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ABSTRACT

When drawing images onto a computer screen, the information in the scene is typically

more detailed than can be displayed. Most objects, however, will not be close to the

camera, so details have to be filtered out, or anti-aliased, when the objects are drawn on

the screen. I describe new methods for filtering images and shapes with high fidelity while

using computational resources as efficiently as possible.

Vector graphics are everywhere, from drawing 3D polygons to 2D text and maps for

navigation software. Because of its numerous applications, having a fast, high-quality

rasterizer is important. I developed a method for analytically rasterizing shapes using

wavelets. This approach allows me to produce accurate 2D rasterizations of images and

3D voxelizations of objects, which is the first step in 3D printing. I later improved my

method to handle more filters. The resulting algorithm creates higher-quality images than

commercial software such as Adobe Acrobat and is several times faster than the most

highly optimized commercial products.

The quality of texture filtering also has a dramatic impact on the quality of a rendered

image. Textures are images that are applied to 3D surfaces, which typically cannot be

mapped to the 2D space of an image without introducing distortions. For situations in

which it is impossible to change the rendering pipeline, I developed a method for pre-

computing image filters over 3D surfaces. If I can also change the pipeline, I show that it

is possible to improve the quality of texture sampling significantly in real-time rendering

while using the same memory bandwidth as used in traditional methods.
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1. INTRODUCTION

Image filtering is the fundamental principle upon which all rendering in computer

graphics is based. Although different rendering applications attempt to achieve similar

filtering results, the details of how the image function is defined vary greatly, which means

that algorithms used to sample the image are also very different. If the source image func-

tion is defined as a scaled grid of raster data, the algorithm used to sample a new raster

image is different from the algorithm used to sample a vector image of shapes bounded by

Bézier curves. Even when the source data is the same, such as a 3D scene defined by tri-

angulated shapes, very different sampling methods, such as rasterization vs. ray-tracing,

may be necessary depending on how the image is defined from those triangles. Accu-

rate interreflections are better handled by a ray-tracer, whereas diffuse surfaces are more

appropriate for a rasterizer.

Computers have traditionally been desktops with similarly sized monitors having sim-

ilar resolutions and viewing distances. Recently, computing devices have diversified into

tablets and mobile phones with small screens that are viewed up close. We also have set-

top boxes like the Xbox and PlayStation connected to high-resolution televisions that are

viewed from across the room. Displaying the same content in these different environments

requires text and images to be scaled for each device, and whenever there is scaling, there

is potential for aliasing artifacts. In order to prevent aliasing, images must be filtered prior

to sampling.

Images often contain information that is at a higher resolution than the screen can dis-

play. An example of unrepresentable data comes from photography. Digital photographs

and the phosphor grid of a computer monitor are both examples of raster graphics in which

images are a uniform grid of color values. A high-end monitor will have 2 million pixels,
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but digital cameras can capture images containing over 16 million pixels. This means that

almost 90% of the captured data must be removed to display a photograph on a computer

screen.

Removing data from a photograph is challenging, but tougher compromises arise in

vector graphics, which store images as colored regions bounded by curves. Vector graphics

are ubiquitous in computer images. Most text is defined by Bézier curve boundaries and

can be scaled to any size. This allows the same font definition to be used to draw text at

different point sizes on a monitor, to print text on a piece of paper, or to print text on a

huge billboard. Vector graphics can also represent pictures such as icons and emblems. A

particularly complex combination of text and images comes in the form of maps, which

contain enormously detailed information. Thin lines are used for streets or elevations and

text is rotated to align with features in the map. Images drawn by movies and interactive

applications are a combination of raster and vector graphics, where vector graphics define

the shape of an object by its triangles and raster graphics color the surface of the object as

a texture. Vector graphics are called scalable because their representation is independent

of screen resolution, so that a viewer can always zoom in to see more detail. Thus, vector

graphics have infinite resolution because colors change instantaneously across curves.

Image filtering has a large impact on the perception of images drawn on a screen.

Using a low-quality filter produces distracting aliasing artifacts that cause an image to look

artificial. One prominent artifact is the appearance of jagged edges along the boundaries of

polygons and in profiles of objects. Moiré patterns are rarer, but they can cover large areas

of the screen when objects are drawn with high-resolution, repeating patterns, such as the

banding patterns that are visible in Figure 1.1. Temporal aliasing refers to artifacts that

occur when drawing animated objects, such as when a mouse cursor appears as several

sequential copies rather than a blurred streak, or when a spinning wheel appears to stop or

rotate in the opposite direction.
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Figure 1.1: An image captured from Borderlands 2 that exhibits Moiré patterns in a bill-
board. Small movements create large changes to the pattern.

Movie studios and manufacturers of graphics hardware constantly improve the quality

of computer-rendered images, and reduction of aliasing is one of their primary concerns.

Multisampling, supersampling, mipmapping, anisotropic filtering, and morphological fil-

tering are all methods used to reduce aliasing. Higher-quality filtering requires more com-

putation to display each pixel, and the consumer demand for better filtering has helped

drive the rapid increase in the processing power of GPUs. In addition to making images

look better, improving the quality of image filters applied to text increases reading speed

and reduces eye strain [122].

The mathematical foundation of image filtering has been adapted from research in

signal processing that was conducted by other disciplines, such as telecommunications.

The theory is sound, but difficult to implement in real-time rendering systems because of

the enormous volume of data that we need to process. Filtering 3D images is also difficult

compared to filtering 2D images because mapping the surface of an object to the screen

can warp the image in complex ways.

In this dissertation, I highlight my contributions to the state of the art in image fil-

tering. I describe several methods to improve the quality of filters used for voxelizing

three-dimensional objects, scaling two-dimensional images, and drawing vector graphics.
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I also discuss the application of filtering to surface reconstruction and the methods one can

use to reverse the process of rasterization to find the source vector image.

1.1 Sampling Theory

Rendering an image onto a screen is described mathematically as a form of signal

processing. Regardless of what algorithm is used to draw the image on a screen or what

the internal definition of the scene to be rendered may be, the image can be thought of as

a function over the 2D space of the screen. Although the image I(x, y) is defined over a

continuous domain, the pixels on a screen are represented as discrete samples of the image

function. Unfortunately, it is not sufficient to take point samples of the image I because it

is easy to introduce aliasing artifacts.

Before considering the full 2D problem, I analyze image sampling restricted to one

dimension. Taking a point sample consists of evaluating our image I(x) at an offset k

such that the value of the sample is I(k). The difficulty is that we must represent sampling

as an operator applied to the image so that we can characterize the effects of the operator.

To this end, I use the Dirac delta function δ(x). When taking the inner product of δ with

the image I ,

I(k) =

∫ ∞
−∞

I(x)δ(x− k) dx, (1.1)

the delta function selects the value of the image at a single point k.

There are two important properties of δ that are apparent from the definition given

above. First, δ has an infinitesimally small support because it selects a single point. Sec-

ond, the inner product evaluates to I(k), so δ has a unit integral.

∫ ∞
−∞

δ(x) dx = 1

We define δ in terms of the Gaussian e−πx2 , which has a unit integral. By taking the limit
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of the Gaussian as its standard deviation goes to zero, the region being sampled reduces to

a point, and the weight simultaneously increases so that the integral remains one.

δ(x) = lim
σ→0+

σe−π
x2

σ2

Because we sample a single point I(k) using a delta function, we can model sampling

I over a regular interval as I(x)X(x), where the comb function X(x) is defined as the

sum of translated delta functions

X(x) =
∞∑

k=−∞

δ(x− k).

If we sample I at integer values, there is a limit to how high a frequency we can capture

and reproduce. In order to determine allowable frequencies, we take the Fourier transform

of the sampled image. The Fourier transform F of a function f decomposes f into its

constituent frequencies. The Fourier transform operator F and its inverse F−1 are given

by

F (s) = F{f} =

∫ ∞
−∞

f(x)e−2πisx dx

f(s) = F−1{F} =

∫ ∞
−∞

F (s)e2πisx ds.

From the definition of the inverse transform, one can see that f is written as a weighted

sum of the frequencies given in F . The fact that F represents a frequency decomposition

comes from the relation eiθ = cos(θ) + i sin(θ).

There are several other important properties of the Fourier transform that I will use.

One is that the Fourier transform of the comb function X = F{X} remains the comb

function. Also, convolving two functions is equivalent to multiplying their Fourier trans-

forms so thatF{f ∗g} = F{f}F{g} and F{fg} = F{f}∗F{g}, where the convolution
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(a) Aliased (b) Antialiased

Figure 1.2: The Fourier transform of a signal is shown above in (a). Point sampling a
signal adds duplicate copies at integer translations, shown below. If the signal contains
high frequencies, the copies overlap and cause aliasing. Aliasing is removed by filtering
out high frequencies from the signal (b) so that translated copies do not overlap.

operator ∗ is defined as

(f ∗ g)(x) =

∫ ∞
−∞

f(x− s)g(s) ds. (1.2)

Using these properties of the Fourier transform, we can see that F{IX} = F{I} ∗

F{X} = F{I} ∗X =
∑∞

k=−∞F{I}(s − k). In other words, the Fourier transform of

our point-sampled image is equal to a sum of integer translates of the Fourier transform

of the image. Figure 1.2 shows a depiction of the Fourier transform of a point-sampled

image. If the image contains frequencies that are greater in absolute value than 1/2, then

the translated Fourier transforms of the image overlap. This overlap of frequencies is

called aliasing and means that frequencies that are higher than one half of the sampling

rate appear as low-frequency patterns in the sampled image. These artificial low-frequency

patterns misrepresent the underlying data. By discretizing the image, we are guaranteed

to lose information, but we have control over what information we lose. We choose to

remove frequencies that are too high to reproduce at our new sampling rate before we

sample. Specifically, we want to sample the functionF{I}(s)H(s), whereH(s) is the box
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function that is equal to one for all frequencies −1/2 < s < 1/2 and is zero otherwise. The

convolution property of the Fourier transform implies that we should sample a convolved

copy of the image I(x) ∗ h(x), where the low-pass filter is

h(x) = sinc(x) = F−1{H} =
sin(πx)

πx
.

This ideal low-pass filter is called the sinc filter and is shown as the black curve in the top

panel of Figure 1.4. Other common filters are shown in different colors, and the Fourier

transforms of the filters are shown in the bottom panel.

From our earlier definition in Equation 1.1 of how to take a point sample at k, we

sample the convolved function I ∗ h by taking the inner product

∫ ∞
−∞

(I(x) ∗ h(x))δ(x− k) dx.

Substituting the definition of convolution from Equation 1.2, we find

∫ ∞
−∞

∫ ∞
−∞

I(s)h(x− s) ds δ(x− k) dx.

By the definition in Equation 1.1, taking the inner product of a function f(x) with δ(x−k)

selects the value f(k), so we simplify the expression to

∫ ∞
−∞

I(s)h(k − s) ds.

Finally, because h is symmetric,

∫ ∞
−∞

I(s)h(s− k) ds.
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Figure 1.3: An example of how sinc can produce unbounded values from an image in the
range [0, 1]. From top to bottom, I show sinc, a problematic image, and the product of sinc
and the image.

This derivation shows that, in order to sample an image I that was convolved by a filter h

at a point k, we take the inner product of the image with the filter centered at the sample.

Although taking an inner product is a relatively simple operation, the computational

complexity is proportional to the support, or non-zero area, of the filter h. This poses a

problem because the support of the ideal low-pass filter is infinite. Another unfortunate

property of the sinc filter is that, if the range of the image is bounded such that ∀x, I(x) ∈

[0, 1], the negative lobes of the filter can generate values that are greater than one. Thus,

the sampled image may need to display pixels that are brighter than the screen can show,

assuming that the range [0, 1] maps linearly to the full range of displayable pixel intensities.

Pixel values can also be negative, which is physically impossible, as negative light does

not exist. Even more troubling is that the contribution to the sinc filter is proportional to

1/x, and the integral
∫∞
a

1/x dx =∞ is divergent for all a.
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Figure 1.4: Graphs of different filters (top) and their Fourier transforms (bottom), with
sinc in black, Lánczos 2 in orange, Gaussian in red, tent in blue, and box in green.

One can therefore construct images where all values are in the range [0, 1] but the

filtered image is unbounded either positively or negatively. An example of an image that

generates unbounded values is shown in Figure 1.3. In the top graph, the sinc function is

drawn in red with |1/πx| drawn with dashes. Sampling the repeating image shown in the

middle graph integrates the product of sinc and the image, shown on the bottom, which

has an unbounded value like the integral of |1/πx|. Thus, one cannot choose a theoretically

justifiable window size a outside of which one can safely ignore the image contribution

because for any finite window size a the energy of the filter is finite inside of a and infinite

outside.

Because of these problems, especially the infinite computational complexity, images

are sampled with either a windowed version of sinc, such as the Lánczos [47] and Mitchell-

Netravali [102] filters, or filters that are similar to the main lobe of sinc. Filters in this

second category are positive, which means that the filtered image is guaranteed to have

values in the [0, 1] range, but the filtered image can appear too blurry. Examples of positive

filters are the box, tent, and Gaussian filters.

The Gaussian filter has several useful properties. One is that, although a Gaussian
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technically has infinite support, Gaussians can be safely windowed because they have a

very fast falloff, and nearly all of the filter energy is contained within a few standard

deviations from the mean. The literature often suggests using the Gaussian e−ax2 with

a = 2 [72, 99] and provides little justification for the choice of a. We wish to approximate

sinc by a Gaussian, and if one ignores normalization, the main lobe of sinc does look

similar to the Gaussian with a = 2. More rigorously, the value a = 2.37314 minimizes

min
a

∫ ∞
−∞

(sinc(x)− e−ax2)2 dx.

However, one cannot ignore normalization because a filter must have a unit integral in

order to reproduce constant colors. Rather, we should minimize

min
a

∫ ∞
−∞

(sinc(x)−
√
a√
π
e−ax

2

)2 dx.

When accounting for normalization, we now find the minimum at a = 2.97744. I therefore

suggest that one should use a = π because the normalized Gaussian then has the simple

form e−πx
2 and has a value of 1 at x = 0. Furthermore, π is close in value to 2.97744.

A comparison between sinc and Gaussian functions with different choices of a are shown

in Figure 1.5. Gaussians also have the convenient property that the tensor product of two

Gaussians is radially symmetric, which is a useful property for filtering 2D images.

Discussion of the extension of sampling a 2D image as compared to a 1D signal is

brief in most texts. Samples over a regular 2D grid are modeled as the tensor product of

1D comb filters X(x, y) = X(x)X(y). The Fourier transform is separable, so a tensor

product of comb filters implies that the filter should be the tensor product of box functions

in the frequency domain, and therefore that the ideal low-pass filter in 2D is the tensor

product of sinc filters. Likewise, any approximation of the 2D sinc filter should be a tensor
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Figure 1.5: Gaussian functions with a = 2 (red), a = 2.97744 (blue), and a = π (green)
are drawn with the sinc function (black) that the Gaussians approximate.

product of 1D approximations.

Tensoring everything in 2D is simple and seems logical, but radial filters may perform

better, as shown in Figure 1.6. One will notice that along diagonals, the sampling rate is

1/
√

2, but that the band pass of the tensor product filter permits frequencies up to
√

2, which

seems like it would cause aliasing. One might imagine that, if anything, the frequency cut-

off as a function of angle should be the inverse of the tensor product cut-off. However, this

logic breaks down for angles other than a multiples of 45 degrees because lines at other

angles do not directly pass through integer grid points, and so do not have well defined

sampling rates.

Experiments show that the best frequency cut-off is a radial box filter. This filter is

known as the jinc filter and is defined as

h(x) = jinc(x) =
J1(πx)

πx
,

where J1 is the Bessel function of the first kind. The jinc function looks similar to a radial

sinc function, but it is not the same. For example, jinc is not zero at integer radii. I plot the

two filters in Figure 1.7 for comparison. A disadvantage of jinc compared to a tensor prod-
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Lánczos 3 Rays Lánczos 3 Zone Plate Jinc 3 Rays Jinc 3 Zone Plate

Figure 1.6: A comparison of the results from filtering with a tensor product of Lánczos 3
filters and with a radial filter jinc of radius 3 that is windowed by the first lobe of sin. The
tensor product filter permits too much aliasing along the diagonal.

uct of sinc functions is that jinc does not act as a good reconstruction filter, whereas sinc

has useful properties, such as interpolating sample values, reproducing constant functions,

and integer translations are orthogonal.

There are several reasons to believe that sinc is not the ideal image filter. Beyond the

theoretical concerns I mentioned earlier, the resulting images look bad to the human eye

because halos or ripples that appear around discontinuous changes in brightness (ringing)

artifacts are too strong. One might also conclude that the best window function for sinc is

the box window, which minimizes the L2 norm between the windowed function and sinc.

The box window also minimizes the L2 norm of the Fourier transforms of the functions

according to Plancherel’s theorem, but a box window is not used in practice because of

excessive its ringing.

The considerations above suggest that the classic Fourier analysis of signal processing

may not be appropriate for analyzing image filtering. One step in the right direction is

to constrain pixel intensities to the range [0, 1]. We can enforce these constraints while

minimizing the squared difference between I and a reconstruction of the screen pixels that
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(a) Sinc (b) Jinc

Figure 1.7: The tensor product sinc filter is shown in (a), and the radial jinc filter is shown
in (b). Notice that the main lobe of jinc is not as high and that the frequency of the ripples
is slightly lower than in sinc.

consists of translations of the filter h weighted by the coefficients ci.

min
ci,0≤ci≤1

∫ ∞
−∞

(I(x)−
∑
i

cih(x− i))2 dx

Here, h denotes the reconstruction filter that is used to display the image on the screen and

there is no explicit sampling filter. Solving a constrained minimization can reduce visual

artifacts in some cases, as shown in Figure 1.8, but it is expensive and difficult to compute

for nonorthogonal filters. I suspect that it may be necessary to minimize a different norm

than L2 because an L2 minimization in the absence of constraints is equal to sampling

with a sinc filter. Rather, it may be necessary to devise a perceptual norm that minimizes

the difference a human sees between an image and a down-sampled version of that image.

It is known that the human visual system is specialized to recognize edges [121], so edges

may need to be handled differently when sampling an image.
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Input Lánczos 3 Least Squares Constrained

Figure 1.8: The input image on the left is downsampled using different filtering techniques,
then upsampled using bilinear interpolation. The constrained least squares projection onto
the bilinear basis looks the sharpest and has the fewest ringing artifacts.

1.1.1 Supersampling

All antialiasing methods perform an integration over the image function I , but it is

often impossible to provide a closed-form equation that describes the image over a region,

and it is only possible to evaluate a single point in the image at a time. Ray-tracing is a

classic example of this type of point sampling, where the rendering algorithm has complete

freedom of where to evaluate the image function but can only evaluate at discrete points.

Estimating an integral from a set of point samples is referred to as numerical integration

or quadrature, and in the context of image filtering it is referred to as supersampling.

Integration can be defined as the limit

∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f

(
(b− a)

i− 1/2

n
+ a

)
b− a
n

.

When sampling a convolved image, we evaluate the function f(x) = I(x)h(x − k) and

[a, b] is the support of the filter h. One can achieve an arbitrarily accurate approximation

of the color of a pixel by using a sufficiently large number of samples n to calculate the

integral.

A practical difficulty in computer graphics is that high frequency patterns often exist
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in images that are beyond any reasonable sampling density. For example, a regular pat-

tern tiled over an infinite plane is downscaled by a factor that approaches infinity on the

horizon. Any regular sampling pattern and sampling rate can therefore result in aliasing

artifacts. People find noise less visually disturbing than aliasing patterns, so it is possi-

ble to improve the image quality by randomizing the sampled coordinates. Several pa-

pers [43, 32, 102, 49, 54] have investigated the best randomized sampling pattern to use.

Unlike the situation with uniform sampling, it is difficult to determine what percent

contribution any particular sample provides to the total color with random sample coordi-

nates. However, as long as samples are equally spaced on average, the numerical approxi-

mation of an integral converges to the exact integral. The simplest way to add randomness

is to sample the domain with a uniform random distribution. Suppose that a random value

within the range [a, b] is returned each time we evaluate the procedure R(a, b). We can

then approximate the integral as

∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f (R(b, a))
b− a
n

.

The average space between samples is b−a
n

and the samples are weighted accordingly.

Although the average space between samples is the same as in uniform sampling, the large

variation in distance between samples reduces the convergence rate of the approximation.

One way to reduce variability in sample spacing while randomizing samples is to jitter the

samples, which uniformly divides the domain into n pieces and takes a random sample of

f within each of the pieces

∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f

(
(b− a)

i−R(0, 1)

n
+ a

)
b− a
n

.

One can extend the numerical integration methods that I have described from 1D to
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2D by taking uniform random samples within square regions and weighting each sample

by the integrated area of the domain divided by the total number of samples. However, the

2D case allows a better randomized sampling strategy called Poisson disk sampling. Fig-

ure 1.9 compares uniform and Poisson disk distributions and their power spectra. Poisson

disk samples are placed so that no two samples are closer than a minimal distance and the

distance to neighboring points is clustered to make the closest points approximately the

minimal distance apart. Thus, there will be few additional points closer than about twice

the distance between the first set of points. As the distance between points increases, the

power spectrum looks more like the spectrum of uniform random samples. These types

of semi-regular distributions are referred to as a blue noise in computer graphics and are

characterized by circular bands in their power spectra.

The simplest, but computationally inefficient, algorithm for creating such a distribution

is called the dart throwing algorithm, in which positions are randomly sampled from a

uniform distribution. If the new sample is within the minimum distance to any of the

existing samples, the new sample is rejected. Otherwise, the new sample is added to the

list of Poisson disk samples. Although it is difficult to create a Poisson disk distribution,

the Poisson disk distribution is considered to be the most efficient randomized distribution

for numerically approximating integrals, and several papers [57, 132, 49, 54] describe

more efficient algorithms for creating such a distribution.

It is inefficient to use the same number of samples to evaluate the color of every pixel

in an image. For example, if the image is constant within the support of the filter, a single

color sample is sufficient to determine the color of the filtered pixel. If the support of the

filter intersects a complicated part of the image function, far more samples are needed.

Larger function values also require more samples than smaller function values. From a
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Uniform Points Uniform Power Spec-
trum

Poisson Points Poisson Power Spectrum

Figure 1.9: Comparison of a uniform random distribution and a Poisson disk distribution.
Notice that the Poisson disk distribution has regular spacing between samples but has
random angles between points.

statistical perspective, the integral used to evaluate a pixel color

µ =

∫ ∞
−∞

h(x)I(x) dx =

∫∞
−∞ h(x)I(x) dx∫∞
−∞ h(x) dx

≈
∑n

i=1 hiIi∑n
i=1 hi

can be viewed as the mean value of the image intensity weighted by h(x). In practice

the approximate mean is a weighted average of n measured image intensities Ii with as-

sociated weights hi, where the sample positions come from a uniform distribution. How

accurately we estimate the mean intensity is measured by the variance of the mean

σ2
µ =

∑n
i=1 hi

(
∑n

i=1 hi)
2 −

∑n
i=1 h

2
i

n∑
i=1

hi(Ii − µ)2.

We can stop adding samples to determine the pixel color when the variance of the mean is

below a predefined tolerance. In a linear color space with intensities represented as eight

bit integers, a reasonable tolerance is achieved when σ2
µ < 2−16.

1.1.2 Gamma Correction and Color Spaces

Our perception of the brightness of a pixel is not linear in the amount of light that is

emitted from the pixel. Humans are more sensitive to changes in brightness when a phos-

17



C

I
Figure 1.10: A graph of a gamma compression function with γ = 2.2. Notice that uniform
discretization of the compressed space C gives a nonuniform discretization of the linear
intensities I such that low intensities are sampled more densely.

phor is dim than when it is bright. Eight bits of gray levels are barely enough for people to

perceive a continuous gradient in brightness. In order to represent darker intensities more

accurately, pixel intensities are typically mapped into a compressed color space by a func-

tion C(x) = I(x)1/γ that is parameterized by a constant γ ≈ 2. Given values in the com-

pressed space, the compression is inverted to find the image intensities by I(x) = C(x)γ .

Recall that image intensities are always in the range [0, 1], so C : [0, 1]→ [0, 1] preserves

the range. One can see in Figure 1.10 how gamma compression gives more precision to

low intensities.

I consider an image to be an intensity function, but images contain color in addition to

intensity. Fortunately, RGB encoded images can be filtered by treating the red, green, and

blue color channels independently. The RGB color space is a discretization of the color

spectrum, and each color channel encodes the amount of light that is emitted by differently

colored phosphors. Most manufacturers of display devices now use the sRGB color space,

which is similar to γ = 2.2. All displays take gamma-compressed inputs, and most file
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formats are stored in a gamma-compressed format. In contrast, image processing opera-

tions assume a linear color space, so it is critical to perform gamma correction before and

after any image processing operations. For example, when ray-tracing a scene, textures

should be gamma-decompressed, image sampling and lighting calculations should be per-

formed in linear space, and the color space should be gamma-compressed before writing

to the disk or to the screen.
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2. ANALYTIC RASTERIZATION*

There are two basic ways to represent images: raster graphics and vector graphics.

Raster graphics are images that are stored as an array of pixel values, whereas vector

graphics represent images as collections of geometric shapes, such as lines, curves, circles,

and polygons. Vector graphics are used in many applications in computer graphics. In

3D, almost all geometry is represented in vector form as polygons or smooth parametric

shapes. Even in two dimensions, vector images are extremely common. For example,

nearly all text is drawn with vector fonts, in which letters are stored as quadratic curves

that indicate the transition between the inside and outside of the letter. Point sampling

pixels from a polygon results in jagged edges, which are a form of aliasing [34] because

discontinuous changes in a function contain infinitely high frequencies. Vector images are

also used in maps, signs, and logos to give a crisp, clear appearance.

Although many shapes are stored in vector format, displays are typically raster devices.

This means that vector images must be converted to pixel intensities to be displayed. A

major benefit of vector images is that they can be drawn accurately at different resolutions.

For example, text appears the same when printed at 600 dpi on paper or on a 72 dpi

screen, and the butterflies in Figure 2.1 are easily drawn at different sizes. Mobile devices

have become another important visual medium and have generated a renewed interest in

scalable graphics. In particular, websites are often viewed both on computers with screens

thousands of pixels wide and on phones that have much smaller screens with higher pixel

density. Therefore, text, images, and icons must scale gracefully.

There has been a trend to improve the quality of images rather than the number of

*Reprinted with permission from "Analytic Rasterization of Curves with Polynomial Filters" by Josiah Man-
son and Scott Schaefer, 2013. Computer Graphics Forum, 32 (2), 499–507, © 2013 The Author(s) Com-
puter Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 2.1: Vector graphic art of butterflies represented by cubic curves, scaled by the
golden ratio. The images were analytically rasterized using our method with a jinc filter
of radius three.

pixels that are drawn. In part, this trend exists because the rate at which mathematical

operations are performed is increasing faster than the speed of memory. One avenue for

improving pixel quality is to sample images with better antialiasing filters.

Most rasterizers draw polygons and approximate curved boundaries as many-sided

polygons [73]. Thus, aliasing appears both when sampling points on the curve to form a

polygonal approximation of the true image, which we call geometric aliasing, and from

sampling image intensities from the polygon. We reduce both forms of aliasing simulta-

neously by rasterizing curved boundaries using high-order filters. We show that analytic

solutions for pixel values can be found using polynomial filters to rasterize curved shapes

with linear color gradients. We rasterize shapes with a variety of different curves and have

closed-form solutions for Bézier curves of arbitrary degree as well as rational quadratic

Bézier curves, which allow us to rasterize exact circles and ellipses. This set of shapes

encompasses most primitives that make up vector images.

2.1 Related Work

The simplest form of rasterization is point sampling, which determines if a point is

inside a polygon or not. Calculating which polygon, if any, contains an arbitrary sample
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can be done using ray casting [5]. One can also recursively cut the image into quadrants,

subdividing around polygon edges [131]. More typically, pixel values are calculated a

scanline at a time [136].

The solution to reducing aliasing artifacts is to convolve the signal with a filter that

removes frequencies that are higher than half the sampling rate. Supersampling approx-

imates the convolution, but aliasing artifacts can still occur for very high-frequency im-

ages. In ray casting, there is significant freedom in sample placement, and several early

papers [43, 32, 101] analyze image sampling patterns. These works show that samples

should be random but have uniform density, and there is renewed interest in such sam-

pling patterns [81, 75, 84, 57, 132, 54, 49]. There is also research on how to optimize the

sampling pattern and weights simultaneously [88].

Calculating prefiltered pixel values requires an integral over areas of an image, and ac-

curate approximations require numerous point samples, regardless of the sampling pattern.

Calculating area integrals is complicated, especially when taking occlusion into account,

but calculating line integrals is more tractable. Several papers [67, 80, 66] have described

methods of approximating area integrals by calculating a one dimensional quadrature over

line samples that are computed analytically. This approach reduces the dimensionality of

the problem by one and yields a rasterization with fewer artifacts from the same number

of samples.

One can also evaluate area integrals exactly. One of the first methods to do so [24]

solves both the visibility and integration problems simultaneously. The method clips poly-

gons to pixels, and then against each other, so that the remaining polygons in a pixel are

all completely visible. The method then sums the areas of the polygons in the pixel times

their color, which is equivalent to sampling with a box filter. Some other methods simplify

clipping polygons to pixels by first cutting polygons into trapezoids aligned with scan-

lines [59]. These trapezoids are easier to clip to pixels than polygons, and one can easily
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calculate the area of a trapezoid.

Duff uses trapezoid decomposition to evaluate polynomial filters over polygons [48].

Our method is more general, because we are able to rasterize curved boundaries in addition

to polygonal boundaries. Our derivation of closed-form rasterization equations also leads

to a different rasterization algorithm because Duff integrates over areas perpendicular to

the scanline, whereas we integrate over the boundary along the scanline.

Some methods rasterize polygons with radial filters. An early method [25] clips poly-

gons to pixels and adds the contribution of each edge using a radial filter. If an edge forms

a triangle with the center of the filter, that triangle is split into two right triangles. Each

right triangle is parameterized by two values that index a lookup table to find the contribu-

tion of that edge. A more recent algorithm [92] eliminates the need for clipping polygons

to pixels by taking the modulo of final pixel values. This method also has analytic solu-

tions for polynomial filters, but it cannot use filters with negative values because of the

modulo operation, and, thus, the authors published a paper describing positive filters that

are suitable for their method [91].

There are also some rasterizers that are difficult to classify. One method approxi-

mates the rasterization of self-intersecting polygons [44]. In this method, the contours

within pixels that contain intersections are simplified and clipped against other contours.

Another method calculates analytic rasterizations of shapes filtered by box splines [98].

Filters must be positive, and the method only rasterizes triangles. Auzinger et al. [6] an-

alytically rasterize antialiased triangles and tetrahedra with linear data defined over the

simplices. We also handle linear gradients, but we analytically rasterize complex, curved,

two-dimensional shapes. A process similar to polygon rasterization has also been used to

calculate surface irradiance in a raytracer by using Stokes’ theorem to evaluate incoming

light from polygonal light sources [28, 29].

The main contribution of this chapter is prefiltered, antialiased rasterization of shapes
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with curved boundaries. There has been some work on directly rasterizing shapes with

curved boundaries, but most rasterizers simply approximate curved boundaries by subdi-

viding the curves into many-sided polygons [26]. One of the first papers to rasterize curved

shapes accurately [33] determined if pixels were inside or outside of the region bounded

by the curves, but it only performed point sampling for rasterization.

Most antialiased rasterization methods estimate the distance to the boundary in some

way [52, 94, 110, 109, 104] and approximate a radial filter by setting pixel values based

on the distance to the boundary. Using distance to approximate a radial filter is only exact

for line segments when no vertices are in the support of the filter, and this method works

especially poorly between curves that are within a filter diameter of one another.

2.2 Rasterizer

Rasterization is the process of sampling an image I(x, y) defined by a set of closed

shapes, where each shape Mi is defined by a set of boundary curves ∂Mi. We assume that

the input does not contain overlapping shapes. If this is not the case, we can preprocess the

input to remove overlaps [70]. We define I(x, y) =
∑

i Ii(x, y) as the sum of images of

each shape Ii(x, y), where each shape has color ci(x, y) inside of Mi and is zero outside.

To remove aliasing, we prefilter the image by convolving I(x, y) with a low-pass filter

h(x, y) prior to point sampling, which is equivalent to taking the inner product of the

image I(x, y) with the filter centered at each pixel. We explain how to rasterize the image

of a single shape and drop the shape index i in the remainder of this chapter because the

final image is a sum of shape images. We calculate the value of a pixel located at `x, `y by

the area integral ∫∫
R2

I(x, y)h(x− `x, y − `y) dx dy.
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We can simplify the expression by changing the domain of integration to be only within

M because the image is zero outside of the boundary.

∫∫
x,y∈M

c(x, y)h(x− `x, y − `y) dx dy (2.1)

The divergence theorem relates an integral over the boundary of a domain to an integral

over the domain by

∮
p(s)∈∂M

F (p(s)) · n(s) ds =

∫∫
x,y∈M

∇ · F (x, y) dx dy, (2.2)

where the unit normal of the shape is given by n(s) and the boundary of the domain is

given by the arc-length parameterized curve p(s). Therefore, if we find a vector function

F (x, y) whose divergence is equal to f(x, y) = c(x, y)h(x − `x, y − `y), then we can

evaluate Equation 2.1 as a boundary integral.

Because divergence is a sum of differentials, we find F (x, y) by integrating f(x, y),

and we parameterize solutions for F (x, y) by α such that

F (x, y) =

 Fx(x, y)

Fy(x, y)

 =

 α
∫ x
−∞ f(u, y) du

(1− α)
∫ y
−∞ f(x, u) du

 .

This approach converts the rasterization problem from integration over an unknown

interior to integration over a known boundary. However, if we choose α = 1, then F (x, y)

has infinite support only in the direction of the scanline, which we exploit during raster-

ization in Section 2.2.1. I use a similar derivation in Section 3.2.1 to calculate wavelet

coefficients. In the case of wavelets, it is possible to choose α so that F (x, y) has compact

support, but compact support is impossible for arbitrary polynomial filters.

The unit normal of the curve is defined as n(s) = p⊥(s)/‖p′(s)‖, where the direction
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perpendicular to the curve is

p⊥(s) =

 p′y(s)

−p′x(s)

 .

We use the notation that p′(s) is the derivative of p(s) with respect to s, and the x and

y subscripts refer to the first and second components of a vector quantity, respectively.

Changing variables from an arc-length parameterization ds to a uniform parameterization

dt weights the differential by ds = ‖p′(t)‖ dt, which simplifies our expression because

n(s) ds = p⊥(t)‖p′(t)‖ dt
‖p′(t)‖ = p⊥(t) dt. The dot product between vector functions also simpli-

fies to a scalar product,

∮
F (p(t)) · p⊥(t) dt =

∮
Fx(p(t))p

′
y(t) dt, (2.3)

which uses only the x-component, Fx(x, y), ofF (x, y) because the y-component, Fy(x, y),

is zero when α = 0. Note that most boundary curves p(t) are defined piecewise and that it

is trivial to sum the integrals of each segment of the curve to evaluate Equation 2.3. Dif-

ferentiation, integration, multiplication, and function application are closed under polyno-

mials, so if h(x, y), c(x, y), and p(t) are polynomial, the entire expression evaluates to a

polynomial. An example of f(x, y) and its integral Fx(x, y) are shown in Figure 2.2. In

this figure, it is clear that the support of Fx(x, y) extends beyond the support of f(x, y)

in the positive x-direction such that the value of a pixel depends only on the boundary to

the right of the pixel. There are a variety of filters h(x, y) to choose from. We approx-

imate windowed jinc and Lánczos filters by piecewise cubic and bicubic polynomials,

respectively, with C0 continuity aligned to pixel boundaries. This approximation produces

images that are visually indistinguishable from the images produced by the original filters.
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Figure 2.2: A filter f(x, y) is shown on the left and its integral in the x-direction Fx(x, y)
is shown on the right. The graphs are plotted over the filter’s support. In Fx(x, y), values
remain constant in the direction of integration beyond f(x, y)’s support.

Figure 2.3: A filter f(x) decomposed into pixel-sized pieces and evaluate each piece sep-
arately. The integral over f(x) is equal to one, but the integral over each piece is not.
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2.2.1 Scanline Algorithm

To rasterize an image, we evaluate Equation 2.3 using the curves that are in the support

of Fx(x, y), which is finite in y but is infinite in the positive x-direction. This directional-

ity of infinite support leads to a scanline rasterization algorithm that evaluates pixels from

right to left, although reversing the direction of integration yields a traditional left to right

rasterization algorithm. We assume that the filter is represented as a piecewise polynomial

in which the pieces align to the pixel grid. Because the polynomial pieces do not overlap,

we can write the filter as a sum of polynomial pieces. In Figure 2.3, we show the decom-

position of a one-dimensional tent filter into multiple pieces. We show the full filter and its

integral in the top row of the figure, below which we show the decomposition of the filter

into pixel-sized pieces and the integrals of the pieces. Each piece h(i,j)(x, y) is defined

over the (x, y) ∈ [0, 1)2 domain and is indexed by i, j such that

h(x, y) =
∑
i

∑
j

h(i,j)(x− i, y − j). (2.4)

We then define the colored filter pieces over the same domain as f (i,j)(x, y) = c(x +

`x, y+`y)h
(i,j)(x, y), with integrals F (i,j)

x (x, y) =
∫ x
−∞ f

(i,j)(u, y) du. Because our filter is

piecewise polynomial with polynomial pieces that align to the pixel grid, we cut boundary

curves to the pixel grid. With proper care, solving for the points to cut polynomials is

robust even for degenerate curves [11, 12]. We index cut curves by the cell λx, λy such

that each curve segment

p(λx,λy)(t) = p(t) ∩
(
[0, 1)2 + (λx, λy)

)
− (λx, λy)

is within the same [0, 1)2 domain as the filter pieces. We can evaluate each pixel-sized

piece of the filter independently and sum the results to evaluate a pixel with indices `x, `y
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Figure 2.4: The thick box outlines show which pixel is being evaluated for a filter piece
f (i,j)(x, y). We calculate two values for each curve: one within the filter piece and one for
all pieces to the left, found by setting the curve’s x-coordinate equal to one.

by ∑
i

∑
j

∫ 1

0

F (i,j)
x

(
p(`x+i,`y+j)(t)

)
p′y

(`x+i,`y+j)(t) dt. (2.5)

We can evaluate Equation 2.5 in any order because summation is commutative, and this

property allows us to evaluate each curve, scanline, and filter piece in parallel. Given a

curve p(λx,λy)(t) and filter piece f (i,j)(x, y), we can see from Equation 2.5 that p(λx,λy)(t) =

p(`x+i,`y+j)(t), and we therefore add the contribution from curve p(λx,λy)(t) to the pixel

(λx − i, λy − j). Our only constraint is that we must evaluate each filter piece in scanline

order because of the infinite support of F (i,j)
x (x, y).

Figure 2.4 illustrates the process of rasterizing a single piece of f (i,j)(x, y). We show

a scanline consisting of four pixels, where each row shows how we evaluate the pixel

drawn in orange with the extended support of F (i,j)
x (x, y) drawn in red. The figure shows

evaluation of a single curve drawn in blue, with normals to indicate the orientation of the

curve. When the curve is within the support of the filter piece (top row), we evaluate the

curve integral and immediately update the pixel value. All pixels to the left of the curve

(bottom rows) will have the same value added because F (i,j)
x (x, y) is constant with respect
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to x in the red region. We propagate this constant contribution by evaluating the curve once

to update an accumulator that we add to remaining pixels in the scanline. Furthermore, we

can simplify Equation 2.3 for propagated values by treating the curve as a line segment that

connects the end points of the curve and has x-coordinates equal to one. Before processing

a scanline, the accumulator is initialized to zero outside of the shape. The orientation of

a curve automatically adds color as the filter moves inside the boundary of the shape and

subtracts color as the filter moves outside of the shape.

Rasterizing shapes with linear color gradients is almost the same as rasterizing shapes

with constant color. The only difference is that, in Equation 2.5, F (i,j)
x (x, y) depends on

the pixel coordinates `x, `y when c(x, y) is linear. We define the color of the shape as

c(x, y) = C0 + C1x + C2y in the reference coordinate system of the shape. This means

that the difference in value when moving from a pixel (`x, `y) to (`x − 1, `y) is

−C1

∫ x

−∞
h(i,j)(u, y) du. (2.6)

The integral of h(i,j)(x, y) is constant to the right of the filter piece, so we augment the ac-

cumulation buffer with a linear term that stores the value of Equation 2.6. The modification

to our algorithm is simply that, after processing a pixel, we add the linear accumulation

term to the constant accumulation term. This process is easily extended to general polyno-

mial color functions, from which a quadratic term is accumulated into a linear term, and

so on.

2.2.2 Implementation

We have described a general framework for a rasterization algorithm. The key idea is

that the equations we use for rasterization naturally lead to efficient evaluation by raster-

izing in scanline order. Rasterization using our method is easily parallelizable. Cutting

all of the curves to pixels is done as a batch process prior to rasterization, and curves

30



are distributed between processors. Each scanline is then evaluated in parallel, as is each

polynomial piece of a filter. Note that this parallel implementation processes each curve

a number of times equal to the area of support of the filter. It is also possible to write an

efficient serial implementation that scans over the entire image once but maintains an array

of accumulation values, one for each polynomial piece, and processes each curve once.

2.3 Results

Closed-form solutions are available for a wide variety of interesting filters and curves,

and we show that high-order filters reduce aliasing artifacts in several test images. We also

compare our solution to other rasterizers to show that calculating closed-form solutions of

the rasterization equation is competitive in speed with approximate solutions and generates

higher-quality images.

The advantages of using high-order filters are most apparent in images with high-

frequency details. We show rasterizations of test patterns that are prone to aliasing in

Figures 2.5 and 2.6, where we rasterize the images using different filters. Figure 2.5 shows

a perspective projection of lines on a plane that are at a frequency of 1/4 lines per pixel at

the bottom to 2 lines per pixel at the top. This figure illustrates the difference between point

sampling, supersampling with a GPU (ATI Radeon HD 5700), and analytically rasterized

images. Image (a) is point sampled and aliasing is clearly visible. Both (b) and (c) were

sampled using a tent filter, but (b) is supersampled with 16 points per pixel and has obvious

aliasing, whereas exact evaluation of (c) using our method suppresses most aliasing.

Figure 2.6 shows the differences between analytically evaluated filters of increasing

quality. The top row shows examples using linear curves, while the bottom shapes are

made of quadratic curves. As the order of the filter increases, the transition between de-

tailed and blurred regions becomes sharper, and aliasing is reduced. The box filter (a) is

clearly the worst because it does not remove high frequencies very well, which results in
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Figure 2.5: Examples of (a) point sampling, (b) 16x MSAA tent filtering using an ATI
Radeon HD 5700, (c) analytic tent filtering.

Figure 2.6: Analytic rasterizations using different filters. The first row uses radial triangles
and the second row uses rings of quadratic curves. The columns show the filters: (a) box,
(b) tent, (c) Mitchell-Netravali, (d) Lánczos 3, and (e) jinc 3.
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Fig. 2.5 Fig. 2.6 (top) Fig. 2.6 (bottom)
AGG 2.73 0.25 0.35
Cairo 5.35 0.57 2.34
Wavelet 3.84 0.42 3.14
Box 1.23 (0.60) 0.14 (0.07) 0.37 (0.17)
Tent 2.36 (0.83) 0.27 (0.12) 0.75 (0.26)
Q. B-spline 9.60 (3.29) 1.02 (0.31) 4.45 (1.26)
Mitchell 21.2 (6.90) 2.26 (0.79) 37.0 (11.4)
Lánczos 2 26.3 (7.64) 2.71 (0.96) 27.6 (7.54)
Lánczos 3 48.7 (16.0) 5.37 (1.88) 115. (37.7)
Radial 2 21.2 (5.70) 2.31 (0.78) 17.1 (5.02)
Radial 3 42.9 (14.1) 4.64 (1.68) 45.8 (15.6)

Table 2.1: Time required to rasterize various images, measured in milliseconds. AGG,
Cairo, and wavelet rasterization all use a box filter. Serial times are followed by the times
needed using four parallel processors (in parentheses).

obvious aliasing patterns. The tent filter (b) is noticeably better than the box filter. Al-

though some high frequencies still pass in the top image, the center of the circle is much

closer to a uniform color. A disadvantage of the tent filter is that low frequencies are at-

tenuated too much, which is visible as blurriness. The Mitchell-Netravali filter (c) appears

slightly better than the tent filter. The Lánczos (d) and jinc (e) filters both have a radius of

3, but (e) is the only filter that is not a tensor product. In (d), one can see the square fall-off

of aliasing in the bottom picture compared to the circular fall-off in (e).

Our method is not restricted to polynomial curves and can theoretically be applied to

any boundary defined by parametric curves. Closed-form expressions are not guaranteed

for all curves, but they do exist for rational quadratic Bézier curves. This represents an

important class of curves that includes all circular and elliptical arcs. We show an Apollo-

nian gasket composed of rational quadratic Bézier curves that we evaluate exactly using a

box filter in Figure 2.7.

We present rasterization times for the patterns in Figure 2.5 (1282 pixels) and Fig-
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Figure 2.7: Rasterization of rational Bézier curves of varying sizes in a 128 × 64 pixel
image.

Figure 2.8: Speedup for different numbers of threads on a four core Intel Core i7 870.
The ideal speedup is shown as a dashed black line, and the speedup for different filters is
shown as solid lines of different colors.
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ure 2.6 (642 pixels) in Table 2.1. Figure 2.5 contains 1024 lines in 256 quads, Figure 2.6

(top) contains 96 lines in 32 triangles, and Figure 2.6 (bottom) contains 32 concentric rings

made out of a total of 128 non-rational quadratic curves and 64 radial lines. We ran tests

on an Intel Core i7 870. The first row shows the times taken by Anti-Grain Geometry

(AGG), which is a highly optimized, high-quality software rasterizer. The second gives

times for Cairo, which is a rasterizer used in several large software projects. Both AGG

and Cairo use box filtering and approximate curved boundaries by polygons, for which we

used their default tolerances to subdivide curves. The third row contains times for wavelet

rasterization (Chapter 3), which analytically rasterizes piecewise polynomial curves using

a box filter. The remaining times were measured for our method using different filters.

We use a serial implementation of our algorithm to compare with the other methods and

include times for our parallel implementation running on four processors in parentheses.

The Mitchell-Netravali and Lánczos 2 filters are both cubic tensor-product filters, but they

have a different number of zero terms. The Radial 2 filter has the same support but has

fewer coefficients compared to the cubic tensor-product filters because we use a filter of

cubic total degree.

The methods that we compare against ours rasterize polygons using a box filter, so our

box filter produces the same output as they do for Figure 2.5 and Figure 2.6 (top). AGG

and Cairo approximate quadratic and cubic curves as polygons, so we show the time for

these approximate rasterizations in bold. The times required to rasterize shapes using AGG

and our method are similar, even though we compute an analytic rasterization of quadratic

curves rather than a polygonal approximation. Cairo is slower than AGG and our method

because it is more generic and is designed for more-complicated rendering operations.

Unlike the other three methods, our technique can analytically filter images using

higher-order filters. As the order of the filter increases, so does the computation time,

which is approximately linear in the area sampled by the filter. The tent filter is interesting
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Figure 2.9: In the image on the left, curves are approximated by polygons within a toler-
ance of 1

2
of a pixel, while the image on the right is calculated exactly.

because it provides a significant improvement in image quality but takes only twice as

long to compute as a box filter and remains competitive in time with AGG, which uses a

box filter. High-order filters are expensive to compute, but may be acceptably fast for final

production renderings.

Figure 2.8 shows the speedups we achieve rendering Figure 2.13 with a parallel imple-

mentation of our algorithm using OpenMP to split calculations between different numbers

of threads on a four-core system. The image contains 1,577 cubic curves that we rasterized

into a 316 × 613 pixel grid. Speedups vary based on filter width. Some filters, like the

box filter, are simple enough that the overhead of parallelization prevents ideal scaling.

Nevertheless, with four cores, we still achieve a 2.4× speedup. As the size of the filter

increases, Equation 2.3 requires more operations, and our speedup approaches the perfect

scaling relationship. In the case of a quadratic B-spline filter, parallel processing achieves

a 3.5× speedup over our serial implementation.

A common approach to handling curved boundaries is to approximate curves by line

segments. However, this form of approximation produces its own aliasing artifacts, even
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Figure 2.10: Comparison of font rendering between FreeType (left) and our Wavelet algo-
rithm (center). In the difference image (right), red values indicate that our rendering has a
higher cell coverage and blue indicates that it has a lower cell coverage. Differences are
multiplied by a factor of 10 to increase visibility.

during analytic filtering. For example, the images in Figure 2.9 are composed of quadratic

curves. On the left, we subdivided curves into line segments so that they are within 0.5

pixels of the actual curve. On the right, we show curves that are rasterized with exact

formulas for quadratics. In both cases, we used our method for analytic rasterization so

that the differences are only due to approximating curves by line segments. Notice that a

black ring appears in the left image and that the aliasing patterns appear polygonal rather

than round. Also, topological problems can occur when curves are subdivided into line

segments because the line segments approximating those curves may intersect even if in-

put curves they represent do not intersect. Determining the level of subdivision required

to prevent line segments from intersecting can be complicated and computationally expen-

sive.

For polynomial boundaries such as those found in fonts and vector graphics, we calcu-

late the occupancy of pixels analytically rather than divide the curve into dense collections
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Figure 2.11: Approximation of Bézier curves by line segments. This method introduces
error; even when a line segment is used for each pixel the curve intersects. The result
is that approximation underestimates coverage in convex regions (left) and overestimates
coverage in concave regions (right).

of line segments. Figure 2.10 shows a comparison between our output and the output of

FreeType. We rasterized an upper case “T” with both methods at 256pt and 16pt sizes.

Blue pixels indicate that our image had lower occupancy and red pixels indicate we had

higher occupancy in the difference images. Notice that FreeType overestimates occupan-

cies in regions of negative curvature and underestimates occupancies in regions of positive

curvature. This artifact is primarily an effect of the bias introduced by linear approxima-

tion, as shown in Figure 2.11.

We show examples of SVG files that contain cubic curves in Figures 2.1, 2.12, and 2.13.

Figure 2.1 shows a vector image that is scaled by irrational values. There are 60 butter-

flies, and each butterfly contains 452 cubic curves that form two colored shapes, so there

are 27,120 cubic curves in total. Figure 2.12 shows an example of an icon, made from

108 cubic curves, that incorporates linear gradients and text. We show the input vector

image on the top left and show a 642 pixel rasterization from Inkscape and from our im-

plementation of box, tent, quadratic B-spline, and Mitchell-Netravali filters. Note that

many renderers, including Adobe Acrobat, have problems rendering the curved boundary

between the linear color gradients correctly. This problem is visible in the Inkscape image
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Input Box Quadratic B-spline

Inkscape Tent Mitchell-Netravali

Figure 2.12: A vector graphic image of an icon with linear gradients and cubic Bézier
curves. Above, we show the vector image with rasterizations at 642 resolution using box,
tent, quadratic B-spline, and Mitchell-Netravali filters below. Inkscape evaluates a box
filter but does not properly handle blending between neighboring regions, which results in
the appearance of white lines.

Figure 2.13: An image rasterized using a box filter (left), a Mitchell-Netravali filter (cen-
ter), and a radial filter of radius 3 (right). A zoomed-in section of the image is shown
below each high-resolution image to show differences in pixel values.
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as a bright halo. Hence, even the vector input may appear to have artifacts depending on

the viewing software. Finally, Figure 2.13 shows the effect of different filters on a detailed

vector image, without Moiré artifacts, that is made of 1,577 cubic curves.

2.4 Conclusions and Future Work

With the processing power of video cards and the variety of display devices increasing

in tandem, accurate rasterization of shapes is both more desirable and more achievable. We

revisited the theory behind rasterization and described a new approach for finding analytic

solutions for pixel colors using a variety of filters. We then used that theory to develop a

method that rasterizes several types of curves that are commonly used in vector graphics.

Rasterization is a complex subject and remains an interesting topic for research. Sev-

eral extensions of our method may be useful. The curves and color gradients described in

this chapter are closed under affine transformations, but rasterization of three-dimensional

scenes adds complicated occlusions and requires a projective transformation. For exam-

ple, Gouraud shading defines linear color functions over triangles, but Gouraud-shaded

triangles have color functions that are rational with respect to screen coordinates after pro-

jection. Closed-form expressions of Equation 2.1 may exist for rational functions, but the

expressions are certainly not polynomial. Rasterization of textured triangles is even more

difficult. Our method may also apply to higher dimensions by, for example, calculating

motion blur by integrating over a three-dimensional domain.
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3. WAVELET RASTERIZATION*

An alternative way to think about rasterization is to say that rasterizing an image cal-

culates the coefficients of functions in a finite basis, where the basis functions are called

the reconstruction filter. As discussed in Section 1.1, coefficients are usually calculated

by an inner product of the image with a sampling function, but one can also solve for the

coefficients by projecting the image onto the finite basis by a least squares minimization.

By this definition, we can also rasterize an image by projecting onto a wavelet basis.

In particular, we are interested in rasterizing onto the Haar basis, which is equivalent

to rasterizing using a box filter. The advantages of using an intermediate wavelet repre-

sentation are that we can progressively add details to a rasterized image, the algorithm is

more robust to bad input, and the method generalizes into higher dimensions. In three

dimensions, rasterizing into a wavelet basis evaluates coefficients directly into an octree,

which means the method is efficient in time and space.

Because we are effectively applying a box filter, we can view pixels as square regions

on a display. In this interpretation, pixels that intersect a the boundary of a polygon are

partially covered. Rasterizing polygons into pixels that store percent occupancy rather

than Boolean inside/outside information is equivalent to sampling χM convolved with a

box filter. Although box filters are considered to be poor approximations of the sinc filter,

their interpretation of calculating the occupancy of cells is sometimes useful, especially in

3D.

We typically think of rasterization as a 2D problem, but we can extend the idea to 3D.

In 3D, the equivalent operation is to calculate the occupancies of cubic cells from the trian-

*Reprinted with permission from "Wavelet Rasterization" by Josiah Manson and Scott Schaefer, 2011. Com-
puter Graphics Forum, 30 (2), 395–404, © 2011 The Author(s) Journal compilation © 2011 The Eurograph-
ics Association and Blackwell Publishing Ltd.
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Figure 3.1: Slices from a 3D rasterization of the Happy Buddha statue computed on a 643

grid to illustrate the anti-aliased nature of wavelet rasterization.

gles that enclose a volume. An example of such a volumetric rasterization (voxelization) is

shown in Figure 3.1, where slices through the rasterized volume of a statue of Buddha are

shown next to a triangle mesh of the same statue. Voxelizing an object builds an implicit

representation that is useful for operations such as collision detection, constructive solid

geometry (CSG), and fluid simulation, which are easier to calculate over volumes than

boundaries.

Collision detection determines if objects interpenetrate and precomputed voxels can

accelerate the solution by querying if points are definitely inside (one), definitely outside

(zero), or near (fractional values) the boundary of an object and need further testing. The

inside/outside values can be stored in an octree to accelerate queries for static objects. If

the cell containing a test point has a fractional occupancy, only the part of the boundary

that intersects that cell must be tested. Because the queries that require further checking

are guaranteed to be within a voxel of the boundary, checks against the triangle mesh can

be calculated more efficiently than if the queries are far from the mesh. In other words,

voxel checks are fast when far from the mesh, and triangle checks are fast when close to

the mesh, so combining the two methods is fast at all distances.

Implicit representations also provide a natural method of calculating CSG set opera-
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tions. We can approximate set operations between two objects a and b by min(a, b) for

intersection, max(a, b) for union, and min(a, 1 − b) for difference. We can then convert

the result back to a boundary representation as shown in Figure 3.4. For more informa-

tion on how to calculate a contour from a rasterized volume, see Chapter 5. Alternatively,

we can accelerate exact CSG algorithms by using implicit representations of objects to

quickly classify surface elements of a mesh as being completely inside or outside each

object. We can then perform exact intersection tests within the remaining indeterminate

voxels [19].

In fluid simulations, it is natural to model surface tension using a surface mesh, whereas

pressure and advection are best computed over a volumetric grid [126]. Thus, it might be

useful to be able to convert freely between voxel and boundary representations of a fluid

volume. Rasterization converts boundary meshes to voxels, whereas contouring methods

like the one described in Chapter 5 convert back to a triangle mesh. Efficient methods for

voxelizing surfaces can accelerate fluid simulations with air-water interfaces, and accurate

cell occupancies can help remove inaccuracies in the simulation.

We calculate the exact wavelet coefficients of rasterized polygons, fonts, and volumes.

To compute the coefficients efficiently, we transform integrals over the interior of an ob-

ject to integrals over the boundary of the object. There are many integrals that we could

use in this transform, so we choose integrals that have the smallest support and computa-

tional cost. The result is a fast algorithm for rasterizing 2D shapes and implicitizing 3D

volumes. Furthermore, our algorithm is independent of surface connectivity and is robust

to degenerate inputs and small gaps or overlaps in the surface.

3.1 Related Work

Many of the methods used to rasterize 2D images do not extend well to 3D volumes.

One method that directly extends is ray-casting. For each point in the grid, we cast a ray
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and count the number of intersections between the ray and the boundary [93, 125]. If

the number of intersections is odd, we classify the point as interior. Otherwise, the point

is exterior. This approach is useful because it does not depend on the orientation of the

boundary, but ray-intersections are difficult to handle robustly in 3D.

One of the first analytic box-filter rasterizers [24] clips polygons in a scene to each

pixel and then clips polygons against each other, ordered by depth. Areas of clipped

polygons are then added to find the color of the pixel. This method does not extend well

into 3D, however, because it requires that triangles in a mesh are topologically connected

and cannot deal with holes or T-junctions. Duff developed a scan converter [48] that

calculates analytic convolutions with cubic splines. Similar to our method, Duff clips only

the edges of polygons to pixels. The main advantage of our approach over Duff’s algorithm

is robustness to small imperfections in input that cause errors to propagate across a line

in scan-line algorithms. This property is more important in 3D than in 2D because 3D

data are more likely to contain imperfections. A method of extruding box splines to filter

triangles has also been developed [98], but requires simplicial decompositions of shapes.

Several algorithms have been specifically designed to voxelize boundary representa-

tions of objects. Some computationally expensive algorithms [55, 23] sample individual

points. Other algorithms [53, 71, 46, 50, 139, 51] use the special-purpose hardware in a

GPU to accelerate volumetric rasterization. However, these algorithms use no filtering,

and therefore create obvious aliasing. Binary volumes are adequate for some applica-

tions, like collision detection, but CSG operations and other methods that extract surfaces

from a volumetric representation require anti-aliasing to produce attractive surfaces. Al-

though super-sampling approximates the anti-aliased representation of these binary vol-

umes, super-sampling volumes is extremely time-consuming. Other methods [79] approx-

imate the signed distance function of a surface, but these often rely on finding closest

points on the surface [7], which is expensive to compute for points far from the surface.
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Some researchers [123, 124] have used the GPU to accelerate the computation of signed

distance functions, but those methods are still slow because of the complexity of evaluating

the distance function.

Wavelets have also been applied to rendering ray-traced scenes, but in a way that is very

different from our method. Overbeck et al. [107] use ray-traced color samples in the image

plane to build wavelet coefficients of the image and then use the variance of the mean of

wavelet coefficients to determine where more samples are required. Additionally, they

use smooth basis functions with larger supports and reduce the contribution of coefficients

with high variance so that noisy regions of the image (for example, around out-of-focus

objects, in soft shadows, or on semi-glossy surfaces) are smoothed. In contrast, our method

uses wavelets to calculate the interiors of 3D surfaces and 2D polygons.

3.2 Rasterizing into the Wavelet Basis

Wavelets provide a basis for representing functions through a hierarchy of localized

refinements. They have a wide variety of applications, from solving differential equations

to digital image processing, signal processing, and surface reconstruction. The main ad-

vantage of wavelets over other representations of a function is that wavelets are localized

in both the spatial and frequency domains. Our derivation of the rasterization equation is

similar to Section 2.2, but it is specialized to wavelets. Although the derivation is similar,

the orthogonality and hierarchical nature of the wavelet basis leads to an entirely different

rasterization algorithm.

First, I will briefly review some properties of wavelets necessary for our construction.

Let φ be a compactly supported univariate scaling function, with orthogonal shifts, that

satisfies the two-scale relation

φ(t) =
∑
`∈Z

α`φ(2t− `), (3.1)
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in which only a finite number of coefficients α` are nonzero. Let ψ be the univariate

wavelet function with compact support that is obtained from φ by multiresolution. The

formula for ψ is

ψ(t) =
∑
`∈Z

(−1)`α1−`φ(2t− `), (3.2)

where α1−` denotes the complex conjugate of α1−`. Examples of such wavelets and scaling

functions are given by Daubechies [38]. We can use any orthogonal basis, each of which

offers a trade-off among support, smoothness, symmetry, and ease of computation. Unlike

more complex wavelets, Haar wavelets [68] have small support and analytic functions.

Specifically, the scaling function

φ(t) =

 1, 0 ≤ t < 1

0, otherwise

generates the Haar basis, and ψ is given by

ψ(t) = φ(2t)− φ(2t− 1).

The 2D Haar wavelets shown in Figure 3.2 exactly represent piecewise-constant functions

made of squares and represent a box-filtered sampling of an image.

Two-dimensional wavelets are constructed as follows. Let ψ0 = φ, ψ1 = ψ, E ′ be the

set of vertices {(0, 0), (0, 1), (1, 0), (1, 1)}, and E = E ′\{(0, 0)}. For each e = (ex, ey) ∈

E ′, j ∈ N, and k = (kx, ky) ∈ Z2, we define

ψej,k(p) = 2jψex(2jpx − kx)ψey(2jpy − ky),

where p = (px, py). Every function g that is locally integrable on R2 has the wavelet
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Figure 3.2: The 2D Haar basis functions. Each function is shown over the domain [0, 1)2

and is piecewise constant (−1/+1) on each quadrant. Translations of Ψ̄(0,0) give the low-
resolution representation of the function, while scalings and translations of the functions
Ψ̄(1,0), Ψ̄(0,1), and Ψ̄(1,1) add high-resolution details.

expansion

g(p) =
∑
k∈Z2

c
(0,0)
0,k ψ

(0,0)
0,k (p) +

∑
j∈N

∑
k∈Z2

∑
e∈E

cej,kψ
e
j,k(p), (3.3)

The three-dimensional construction follows the same pattern. Let E ′ denote the set of

vertices of the cube [0, 1]3 and let E denote the set of vertices excluding the origin (i.e.

E = E ′ \ (0, 0, 0)). For each e = (ex, ey, ez) ∈ E ′, j ∈ N and k = (kx, ky, kz), we define

ψej,k(p) = 23j/2ψe1(2jpx − kx)ψe2(2jpy − kx)ψe3(2jpz − kz),

where p = (px, py, pz). Each function f that is locally integrable on R3 has the wavelet

expansion

f(p) =
∑
k∈Z3

c
(0,0,0)
0,k ψ

(0,0,0)
j,k (p) +

∑
j∈N

∑
k∈Z3

∑
e∈E

cej,kψ
e
j,k(p), (3.4)

where each cej,k is given by

cej,k =

∫
R3

f(p)ψej,k(p) dp. (3.5)
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3.2.1 Evaluating Wavelet Coefficients

We wish to rasterize objects by calculating the percent occupancy of voxels in a regular

grid. If M is the set of points inside an object with boundary ∂M , represented as a set of

edges, then the indicator function χM is defined as

χM(p) =

 1, p ∈M

0, otherwise.
(3.6)

This function implicitly represents the shape M and we extract the boundary of the shape

by finding the points at which χM transitions from zero to one. In particular, χM defines

the set of points that would be drawn if the polygon ∂M was rasterized at infinite resolu-

tion. Taken to the limit, summing super-samples [45] over a pixel is equivalent to applying

a box-filter or integrating χM over the pixel area. The value of a pixel P is therefore given

by ∫
P
χM(p) dp∫
P
dp

. (3.7)

This equation shows that the value of a pixel is equal to the area of the polygon that

intersects the pixel divided by the area of the pixel. Our approach to rasterizing polygons

is to calculate the wavelet coefficients of χM to pixel resolution and then to invert the

wavelet transform to convert the rasterization to a box-filtered image.

Here, the index e indicates which basis function is used, and k denotes its translation

at resolution j. Because the functions have supports that are power-of-two contractions

of a square, the wavelet hierarchy in 2D is naturally represented by a quadtree. Note that

j controls the resolution of the wavelet expansion and that we truncate j to stop at pixel

resolution.

If we consider the wavelet coefficients of χM and use the definition of χM from Equa-
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tion 3.6, then Equation 3.5 reduces to

cej,k =

∫∫
M

ψej,k(p) dp. (3.8)

We use the divergence theorem from Equation 2.2 to relate the integral over M to an

integral over its boundary ∂M . By finding functions F e
j,k that satisfy ∇ · F e

j,k = ψej,k, we

can calculate the wavelet coefficients of χM using only the polygon boundary in the line

integrals

cej,k =
∑
i

∫ 1

0

F e
j,k(Pi(t)) · n(Pi(t))‖P ′i (t)‖dt, (3.9)

where Pi represents the ith polynomial segment of the boundary (line segment for poly-

gons).

Because χM is constant over both the interior and exterior of the shape and because

wavelets have constant precision, wavelet coefficients are non-zero only where the bound-

ary intersects the basis functions. This property yields an adaptive quadtree that is refined

only along the boundary of the polygon.

3.2.2 2D Boundaries

We make a few simplifying assumptions to facilitate analysis. First we calculate basis

functions over the [0, 1)2 domain (the support of the 2D Haar basis) by translating the input

edges by −k and scaling by 2j . Furthermore, we clip edges to this domain because the

support of the wavelet functions is only [0, 1)2. Note that we only need to clip the boundary

edges rather than the polygons themselves because we calculate a boundary integral. This

simplification allows us to drop the j, k subscripts so that

ψe(p) = ψex(px)ψ
ey(py).
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There is a continuum of functions F e in 2D that satisfy∇·F e(p) = ψe(p) and that are

parameterized by α such that

F e(p) =
(
αΨ̄ex(px)ψ

ey(py), (1− α)ψex(px)Ψ̄
ey(py)

)
,

where

Ψ̄`(t) =

∫ t

0

ψ`(s) ds

and ` ∈ {0, 1}. Not all choices of α yield practical solutions or efficient calculations. In the

following sections, we show how to choose α such that Equation 3.9 yields a calculation

that has both small support and low computational cost.

The c(0,0) coefficient is special because it exists only for the root node of the quadtree

and gives a value that is refined by all other wavelet coefficients. The c(0,0) coefficient also

has the clear geometric interpretation of being the area of the polygon. Letting α = 1/2 in

Equation 3.9 yields

∫ 1

0

F (0,0)(P (t)) · n(P (t))‖P ′(t)‖dt =
1

2
det

(
v0, v1

)
,

where v0 and v1 are the end-points of the edge defined by P . Adding determinants of

edges is equivalent to adding the areas of the triangles formed between the edges and the

origin. Adding these signed areas computes the area of a polygon.

The three coefficients other than c(0,0) calculate the difference between a cell and its

sub-cells at the next-higher level of resolution. These three refinement coefficients, in

addition to the known scale coefficient, uniquely determine values of all four sub-cells.

Consider the c(1,0) coefficient (c(0,1) follows in a similar manner). Again, we could choose

α = 1/2 to give

F (1,0)(p) = 1
2
(Ψ̄(px)φ(py), ψ(px)Φ̄(py)),
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where Ψ̄ = Ψ̄1 and Φ̄ = Ψ̄0. Although this function satisfies the divergence theorem, F (1,0)

has infinite support because Φ̄ has support of [0,∞). We want to use only detail functions

with finite support such that we limit the number of edges that influence a coefficient.

Notice, however, that the support of Ψ̄ is finite and is [0, 1). By choosing α = 1 for F (1,0)

and α = 0 for F (0,1), we obtain the compactly supported functions

F (1,0)(p) = (Ψ̄(px), 0)

F (0,1)(p) = (0, Ψ̄(py)).

For the last function F (1,1), any value of α will have compact support. The trade-off is that

using α = 1/2 gives greater numerical stability such that

F (1,1)(p) =
1

2
(Ψ̄(px)ψ(py), ψ(px)Ψ̄(py)),

whereas a value of α = 1 is faster to compute

F (1,1)(p) = (Ψ̄(px)ψ(py), 0).

The functions F e are piecewise-linear because Ψ̄ is piecewise-linear, with each quad-

rant being linear, so we evaluate these integrals by splitting each polygon edge Pi into the

quadrants and transforming the domains of the quadrants to be [0, 1)2. We can then add the

contribution of each split edge to the coefficients. Quadrants that do not contain an edge

contribute nothing. Note that wavelet coefficients are most naturally calculated and stored

in a quadtree. This means that if we calculate the coefficients of the root node that covers

the entire image domain, we can reuse the edge splits that we calculated to calculate the

coefficients of basis functions in each of the quadrants recursively. Therefore, an efficient

algorithm is to process each edge of a polygon independently and to calculate all of the
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Figure 3.3: Rasterizations of a polygon made of disconnected edges (left) using a standard
scanline rasterizer (center) and our wavelet rasterizer (right). Wavelets localize errors
because of their local support.

wavelet coefficients that intersect that edge. In the same way that we found closed-form

solutions for Bézier boundaries in Section 2.2, we can find closed-form solutions of Haar

wavelet coefficients for polynomial curve boundaries.

3.2.3 3D Triangle Surfaces

In 3D, we assume the boundary ∂M of our volume M is composed of triangles. As

in 2D, we translate and scale input triangles rather than modify the basis functions and

then clip transformed triangles to the unit cube. We therefore restrict our discussion to the

normalized basis

ψe(p) = ψex(px)ψ
ey(py)ψ

ez(pz).

To satisfy Equation 2.2, we find functions F e whose divergences are equal to ψe. In

3D, these functions are parameterized by α and β such that

F e(p) =


αΨ̄ex(px)ψey(py)ψ

ez(pz)

βψex(px)Ψ̄ey(py)ψ
ez(pz)

(1− α− β)ψex(px)ψey(py)Ψ̄
ez(pz)

 .

We choose functions that have as small a support as possible and that are as efficient to
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compute as possible, yielding

F (0,0,0)(p) =
1

3
(Φ̄(px), Φ̄(py), Φ̄(pz))

F (1,0,0)(p) = (Ψ̄(px), 0, 0)

F (0,1,0)(p) = (0, Ψ̄(py), 0)

F (0,0,1)(p) = (0, 0, Ψ̄(pz))

F (1,1,0)(p) = (Ψ̄(px)ψ(py), 0, 0)

F (1,0,1)(p) = (Ψ̄(px)ψ(pz), 0, 0)

F (0,1,1)(p) = (0, Ψ̄(py)ψ(pz), 0)

F (1,1,1)(p) = (Ψ̄(px)ψ(py)ψ(pz), 0, 0).

Again, the wavelet detail functions (functions 2-8 above) have finite support, although

the scale function (F (0,0,0)) does not, but there is only one top-level scale function corre-

sponding to the root node of the octree. Also, as in 2D, the symmetric solution α = β =

1/3 for the c(0,0,0) coefficient gives the determinant of the triangle. This is equivalent to

the signed volume of the tetrahedron formed between the triangle and the origin, giving

c(0,0,0) =

∫
p∈T

F (0,0,0)(p) · n dσ =
1

6
det(v0, v1, v2).

We compute the remaining coefficients as in 2D by splitting triangles with vertices (v0,

v1, v2) into octants that are labeled Qi,j,k. As in 2D, some of the functions have compact

support for other values of α and β that are more robust to noise, but we choose only the

most compact and computationally efficient forms.
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Figure 3.4: Image obtained when we used our method to calculate the CSG set difference
between the head and the Eurographics logo using an anti-aliased rasterization of each
model on a 10243 grid.

3.3 Results

Quality and robustness are strong points in favor of wavelet rasterization. Wavelets

build a low-resolution image that is subsequently refined in localized areas, which means

that the overall picture is retained even in the presence of degeneracies and holes. Small

errors in the polygon can have a large effect, as shown in the example of the non-closed

polygon in Figure 3.3, because a scanline rasterizer with an even-odd fill rule propagates

information only from the current line to the right. In contrast, our wavelet rasterizer uses

oriented edges in both the x and y directions to refine a coarse image locally. Although it

is difficult to define the correct rasterization of a non-closed polygon, wavelet rasterization

localizes rasterization errors and produces a plausible image.

Wavelet rasterization is particularly useful for rasterizing volumes of triangle meshes.

Table 3.1 shows the times it took to rasterize triangle meshes of increasing complexity.
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The highest resolution mesh we use is a reconstruction of Michelangelo’s statue of David,

which contains 7.2 million triangles that were rasterized at a resolution of 40963. Storing

one byte per voxel consumes 64 GB of space at this resolution, but our adaptive octree

stores the entire function in memory because the tree is only refined around the boundary

of the surface. The majority of time is spent computing the wavelet coefficients, and

the time required for this computation is proportional to the surface area of the object

times tree depth. However, the time required to compute the function values from these

coefficients (i.e. synthesis) over a uniform grid is proportional to the volume enclosing the

object and grows quickly as the resolution increases.

We compare the 2D rasterization performance of our algorithm against other freely

available, high-quality scanline rasterizers. Specifically, we compare our polygon raster-

ization on a Core i7 960 against Anti-Grain Geometry (AGG), which is an open-source,

highly-optimized software rasterizer, and we use native GPU rasterization on an Nvidia

8800GT. For font rasterization, we compare against a high-quality, open-source font ras-

terizer called FreeType. Even though our algorithm is relatively efficient in terms of com-

putation, we cannot compete with the speed of native hardware or even highly optimized

software implementations with assembly tuning. For complex shapes, the speed of our

algorithm is about a factor of three slower than these optimized implementations. We ras-

terized a circle with a million vertices at 10242 resolution in 50.2 ms on the GPU with

16xQ anti-aliasing, 36.8 ms with AGG, and 107 ms with our method.

It is difficult to demonstrate anti-aliasing in a volumetric image, but we have endeav-

ored to do so in Figure 3.1. This figure shows slices through the volume of the Happy

Buddha statue. Notice that the silhouette of each slice is anti-aliased. Moreover, voxels

have partial occupancies at the front and back of the statue because anti-aliasing occurs

in the z-dimension as well as the x,y-dimensions. This effect is most easily visible on the

back of the Buddha statue.
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2563 40963

polys coeff synth coeff synth
Armadilloman 30.0k 113 22 7,310 3,990
Head 477k 393 23 12,000 4,740
Buddha 1.09M 557 21 10,700 3,340
David 2mm 7.23M 2,250 19 14,800 1,790

Table 3.1: Time taken (in milliseconds) to rasterize volumes of increasing complexity at
2563 and 40963. We show the time taken for coefficient calculation and synthesis sepa-
rately.

Anti-aliasing is important for many algorithms that process rasterized volumes. For

example, CSG operations can be performed by rasterizing the volumes of two meshes,

performing a pairwise CSG operation on the two volumes and then extracting a surface

as a level set using an algorithm like Marching Cubes (MC) [95], but are specialized to

rasterized volumes (see Section 5). Figure 3.4 shows such an operation using our wavelet

rasterization on a 10243 grid. The quality of the surface generated by contouring depends

on the rasterization algorithm. Figure 3.5 shows the result of using a binary rasterization,

which is typical of other methods [23, 55, 53, 71, 46, 50, 139, 51], and our anti-aliased

rasterization over a 2563 grid. Note that contouring smooths the surface from the binary

voxelization because vertices lie at the midpoints of grid edges and are connected using the

MC table. Even so, triangles in a contoured surface have only a small set of orientations

when contoured from from a binary voxelization, which produces a poor-quality surface.

3.4 Conclusions and Future Work

We believe that 2D and 3D rasterization is a fundamental problem in Computer Graph-

ics, and our algorithm offers a method for computing anti-aliased, box-filtered rasteriza-

tions analytically. The method we present is efficient and general in that we can rasterize

arbitrary 2D polygons, shapes bounded by Bézier curves, and 3D triangle surfaces.

In wavelet rasterization, wavelet synthesis and analysis correspond to pre- and post-
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Figure 3.5: The CSG operation from Figure 3.4 computed on a 2563 grid contoured with
Marching Cubes. The image to the left shows the result of using binary rasterization and
the image to the right shows the result from our anti-aliased rasterization.

filtering. Direct extension to higher-order filters is trivial for filters that form wavelet bases,

but most common filters do not satisfy this property. Note that, sinc forms an orthogonal

wavelet basis but has infinite support. Wavelet rasterization also provides anti-aliased

images at multiple resolutions that can be computed by truncating the summation of the

detail coefficients in Equation 3.3 before pixel resolution. This progressive refinement of

rasterized images suggests the possibility of generating a fixed-frame-rate rasterizer that

continuously adds detail until a time limit for the frame is reached. Extremely detailed

geometry would result in a more pixelated image rather than in dropped frames.

Another benefit of wavelet rasterization is that it is extremely easy to parallelize be-

cause the contribution of every line segment, curve, or triangle can be computed inde-

pendently. Each depth can also be computed independently, although it is probably more

efficient to reuse the clipping operations from parent cells. Conversion of coefficients to

function values is even more easily parallelized, because memory accesses are disjoint.
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4. STREAMING SURFACE RECONSTRUCTION USING WAVELETS*

Creating digital models of real-world objects has many applications. Digital models

are used in industry to perform physical simulations and to visualize shapes in ways not

possible in real life. In entertainment, digitized clay models are animated for games and

movies. In archeology and art, the same techniques are used to create digital repositories

of artistic works like Michelangelo’s Schiavo Barbuto statue shown in Figure 4.1 that

was scanned by the Digital Michelangelo Project [90]. Typically, shapes are acquired by

measuring the distance of a surface to a scanning device such as a laser range scanner or

a Microsoft Kinect that provides point samples on the surface of the object. The point

samples are then used to build a three-dimensional polygonal model that approximates the

shape of the object being scanned.

Reconstructing surfaces from the data produced by these scanning devices is difficult.

The surface may be oversampled in some regions because of multiple overlapping scans

that are intended to cover the entire shape. On the other hand, cracks and crevices usually

cannot be scanned, and physical size limitations may prevent the scanner from accessing

every portion of the shape, so the data may contain gaps and holes. With the advent of bet-

ter scanners, the amount of data collected has grown dramatically. For large statues such

as Michelangelo’s 14 foot tall David, the number of samples can easily be in the hundreds

of millions to billions of points. Such large data sets necessitate efficient algorithms, in

terms of both time and memory, to process the collected samples. In addition, real-world

data always contain noise due to sensor inaccuracies, which creates the need for a robust

algorithm.

*Reprinted with permission from "Streaming Surface Reconstruction Using Wavelets" by Josiah Manson,
Guergana Petrova, and Scott Schaefer, 2008. Computer Graphics Forum, 27 (5), 1411–1420, © 2008 The
Author(s) Journal compilation © 2008 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 4.1: Surface reconstruction of “Barbuto” from laser range scans containing a to-
tal of 329 million points (7.34GB of data). Our wavelet surface-reconstruction method
completed the reconstruction in 112 minutes with 329 MB of memory.

Recently, implicit methods, such as the level-set methods pioneered by Osher [106] and

Sethian [120], have gained popularity for surface reconstruction. Solving for the implicit

representation of an object from samples on the boundary of a shape is conceptually similar

to rasterizing voxels from a known triangle mesh, as described in Chapter 3. The difficulty

of surface reconstruction is that, unlike rasterization, the exact boundary of the shape is not

known. Instead, the scanned data have noise, inconsistent sampling density, occlusion, and

miscalibration. We use wavelets to calculate the implicit function representing an object

because wavelets are robust to noisy data. Computing wavelet coefficients is fast and

memory efficient because wavelets form an orthogonal basis with compact support. We

can also use the small support of wavelet basis functions to evaluate only part of the surface

at a time. We keep an octree of some small depth dm in memory and encode subtrees

corresponding to high-resolution details in a streaming fashion. This streaming technique

allows us to process massive data sets that exceed the available computer memory.

In some applications, quality of the reconstructed surface is more important than the

speed of reconstruction. In others, such as the navigation of unmanned vehicles, recon-
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struction speed is more important than quality. Our technique provides a framework for

handling any of these applications by selecting an appropriate wavelet basis. This selection

depends on the smoothness of the wavelet, which is intrinsically connected to its support.

As the support of the wavelet decreases, the smoothness of the wavelet and the smoothness

of the reconstructed surface decreases. Smoother wavelets produce smoother surfaces but

require more computation.

4.1 Related Work

Surface reconstruction is a well-studied problem. We discuss only some of the existing

methods and refer the reader to Shall and Samozino [116] for a survey on recent develop-

ments in this field and to Kazhdan et al. [86], which compares several reconstruction tech-

niques. Surface reconstruction methods fall into two main categories: explicit and implicit.

Explicit methods connect scanned points with triangles. The Power Crust algorithm [2],

Robust Cocone [40], and Super Cocone [39] are among the well-known examples of such

methods. Streaming triangulation algorithms for surface reconstruction [9, 1] have also

been developed to handle large data sets. However, these algorithms do not perform well

in the presence of noise because they interpolate the input data. Furthermore, they typi-

cally need to look up neighboring information to create the triangulations, which makes

them many times slower than most implicit methods and thus unsuitable for reconstructing

extremely large data sets.

Implicit algorithms reconstruct a surface by extracting the level-set of an implicit func-

tion that is calculated from sensor data. The advantage is that it is unnecessary to para-

meterize the surface, and operations such as shape-blending, offsets, and deformations are

easy to calculate. Implicit methods also approximate the input data, which means that they

are more robust to noise in the input data than interpolatory methods. One such method

uses radial basis functions (RBF) [22] to represent the implicit function. However, fitting
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and evaluating RBFs is too slow to reconstruct implicit surfaces from point sets consisting

of more than a few thousand points. Multiple partition of unity (MPU) implicits [105] is an

octree subdivison method that fits local, piecewise quadratic functions to the data and uses

weighting functions (partitions of unity) to blend these functions together. Similar to the

FastRBF method, MPU implicits can produce noisy surfaces with extraneous parts. How-

ever, MPU implicits is simple and fast. Other implicit methods include Hoppe et al. [74]

and VRIP [36], which are more robust to noise than the other algorithms. Although slower

than MPU implicits, both methods can be used on medium-sized data sets. Note that, de-

spite run-length encoding tricks used in VRIP, both methods have difficulty processing

extremely large data sets because the entire representation of the implicit function must

reside in memory.

More recently, an implicit surface-reconstruction method based on Fourier series [85]

was developed to reconstruct a smooth surface and robustly handle noise and gaps in the

data. However, computing a single Fourier coefficient must sum over all input samples be-

cause the basis functions are globally supported. The method also requires a huge amount

of memory because of the use of a uniform grid, which limits its application to relatively

modestly sized data sets. A solution to this problem was recently proposed [117]. The

authors suggested combining an FFT method with adaptive subdivision and partition of

unity blending techniques of MPU implicits. The FFT approach was later modified [86] to

use an octree and find the implicit function by solving a Poisson equation. The method is

further improved by using a streaming approach [13] to process data sets out of core. This

approach allows the algorithm to handle data sets on the order of hundreds of millions of

point samples. Despite its relative speed, processing can still take days for large number

of points, even with a parallel implementation [14].
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4.2 Wavelet Approximation of the Indicator Function

We use the input points pi on the surface ∂M and their outward normals ~ni to approx-

imate the indicator function χM (defined in Equation 3.6) of the solid M with boundary

∂M by approximating the wavelet coefficients of χM . The surface ∂M̃ of the level set

M̃ is an approximation to the original surface ∂M . Without loss of generality, we assume

that M lies in the cube [0, 1)3. The coefficients c0,k and cej,k in the wavelet representation

of χM are determined by Equation 3.8.

Kazhdan wrote that the Fourier coefficients of χM can be calculated using the diver-

gence theorem [85], and we derive the corresponding formulas to evaluate wavelet coef-

ficients in Section 3.2.1. When rasterizing triangle meshes into voxels, numerical robust-

ness was less important than the ability to evaluate wavelet coefficients quickly, because

we assume the mesh is well defined and closed. In surface reconstruction, the boundary is

poorly defined and captured with noisy sensors, so we choose values for the parameters α

and β that are most tolerant to noise.

F (0,0,0)(p) =
1

3
(Φ̄(px)φ(py)φ(pz), φ(px)Φ̄(py)φ(pz), φ(px)φ(py)Φ̄(pz))

F (1,0,0)(p) = (Ψ̄(px)φ(py)φ(pz), 0, 0)

F (0,1,0)(p) = (0, φ(px)Ψ̄(py)φ(pz), 0)

F (0,0,1)(p) = (0, 0, φ(px)φ(py)Ψ̄(pz))

F (1,1,0)(p) =
1

2
(Ψ̄(px)ψ(py)φ(pz), ψ(px)Ψ̄(py)φ(pz), 0)

F (1,0,1)(p) =
1

2
(ψ(px)φ(py)ψ(pz), 0, ψ(px)φ(py)Ψ̄(pz))

F (0,1,1)(p) =
1

2
(0, φ(px)Ψ̄(py)ψ(pz), φ(px)ψ(py)Ψ̄(pz))

F (1,1,1)(p) =
1

3
(Ψ̄(px)ψ(py)ψ(pz), ψ(px)Ψ̄(py)ψ(pz), ψ(px)ψ(py)Ψ̄(pz)).
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Given a function ~F e
j,k, we can discretize the surface integral by summing over the point

samples (pi, ~ni)

cej,k = 23j/2

∫
M

~F e
j,k(p(σ)) · ~n(σ)dσ (4.1)

≈ 23j/2
∑
i

~F e
j,k(pi) · ~ni∆σi, (4.2)

where ∆σi is an estimate of the differential surface area associated with the sample point

pi. Notice that, unlike globally supported functions such as the Fourier basis, this summa-

tion does not involve all point samples but only those within the support of ψej,k. The only

coefficients that sum over all points pi are at the top level of the tree and are designated

as c (0,0,0)
0,k . In this case, we only compute those coefficients c (0,0,0)

0,k that correspond to basis

functions φ(x1 − k1)φ(x2 − k2)φ(x3 − k3), whose support overlaps the region of inter-

est [0, 1)3 containing M . Fortunately, this is a small, constant number of coefficients that

depends on the support of the scaling function φ.

Finally, we need to approximate the surface area ∆σi associated with each point pi.

There are many ways of estimating ∆σi, such as weighting by a Gaussian [85]. We use a

simple, octree-based method to compute ∆σi that can handle non-uniformly sampled data

points. We refine all octree cells containing sample points until we reach the maximum

depth d specified by the user. Once all points are inserted into the octree, we prune leaves

of the tree until each leaf is adjacent to at least 3 occupied leaves of the same depth. This

pruning guarantees that the surface is adequately sampled for the resolution of cells in the

tree. The area associated with a point pi is then the area of the side of the leaf divided by

the number of points in that leaf ∆σi = 2−2di/m, where m is the total number of points in

the leaf containing pi and di is the depth of the leaf.
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4.3 Surface Extraction

As described in Section 3.2, we compute an approximation χ̃M to χM and recover a

solid M̃ that is a level set of the χ̃M . Because χ̃M ≈ χM , which is 0 outside M and

1 inside of M , one reasonable option is to extract the surface that is an iso-contour of

the function at 1/2 using Marching Cubes [95]. However, the Marching Cubes surface is

not smooth because Marching Cubes assumes that the sampled function is smooth. We

describe a contouring method specific to indicator functions in Section 5. When a wavelet

basis other than Haar is used, or if the function is altered after evaluating the coefficients,

then the contouring method described in Section 5 does not apply, and we use Marching

Cubes instead. For poorly scanned surfaces or point sets with high amounts of noise, we

can choose a data-dependent iso-value using the average value of χ̃M over the sample

points.

The ability of wavelets to detect discontinuities creates an octree that is adaptively

refined along the boundary ∂M ofM . We use this octree to construct a polygonal model of

the boundary ∂M̃ by applying an octree-contouring method [82]. This algorithm computes

the dual-cell structure of the octree through a recursive octree walk and uses the values of

χ̃M at the vertices of the dual cells, which are located at the centers of the corresponding

octree cells. The surface is then contoured over the dual grid of the octree to create a

surface that produces a topological and geometrical manifold. Because the number of dual

cells is proportional to the size of the octree, the running time of contouring is proportional

to the size of the octree.

4.3.1 Post-processing of the Indicator Function

The smoothness of the wavelet basis determines the smoothness of χ̃M and, therefore,

the smoothness of the level set M̃ . Wavelets with small support yield higher performance

algorithms because fewer wavelet coefficients are calculated, and each coefficient is influ-
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Figure 4.2: Surface reconstruction using Haar wavelets (left) results in a noisy surface
because the basis functions are discontinuous. Smoothing the indicator function results in
a substantially smoother surface at a small cost to speed and approximation quality (right).

enced by a smaller number of sample points. However, smaller support reduces the quality

of the resulting surface. Instead of increasing the support of the wavelet to improve the

quality of the reconstructed surface, an alternative is to perform a post-processing smooth-

ing step on the indicator function χ̃M . With this method, we can retain the time efficiency

associated with wavelets of small support and get a more visually appealing surface. We

compare the Hausdorff error of our method to the error of other methods in Table 4.3.

Our method outperforms other techniques in terms of accuracy, both with and without

post-processing.

Smoothing a function is typically performed by convolving the function with a small

smoothing kernel over a uniform grid. We have an adaptive octree, so we modify a small

convolution kernel to operate over octrees. The kernel evaluates adjacent cells and is the

tensor product of the mask (1/4, 1/2, 1/4) in R3. We smooth the function χ̃M , given by

Equation 3.4, by summing over the dyadic levels j up to a user specified depth dmax.

Given a cell at depth d, we compute the value of χ̃M at the center of the cell and its 26
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neighbors at the same level using Equation 3.4. If a neighbor does not exist, then the

wavelets indexed by this neighbor do not contribute to the sum. We then perform uniform

convolution over this locally uniform grid and treat the obtained value as the value of the

smoothed function at the center of that cell. Figure 4.2 shows an example of a surface

reconstructed using Haar wavelets (see Section 4.4) without (left) and with (right) this

smoothing step.

4.3.2 Streaming Reconstruction

The storage space for χ̃M is proportional to the surface area of the reconstructed sur-

face because refinement is only performed near point samples. However, extremely large

data sets may require more space than can fit into the memory of most desktop machines.

To process these data sets, we developed a streaming version of our algorithm. Like most

streaming algorithms, we require that the input points are sorted in one of the Euclidean

directions. If the points are not sorted, we preprocess them by sorting along the longest

Euclidean direction of their bounding box using an out-of-core merge sort. We assume,

without loss of generality, that the sort is in the z-direction. For a data set of 205 million

points, the sort takes 20 minutes, and the sorting time is small compared to the time for

surface reconstruction.

Our streaming algorithm builds a low resolution, in-core approximation of χM down to

some depth dm < dmax, where dmax is the maximal depth of the octee and encodes subtrees

corresponding to high-resolution details in a streaming fashion. Note that the coefficients

c
(0,0,0)
0,k depend on all sample points. Therefore, χ̃M cannot be evaluated until all points are

processed at least once. Our solution is to perform two passes over the data. The first pass

constructs all coefficients down to depth dm. The second, streaming pass builds the non-

zero wavelet coefficients cej,k of χ̃M for dm < j ≤ dmax and `2−dm ≤ k3 < (` + 1)2−dm

for 0 ≤ ` < 2dm . For each slice `, we build the corresponding wavelet coefficients, smooth
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Figure 4.3: Depiction of our streaming implementation. We first construct the wavelet
coefficients of the indicator function, smooth the function, and then extract the iso-surface.

the function values, and create polygons before deleting the subtrees corresponding to the

slice from memory. Figure 4.3 depicts this streaming process.

Any choice of dm works with our streaming algorithm, but its value will affect the

amount of memory required to reconstruct the surface. Choosing dm = 0 or dmax requires

that the entire tree fits into memory, so we choose the dm that minimizes memory usage.

Assume that there are L leaves of the octree at depth dmax. Because the size of the octree

at each level is proportional to the surface area of ∂M , the number of cells at depth j

is approximately L4−(dmax−j). Therefore, our streaming algorithm has a working set of

approximately
dm∑
j=0

L

4dmax−j
+

β

2dm

d∑
j=dm+1

L

4dmax−j

cells in memory at any one time. We keep β slices in memory for the different stages of our

algorithm, where β is dependent on the support of the wavelet used. For the Daubechies

wavelets, which we consider in Section 4.4, β = 4. This sum is minimized with respect

to dm to yield an optimal value of dm ≈ 0.69dmax. This technique does not allow us to
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Figure 4.4: The D4 scaling function φ (left) and the corresponding wavelet ψ (right).

process arbitrarily deep octrees (the octree to depth dm must still be stored), but it allows

us to process much deeper trees than a strictly in-core algorithm. We have been able to

reconstruct surfaces down to depth 14 in memory (see Section 4.5). At that resolution, a

single cross-section of the grid at the maximal depth has over 250 million cells, and we

are able to process the largest data sets that can be obtained.

4.4 Implementation

Computational time is a major concern, which motivates us to explore wavelets with

small support, such as the Haar and 4th order Daubechies (D4) wavelets. Despite the lack

of smoothness of these wavelets, the reconstructed surface is a good approximation to

the original surface (see Section 4.5). In Section 3.2 we defined Haar wavelets by Equa-

tions 3.2 and 3.2 and show a depiction of the 2D tensor product functions in Figure 3.2. In

this chapter, we also rasterize into the D4 basis and Figure 4.4 depicts plots of the scaling

and wavelet functions of the D4 basis. The D4 wavelet has the scaling relationship

φ(t) =

(
1+
√

3
4

3+
√

3
4

3−
√

3
4

1−
√

3
4

)


φ(2t)

φ(2t− 1)

φ(2t− 2)

φ(2t− 3)


.
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Given that the D4 wavelet ψ is not analytic, we evaluate the functions ~F e
j,k at the sample

points pi using a piecewise linear interpolant of the φ, ψ, Φ and Ψ functions sampled over

a uniform grid. The exact values on the uniform grid are found using a standard technique

for evaluating functions that satisfy a scaling relationship with a finite number of non-zero

scaling coefficients [37, 10]. Note that the functions Φ and Ψ are in this category as well.

For example, Φ satisfies the scaling relation

Φ(t) =

(
1+
√

3
8

3+
√

3
8

3−
√

3
8

1−
√

3
8

)


Φ(2t)

Φ(2t− 1)

Φ(2t− 2)

Φ(2t− 3)


,

derived by integrating the scaling relation for φ. In our implementation, we use a uniform

rational grid with spacing 1
64

to represent these functions, but grids with other spacings can

also be used.

4.5 Results

We compare the speed, memory usage, and accuracy of Haar and D4 wavelets used to

reconstruct a surface with other surface-reconstruction methods. Our method is an order

of magnitude faster than other methods (see Table 4.2) and the surfaces from our method

are more accurate than the surfaces obtained by other methods (see Table 4.3).

We apply our algorithm to point clouds for which the separate point scans are already

aligned in 3D. We also assume that the point samples are oriented, i.e., we use the coordi-

nates of the points pi on the surface and the coordinates of the outwards unit normals ni

to the surface at pi. If the data for the normals are absent, we estimate the normals using a

local PCA method or polynomial fitting. However, many scanners produce not only point

samples but also partially triangulated scans that estimate how samples are connected from
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Figure 4.5: Reconstruction of a hip joint using Haar wavelets with varying amounts of
noise in the normals. From left to right: 0 degrees, 30 degrees, 60 degrees, 90 degrees
uniform random rotational deviation in the normal direction.

a single scanning direction (all of the data in the Digital Michelangelo Project is of this

form). Although these triangles are not sufficient to produce a closed, triangulated model,

they do allow the efficient estimation of normals. Furthermore, the orientation of the nor-

mal (inward vs. outward) can also be constructed robustly from these scans because the

surface must be visible to the scanner and the normals must, therefore, be oriented in the

direction of the scanner.

Normals of point samples estimated from the range-scanned data are especially suscep-

tible to noise because normals depend on the derivative of measured surface positions, and

derivatives magnify measurement errors. However, we show that our technique is robust

with respect to errors in the normal directions. Figure 4.5 shows several reconstructions

in which we incrementally added more noise to the input normals. Even with errors up to

90 degrees, the surface was faithfully reconstructed. With more noise, the reconstruction

quality begins to suffer noticeably, but at this noise level (> 90 degrees deviation) the

normals point inward and become meaningless.

Surface reconstruction using Haar wavelets is extremely fast. Haar wavelets create a

minimal number of coefficients in the octree, and the coefficients can be computed quickly

because the scaling and wavelet functions, as well as their integrals, have an analytical

form and because the support of the wavelet is small. Figure 4.6 shows a depth 14 recon-
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Figure 4.6: “Awakening” with 381 million points (8.51 GB of data) reconstructed using
Haar wavelets at depth 14 took about 81 minutes and produced over 590 million polygons.
The two zooms show that even small chisel marks are reconstructed with a high degree of
accuracy.

struction of Michelangelo’s Awakening statue using Haar wavelets. This data set is one of

the largest we obtained and contains 381 million points. Despite its size, our method was

able to produce a faithful reconstruction in about 81 minutes.

For many real-world data sets, Haar wavelets create pleasing surface reconstructions

when the scans are well-aligned and the noise is relatively low. However, in some cases,

the reconstruction begins to fit noise in the data due to the small support of the Haar

wavelet. Surfaces are higher quality when reconstructed using D4 wavelets rather than

with Haar wavelets because the support of the basis functions is larger. The D4 wavelets

sum over more point samples and make the method more resilient to noise in the input

data. The larger support of this basis also increases the number of coefficients that must be

stored and increases the computation time. Using D4 wavelets roughly triples the number

of octree cells compared to Haar wavelets, but reconstruction times are still fast compared
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Figure 4.7: Reconstruction of Michelangelo’s Atlas with 410 million points (9.15 GB of
data) at depth 12 with D4 wavelets took less than 2.5 hours and produced 42.7 million
polygons.
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Figure 4.8: Comparison of reconstructions of David’s head with 4.5 million points (103
MB of data) at depth 9 with MPU implicits, Poisson reconstruction, Haar wavelets, and
D4 wavelets.

Method Time(s) Memory(MB) Polygons
MPU 551 750 1582380

Poisson 289 57 1257980
Haar Wavelet 17 13 1357872
D4 Wavelet 82 43 1377858

Table 4.1: Reconstruction of David’s head consisting of 4.5 million points at depth 9 with
various methods.

to other methods. Figures 4.1, 4.7 and 4.8 (bottom right) were all reconstructed using D4

wavelets.

Table 4.1 shows running times for several popular surface-reconstruction methods for

which implementations are freely available. All operated on the same data set of 4.5

million points from David’s head and at a maximal octree depth of 9. All tests were

run on an Intel 6700 with 2GB of RAM. Poisson surface reconstruction [13] is a fast

surface-reconstruction algorithm, yet our method using D4 wavelets is 3.5 times faster

and Haar wavelets are 17 times faster. Our memory requirements are also low because

of our streaming implementation. Poisson surface reconstruction also uses a streaming
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Model Points Haar,12 Haar,13 Haar,14 D4,12
Barbuto 329M 38.7/100 58.3/252 81.6/777 111.9/329

Awakening 381M 45.5/100 62.4/187 80.8/573 133.3/339
Atlas 410M 51.7/133 59.0/351 97.6/1188 148.4/448

Table 4.2: Reconstruction of various models using Haar and D4 wavelets at various depths.
Data is of the form time/memory where time is measured in minutes and memory in MB.

Model MPU Poisson Haar Haar Smoothed D4 D4 Smoothed
armadilloman 1.000000 0.259120 0.153069 0.212276 0.151215 0.224511
happy buddha 1.000000 0.364243 0.223781 0.339264 0.346450 0.356715

cow 1.000000 0.086590 0.036725 0.046528 0.071015 0.074601
dragon 1.000000 0.790500 0.602828 0.536930 0.617106 0.636463

elephant 1.000000 0.507040 0.363651 0.221071 0.320602 0.372229
hand 0.332169 1.000000 0.380563 0.565324 0.335825 0.589883
hip 1.000000 0.110895 0.064997 0.093744 0.061002 0.091113

malaysia 1.000000 0.217397 0.151879 0.189831 0.144758 0.200062
teeth 0.835987 1.000000 0.418790 0.503185 0.471338 0.702229
venus 1.000000 0.371843 0.184752 0.260992 0.198316 0.285313

Table 4.3: Hausdorff distance between real surfaces and reconstructed surfaces from sam-
pled data. Each row is normalized by the worst geometric error (lower is better).

implementation, but the smaller support and orthogonality of wavelet basis functions gives

our method a smaller memory footprint.

Table 4.2 includes reconstruction times for the largest data sets that we could find.

Many of these data sets contain well-aligned scans, and Haar wavelet reconstruction per-

forms well without many errors due to noise or misaligned scans. Our method using Haar

wavelets was able to process each of these data sets in under an hour at depth 12 and under

2 hours at depth 14. Using D4 wavelets was slower, but we were still able to complete the

410 million point Atlas data set at depth 12 in under 2.5 hours.

It is difficult to assess the accuracy of surface reconstruction if only point scans are

available because fitting the points exactly may yield an undesirable surface. More criti-
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cally, it is impossible to know the ground truth of measured data, so we generate synthetic

test data in addition to using real-world scans. We sample points and normals densely

from known polygon models and then reconstruct surfaces with each method from these

points sets. We show the Hausdorff distance between each reconstructed surface and the

original shape in Table 4.3 as computed by Metro [31]. The values in each row are normal-

ized by the maximum error among all methods to provide a relative comparison among

the different techniques. MPU implicits is on average the worst of the tested models be-

cause noisy data sets can cause MPU implicits to create extraneous sheets such as the ones

shown in Figure 4.8. Poisson reconstruction typically performs much better. However,

in all cases, Haar and D4 wavelets with and without smoothing recover the surfaces with

higher degree of accuracy than the Poisson reconstruction. In all but one case (the hand),

the wavelet methods also have lower error than MPU implicits.

4.6 Future Work

We would like to implement smoother basis functions whose support size is relatively

small. Controlling support is important because the size of the support of the basis func-

tions is closely related to the computational cost and time efficiency of the algorithm. Thus,

a smaller support leads to a faster algorithm. On the other hand, smoother basis func-

tions are needed for smoother reconstructions. Some types of basis functions we would

like to explore include smoother wavelets, biorthogonal wavelets, and quasi-interpolants.

Quasi-interpolant decompositions based on multivariate splines are an especially appeal-

ing choice because the support of spline basis functions is smaller than the support of a

smoother wavelet or biorthogonal wavelet, and quasi-interpolants still allow a multi-scale

decomposition.
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5. CONTOURING DISCRETE INDICATOR FUNCTIONS*

An indicator function of a closed object has a value of one on the interior of the object

and zero on the exterior. In practice, we use a Discrete Indicator Function (DIF) that repre-

sents the indicator function using a uniform grid of function values. Cells that are entirely

exterior or interior to the object will have values of either zero or one respectively, but cells

on the boundary of the shape will have values between zero and one. DIFs arise in several

areas of Computer Graphics when a function is sampled with a box filter. These DIFs

form an implicit representation of an object, and we can reconstruct an approximation of

the underlying object by taking a level set of the function at value 1/2.

A common example of a DIF is the pixels used to display an anti-aliased font on a

computer screen, where values of gray represent how much of a glyph is in each pixel.

Beyond fonts, there are applications in which arbitrary images must be converted from a

pixel to a vector format. For example, it may be desirable to magnify a low-resolution

image that contains hard boundaries. Although typical pixel-based magnification results

in a blurred image, finding a contour first produces a far crisper and more aesthetic result,

as demonstrated by Valve Software [64] in their newest games. Once a discrete contour

has been calculated, it is possible to draw the contour with hardware acceleration [89].

DIFs are also used as alpha masks when compositing multiple images. For example, it

is common to film objects in front of a blue or green screen and to remove the background

by calculating an anti-aliased mask at each pixel. A pixel-based composition of many

overlaid objects may produce an undesirable, aliased result in which multiple boundaries

overlap unless an accurate vector-based composition is calculated using the contours of

*Reprinted with permission from "Contouring Discrete Indicator Functions" by Josiah Manson, Jason Smith,
and Scott Schaefer, 2011. Computer Graphics Forum, 30 (2), 385–393, © 2013 The Author(s) Computer
Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 5.1: A DIF representing a complex shape sampled over a 5123 grid. From left to
right: Marching Cubes, Marching Cubes after a Gaussian blur of size 3, Marching Cubes
after a Gaussian blur of size 7, and our method without blurring. Blurring increases the
smoothness of the Marching Cubes surface but sacrifices details in the shape.

the objects.

Analogs of DIFs are also encountered in medical imaging. In a CAT (Computerized

Axial Tomography) scan or an MRI (Magnetic Resonance Image) there are structures

such as bones or tumors that stand out from the background and have clear boundaries

that must be identified. In the case of a 3D MRI, these boundaries define a 3D surface.

Surface boundaries are also found in other areas of computer graphics. For example, Eu-

lerian simulations of water physics define occupancies over a 3D grid. Any inaccuracies

in calculating the air/water interface from the DIF result in high-frequency noise or ripples

that do not exist in the simulation. Another important occurrence of a DIF is during recon-

struction of the surface of an object from a point cloud. For more information on surface

reconstruction using DIFs, see Chapter 4.

In the past, contouring methods have focused on smooth functions rather than on DIFs.

We believe that DIFs are an important subclass of functions for which people typically

calculate suboptimal contours. The inaccuracies in calculated surfaces are often small

in scale, but they can have large visual effects on the texture, lighting, refraction, and
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reflection of an object. In this chapter, I describe a simple algorithm that is tailored to find

accurate contours for the specific case of DIFs.

We describe a simple modification to standard contouring algorithms, such as March-

ing Cubes (MC), that enhances the quality of contours calculated from DIFs. Our analysis

shows that the linear interpolation in these methods can be replaced by our new interpolant

to estimate the position of the contour more accurately. Our interpolant has four cases, and

the two most common cases are extremely simple to calculate. We also provide qualitative

and quantitative comparisons between the interpolants that show that our method clearly

improves the contours of DIFs.

5.1 Related work

The simplest and most common strategy for calculating implicit contours of functions

is to contour cells of a regular grid independently from one another using algorithms like

MC [137, 95]. In our examples, we assume that samples are taken at the centers of cells

and therefore run MC over the dual grid. Because the possible values of the DIF are

between zero and one, it is natural to define the contour at the position where the DIF

has a value of 1/2. MC determines the topology of a cell from a lookup table indexed

by an eight-bit integer, where each bit corresponds to one of the eight corners of the cell

and is set to 0 if the corner is outside the solid or 1 if it is inside. In MC, the function

is assumed to be smooth so that over short distances, like the span of a cell, the function

can be approximated as a linear function. Vertices of the surface passing through each cell

are therefore placed along the edges of the cells where the line interpolating the connected

grid values has a value of 1/2.

When a function is smooth, it can be approximated by linear functions at small scales,

but indicator functions are discontinuous, which means that a linear interpolant is not a

suitable approximation of a DIF. Therefore, using a linear interpolant on a DIF produces
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a contour that deviates from the ideal contour. Although these deviations are small on an

absolute scale, they are easily visible on an illuminated surface because angular deviation

of surface normals is independent of sampling resolution. Inaccuracies in the surface

follow a regular pattern determined by the grid and create noticeable aliasing. This results

in an easily visible, high-frequency pattern rather than uniform noise (see Figure 5.1).

Because MC only works well with smooth functions, a common solution to the alias-

ing problem is to generate a smooth function by applying a low-pass filter to the input

function. Although applying a Gaussian filter [103] is the simplest solution, more sophis-

ticated methods have been used [129, 130]. Unfortunately, the contour extracted from the

smoothed function loses high-resolution details that are present in the input function.

Although many researchers have worked on modifying and extending MC, they have

focused on areas other than the interpolation function. For example, there has been much

interest in calculating closed contours over adaptive grids. Many of these methods, such

as Dual Marching Cubes [115] and Unconstrained Isosurface Extraction on Arbitrary Oc-

trees [87], reduce to MC in regions that have uniform sampling.

In contrast, other methods [30, 58, 113, 135] assume that the function provides no in-

formation besides classifying the vertices as belonging to a particular solid. In the simplest

case of binary segmented data (inside/outside), these methods have a goal similar to that

of our method in that they attempt to calculate a smooth boundary to an indicator function.

The difference is that the grids on which they operate do not store fractional occupancies

like DIFs. This means that any initial guess made by these methods is not smooth, and a

filtering pass is required to fix the poor initial guess.

The Surface Nets algorithm [58] segments a DIF with a contour that is both smooth and

guaranteed to be within one pixel of the true contour, but it does so at a high computational

cost. Surface Nets first creates an initial guess of the contour by creating a contour that is

dual to the input grid. The method then performs an iterative relaxation of the surface while
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enforcing constraints that prevent surface vertices from exiting their dual cells. Similarly,

Pressing [30] calculates an initial guess and constrains planar patches to remain planar

while iteratively relaxing vertices on cell edges. In these methods, a constrained, iterative

smoothing operation is required to remove the obvious aliasing that is present in the initial

guess. Our method is much more efficient because we require no iteration or optimization

to produce a contour that is free of aliasing.

Several methods have been proposed for contouring multi-material volume fractions

stored in a grid. Contouring a DIF can be viewed as the two-material case of this more

general problem. The multi-material contouring method discussed by Bonnell et al. [15]

extends Marching Tetrahedra (MT) to the multi-material setting. However, this method

degenerates to linear interpolation with two materials and generates surfaces with the same

oscillations as those introduced by MC on DIFs.

Another approach to solving the multi-material problem is to use particles that repel

each other and are attracted to the interface between materials [100]. A computationally

costly Delaunay triangulation of the particles can then be used to produce triangles with

good aspect ratios. However, the restorative forces that place particles on the boundary

require a smooth function, which the authors achieve by blurring the material composition

functions. This approach results in the same loss of quality and volume preservation that

affects the surface reconstructed from a blurred function in MC.

Anderson et al. propose two methods of contouring multi-material volume fractions.

Their first method [3] finely subdivides each cell and randomly assigns subcells to be dif-

ferent materials so that the ratio of materials in the subcells approximates the volume frac-

tions in the original cells. Subcells are then randomly swapped in a simulated annealing

minimization of the surface area between material types. Because each subcell can be of

only one material type, the resulting surface contoured over the subcells is blocky. In their

second paper [4], the authors address this problem by solving for new vertex positions
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that minimize surface curvature. Unfortunately, the accuracy of volume preservation is

determined by the level of subdivision and the proposed energy function does not prevent

oscillations in the contoured surface, even for a highly subdivided grid.

There have also been several recent techniques designed to improve the quality of the

triangles in surfaces produced by MC [69, 119, 111, 41, 42]. These methods modify the

topology of the surface produced by MC to avoid long, skinny triangles. Unfortunately,

visual artifacts arise from using MC on DIFs because of the incorrect assumption that the

underlying function is smooth. Our technique improves surface geometry by modifying

that assumption. Methods that improve the triangle quality of MC surfaces solve an or-

thogonal problem and can (perhaps even should) be used in conjunction with our method.

5.2 Calculating contours from DIFs

Our input is a DIF in which we are given the fractional occupancies of cells in a regular

grid. Every sampled value corresponds to a cell volume, so we consider samples to be

located at the centers of cells and we connect the samples with a dual grid. Our contouring

method is a simple modification of MC in which we replace the function that calculates

vertex positions along cube edges. For simplicity, we first analyze the 2D case in which

areas are stored for each cell and contours are lines rather than surfaces. We then apply

the technique to 3D data in Section 5.3. Instead of assuming that the contoured function is

smooth along a dual edge and can be approximated by linear interpolation, we solve for a

contour line that separates the inside/outside of the object so that the inside area matches

the occupancy values of the cells. We then place the contour vertex at the intersection of

the contour line and the dual edge.

There are only a few ways in which a linear surface can pass through a pair of cells in a

2D grid. Without loss of generality, we consider a pair of unit cells whose bottoms are on

the y = 0 axis and that join along x = 0, as shown at the top of Figure 5.2. In this figure,
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Figure 5.2: We show the coordinate systems of adjacent cells and their dual edge on
top. Below, we show the four configurations in which a line can intersect the cell edges.
Intersected edges are highlighted in light blue. The end points of the contour line are
labeled in case 2.

the black lines are the primal cells, the blue line is a dual edge between function samples,

and the red line is the estimated line separating exterior regions (white) and interior regions

(pink). We also assume that the occupancy of the left cell a1 is less than that of the right cell

a2 so that a contour intersects the dual edge when a1 ∈ [0, 1/2) , a2 ∈ [1/2, 1]. To remove

symmetric cases, we also assume that the contour line we estimate is oriented upward (i.e.

the y-component of the normal is positive). In each of the two cells, the contour can pass

through either a horizontal or vertical border, excluding the shared border, so that there are

a total of four possible configurations that we enumerate in Figure 5.2: Case 1 is side-side,

Case 2 is bottom-top, Case 3 is bottom-side, and Case 4 is side-top.

There are multiple ways a line can intersect the pair of cells, so we find an intersection

with the contour in two steps. First, we determine which case to use based on the values
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of a1, a2. Second, we locate the intersection between the dual edge and the estimated

contour. Our strategy for all cases is to first calculate the equation for the contour line.

Our lines are always of the form y = mx + b, with m = y2−y1
x2−x1 and b = x2y1−x1y2

x2−x1 , and

where (x1, y1) and (x2, y2) are the points at which the line intersects the boundary of the

two cells. Notice that one component of each of the endpoints is constrained for each of

the four cases. Once we determine the equation of the line, we intersect the line with the

dual edge p(t) to find the parametric value t, where p(t) = p1(1 − t) + p2t and p1, p2 are

the centers of the corresponding cells. We can apply this procedure to all edges in the grid

because t is independent of translation, scale, and orientation.

5.2.1 Case 1

In this case, x1 and x2 are constrained to the left and right sides of the cells, respec-

tively. Therefore, x1 = −1 and x2 = 1. By integrating the line equations restricted to the

cells, we can also write the area enclosed by this line for each cell as

a1 =

∫ 0

x1

(mx+ b)dx =

∫ 0

−1

(mx+ b)dx = b− m

2
,

a2 =

∫ x2

0

(mx+ b)dx =

∫ 1

0

(mx+ b)dx = b+
m

2
.

Notice that y1 and y2 are the only free variables because a1 and a2 are provided by the

DIF, x1 and x2 are constrained, and m, b are in terms of (x1, y1), (x2, y2). Furthermore,

0 ≤ y1 ≤ 1 and 0 ≤ y2 ≤ 1. If y1 and y2 are outside of this range, then the values

of a1 and a2 are incompatible with the way the line intersects the edges of the cell and

must correspond to one of the other three remaining cases. Hence, we test for this case by
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checking if the solutions for y1 and y2 are within their valid ranges, which yields

0 ≤ 3a1−a2
2
≤ 1,

0 ≤ 3a2−a1
2
≤ 1.

(5.1)

If Equation 5.1 is true, then the intersection of our estimated line with the dual edge

has the parameter value

t =
a1 − 1

2

a1 − a2

. (5.2)

This case is identical to linear interpolation (i.e. (1− t)a1 + ta2 = 1/2).

5.2.2 Case 2

In this case, intersection points are constrained to the bottom of the left cell, y1 = 0,

and the top of the right cell, y2 = 1. The area bounded by the line in this configuration is

given by the integrals

a1 =

∫ 0

x1

(mx+ b)dx =
b2

2m
,

a2 = 1−
∫ x2

0

(1−mx− b)dx = 1− (1− b)2

2m
.

Again, x1 and x2 are the only free variables in these equations. Furthermore,−1 ≤ x1 ≤ 0

and 0 ≤ x2 ≤ 1 yield the conditions

0 ≤ 2a1 + 2
√
a1 − a1a2 ≤ 1,

0 ≤ 2− 2a2 + 2
√
a1 − a1a2 ≤ 1.

(5.3)

Intersecting this line with the dual edge provides an extremely simple solution for the

parameter t.

t =
3

2
− a1 − a2 (5.4)

Notice that a1 and a2 are quadratic in b, so that m and b have two solutions. In Case 2,
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the solution for t is the same regardless of which solution we use. Cases 3 and 4 produce

different solutions depending on the choice of m and b, but only one of these solutions

is valid; that is, the line formed by m, b intersects the boundary between adjacent cells in

only one of the two solutions. We show only the valid solutions to Cases 3 and 4, and

these solutions are valid over the entire domain.

5.2.3 Case 3

In this case, our estimated line intersects the bottom of the left cell, y1 = 0, and the

right of the right cell, x2 = 1. Expressing a1 and a2 in terms of integrals gives

a1 =

∫ 0

x1

(mx+ b)dx =
b2

2m
,

a2 =

∫ 1

0

(mx+ b)dx = b+
m

2
.

In this situation, x1 and y2 are the free variables and must satisfy −1 ≤ x1 ≤ 0 and

0 ≤ y2 ≤ 1. Solving for these variables gives the conditions

0 ≤ a1+
√
a1(a1+a2)

a2
≤ 1,

0 ≤ 2a1 + 2a2 − 2
√
a1(a1 + a2) ≤ 1.

(5.5)

Finally, intersecting this line with the dual edge gives the intersection parameter

t = 1− 2a2 − 1

8a1 + 4a2 − 8
√
a1(a1 + a2)

. (5.6)

5.2.4 Case 4

The final case we consider is the situation in which the estimated line intersects the left

side of the left cell, x1 = −1, and the top of the right cell, y2 = 1. Again, we express a1
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and a2 in terms of integrals, which yields

a1 =

∫ 0

−1

(mx+ b)dx = b− m

2
,

a2 = 1−
∫ x2

0

(1−mx− b)dx = 1− (1− b)2

2m
.

For this case to be valid, 0 ≤ y1 ≤ 1 and 0 ≤ x2 ≤ 1. To simplify the equations and show

the symmetry with Case 3, we substitute ā1 = 1− a2 and ā2 = 1− a1. Solving for y1, x2

gives the conditions

0 ≤ ā1+
√
ā1(ā1+ā2)

ā2
≤ 1,

0 ≤ 2ā1 + 2ā2 − 2
√
ā1(ā1 + ā2) ≤ 1.

(5.7)

When these conditions are met, we intersect our estimated line with the dual edge and find

that

t =
2ā2 − 1

8ā1 + 4ā2 − 8
√
ā1(ā1 + ā2)

. (5.8)

5.2.5 Efficient Case Selection

From the previous description, it appears that 16 checks are necessary to choose the

correct case (4 inequalities are shown for 4 cases). However, we can reduce this number

to 2 simple checks against lines with one additional check that we perform 1/3 of the time.

The two boundary half-spaces (a2 ≤ 3a1 and 3a2 ≤ a1 + 2) of Case 1 segment the

domain into four regions (shown in Figure 5.3). The region in which the half-spaces in-

tersect is exactly Case 1. Notice also that the region that intersects neither half-space

contains only Case 2. Each of these large regions occupies 1/3 of the domain. The remain-

ing regions contain Case 2 and either Case 3 or Case 4. We differentiate these smaller

regions by a single additional test against a quadratic. Specifically, we select Case 3 if
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Figure 5.3: The half-spaces (solid lines) used in the check for Case 1 segment the domain
into 4 regions. The two smaller regions are partitioned by quadratics (dashed lines).

(2a1 + 2a2−1)2 < 4a1(a1 +a2), and we select Case 4 if (2ā1 + 2ā2−1)2 < 4ā1(ā1 + ā2).

5.2.6 2D Summary

To summarize our algorithm in 2D, we check to see if there is an intersection along

each dual edge by determining whether the values of the cells span 1/2. If so, we use the

method described in Section 5.2.5 to determine which case the cell values correspond to.

We then compute the parameter value t along the edge using the corresponding formula

for t in Equation 5.2, 5.4, 5.6, or 5.8 to find the intersection point and to generate the

topology of the surface in each dual cell using the MC algorithm.

Figure 5.3 shows the domains of the four cases according to Equations 5.1, 5.3, 5.5,

and 5.7. From the figure, one can see that the domains are disjoint except along the shared

boundary of the cases and that the domains cover the entire valid parameter range for a1,

a2. Hence, for a given set of values a1, a2 in a DIF, only one of the four cases will apply.
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Figure 5.4: For each of the four cases, we color the values of a1 and a2 that correspond to
that case and plot the function value of t provided by that case (top). The bottom graph
shows the difference between our function and the values provided by linear interpolation.

The top of Figure 5.4 also shows a plot of the value of t given by the corresponding cases

and shows that the function is smooth when transitioning between cases. Notice also that

Case 1 corresponds exactly to linear interpolation, which produces the discontinuity as a1,

a2 both approach 1/2.

Figure 5.4 (bottom) shows the difference between parameter values found using our

intersection function and standard linear interpolation. Since Case 1 is identical to linear

interpolation, the difference is 0. However, the other three cases are different from linear

interpolation, and our function diverges smoothly from linear interpolation up to nearly

a tenth of a grid cell. Our method reproduces straight lines exactly because we calculate

the intersection of lines with cells. Therefore, linear interpolation underestimates the dis-

tance to linear contours when a1 is small. Likewise, linear interpolation overestimates the

distance to linear contours when a2 is large.
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Figure 5.5: Values of the DIF calculated from a linear function are shown in gray-scale.
From the DIF, we calculate contours using our method (red) and MC (cyan) where vertices
are placed along the blue lines of the dual grid.

Figure 5.5 shows a 2D example in which we reconstruct a straight line from a DIF. The

red line represents our method and the light blue line represents the contour created by

MC using linear interpolation. Our method exactly reproduces the original linear function

represented by the DIF. The oscillation effect that is apparent in the MC reconstruction

results in normals that vary significantly from those of the original surface.

Although we reproduce lines exactly, we do not preserve the area of objects along

curved boundaries. The linear functions between pairs of cells that we show in Figure 5.2

preserve the areas a1 and a2, and we place our vertex at the point where these lines inter-

sect the dual edges. However, when we connect vertices using the MC table, we do not

reproduce the areas in the cells if the resulting contour is not a straight line. In general,

our method generates shapes that underestimate areas in regions with positive curvature

and overestimate areas in regions with negative curvature.
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5.3 Extension to 3D

In 2D we were able to derive the intersection function defined in Figure 5.4 because the

equation for a line has two degrees of freedom. The two areas in adjacent cells, a1 and a2,

therefore determine a unique line. However, a 3D solution is more complicated because a

plane has three degrees of freedom and is not fully constrained by two samples. Although

only one more grid sample is required to determine a plane, there is no symmetric choice

of a single additional sample. Preserving symmetry therefore requires all neighbor cells to

be considered and overly constrains the problem. We could find a separating plane using

a non-linear least squares minimization, but we propose a simpler solution.

Given an edge of the 3D dual grid, let a1 and a2 represent the occupancies of the cubes

that the edge connects. If a1 < 1/2 ≤ a2 or a2 < 1/2 ≤ a1, the surface intersects that

edge, and we place a vertex on the edge using the 2D method described in Section 5.2.

Specifically, we choose between the four cases using a1, a2 as described in Section 5.2.5

and find t using Equations 5.2, 5.4, 5.6, and 5.8.

The reason this works is that one can imagine extruding Figure 5.2 out of the page

into 3D. When the separating plane aligns with a Cartesian axis, the 3D case reduces to

2D. This 2D reduction is imperfect for unaligned planes, but still provides a reasonable

approximation. Although we cannot reproduce all 3D linear functions exactly from just

a1 and a2, we find that this simple, efficient technique works remarkably well in practice.

5.4 Analysis

Our algorithm exactly reproduces two dimensional lines. This property is important

because it is in flat regions where aliasing patterns are most noticeable. Moreover, accurate

reproduction of normals is especially important in 3D because we perceive surfaces mainly

through the way light interacts with the surface, which depends on the normals of the

object.
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Figure 5.6: When lighting and reflection are applied to 3D surfaces, the ripple patterns
produced by Marching Cubes (left) are much more obvious than with our method (right).
Top: surfaces using diffuse lighting and specular highlights. Bottom: reflection lines.

Figure 5.7: Our interpolant can find accurate surface intersections for complicated discrete
indicator functions like an armadillo man sampled over a 5123 grid. For the highlighted
region, we show a zoomed picture of the surface found using linear interpolation (top) and
the surface found using our interpolant (bottom).
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A visual comparison of the MC contours and our contours shown in Figures 5.1, 5.6,

and 5.7 indicates that applying the 2D equations to 3D works well. For example, Figure 5.7

shows an example of reconstructing an armadillo man from a DIF using MC (top) and our

method (bottom). The MC surface is extremely aliased and obscures small details in the

model, whereas our reconstruction produces a much higher quality surface that does not

obscure small details in the reconstructed surface. It is even possible to see the edges from

the polygons of the original surface used to create the DIF in our reconstruction.

Beyond providing visual comparisons between methods, we quantitatively compare

surfaces with different curvatures. We compare MC and our method on surfaces of con-

stant curvature by looking at spheres that vary in radius from one to thirty cell widths.

We calculate the percent occupancy of each boundary cell over a million samples and then

compare the difference between the reconstructed surfaces and the true sphere by firing ten

million rays from the center of the sphere in different directions. For each ray, we measure

the distance between intersections of the reconstructed surfaces and the ideal sphere as

well as differences in their normals. We eliminate bias introduced from the position of the

sphere with respect to the grid by adding random offsets to the spheres averaged over one

hundred trials.

Figure 5.8 shows the difference in the error of surface normals between the surfaces

created using our intersection function and MC as curvature decreases. This figure shows

both the maximum and average differences between normals of the extracted surfaces and

the analytic spheres. The error for the MC surface is shown in blue and the error for our

surface is shown in red. As the radius of the spheres increases, the surface becomes locally

planar and the average error in the normals of our surface almost vanishes, whereas the

error for the MC surface remains constant. In fact, for a sphere with a radius of fifteen

cells or more, even the maximum error from our method is as good as or better than the

average error for surfaces produced by MC.
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Figure 5.8: The maximum and average errors in normal direction are plotted for spheres
with radius varying from one to thirty cells. Once the radius is approximately fifteen, the
maximum normal error from our method is equal to the average error of Marching Cubes.
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Figure 5.9: For a sphere with radius of ten cells, we calculated contours that positioned
vertices using linear interpolation (MC), using our intersection function (Ours). We also
measure the error from placing vertices directly on the sphere’s surface (Ref). The dis-
tribution of distances from an exact sphere is shown on the left, and the distribution of
normal errors is shown on the right.
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Figure 5.9 shows the distribution of error in positions and normals for spheres with a

radius of ten cells. We compared the MC surface (blue), our surface (red), and a reference

surface with vertices directly on the surface of the sphere (dashed green). Even the ref-

erence surface underestimates the radius of the sphere by an average of about 0.02 cells

because vertices on the surface are connected with planar polygons. Our method and MC

both underestimate the radius of the sphere by approximately 0.03 cells, but our method

has a much smaller standard deviation like that of the reference surface. Our contour is

very accurate for nearly planar surfaces (spheres with large radii), but linear interpolation

is up to ten percent different from our interpolant, which gives MC a larger error distribu-

tion. The surface produced by our method reproduces normals of the sphere nearly as well

as the reference surface does. In contrast, the normals of MC surfaces deviate significantly

from those of the sphere.

In 2D, we exactly preserve areas partitioned by lines, but we do not preserve volumes

partitioned by planes in 3D. To determine how accurately we preserve volumes in 3D, we

calculate the occupancies of cells from planes with random orientations and positions. We

contour these functions with both MC and our method and compute the absolute difference

in volume between the reconstructed surfaces and the exact plane on a per-cell basis. The

standard deviation of the difference in reconstructed volumes sampled over 5000 planes

was 2.76% for MC, whereas the standard deviation was only 0.07% for our method. The

average absolute difference in volume was 8.36% for MC and only 0.46% for our method.

These results demonstrate that our method provides a good approximation of arbitrary 3D

planes.

Although there is a clear statistical difference between contouring methods, these num-

bers do not adequately convey the displeasing banding patterns present in MC surfaces.

Figure 5.6 shows a sphere generated by MC (left) and our method (right) under typical

lighting conditions (top) and with a reflection map (bottom). The error in vertex positions
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Figure 5.10: Reconstruction of the head of Michelangelo’s David using MC (left and top)
and our interpolant (right and bottom).

depends on the size of the grid used, but the normal error is independent of grid resolution

and is clearly visible.

We have focused our analysis on spheres of various curvature, but our method works

equally well for complex surfaces that have varying curvature. For example, the result of

contouring a DIF of the armadillo man with our method and MC, shown in Figure 5.7, is

striking. Figure 5.1 shows another complex surface that appears smoother without remov-

ing details. In both of these examples, the DIF is calculated to very high precision so that

errors in contouring dominate errors in sampling. MC produces a surface with noticeable

ridges and, even after applying a blur with a Gaussian kernel of sizes 3 and 7 to the DIF,

the ridges in the MC surface are still faintly visible on his chest. Although blurring makes

the surface smoother, it also destroys details of the original shape. Moreover, blurring the

DIF [103] or performing an iterative, constrained surface fairing [58] takes a significant

amount of time in addition to running MC. In contrast, our method produces a high quality

surface without any iteration. We were unable to determine any significant difference in

the time taken to run MC with linear interpolation and to run our method.

Although the formulation of our method assumes that the input is a perfect DIF, perfect
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DIFs are hard to come by in practice. We tested our contouring method in the presence of

noise by calculating an approximate DIF from laser range scans of the head of Michelan-

gelo’s David. We computed the DIF using the wavelet reconstruction method described

in Chapter 4. The DIF is imperfect, both because of noise in the scanned data and from

structured noise resulting from the scanned surface being open at David’s neck. Notice in

Figure 5.10 that ridges in the surface are greatly reduced in our surface compared to MC,

but the improvement in quality is less than with perfect DIFs. Block artifacts from using a

Haar basis are visible in both contours but are partially obscured by the ridges from MC.

5.5 Conclusion and Future Work

Discrete indicator functions are an important class of implicit functions that require

special consideration to produce accurate contours. Replacing the interpolation function

used in MC is both simple and effective. The apparent visual improvement in the surfaces

generated by our method over MC is confirmed by our statistical analysis. We note that

our method is specific to DIFs and should not be applied to arbitrary functions, and linear

interpolation typically suffices in these situations. However, DIFs often arise in practice

and, for these functions, our method greatly improves the quality of the extracted surface

with essentially zero cost.

One drawback of our method is that we do not preserve the volume of cells that inter-

sect curved surfaces. Most methods that preserve volume do so by performing a global

optimization. However, we may be able to extend our method to estimate the local curva-

ture of a surface from the DIF or locally fit a curved object like an ellipsoid to calculate a

volume preserving surface. Furthermore, our method is restrictive in that we handle only

two materials as opposed to the multiple materials considered in volume fraction methods.

We plan to explore the possibility of extending our approach to multiple materials and

preserving volume in the future.
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We have only considered situations in which cells that intersect the contour are uniform

in size, but it may be possible to apply our method to adaptive grids such as octrees.

This application is more complicated because a plane passing through a large cell may

pass through any of the smaller cells bordering it. Thus, more cells must be considered.

Additionally, it is not clear that the problem is always well defined, even in the 2D case.
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6. CARDINALITY-CONSTRAINED TEXTURE FILTERING*

Artists often apply images, called textures, to the surface of three-dimensional models

to add visual interest. However, care must be taken when displaying images on a model,

because there is not a one-to-one correspondence between the texels (texture elements)

and pixels of the display. When a model is in the distance and several texels correspond

to each pixel, poor sampling can cause the image to be aliased. Filters that are effective at

removing aliasing without overblurring sum over a greater number of texels, which makes

them expensive to compute. Directly adding all samples that fall under the filter support

becomes impractical for distant objects because we must sum over a number of texels

proportional to the squared distance.

Rendering algorithms typically use image pyramids called mipmaps [134] to accelerate

image filtering. Mipmaps consist of precalculated images downsampled at power-of-two

resolutions and can be used to compute filters in constant time, regardless of the scaling

factor. We present a method that combines texels in a mipmap to reproduce the results of

low-pass filters while only reading a few texels per sample. Our insight is twofold. Rather

than interpolating colors between single points so that colors are exact at those points

but poor everywhere else, we find weights that give good results over all possible sample

points. Our second insight is that we can combine texels from any mipmap resolution.

Given a sampling filter, the prefilter used to construct the mipmap, and a texel budget, we

can solve for which texels to use and which weights best reproduce the sampling filter.

Memory bandwidth is often a bottleneck in graphics applications, so we attempt to use

the bandwidth as efficiently as possible. Our method can also scale the number of texel

*Reprinted with permission from "Cardinality-Constrained Texture Filtering" by Josiah Manson and Scott
Schaefer, 2013. ACM Transactions on Graphics, 32 (4), 140:1–140:8, © 2013 The Association of Comput-
ing Machinery.
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(a) Input (b) Exact (c) 8 Texels (d) Trilinear

Figure 6.1: A comparison of Lánczos 2 filter approximations showing (a) the 10242 input
image downsampled to a resolution of 892 pixels using (b) an exact Lánczos filter, (c) an
eight texel approximation using our method, and (d) trilinear interpolation applied to a
Lánczos filtered mipmap. Our approximation produces an image that is nearly the same
as the exact filtered image while using the same number of texels as trilinear interpolation.

reads per sample to match the available bandwidth. By carefully choosing which texels

to use, we accurately reproduce image filters that are sharp and free of aliasing for all

scales, translations, and rotations of an image. Furthermore, we can approximate high-

quality filters such as the Lánczos 2 filter in real-time, because the size and complexity of

a filter only affects the preprocessing time to calculate coefficient tables of filters and to

generate mipmaps. We show an example in Figure 6.1 in which we approximate a Lánczos

2 filter and compare the resulting image to those obtained by exact evaluation of the filter

or trilinear interpolation of the mipmap.

When sampling a texture, we measure the distortion of each pixel into texture space.

Isotropic filtering assumes that distortions scale the pixel, whereas anisotropic filtering

allows pixels to stretch. When viewing three-dimensional surfaces at oblique angles, an-

isotropic filtering improves image quality but reduces to isotropic filtering in perpendicular

views. We focus our attention on improving the quality of isotropic filtering, and we de-

scribe how our method applies to anisotropic image filtering at the end of the chapter.
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6.1 Related Work

Most real-time rendering algorithms use mipmapping [134, 18] to sample textures.

Mipmapping reduces aliasing by precalculating downsampled images at several resolu-

tions with a low-pass filter. Because sample positions do not typically coincide with texel

centers, GPUs use trilinear interpolation to calculate colors between texels. Mipmapping

allows sampling algorithms to be independent of scale while using only 33% more mem-

ory than the input image.

There is surprisingly little literature on how to improve upon mipmapping for isotropic

filtering. The attention of researchers has instead focused on how to improve anisotropic

texture filtering [35, 60, 65, 72, 118, 20, 77, 99, 21, 27, 141, 97]. Although these methods

are designed to improve anisotropic filtering, some of the methods also improve isotropic

filtering. Summed area tables [35] accurately calculate axis-aligned box filters, but at

the cost of significantly more memory usage. For example, 28 bits instead of 8 bits are re-

quired per color channel for a 10242 image to avoid loss of precision, and storage increases

by 250% compared to 33% for a mipmap. Elliptical weighted averaging (EWA) [65] sam-

ples with a Gaussian filter, and Heckbert uses a mipmap to accelerate EWA [72] by reading

between 9 and 36 texels from one resolution. Another method stores tables of texel weights

for box filters when sampling from a single mipmap level [77].

In contrast, our approach combines a fixed number of prefiltered texels at different

resolutions to generate a filter at arbitrary scales. Researchers have explored the idea of

reproducing filters by combining texels from images at different resolutions [17], but for

the purpose of feature detection rather than fast image sampling. Wavelet theory [96]

also combines multiresolution basis functions into arbitrary sampling filters, but building

a filter from wavelets requires summing a number of basis functions that are logarithmic

in the scale of the filter. In order to reproduce sampling filters with a constant number of
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basis functions, we use scales and translates of the filter functions as our basis.

NIL mapping [56] computes filters through adaptive quadrature, a recursive process of

refining a filter in areas of high approximation error. Because NIL mapping stops recursion

once a sampling limit is reached, the filter is computed in constant time. Although NIL

mapping uses multiple resolutions over the support of the filter, the color of a texture sam-

ple depends only on texels from one resolution at any point. Also, NIL mapping computes

texel weights directly from the filter function rather than choosing values to minimize ap-

proximation error. The resulting algorithm is somewhat slow, difficult to implement on a

GPU, and has higher error than necessary.

An alternative approach for constant time filtering is to optimize for the best set of

basis functions to reconstruct a filter [63] rather than optimizing for the coefficients of a

fixed basis. The authors optimized a set of basis functions to represent rotations and non-

uniform scales of a Gaussian filter around a point. They do not include translations of the

filter in their optimization and do not discuss how they could use a mipmap-like hierarchy

of resolutions, which limits the scalability of their method.

6.2 Multi-resolution Sampling

We wish to sample an image Î defined over the [0, 1]2 domain using a low-pass filter

h. To compute the color of a pixel with scale ŝ and translation t̂ = (t̂0, t̂1) relative to Î , we

transform h to match the position and scale of the sample by hŝ,t̂(x) = 2ŝh(2ŝ(x − t̂)) so

that the color of the sample vŝ,t̂ integrated over points x = (x0, x1) is

vŝ,t̂ =

∫∫
R2

Î(x)hŝ,t̂(x) dx. (6.1)

Directly computing vŝ,t̂ is costly when the support of hŝ,t̂ is large, so we approximate this

integral for real-time rendering. In particular, the time taken to sample an image should be

independent of the position and scale of hŝ,t̂ so that we always read a constant number of

101



t=0 t=1
s=0

s=1

s=2

s=3

hs,t

^ ^

^

^

^

^

^ ^

Figure 6.2: A two-dimensional depiction of the reference coordinate system. Texels in the
mipmap are shown as red dots, and the coordinate of a possible filter hŝ,t̂ is shown in blue.

texels. For scale independence, we store downsampled images in a mipmap image stack I

and compute the texels IS,T = vŝ,t̂ using the same filter hŝ,t̂ with which we want to sample.

Although we could generate the texels IS,T with a filter other than hŝ,t̂, using hŝ,t̂ ensures

that we can exactly compute vŝ,t̂ at texel samples. The set of coordinates E of mipmap

samples are the standard cell-centered positions, which have integer coordinates S, T that

we relate to positions in the mip-volume by ŝ = S and t̂ = 2−S(T0 + 1
2
, T1 + 1

2
). We

visualize the ŝ, t̂ coordinate system in Figure 6.2, with the positions of texels shown as red

dots and a hypothetical sampling query for hŝ,t̂ shown in blue.

We perform an optimization to approximate vŝ,t̂ by reading a subset of texels e ⊂ E.

Our optimization for the coefficients ci of the texels ei ∈ e has the cardinality constraint

that |e| = n, where n is a fixed sample budget. Solving a cardinality-constrained op-

timization is proven to be NP-hard [133] because we must test all possible solutions to

find the minimal solution. In higher-dimensional problems, the number of basis func-

tions, and therefore the number of combinations of basis functions, becomes too large to

check exhaustively. However, we show how we can efficiently approximate this solution
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(a) Input (b) Exact (c) Constant Precision (d) No Constant Preci-
sion

Figure 6.3: The difference between enforcing constant precision when downsampling an
image and not enforcing constant precision with Lánczos 2 filtering. Public domain US
Air Force photo with ID 050119-F-7709A-023, by Master Sgt. Michael Ammons.

in Section 6.2.2.

Another constraint is that our filter should reproduce constant functions (i.e., have con-

stant precision) to prevent distracting patterns from appearing in constant and nearly con-

stant regions of an image. A filter has constant precision when
∑
ci = 1. We demonstrate

the importance of constant precision in Figure 6.3. Compared to the image downsampled

using an exact Lánczos 2 filter, our approximation without constant precision does not

reproduce the brightness of the input image. Lack of constant precision also introduces a

pattern in the sky where the color should be nearly uniform.

We can write the constrained optimization for the best set of coefficients c and texels e

to approximate vŝ,t̂ as

argmin
c,e⊂E∑
ci=1,|e|=n

∫∫
R2

(
Î(x)hŝ,t̂(x)−

n∑
i=1

Î(x)hei(x)ci
)2
dx. (6.2)

This optimization depends on the values of Î , but we wish to precalculate coefficients that

are independent of the input image so that we can quickly compute the filter later. Notice

that Î weights the importance of reproducing the shape of the filter at point x. To give the
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best result when Î is unknown, we give all values of x equal weight, which simplifies the

minimization to

argmin
c,e⊂E∑
ci=1,|e|=n

∫∫
R2

(
hŝ,t̂(x)−

n∑
i=1

hei(x)ci
)2
dx. (6.3)

To understand the properties of two-dimensional filters, we analyze the optimization

in Equation 6.3 for one-dimensional filters, which are easier to visualize. For a two-

dimensional image, trilinear interpolation interpolates over t̂0, t̂1, and ŝ to approximate

arbitrary filters, and the equivalent one-dimensional process interpolates over t̂0, and ŝ.

We illustrate how we can approximate filters accurately in Figure 6.4. We approximate

translations of the one-dimensional tent filter shown in red using weighted combinations

of the black basis functions. We show h halfway between mipmap levels at translates of

0/8, 1/8, 2/8, 3/8, and 4/8 texels. Both our method and bilinear interpolation over t̂0 and ŝ

use four basis functions. We show the result of our method in (a) and show the result of

bilinear interpolation in (c). Our method reproduces the filter better than bilinear inter-

polation. We show the basis functions multiplied by the coefficients used to approximate

the filter beneath the approximation in (b) and (d). Our method maintains image sharp-

ness by sampling from higher-resolution basis functions to shape the filter. The different

translations in (b) also show how the optimal strategy for approximating a filter depends

strongly on the parameters of hŝ,t̂. On the far left, the best solution is to subtract the sides

from a basis function that is wider than h 1
2 ,0

, whereas on the right, the best solution is to

add high-resolution basis functions to approximate h 1
2 ,

1
2
. For intermediate translations, a

combination of both approaches works best.

In Figure 6.5, we show the approximation error of our method in blue when h is a one-

dimensional tent filter, compared to the error of bilinear interpolation, which is shown in

black. We evaluated the errors in the graph for translations over the width of a texel [0, 1]

at an integer mipmap resolution and plotted the error for unique subsets of four texels
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(a) Optimal approximation

(b) Optimal approximation functions used

(c) Bilinear interpolation

(d) Bilinear interpolation functions used

Figure 6.4: A one-dimensional example of how our optimization improves over bilinear
and trilinear interpolation using the same number of basis functions. The filter we approx-
imate is shown in red and the four basis functions or their sums are shown in black. Filters
are sampled halfway between integer mipmap resolutions at translates of 0/8, 1/8, 2/8, 3/8,
and 4/8 of a texel.

in green. None of these subsets has the lowest error over the entire domain, so finding

the optimal solution shown in blue required minimizing the error for all of the possible

subsets at each point and choosing the subset with the least error. In Section 6.2.1, we

show that we can minimize the error over regions rather than for every point. Although

the problem is NP-hard, we can exhaustively check all possible combinations for this low-

dimensional problem, but we have to use a heuristic method described in Section 6.2.2 for

higher dimensions. Bilinear interpolation and the optimal solution both have zero error
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Figure 6.5: The error of bilinear interpolation is shown in black, different subsets of texels
are shown in light green, optimal error is shown in blue, and error of our piecewise poly-
nomial is shown in alternating red and orange. The bottom part of the the image shows
small error values in greater detail.

at 1/2, which is when hŝ,t̂ aligns with a texel center. Thus, both methods interpolate the

texel values. An interesting property of our method is that, because h is a tent function in

this example, we also have zero error at 1/4 and 3/4. This happens because tent functions

have the recurrence relation that a tent function can be built from three tent functions of

twice the resolution. Several of the sets shown in green have zero error at 1/4, 1/2, and 3/4,

because fewer than the maximum (n = 4) texels are required to give an solution with zero

error.

6.2.1 Polynomial Fitting

For sampling to be practical in a real-time system, it is not possible to use the optimal

solution for all possible sampling filters because the best set of texels to use depends

strongly on the parameters ŝ and t̂ of the filter hŝ,t̂. In Figure 6.5, one can see that there is
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no single best subset to use because the green lines cross at the bottom of the graph. After

dividing the domain into a few pieces, we can choose a subset to fit each piece accurately.

Also, texel coefficients have no closed-form solution, and I describe how to fit polynomials

to the coefficients of a set of texels in this section. The error when fitting linear coefficients

over four pieces in Figure 6.5 is depicted as alternating red and orange curves.

We can parameterize cells in Figure 6.2 by (t0, t1, s) ∈ [0, 1]3 so that s = ŝ − S and

t = 2S t̂−T , where the integer coordinates of a cell are given by S = bŝc and T = b2S t̂c.

This domain can be cut into J ×J ×K smaller subdomains D that are parameterized by

s = Ks − bKsc and t = J t − bJ tc. We fit sets of polynomial coefficients cij for the

power basis p(s, t) to the texel weights for each of the subdomains, where j = 1 . . .m

indexes the power basis function. We have tested using a linear basis p(s, t) = (1, t0, t1, s)

and a quadratic basis p(s, t) = (1, t0, t1, s, t
2
0, t

2
1, s

2, t0t1, t0s, t1s). Holding the set of texels

e ⊂ E fixed and defining ci by its polynomial expansion ci(s, t) =
∑

j pj(s, t)cij gives the

optimization

argmin
cij∑

ci(s,t)=1

∫∫
R2

∫∫∫
D

(
hs,t(x)−

n∑
i=1

hei(x)ci(s, t)

)2

dt ds dx. (6.4)

The constant precision constraint creates a linear dependence between coefficients, which

allows us to replace one of the coefficients and simplify the minimization. Written in the

power basis, 

c11

c12

...

c1m


=



1

0

...

0


−

m∑
i=2



ci1

ci2
...

cim


. (6.5)

Equation 6.4 is quadratic in cij , which can be solved as a linear system. Our optimization

allows freedom to choose how many texels to use, how to subdivide the domain, and what
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order polynomial to use. Each option provides a tradeoff in terms of speed, memory usage,

and quality. We discuss the tradeoffs and our choices in Section 6.3.

6.2.2 Combinatorics and Heuristics

Solving linear systems to find texel weights is reasonably fast, but there are many

possible sets of n texels. For each subdomain, we need to find the set of texels e ⊂ E

that has the lowest error when evaluating Equation 6.4. If we choose n texels out of a pool

of N = |E| possible texels, then we need to check the error of N !
(N−n)!n!

combinations of

texels. Clearly, we need to limitN as much as possible for the problem to be tractable. Our

first observation is that we can exclude texels that are not in the support of hs,t. Although

including texels outside of the support of hs,t could theoretically be beneficial, the fact that

we use relatively few texels makes it unlikely that they would reduce the approximation

error. A second observation is that low-resolution texels are used to approximate the filter

when n is small. We only use the texels from relative mipmap levels 0, 1, and 2 for a tent

filter with n = 8, so we can exclude other resolutions from our optimization.

Even after restricting E to fewer texels, a tent filter has 189 texels from which to

choose. Checking all combinations is not practical because there are 34 trillion combina-

tions of eight texels. Exhaustively checking all combinations would take 33 years because

we check approximately two million combinations per minute. We therefore developed a

heuristic for determining which sets are most likely to have low error. We define the error

of a texel to be the minimal error of the texel by itself in Equation 6.4. Our heuristic is that

a texel basis function that matches hs,t with low error is likely to be in the set of functions

that approximates hs,t with minimal error. By extension, sets of basis functions in which

each function is a good approximation of hs,t are more likely to approximate hs,t well. We

therefore check combinations of low-error texels before checking high-error texels.

The single-texel error defines a priority by which we order texels in a list. We select the
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best n-texel subset from among the highest priority texels before progressively widening

the search space to include lower-priority texels. We terminate our search after we check

a desired number of combinations, and, although we can only test a small fraction of the

total space for n = 8, we often find good solutions quickly. We checked 100 million sets

for each of the six unique subdomains (using symmetry) in a 4×4×2 discretization of an

eight sample tent filter. In this test, we found the best of the sets checked after 15, 513,

518, 12991, 35960, 534979 trials, and we found several other sets with low errors prior to

that. All of our best solutions were within the first 1% of the subsets that were checked.

Therefore, our heuristic works well and we find nearly optimal sets.

6.2.3 Implementation

To implement sampling, we use two tables: an index table and a coefficient table. The

index table stores the relative offsets of the n texel indices for each subdomain, and the co-

efficient table stores the coefficients for the texel weights. Index offsets are vectors of three

integers that indicate the coordinate of the texel (T0, T1,S) relative to the sample. Coeffi-

cients of a linear function consist of four component vectors (one constant coefficient and

three linear coefficients).

Sampling vŝ,t̂ using the filter hŝ,t̂ consists of the steps:

1. Find subdomain D ∈ Z3, texel index (T0, T1,S) ∈ Z3, and remainder (t0, t1, s) ∈

[0, 1]3.

2. Calculate the offset into the index table and the coefficient table from the subdomain

index D.

3. For all n texels,

(a) compute the polynomial texel coefficient ci(s, t) and

(b) add ci(s, t) times the texel color Iei into vs,t.
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A slight complication is that higher-resolution mipmaps are not available for all scales

of hŝ,t̂, so we generate additional tables for low mipmap levels. This is similar to the

difference between minification and magnification in GPUs. In our case, we use three

mipmap levels when 1 < ŝ, but we must optimize for two mipmap levels when 0 < ŝ ≤ 1

and for one level when ŝ ≤ 0. In practice, there is little benefit to optimizing a single level,

and we therefore revert to the reconstruction filter for Î when ŝ ≤ 0.

We significantly reduce the number of stored tables by taking symmetry into account.

Tensor-product filters have four-fold rotational symmetry and are symmetric across the

diagonal, which means that texel coefficients are uniquely defined over an eighth of the

parametric space. If we subdivide the domain into J ×J ×K pieces, symmetries reduce

the number of subdomains from J 2K to J (J + 2)K/8. This space optimization allows

us to fit precomputed tables into constant memory on a GPU.

Evaluating the color of a sample consists of a table lookup and n multiply-add op-

erations. The overhead from finding table and texel entries based on symmetry requires

3n+ 3 if statements. If our method was implemented in hardware, we could handle the if

statements more efficiently than is possible in a shader by computing the relatively simple

symmetry corrections in parallel and selecting the correct symmetry with a multiplexer.

We could also compress the index table significantly by using three bits per index. With

this in mind, we anticipate that it would be more efficient to implement our method in

hardware than in software.

6.3 Results

We graph the approximation error of our method using 2 to 10 samples compared to

a directly convolved tent filter in Figure 6.6. Errors are measured by Equation 6.3 and

normalized by the error of trilinear interpolation. The cost of our method depends on

the number of subdomains and the order of the polynomials we fit, so we compare the
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Figure 6.6: The error of approximating a tent filter using varying numbers of texels with
different optimization choices is compared against trilinear interpolation. The errors are
normalized so that trilinear interpolation has an error of one.

error of linear polynomials for the coefficients ci of texels ei over 2×2×1, 4×4×2,

and 8×8×4 subdivided domains, and quadratic polynomials over 2×2×1 and 4×4×2

subdivided domains. The data show that using more than 4×4×2 subdomains and fitting

quadratic polynomials does not significantly reduce error, so we use linear polynomials

and a 4×4×2 discretization of subdomains for all of our examples. Our method can

approximate a variety of filters, and we compare the error of our method versus trilinear

interpolation of mipmaps sampled with different filters. The errors of our method using

eight texels relative to trilinear interpolation of box, tent, Gaussian, and Lánczos 2 filtered

mipmaps is 0.569, 0.209, 0.142, and 0.232, respectively.

The times to calculate our filtering method compared to trilinear interpolation on an

NVidia GeForce GTX 580 are shown in Figure 6.7. We give two times for trilinear in-

terpolation; one measurement is for the native hardware trilinear interpolation exposed by
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Figure 6.7: The times required to draw Figure 6.10 at 5122 resolution using our method
are compared to trilinear interpolation as implemented by the hardware (HW Trilinear)
and in a GPU shader (SW Trilinear). The number of texels that the GPU reads per sample
is shown on the horizontal axis.

the shading language, and the second is our shader implementation of trilinear interpola-

tion in which we explicitly perform eight texel reads. Our timing results do not match the

prediction, based on the number of mathematical operations performed, that our method

should be only slightly slower per texel read than trilinear interpolation. The most plausi-

ble explanation is that we have lower throughput because trilinear interpolation has a more

structured and cache-friendly pattern for accessing memory.

An example of the access pattern of our method for a tent filter using eight texels is

shown in Figure 6.8. We read from three mipmap levels, whereas trilinear interpolation

reads from only two levels. It is likely that GPUs optimize for trilinear accesses by using

two caches for alternate mipmap levels [78] and that reading from three levels causes

cache conflicts. GPUs are also likely to optimize for the 2×2 quads of texels accessed

by a trilinear interpolant, whereas our reads are less regular. Our method will also issue
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Figure 6.8: The eight texel access pattern of a 4x4x2 discretization of a tent filter is shown.
The unit domain is outlined in black, and each column of images shows the texels used in a
subdomain, where texels with nonzero coefficients are blue. There are only six subdomains
because of symmetry, and the index of the subdomain is ordered (left to right, bottom to
top, low to high resolution).

irregular reads for adjacent pixels because neighboring pixels in a 4×4×2 discretization

will have a stride of at least one subdomain. GPU profiling tools show that our method

reads more texels than we expect and that the time taken is almost directly proportional to

the number of texels read in our method, our trilinear implementation, and the hardware

trilinear interpolant. Our tests are consistent between ATI and NVidia GPUs and show

that a native hardware implementation significantly improves the performance of trilinear

interpolation. Even our shader implementation of trilinear interpolation takes 1.5×more

time and bandwidth than the native hardware implementation, although the same texels

are read. It is possible that hardware designed for our sampling pattern would achieve a

similar result.

Figure 6.1 demonstrates that generating mipmaps with a high-quality filter is insuf-

ficient to produce sharp images at arbitrary scales when trilinear interpolation is used to
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(a) Trilinear (b) 4 Texels (c) 8 Texels (d) Exact

Figure 6.9: The images shown were downsampled using (a) trilinear interpolation, (b) and
(c) our approximation of the Lánczos 2 filter using 4 and 8 texels, and (d) exact evaluation
of the Lánczos 2 filter.

sample the mipmaps. Trilinear interpolation gives the correct filtered values when evalu-

ated at a texel, but it does a poor job between texels, even at the same scale as the mipmap

images. In contrast, our method minimizes the error over all points. We show an example

of an image that we sampled between mipmap levels in Figure 6.1 using a direct convo-

lution of a Lánczos 2 filter as the ground truth, our approximation of the Lánczos 2 filter

using eight texels, and trilinear interpolation on mipmaps that were created using a Lánc-

zos 2 filter. The Lánczos filter and our approximation of the Lánczos filter look nearly the

same, but trilinear interpolation produces an image that is blurry.

Our method can be tuned to use different numbers of texels for fine-grained control

over the memory bandwidth and quality of texture sampling. Figure 6.9 shows an example

in which trilinear interpolation, our method with four texels, our method with eight texels,

and exact evaluation of the Lánczos 2 filter on a two-dimensional image are compared.

This image contains high-frequency details aligned in all directions: horizontally, verti-

cally, and diagonally. With either four or eight texels, our method produces results similar

to those obtained with the exact filter, whereas trilinear interpolation of the Lánczos 2 fil-

tered mipmap produces a blurry image. Figures 6.6, 6.9, and 6.11 provide quantitative and
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(a) Trilinear (b) Our Method

Figure 6.10: A trilinear interpolation of a Lánczos 2 filtered mipmap (a) compared against
our approximation of the Lánczos 2 filter using 8 texels (b).

(a) Trilinear (b) 8 Texels (c) 6 Texels (d) 4 Texels

Figure 6.11: Aliasing of a checker pattern with ten squares on a side repeated over an
infinite plane. The results of (a) trilinear interpolation and our approximation of the tent
filter using (b) 8, (c) 6, and (d) 4 texels.

qualitative evidence that our method adapts image quality smoothly to available memory

bandwidth.

Figure 6.10 compares the visual quality of trilinear interpolation with our method for a

three-dimensional scene using a Lánczos 2 filter. Again, trilinear interpolation produces an

image that is blurry, whereas our approximation is sharper. Figure 6.11 shows a checker-

board pattern on an infinite plane using a tent filter while reading four, six, or eight texels
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to demonstrate aliasing. The texture has ten checkers on a side so that there is not an

even power of two checkers to texels. Therefore, a poor filter cannot easily hide aliasing

patterns. When using eight texels, the same number of texels that are read in trilinear in-

terpolation, our filter creates sharp and clear image. The results when using six texels are

almost indistinguishable from those obtained with eight texels, despite using 75% of the

bandwidth. When using only four texels, the image in the distance appears slightly noisier,

and the edges in the foreground appear somewhat rougher.

A possible concern is that flickering or popping artifacts will occur in animated scenes

because of the piecewise nature of our method. In our tests, we have seen no obvious

flickering. Although coefficients change discontinuously across subdomain boundaries,

the filter we approximate changes continuously, and our approximation error is typically

low enough that no artifacts are detectable. For the particularly challenging task of rotating

the checker pattern in Figure 6.11, we could see a single transition line in the distance

when the method samples from a very coarse resolution mipmap for a Lánczos 2 filter

with n = 4. However, this artifact was data dependent, and we did not see the problem at

n = 4 for other images. When n > 5, we did not see any artifacts in any images under

animation for the Lánczos 2 filter, and when we used a tent filter, we found that we could

not see the transition line with n = 4 because the tent filter is blurrier than a Lánczos 2

filter.

Our optimized texture samples can also be used to improve the results of anisotropic

texture filters that combine isotropic samples. Hardware anisotropic filtering uses the

model of Feline [99], where anisotropic filters are approximated by summing smaller iso-

tropic filters. Feline approximates stretched Gaussians and uses trilinear interpolation to

approximate isotropic samples at low computational cost. By replacing trilinear interpo-

lation with our approximation of the isotropic Gaussians, we can generate higher-quality

anisotropic filters while still using the same texture bandwidth. We compare the results
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(a) Feline Trilinear (b) Feline 8 Texels

Figure 6.12: The Feline algorithm (a) using trilinear probes, and (b) using our method,
which reproduces isotropic Gaussian probes more accurately.

of Feline and our improved anisotropic sampling in Figure 6.12. Using more isotropic

samples in Feline improves filtering in the direction of stretch, but increasing the quality

in the perpendicular direction requires better isotropic samples.

6.4 Conclusions and Future Work

Our method is valuable because memory bandwidth is often a bottleneck in graphics

applications. A limitation of our method is that GPUs have been designed to optimize

for trilinear interpolation and do not perform well on less structured reads. However, our

method may be advantageous in certain situations. One possibility is that our method will

be more suitable for offline rasterizers and ray-tracers with more flexible pipelines. An-

other possibility is that hardware designs will change to provide better support for random

memory accesses or the access pattern of our method. Our approach can also be viewed

as a stepping stone. We have shown that better filtering is possible by optimizing which

texels and coefficients are used, operating under the simple assumption that cost is propor-

tional to number of texels read. It may be possible to incorporate the current texel reading

behavior of GPUs in our optimization. For example, we could optimize for reading quads
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of texels using bilinear interpolation.

This chapter focuses on improving the quality of isotropic texture filtering. When dis-

playing two-dimensional images such as in Figures 6.1, 6.3, and 6.9, or when viewing a

surface straight-on, anisotropic filtering does not apply. It is possible to improve aniso-

tropic filtering by replacing isotropic probes used in current hardware with our method as

in Figure 6.12, but we could also apply the principle of optimizing for the best set of texels

and their coefficients to anisotropic texture filtering. This strategy could improve sam-

pling quality relative to the number of texels used by reducing the number of redundant

texel reads. The challenge of extending our method to anisotropic filters is that the di-

mensionality of the optimization increases from three to five dimensions because we must

include stretch and orientation of the filter, which, in turn, increases the complexity of the

optimization. The idea of simultaneously optimizing basis functions and their coefficients

for filter reproduction [63] has the potential to produce even better results when combined

with our idea of optimizing which texels are use from different resolutions; although the

simultaneous optimization may be complex to solve.
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7. PARAMETERIZATION-AWARE TEXTURE FILTERING*

Movies and games are filled with three-dimensional objects represented as triangle

meshes. The geometry of these meshes is important, but much of the detail and interest

of an object comes from the variation of colors on its surface. Texture mapping provides

a way of annotating surfaces with information such as color. Typically, the color at any

point on a model is calculated from an image, called a texture, that is applied to the object.

Textures are stored as two-dimensional grids of color samples (texels), but there is no

obvious way of automatically mapping a point p ∈ R3 on a three-dimensional surface to

a point t ∈ R2 in a texture. Instead, a parameterization Θ : R3 → R2 of the surface of

the object is usually supplied by an artist, and the surface of the object is cut into separate

charts that are flattened into the plane. For triangle meshes, Θ is typically encoded as

texture coordinates associated with each vertex of the triangles.

The projection of a point p on a surface to a pixel s on the screen is given by Φ : R3 →

R2. To draw a textured surface, the graphics card (GPU) samples the value in the texture

associated with a triangle at the coordinate Θ ◦ Φ−1(s) in order to determine the color of

the pixel. However, a pixel on the screen may correspond to a large area of the texture

for distant objects so that filtering must be applied to avoid aliasing. Depending on the

distance to an object, a filter h may integrate over many texels. Rather than compute exact

filter integrals, GPUs use precalculated downsamplings of the texture that are stored in a

mipmap [134].

Filters can be expensive to evaluate even without distortion, but evaluation is more

complicated over the distorted support of h(Θ ◦ Φ−1(s)). Several algorithms have been

*Reprinted with permission from "Parameterization-Aware MIP-Mapping" by Josiah Manson and Scott
Schaefer, 2012. Computer Graphics Forum, 31 (4), 1455–1463, © 2012 The Author(s) Computer Graphics
Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 7.1: From left to right, we show the input texture (10242), the monster frog model
drawn with the full-resolution texture, the fourth mip-levels (642) downsampled with a
guttered box filter, and our parameterization-aware bilinear filter. The tent filter does not
preserve details as well as our method, and it allows the background color of the texture to
bleed in at texture seams.

designed to improve the quality of texture filtering since the invention of mipmaps. The

simplest improvement is to generate mipmaps using more advanced filters derived from

signal processing. More recently, research has focused on designing anisotropic filters that

can be evaluated in real-time [141, 99, 97, 35, 21, 20, 61].

We solve a problem that is related to, but separate from, anisotropic filtering. An-

isotropic filtering calculates texture samples by transforming the filter using a first-order

approximation of Θ◦Φ−1, which is the affine transform defined by the Jacobian of Θ◦Φ−1.

Describing the local distortion by an affine transformation is correct for a single point, but

is only approximate when integrating over the support of h, unless the distortion from

screen to texture space, Θ ◦Φ−1, is uniform. GPUs typically approximate integration of h

by sampling from a mipmap. However, at higher mip-levels, texels contain many triangles,

and the assumption of uniformity of Θ ◦ Φ−1 is violated.

We assume that the parameterization of the model is fixed and improve the texture

quality without modifying the model or the base texture. We can correct for nonuni-

form distortion of Θ during mipmap generation and improve texturing, with or without
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anisotropic sampling. Our method uses the fact that Θ is view-independent to precom-

pute mipmaps that prefilter the texture to correct for the nonuniformity of the parameter-

ization of a surface in the support of h. Our method corrects for parametric distortions

introduced by Θ and shows how to optimize texture reproduction when using a trilinear

postfilter. We solve the large-scale problem in which parameterization changes between

triangles, whereas anisotropic filtering solves the small-scale problem of sampling points

on the screen. Figure 7.1 shows an example of the improvement obtained with our method

compared to tent filtering. The model on the left is drawn using the 10242 input texture,

whereas the images in the center and to the right are drawn with 642 tent and paramete-

rization-aware mipmapped (PAM) bilinear filters, respectively.

Anisotropic filtering on a GPU still provides benefits with our method because aniso-

tropic filtering adapts to changes of Φ, which are only known at run-time. Thus, aniso-

tropic filtering and our method complement each other. We generate optimized mipmaps

as a preprocessing step and improve image quality with no change to art assets or rasteri-

zation algorithms and at no cost to run-time performance. As an added benefit, our method

automatically ignores the unused portion of the texture that forms the background color,

which prevents color bleeding at higher mip-levels.

7.1 Related Work

In the original description of mipmapping [134], downsampled images were generated

using a box filter, but one can easily imagine using higher-order filters at each level, such

as in a Gaussian pyramid [17]. An obvious way to improve the quality of mipmapping

is to use high-quality antialiasing filters to generate the images at each mip-level. Hum-

mel [76] described optimal prefilters for linearly dependent postfiltering bases such as tent

and cubic B-splines. However, Hummel only considers functions over an infinite, uni-

form grid. Kajiya and Ullner [83] solve a least-squares problem in which intensities were
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constrained to be in the range [0, 1] to render fonts on CRT displays in which the pixel

response is approximately Gaussian. Least-squares downsampling [140] is a method for

finding a downsampling that optimizes over point samples. In contrast, our work finds a

downsampling that is optimized over all mip-levels simultaneously to match the postfil-

tering performed by GPUs, to handle boundary effects of the image and chart boundaries,

and to account for non-uniform parameterization of the surface during filtering.

Since the initial description of mipmapping, most subsequent work has since sampled

images with affine transformations of filters [65, 141, 99, 97, 35, 21, 20, 72, 61]. Although

anisotropic filtering methods correct for the asymmetric stretch induced by mapping a

texture to screen space, they do not account for different transformations within the support

of a filter. The support of texels in the mipmap from trilinear interpolation also influences

the shape of the filter. The large support of texels can cause colors from unused portions of

the texture to bleed through texture seams onto the surface of the object. Guttering [128]

can reduce this problem by creating an extended border of similar color around the chart

boundary. The process of guttering can be automated through a push-pull algorithm [62,

114] in which texels outside of texture charts are ignored during mipmap creation. The

image is successively upsampled by factors of two from the lowest resolution, overwriting

only the unused texels.

One can also circumvent parameterization by storing textures on the surface itself, such

as in Ptex [16] and Mesh Colors [138]. Both of these methods implement mipmapping and

anisotropic filtering calculated directly on a surface. Alternatively, textures can be stored

in three-dimensional space around a surface [8, 89] to avoid surface parameterization. In

general, these methods tend to be slower than typical texturing, either because they are

more complicated or because they have no hardware support. In contrast, our method im-

proves texture sampling when using the native trilinear sampling implemented by GPUs.

Some methods [108, 112] also remove seams that result from trilinear filtering by chang-
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ing the surface parameterization Θ, but they do not fix other parameterization-induced

filtering artifacts. We improve texture filtering without modifying Θ.

7.2 Parameterization-aware Filtering

The mapping Θ between the surface of an object and a texture is often nonuniform,

meaning that each triangle can have a different texel density. Additionally, triangles may

overlap in texture space, and some of the texture space may not be used. Most methods for

generating mipmaps filter the texture without regard to how the texture is applied to the

surface of an object. We show that image filtering operations can be performed directly on

the surface of an object rather than in texture space.

By filtering over the surface of the object, we can ensure that the weight of a texel

is proportional to the surface area that it covers on an object. Weighting by surface area

means that, if a texel is used in two overlapping charts, then the texel will be given twice

the weight of a texel used in a single chart. Conversely, if a texel is not used on the

surface of an object, it will be given zero weight. All of the filtering is performed in a

preprocessing step, which means that the GPU can draw textured objects using standard

texture sampling operations. Parameterization-aware filtering incurs absolutely no run-

time performance penalty and is robust to degenerate inputs such as triangles that have

zero area in either object space or texture space.

The input image Î is the the sum
∑

i ĉib̂i(u, v) of basis functions time coefficients.

In typical texture sampling, the coefficient ch of the sampling filter h is calculated by

integrating

ch =

∫∫
R2

h(u, v)
∑
i

ĉib̂i(u, v) du dv

over the texture, where ĉi are the coefficients (i.e. colors) of the texels. Each coefficient ĉi

is associated with a basis function b̂i, where i denotes the translation of the basis functions.

Although b̂i can be arbitrary, GPUs typically multiply texture samples by bilinear basis
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functions for texture magnification. We therefore use a bilinear basis. In parameteriza-

tion-aware filtering, we evaluate filters by integrating over the surface Ω of the object

ch =

∫∫
Ω
h(Θ(p))

∑
i ĉib̂i(Θ(p)) dp∫∫

Ω
h(Θ(p)) dp

,

where p are three-dimensional points on the surface and the functions h and b̂i are defined

in texture space, as before. In typical texture filtering, no normalization is required because

the integral of h is assumed to be unitary, but we need a normalization term because the

domain of h may be distorted when integrating over a surface. In practice, we evaluate

ch by summing over triangles in a mesh. Each triangle Tk of Ω has a barycentric basis

with the triangle coordinates (0, 0), (1, 0), (1, 1). Let Γk : R2 → R3 be the map from this

barycentric basis to the triangle Tk. We can then write that

ch =

∑
k

∫ 1

0

∫ x
0
h(Θ(Γk(x, y)))

∑
i ĉib̂i(Θ(Γk(x, y)))∆k dy dx∑

k

∫ 1

0

∫ x
0
h(Θ(Γk(x, y)))∆k dy dx

, (7.1)

where ∆k is the absolute value of the determinant of the Jacobian of Γk and is equal to the

area of triangle Tk.

Because h and bi are typically piecewise polynomial functions that align with the texel

grid, we cut the 3D polygons Tk so that their images Θ(Tk) in texture space intersect only

one texel. This operation can be done quickly and robustly. Because both bi and h have a

single polynomial, Equation 7.1 has a closed-form expression.

Our method integrates directly over 3D triangles by using their image in a barycentric

space. Equivalently, we can integrate over the image of triangles in texture space Θ(Tk),

which requires multiplying by |J(Θ−1)|, where J is the Jacobian of a transform, instead

of by ∆k to account for the change in variables. We say that our mipmaps are paramete-

rization-aware because we weight texels by their parametric distortion |J(Θ−1)|, whereas
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standard filtering gives all texels equal weight. By integrating over the 3D triangles Tk

rather than their image in texture space Θ(Tk), we avoid problems in which 3D triangles

in Ω map to degenerate triangles in the texture, which would make J(Θ−1) undefined.

A beneficial property of our optimization is that our method does not interfere with

the anisotropic filtering that is performed by GPUs. This is achieved because we solve a

different problem from anisotropic filtering. First, consider the case in which anisotropic

filtering produces the correct result. If a square texture is mapped to a rectangle, aniso-

tropic sampling will appropriately stretch the sampling filter by the aspect ratio. In this

case, our method is unaffected by the change in parameterization and produces the same

result as traditional image filtering because the Jacobian of the parameterization is uni-

form and all texels have equal weights. Therefore, the result from anisotropic filtering is

unaltered by our method and produces the correct result.

Our method produces different images only when the parameterization is non-uniform,

which occurs when the assumptions of anisotropic filtering are violated. Excluding de-

velopable surfaces, flattening a surface always introduces distortions. Severe distortions

within a texel are common at lower-resolution mip-levels, when texels cover many trian-

gles of the surface. We show an example of non-uniform parameterization in Figure 7.2.

In the top row of the figure, we show a flat, triangulated object on the left and its texture on

the right. Although blue and green triangles have equal areas in object space, blue trian-

gles occupy the majority of the texture. This means that blue dominates higher mip-levels

with standard mipmap generation. In contrast, our method gives blue and green colors

equal weight in the distance while preserving the sharp transition between colors in the

foreground. This effect can be seen in the middle row of Figure 7.2, where the plane turns

blue in the distance instead of blue-green. Our method draws the correct color at high mip-

levels in the distance. Comparing PAM box filtering in the middle and PAM constrained

trilinear filtering on the right, the images are similar, but PAM trilinear filtering decreases
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Figure 7.2: The top images show the parametric distortion with object space on the left
left and texture space on the right. The middle row shows trilinear mipmapping, and the
bottom row shows 16x anisotropic mipmap sampling. From left to right: box, PAM box,
and PAM constrained trilinear mipmaps.

the bleeding of blue into the green bands.

In fact, anisotropic filtering and our method are complementary. Because the projec-

tion Φ is known only at run-time, anisotropic filtering is required to filter surfaces accu-

rately with respect to their orientation to the camera. On the other hand, anisotropic filter-

ing cannot filter correctly when the Jacobian of Θ changes over multiple triangles. Com-

bining our mipmaps with anisotropic filtering provides a good approximation of Θ ◦ Φ−1

integrated over the entire support of the filter. The bottom row of Figure 7.2 shows how

texture filtering is improved by a combination of anisotropic filtering and parameteriza-

tion-aware mipmapping. Anisotropic filtering samples from higher-resolution mip-levels,

which improves image quality, but the plane still turns blue in the distance in the left

image. Anisotropic filtering combined with our method draws crisp lines that correctly

appear blue-green in the distance.
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7.3 Optimal Trilinear Approximation

GPUs store downsampled images as a small set of precalculated images, called a mip-

map, in order to accelerate downsampling at arbitrary resolutions. The GPU approximates

colors at intermediate resolutions by trilinear interpolation between the color samples of

the two closest resolutions. Our goal is to make the color samples calculated by trilin-

ear filtering match the color of the input image Î as accurately as possible. We achieve

this by solving a least-squares optimization, as suggested by Kajiya and Ullner [83]. Our

contribution is to simultaneously optimize the entire mip-stack so that we find the opti-

mal representation over all resolutions rather than within a single two-dimensional image.

Thus, instead of filtering each image in the mip-stack separately, the filtered images are all

interdependent. We also incorporate corrections for parametric distortions into our opti-

mization and explicitly handle the effects that chart boundaries have on the optimization,

whereas Kajiya and Ullner [83] assume that pixels reside on an infinite plane and can all

be treated identically.

Performing a least-squares optimization significantly improves downsampled image

quality but can introduce ringing. In Figure 7.3, we show an example of an image that is

downsampled followed by upsampling with a bilinear filter. Comparing the box filter (top

right) and least-squares optimization (bottom left) shows that the optimized filter repro-

duces the original image more accurately and appears less blurry, but it suffers from some

ringing artifacts. As described by Kajiya and Ullner [83], some of the ringing results in

values that are outside of a displayable range of the monitor. Finding the best values to re-

produce an image on a physical device requires optimizing for values constrained to [0,1].

We show the results of this constrained optimization on the bottom right of Figure 7.3.

The image appears sharp and has fewer artifacts than the unconstrained optimization.

The trilinear interpolant is best understood by visualizing the mipmap as a stack of
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Figure 7.3: An example of a high-resolution image (top left) downsampled using a box
filter (top right), optimized for bilinear reconstruction (bottom left), and optimized for
bilinear reconstruction constraining values to [0,1] (bottom right).

Figure 7.4: A mipmap can be visualized as a stack of overlaid images, as shown on the
left. The alignment between neighboring resolutions is shown on the right.
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images, as shown on the left of Figure 7.4. The basis functions are centered on texels

and are shown as black dots. The stack defines a rectangular solid parameterized by u,

v, w, and the images are evenly distributed in w from 0 to n. Given an input image Î

at resolution 2n, the mipmap of Î is a stack of n + 1 images I = (I0, I1, ..., In). The

images are indexed in order of the distance at which they are displayed so that I0 has same

resolution as Î , and the resolution of Iw is 2n−w. The canonical trilinear basis function

is the tensor product of unit tent functions, and the trilinear basis function bj(u, v, w) of

image w is scaled in u and v by 2w but is not scaled in w. The index j is a triplet of integers

that indicates the translation and scaling of bj .

We minimize the error of a sample by minimizing the difference between Î and I over

all distances, such that

min
cj

∑
k

∫∞
−∞

∫ 1

0

∫ x
0

∣∣∣∑j bj(Θ(Γk(x, y)), w)cj

−
∑

i b̂i(Θ(Γk(x, y)))ĉi

∣∣∣2 ∆k dy dx dw.

The system is large, but sparse, so we solve the system using conjugate gradients imple-

mented in TAUCS [127]. When w is outside of the range [0, n], we reproduce the behavior

of GPUs by sampling from the closest available mip-level. For w < 0, there is more than

one pixel per texel, and the image is magnified using bilinear interpolation. The weight

from the negative values of w is infinite and adds only to the basis functions of I0, which

constrains Î = I0. Likewise, for w > n, more than one copy of the texture may exist in

a pixel, and we constrain In to be the area-weighted average of Î . Constraining I0 and In

dramatically reduces the size of the linear system we must solve. At a small cost to image

quality, we can instead optimize color reproduction for each mip-image individually by

using a bilinear basis instead of a trilinear basis. If we use box basis functions instead

of bilinear or trilinear functions, the linear system is diagonal, and each texel is indepen-
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dent. This means that, for box filtering, the least-squares solution reduces to the filtering

described in Section 7.2 and is quite fast.

We show how the trilinear basis functions of neighboring resolutions overlap in Fig-

ure 7.4. We use blue for one resolution and red for half the blue resolution. Solid lines

show the primal grid, dashed lines show the dual grid, and dots show the centers of basis

functions. Because the dual grids over which trilinear basis functions are defined do not

nest, we must cut triangles by a grid that is twice the resolution of the high-resolution

image (the half-texel grid).

Conceptually, basis functions of color samples from outside of the domain of an image

can intersect the image. GPUs define multiple methods for dealing with this problem. In

OpenGL, borders are treated based on the wrap mode of the image, of which three modes

are commonly used. One approach is to add a border that is one texel wide around the

image so that the color values are defined for all basis functions that intersect the image.

The second and third approaches require no extra storage because they define the border

values to be equal to values within the image. If the image repeats, border colors are

defined by taking the modulo of the index of a texel, whereas non-repeating images clamp

border colors to be equal to the nearest color in the image. Fortunately, it is simple to

match our optimization to the wrap mode used to sample textures. All of the examples

shown here use the clamp functionality in the optimization, except for Figure 7.2, which

we optimize for a repeating texture.

7.4 Results and Discussion

We compare our parameterization-aware filtering using a box filter versus naïve box

filtering in Figure 7.5. The input texture is shown at the top left. In this example, there

is relatively little unused texture space, so the background color has less of an effect on

the filtered images. However, this model exploits symmetry to reuse parts of the texture
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Figure 7.5: The model at the top right is drawn with the full 10242 input texture. The
models in the row directly below that are drawn with 642, 322, and 162 box-filtered textures
that ignore texels that do not intersect triangles. The models in the bottom row are drawn
using PAM box filtered textures at the same resolutions, and this method better preserves
the original texture.

and contains overlapping charts. For example, there are four gray pipes and red grills in

the model, but only one instance of these objects in the texture. Moreover, some of the

triangles in the three-dimensional surface map degenerately to lines in the texture.

Our method handles all of these issues properly. The top row shows the model drawn

with its 10242 input texture. The middle row shows the results from using a standard

box filter, and the bottom row shows the results from using our PAM (parameterization-

aware mipmapping) box filter. From left to right, the resolutions of the textures in the

middle and bottom rows are 642, 322, and 162. One can see that parameterization-aware

filtering significantly reduces the amount of blue that bleeds into the gray at the top of

the models. Each of the blue lights is inset slightly, and the wall of the inset is given

a disproportionately large fraction of the texture space. Our PAM filter weights these

insets proportionally to their surface area rather than to their texture area to reproduce the
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Figure 7.6: An example of a model with a 10242 input texture is shown on the left. The
subsequent models are drawn with downsampled textures at 642 resolution calculated us-
ing a box filter, a box filter that ignores texels that do not intersect triangles and uses
guttering, and our parameterization-aware bilinear filter. Unused parts of the input texture
are colored magenta to illustrate the color bleeding that occurs with image filtering that
does not use information about the model.

appearance of the original model more faithfully. We should note that our method even

handles the case when two triangles with different Jacobians overlap, a situation in which

a texel will be weighted by the sum of the surface areas that intersect that texel.

A consequence of using Θ to weight downsampled colors based on how often they

appear on a surface is that unused parts of a texture are given no weight, so that the colors

between charts have no effect on downsampled images. We show an example of the effect

from using different filters on a lizard model in Figure 7.6, where we modified the input

texture to be magenta between charts in order to emphasize how the background color

affects filtering. From left to right, we show the model drawn with its 10242 input texture

and models with textures downsampled to 642 using a box filter, a box filter that ignores

unused parts of the texture, and our PAM bilinear filter. Standard box filtering does not take

into account which texels are visible on the model and allows the unused texels, colored
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Figure 7.7: Graphs of the errors of textures in Figure 7.2 measured at different mip-values
from zero through eight. The filters used are box (blue), PAM box (red), PAM constrained
bilinear (yellow), and PAM constrained trilinear (green).

in magenta, to influence the color of texels at seams. Ignoring unused texels in a box

filter approximates the effect of our parameterization-aware box filter, but is insufficient

by itself. The support of the box downsampling filter is smaller than the support of the

trilinear filter used by hardware to sample the texture, which means that at least a one texel

border of similar colors must be added around charts. Our method can directly optimize for

trilinear filtering, which takes into account the full support of the sampling filter, fractional

texel coverage, and overlapping/degenerate charts.

Methods exist to remove texture seams [108, 112] that prevent the background from

affecting the surface color, but these methods do not correct for other artifacts due to

parameterization. We show a similar result in Figure 7.1, where it is clear that our para-

meterization-aware method preserves details better than conventional texture filtering and

eliminates color bleeding across chart boundaries.

In Figure 7.7, we show a graph of the errors from using a box filter compared to

the parameterization-aware box, bilinear, and trilinear filters of the image in Figure 7.2.
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This example utilizes the entire texture, so differences in the graph result entirely from

differences in parameterization and not from background color bleeding. The root mean

square error (RMSE) of the approximation measured at different mip-values is shown

by solid lines, and the RMSE over all mip-levels is shown by dashed lines. The PAM

bilinear and trilinear filters have noticeably lower error than the box filter. The bilinear

filter has lower errors at integer mip-levels than the trilinear filter, but has a slightly higher

overall error. One can see that correcting for parametric distortion significantly reduces

the RMSE, especially at low resolutions.

The times taken to calculate mipmaps using a variety of filters at different input sizes

are shown in Table 7.1. All of the times were calculated for the lizard model on an Intel

Core i7-2600k. Calculation time depends mainly on the number of texels in the charts

rather than triangles in the mesh, as long as there are fewer triangles than texels, because

triangles are cut to a fine grid. We should emphasize that mipmap generation only has

to be performed once, after which results can be stored. Hence, mipmap generation time

should not be an issue for most applications. Nevertheless, in the worst case, solving for

mipmaps that are optimized for trilinear filtering from a 10242 source image takes slightly

more than one minute. Error graphs suggest that optimizing for bilinear reconstruction is

almost as good as optimizing for trilinear reconstruction, but it takes only a fifth of the

time. Therefore, we expect most users will prefer PAM bilinear filtering to PAM trilinear

filtering. Parameterization-aware box filtering is very fast because no linear system has

to be built or solved. In models with parametric distortion, parameterization-aware box

filtering provides a significant reduction in error and costs only a second of preprocessing

time.
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64 128 256 512 1024
box 0.004 0.004 0.011 0.034 0.134
tent 0.004 0.008 0.037 0.164 0.697

Lanczos 3 0.033 0.151 0.677 3.064 13.58
PAM box 0.030 0.051 0.124 0.338 1.061
PAM bi. 0.166 0.344 0.993 3.703 15.48
PAM tri. 0.411 1.291 4.699 18.606 75.68

Table 7.1: Times measured in seconds to construct mipmaps for the lizard from different
input resolutions. Traditional filters that ignore parameterization are shown on top, while
our filters are shown on the bottom.

7.5 Conclusions and Future Work

We present a method for calculating downsampled images for display as textures in

three-dimensional applications in which we minimize the difference between a source im-

age and bilinearly or trilinearly interpolated textures and correct for distortions introduced

by mesh parameterization. We perform all calculations as a preprocessing step to improve

image quality without changing the renderer or reducing run-time performance.

There are several extensions to our method that we would like to investigate. One of the

assumptions of our method is that mesh geometry is static. In practice, meshes are often

animated, which means that the optimal texture is different for each frame of animation.

It is trivial to modify Equation 7.1 to use the average Jacobian over all frames, but how

often a frame is displayed, as in a game, may not be known in advance. In practice, most

realistic objects undergo nearly isometric deformations, and our method will perform well

even when optimized for a single, static pose.
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8. CONCLUSION

This dissertation considers rasterization as a specific application of image filtering, and

I have analyzed the two principle aspects of rasterization in a modern graphics pipeline:

how to calculate coverage values from a boundary representation and how to sample tex-

tures. Rendering generally has simple known solutions that can be evaluated through

brute-force computation, and the role of research is to design algorithms that are able to

evaluate the solutions more efficiently. The methods described in Chapters 2 and 3 evaluate

coverage values and vector graphics for regions bounded by Bézier curves by evaluating

closed-form solutions for pixel colors using high-quality filters. For texture sampling, I

present a method in Chapters 6 and 7 for approximating filters using far fewer texture

fetches than would otherwise be necessary in existing methods.

There is still room for further improvement of the efficiency of rendering and image

sampling algorithms, but there is another direction of research I want to investigate. It

intrigues me that there is no general consensus about what is the best image filter. It is

of particular note that the theoretically ideal sinc filter is unanimously considered not to

be the best filter. The fact that there is such a discrepancy between theory and perception

requires further investigation. If we better understand how filtering is perceived, there

will be opportunities to improve the maximum quality of images and to spend less time

computing details that are not perceptually important.

Filtering is also important in many fields outside of computer graphics and render-

ing. In this report, I demonstrated that similar mathematical derivations of filtering with

wavelets can be used for the dissimilar purposes of rasterizing images and reconstruct-

ing surfaces from scanned data. Computer graphics is often concerned with designing

algorithms that are computationally efficient rather than perfectly accurate because of the
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demand for real-time performance. Other fields that sample signals may also benefit from

recent developments in computer graphics. When accuracy is paramount, it can still be

useful to have fast approximations to preview results or to process larger data sets than

would otherwise be possible. I am interested to find out if the methods I have developed

can be applied across disciplines.
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