	0.5523%	82.7084%	217
24	542	Cerithium lutosum	0.5197%	83.2281%	204
25	559	Naineris laevigata	0.4474%	83.6755%	176
26	91	Spiochaetopterus costarum	0.4445%	84.1200%	175
27	159	Mysella planulata	0.4213%	84.5413%	166
28	488	Macoma mitchelli	0.3947%	84.9360%	155
29	119	Clymenella torquata	0.3823%	85.3183%	150
30	2	Anthozoa (unidentified)	0.3716%	85.6899%	146
31	85	Minuspio cirrifera	0.3667%	86.0566%	144
32	357	Amphiodia atra	0.3656%	86.4222%	144
33	117	Branchioasychis americana	0.3452%	86.7674%	136
34	114	Heteromastus filiformis	0.3304%	87.0978%	130
35	17	Paleanotus heteroseta	0.3254%	87.4232%	128
36	95	Haploscoloplos foliosus	0.3084%	87.7317%	121
37	155	Nuculana acuta	0.3078%	88.0394%	121
38	269	Anomalocardia auberiana	0.3024%	88.3418%	119
39	510	Periploma cf. orbiculare	0.2711%	88.6129%	107

Appendix 4. Continued.

Rank	Species	Species Name	Percent	Cumulative	Overall
	No.				
40	71	Polydora ligni	0.2701%	88.8830%	106
41	249	Schizocardium species	0.2372%	89.1202%	93
42	62	Lumbrineris parvapedata	0.2332%	89.3533%	92
43	68	Schistomeringos rudolphi	0.2270%	89.5804%	89
44	539	Axiothella species A	0.2232%	89.8035%	88
45	267	Chone species	0.2226%	90.0261%	87
46	174	Corbula contracta	0.2178%	90.2439%	86
47	113	Mediomastus californiensis	0.2160%	90.4599%	85
48	192	Cyclaspis varians	0.2142%	90.6741%	84
49	309	Elasmopus species	0.2009%	90.8750%	79
50	256	Acteocina canaliculata	0.1981%	91.0731%	78
51	373	Erichsonella attenuata	0.1953%	91.2684%	77
52	508	Parandalia ocularis	0.1919%	91.4603%	75
53	200	Caprellidae (unidentified)	0.1886%	91.6489%	74
54	125	Melinna maculata	0.1826%	91.8314%	72
55	160	Lepton species	0.1784%	92.0098%	70
56	492	Hobsonia florida	0.1575%	92.1673%	62
57	245	Phoronis architecta	0.1574%	92.3247%	62
58	498	Rangia cuneata	0.1480%	92.4727%	58
59	58	Diopatra cuprea	0.1468%	92.6195%	58
60	161	Aligena texasiana	0.1462%	92.7657%	57
61	323	Nereididae (unidentified)	0.1455%	92.9111%	57
62	399	Leucon sp.	0.1332%	93.0443%	52
63	157	Amygdalum papyrium	0.1287%	93.1730%	51
64	341	Paraonidae Group B	0.1253%	93.2983%	49
65	65	Drilonereis magna	0.1241%	93.4224%	49
66	205	Monoculodes species	0.1189%	93.5412%	47
67	374	Sarsiella zostericola	0.1150%	93.6562%	45
68	840	Aricidea bryani	0.1145%	93.7707%	45
69	557	Rictaxis punctostriatus	0.1138%	93.8845%	45
70	322	Sphaerosyllis cf. sublaevis	0.1102%	93.9947%	43
71	777	Pomatoceros americanus	0.1095%	94.1042%	43
72	334	Schistomeringos species A	0.1087%	94.2130%	43
73	122	Maldanidae (unidentified)	0.1076%	94.3206%	42
74	279	Turbonilla species	0.1070%	94.4275%	42
75	94	Scoloplos rubra	0.1060%	94.5336%	42
76	487	Chironomidae (larvae)	0.1043%	94.6379%	41
77	96	Haploscoloplos fragilis	0.1039%	94.7418%	41
78	180	Lyonsia hyalina floridana	0.1027%	94.8445%	40
79	412	Vitrinellidae (unidentified)	0.0994%	94.9439%	39

Appendix 4. Continued.

Rank	Species	Species Name	Percent	Cumulative	Overall
	No.				
80	278	Cymodoce faxoni	0.0968%	95.0407%	38
81	181	Ostracoda (unidentified)	0.0927%	95.1334%	36
82	254	Listriella barnardi	0.0927%	95.2261%	36
83	499	Turbellaria (unidentified)	0.0912%	95.3173%	36
84	460	Hemicyclops species	0.0890%	95.4064%	35
85	579	Euclymene species B	0.0888%	95.4952%	35
86	116	Notomastus latericeus	0.0879%	95.5831%	35
87	377	Gastropoda (unidentified)	0.0870%	95.6702%	34
88	618	Opisthosyllis species	0.0865%	95.7566%	34
89	118	Axiothella mucosa	0.0854%	95.8420%	34
90	431	Cymadusa compta	0.0835%	95.9256%	33
91	553	Oxyurostylis species	0.0833%	96.0089%	33
92	201	Corophium louisianum	0.0813%	96.0901%	32
93	196	Edotea montosa	0.0793%	96.1694%	31
94	30	Sigambra bassi	0.0783%	96.2477%	31
95	321	Syllidae (unidentified)	0.0758%	96.3235%	30
96	365	Microprotopus species	0.0757%	96.3992%	30
97	353	Sabellidae (unidentified)	0.0753%	96.4745%	30
98	22	Eteone heteropoda	0.0730%	96.5475%	29
99	179	Periploma margaritaceum	0.0722%	96.6197%	28
100	258	Nassarius acutus	0.0709%	96.6907%	28
101	297	Erichthonias brasiliensis	0.0670%	96.7577%	26
102	145	Crepidula plana	0.0661%	96.8239%	26
103	199	Batea catharinensis	0.0657%	96.8896%	26
104	644	Malmgreniella taylori	0.0644%	96.9540%	25
105	296	Amphilochus sp.	0.0604%	97.0144%	24
106	901	Cirrophorus lyra	0.0600%	97.0744%	24
107	70	Polydora socialis	0.0581%	97.1325%	23
108	449	Chione cancellata	0.0563%	97.1888%	22
109	43	Ceratonereis irritabilis	0.0562%	97.2450%	22
110	203	Listriella clymenellae	0.0557%	97.3007%	22
111	83	Scolelepis texana	0.0525%	97.3532%	21
112	561	Haminoea antillarum	0.0480%	97.4012%	19
113	358	Bivalvia (unidentified)	0.0477%	97.4488%	19
114	31	Sigambra tentaculata	0.0472%	97.4960%	19
115	195	Leptochelia rapax	0.0471%	97.5431%	18
116	194	Oxyurostylis salinoi	0.0470%	97.5901%	18
117	565	Eupomatus protulicola	0.0449%	97.6350%	18
118	244	Phascolion strombi	0.0445%	97.6795%	17
119	452	Diastoma varium	0.0444%	97.7239%	17

Appendix 4. Continued.

Rank	Species	Species Name	Percent	Cumulative	Overall
	No.				
120	167	Tellina texana	0.0426%	97.7666%	17
121	75	Spiophanes bombyx	0.0426%	97.8091%	17
122	402	Eulimastoma species	0.0400%	97.8492%	16
123	131	Megalomma bioculatum	0.0400%	97.8892%	16
124	380	Pinnixa species	0.0399%	97.9291%	16
125	500	Oxyurostylis smithi	0.0397%	97.9688%	16
126	340	Paraonidae Group A	0.0396%	98.0083%	16
127	88	Magelona pettiboneae	0.0389%	98.0473%	15
128	403	Brachidontes exustus	0.0389%	98.0862%	15
129	563	Amaeana trilobata	0.0381%	98.1243%	15
130	124	Pectinaria gouldii	0.0376%	98.1620%	15
131	56	Lysidice ninetta	0.0375%	98.1995%	15
132	520	Aricidea catharinae	0.0349%	98.2344%	14
133	186	Cyclopoida (commensal)	0.0343%	98.2686%	13
134	183	Pseudodiaptomus pelagicus	0.0341%	98.3027%	13
135	453	Mysidopsis bahia	0.0335%	98.3363%	13
136	121	Asychis species	0.0330%	98.3693%	13
137	26	Anaitides erythrophyllus	0.0319%	98.4012%	13
138	390	Corophium ascherusicum	0.0317%	98.4329%	12
139	262	Nuculana concentrica	0.0312%	98.4641%	12
140	170	Abra aequalis	0.0298%	98.4939%	12
141	362	Sarsiella texana	0.0287%	98.5226%	11
142	491	Laeonereis culveri	0.0287%	98.5513%	11
143	168	Tellina species	0.0271%	98.5784%	11
144	619	Syllis falgens	0.0261%	98.6045%	10
145	54	Glycera americana	0.0260%	98.6305%	10
146	419	Molgula manhattensis	0.0259%	98.6564%	10
147	126	Isolda pulchella	0.0238%	98.6802%	9
148	39	Brania clavata	0.0238%	98.7040%	9
149	493	Mysidopsis almyra	0.0235%	98.7275%	9
150	446	Asychis elongata	0.0234%	98.7509%	9
151	564	Eudorella species	0.0233%	98.7742%	9
152	360	Armandia maculata	0.0232%	98.7974%	9
153	533	Caecum johnsoni	0.0223%	98.8197%	9
154	44	Neanthes succinea	0.0222%	98.8419%	9
155	648	Neosamytha gracilis	0.0220%	98.8639%	9
156	543	Mactra frasilis	0.0216%	98.8855%	8
157	427	Pycnogonida (unidentified)	0.0209%	98.9064%	8
158	128	Pista palmata	0.0200%	98.9264%	8
159	218	Ogyrides limicola	98.9458%	8	
		0.0194%		10	

Appendix 4. Continued.

Rank	Species	Species Name	Percent	Cumulative	Overall
	No.				
160	28	Ancistrosyllis jonesi	0.0190%	98.9648%	7
161	335	Spionidae (unidentified)	0.0189%	98.9837%	7
162	79	Spio setosa	0.0187%	99.0024%	7
163	187	Balanus eburneus	0.0177%	99.0200%	7
164	15	Sthenelais boa	0.0173%	99.0373%	7
165	144	Crepidula fornicata	0.0164%	99.0537%	6
166	34	Podarke obscura	0.0163%	99.0700%	6
167	272	Laevicardium mortoni	0.0159%	99.0859%	6
168	311	Pandora trilineata	0.0155%	99.1015%	6
169	480	Spirorbis species	0.0151%	99.1165%	6
170	163	Ensis minor	0.0150%	99.1316%	6
171	428	Mysidopsis species	0.0139%	99.1455%	5
172	566	Boonea impressa	0.0138%	99.1593%	5
173	33	Parahesione luteola	0.0138%	99.1731%	5
174	198	Ampelisca verrilli	0.0138%	99.1868%	5
175	416	Chione species	0.0138%	99.2006%	5
176	512	Polychaeta juv. (unidentified)	0.0136%	99.2142%	5
177	440	Hauchiella species	0.0131%	99.2273%	5
178	225	Pagurus annulipes	0.0130%	99.2403%	5
179	136	Pomatoleios kraussi	0.0129%	99.2532%	5
180	99	Aricidea fragilis	0.0128%	99.2660%	5
181	84	Apoprionospio pygmaea	0.0126%	99.2785%	5
182	133	Sabella microphthalma	0.0125%	99.2910%	5
183	501	Callianassa species	0.0122%	99.3032%	5
184	69	Polydora websteri	0.0118%	99.3151%	5
185	89	Magelona phyllisae	0.0115%	99.3266%	5
186	580	Glycinde nordmanni	0.0115%	99.3380%	5
187	469	Megalops	0.0108%	99.3488%	4
188	41	Autolytus species	0.0102%	99.3590%	4
189	531	Diastylis species	0.0101%	99.3691%	4
190	379	Pyramidella crenulata	0.0100%	99.3790%	4
191	132	Sabella melanostigma	0.0097%	99.3887%	4
192	418	Eudorella monodon	0.0097%	99.3984%	4
193	29	Ancistrosyllis papillosa	0.0096%	99.4080%	4
194	102	Aricidea taylori	0.0095%	99.4175%	4
195	540	Pinnixa chacei	0.0092%	99.4267%	4
196	548	Dyspanopeus texana	0.0092%	99.4359%	4
197	169	Tagelus divisus	0.0091%	99.4450%	4
198	555	Tellina tampaensis	0.0090%	99.4540%	4
199	408	Nudibranchia (unidentified)	0.0089%	99.4629%	4

Appendix 4. Continued.

Rank	Species	Species Name	Percent	Cumulative	Overall
	No.				
200	78	Spio pettiboneae	0.0087%	99.4717%	3
201	352	Terebellidae (unidentified)	0.0087%	99.4803%	3
202	554	Eupomatus dianthus	0.0086%	99.4889%	3
203	73	Polydora species	0.0085%	99.4974%	3
204	573	Platynereis dumerilii	0.0085%	99.5059%	3
205	98	Scoloplos texana	0.0084%	99.5144%	3
206	507	Scolelepis squamata	0.0083%	99.5227%	3
207	503	Pyramidella species	0.0083%	99.5310%	3
208	393	Holothuroidea (unidentified)	0.0083%	99.5392%	3
209	12	Eunoe cf. nodulosa	0.0081%	99.5473%	3
210	324	Haploscoloplos species	0.0081%	99.5554%	3
211	333	Dorvilleidae (unidentified)	0.0080%	99.5635%	3
212	904	Ischadium recurvum	0.0079%	99.5714%	3
213	24	Paranaitis speciosa	0.0078%	99.5792%	3
214	23	Eumida sanguinea	0.0073%	99.5865%	3
215	502	Tagelus plebeius	0.0071%	99.5936%	3
216	290	Ancistrosyllis groenlandica	0.0070%	99.6007%	3
217	316	Sigalionidae (unidentified)	0.0070%	99.6077%	3
218	752	Pista cristata	0.0069%	99.6146%	3
219	596	Ophryotrocha species (unidentified)	0.0069%	99.6216%	3
220	142	Vitrinella floridana	0.0069%	99.6285%	3
221	572	Leptostylis species	0.0068%	99.6353%	3
222	292	Xenanthura brevitelson	0.0067%	99.6420%	3
223	202	Gammarus mucronatus	0.0066%	99.6486%	3
224	344	Notomastus cf. latericeus	0.0066%	99.6552%	3
225	120	Maldane sarsi	0.0065%	99.6617%	3
226	367	Sarsiella sp.	0.0064%	99.6681%	3
227	568	Paramya subovata	0.0064%	99.6744%	2
228	238	Xanthidae (unidentified)	0.0063%	99.6807%	2
229	541	Brada cf. villosa capensis	0.0063%	99.6870%	2
230	209	Ampelisca species B	0.0061%	99.6932%	2
231	511	Unidentified	0.0060%	99.6992%	2
232	271	Caecum glabrum	0.0059%	99.7051%	2
233	465	Lembos species	0.0059%	99.7109%	2
234	544	Sayella crosseana	0.0057%	99.7167%	2
235	319	Pilargiidae (unidentified)	0.0056%	99.7223%	2
236	299	Mystides rarica	0.0052%	99.7275%	2
237	165	Macoma tenta	0.0052%	99.7327%	2
238	355	Anachis obesa	0.0052%	99.7379%	2
239	204	Melita nitida	0.0049%	99.7428%	2

Appendix 4. Continued.

Rank	Species	Species Name	Percent	Cumulative	Overall
	No.				
240	343	Capitellidae (unidentified)	0.0049%	99.7478%	2
241	575	Fabricia species A	0.0046%	99.7524%	2
242	273	Mercenaria campechiensis	0.0045%	99.7569%	2
243	3	Ceriantharia (unidentified)	0.0045%	99.7614%	2
244	151	Odostomia species	0.0044%	99.7658%	2
245	354	Serpulidae (unidentified)	0.0044%	99.7702%	2
246	190	Bowmaniella brasiliensis	0.0044%	99.7746%	2
247	270	Cabira incerta	0.0043%	99.7789%	2
248	191	Bowmaniella species	0.0041%	99.7830%	2
249	207	Photis species	0.0041%	99.7872%	2
250	506	Thompsonula species	0.0040%	99.7911%	2
251	387	Corophium species	0.0039%	99.7951%	2
252	457	Potamilla reniformis	0.0039%	99.7990%	2
253	800	Ninoe nigripes	0.0039%	99.8029%	2
254	841	Aricidea species	0.0039%	99.8068%	2
255	127	Microphthalmus abberrans	0.0038%	99.8106%	1
256	149	Nassarius vibex	0.0037%	99.8144%	1
257	188	Mysidopsis bigelowi	0.0035%	99.8179%	1
258	567	Hesione picta	0.0034%	99.8213%	1
259	869	Mytilidae (unidentified)	0.0034%	99.8247%	1
260	283	Paranaitis polynoides	0.0034%	99.8281%	1
261	470	Crassostrea virginica	0.0033%	99.8315%	1
262	173	Petricola pholadiformes	0.0033%	99.8347%	1
263	421	Anachis semiplicata	0.0033%	99.8380%	1
264	774	Naineris bicornis	0.0033%	99.8413%	1
265	93	Chaetozone setosa	0.0033%	99.8446%	1
266	57	Marphysa sanguinea	0.0032%	99.8478%	1
267	395	Ascidiacea (unidentified)	0.0032%	99.8511%	1
268	293	Pilargis berkelyae	0.0032%	99.8542%	1
269	551	Sarsiella spinosa	0.0030%	99.8573%	1
270	36	Anomia simplex	0.0030%	99.8603%	1
271	138	Serpulidae A	0.0030%	99.8633%	1
272	232	Callinectes sapidus	0.0030%	99.8663%	1
273	147	Mitrella lunata	0.0030%	99.8693%	1
274	241	Pinnixa retinens	0.0028%	99.8721%	1
275	327	Glycera capitata	0.0028%	99.8749%	1
276	90	Magelona rosea	0.0026%	99.8776%	1
277	552	Sigambra cf. wassi	0.0026%	99.8802%	1
278	326	Glyceridae (unidentified)	0.0026%	99.8829%	1
279	650	Euclymene species A	0.0026%	99.8855%	1

Appendix 4. Continued.

Rank	Species	Species Name	Percent	Cumulative	Overall
	No.				
280	123	Owenia fusiformis	0.0026%	99.8881%	1
281	154	Dentalium texasianum	0.0026%	99.8907%	1
282	549	Brachyuran zoea	0.0025%	99.8932%	1
283	64	Lumbrineris latreilli	0.0024%	99.8957%	1
284	146	Polinices duplicatus	0.0024%	99.8981%	1
285	629	Texadina barretti	0.0024%	99.9005%	1
286	306	Phyllodocidae (unidentified)	0.0024%	99.9028%	1
287	438	Parametopella species	0.0024%	99.9052%	1
288	651	Lumbrineris branchiata	0.0023%	99.9075%	1
289	112	Capitellides jonesi	0.0022%	99.9097%	1
290	224	Clibanarius vittatus	0.0021%	99.9118%	1
291	208	Synchelidium americanum	0.0020%	99.9138%	1
292	447	Amphipoda (unidentified)	0.0020%	99.9157%	1
293	281	Piromis arenosus	0.0020%	99.9177%	1
294	578	Synsyllis longigularis	0.0019%	99.9196%	1
295	612	Ophiuroidea (unidentified)	0.0019%	99.9216%	1
296	782	Pomatoleios caerulescens	0.0019%	99.9235%	1
297	620	Sarsiella capsula	0.0019%	99.9254%	1
298	372	Sipuncula (unidentified)	0.0019%	99.9273%	1
299	532	Sphaerosyllis erinaceus	0.0018%	99.9291%	1
300	366	Sarsiella disparalis	0.0018%	99.9308%	1
301	356	Pinnotheridae (unidentified)	0.0017%	99.9325%	1
302	320	Hesionidae (unidentified)	0.0017%	99.9342%	1
303	52	Nephtys species	0.0016%	99.9358%	1
304	318	Bulla striata	0.0015%	99.9373%	1
305	350	Ampharetidae (unidentified)	0.0015%	99.9388%	1
306	211	Trachypenaeus constrictus	0.0013%	99.9401%	1
307	317	Amphinomidae (unidentified)	0.0013%	99.9414%	1
308	369	Listriella species A	0.0013%	99.9427%	1
309	420	Solen viridis	0.0013%	99.9441%	1
310	623	Nereis lamellosa	0.0013%	99.9454%	1
311	59	Onuphis eremita	0.0013%	99.9467%	1
312	407	Ancistrosyllis species	0.0013%	99.9480%	1
313	221	Euceramus praelongus	0.0013%	99.9493%	1
314	461	Brada species	0.0013%	99.9505%	1
315	560	Crassinella lunulata	0.0013%	99.9518%	1
316	589	Odostomia canaliculata	0.0013%	99.9531%	1
317	240	Pinnixa cristata	0.0013%	99.9544%	1
318	837	Allothyone mexicana	0.0013%	99.9557%	1
319	622	Henrya goldmani	0.0012%	99.9569%	0

Appendix 4. Continued.

Rank	Species	Species Name	Percent	Cumulative	Overall
	No.				
320	409	Cyclaspis species	0.0012%	99.9581%	0
321	177	Martesia species	0.0011%	99.9592%	0
322	275	Tellidora cristata	0.0011%	99.9603%	0
323	490	Fargoa cf. gibbosa	0.0010%	99.9613%	0
324	47	Aglaophamus verrilli	0.0009%	99.9622%	0
325	227	Paguridae (juvenile)	0.0009%	99.9631%	0
326	252	Paramphinome jeffreysii	0.0009%	99.9639%	0
327	314	Polynoidae (unidentified)	0.0009%	99.9648%	0
328	411	Macoma species	0.0009%	99.9657%	0
329	234	Neopanope texana	0.0008%	99.9665%	0
330	527	Fabriciola trilobata	0.0008%	99.9673%	0
331	634	Lepidophthalamus louisianensis	0.0008%	99.9681%	0
332	1	Hydrozoa (unidentified)	0.0007%	99.9687%	0
333	20	Eteone lactea	0.0007%	99.9694%	0
334	164	Macoma brevifrons	0.0007%	99.9700%	0
335	182	Labidocera aestiva	0.0007%	99.9707%	0
336	233	Callinectes species	0.0007%	99.9714%	0
337	286	Cantharus cancellarius	0.0007%	99.9720%	0
338	336	Magelonidae (unidentified)	0.0007%	99.9727%	0
339	388	Truncatella caribaeensis	0.0007%	99.9733%	0
340	398	Epitonium species	0.0007%	99.9740%	0
341	429	Penaeus aztecus	0.0007%	99.9746%	0
342	534	Mollusca (unidentified)	0.0007%	99.9753%	0
343	581	Tharyx species	0.0007%	99.9759%	0
344	582	Balanus trigonus	0.0007%	99.9766%	0
345	617	Nematonereis hebes	0.0007%	99.9773%	0
346	621	Clymenella mucosa	0.0007%	99.9779%	0
347	645	Eupolymnia species	0.0007%	99.9786%	0
348	45	Nereis pelagica occidentalis	0.0006%	99.9792%	0
349	153	Doridella obscura	0.0006%	99.9799%	0
350	156	Anadara transversa	0.0006%	99.9805%	0
351	435	Dentalium species	0.0006%	99.9811%	0
352	652	Episiphon sowerbyi	0.0006%	99.9818%	0
353	780	Eulimastoma cf. teres	0.0006%	99.9824%	0
354	781	Turbonilla portoricana	0.0006%	99.9831%	0
355	783	Trypanosyllis gemnipara	0.0006%	99.9837%	0
356	836	Crepidula species	0.0006%	99.9844%	0
357	900	Synelmis albini	0.0006%	99.9850%	0
358	907	Tellina versicolor	0.0006%	99.9857%	0
359	625	Pilargis species	0.0006%	99.9863%	0
				0	

Appendix 4. Continued.

Rank	Species No.	Species Name	Percent	Cumulative	Overall
360	77	Dispio uncinata	0.0006%	99.9869%	0
361	295	Bowmaniella dissimilis	0.0006%	99.9875%	0
362	556	Littorina ziczac	0.0006%	99.9882%	0
363	558	Prionospio treadwelli	0.0006%	99.9888%	0
364	48	Nephtys picta	0.0004%	99.9892%	0
365	60	Onuphis species	0.0004%	99.9897%	0
366	176	Cyrtopleura costata	0.0004%	99.9901%	0
367	215	Alpheus heterochaelis	0.0004%	99.9905%	0
368	277	Anadara ovalis	0.0004%	99.9910%	0
369	285	Echiuridae (unidentified)	0.0004%	99.9914%	0
370	294	Lumbrineris tenuis	0.0004%	99.9919%	0
371	328	Goniadidae (unidentified)	0.0004%	99.9923%	0
372	331	Lumbrineridae (unidentified)	0.0004%	99.9927%	0
373	406	Sthenelais species	0.0004%	99.9932%	0
374	417	Munna hayesi	0.0004%	99.9936%	0
375	422	Callinectes similis	0.0004%	99.9941%	0
376	550	Ancistrosyllis cf. falcata	0.0004%	99.9945%	0
377	576	Munnidae (unidentified)	0.0004%	99.9949%	0
378	607	Eurythoe species	0.0004%	99.9954%	0
379	616	Paramphinome pulchella	0.0004%	99.9958%	0
380	647	Agriopoma texasianum	0.0004%	99.9963%	0
381	657	Malmgreniella species	0.0004%	99.9967%	0
382	795	Potamanthidae (unidentified)	0.0004%	99.9971%	0
383	805	Cyclinella tenuis	0.0004%	99.9976%	0
384	854	Diptera (unidentified)	0.0004%	99.9980%	0
385	426	Arenicola cristata	0.0004%	99.9984%	0
386	494	Chironomidae (pupae)	0.0004%	99.9988%	0
387	505	Cassidinidea lunifrons	0.0004%	99.9992%	0
388	574	Insecta (unidentified)	0.0004%	99.9996%	0
389	613	Rithropanopeus harrisi	0.0004%	100.000%	0
		Total			39,308

