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ABSTRACT 
 

 Myoglobin (Mb) is an oxygen binding hemoprotein in vertebrate skeletal muscle 

that functions in intracellular oxygen storage and transport.  Due to the unique oxygen 

storage demands of diving birds and mammals, these vertebrates can have Mb 

concentrations ten-fold those found in their terrestrial counterparts making them ideal 

animal models for studying Mb function.   Increased Mb bound muscle oxygen stores 

are advantageous for diving vertebrates, but Mb concentration optimized to maintain 

aerobic metabolism while diving or limiting to aerobic dive duration?  A numeric model 

simulating a diving Weddell seal was created to examine physiological factors that 

influence dive duration and optimal Mb concentration.  Mb concentration was limiting to 

dive duration in postabsorptive dives.  However, Mb concentration was optimized for 

postprandial dives which were limited by blood-bound oxygen stores due to the 

additional metabolic costs of digestion.     

While Mb concentration is adaptive in diving vertebrates, less is known about 

molecular adaptation of Mb functional properties.  Novel methods were developed to 

extract Mb from frozen muscle and determine Mb oxygen affinity (P50) by generating a 

high resolution oxygen dissociation curve at 37°C.  For comparison, Mb P50 was 

determined for 25 species of diving and terrestrial birds and mammals.  Myoglobin P50 

was conserved among terrestrial vertebrates and most cetaceans at approximately 3.7 

mmHg with the exception of the melon-headed whale that had a significantly higher P50 

(lower oxygen affinity) of 4.85 mmHg.  Among pinnipeds (seals and sea lions) the P50 

ranged from 3.23-3.81 mmHg and showed a trend for higher oxygen affinity in species 

with longer dive durations.  Among diving birds the P50 ranged from 2.40-3.36 mmHg 

and also showed a trend of higher affinities in species with longer dive durations.    Both 

myoglobin concentration and oxygen affinity appear adaptive in diving vertebrates to 

maintain aerobic metabolism and minimize hypoxic cellular damage in ischemic muscle. 
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NOMENCLATURE 
 

ADL Aerobic dive limit 

β BO2 Capacitance coefficient of oxygen in blood (ml O2 l-1 blood) 

cADL Aerobic dive limit calculated from useable oxygen stores and diving 
metabolic rate 

CaO2 Arterial blood oxygen concentration (ml O2 l-1 blood) 

CBvO2 Cerebral venous blood oxygen concentration (ml O2 l-1 blood) 

CHvO2 Coronary venous blood oxygen concentration (ml O2 l-1 blood) 

CMvO2 Skeletal muscle venous blood oxygen concentration (ml O2 l-1 blood) 

CNV Copy-number variant 

CSRCvO2 
Splanchnic, renal, cutaneous and other peripheral tissue venous blood 
oxygen concentration (ml O2 l-1 blood) 

CvO2 Venous blood oxygen concentration (ml O2 l-1 blood) 

Cv 
_
 O2 Mixed venous blood oxygen concentration (ml O2 l-1 blood) 

Cygb Cytoglobin 

DP Globin distal pocket 

EBO2 Extraction coefficient of oxygen from blood [(CaO2- CvO2)/ CaO2] 

fH Heart frequency (beats min-1) 

Hb Hemoglobin 

Hct Blood hematocrit 

Mb Myoglobin 
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Ngb Neuroglobin 

ODC Oxygen dissociation curve 

P50 
Globin oxygen affinity defined as partial pressure of oxygen at globin half 
saturation (mmHg) 

PaO2 Arterial blood oxygen partial pressure (mmHg) 

PO2 Oxygen partial pressure (mmHg) 

PvO2 Venous blood oxygen partial pressure (mmHg) 

Q 
.
   Blood flow rate (l min-1) 

Q 
.
  B Brain blood flow (l min-1) 

Q 
.
  H Heart blood flow (l min-1) 

Q 
.
  M Skeletal muscle blood flow (l min-1) 

Q 
.
  O2 

Convective oxygen transport in the blood (ml O2 min-1) 

Q 
.
  SRC Splanchnic, renal, cutaneous and other peripheral tissue blood flow (l min-1) 

ROS Reactive oxygen species 

SaO2 Arterial blood oxygen saturation (%) 

SvO2 Venous blood oxygen saturation (%) 

Sv 
_
  O2 Mixed Venous blood oxygen saturation (%) 

V 
.
  b Cardiac output (l min-1) 

V 
.
  BO2

 Brain oxygen consumption rate (ml O2 min-1) 

V 
.
  HO2

 Heart oxygen consumption rate (ml O2 min-1) 

V 
.
  MO2

 Skeletal muscle oxygen consumption rate (ml O2 min-1) 
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V 
.
 O2 

Rate of oxygen consumption (ml O2 min-1) 

VS Stroke volume (l) 

V 
.
 SRCO2

 
Splanchnic, renal, cutaneous and other peripheral tissue oxygen 
consumption rate (ml O2 min-1) 
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CHAPTER I 

INTRODUCTION: 

MYOGLOBIN FORM AND FUNCTION 
 

Myoglobin (Mb) is a member of a family of oxygen binding globin proteins that 

share a common globin ancestor but have diversified throughout the vertebrate lineage.  

Evolution has shaped these proteins to optimize their function in distinct roles and their 

level of expression in their various tissues.  Myoglobin is expressed in vertebrate cardiac 

and skeletal muscle, and its primary role is to facilitate intracellular diffusion and storage 

of oxygen.  Mutations in Mb structure can affect its functional properties including 

oxygen affinity, structural stability, and solubility in solution.  Although Mb structure is 

known to vary among species, it is not known how this structural variation affects Mb 

oxygen affinity.  In the muscles of air-breathing diving vertebrates, Mb concentration 

can be ten-fold greater than in their terrestrial counterparts, making the divers excellent 

animal models to study the function and expression of Mb.  While diving vertebrates 

benefit from increased Mb expression, questions remain about what might limit the 

maximum concentration of Mb and whether its functional properties (e.g. oxygen 

affinity) differ from those of terrestrial species.   

 

Globin Structure and Molecular Evolution 

For single-celled and very small multicellular organisms, simple diffusion is 

adequate for gas exchange. However, oxygen binding proteins and a circulatory system 

were prerequisites for the evolution of larger, multicellular animals (Hoffmann et al., 

2012).  Myoglobin (Mb) is a member of the family of oxygen binding globin proteins 

which also includes hemoglobin (Hb), neuroglobin (Ngb) and cytoglobin (Cygb).  These 

proteins share a common globin ancestor, and their divergence originated from multiple 

duplication events of an ancestral globin gene early in vertebrate evolution (Storz et al., 

2011).  Because gene duplicates provide opportunities for genetic mutations without 

negative consequences, there is a greater rate of mutation within these copy-number 
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variants (CNV) than in other portions of the genome (Zhang et al., 2009).  The 

duplication and specialization of the globins established separate physiological roles and 

regulation of expression in these distinct proteins (Terwilliger, 1998).   

Despite the diversification of the globin genes, certain functional characteristics 

have been highly conserved.  The globins share a common ‘globin fold’ structure that 

nests a heme prosthetic group capable of reversibly binding oxygen.  While the amino 

acid sequence among these homologous genes can vary by as much as 75%, the overall 

tertiary structure and ligand binding regions are highly conserved (Bashford et al., 1987; 

Pesce et al., 2003).  The functional properties (e.g., oxygen affinity) of these proteins can 

be altered by mutational changes in structure, and site mutation studies have 

demonstrated that considerable differences in Mb oxygen affinity can be produced by 

single amino acid substitutions (Carver et al., 1992; Scott et al., 2001; Dasmeh and 

Kepp, 2012). Structural variants that increase the stability of the oxygen-bound form 

result in an increase in globin oxygen affinity (Ajloo et al., 2002).  Mb amino acid 

sequences from a variety of diving and terrestrial air breathing vertebrates show 

considerable variability in primary protein structure (UniProt Consortium, 2013; 

www.uniprot.org), and these structural variants produce functional phenotypes that are 

subject to natural selection (Naylor and Gerstein, 2000; Wittenberg and Wittenberg, 

2003).  However, little is known about changes in the functional properties of Mb 

resulting from structural variability among vertebrates.  While Mb oxygen affinities are 

published for various species, they have been measured at a variety of temperatures 

using differing experimental techniques and are therefore difficult to compare.        

Mb is one of the most studied and best known of all proteins.  Over half a 

century ago, Mb became the first protein to have its structure characterized (Kendrew et 

al., 1958; Kendrew et al., 1960) for which John Kendrew shared the Nobel Prize in 

chemistry in 1962.  Our early understanding of Mb was of a simple muscle heme protein 

with the function of temporarily storing oxygen, but subsequent research revealed 

previously unknown roles and unimagined complexities in protein dynamics 

(Frauenfelder, 2010).   
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Figure 1.1  Image of sperm whale Mb (PDB accession # 1J52) with bound heme (gray) created using 
UCSF Chimera (Petterson et al., 2004).  On either side of the heme in yellow are the proximal (H93) and 
distal (H64) histidines.  The four Xe pockets are blue, and the distal pocket (DP) is denoted by the green 
circle. 

 
 
 
The structure of vertebrate Mb typifies the globin family.  It is a small protein 

(typically 153 amino acids) arranged in 8 α helices surrounding a heme porphyrin ring 

with a pentacoordinate central iron (Figure 1.1).  Conservation of Mb structure includes 

a preservation of hydrophilic amino acids on the outward facing regions which enhance 

solubility and mobility within the cytoplasm, as well as internal hydrophobic amino 

acids that stabilize the tertiary structure (Bashford et al., 1987).  The conserved, internal 

hydrophobic amino acids form a series of cavities including the heme pocket, the distal 

pocket, and four additional xenon (Xe) binding pockets (Xe1-Xe4) (Harada et al., 2007).  

The internally bound heme is stabilized by hydrophobic interactions with the nonpolar 

Xe1 

Xe2 Xe3 

DP 
H64 

H93 

Xe4 
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amino acids lining the heme pocket.   The distal pocket is an outcropping of the heme 

pocket adjacent to the heme central iron atom which provides a space for ligand-heme 

interactions (Harada et al., 2007).  Although their contribution to ligand binding kinetics 

is not well understood, the Xe pockets are thought to transiently harbor ligands such as 

O2, CO, and nitric oxide (NO) as well (Tomita et al., 2010).  

 

Myoglobin Function 

Mb facilitates the transport of oxygen in muscle, although the functional 

significance of this is debated and the mechanism is poorly understood (Conley et al., 

2000; Jürgens et al., 2000).  The compensatory mechanisms exhibited in Mb knockout 

mice (Gödecke et al., 1999) along with earlier studies (Wittenberg, 1970; Wittenberg, 

2007) indicate some role for Mb in maintaining oxygen flux through facilitated 

diffusion.  The contribution of Mb to net oxygen flux is increased under conditions of 

low PO2 or high Mb concentration (Lin et al., 2007b).   

In addition to facilitating oxygen diffusion, Mb also stores intracellular oxygen 

(Dasmeh and Kepp, 2012) and buffers oxygen availability to mitochondria at the onset 

of muscle activity.  In human subjects performing isolated leg extensions at moderate 

intensity, Mb oxygen saturation decreases from 100% to  ~60% within 20 sec where it is 

maintained despite increased work load to maximum effort (Richardson et al., 1995).  A 

more deoxygenated steady state level of ~50% saturation was achieved under hypoxic 

conditions while the subjects breathed 12% oxygen.  A steady-state level of saturation 

up to maximum aerobic capacity supports the hypothesis that partially deoxygenated Mb 

produces a gradient to facilitate oxygen transport.  Although the oxygen storage role of 

Mb is limited to short-duration buffering of mitochondrial oxygen available at the low 

concentrations found in terrestrial vertebrates, oxy-Mb can be a significant oxygen 

reserve in animals with higher Mb concentrations of Mb (Kooyman and Ponganis, 1998; 

Dasmeh and Kepp, 2012). 

In addition to binding oxygen, deoxy-Mb has nitrite reductase activity, making it 

a significant generator of NO from endogenous nitrite during periods of hypoxia 
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(Hedgen-Cotta et al., 2014).  Nitric oxide not only acts as a potent vasodilator in 

response to regional muscle hypoxia, but also may play a role in mediating muscle 

metabolism by inhibiting mitochondrial cytochrome oxidase activity (Wittenberg and 

Wittenberg, 2003; Shiva et al., 2007).  When endogenous oxygen stores and convective 

oxygen transport to muscles are inadequate, hypoxic conditions can lead to an increase 

in the production of reactive oxygen species (ROS), resulting in the oxidation of 

intracellular proteins and lipids and causing cellular damage.  Myoglobin can mitigate 

ROS by two mechanisms: by reducing ROS production in mitochondria and by acting as 

a peroxidase to scavenge ROS.   

Although much is known about Mb, surprisingly little is understood about its 

functional performance among different species.  Studies involving Mb knockout mice 

showed that these animals were able to live, exercise, and reproduce normally without 

Mb, thereby raising questions about its physiological significance (Garry et al., 1998).  

However, the ability of these animals to function normally was due to compensatory 

mechanisms that increased convective oxygen transport and reduced the diffusive 

distance for oxygen in muscle (Gödecke et al., 1999; Garry, 2007).  While Mb knockout 

mice were able to perform normally under normoxic conditions, chronic hypoxia 

resulted in a decrease in left ventricular function compared to wild type mice (Mammen 

et al., 2003).  The various functional roles of Mb including ROS scavenging, NO 

scavenging, oxygen transport, and oxygen storage appear to be more significant under 

hypoxic conditions.   

 

Myoglobin in Air-breathing, Diving Vertebrates 

Diving vertebrates spend considerable time submerged, and exhibit many 

adaptations at the behavioral, organ, cellular and biochemical level that maximize 

aerobic dive duration (Davis, 2014; Yim et al., 2014).  Many marine mammals  use 

efficient stroke and glide swimming to exploit changes in buoyancy during descent that 

minimize energy expenditure (Williams et al., 2000; Davis et al., 2001) and they adjust 

their dive to remain within their aerobic dive limit (ADL) which minimizes recovery 
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time at the surface and maximizes the time spent submerged (Davis 2014). Among the 

physiological adaptations for diving are elevated levels of oxygen binding globin 

proteins.  Blood bound oxygen is enhanced by the combined effects of increased blood 

volume and Hb concentration.  Increased Mb concentration enhances muscle oxygen and 

represents approximately 20% to over 50% of total body oxygen stores in many 

cetaceans, seals, and penguins (Ponganis, 2011; Kooyman and Ponganis, 1998).   

The level of expression of Mb in muscle is regulated by both genetic and 

environmental cues (Ordway and Garry, 2004).  Since maintaining oxygen delivery to 

mitochondria in aerobic muscle appears to be the primary function of Mb, it is not 

surprising its expression is up-regulated in response to hypoxia.  Hypoxia alone is 

sufficient to increase Mb expression in cultured Weddell seal muscle (DeMiranda et al., 

2012), but an additional calcium stimulus is needed in terrestrial animals (Kanatous et 

al., 2009).  The unusually high expression of Mb in air-breathing diving vertebrates 

appears to be regulated by the combined physiological effects of exercise with muscle 

hypoxia (Kanatous and Mammen, 2010).   

Elevated Mb concentrations in diving mammals and birds is positively correlated 

with breath-hold ability.  Cetaceans (whales and dolphns) that make longer dives have a 

higher Mb concentration than their shorter duration counterparts (Dolar et al., 1999; 

Kielhorn et al., 2013; Helbo and Fago, 2012).  Myoglobin concentration also increases 

with the ontogenetic development of diving ability in seals (Kanatous et al., 2008; 

Geiseler et al., 2013) and penguins (Ponganis et al., 1999; Ponganis et al., 2010).   

Myoglobin is not homogeneously distributed in the locomotory muscles and is highest in 

areas that produce greater force and consume more oxygen during aerobic swimming in 

penguins (Ponganis et al., 1997b), cetaceans (Dolar et al., 1999; Polasek and Davis, 

2001), and seals (Polasek et al., 2006).   

In addition to elevated Mb concentration, diving birds and mammals have a 

variety of other muscle adaptations for improving diving ability.  Oxidative fiber types 

dominate in the muscles of long-duration diving species to a greater extent than their 

terrestrial or short-duration counterparts (Kanatous et al., 2002; Kielhorn et al., 2013, 
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Watson et al., 2003) which further suggests that these animals routinely dive within their 

aerobic dive limit.  Reduced mitochondrial volume density and greater muscle fiber 

diameter are found in cetaceans (Kielhorn et al., 2013) and seals (Kanatous et al., 2002) 

that make very long dives which could be adaptive for minimizing muscle energy 

expenditure (Kielhorn et al., 2013).   

During voluntary aerobic dives, marine mammals exhibit a dive response that 

includes apnea, bradycardia, and peripheral vasoconstriction.  The decrease in cardiac 

output due to bradycardia results in peripheral vasoconstriction to maintain central 

arterial blood pressure, but it is exercise modulated to maximize the aerobic dive limit at 

different levels of exertion (Davis and Williams, 2012).  The dive response regulates 

skeletal muscle hypoxia so that blood and muscle oxygen stores are used efficiently at 

different levels of exercise to maximize aerobic dive duration (Davis, 2014). This is 

achieved by adjusting cardiac output and convective oxygen transport to muscle 

according to the rate of muscle oxygen consumption so that the muscle becomes hypoxic 

(but not anoxic) which allows Mb-bound oxygen to be released so that it can diffuse into 

the mitochondria. With increasing levels of exercise, convective oxygen transport to 

active muscle must be increased to maintain aerobic muscle metabolism and 

simultaneously deplete blood and muscle oxygen stores.   

 

Conclusions 

Although Mb has been extensively studied, much of this research has focused on 

protein chemistry and not on its biological role.  Tomita et al. (2010) emphasized the 

importance of considering recent Mb research from the perspective of comparative 

physiology.  In this dissertation, I will use the unique physiology of diving vertebrates as 

a model to study the variance in expression, form, and function of Mb to gain insight 

into adaptive molecular evolution and the physiological role of Mb.   

Diving vertebrates have dramatically higher Mb concentrations than their 

terrestrial counterparts, but it is unclear what limits the maximum concentration and if 

molecular adaptations influence its role as an intramuscular oxygen store.  The evolution 
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of prolonged breath-hold diving has influenced the expression, structure and function of 

globin proteins in diving vertebrates (Mircetta et al., 2013; Helbo and Fago, 2012; 

Dasmeh et al., 2013).  The following chapters will explore the role of Mb in diving 

marine vertebrates including how levels of Mb expression optimize dive duration and 

the functional properties of Mb oxygen affinity that may be adaptive.   
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CHAPTER II 

THE EFFECT OF MYOGLOBIN CONCENTRATION ON  

AEROBIC DIVE LIMIT IN A WEDDELL SEAL* 
 

 One physiological adaptation for prolonged dive duration in marine mammals is 

an elevated myoglobin (Mb) concentration in skeletal muscle.  To determine the 

influence of Mb concentration on the aerobic dive limit (ADL), we modified a 

previously published model that simulated aerobic dives in a Weddell seal 

(Leptonychotes weddellii) and ran it for four Mb concentrations: 5, 27, 54 and 108 g Mb 

kg-1 muscle representing 7%, 50%, 100% and 200%, respectively, of the normal Mb 

concentration in Weddell seal skeletal muscle.  The model was run at increasing levels 

of muscular exertion and under postabsorptive and postprandial conditions to determine 

their effect on ADL.  For each set of conditions, the model was also run at different 

levels of cardiac output (i.e., the dive response was varied) to determine the level of 

convective oxygen transport that optimized the ADL.  In a postabsorptive state at a 

routine level of muscular exertion for a diving Weddell seal, a decrease in Mb 

concentration to 7% of normal caused a 39% decrease in the ADL (18 min to 11 min), 

while doubling the Mb concentration increased the ADL by 30% (18 min to 24 min).  

Under postprandial conditions at a routine level of muscular exertion, doubling the Mb 

concentration did not increase the ADL (12 min).  The convective oxygen transport 

needed to meet the metabolic demands (Heat Increment of Feeding, HIF) of the 

splanchnic organs during digestion and assimilation required a cardiac output that was 

not optimal for the efficient use of muscle oxygen stores.  This resulted in an over 

perfusion of the muscles and incomplete use of myoglobin-bound oxygen.  As a result, 

the postprandial ADL was limited by the amount of oxygen stored in the blood, and 

increasing the Mb concentration had no effect on the ADL. We hypothesize that 

myoglobin concentration is optimized for the type and duration of dives routinely made 
                                                
* Reprinted with permission from: 
Wright, T. J. and Davis, R. W.  (2006).  The effect of myoglobin concentration on aerobic dive limit in a 

Weddell seal.  J. Exp. Biol. 209 (13), 2576-2585. 
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by Weddell seals, and that a further increase may not increase the ADL for most free-

ranging dives. 

 

Introduction 

 Weddell seals and other marine mammals exhibit physiological adaptations and 

behavioral strategies that increase dive duration.  These include an elevation in total 

body oxygen stores through increases in blood volume, hematocrit (Hct, the percentage 

of blood volume occupied by red blood cells) and muscle myoglobin (Mb) 

concentration.  In addition, marine mammals use efficient modes of locomotion (e.g., 

gliding during descent, stroke-and-glide swimming) that keep oxygen consumption low 

during diving (Williams et al., 2000; Williams, 2001).  For Weddell seals, these 

physiological adaptations and behavioral strategies result in an aerobic dive limit (ADL) 

of about 20 min (Davis and Kanatous, 1999; Ponganis et al., 1993a; Kooyman et al., 

1980).    

     If body oxygen stores are the primary physiological limit to dive duration, why are 

they not larger?  During the evolution of marine mammals, what physiological factors 

may have set the upper limit to blood volume, Hct and muscle Mb concentration?  

Weddell seals have a blood volume as high as 21% of their body mass (Ponganis et al., 

1993a), almost three times larger than predicted for a terrestrial mammal of the same 

size (Stahl, 1967).  The upper limit to blood volume may be a compromise between 

increasing oxygen stores and the resultant increase in body mass or abdominal volume. 

       The Hct of Weddell seals (ca. 60%), which is 1.5-times higher than in most 

terrestrial mammals, increases blood oxygen stores and maintains convective oxygen 

transport to organs and tissues as the partial pressure of oxygen in the blood decreases 

during diving.  However, the increased Hct also increases blood viscosity, circulatory 

resistance and heart work (Elsner and Meiselman, 1995).  As a result, the large spleen of 

Weddell seals sequesters red blood cells, lowers the hematocrit, and decreases blood 

viscosity when they are at the surface.  Only when they begin diving does the spleen 

contract and release additional red blood cells into the circulation, which increases the 
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hematocrit while heart rate is reduced due to the dive response (Hurford et al., 1996).  A 

hematocrit greater than 60% would further increase blood viscosity, increase heart work, 

and could decrease rather than increase convective oxygen transport.(Hedrick and 

Duffield, 1986).  Consequently, the elevated Hct of Weddell seals and other marine 

mammals may be at its physiological maximum for optimizing blood oxygen storage 

and convective oxygen transport.   

     The concentration of Mb in the skeletal muscles of Weddell seals is about 10-times 

greater than in most terrestrial mammals (Snyder, 1983).  Oxygen bound to Mb 

represents one-third of the total oxygen store in Weddell seals, so it is a major factor in 

setting the ADL (Davis and Kanatous, 1999; Kooyman and Ponganis, 1998).  However, 

it is not clear what physical or physiological factors may have set the maximum 

concentration of muscle Mb.  The objective of this study was to model the effects of 

different muscle Mb concentrations on the ADL of Weddell seals.  Specifically, we 

wanted to know how increasing or decreasing Mb concentration beyond normal levels 

would affect the ADL.  Although lowering the Mb concentration would obviously 

decrease the ADL, would increasing the concentration automatically increase it?  To 

answer this question, we used a previously published model of convective oxygen 

transport and tissue oxygen consumption (Davis and Kanatous, 1999).  We ran the 

model at different myoglobin concentrations for various levels of muscular exertion 

under postabsorptive and postprandial conditions to determine their effect on ADL. 

 

Materials and Methods 

Theoretical Basis for the Model: Fick’s Principal 

          A numerical integration technique was used to model the relationship between 

regional convective oxygen transport (Q 
.
  O2) and the rate of oxygen consumption (V 

.
 O2) in 

a hypothetical Weddell seal during aerobic dives at different levels of muscle oxygen 

consumption (V 
.
  MO2

) (see Nomenclature for a list of symbols).  A detailed description of 

the model and an explanation of the assumptions and equations under postabsorptive 
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conditions has been published (Davis and Kanatous 1999).  This study differed from that 

of Davis and Kanatous (1999) in that we ran the model with four different muscle Mb 

concentrations during aerobic dives under both postabsorptive and postprandial 

conditions.  The numerical process iteratively determined arterial blood oxygen 

concentration (CaO2) and venous blood oxygen concentration (CvO2) for various tissues 

and organs based on the circulatory diagram shown in Figure 2.1 and equation 1 (Fick’s 

principle):  

V 
.
 O2 = Q 

.
  (CaO2 - CvO2)     (1) 

where Q 
.
   is blood flow rate.  Cerebral, coronary, and skeletal muscle regional 

circulations were incorporated into the model individually, while splanchnic, renal and 

cutaneous circulations were grouped together with all other organs and tissues (e.g., 

bone and fat).  The average temporal resolution (i.e., the period between consecutive 

computations) was 0.22 min. 

     This model considers only dives that are within the seal’s ADL (Kooyman et al., 

1980; Ponganis et al., 1993a).  The term ADL was used in this model to describe the 

maximum duration of an aerobic dive under specific conditions.  The basal contribution 

of anaerobic metabolism in harbor seals has been shown to constitute approximately 2% 

of ATP production in a resting state and 1% during active swimming (Davis et al., 

1991).  For this model, this small basal contribution of anaerobic metabolism is ignored, 

and tissues are considered aerobic as long as there is no increased reliance on anaerobic 

metabolism resulting in an increase in blood lactate over resting levels.  While terms 

such as diving lactate threshold (DLT) and calculated aerobic dive limit (cADL) are 

useful for certain applications (Butler and Jones, 1997), they were not applicable to all 

conditions used to terminate a dive in this model.  DLT was not used because increased 

blood lactate resulting from anaerobic metabolism was not necessary to terminate a dive 
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Figure 2.1  Simplified circulatory system used in the model.  The cardiovascular system was divided into 
four regional circulations:  coronary, cerebral, skeletal muscle and a combined category that included the 
splanchnic, renal, cutaneous and other circulatory beds. 
 
 
 
in this model.  The term cADL is historically used to denote a calculation of aerobic dive 

limit based on total useable oxygen stores divided by whole body metabolism.  While 

this model does calculate an ADL, it does so through modeling of blood flow and 

metabolism in individual tissues which can produce vastly different results than whole 

body calculations in some metabolic states.  The rate of oxygen consumption in the 

tissues is maintained until convective oxygen delivery falls below a critical level and 

endogenous oxygen stores (skeletal muscle only) are depleted resulting from a 
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combination of ischemic and hypoxic hypoxia.  When any organ (e.g., splanchnic 

organs) or tissue (e.g., skeletal muscle) no longer has sufficient oxygen to support 

aerobic metabolism (i.e., the point at which anaerobic energy metabolism commences), 

then the ADL has been reached and the dive is terminated.   

 

Assumptions and Equations 

     Organ and tissue masses were based on published values for a 450 kg adult Weddell 

seal (Fujise et al., 1985; Zapol et al., 1979) as described in Davis and Kanatous in Table 

1 (1999).  The resting V 
.
 O2 for Weddell seal organs and tissues were estimated from the 

metabolic mass adjusted V 
.
 O2 for the equivalent organs of a human or rat (Diem and 

Lentner, 1970; Field et al., 1939; Kety, 1957).  The basal, whole body V 
.
 O2 (897 ml O2 

min-1 or 2.0 ml O2 min-1 kg-1) was calculated by combining individual organ and tissue 

metabolic rates.  The calculated basal metabolic rate was similar to the minimum 

metabolic rates measured for adult Weddell seals during rest or sleep (Castellini et al., 

1992b; Ponganis et al., 1993a; Williams et al., 2004).  

     Resting heart rate (fH) (51.5 beats min-1), cardiac output (V 
.
  b) (42.7 l min-1) and stroke 

volume (VS) (0.83 l) were based on measured values for Weddell seals (Zapol et al., 

1979).  During a simulated dive, V 
.
  b was varied from 19-131% of resting levels (see 

Davis and Kanatous, 1999 Table 2).  For brevity, we hereafter refer to these percentages 

of resting, predive V 
.
  b as percent V 

.
  b (e.g., 19% V 

.
  b).  When V 

.
  b was below resting levels, 

most of the reduction resulted from a decrease in fH (i.e., bradycardia).  However, based 

on studies of seals during forced submergence and voluntary dives (Blix and Folkow, 

1983; Kjekshus et al., 1982; Ponganis et al., 1990; Sinnet et al., 1978; Zapol et al., 

1979), VS was also reduced as fH declined.  The maximum reduction in VS in the model 

was 25% of the resting value and was proportionate to the reduction in fH.  The reduction 

in cardiac output (i.e., the severity of the dive response) was immediate and remained 
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constant throughout a dive.  An “anticipatory” increase in V 
.
  b toward the end of a dive 

was not included in the model.  Except for the brain, where circulation was always 

maintained at resting levels, we assumed that blood flow to the rest of the body 

decreased proportionately with V 
.
  b during a dive due to reduced V 

.
  b and peripheral 

vasoconstriction (Blix et al., 1976; Elsner et al., 1964).  Peripheral vasoconstriction was 

assumed to occur in the large arteries (e.g., the renal artery) making it independent of 

tissue level metabolic dilators that affect arterioles (White et al., 1973).  Because 

vasoconstriction was assumed to occur high in the vascular tree, blood flow was not 

adjusted independently to individual tissue beds.   

     Body oxygen stores were confined to the blood and skeletal muscle in this model, 

since no oxygen storage capability exists in the splanchnic organs (Dodd et al., 1987) 

and the heart represents less than 2% of the total muscle mass.  We assumed that lung 

oxygen was not available during a dive due to the complete functional pulmonary shunt 

that occurs in Weddell seals at pressures greater than 3-5 atmospheres (2280-3800 mm 

Hg; 1 mm Hg = 0,133 kPa; approximately 30-50 m deep)  (Falke et al., 1985; Reed et 

al., 1994b).  Even if lung oxygen were available during a dive, it represents only 5% of 

the total body oxygen store in Weddell seals (Kooyman and Ponganis, 1998). 

     To calculate total oxygen stores in the blood, we assumed that the blood volume for a 

450 kg Weddell seal was 96 liters (Ponganis et al., 1993a) and that 33% of this volume 

was arterial blood and 67% was venous blood (i.e., venules, small and large veins, 

hepatic sinus and spleen) (Hurford et al., 1996; Rowell, 1986).  The blood hemoglobin 

(Hb) concentration (assuming complete splenic contraction) was 260 g l-1, and the 

oxygen binding capacity of Hb was 1.34 ml O2 g-1 Hb (Kooyman et al., 1980; Ponganis 

et al., 1993a; Qvist et al., 1986).  This gave a capacitance coefficient of oxygen in blood 

(βBO2) of 348 ml O2 l-1 (260 g Hb l-1 blood  x 1.34 ml O2 g-1 Hb).  At the beginning of a 

dive, we assumed that the arterial blood was 100% saturated with oxygen as a result of 

predive hyperventilation (Kooyman et al., 1980; Qvist et al., 1986; Ponganis et al., 

1993a).  Mixed venous blood was calculated from equation 2 to be 86% saturated at the 
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beginning of a dive assuming an oxygen content that was 5% by volume less (Ponganis 

et al., 1993a)  than an initial CaO2 of 348 ml O2 l-1 blood. 

     Sv 
_
  O2 = [(348 - 50)/ 348] x 100 = 86%    (2) 

where Sv 
_
  O2 is the oxygen saturation of mixed venous blood.  Arterial and venous blood 

oxygen stores were calculated as:   

Arterial blood oxygen (ml) = 96 x 0.33 x 348 = 11,025   (3) 

Venous blood oxygen (ml) = 96 x 0.67 x 348 x 0.86 = 19,250  (4) 

We assumed that 35% of the seal’s body mass was skeletal muscle.  For this study, we 

ran the model with four Mb concentrations: 5, 27, 54 and 108 g Mb kg-1 muscle 

representing 7%, 50%, 100% and 200%, respectively, of the normal Mb concentration in 

Weddell seal skeletal muscle (Ponganis et al., 1993a).  The Mb concentration of 5 g kg-1 

muscle is typical of terrestrial mammals such as a dog, human, or rat (Snyder, 1983).  

We assumed an oxygen binding capacity of 1.34 ml O2 g-1 Mb, and complete saturation 

at the beginning of a dive (Gayeski et al., 1987; Schenkman et al., 1997).   

Muscle oxygen stores were calculated as:   

Skeletal muscle oxygen (ml) = 450 x 0.35 x 1.34 x [Mb]              (5) 

The total oxygen store (sum of arterial, venous and muscle oxygen) was therefore 31,330 

ml O2 (69.6 ml O2/kg), 35,973 ml O2 (79.9 ml O2/kg), 41,672 ml O2 (92.6 ml O2/kg) or 

53,068 ml O2 (117.9 ml O2/kg) based on the four Mb concentrations, respectively.  

However, not all of this oxygen is available for metabolism during a dive (Davis and 

Kanatous, 1999). 

     As blood circulates through the four vascular beds (Figure 2.1), the organs and tissues 

extract oxygen from the blood to meet their respective V 
.
 O2 requirements.  CvO2 was 

calculated for each circulatory bed according to Fick’s Principle:   

CBvO2 = CaO2 - (V 
.
  BO2

/ Q 
.
  B)                (6) 

   CHvO2 = CaO2 - (V 
.
  HO2

/ Q 
.
  H)                (7) 
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   CMvO2 = CaO2 - (V 
.
  MO2

/ Q 
.
  M)                (8) 

CSRCvO2 = CaO2 - (V 
.
 SRCO2

/ Q 
.
  SRC)               (9) 

where Q 
.
   is blood flow rate, V 

.
    is the rate of oxygen consumption, the letters B, H, M 

indicate brain, heart, and skeletal muscle respectively, and SRC indicates splanchnic, 

renal, and cutaneous organs and other peripheral tissues.  However, the extraction 

coefficient of oxygen from the blood (EBO2), where EBO2 = (CaO2 - CvO2) / CaO2, could 

never exceed 0.8 (i.e., maximum EBO2 at critical oxygen delivery) during a single pass of 

the blood through an organ or tissue (Samsel and Schumacker, 1994; Torrance and 

Wittnich, 1994; Nelson et al., 1988).  The mixed venous blood oxygen concentration (Cv 
_
 

O2) was calculated for the four vascular beds as the difference between the CaO2 and the 

total oxygen extracted per ml of blood:   

Cv 
_
 O2 = CaO2 - [(V 

.
  BO2

+ V 
.
  HO2

 + V 
.
  MO2

 + V 
.
 SRCO2

) / (Q 
.
  B + Q 

.
  H + Q 

.
  M + Q 

.
  SRC)] (10) 

 

      The arterial blood oxygen saturation (SaO2) and venous blood oxygen saturation 

(SvO2) were calculated for the blood of each vascular bed as the quotient of their 

respective oxygen concentrations (Equations 6 to 9) and a β BO2 of 348 ml O2 l-1 blood.  

The arterial (PaO2) and venous (PvO2) blood oxygen partial pressures were calculated 

from their respective SaO2 and SvO2 using two polynomial equations fitted to the oxy-

hemoglobin dissociation curve (P50 = 26.9 mm Hg = 0.133 kPa) for adult Weddell seals 

(Qvist et al., 1981).   

      Evidence obtained during the forced submergence of harbor seals and Weddell seals 

indicates that Q 
.
  B is generally maintained and V 

.
  BO2

 does not decline (Blix and Folkow, 

1983; Kerem and Elsner, 1973; Zapol et al., 1979).  In this model, we assumed that Q 
.
  B 
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and V 
.
  BO2

 remained at resting levels during a dive and were independent of V 
.
  b.  We also 

assumed that the minimum PaO2 and Pv 
_
 O2 for normal cerebral metabolism and function 

were 22 mm Hg (SaO2 = 38%) and 18 mm Hg (Sv 
_
 O2 = 27%), respectively.  This is 

comparable to the average PaO2 (24.5 + 2.86 mm Hg; mean + S.D., N =7) in Weddell 

seals two minutes before surfacing and to the end tidal PO2 (24 mm Hg) of the first 

exhalation (assuming that this approximates arterial PO2) after 17 min aerobic dives 

(Ponganis et al., 1993a; Qvist et al., 1986).  As a result, the model terminated a dive if 

PaO2 decreased below 22 mm Hg in the model.  However, the PaO2 of blood perfusing 

the brain was generally not a consideration in determining ADL.  

     We assumed that Q 
.
  H and V 

.
  HO2

 changed proportionately with V 
.
  b (Blix and Folkow, 

1983; Blix et al., 1976; Kjekshus et al., 1982).  When convective oxygen transport to the 

myocardium changed during a dive, it was proportional to the change in heart work, and 

the myocardium always received sufficient blood oxygen to maintain aerobic 

metabolism.   

        Q 
.
  M was also assumed to change proportionately with V 

.
  b.  Oxygen transported to 

the muscles in the blood was always used (up to a maximum EBO2  of 0.8) before oxygen 

bound to Mb because of the lower affinity of Hb for oxygen (Schenkman et al., 1997).  

Oxygen not provided by the blood was obtained from oxymyoglobin stores to meet V 
.
  

MO2
 requirements.  V 

.
  MO2

 was assumed to be independent of Q 
.
  M as long as the 

combination of convective oxygen transport and oxymyoglobin stores was sufficient to 

meet metabolic demand.  If at any time the combination of these two were no longer 

sufficient to maintain aerobic muscle metabolism, the dive was terminated. 
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      Postabsorptive V 
.
 O2 (3.73 + 0.88 ml O2 min-1 kg-1) and postprandial V 

.
 O2 (5.24 + 0.88 

ml O2 min-1 kg-1) during aerobic dives were based on indirect calorimetry measurements 

made by Williams et al. (2004) for foraging and non-foraging Weddell seals.  We 

assumed that the average difference in V 
.
 O2 (1.51 ml O2 min-1 kg-1 or 680 ml O2 min-1 for 

a 450 Kg seal) between postabsorptive and postprandial dives of 7 to 23 min in duration 

resulted from the metabolic cost of prey warming, digestion, absorption and 

assimilation, which we refer to as the Heat Increment of Feeding (HIF).  This increase in 

V 
.
 O2 was added to the postabsorptive V 

.
 SRCO2

 to give a postprandial V 
.
 SRCO2

 of 1,234 ml 

O2 min-1 (a 2.2-fold increase).  We assumed that the V 
.
 SRCO2

 was maintained as long as: 

1) convective oxygen transport was sufficient to support oxygen demand, 2) EBO2 did 

not exceed 0.8 and 3) PaO2 was greater than 22 mm Hg (Kvietys and Granger, 1982; 

Schlichtig et al., 1992).   

 

Computations 

     The model was run on a standard spreadsheet program (Quattro Pro for Windows 

Version 6.0, Novell Applications Group, Orem, Utah) for eight levels of V 
.
  b, sixteen 

levels of V 
.
  MO2

 up to a maximum, whole body V 
.
 O2 of 10.7 ml O2   min-1 kg-1 and four 

different Mb concentrations under postabsorptive conditions, which produced 512 

combinations.  These were then compared to postprandial conditions for the normal and 

elevated Mb concentration adding an additional 256 combinations.  The general 

procedure was to select a Mb concentration, set the V 
.
  b at a particular level (e.g., 37% of 

the resting level) and then vary the V 
.
  MO2

 from 1 to 16 times the resting level.  This 

process was then repeated for each Mb concentration and V 
.
  b.  V 

.
 O2 for the four vascular 
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beds and the entire body were calculated for each combination.  The ADL was reached 

and the dive terminated when:  1) any non-muscle organ or tissue did not receive 

sufficient oxygen through convective oxygen transport to maintain aerobic metabolism 

2) convective oxygen transport and oxymyoglobin stores were no longer sufficient to 

maintain aerobic muscle metabolism, or 3) when the PaO2 fell below 22 mm Hg. 

 
Results 

The Role of V 
.
  b in Optimizing the ADL at Different Levels of Muscle Metabolism 

     The role of V 
.
  b in optimizing the ADL at different levels of muscle metabolism has 

been described (Davis and Kanatous, 1999).  Briefly, the ADL decreases in a non-linear 

fashion with increasing V 
.
  MO2

 for different levels of V 
.
  b (range = 19-131% of resting 

levels) (Davis and Kanatous 1999; Davis et al., 2004) (Figures 2.2 and 2.3).  For each 

level of  V 
.
  MO2

, there is an optimal V 
.
  b that gives a maximum ADL, and this optimal V 

.
  b  

increases (i.e., the dive response is less pronounced) as V 
.
  MO2

 increases (see Fig. 4 and 

Table 4 in Davis and Kanatous, 1999).  Since the ADL is inversely proportional to V 
.
  MO2

 

(assuming a constant level of blood and muscle oxygen depletion), the optimal V 
.
  b 

decreases as the ADL increases (see Fig. 5 in Davis and Kanatous 1999). 

 

The Effect of Myoglobin Concentration on the Postabsorptive ADL 

     In the postabsorptive state, the resting ADL (28 min) was independent of Mb 

concentration (Figure 2.2).  At a resting level of V 
.
  MO2

, the lowest level of convective 

oxygen transport (V 
.
  b = 19%) was still sufficient to supply 97% of the oxygen needed by 
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the skeletal muscle.  As a result, very little Mb oxygen (ranging from 21% to 1% of 

endogenous oxymyoglobin for concentrations from 5 to 108 mg g-1, respectively) was 

used while resting submerged, and it was not a factor that limited the ADL (Tables 2.1-

2.4).   
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Figure 2.2  Calculated postabsorptive aerobic dive limit (ADL) for four myoglobin concentrations as a 

function of skeletal muscle oxygen consumption (V 
.
  MO2

).  Vertical dotted line marks the estimated routine 

level of diving V 
.
  MO2

 for a Weddell seal.   
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Fig. 2  Optimum cardiac output as a function of skeletal 
muscle oxygen consumption rate.
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Figure 2.3  Optimal cardiac output as a function of skeletal muscle metabolism (V 
.
  MO2

) for four myoglobin 

concentrations.  Vertical dotted line marks the estimated routine level of diving V 
.
  MO2

 for a Weddell seal. 

 
 



 

23 
 

Table 2.1  Aerobic dive limit, whole body oxygen consumption, and muscle oxygen consumption for 
varying multiples of muscular metabolic rate at a reduced [Mb] of 5 mg/g in a postabsorptive state. 
 

V 
.
   MO2

 Whole body V 
.
 O2 

(ml O2/min*kg) 

ADL 
(min) 

Myoglobin O2 
consumed by muscle 
during dive (ml O2) 

% Myoglobin O2 
consumed by 

muscle during dive 
1 1.8 28.0 221 21% 
2 2.3 20.0 353 33% 
3 2.8 17.3 644 61% 
4 3.4 13.0 407 39% 
5 3.9 11.0 1026 97% 
6 4.4 10.7 687 65% 
7 4.9 9.1 575 54% 
8 5.4 8.1 1008 95% 
9 5.9 6.7 1030 98% 

10 6.4 5.6 1013 96% 
11 6.9 4.4 960 91% 
12 7.3 3.6 1001 95% 
13 7.8 2.7 974 92% 
14 8.3 2.1 984 93% 
15 8.8 1.6 964 91% 
16 9.3 1.3 1020 97% 

 
 
 
Table 2.2  Aerobic dive limit, whole body oxygen consumption, and muscle oxygen consumption for 
varying multiples of muscular metabolic rate at a reduced [Mb] of 27 mg/g in a postabsorptive state. 
 

V 
.
   MO2

 Whole body V 
.
 O2 

(ml O2/min*kg) 

ADL 
(min) 

Myoglobin O2 
consumed by muscle 
during dive (ml O2) 

% Myoglobin O2 
consumed by 

muscle during dive 
1 1.8 28.0 221 4% 
2 2.3 24.0 3390 59% 
3 2.8 18.0 2232 39% 
4 3.3 17.8 5607 98% 
5 3.8 13.3 3372 59% 
6 4.3 12.7 5609 98% 
7 4.9 10.4 2775 49% 
8 5.4 10.4 4609 81% 
9 5.8 9.4 5577 98% 

10 6.3 8.7 4903 86% 
11 6.8 7.9 5671 100% 
12 7.3 7.4 5300 93% 
13 7.8 6.6 5488 96% 
14 8.3 5.9 5609 98% 
15 8.8 5.1 5617 99% 
16 9.3 4.6 5662 99% 



 

24 
 

Table 2.3  Aerobic dive limit, whole body oxygen consumption, and muscle oxygen consumption for 
varying multiples of muscular metabolic rate at a normal [Mb] of 54 mg/g in a postabsorptive state. 
 

V 
.
   MO2

 Whole body V 
.
 O2 

(ml O2/min*kg) 

ADL 
(min) 

Myoglobin O2 
consumed by muscle 
during dive (ml O2) 

% Myoglobin O2 
consumed by 

muscle during dive 
1 1.8 28.0 221 2% 
2 2.3 24.0 3390 30% 
3 2.8 24.0 8574 75% 
4 3.3 20.3 11279 99% 
5 3.8 18.0 9627 84% 
6 4.3 15.8 11355 100% 
7 4.8 13.3 9003 79% 
8 5.2 12.7 11081 97% 
9 5.8 12.0 10729 94% 

10 6.3 10.8 11389 100% 
11 6.8 9.6 9894 87% 
12 7.3 9.2 11262 99% 
13 7.8 8.7 10404 91% 
14 8.3 8.2 11258 99% 
15 8.8 7.4 10030 88% 
16 9.3 7.3 11298 99% 

 
 
 
Table 2.4  Aerobic dive limit, whole body oxygen consumption, and muscle oxygen consumption for 
varying multiples of muscular metabolic rate at an increased [Mb] of 108 mg/g in a postabsorptive state. 
 

V 
.
   MO2

 Whole body V 
.
 O2 

(ml O2/min*kg) 

ADL 
(min) 

Myoglobin O2 
consumed by muscle 
during dive (ml O2) 

% Myoglobin O2 
consumed by 

muscle during dive 
1 1.8 28.0 221 1% 
2 2.3 24.0 3390 15% 
3 2.8 24.0 8574 38% 
4 3.3 24.0 13758 60% 
5 3.7 24.0 18942 83% 
6 4.2 22.8 22759 100% 
7 4.7 19.0 18660 82% 
8 5.2 18.0 21291 93% 
9 5.7 16.5 22767 100% 

10 6.2 14.5 22684 100% 
11 6.7 13.3 20523 90% 
12 7.2 13.0 22714 100% 
13 7.6 11.7 22502 99% 
14 8.1 10.7 22593 99% 
15 8.7 10.0 21030 92% 
16 9.2 9.8 22517 99% 
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The only way to increase the use of Mb oxygen at rest was to decrease 

convective oxygen transport even further (i.e., V 
.
  b  less than 19%).  However, when we 

ran the model at a V 
.
  b of 9%, the ADL decreased because convective oxygen transport to 

the splanchnic organs and kidneys was insufficient.  Hence, at rest there was no optimal  

V 
.
  b that provided sufficient oxygen delivery for the kidneys and splanchnic organs while 

utilizing more Mb-bound oxygen, regardless of the Mb concentration.  As a result, there 

was no difference in ADL for Mb concentrations of 54 and 108 mg g-1 until V 
.
  MO2 

exceeded 3-times resting. 

  At muscle Mb concentrations of 5 and 27 mg g-1, the postabsorptive ADL 

decreased in a curvilinear fashion with increasing V 
.
  MO2

 and whole body V 
.
 O2.  At normal 

and elevated Mb concentrations, the ADL decreased in a curvilinear fashion with the 

exception of a common plateau at 24 min for V 
.
  MO2

 of 2 to 3-times resting and 2 to 5-

times resting for these two Mb concentrations, respectively (Figure 2.2).  At these low 

levels of V 
.
  MO2

, the ADL was limited by blood oxygen stores, and Mb oxygen was not a 

limiting factor (Tables 2.3 and 2.4).  These two curves diverge at higher levels of 

exertion as muscle oxygen stores are consumed and contribute significantly to setting the 

ADL.  Only when V 
.
  MO2 

exceeded 3-times resting did an increase in the Mb 

concentration above 54 mg g-1 increase the ADL.        

Based on Williams et al. (2004), we assumed an average postabsorptive diving 

 V 
.
 O2 of 3.8 ml O2 min-1 kg-1, which was equivalent to a V 

.
  MO2

 of 5-times resting in our 

model.  At this routine level of diving metabolism, a reduction of Mb concentration from 

54 mg g-1 to 27 mg g-1 and 5 mg g-1 reduced the ADL from 18 min to 12.7 min (29% 
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reduction) and 11.0 min (39% reduction), respectively.  Doubling the normal Mb 

concentration increased the ADL 33% from 18 to 24 min (Figure 2.2).  

For all four Mb concentrations, the optimal V 
.
  b (i.e., the V 

.
  b that gave the 

maximum ADL) increased as muscular exertion increased (Figure 2.3).  The optimal V 
.
  b 

increased more quickly with increasing levels of exertion (i.e. the slope of the trend line 

was greater) for low muscle Mb concentrations compared to normal and elevated Mb 

concentrations.  As Mb increased, the optimum V 
.
  b for each level of V 

.
  MO2

 decreased.  

For example, at the average diving V 
.
  MO2

 of 5-times resting, the optimal V 
.
  b  at Mb 

concentrations of 5, 27, 54 and 108 g Mb kg-1 were 75%, 56%, 37% and 19% of resting 

levels, respectively.  As Mb increases, V 
.
  b  and muscle blood flow must decrease (i.e., 

more pronounced  dive response) for the muscle to fully use this Mb bound oxygen.          

At a V 
.
  MO2

 of 5-times resting for normal and elevated Mb concentrations, 

convective oxygen transport at the optimal V 
.
  b was insufficient to support the aerobic 

metabolic needs of the muscle.  As a result, muscle Mb oxygen stores were used from 

the beginning and throughout the dive (Figure 2.4).  In contrast, the optimal V 
.
  b for 

reduced Mb concentrations was greater (i.e., less pronounced dive response) resulting in 

increased convective oxygen transport to the muscles and a delay in the use of Mb 

oxygen until well into the dive (7 min and 1.33 min for Mb concentrations of 5 and 27 

mg g-1 respectively).  With optimal matching of V 
.
  b to V 

.
  MO2

, almost all myoglobin 

oxygen was consumed at this routine level of exertion regardless of myoglobin 

concentration. 
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Figure 2.4  Myoglobin oxygen used during diving at a muscular exertion of 5-times resting V 
.
  MO2

 for four 

Mb concentrations. 
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The Effect of Mb Concentration on the Postprandial ADL 

Under postprandial conditions, the ADL decreased at all levels of exertion 

because of the increased oxygen consumption of the splanchnic organs associated with 

prey warming, digestion and assimilation.  At a routine V 
.
  MO2

 of 5-times resting and 

normal Mb concentration, the postprandial ADL (12 min) was 33% less than under 

postabsorptive conditions (Figure 2.5).  The convective oxygen transport needed by the 

splanchnic organs required a V 
.
  b that was not optimal for the complete use of muscle 

oxygen at a routine diving V 
.
  MO2

 of 5-times resting.  Not until V 
.
  MO2

 exceeded 7-times 

resting did this level of perfusion allow for complete utilization of muscle oxygen stores, 

and Mb oxygen became limiting to the ADL (Figure 2.5 and Table 2.5).  As a result, 

doubling the Mb concentration did not increase the ADL until the level of muscular 

exertion exceeded 7-times resting.  Diving at routine levels of muscular exertion in a 

postprandial state resulted in convective oxygen transport and not oxy-myoglobin 

limiting the ADL.  Based on the results from our model, digesting and assimilating food 

while diving decreased the ADL for two reasons: 1) increased splanchnic consumption 

of blood oxygen and 2) the increased convective oxygen transport needed by the 

splanchnic organs resulted in a V 
.
  b that was not optimal for the complete use of muscle 

oxygen.  As a result, the model indicated that there was no advantage in having a higher 

than normal myoglobin concentration during postprandial dives at routine levels of V 
.
  

MO2
.      
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Figure 2.5  Aerobic dive limit (ADL) as a function of muscle oxygen consumption  

( V 
.
  MO2

) for a postprandial Weddell seal with normal and elevated Mb concentrations.  Vertical dotted line 

marks the estimated routine level of diving V 
.
  MO2

for a Weddell seal. 
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Table 2.5  Aerobic dive limit, whole body oxygen consumption, and muscle oxygen consumption for 
varying multiples of muscular metabolic rate at a normal [Mb] of 54 mg/g in a postprandial state. 
 

V 
.
   MO2

 Whole body V 
.
 O2 

(ml O2/min*kg) 

ADL 
(min) 

Myoglobin O2 
consumed by muscle 
during dive (ml O2) 

% Myoglobin O2 
consumed by 

muscle during dive 
1 3.4 14.0 0 0% 
2 3.8 14.0 258 2% 
3 4.3 12.0 1206 11% 
4 4.8 12.0 3356 29% 
5 5.3 12.0 5948 52% 
6 5.8 12.0 8540 75% 
7 6.2 12.0 11132 98% 
8 6.7 10.0 11069 97% 
9 7.2 9.3 9930 87% 

10 7.8 9.0 9682 85% 
11 8.3 8.8 11194 98% 
12 8.7 7.8 11143 98% 
13 9.3 7.2 10120 89% 
14 9.7 7.0 11251 99% 
15 10.2 6.7 10487 92% 
16 10.7 6.4 11317 99% 

 
 
 

Discussion 

The Role of Myoglobin in Diving Marine Mammals 

Due to myoglobin’s high affinity for oxygen (P50 = 2-3 mm Hg; Schenkman et 

al., 1997) compared to Hb (P50 = 27 mm Hg; Qvist et al., 1981), it is an endogenous 

oxygen store for muscle only.  To use this source of oxygen, the muscle must become 

hypoxic by reducing convective oxygen transport.  This not only decreases the muscle 

PO2 so that the oxygen dissociates from myoglobin, but also reserves more blood oxygen 

for other tissues.  In the first publication using this model, Davis and Kanatous (1999) 

showed the importance of adjusting cardiac output and convective oxygen transport to 

muscle according to the level of exertion so that the total oxygen available in the muscle 

and blood was used by the end of a dive.  As the level of muscular exertion increased, 

the dive response was less pronounced and convective oxygen transport to skeletal 

muscle (and other peripheral organs and tissues) increased.  To maximize the ADL, both 
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oxygen stores had to be depleted simultaneously so that neither was singly responsible 

for limiting aerobic dive duration.   

In a postabsorptive resting state, the ADL was independent of Mb concentration 

from 5-108 mg myoglobin g-1 muscle (Figure 2.2).  The model showed that the V 
.
  b 

needed to maintain resting metabolism in the splanchnic organs (19%) resulted in an 

over perfusion of the skeletal muscle so that almost all (97%) of the oxygen used by the 

muscles at rest was supplied by convective oxygen transport in the blood.  Greater 

utilization of Mb oxygen would require less convective oxygen transport to skeletal 

muscle.  However, further reduction in V 
.
  b (9%) resulted in insufficient convective 

oxygen transport to the splanchnic organs and reduced the ADL.  

At a routine diving V 
.
  MO2

 of 5-times resting, the postabsorptive ADL increased 

with higher Mb concentrations (Figure 2.2).  In addition, Mb concentration was 

negatively correlated with optimal V 
.
  b for a dive (Figure 2.3).  Higher Mb concentrations 

(54 and 108 mg g-1) required a greater reduction in cardiac output (more profound dive 

response).  The resultant reduction in convective oxygen transport to muscles decreased 

the muscle PO2 (i.e., made the muscle hypoxic) so that myoglobin oxygen was used 

throughout the dive (Figure 2.4).   

 At a V 
.
  MO2

 of 1 to 7-times resting in a postprandial state, the V 
.
  b required to 

maintain the elevated aerobic metabolism in the splanchnic organs resulted in an over 

perfusion of the skeletal muscle, which caused the incomplete use of Mb oxygen stores 

(Table 2.5).  Inefficient use of muscle oxygen stores as well as increased use of blood 

oxygen for digestion and assimilation resulted in blood oxygen limiting the ADL in the 

postprandial state until V 
.
  MO2

 exceeded 7-times resting (Figure 2.5 and Table 2.5).  As a 

result, the doubling of Mb concentration did not increase the ADL under postprandial 
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conditions until the level of V 
.
  MO2

exceeded 7-times resting, which is 40% higher than the 

routine level of exertion.  

 

Behavioral Considerations 

 The results of this model showed that an increase in the Mb concentration 

increased the ADL at a routine diving V 
.
  MO2

 under postabsorptive conditions (Figure 

2.2).  However, for the same V 
.
  MO2

 under postprandial conditions, the convective oxygen 

transport needed for digestion and assimilation required a V 
.
  b which resulted in an over 

perfusion of the muscle and incomplete use of muscle oxygen stores at routine levels of 

exertion (i.e., < 7 times resting V 
.
  MO2

) (Figure 2.5 and Tables 2.5-2.6).  Castellini et al. 

(1992a) stressed the importance of integrating physiology and behavior in considering 

the biology of diving.  To determine what selective pressures might affect myoglobin 

concentration, it is important to consider the way Weddell seals routinely dive.   

 Davis et al. (2003), classified Weddell seal dives into four types.  Type 1 were 

feeding dives with a mean duration of 15.0 min, and these accounted for 14% of all 

dives made and 29% of total time submerged.  Given the assumptions regarding HIF, the 

postprandial ADL (12 min) at a routine level of exertion calculated by our model agrees 

well with average duration of feeding dives reported by Davis et al. (2003).  Types 2 and 

3 dives were relatively short in duration (mean = 3.6 min and 7.9 min respectively) and 

were rarely associated with feeding.  Together these dives accounted for 72% of dives 

being made.  The average duration of these dive types are well below our estimated 

postabsorptive ADL of 18 min and are not limited by the physiological constraints of the 

oxygen stores, but by behavior.   

Type 4 dives were long in duration (average = 24.7 min), appeared to be 

exploratory (non-feeding) dives, and accounted for 14% of all dives. This dive type 

exceeds our estimated postabsorptive ADL of 18 min and relies significantly on 
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anaerobic metabolism.  Our model indicates that an increased myoglobin concentration 

would prolong aerobic metabolism for this type of dive.  However, these long duration 

dives rarely occur in free diving Weddell seals (Kooyman, 1980).   
 
 
 
 
Table 2.6  Aerobic dive limit, whole body oxygen consumption, and muscle oxygen consumption for 
varying multiples of muscular metabolic rate at an elevated [Mb] of 108 mg/g in a postprandial state. 
 

V 
.
   MO2

 
Whole body V 

.
 O2 

(ml O2/min*kg) 
ADL 
(min) 

Myoglobin O2 
consumed by muscle 
during dive (ml O2) 

% Myoglobin O2 
consumed by 

muscle during dive 

1 3.4 14.0 0 0% 
2 3.8 14.0 258 1% 
3 4.3 12.0 1206 5% 
4 4.8 12.0 3356 15% 
5 5.3 12.0 5948 26% 
6 5.8 12.0 8540 37% 
7 6.2 12.0 11132 49% 
8 6.7 12.0 13724 60% 
9 7.2 12.0 16316 72% 

10 7.7 12.0 18908 83% 
11 8.2 12.0 21500 94% 
12 8.6 11.3 22448 98% 
13 9.1 10.3 22471 99% 
14 9.6 9.5 22717 100% 
15 10.1 9.3 22026 97% 
16 10.6 8.7 22097 97% 
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Factors Determining Myoglobin Concentration 

 It appears that dives of the type and duration in which an increase in myoglobin 

concentration would increase the ADL are rare under normal diving behavior.  While an 

increase in myoglobin would prolong aerobic metabolism during some long duration, 

postabsorptive dives, it does not appear to limit the ADL in the majority of natural dives 

(i.e., Types 1, 2 and 3).  Weddell seals make the majority of their feeding dives in bouts 

of many dives with short recovery periods on the surface (Castellini et al., 1992a; 

Kooyman et al., 1980).  As a result, many of these feeding dives probably occur in the 

postprandial condition.  Davis et al. (1983) observed that the plasma of Weddell seals 

became very lipemic during deep foraging dives, indicating that the digestion and 

intestinal absorption of fat was occurring during the 5 to 6 h foraging session.  Increased 

energy expenditure for digestion during diving is added to the metabolic costs for 

locomotion and basal metabolism (Williams et al., 2004).  This increased metabolism for 

digestion and assimilation is also thought to reduce the ADL of southern elephant seals 

during foraging bouts (McConnell et al., 1992).  Digestion not only increases oxygen 

consumption, but also influences the optimal management of the muscle and blood 

oxygen stores.  Our model indicated that diving with the additional metabolic cost of 

HIF causes blood oxygen to limit the ADL rather than myoglobin oxygen (i.e., 

myoglobin stores may not be completely used).  We hypothesize that myoglobin 

concentration is optimized for the type and duration of dives routinely made by Weddell 

seals, and that a further increase may not increase the ADL of most free-ranging dives.  

Whether physiological constraints associated with the dive response and convective 

oxygen transport have limited the concentration of myoglobin in muscles remains 

uncertain, but our model does suggest a possible influence during the evolution of 

Weddell seals and other long duration divers.  In addition, the model indicates that the 

calculated ADL is more complex than simply the quotient of the available oxygen stores 

and estimated metabolic rate.  
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CHAPTER III 

MYOGLOBIN EXTRACTION FROM MAMMALIAN MUSCLE 

TISSUE AND OXYGEN AFFINITY DETERMINATION UNDER 

PHYSIOLOGICAL CONDITIONS 
 

An accurate determination of myoglobin (Mb) oxygen affinity (P50) can be 

difficult due to hemoglobin (Hb) contamination in muscle homogenates and the 

autoxidation of Mb to metMb which is incapable of oxygen binding.  If not removed, Hb 

from residual blood in the homogenate can alter the measured P50 for a Mb solution 

because Hb has a much lower oxygen affinity.  To reduce Mb autoxidation, P50 is often 

measured at refrigerated temperatures.  However, because Mb oxygen affinity is 

temperature dependent, these measurements give a greater oxygen affinity (lower P50) 

than would result at physiological temperature (ca. 37-39° C) for birds and mammals.  

To avoid these problems, we developed new methods to extract Mb from vertebrate 

muscle tissue and remove Hb contamination while minimizing globin autoxidation.  

Cow (Bos taurus) muscle tissue (n=5) was homogenized in buffer to form a Mb solution, 

and Hb contamination was removed using affinity chromatography.  A TCS Hemox 

Blood Analyzer was then used to quickly generate an oxygen dissociation curve for the 

extracted Mb.  The oxygen affinity of extracted bovine Mb was compared to 

commercially available horse heart Mb.  The oxygen affinity of cow Mb (P50 = 3.72 ± 

0.16 mmHg) was not statistically different from horse Mb (P50 = 3.71 ± 0.10 mmHg).  

With high yield Mb extraction and fast generation of an oxygen dissociation curve, it 

was possible to consistently determine Mb P50 under physiologically relevant conditions 

for endothermic vertebrates.   

 

Introduction 

Myoglobin (Mb) is a globular hemoprotein found in vertebrate cardiac and 

skeletal muscle that reversibly binds oxygen.  In muscle cells, Mb buffers mitochondrial 

oxygen availability, facilitates oxygen diffusion, and at high concentrations such as those 
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found in the muscle of many diving birds and mammals can also act as a significant 

oxygen store to maintain aerobic metabolism during hypoxia (For review see:  

Wittenberg and Wittenberg, 2003; Ordway and Garry, 2004; Gros et al., 2010; Davis 

2014).  Although research on Mb has a long history, much of it has focused on Mb as a 

model for protein chemistry with little regard to its biological role.  It was the first 

protein whose three dimensional structure was determined (Kendrew et al., 1958; 

Kendrew et al., 1960), and it remains a model for studying the relationship between 

protein structure and function (Frauenfelder et al., 2003, Brunori, 2010, Storz et al., 

2011).   

Myoglobin mutational studies have examined the effects of amino acid 

substitutions on Mb affinity for oxygen (Carver et al., 1992; Dasmeh and Kepp, 2012; 

Dasmeh et al., 2012; Scott et al., 2001) and other ligands (Olson et al., 2008).  However, 

there has been little work comparing the oxygen affinity of a variety of naturally 

occurring Mb structural variants for different species.  We set out to develop simplified, 

uniform methods to extract Mb from vertebrate muscle tissue for the purposes of 

comparing Mb oxygen affinity. 

There are two challenges when extracting Mb for measuring oxygen affinity at 

physiological temperatures (ca. 37-39o C) for birds and mammals: (1) endogenous Hb is 

an unavoidable contaminant when homogenizing muscle samples, and (2) Mb in 

solution quickly autoxidizes to non-functioning metMb at physiological temperatures.  

To minimize the autoxidation of Mb in solution, P50 measurements are often made at 

temperatures below those found in the muscles of birds and mammals.  However, 

because Mb oxygen affinity increases dramatically with decreasing temperature, affinity 

measurements at low temperature are not physiologically relevant (Schenkman et al., 

1997).  In living tissue, oxidized metMb is reduced to its active form by the enzyme 

metMb reductase.  This enzyme is present and active in muscle tissue homogenates, but 

its concentration is dramatically reduced during Mb purification (Hagler et al., 1979).  

As part of a larger study comparing the oxygen affinity of Mb among a variety of 

endothermic vertebrates, we developed a reliable method for extracting Mb from 
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vertebrate muscle.  Using purification methods that remove Hb contamination while 

minimizing Mb oxidation, we eliminated the need for reducing agents (e.g. dithionite) 

that must be removed by buffer exchange before measuring oxygen affinity.   

 
Materials and Methods 

Buffer Selection 

The autoxidation rate of Mb to inactive metMb is slowed by conditions of low 

temperature and alkaline pH (Tomoda et al., 1981).  To maximize the yield of functional 

Mb during extraction and purification, we chose procedures to minimize working time, 

maintain temperature at 0-4°C, and maintain basic pH (for stepwise methods see 

Appendix A).  A single stock buffer solution of 50 mM TRIZMA® tris buffer (Sigma-

Aldrich, T 0694) with 50 mg l-1 gentamicin sulfate (Sigma-Aldrich, G-1264) was used 

throughout tissue homogenization and purification.  The temperature dependent shift in 

pH of this buffer made it possible to chromatographically remove Hb from muscle 

homogenates and subsequently generate an oxygen dissociation curve (ODC) at a 

physiologically relevant temperature and pH using one buffer (pH = 7.4 at 37°C; pH = 

8.26 at 5°C).  This eliminated the need for buffer exchange during purification, thereby 

reducing preparation time and Mb autoxidation.   

 

Oxygen Affinity 

As with Mb, Hb is a globular hemoprotein capable of reversibly binding oxygen. 

These orthologous globins share much of their overall structure (characteristic “globin 

fold”), and many key regions are highly conserved (Storz et al., 2013).  With similar 

structure and heme binding properties of these proteins, their optical characteristics are 

similar (Kelner and Alexander, 1985; Masuda et al., 2008) (Figure 3.1 and 3.2).  At 

wavelengths of 500 – 700 nm, the absorption spectra of HbO2 and MbO2 both show twin 

absorption peaks: 544 and 582 nm for MbO2 and 542 and 578 nm for HbO2.  In the 

deoxygenated state, Mb has a single peak at 557 nm and Hb at 554 nm. (For Mb see: 

Bowen, 1949; Boulton and Huntsman, 1971; Millar et al., 1996.  For Hb see: Horecker, 
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1943; Zijlstra et al., 1991; Zijlstra and Buursma, 1997).  Because of the similar optical 

properties in the oxygenated and deoxygenated state, these globins express nearly 

identical spectral shifts during oxygen binding and dissociation from 500-700 nm.  This 

shift can be used to monitor oxygen binding state of these pigments in solution, and due 

to their nearly identical optical responses, identical instrumentation can be used to 

monitor these pigments.   
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Figure 3.1  Spectral scan of oxyhemoglobin and deoxyhemoglobin at 500 to 700 nm wavelength. 
 

 



 

39 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

500 550 600 650 700

Wavelength (nm)

O
pt

ic
al

 A
bs

or
ba

nc
e

DeoxyMb
OxyMb

 

Figure 3.2  Spectral scan of oxymyoglobin and deoxymyoglobin at 500 to 700 nm wavelength. 
 

 

 

Oxygen binding respiratory pigments such as Mb and Hb are characterized by 

the affinity with which they bind oxygen.  This oxygen affinity is quantified as the 

partial pressure of oxygen at which 50% of pigments in solution are bound with oxygen 

(P50).  The P50 of these respiratory pigments can be determined by generating an ODC 

(Figure 3.3).  Mb and Hb are optically similar and cannot be distinguished by 

spectroscopy when in solution together (Kelner and Alexander, 1985).  For this study, 

the P50 of Mb was determined by generating an ODC using a TCS Hemox Blood 

Analyzer (TCS Scientific, New Hope, PA).  This instrument was designed for generating 

oxygen dissociation curves for Hb (Guarnone et al., 1995) using multiwavelength 

spectroscopy, and we evaluated its performance in ODC generation for Mb.   
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Figure 3.3  Oxygen dissociation curve of horse heart myoglobin (Mb) (P50 = 3.70) and human hemoglobin 
(Hb) (P50 = 23.64) determined using TCS Hemox Blood Analyzer. 
 
 
 
Lyopholyzed Horse Heart Myoglobin Preparation 

Commercially available lyopholyzed horse heart Mb was used as a control for 

validating myoglobin isolation and standardizing oxygen affinity measurements.  To 

prepare a Mb solution, 9 ml of stock buffer solution was bubbled with nitrogen for ten 

minutes on ice in a 50 ml flask.  The deoxygenated buffer was reduced with the addition 

of 0.11 g sodium dithionite (Sigma-Aldrich, 157953) to make a 70 mM dithionite 

solution.  The reduced buffer was then bubbled with nitrogen for an additional 5 

minutes.  After the addition of 0.016 g of lyopholyzed horse heart Mb (Sigma-Aldrich, 

M1882), the solution was bubbled with nitrogen for one minute which produced a bright 

red 0.1 mM solution of reduced Mb.  Adding lyopholyzed Mb to a pre-reduced hypoxic 

buffer solution yielded a reduced Mb solution using less dithionite than was required to 
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reduce Mb solutions after reconstitution.  Dithionite was then removed by buffer 

exchange on a column of G-25 Sephadex® (Sigma-Aldrich, G25150) at 4°C by eluting 

the sample with chilled stock buffer.   The Mb solution was diluted with buffer to the 

desired concentration (0.02 mM Mb being the minimum [Mb] for our purposes), and 

frozen in 3.5 ml aliquots at -80°C until needed. 

 

Muscle Myoglobin Extraction 

Because Mb and Hb have similar optical properties but very different oxygen 

affinities, Hb is a significant contaminant that can alter the photometric Mb P50 and may 

constitute as much as 30% of the total globin content of excised muscle tissue in beef 

cattle (Rickansrud and Henrickson, 1967; Han et al., 1994).  The objective of Mb 

extraction for oxygen affinity was to obtain a solution free of Hb contamination with an 

adequate concentration of reduced Mb.  Affinity chromatography was chosen over other 

methods for removing Hb contamination.  Size exclusion membrane separation under 

centrifugation has been used to separate Mb from Hb successfully in urine (Kelner and 

Alexander, 1985), but higher protein concentrations such as those found in homogenized 

muscle tissue blocked membrane pores which resulted in low Mb recovery.  Salt 

precipitation (“salting out”) Hb and Mb in solution does not result in complete globin 

separation (Kelner and Alexander, 1985) and would require the additional preparatory 

step of buffer exchange. 

Cow muscle samples (n=5) were obtained from a local animal processing facility 

and stored at -80°C until use.  To prepare a Mb solution, frozen muscle tissue was 

cleared of visible fat and connective tissue and sectioned into cubes roughly 3 mm on 

each side.  Approximately 0.5 g of sectioned lean muscle was homogenized with a glass 

tissue grinder (Fisher Scientific, 7727-15) using 10 ml of chilled buffer g-1 tissue.  

Samples were chilled on ice throughout the homogenization and purification process.  

The homogenized solution was centrifuged for 20 min at 1,200 g and 4°C.  Hb 

contamination was removed from the supernatant using low pressure affinity 

chromatography on a column of DEAE-Sephadex® A-50 (Sigma-Aldrich, A50120).  
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DEAE affinity chromatography has  been used previously to separate hemoglobin and 

myoglobin in muscle homogenate while eluting with Tris buffer at concentrations of 5 to 

50 mM and pH of 8.2-8.6 (Brown, 1961; Yamazaki et al., 1964; Wittenberg and 

Wittenberg, 1981).  Mb was eluted at 4°C using stock buffer solution (pH 8.3 at 4°C) 

while DEAE preferentially retained Hb, retarding its movement and trapping it in the 

column.  The eluted Mb fraction was collected in 3.5 ml aliquots and frozen at -80°C 

until analysis. Globin solutions that were too dilute for analysis were concentrated by 

incomplete thawing under centrifugation using 5 ml cryovials.  Freeze centrifugation has 

proven effective at concentrating proteins including Mb while maintaining enzymatic 

activity (Virgen-Ortíz et al., 2012, 2013)  

 

Verifying Hemoglobin Removal 

To verify that Hb was successfully removed during purification, a test solution 

was prepared from homogenized cow muscle with additional cow Hb to ensure 

contamination.  A Hb solution was prepared from cow blood obtained from a local meat 

processing facility.  Whole blood was centrifuged for 15 min at 1,200 g and 4°C.  

Plasma was decanted and the remaining cellular pellet was resuspended and lysed with 

deionized water.  This Hb solution was centrifuged for an additional 15 min at 1,200 g 

and 4°C to remove cellular debris.  The resulting Hb solution was decanted on a column 

of G 25 Sephadex and eluted with 25mM Tris HCl buffer (pH 8.8 at 4°C).   

A Mb solution was prepared using the homogenization methods described above 

with the addition of 0.1 ml of cow whole blood added g-1 of muscle tissue during 

homogenization to further contaminate the sample with Hb.  After homogenization and 

centrifugation, a subsample was collected as a rough tissue homogenate containing both 

Hb and Mb.  The remaining sample was further purified according to our procedures 

using DEAE Sephadex chromatography to remove Hb contamination.  The Mb solutions 

were concentrated by incomplete thawing under centrifugation and eluted on a column 

of G-25 Sephadex to transfer to a buffer of 25mM Tris HCl (pH 8.8 at 4°C) for 

electrophoresis.   
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Glycerol was added to the globin solutions to total 10% of solution before 

loading for electrophoresis.  Protein bands were separated using native PAGE on a 13% 

gel at 200 V for 1.5 hours in TRIS glycine buffer (pH 8.3) (Boulton and Huntsman, 

1971).   The centrifuged muscle tissue homogenate was found to have pigmented bands 

corresponding to the Hb standard as well as a smaller more electrophoretically mobile 

pigmented Mb band.  The solution of extracted Mb with Hb contamination that was 

purified with affinity chromatography had a single, distinct pigmented band for Mb and 

no Hb band (Figure 3.4).   

 

Determination of Myoglobin P50 

The TCS Hemox Analyzer measures the oxygen saturation of respiratory 

pigments in solution by multiwavelength spectroscopy as a function of the partial 

pressure of oxygen in the sample cell using a Clark oxygen electrode.  The ratio of 

oxy/deoxy hemoproteins are determined by the ratio of optical absorption at 560 nm 

(Channel S2) and 570 nm (Channel S1) wavelength.  While the optical absorption at 570 

nm remains virtually unchanged between the oxy and deoxy states of the hemoprotein 

(Mb or Hb), the absorption at 560 nm undergoes a significant shift between these two 

states (Figures 3.1 and 3.2).  Because the change in the ratio of absorption of these two 

spectra is used to determine the percent saturation instead of direct absorbance at a 

specific wavelength, the effect of Mb oxidation during ODC generation is reduced.  The 

continuous ODC generated by the TCS Hemox Analyzer is of higher resolution than 

tonometric methods. 
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Figure 3.4  Pigmented globin bands from electrophoresis of prepared solutions of (a) prepared cow Hb, 
(b) homogenized cow muscle with addition of 0.1 ml whole blood g-1 muscle to ensure Hb contamination, 
and (c) solution b after removing Hb contamination using affinity chromatography.   

 
 
 
A minimal [Mb] was required to achieve adequate signal amplitude (Channel 

signal of S1/S2 on TCS Hemox Analyzer), and only samples with adequate 

concentration to achieve final signal strength of at least 0.025 were used for ODC 

determination (equivalent to [Mb] of approximately 0.02 mM).  Dilute samples with 

insufficient [Mb] were concentrated by partial thawing under centrifugation.  Individual 

3.5 ml samples were thawed and 20 µl of antifoam solution was added.  Samples were 

then warmed for 8 min in a water bath of 37°C before transfer to the sample chamber.  

The sample was bubbled while stirring with compressed air in the chamber and allowed 



 

45 
 

to equilibrate at 37°C and ambient O2 partial pressure for an additional 8 min.  Saturated 

oxygen partial pressure was calibrated before each reading using the following equation: 

 

 (PATM - 47) * 0.2095 = Oxygen Partial Pressure at Saturation (mmHg) 

 

where PATM is the atmospheric pressure in mmHg, 47 mmHg is the water vapor pressure 

at sea level and 37°C, and 20.95%  is the percentage of oxygen compressed air.  After 

the sample was equilibrated, an ODC was generated by monitoring the globin saturation 

and partial pressure of oxygen in solution while deoxygenating with compressed 

nitrogen.  Monitoring of deoxygenation and P50 determination was performed using TCS 

Hemox Data Acquisition System software (V 2.00.13, TCS Scientific).  Software 

monitoring was set to start at a PO2 of 146 mmHg and stop after deoxygenating to 0.5 

mmHg.  Nitrogen flow rate and stir speed were maintained at a rate that would 

deoxygenate the sample in 7-10 min.  After storing and plotting approximately 1,400 

individual data points (ca. 8 min with a sampling rate of 175 min-1), the data acquisition 

software was used to apply a best fit line for P50 calculation.   

 

Results and Discussion 

The procedures used in this study produced a Mb solution from homogenized 

vertebrate muscle tissue that was free of Hb contamination.  Autoxidation of Mb during 

extraction and purification was minimized by maintaining temperature below 4°C, 

maintaining alkaline pH, and minimizing processing time.  The resulting Mb solution 

could be concentrated or diluted to a desired concentration.  Using the TCS Hemox 

blood analyzer, reproducible high resolution Mb oxygen dissociation curves could be 

generated with solutions as dilute as 0.02mM Mb.  

Mb from homogenized cow muscle had a mean P50 that was statistically 

indistinguishable from commercially available horse heart Mb (cow n = 40, horse n = 

67; SPSS 15.0).  Due to unequal variance (Levene’s test, p < 0.001), an unequal variance 

t-test was used to compare oxygen affinity.  There was no statistical difference between 



 

46 
 

the oxygen affinity of horse heart Mb (P50 = 3.70 ± 0.09 mmHg) and Mb extracted from 

cow muscle (P50 = 3.72 ± 0.16 mmHg) (p = 0.415).   

Amino acid sequences were available for cow (P02192) and horse (P68082) Mb 

via the UniProt protein database (www.uniprot.org) (UniProt Consortium, 2013).  

Sequence alignment comparison of these samples was determined using Jalview 2.8 

(Waterhouse et al., 2009) (Figure 3.5).  The Mb O2 affinity of these ungulates appears to 

be conserved under the conditions tested despite approximately 12% heterogeneity in 

Mb primary structure.  Of the 153 amino acids in these proteins, there are 18 points of 

variance with mostly conservative substitutions.  This is consistent with previous 

research which showed that Mb structure is highly conserved in critical regions that 

influence oxygen binding while other regions undergo a relatively greater rate of neutral 

substitutions (Bogardt et al., 1980; Romero-Herrera et al., 1978; Ma et al., 2013).  While 

there appears to be no significant difference in Mb oxygen affinity for these two species, 

further research is needed on the Mb oxygen affinities of other species which may reveal 

differences that are adaptive for their physiological ecology. 

 

 

Figure 3.5  Alignment of horse and cow myoglobin sequences using Jalview 2.8.  Amino acid residue 
variants are ranked by conservation of physicochemical properties. 
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CHAPTER IV 

MYOGLOBIN OXYGEN AFFINITY IN DIVING AND 

TERRESTRIAL BIRDS AND MAMMALS 
 

Myoglobin (Mb) is a member of the family of oxygen binding globin proteins 

that serves multiple functions in vertebrate skeletal and cardiac muscle, including the 

transport and storage of oxygen.  The extent to which myoglobin functions in each of 

these roles varies with the physiology and ecology of different species, and a growing 

body of research suggests selection has shaped the functional properties of Mb to meet 

unique physiological needs.  Diving vertebrates have adaptations that maximize dive 

duration, which include increased oxygen stores bound to hemoglobin (Hb) in blood and 

Mb in muscle.  Myoglobin concentration is positively correlated with dive duration in 

diving species, but it is not known if Mb oxygen affinity is adaptive in these animals.  In 

this study, we compared Mb oxygen affinity (P50) of diving and terrestrial birds and 

mammals to examine whether it is associated with the unique oxygen demands in diving 

vertebrates.  Myoglobin P50 was conserved within the narrow range of 2.40-4.85 mmHg 

across all species examined.  The Mb P50 of terrestrial ungulates was highly conserved 

with a mean of 3.72 ± 0.15 mmHg and a narrow range among species (3.70 - 3.74 

mmHg).  The P50 of most cetaceans was similar to terrestrial ungulates but showed 

greater variability ranging from 3.54-3.82 mmHg with the exception of the melon-

headed whale that had a significantly higher P50 (lower oxygen affinity) of 4.85 mmHg.  

Among pinnipeds (seals and sea lions) the P50 ranged from 3.23-3.81 mmHg and showed 

a trend for higher oxygen affinity in species with longer dive durations.  Among diving 

birds the P50 ranged from 2.40-3.36 mmHg and also showed a trend of higher affinities 

in species with longer dive durations.  Although the ranges overlapped, the diving birds 

tended to have a greater oxygen affinity than the diving mammals.  Low Mb P50 (high 

oxygen affinity) is associated with avian and mammalian species whose muscles are 

routinely metabolically active under hypoxic conditions associated with aerobic dives.   
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Introduction 

Globin Evolution 

The globins are a group of paralogue globular proteins with an ancient common 

ancestor (Storz et al., 2011).  These related proteins share a common tertiary structure 

(stereotypic globin fold) with a hydrophobic pocket that contains a heme prosthetic 

group capable of reversibly binding oxygen.  The tertiary structure and ligand binding 

regions are generally highly conserved, while less critical regions are more variable 

(Naylor and Gerstein, 2000).  Duplication of the ancestral globin gene through whole 

genome and isolated gene duplication enabled the divergence in globin structure, 

function, and regulation of expression that produced the current diversity of vertebrate 

globins observed today (Storz et al., 2011; Hoffmann et al., 2012; Goodman et al., 1975; 

Wittenberg, 2007; Wystub et al., 2004; Schwarze and Burmester, 2013).   

Eight globin proteins are expressed in vertebrates including myoglobin, 

hemoglobin, cytoglobin, neuroglobin, androglobin, globin E, globin X, and globin Y.  

However, not all of these globins are present in every species as some have been lost at 

various divergences during vertebrate evolution (Hoffmann et al., 2011).  Myoglobin 

(Mb) is expressed almost exclusively in vertebrate skeletal and cardiac muscle where it 

buffers mitochondrial oxygen availability and facilitates oxygen diffusion (Salathe and 

Chen, 1992; Gödecke et al., 1999; Wittenberg and Wittenberg, 2003; Kanatous and 

Garry, 2006).   

 

Myoglobin Form and Function 

Within the Mb protein are several highly conserved hydrophobic cavities (Figure 

1.1) including the heme pocket, the distal pocket (DP), and four additional pockets (Xe1-

Xe4) named for their ability to bind xenon, although they also bind O2, CO and NO 

(Tomita et al., 2010).   A porphyrin ring is present within the heme pocket and is 

stabilized by hydrophobic interactions with nonpolar amino acids.  Additional stability is 

provided by salt bridges between the heme propionic side chains and polar amino acids 

near the opening including H97, R45, and S92 (Harada et al., 2007; The standard single 
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letter abbreviations for amino acids will be used to remain consistent throughout the 

text).     

Notable among the highly conserved amino acids are the proximal (H93) and 

distal (H64) histidines.  The proximal histidine covalently binds the iron at the center of 

the heme, while the distal histidine has several roles that include stabilizing the oxygen-

heme bond.  The distal pocket is the gap adjacent to the heme iron and the distal 

histidine that allows space for the heme to bind oxygen and other ligands (Figure 1.1).   

Although the backbone of the protein is stable, the conformational states of the amino 

acid side chains are dynamic.  In the lowest energy state, Mb crystallography reveals an 

enclosed protein with no direct pathway for ligands to enter and bind to the internal 

heme.  Because of this, ligand entry must rely on amino acid side chain fluctuations to 

open transient channels leading from the protein surface to the distal pocket.  There are 

several proposed transient ligand channels involving the Xe pockets, but the majority (> 

75%) of ligand movement in and out of Mb appears to be through a rotation of the distal 

histidine which serves as a gate to open a direct channel from the protein surface to the 

distal pocket where heme binding can occur (Scott et al., 2001; Salter et al., 2012).  Once 

oxygen has bound to the heme, the interaction between the heme 6-propionate side 

chain, R45, and the distal histidine stabilizes the oxy-Mb and decreases heme oxidation 

(Harada et al., 2007).  Although amino acid 45 shows some variability, the R45 and K45 

variants appear to be conservative and exhibit similar stabilizing effects in horse and 

sperm whale Mb, respectively (Harada et al., 2007).  Any variation in globin structure 

that affects the kinetics of binding or releasing oxygen will alter its oxygen affinity 

(Harada et al., 2007; Dasmeh and Kepp, 2012), and mutations that selectively stabilize 

the oxygen bound form will increase oxygen affinity (Ajloo et al., 2002).   

 

Diversity of Myoglobin Expression 

Myoglobin concentration in the skeletal muscle of birds and mammals varies 

greatly among species.  In air-breathing diving vertebrates, high concentrations of Mb 

serve as an oxygen store for periods of regional muscle hypoxia during prolonged apnea 
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(Guyton et al., 1995; Ponganis et al., 1997b; Wright and Davis, 2006; Davis, 2014) and 

may represent as much as 50% of total oxygen store (Butler and Jones, 1997).  While 

many terrestrial mammals have Mb concentrations < 5 mg g-1 muscle tissue (Newcom et 

al., 2004, Masuda et al., 2008), Mb concentration in diving marine mammals is often 10-

fold greater than the levels found in terrestrial animals (Kanatous and Mammen, 2010) 

with some concentrations exceeding 78 mg g-1 (Noren and Williams, 2000).  Sedentary 

birds such as galliforms may have Mb concentrations < 1 mg g-1 (Kranen et al., 1999), 

while long-duration divers such as emperor penguins have concentrations of ca. 64 mg g-

1 (Kooyman and Ponganis, 1998; Ponganis et al., 1999).   

Among diving birds and mammals, Mb concentration increases with increased 

capacity for dive duration (Reed et al., 1994a; Butler and Jones, 1997; Kooyman and 

Ponganis, 1998; Dolar et al., 1999; Helbo and Fago, 2012).  In addition, Mb 

concentrations vary within the muscles of vertebrates with the highest concentrations 

found in those associated with maximum exertion and aerobic metabolism (Polasek and 

Davis, 2001).   The level of expression of Mb within muscle is influenced by 

intracellular partial pressures of oxygen and enhanced by local hypoxia, which 

stimulates Mb synthesis (Terrados et al., 1990; Hoppeler and Vogt, 2001).   

 

Myoglobin Structural Variants 

Among birds and mammals, Mb varies in primary structure in addition to 

concentration.  Despite variation in amino acid sequence, the overall globin tertiary 

structure and heme binding regions are largely conserved (Bogardt et al., 1980; Evans 

and Brayer, 1988; Tamburrini et al., 1999).  The oxygen binding properties of 

respiratory pigments are defined by the P50 or the partial pressure (mmHg) of oxygen at 

which 50% of pigments in solution are bound with oxygen, which is determined from an 

oxygen dissociation curve (ODC) (Figure 3.3).  A lower P50 indicates a lower PO2 for 

half saturation and, therefore, a higher oxygen binding affinity.   

Site directed mutational studies of Mb produce variability in oxygen affinity with 

some amino acid substitutions having a greater influence than others (Carver et al., 1992; 
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Scott et al., 2001; Dasmeh and Kepp, 2012).  Myoglobin has distinct roles of 

intramuscular storage and transport of oxygen, and the relative importance of these roles 

varies among animals with different intramuscular oxygen demands (Dasmeh and Kepp, 

2012).  Diving vertebrates with unique physiological adaptations for storing and 

transporting oxygen may experience selection pressure that influences the molecular 

evolution of Mb (Naylor and Gerstein, 2000).   Recent studies showed that marine 

mammal Mb has experienced an increase in the rate of evolution (Dasmeh et al., 2013; 

Nery et al., 2013b) that has resulted in increased stability (Dasmeh et al., 2013) and net 

surface charge (Mirceta et al., 2013) compared with terrestrial mammals.  Although Mb 

concentration in cetaceans is high and increases directly with average dive duration, 

there does not appear to be any evolutionary modification of oxygen affinity in this 

branch of diving vertebrates (Helbo and Fago, 2012).   

Although the structure, concentration, and functional role of Mb are known to 

vary among species of birds and mammals, no study has comprehensively examined the 

interspecfic differences in oxygen affinity under identical physiological conditions.  

Although a range of Mb oxygen affinities has been reported in the literature, the studies 

used various experimental techniques, instrumentation, and temperatures, which make 

interpretation of the data for comparative analyses difficult.  Additionally, due to the 

effect of temperature on Mb oxygen affinity, previous experimental results at non-

physiological temperatures are not relevant in vivo (Schenkman et al., 1997).  

The purpose of this study was to compare the oxygen affinity of Mb from a 

variety of terrestrial and diving birds and mammals to determine if Mb oxygen affinity is 

adaptive in diving vertebrates.  In addition, species with amino acid sequences available 

in the Uniprot protein database (UniProt Consortium, 2013; www.uniprot.org) were 

compared to identify structural differences that may account for observed variation in 

oxygen binding affinity.  Among the diving animals, we tested for correlations between 

Mb P50 and routine dive duration that might indicate molecular adaptation for oxygen 

affinity and storage under hypoxic conditions.   
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Materials and Methods 

Myoglobin Samples 

Commercially available horse (Equus ferus) Mb (Sigma-Aldrich, M1882) was 

used as a terrestrial standard of known purity for oxygen affinity comparisons.  Muscle 

samples from oryx (Oryx dammah), cow (Bos taurus), and sheep (Ovis aries) were 

obtained from local (Houston, TX, USA) animal processing facilities.  White-tailed deer 

(Odocoileus virginianus) and redhead duck (Aythya americana) samples were donated 

by licensed local hunters.  Penguin muscle samples including macaroni (Eudyptes 

chrysolophus), chinstrap (Pygoscelis antarctica), Adélie (Pygoscelis adeliae), emperor 

(Aptenodytes forsteri), and king (Aptenodytes patagonicus) penguins were collected 

during necropsy of deceased captive animals and donated by the holding facilities.  

Bowhead whale (Balaena mysticetus) samples were collected during the annual native 

hunt in Barrow, Alaska.  Weddell seal (Leptonychotes weddellii) samples were collected 

by biopsy from live animals in the field as part of a separate research project.  The 

remaining cetacean and seal samples including common dolphin (Delphinus delphis), 

Risso’s dolphin (Grampus griseus), spinner dolphin (Stenella longirostris), bottlenose 

dolphin (Tursiops truncatus), melon-headed whale (Peponocephala electra), pygmy 

sperm whale (Kogia breviceps), dwarf sperm whale (Kogia sima), sperm whale 

(Physeter macrocephalus), Steller sea lion (Eumetopias jubatus), California sea lion 

(Zalophus californianus), harp seal (Pagophilus groenlandicus), harbor seal (Phoca 

vitulina), and northern elephant seal (Mirounga angustirostris) were collected during 

necropsies of wild stranded animals by regional marine mammal stranding networks.   

Sample preparation and measurement of Mb oxygen affinity have been 

previously described (Wright and Davis, in review; for stepwise methods see Appendix 

A).  Briefly, a single stock buffer solution of 50 mM TRIZMA® tris buffer (Sigma-

Aldrich, T 0694) with 50 mg l-1 gentamicin sulfate (Sigma-Aldrich, G-1264) was used 

throughout all tissue homogenization, purification, and oxygen dissociation curve (ODC) 

determination.  Horse heart Mb solutions were prepared by reconstitution in 

deoxygenated stock buffer solution and reduced with sodium dithionite (Sigma-Aldrich, 
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157953).  Dithionite was removed by buffer exchange on a column of G25 Sephadex® 

(Sigma-Aldrich, G25150) at 4°C by eluting with chilled stock buffer.    

For preparation of Mb solutions from vertebrate muscle, small sections of tissue 

(0.5 g or less) were dissected free of visible fat and connective tissue and homogenized 

with a glass tissue grinder (Fisher Scientific, 7727-15) in 10 ml chilled buffer g-1 tissue.  

Mb solutions were centrifuged to remove cellular debris and eluted on a column of 

DEAE-Sephadex® A-50 (Sigma-Aldrich, A50120) using stock buffer to remove 

hemoglobin contamination.  Mb solutions that were too dilute to generate an ODC 

(minimal Mb concentration of 0.02 mM) were concentrated by freeze centrifugation 

(Virgen-Ortíz et al., 2012, 2013).  Samples were frozen in 3.5 ml aliquots and stored at -

80°C until analysis.   

 

Determination of Myoglobin P50 

Once Mb solutions were prepared, oxygen dissociation curves were generated 

using a TCS Hemox Blood Analyzer (TCS Scientific, New Hope, PA).  Twenty µl 

antifoam solution was added to thawed 3.5 ml aliquot samples before being transferred 

to a sample chamber where they were warmed to 37°C and equilibrated to oxygen 

saturation by bubbling with air.  Once temperature and oxygen saturation were stable, an 

ODC was generated by optically monitoring the solution while deoxygenating by 

bubbling with compressed nitrogen to a final partial pressure of oxygen of 0.5 mmHg.  

The TCS Hemox Data Acquisition System software (V 2.00.13) was used to generate the 

oxygen dissociation curve in real time and calculate P50 values.  When possible, samples 

from five individuals were collected for each species with a sample size large enough for 

eight replicates from each sample.  However, due to the opportunistic nature of sample 

collection the number and size of samples was inconsistent.  Despite this, no species was 

represented by fewer than 14 replicates (Table 4.1). 
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Table 4.1  Sample size and mean oxygen affinity (P50) from diving and terrestrial vertebrates.   

 

  n N P50 ± SD 
(mmHg) 

Terrestrial    
 Sheep 3 25 3.74 ± 0.18 
 Cow 5 40 3.72 ± 0.16 
 Oryx 4 22 3.72 ± 0.19 
 White-tailed deer 3 14 3.72 ± 0.17 
 Horse * 1 67 3.70 ± 0.09 
Cetaceans    
 Melon-headed whale 4 48 4.85 ± 0.18 
 Bowhead whale 5 52 3.82 ± 0.10 
 Sperm whale 1 21 3.76 ± 0.13 
 Bottlenose dolphin 6 55 3.75 ± 0.17 
 Kogia sp. 5 54 3.74 ± 0.14 
 Common dolphin 2 21 3.73 ± 0.15 
 Spinner dolphin 2 18 3.62 ± 0.14 
 Risso's dolphin 1 21 3.54 ± 0.09 
Pinnipeds    
 Steller sea lion 4 29 3.81 ± 0.14 
 California sea lion 5 45 3.65 ± 0.10 
 Harbor seal 5 55 3.52 ± 0.18 
 Harp seal 5 60 3.51 ± 0.16 
 N. elephant seal 5 47 3.24 ± 0.10 
 Weddell seal 5 70 3.23 ± 0.22 
Birds    
 Redhead duck 5 42 3.36 ± 0.21 
 Macaroni penguin 2 18 3.34 ± 0.14 
 Chinstrap penguin 2 20 2.94 ± 0.22 
 Adelie penguin 2 17 2.86 ± 0.14 
 Emperor penguin 5 46 2.47 ± 0.17 
 King penguin 4 43 2.40 ± 0.23 
Total 91 950  
* Horse heart Mb was purchased from commercially purified and lyophilized Mb. 



 

55 
 

Aerobic Dive Limit 

The standard for quantifying routine vertebrate diving ability is the aerobic dive 

limit (ADL), which is the maximal duration an animal can remain submerged without 

appreciable increase in lactic acid resulting from anaerobic metabolism.  It is not feasible 

to measure an ADL in most diving vertebrates (Kooyman et al., 1983), so a calculated 

ADL (cADL) can be estimated based on diving metabolic rate and useable oxygen stores 

in animals for which these physiological measures are known or can be reasonably 

estimated (Butler, 2006).  An estimate of ADL based on behavioral diving information is 

necessary to compare the diving ability of species that have not had an ADL determined 

experimentally or estimated based on oxygen stores and diving metabolism (cADL).  To 

maximize underwater foraging time, diving vertebrates typically dive within their ADL 

(Kooyman et al., 1980; Butler, 2004).  Weddell seals (Kooyman et al., 1983), elephant 

seals (Hindell et al., 1992), bottlenose dolphins (Williams et al., 1999), macaroni 

penguins, and emperor penguins (Green et al., 2003) all make more than 90% of dives 

within their ADL.  Comparison of diving ability based on average dive duration may 

dramatically underestimate an animal’s aerobic diving ability (Noren and Williams, 

2000), and a comparison of maximum dive duration can be heavily skewed by extreme 

anaerobic dive events, which are rare and may be three times the ADL (Kooyman et al., 

1980).  For species without a published ADL or cADL, we estimated aerobic dive 

duration using published average dive durations plus one SD, which is a reasonable 

approximation for a behaviorally determined ADL and results in the maximal dive 

duration that includes approximately 85% of recorded dives.  These estimates were 

combined with published ADL and cADL estimates to test for correlations between 

ADL and P50.   

 

Comparison of Myoglobin Structure 

Of the 25 species in our study, the complete Mb amino acid sequences of 17 

were available in the Uniprot protein database (UniProt Consortium, 2013; 

www.uniprot.org; see Appendix B for accession numbers by species).  Sequences for 



 

56 
 

three terrestrial ungulates, seven cetaceans, six pinnipeds, and one bird were aligned for 

comparison using Jalview 2.8 (Waterhouse et al., 2009).  A consensus sequence 

representing the amino acids most common at each site of the multiple alignment was 

generated for comparison. Conservation of individual amino acids was ranked based on 

retention of physicochemical properties with a score of 8 or greater being considered a 

conservative substitution (Livingstone and Barton, 1993).  RCSB PDB Ligand Explorer 

(http://www.rcsb.org) (Bernstein et al., 1977) was used to determine amino acids within 

interactive distance (taken at 5Å) to the heme, distal pocket (DP) and Xe binding pockets 

using sperm whale Mb (PDB accession # 1J52 and 1MBO).   

 

Data Analysis 

Because Kogia breviceps (n=3) and Kogia sima (n=2) are phylogenetically 

similar and share 100% Mb sequence identity, samples from these two species were 

pooled to form a single Kogia group.  All statistical analysis was performed with SPSS 

15.0 software (IBM Corporation, Somers, NY, USA).  Due to unequal variance (Levene 

test, p < 0.001), a Welch test was used to compare Mb oxygen affinity among species.  

Games-Howell pairwise comparisons were used to form groupings of statistically 

indistinguishable Mb oxygen affinity.   

 
Results 

Myoglobin Oxygen Affinity 

Mb P50 varied significantly among species (Welch test, p  <  0.001) and ranged 

from 2.40 mmHg for emperor penguins to 4.85 mmHg for melon-headed whales (Table 

4.1 and Figure 4.1).  Pairwise comparison of interspecies P50 showed that the terrestrial 

ungulates and the majority of the cetaceans formed a series of non-exclusive overlapping 

groups (Figure 4.2).  The P50 among terrestrial ungulates (horse, deer, oryx, cow, and 

lamb) were not significantly different (mean of 3.72 ± 0.15 mmHg).   

In addition to the overlapping groups composed primarily of terrestrial ungulates 

and cetaceans, one cetacean and three additional groups varied significantly from all 
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others (Figure 4.2).  Melon-headed whales had a significantly lower P50 (4.85 mmHg) 

than all other species.  The closely related king and emperor penguins comprised a group 

with the lowest P50 (mean of 2.44 ± 0.20 mmHg).  Closely related Adélie and chinstrap 

penguins comprised a group with the next lowest P50 (mean of 2.90 ± 0.19 mmHg).  The 

Weddell and northern elephant seals had the lowest P50 among the mammals although 

they grouped with the redhead duck and the macaroni penguin, which had the highest P50 

among the birds (mean of 3.27 ± 0.19 mmHg).   

 

 
Figure 4.1  Mean myoglobin (Mb) oxygen affinity (P50 ± 2 SEM) for a variety of species.  Horizontal 
reference line is at 3.72 corresponding to the P50 of commercially available terrestrial horse heart Mb.   
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King penguin 2.40           
Emperor penguin 2.47           
Adelie penguin   2.86         
Chinstrap penguin   2.94         
Weddell seal     3.23       
Elephant seal     3.24       
Macaroni penguin     3.34       
Redhead duck     3.36       
Harp seal       3.51     
Harbor seal       3.52 3.52   
Risso's dolphin       3.54 3.54   
Spinner dolphin       3.62 3.62   
California sea lion       3.65 3.65   
Horse        3.70 3.70   
White-tailed deer       3.72 3.72   
Oryx       3.72 3.72   
Cow       3.72 3.72   
Common dolphin       3.73 3.73   
Sheep       3.74 3.74   
Kogia sp.       3.74 3.74   
Bottlenose dolphin       3.75 3.75   
Sperm whale       3.76 3.76   
Steller sea lion         3.81   
Bowhead whale         3.82   
Melon-headed whale           4.85 

 
Figure 4.2  Mb oxygen affinity of diving and terrestrial birds and mammals.  Columns represent grouping 
based on Games-Howell pairwise comparison of species with statistically similar Mb oxygen affinity (p < 
0.05).  
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Among the diving species, there was a broad range of aerobic diving abilities 

among cetaceans (3.7 – 51 min), pinnipeds (2.3 – 30 min), and birds (0.5 – 5.7 min) 

(Table 4.2).  For cetaceans, there was no significant correlation between the ADL and 

Mb oxygen affinity (r2=0.0113, P=0.894) (Figure 4.3).  Among pinnipeds and among 

birds, there was a significant negative correlation between ADL and Mb P50 (i.e., a 

positive correlation between ADL and Mb oxygen affinity) (r2=0.8047, P=0.015 and 

r2=0.8177, P=0.013, respectively).   

 

Comparison of Myoglobin Structure 

 Available Mb sequences for this study consisted of 153 amino acids (Figure 4.4).  

Among these, 81 of the 153 amino acid sites (53%) were completely conserved, and 115 

(75%) were highly conserved with a conservation ranking (based on physicochemical 

properties) of 8 or greater.  Of the 30 amino acids lining the conserved pocket regions 

(heme pocket, DP, and Xe 1-4) (Table 4.3), 21 (70%) were completely conserved and 27 

(90%) were highly conserved (Figure 4.4).  Much of the variation in alignment was due 

to the emperor penguin, which was the only bird in our study for which an amino acid 

sequence was available.  Among the mammals, 104 amino acids (68%) were completely 

conserved and 130 (85%) were highly conserved.  Of the 30 amino acids lining the 

pocket regions, 26 (87%) were completely conserved and 29 (97%) were highly 

conserved with the one seemingly inconsequential non-conservative T67V horse 

substitution.  There were 39 unique variants in emperor penguin Mb not seen in any 

other more distantly related mammalian species in the comparison.  Of these variants, 

three conservative substitutions were located in the lining of the heme pocket including 

the K42R, S92T, and I99V in addition to the less conservative A71Q variant. 
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Table 4.2   Aerobic dive limits for species in this study determined experimentally (ADL), as calculated 
estimates (cADL), or estimated based on behavioral data as described in the text.  

  
ADL 
(min) Reference 

Cetaceans   
 Bowhead whale 16.7 c Simon et al., 2009 * 
 Sperm whale 51.4 c Watwood et al., 2006 
 Bottlenose dolphin 3.7 b Williams et al., 1999 
 Kogia sp. 23.9 c Barlow et al., 1997 
Pinnipeds   
 Steller sea lion 2.5 d Gerlinsky et al., 2013 
 California sea lion 2.3 b Ponganis et al., 1997c 
 Harbor seal 4.5 c Stewart et al., 1989 
 Harp seal 10.5 c Folkow et al., 2004 + 
 N. elephant seal 30 c Hassrick et al., 2010 ‡ 
 Weddell seal 20 a Kooyman et al., 1980 
Birds   
 Redhead duck 0.5 e Furilla and Jones, 1986; Stephenson et al., 1986 
 Macaroni penguin 2.1 d Green et al., 2003 
 Chinstrap penguin 2.2 d Culik et al., 1994 
 Adelie penguin 1.8 d Culik et al., 1994 
 Emperor penguin 5.6 a Ponganis et al., 1997a 
 King penguin 5.7 c Kooyman et al., 1992; Le Vaillant et al., 2012 
a ADL determined experimentally in free diving wild animals. 
b ADL determined experimentally in trained diving animals. 
c ADL as mean dive duration of free diving wild animals plus 1 SD as described in text. 
d ADL calculated as useable oxygen stores divided by diving metabolic rate (cADL). 
e ADL estimated based on mean dive duration of redhead duck and cADL of tufted duck. 
* Averages calculated from U and V shaped mean dive durations plus 1 SD. 
+ Averages calculated from DU index 1993 data. 
‡ Averages calculated from conditioned “recovery” week dives. 
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Figure 4.3  Mean Mb oxygen affinity (P50) as a function of dive duration (ADL) for cetaceans, pinnipeds, 
and birds.   
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Figure 4.4  Multiple alignment of Mb sequences available from the Uniprot protein database using 
Jalview 2.8.  Amino acid site conservation was ranked based on conservation of physiochemical 
properties.  Amino acids lining the highly conserved heme, distal and Xe pockets are boxed for 
identification.  
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Table 4.3  Amino acid sites forming hydrophobic pockets that come within interactive distance of ligands 
bound by sperm whale myoglobin.  RCSB PDB Ligand Explorer was used to select amino acids within 5Å 
of bound O2 (PDB accession # 1MBO) for the distal pocket (DP), and Xe and heme (PDB accession # 
1J52) for the corresponding pockets. 
 

Pocket Amino acids 
DP L29, F43, H64, V68 

Heme T39, K42, F43, R45, H64, T67, V68, A71, L89, S92, 
H93, I99, Y103, L104 

Xe1 L89, H93, L104, F138, I142 
Xe2 L104, I107, S108, L135, F138 
Xe3 W7, I75, L76, H82, A134, L137, F138 
Xe4 G25, I28, L29, G65, V68, L69, I107 

 
 

Discussion 

Mutations in Mb structure can affect its oxygen binding properties and stability 

(Scott et al., 2001; Ochiai et al., 2009; Dasmeh et al., 2013), and interspecies variability 

generates different phenotypes that are subject to natural selection (Naylor et al., 2000; 

Wittenberg 2007).  Comparing interspecies differences in Mb oxygen affinity from a 

variety of endothermic vertebrates revealed conservation of P50 within a narrow range of 

2.45 mmHg despite considerable variability in amino acid sequence.  However, among 

species in this study with available Mb sequences, 47% of amino acid sites showed some 

level of substitution.   

Given the broad range of oxygen affinities that are possible by even a single 

amino acid substitution (Dasmeh et al., 2012), it appears that the Mb oxygen affinity of 

endothermic vertebrates is conserved within a narrow range to maintain optimal muscle 

performance.  Marcinek et al. (2001) found evidence for conservation of Mb oxygen 

affinity in fish with different body temperatures.  Among closely related fish species, Mb 

oxygen affinity measured at 20oC was higher for species that maintain a higher body 

temperature and lower for lower body temperature fish.  When adjusted for 

physiological body temperature, these oxygen affinities converge.  This apparent 

adaptive conservation of Mb oxygen affinity suggests there may be an optimal value for 

supporting aerobic respiration under specific physiological conditions.  While available 
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evidence suggests that Mb oxygen affinity is conserved for animals with similar 

physiology, it is less clear if interspecies variation within the narrow range of oxygen 

affinity provides an adaptive advantage for species that routinely experience hypoxia 

during breath-hold diving.   

Diving species have an array of multi-level adaptations to cope with recurrent 

breath-holding and the subsequent hypoxia and muscular ischemia (Davis, 2014).  

Elevated concentrations of respiratory pigments have obvious adaptive advantages for 

maintaining aerobic metabolism in diving birds and mammals, and recent studies have 

examined the potential adaptive molecular evolution of the functional properties of these 

pigments (Meir and Ponganis, 2009; Soegaard et al., 2012; Helbo and Fago, 2012; 

Schneuer et al., 2012; Mirceta et al., 2013).  

The oxygen affinity of terrestrial ungulates in this study was highly conserved 

with a mean P50 of 3.7 ± 0.15 mmHg.  With the exception of melon-headed whales, there 

was no significant difference in the P50 of cetaceans and terrestrial ungulates.  Helbo and 

Fago (2012) also found the P50 of toothed whales to be similar to that in horse and 

concluded that in these animals, Mb’s contribution to diving ability is achieved primarily 

by increasing the concentration rather than altering oxygen affinity.  They also noted 

slightly higher P50 in mysticete whales compared to odontocetes which, with the 

exception of melon-headed whales, was also supported in our study.  Our results agree 

with Helbo and Fago (2012) in that no significant correlation between average dive 

duration and P50 was observed in cetaceans.  However, there was a significant trend for 

diving seals and penguins with a longer ADL to have a lower P50.  These correlations do 

not consider all physiological and behavioral factors that influence ADL such as body 

mass, diving metabolic rate, total Mb oxygen store, and total Hb oxygen store, but they 

indicate that within these groups there is a trend for longer duration divers to exhibit a 

greater Mb oxygen affinity.   

Genetic variation in globin function produces phenotypes that are subject to 

natural selection (Wittenberg, 2007).  Myoglobin has experienced an increased rate of 

evolution in cetactans, suggesting selection pressure in diving vertebrates (Nery et al., 
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2013b).  Dasmeh et al., (2013) found that mutations that increase Mb protein fold 

stability are positively selected for in cetaceans, and this increase in protein stability is 

positively correlated with Mb concentration in these species.  In addition, Mirceta et al. 

(2013) found that Mb concentration correlates positively with protein surface charge in a 

variety of mammalian divers suggesting a convergent adaptation for maintaining Mb 

solubility when expressed in high concentrations.  

Among the cetaceans, P50 ranged from 3.54 mmHg in the Risso’s dolphin to 4.85 

mmHg in melon-headed whales.  Although these P50 were significantly different, melon-

headed whale Mb only varied from that of Risso’s dolphin by a single N66I substitution 

which, like the N66V substitution found in Kogia and sperm whales, increases protein 

stability (Dasmeh et al., 2013).  Mutants of sperm whale Mb at this site have shown 

modest changes in oxygen affinity (Scott et al., 2001).  Due to its location, variation at 

amino acid 66 has also been hypothesized to shift the oxygen affinity of beluga whale 

Mb (Stewart et al., 2004).  Although amino acid 66 is not located in the heme pocket, it 

is in close structural proximity and adjacent to amino acids 67 and 68, which line the 

heme and distal pockets, respectively.  It is unclear if this shift in Mb oxygen affinity 

indicates unique selective adaptation in melon-headed whales or is the result of less 

directed genetic variation.   

The group formed by Adélie and chinstrap penguins had a mean P50 of 2.9 

mmHg.  This is very similar to the previously reported value of 3 mmHg for these 

species at 40°C (Weber et al., 1974).  The slight difference in oxygen affinity between 

these two studies is diminished if the temperature shift in Mb oxygen affinity is 

considered.   

It is difficult to identify individual amino acid variants that may be responsible 

for the increased oxygen affinity in emperor penguin Mb due to the large amount of 

variation from the consensus sequence (Figure 4.4).  This is also partly due to the fact 

that emperor penguins were the only birds in our study whose Mb structure was 

available in the Uniprot database.  The close proximity of the S92T variant to the 

proximal histidine (H93) may contribute to the high oxygen affinity of emperor penguin 
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Mb and provides an interesting subject for future point mutation studies.  Interestingly, 

the Mb of emperor penguins also have the identical N66V substitution which appears 

selected for to increase Mb stability in the deep diving Kogia and sperm whale (Dasmeh 

et al., 2013).  The L61 amino acid is in close proximity to the distal histidine and was 

found to influence oxygen binding in mutational studies (Dasmeh et al., 2012).  

Although it is a conservative substitution, the L61M emperor penguin substitution may 

impart some variance to oxygen affinity. 

 

Globin Adaptation to Hypoxia 

Oxygen binding globin proteins are obvious candidates for molecular adaptation 

in diving animals that experience regular hypoxia (Nery et al., 2013 a; Nery et al., 2013 

b), and a growing body of evidence supports this hypothesis.  Myoglobin oxygen affinity 

is variable among species, but could the modest variability observed in this study impart 

an advantage in managing intramuscular oxygen stores under certain physiological 

conditions?  A compensatory shift to account for variability in muscle temperature as 

observed in fish (Marcinek et al., 2001) could be possible.  However, even during 

prolonged dives, active muscle temperature is maintained at near 37°C in emperor 

penguins (Ponganis et al., 2003) and Weddell seals (Ponganis et al., 1993b).  The 

absence of an elevated muscle temperature during diving would eliminate the increased 

oxygen affinity of these species as an adaptation for temperature compensation, and any 

chilling of muscle temperature would exacerbate the elevated oxygen affinity.  Therefore 

it is unlikely that the shift in oxygen affinity of these species is driven by temperature. 

There is considerable evidence that increased oxygen affinity of respiratory 

globins is advantageous for animals in hypoxic environments.  Sprague-Dawley rats that 

had their Hb oxygen affinity artificially elevated with sodium cyanate had better 

survivability and lower experimental heart rates in a hypoxic environment (Eaton et al., 

1974), and molecular adaptation favoring high affinity Hb is typical in animals that 

routinely endure hypoxia (Bunn, 1980; Storz, 2007).  Burrowing rodents that experience 

hypoxic environments in underground burrows exhibit an increased Hb oxygen affinity 
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(Revsbech et al., 2013), and high altitude adapted animals such as bar-headed geese 

(Anser indicus) (Jessen et al., 1991), vicuña (Vicugna vicugna) (Hall et al., 1936), and 

deer mice (Peromyscus maniculatus) (Storz et al., 2009) also possess high oxygen 

affinity Hb compared to their low altitude counterparts.  

Hemoglobin appears left shifted in diving harbor porpoises (Soegaard et al., 

2012) and emperor penguins (Meir and Ponganis, 2009) compared to terrestrial animals, 

but there is no clear trend for an adaptive shift in Hb oxygen affinity in diving 

vertebrates (Davis, 2014).  While high affinity Hb may be an advantage when 

oxygenating blood in a hypoxic environment (e.g., high altitude), this subsequently 

reduces the gradient for offloading oxygen at the blood-tissue interface (Storz, 2007; 

Revsbech et al., 2013).  An increase in Mb oxygen affinity could increase the diffusion 

gradient into muscle cells, but potentially reduce the intracellular diffusion gradient for 

oxygen transport from the sarcolemma to the mitochondria.  To effectively facilitate 

oxygen diffusion, it is critical that the Mb P50 be near the partial pressure of oxygen in 

active muscle to ensure partial saturation of Mb and maintain a diffusive gradient 

(Marcinek et al., 2001; Wittenberg, 2007).  If Mb is acting to facilitate oxygen diffusion 

to active muscle under conditions of reduced convective oxygen transport, a greater Mb 

oxygen affinity could have an adaptive advantage for maintaining an intramuscular 

oxygen diffusion gradient during periods of reduced arterial PO2.   

Models simulating the intramuscular transport of oxygen from the sarcolemma to 

the mitochondria typically assume an oxygen sink with a PO2 of 0 mmHg at the 

mitochondria.  However, actual mitochondrial PO2 must be some value greater than 0, 

which would reduce the intracellular O2 diffusion gradient (Cano et al., 2013).  While 

the significance of this discrepancy may be insignificant in a respiring animal when 

arterial PO2 and the diffusive gradient are high, it would be more significant as 

convective oxygen transport, arterial PO2, and the oxygen diffusion gradient are reduced. 

Some long duration divers including elephant seals and emperor penguins 

tolerate extreme hypoxia by depleting blood oxygen to very low levels by the end of 

dives (Ponganis et al., 2007; Meir et al., 2009).  Despite low arterial oxygen content, 
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oxygen supply to muscle mitochondria must be maintained by combined contributions of 

endogenous oxygen stores (MbO2) and convective oxygen transport to maintain aerobic 

metabolism (Wright and Davis, 2006).  Vasoconstriction in diving vertebrates reduces 

convective oxygen transport to muscle tissues, and oxygen supply is further reduced as 

arterial PO2 drops throughout the dive.  As a result, unique muscle conditions in diving 

vertebrates may shape the functional role of Mb. 

Recently, attempts have been made to model the functional role of Mb with 

various oxygen affinities under different conditions (Lin et al., 2007a; Lin et al., 2007b; 

Dasmeh and Kepp, 2012).  Myoglobin has distinct roles of transport and storage of 

oxygen and they are affected differently by mutations that alter Mb oxygen affinity.  As 

an oxygen store, Mb with a greater oxygen affinity functions better in both normoxic and 

hypoxic conditions, but this advantage is amplified under hypoxic conditions (Dasmeh 

and Kepp, 2012).   

The contribution of Mb facilitated oxygen diffusion to total oxygen flux 

increases with Mb concentration, and at the high concentrations found in marine 

mammals, Mb facilitated oxygen transport dominates over free oxygen diffusion (Lin et 

al., 2007a, 2007b).  Variants in Mb oxygen affinity also affect the oxygen transport role 

of Mb.  Under normoxic conditions, Mb mutants with a lower oxygen affinity function 

better at oxygen transport, but under hypoxic conditions, high affinity Mb mutants are 

advantageous (Lin et al., 2007b; Dasmeh and Kepp, 2012).  An increased oxygen 

affinity could maintain oxygen transport in hypoxic muscle when convective oxygen 

transport is low providing greater efficiency (greater fractional extraction) in extracting 

oxygen from low PO2 arterial blood.   

Variations in Mb oxygen affinity have a greater effect on oxygen storage and 

transport under hypoxic conditions.  Therefore, Mb function under hypoxic conditions 

provides the primary selective pressure to preserve Mb function (Dasmeh and Kepp, 

2012).  Recent models of Mb oxygen storage and transport (Lin et al., 2007b; Dasmeh 

and Kepp 2012) suggest that under conditions of muscular hypoxia, high Mb 
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concentrations and Mb with high oxygen affinity would be an advantage for both storage 

and transport of oxygen.   

 

Conclusions 

 Functional properties of oxygen binding globin proteins such as Mb are mutable 

and subject to natural selection, and the oxygen affinity of Mb appears to be conserved 

within a narrow range for terrestrial and aquatic birds and mammals.  Small variation 

within this range may be significant and adaptive for animals that routinely exercise 

during hypoxia and manage intramuscular transport and storage of oxygen differently.  

Diving birds and long duration diving seals have Mb oxygen affinities that are 

significantly greater than terrestrial ungulates, and within these groups there is a trend 

for greater Mb oxygen affinity in animals with greater diving ability.  This increase in 

Mb oxygen affinity may be adaptive for enhanced oxygen flux during muscular ischemia 

and hypoxia or could be secondarily adaptive for other roles that protect hypoxic muscle 

tissue.  An adaptive increase in Mb oxygen affinity in deep diving mammals and birds is 

consistent with other studies demonstrating adaptive increase in globin oxygen affinity 

in animals that routinely endure hypoxia.  Previous studies have demonstrated adaptation 

of cetacean Mb for greater structural stability and surface charge, but Mb oxygen affinity 

does not appear to be directly affected in this group of divers.   
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CHAPTER V 

SUMMARY: 

ADAPTIVE EXPRESSION AND MOLECULAR EVOLUTION OF 

MYOGLOBIN IN DIVING BIRDS AND MAMMALS 
 

Myoglobin (Mb) is an oxygen binding hemoprotein in vertebrate cardiac and 

skeletal muscle.  The expression of Mb is up-regulated in response to tissue hypoxia, and 

diving birds and mammals can have concentrations ten-fold those of terrestrial species.  

A physiological model simulating Weddell seal diving indicated that Mb concentration 

is optimized for the type and duration of dives that are typically made (Wright and 

Davis, 2006).  Diving mammals such as cetaceans have an increased rate of Mb 

evolution (Nery et al., 2013b) and adaptive shifts in its functional properties such as 

increased surface charge (Mirceta et al., 2013) and protein stability (Dasmeh et al., 

2013).  My research showed that Mb P50 also varies among species of diving birds and 

seals (but not cetaceans), with oxygen affinity correlating positively with dive duration.  

Myoglobin has additional enzymatic functions that influence intracellular nitric oxide 

concentration and reduction of reactive oxygen species that maintain cellular 

homeostasis and redox stability in hypoxic muscle.  As a result, the increased 

concentration and functional properties of Mb maintain aerobic metabolism and 

minimize hypoxic cellular damage in ischemic muscle.   

 

Myoglobin Concentration 

Diving birds and mammals have increased oxygen stores in the blood (increased 

blood volume and hemoglobin concentration) and muscle (increased myoglobin 

concentration) to enhance aerobic dive duration.  A dive response (apena, bradycardia 

and peripheral vasoconstriction) enables the efficient use of blood and muscle oxygen 

stores, but it is exercise modulated to maximize the aerobic dive limit at various levels of 

exertion (Davis and Williams, 2012).  For Mb-bound oxygen to become available for 

aerobic metabolism, the intracellular partial pressure of oxygen in the muscle must be 
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less than 10 mmHg (1.3 kPa); in other words, active muscles must become hypoxic (but 

not anaerobic) (Davis and Kanatous, 1999; Davis, 2014). However, cardiac output must 

remain sufficient to maintain convective oxygen transport for aerobic respiration in the 

heart, brain, and splanchnic organs.  A balanced dive response is therefore critical for the 

animal to efficiently manage blood and muscle oxygen stores, and the aerobic dive limit 

(ADL) is maximized when blood and muscle oxygen stores are depleted simultaneously 

(Davis and Kanatous, 1999; Davis and Williams, 2012).    

The concept of symmorphosis proposes that within an organism, the capacity of 

individual components of a biological system are matched to demand so that no single 

component is either excessive or exclusively limiting to system function (Weibel et al., 

1991).  Weibel and Hoppeler (2004) proposed that compensatory adaptations in the 

muscle of Mb knockout mice demonstrate this symmorphosis in the cardiorespiratory 

system where components of oxygen transport from the environment to the mitochondria 

are optimized.  According to this principle, Mb concentration within the muscle of an 

animal would be neither excessive nor limiting to oxygen demand.  To determine if Mb 

concentration is optimized for the metabolic needs in the muscle of diving vertebrates, I 

designed a numerical model based on Fick’s principle that integrated cardiac output, 

regional blood flow, convective oxygen transport, muscle oxymyoglobin desaturation 

and regional rates of oxygen consumption in a Weddell seal.  I then modeled the effect 

of increasing and decreasing Mb concentration in both postabsorptive and postprandial 

metabolic states on the ADL.   

Myoglobin bound oxygen stores limited the ADL of long duration postabsorptive 

dives to 18 min, and doubling Mb concentration extended dive duration to 24 min.  

However, dives of this type are rare in free ranging Weddell seals.  Most dives are either 

short duration dives terminated by behavior and not physiological limits, or occur in 

extended bouts of repetitive aerobic feeding dives with the added metabolic cost of 

digestion.  The model showed that Mb concentration is optimized for physiological 

conditions that occur in postprandial feeding dives in which the added metabolic cost of 

digestion and absorption in splanchnic organs caused blood oxygen stores and not 
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muscle oxy-Mb to be limiting.  Under these conditions, increased Mb concentration 

above levels found in the muscle of adult Weddell seals did not increase the ADL.  

Without a concomitant increase in blood oxygen stores, increased Mb concentration did 

not prolong the ADL for most routine dives.  Because blood-bound oxygen was typically 

the limiting physiological factor of ADL, constraints that limit blood oxygen (i.e., 

diminishing returns of increased blood volume, and viscosity limits to hematocrit) also 

limit the maximum effective Mb concentration.  The principles of symmorphosis apply 

to Weddell seal Mb concentration which is optimized to the ADL of most 

physiologically constrained dives.   

Kanatous et al. (2008) studied the ontogenetic development of Weddell seal 

muscle as they matured from non-diving pups to adults.  As pups are weaned and begin 

foraging, dive-induced muscle hypoxia stimulates Mb expression.  A rapid ontogenetic 

increase in Mb concentration in juvenile Weddell seals peaks early in the development 

of diving ability, but  decreases to lower adult levels as the seals develop more efficient 

modes swimming.  The inefficient diving of juvenile seals increases the metabolic cost 

in the muscle and may induce hypoxic stimuli which would not occur in a more mature 

diver (Kanatous et al., 2008).  It appears the upper limit of Mb concentration seen in 

adult divers is not limited by intracellular constraints of protein concentration, but by a 

lack of hypoxic stimuli if Mb oxygen is not limiting to most dives.   

 

Myoglobin Adaptation in Diving Vertebrates 

Diving vertebrates have molecular adaptations to cope with physiological stress 

associated with hypoxia including increased ability to remove reactive oxygen species 

(Yim et al., 2014).  Among these molecular adaptations are selective mutations of Mb.   

The rate of evolutionary change in Mb structure is accelerated in cetaceans, suggesting 

selective pressure on this oxygen binding protein in diving vertebrates (Nery et al., 

2013b).  Dasmeh et al. (2013) found that as Mb concentration increased early in 

cetacean evolution, there was selection for mutations that increased Mb stability by 

increasing hydrophobic interactions within the globin molecule.  Following the ancestral 
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increase in Mb concentration and stability, cetaceans that secondarily adapted to shorter 

duration diving had subsequent reductions in Mb concentration and protein stability.   

They theorized that the positive correlation between Mb concentration and protein 

stability selects to minimize the intracellular concentration of unfolded protein.  Mirceta 

et al. (2013) found that in several clades of diving mammals, increased Mb concentration 

was positively correlated with an adaptive increase in Mb surface charge.  This increased 

surface charge was theorized to increase the repulsive effects of protein at high 

concentration and prevent protein aggregation.   

Molecular adaptation of Mb for increased stability and surface charge are 

suggested mechanisms for coping with elevated levels of expression in vertebrate divers.  

Our results also suggest an adaptive modification of the functional properties of Mb in 

some diving vertebrates.  Mb oxygen affinity varied significantly among various diving 

and terrestrial vertebrates.  There was a positive correlation between aerobic dive limit 

and Mb oxygen affinity in diving birds and seals, although this correlation was not 

apparent in cetaceans.  Recent modeling studies indicate that Mb with an increased 

oxygen affinity may be advantageous for intracellular transport and storage of oxygen in 

diving vertebrates that endure prolonged ischemic hypoxia in muscle.     

Dasmeh and Kepp (2012) modeled the effect of Mb mutants with varied oxygen 

affinity on the ability of Mb to store and transport oxygen in muscle.  Myoglobin with a 

high oxygen affinity functions better as an oxygen store than low affinity Mb, and the 

significance of the oxy-Mb loading of oxygen into the cell increases as PO2 decreases.  

While low affinity Mb functions better as an oxygen transporter when the partial 

pressure of oxygen is high, high affinity Mb better facilitates oxygen transport at low 

PO2.  At the high concentrations found in diving vertebrates, Mb makes an increasingly 

significant contribution to oxygen flux, and this Mb facilitated oxygen diffusion 

increases as PO2 decreases (Lin et al., 2007b).  Dasmeh and Kepp (2012) concluded that 

the functional role of Mb is most significant under hypoxic conditions, and therefore the 

strongest selective pressure influencing Mb oxygen affinity is its functional role at low 

PO2 (Dasmeh and Kepp, 2012).  It is therefore unsurprising that high affinity Mb may be 
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selected for in the muscle of diving vertebrates where ischemia results in prolonged 

hypoxic conditions.   

 

Speculations and Future Research 

Traditionally, Mb was thought to function exclusively in the intracellular 

management of oxygen.  More recent research shows that Mb has additional roles 

including nitric oxide (NO) scavenging, nitrite reductase activity, and peroxidase 

activity.  Increased concentration of NO reduces mitochondrial respiration by 

modulating cytochrome c oxidase activity (Taylor and Moncado, 2010).  Mb mediated 

regulation of cellular metabolism and reduction of cellular damage associated with 

ischemia and reperfusion may be significant in diving vertebrate muscle.   

 

Nitric Oxide 

Under normoxic conditions where the oxygen bound form of Mb dominates, 

ferrous oxy-Mb acts as a NO scavenger producing ferric met-Mb and nitrate (reaction 1).   

Mb(Fe2+)O2 + NO → Mb(Fe3+) + NO3
-               (1) 

Under hypoxic conditions where Mb becomes increasingly deoxygenated, Mb becomes 

a net NO producer as deoxy-Mb reduces nitrite (reaction 2).    

Mb(Fe2+) + NO2
- + H+ → Mb(Fe3+)  + NO + OH-    (2) 

With decreasing PO2, the point at which Mb transitions from being a scavenger to a net 

producer of NO is dependent on the ratio of oxy-Mb to deoxy-Mb and is therefore Mb 

P50 dependent (Kamga et al., 2012).  Species with high Mb oxygen affinity may maintain 

normal mitochondrial respiration rate and muscular activity under hypoxic conditions 

which may be adaptive for maintaining aerobic muscular activity.  In both of the above 

reactions, Mb is oxidized to met-Mb which is incapable of binding oxygen or 

performing other known Mb functions.  The enzyme met-Mb reductase reduces oxidized 

met-Mb to deoxy-Mb where it can once again function to bind oxygen (Hagler et al., 

1979).  In diving vertebrates, increased met-Mb reductase activity may be needed due to 

increased overall Mb concentration, as well as potential increased met-Mb production 
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due to high rates of NO cycling.   Future research should examine the concentration and 

enzymatic function of met-Mb reductase in diving vertebrates.   

An increased concentration of NO reduces mitochondrial respiration by 

modulating cytochrome c oxidase activity (Taylor and Moncado, 2010).  Under very 

hypoxic conditions where the PO2 is below the P50 of Mb, elevated Mb concentrations in 

marine mammal muscle may increase this nitrite reductase activity providing increased 

protection from ischemia reperfusion injury (Hendgen-Cotta et al., 2008; Jensen, 2009) 

and conserving limited oxygen in ischemic tissues by reducing tissue metabolism (Shiva 

et al., 2007; Lundberg et al., 2008; Jensen, 2009).  Elevated Mb oxygen affinity is also 

associated with increased nitrite reductase activity.  Marine mammals that express high 

oxygen affinity Mb at high concentration may have a compounded effect resulting in an 

increased capacity for NO generation (Helbo and Fago, 2012).  Intriguingly, plasma 

nitrate and nitrite levels were found to be elevated in harbor porpoise above the levels 

found in similar sized terrestrial mammals which suggests a unique role of nitrogen 

cycling in marine mammals (Soegaard et al., 2012).   

 

Myoglobin and ROS 

Although the dominant pathways for production are debated, ischemic hypoxia in 

muscle tissue increases production of reactive oxygen species (ROS) leading to potential 

cellular damage (Clanton, 2007).  The biochemistry in the muscle of diving vertebrates 

results in an increased rate of ROS production (Zentino-Savin et al., 2010), although this 

is compensated by an increase in antioxidant activity and increased rate of ROS removal 

(Wilhelm Filho et al., 2002; Zentino-Savin et al., 2010).  In addition to reducing 

oxidative stress by limiting mitochondrial metabolism during hypoxia via NO 

generation, Mb also has a peroxidase role to directly modulate ROS (Hendgen-Cotta et 

al., 2010).  Mb scavenging of ROS can produce ferryl-Mb which is capable of oxidizing 

protein and lipid resulting in cellular damage (Kamga et al., 2012).  Despite any 

contribution to oxidation, Mb has a net effect of maintaining intramuscular redox status 

and mediating ischemia reperfusion injury (Flögel et al., 2004; Kamga et al., 2012).  
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Unlike nitrite reductase activity, Mb peroxidase activity does not appear to scale with 

oxygen affinity (Helbo and Fago, 2012) and, therefore, any increase in Mb ROS 

scavenging capacity in diving species would be due to increased concentration.   

 

Effects of Pressure 

 Marine mammals and birds are subject to considerable hydrostatic pressure when 

diving to depth, and pressure experienced in the deep sea can alter the structural stability 

and rate of reaction of proteins including globins (Mozhaev et al., 1996; Urayama et al., 

2002).  As hydrostatic pressure is increased, globin proteins experience a compression 

that increasingly favors a hexacoordinate structure in which the distal histidine binds 

directly to the heme iron and restricts ligand binding effectively reducing oxygen affinity 

(Hamdane et al., 2005; Capece et al., 2009).  In cetaceans, there appears to be positive 

selection for mutations that stabilize Mb structure (Scott et al., 2000; Dasmeh et al., 

2013), and selection for stability is positively correlated with Mb concentration and 

subsequently diving duration and depth (Dasmeh et al., 2013).  Increased protein 

stability may reduce hydrostatic effects and conserve Mb function at depth.   

 

Fatty Acid Transport 

 Recent research by Shih et al., (2014) has demonstrated that oxy-Mb is capable 

of reversibly binding palmitate (PA), suggesting potential Mb facilitated fatty acid 

transport in active muscle.  The relative PA dissociation constants and diffusion 

coefficients of Mb and fatty acid binding protein (FABP) suggest that Mb could rival or 

even surpass FABP in capacity for fatty acid transport, particularly with the elevated Mb 

concentration found in diving vertebrates.  Additionally, deoxy-Mb does not appear to 

bind PA which suggests a possible oxygen/fatty acid co-transport mechanism where 

oxygen and fatty acid are bound to Mb at relatively high PO2 near the sarcolemma and 

simultaneously offloaded at low PO2 near the mitochondria.  Because seals and likely 

other carnivorous diving vertebrates metabolize fatty acids as their primary source of 

fuel (Davis, 2014), Mb facilitated transport may be significant.  The rate of intracellular 
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fatty acid diffusion may not be limiting in long duration divers such as Weddell seals 

where metabolic rate is low, but may be more significant in short duration, higher energy 

divers such as otariids, penguins, and some cetaceans.   
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APPENDIX A 

PREPARATION OF MYOGLOBIN FOR MEASURING 

OXYGEN AFFINITY (P50) 

 
 

Lyophilized Horse Heart Myoglobin Standard 
 
1. Prepare a stock solution of 50 mM tris buffer (Sigma-Aldrich, T 0694) with the 
addition of 50 mg/l gentamicin sulfate (Sigma-Aldrich, G-1264).  The pH of the buffer 
should be 7.4 at 37°C and 8.26 at 5°C. 
 
2. In a 50 ml flask, bubble 9 ml of stock buffer solution with 100% nitrogen for 10 min 
while stirring on ice. Add 110 mg sodium dithionite (Sigma-Aldrich, 157953) and 
continue bubbling for an additional 5 min to complete deoxygenation. 
 
3. Add 16 mg lyophilized horse heart Mb (Sigma-Aldrich, M1882) and continue 
bubbling with nitrogen for one additional min to produce a reduced and deoxygenated 
Mb solution that will be dark red in color. 
 
4. Remove dithionite from the solution using buffer exchange chromatography on a bed 
of G-25 Sephadex (Sigma-Aldrich, G25150) with a bed volume of 5 ml packed media 
per ml of Mb solution.  Elute with stock buffer solution and collect the red Mb fraction. 
Incomplete removal of dithionite will result in Mb oxidation when frozen.   
 
5. Freeze 1 ml aliquots of the Mb solution for later use.   
 
 
Myoglobin Extraction from Frozen Muscle 
 
1. Cut approximately 0.5 g of muscle into small pieces (approximately 3 mm on a side) 
removing visible fat and connective tissue (easiest while tissue is still partially frozen). 
 
2.  Homogenize the tissue in 10 ml chilled stock buffer g-1 muscle using a glass tissue 
homogenizer chilled on ice. 
 
3.  Decant the homogenized Mb solution into a centrifuge tube and centrifuge at 1,200 g 
for 20 minutes at 4°C.   
 
4.  The following solutions and procedures should be performed at 4°C.  Prepare a 
column of DEAE-Sephadex A-50 (Sigma-Aldrich, A50120) with a bed volume of two 
times the sample volume according to manufacturer directions.  Pour the Mb solution 
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into the column and elute with stock buffer.  (While eluting the Mb solution, Hb 
movement is slowed in the column due to difference in size and isoelectric points of Hb 
and Mb.)   
 
5.  Samples that are too dilute can be concentrated by freeze centrifugation as described 
by Virgen-Ortíz et al., (2012, 2013).  Pour 3.5 ml of Mb solution into a 5 ml plastic 
cryovial with a conical bottom.  Cap the vial, and freeze upside down sitting on the cap 
in -80°C freezer.    Remove the cryovial from the freezer and burn or cut a small hole at 
the conical end.  Place the cryovial in a centrifuge tube that is slightly larger than the 
cryovial.  This should form a sleeve around the cryovial that keeps it off the bottom of 
the tube and collects fluid.  Centrifuge the frozen sample to elute the concentrated 
protein from the ice as it thaws.  Centrifuge speed and duration can be adjusted to 
achieve the desired concentration.   
 
 
Myoglobin Oxygen Dissociation Curve Using TCS Hemox Analyzer 
 
Myoglobin solutions of 3.5 ml and at least 0.02 mM concentration are needed to 
accurately determine Mb oxygen affinity using the TCS Hemox Analyzer.   
 
An increase in gas flow rate and stir speed greater than the recommended factory 
settings are needed to achieve a deoxygenation to 0.5 mmHg PO2 in approximately 8 
minutes.  In addition, high sensitivity membranes (TCS Scientific, HSM-50) are needed 
for the oxygen electrode.   
 
1. Thaw or prepare a 3.5 ml aliquot of Mb solution at 4°C.   
 
2.  Add 20 µl of antifoam solution (TCS Scientific, AFA-25) and heat in a 37°C water 
bath for 8 minutes.   
 
3.  Add the warmed Mb solution to the Hemox chamber and bubble with compressed air 
to oxygenate and equilibrate to 37°C for 8 minutes.   
 
4.  Calibrate the oxygen electrode based on barometric pressure and 20.95% oxygen in 
compressed air (ca. 150 mmHg PO2) according to manufacturer’s directions.   
 
5.  Set the software to begin recording at 146 mmHg PO2 and stop at 0.5 mmHg.   
 
6.  Deoxygenate by bubbling with compressed nitrogen to generate the oxygen 
dissociation curve.  Adjust the stir speed and bubble rate so that the oxygen dissociation 
curve is complete in 7 to 10 minutes.  Final signal strength (S1/S2) should be at least 
0.025. 
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APPENDIX B 
UNIPROT MYOGLOBIN PROTEIN ACCESSION NUMBERS 

 

Species Accession 
number 

Sheep P68251 
Cow P02192 
Horse P68082 
Melon-headed whale Q0KIY3 
Bowhead whale R9RZK8 
Bottlenose dolphin P68279 
Kogia s. P02184 
Kogia b. Q0KIY5 
Common dolphin P68276 
Risso's dolphin R9RY97 
Steller sea lion R9RZ98 
California sea lion P02161 
Harbor seal P68080 
Harp seal R9S078 
N. elephant seal R9S002 
Weddell seal R9RY82 
Emperor penguin D5L2Y3 

 

 

 

 

 




