
 

 

 

 

TRANSIENT TEMPERATURE MODELING FOR WELLBORE FLUID 

UNDER STATIC AND DYNAMIC CONDITIONS 

 

 

A Thesis 

by 

MUHAMMAD ALI  

 

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

Chair of Committee,  Abu Rashid Hasan 

Committee Members, Hadi Nasrabadi 

 Yuefeng Sun 

Head of Department, A. D.  Hill 

 

May 2014 

 

Major Subject: Petroleum Engineering 

 

Copyright 2014 Muhammad Ali



 

ii 

 

ABSTRACT 

 

Modeling flowing wellbore fluid transient temperature is important in many petroleum 

engineering problems, including, pressure transient testing, flow assurance and wellbore 

integrity during production, preservation of drilling equipment integrity for geothermal 

wells and prediction of injection fluid temperatures.  

 

In this thesis, development and usage of three models for transient fluid temperature are 

presented. Two models predict transient temperature of flowing fluid under separate 

flow configurations and one is for a static fluid column. Additionally, an improvement to 

an existing transient temperature solution is given. 

 

The transient rate model predicts the transient temperature when a flow rate, during 

production, is changed from some initial value to a new one. This model is particularly 

useful for pressure transient tests involving multiple disparate constant flow rates where 

bottomhole pressure has to be calculated from the wellhead pressure. Dependence of 

fluid density on variable temperature during the test necessitates that effects of unsteady 

temperature changes are taken into account for accurate calculation of downhole 

pressure.  

 

The single rate injection model predicts transient temperature of wellbore fluids during 

injection operations. This model can help in design of acidizing treatments by allowing 
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users to calculate the time required to cool down the well with water pre-flush. This 

model can also be used for calculation of depth of effectiveness of wax removal 

treatment, in case of hot oil injection.  

 

Very high temperatures during drilling operations can deteriorate mud rheological 

properties. The conduction model lets the user calculate the time window available for 

taking corrective actions after an accidental cessation of mud circulation occurs. 

 

Method of Laplace transform enabled solution of a temperature distribution equation to 

create the transient rate model and the injection model. Conduction model was 

developed by solving the transient heat conduction equation for a multilayer cylinder 

with mud in annulus and tubing analogous to two layers of the cylinder. All solutions 

were implemented using conventional spreadsheet software with rudimentary 

programming. 
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NOMENCLATURE 

 

ain Coefficients of Bessel functions 

A Lumped parameter defined by Eq. A-82, hr
-1

 

A’ Lumped parameter defined by Eq. A-81, hr
-1

 

bin Coefficients of Bessel functions 

 ̌ Parameter defined by Eq. A-60, dimensionless 

 ̂ Parameter defined by Eq. A-27, dimensionless 

CJ Joule-Thomson coefficient, °F/(lbf/ft
2
)  

cp Tubing fluid heat capacity, Btu/lbm °F 

CT Thermal storage parameter, dimensionless 

g Gravitational acceleration, ft/sec
2
 

gc Conversion factor, 32.17 (lbm-ft)/lbf/sec
2
 

gG Geothermal gradient, °F/ft 

H Heaviside function 

kactual Actual thermal conductivity of mud, Btu/hr.ft.°F 

keff Effective thermal conductivity of mud, Btu/hr.ft.°F 

ke Formation thermal conductivity, Btu/hr.ft.°F 

J Conversion factor, 778 ft.lbf/Btu 

J0 Bessel function of the first kind of order zero 

L Length of flow string, ft 
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   Relaxation length parameter given by Eq. A-30, ft
-1

 

  
  Relaxation length parameter given by Eq. A-30 after rate change 

m Mass of fluid per unit length, lbm/ft 

m’ Mass of fluid per unit length after a flow rate change, lbm/ft 

 ̌ Parameter defined by Eq. 20, dimensionless 

 ̂ Parameter defined by Eq. 8, dimensionless 

r radial coordinate 

rto Outside tubing radius, ft 

rw Wellbore radius, ft 

t Producing/injection time, hr 

tcooling Time required for cooling entire wellbore depth, hr 

tD Dimensionless time  

TD Dimensionless temperature 

Tei Undisturbed formation temperature at any depth, °F 

Teibh Undisturbed formation temperature at bottomhole, °F 

Tf Tubing fluid temperature, °F 

Tfwh Tubing fluid temperature at wellhead, °F 

Tss Steady state temperature of tubing or annulus mud, °F 

Tsur Undisturbed formation temperature at wellhead, °F 

Uto Overall heat transfer coefficient, Btu/hr.ft
2
.°F 

v Velocity of fluid, ft/hr 

  Mass rate of tubing fluid, lbm/hr 
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   Mass rate of tubing fluid after a flow rate change, lbm/hr 

Y0 Bessel function of the second kind of order zero 

z Well depth, ft 

zeffective Depth of effectiveness of hot injection treatment, ft 

    
  Parameter defined by Eq. A-56, ft 

     
  Parameter defined by Eq. 9, ft 

   Thermal diffusivity of formation, ft
2
/hr 

  Thermal diffusivity, ft
2
/sec 

ε Multiplier for mud thermal conductivity, dimensionless 

  Eigenvalue 

  Lumped parameter defined by Eq. A-33, °F/ft 

   Lumped parameter defined by Eq. A-33 after a flow rate change  

  Lumped parameter defined by Eq. A-12, °F/ft 

   Lumped parameter defined by Eq. A-83, °F/ft 
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CHAPTER I  

INTRODUCTION  

 

Many petroleum engineering problems require that transient temperature of wellbore 

fluid is known. This chapter introduces those problems. Details of how transient 

temperature can be of great significance for solving them will follow. Three major 

problems have been studied in this thesis. 

  

Single and Transient Rate Production  

Interest in transient temperature during production could be because of various reasons. 

Gas hydrate plugs can form in gas wells under certain pressure and temperature 

conditions. Similarly, for oil wells, wax can choke the wellbore during production when 

pressure and temperature are within certain range. Knowledge of temperature can help 

avoid such situations. Another application is pressure transient testing which will remain 

our focus to demonstrate capabilities of our transient temperature models for production 

case. 

 

Pressure transient testing involves measurement of pressure by varying flow rates. There 

are many different types of pressure transient tests. These tests often involve 

measurement of either the flowing or shut-in downhole pressure. Many wells have 

permanent downhole gages that record pressure. However, there are many more wells 

where it is not economically feasible to install permanent downhole gages. Under such 
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circumstances bottomhole pressure can only be calculated using the measured wellhead 

pressure. During transient tests well is not in thermal equilibrium with the surroundings. 

Density of wellbore fluid varies with temperature which keeps on changing with time 

during the test. In order to determine accurate bottomhole pressure one needs to take into 

account the unsteady temperature changes in wellbore fluids.  

 

Hasan et al. (2005) proposed a model to estimate transient temperatures during 

production and shut-in. However, the model assumes that variation of wellbore fluid 

temperature with depth (dTf/dz) is time invariant. Spindler (2011) removed this 

assumption by solving their temperature distribution equation using method of 

characteristics, but doing so introduced a discontinuity in solution. However, fluid 

temperature profiles are rarely discontinuous. A model is presented in Chapter III of this 

thesis that calculates smooth temperature profile. 

 

Pressure transient tests also involve series of dissimilar but constant flow rates. For 

instance, in a multirate test there are several drawdowns and buildups of equal time 

duration. A drawdown is followed by a buildup and alternate drawdowns and buildups 

are repeated several times to determine well deliverability. Another example of the rate 

change is the flow-after-flow test. During this test, well is flowed at a constant flow rate 

till the pressure response is stabilized. The flow rate is then increased and the well is 

flowed again at the new flow rate till the pressure response stabilizes again. This process 

is repeated three or four times. Thus, for such tests involving transient rates a model is 



 

3 

 

needed which could determine the transient temperature with changes in the flow rate. A 

model is presented in Chapter IV that is fully capable of calculating the transient 

temperature with change in flow rates. 

 

Experience of modeling temperature for production case helped in design of temperature 

models for injection. This is because of similarity of production and injection operations 

in terms of physics and mathematical formulation. Injection is going to be the topic of 

our discussion in next section. 

 

Single Rate Injection 

Knowing wellbore fluid temperature with time is of importance in injection process. A 

major application where the knowledge of wellbore fluid temperature is critical is that of 

the acidizing treatment. Different kinds of acids are injected into the reservoir as part of 

production stimulation program. Properties of acids are dependent on temperature. Some 

acids become very corrosive for metal in the wellbore system if pumped at high 

temperatures. This necessitates cooling of wellbore system by injecting water before any 

acid is pumped downhole. Time and resources need to be determined for such kind of 

acid treatments. Another application is injection of hot oil for removal of paraffin wax in 

the tubulars. Wax gets deposited in the near wellbore region and the tubing over time 

during production. It is molten off the metal surface by exposing it to hot oil. Although 

there could be more applications of injection model that can be imagined only two are 

discussed here. 
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An attempt has been made to develop a model that can predict transient wellbore fluid 

temperature for fluid injection by modifying Hasan et al. (2005) temperature distribution 

equation. The details of the proposed model are in Chapter V.  This section concludes 

our discussion of temperature models that are useful for calculating temperature profiles 

of either flowing or static wellbore fluid during production and injection operations. 

 

Mud Temperature after Cessation of Circulation 

Aforementioned models can be used for prediction of transient temperature for the 

flowing or static wellbore fluid. The model that is about to be discussed here is 

exclusively for determination of temperature for static fluid. Static borehole mud column 

is used as an example to demonstrate the functionality of our proposed model. 

 

Lowering the temperature of the drill bit is one of the primary objectives of circulating 

mud through borehole. When mud circulation ceases, the temperature of now-static mud 

column would start to increase through heat transfer from the higher temperature 

formation. This temperature increase would change mud rheological properties 

adversely and may cause safety problems. Estimating time required for mud to heat up is 

important for preparation of standard operating procedures of workover or drilling 

operations. This problem has been modeled in Chapter VI as transient radial heat 

conduction in a multilayer cylinder. 
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Proposed Solutions 

Solutions proposed in this work are summarized as follows: 

1. Smooth semianalytical solution of Hasan et al. (2005) temperature distribution 

equation is presented. 

2. A new purely analytical model for predicting transient temperature of wellbore 

fluid for situation involving transient rates during production is developed. 

3. A new semianalytical model for calculation of transient temperature during 

injection operations is presented. Two additional equations can determine the 

time required to cool down the entire wellbore depth for acidizing treatment and 

the depth of effectiveness of paraffin wax removal treatment. 

4. An analytical model for transient temperature of static borehole fluid column is 

derived. 
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CHAPTER II  

LITERATURE REVIEW  

 

Literature review was done for each of the three problems discussed in Introduction. 

 

Single and Transient Rate Production 

Kirkpatrick (1959) was one of the first to model temperature profiles. Ramey (1962) 

developed a theoretical solution for wellbore fluid temperature for single phase 

incompressible liquid or single phase ideal gas. Satter (1965) attempted to improve 

Ramey’s model by incorporating effects of phase change in steam injection wells. Shiu 

and Beggs (1980) studied the data of 270 wells from three geographic locations and 

presented an empirical method for calculating wellbore fluid temperatures of two-phase 

flow wells. Sagar et al. (1991) incorporated effects of kinetic energy and Joule-Thomson 

expansion in their empirical model and proposed an improvement over Shiu and Beggs 

(1980) model. Alves et al. (1992) came up with a unified equation for flowing 

temperatures. Their model is applicable to pipelines and wellbores alike. They set up 

their solution in such a way that it degenerates into Ramey (1962) equation for single 

phase incompressible liquid or ideal gas and into the Coulter and Bardon (1979) 

equation for other case. Hasan and Kabir (1994) formulated a solution for flowing 

wellbore temperature which took wellbore as cylindrical source instead of a linear 

source as assumed by Ramey (1962). Their results showed excellent match with the field 

data when convective heat transfer in casing annulus was also included in heat transfer 
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calculations. Hagoort (2004) presented a graphical correlation to estimate the length of 

early transient period of flowing well and later  presented an analytical solution for 

wellbore fluid temperature of gas wells (Hagoort 2005). In addition to their original 

model for single deviation wells, Hasan et al. (2009) also made a model for complex 

wells. Please note that all of the above models are for steady state flow.  

 

This brings us to the transient temperature models. Hasan et al. (2005) devised a model 

for the transient wellbore fluid temperature which has two separate equations for drawn-

down and buildup. They validated their model with the field data.  Guo et al. (2006) 

designed a model for estimating temperature profiles in pipelines with different kinds of 

insulations. Guo et al. (2006) have considered conduction through the insulation as the 

only heat transfer mechanism while, in addition to conduction, model presented in this 

thesis takes into account, various other resistances to heat transfer in the wellbore, 

especially the natural convective heat transfer in the annulus fluid. Additionally, this 

model takes into account effects of Joule-Thomson expansion and thermal storage of 

wellbore system which are absent in Guo et al. (2006) model. Spindler (2011) solved the 

temperature distribution equation of Hasan et al. (2005) while incorporating the effects 

of longitudinal heat conduction along the wellbore. At the same time, Spindler (2011) 

acknowledges the fact that conduction doesn’t have much of an impact on the wellbore 

temperature profile. In addition, the model is very unwieldy because of very lengthy 

equations which are apparently not improving the simpler model of the same paper. 

Several other models that take numerical approach exist to compute transient flowing 
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fluid temperature. However, we will focus only on analytical modeling here because of 

its ease of implementation and speed with which calculations can be done. 

 

Single Rate Injection 

Moss and White (1959) presented a steady state temperature model for injection. Their 

model had a constant-rate line source solution of diffusivity equation. So does the 

Ramey (1962) who also introduced overall heat transfer coefficient while modeling 

temperature of injection fluids. Squier et al. (1962) developed two solutions: one for 

short time and the other for steady state. Their model considers casing and cement zone 

as part of the formation. Eickmeier et al. (1970) presented a finite difference model for 

calculating transient temperature during production and injection. Arnold (1989) made 

an analytical model for hot liquid injection down the annulus of wellbore. Guo et al. 

(2004) presented a model for calculation of transient temperature for thermal injection 

lines. However, this model has limited applicability because it requires that the 

temperature of fluid at entry point should be same as the medium surrounding the entry 

point. Moreover this model doesn’t take into account thermal storage of wellbore system 

and Joule Thomson effect. 

 

Mud Temperature after Cessation of Circulation 

Bulavin and Kashcheev (1965) presented a solution of heat conduction equation that was 

applicable to multilayer bodies including plates, cylinders and spheres. Singh and Jain 

(2008) presented a solution for transient heat conduction equation that was applicable 
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only for multilayer cylinders. There are several other authors who have studied the 

problem of multilayer bodies but above two are the most relevant for our case. A novel 

implementation of transient temperature solution of heat conduction through multilayer 

cylinder is presented in this thesis. 
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CHAPTER III  

SINGLE RATE PRODUCTION 

 

Introduction 

Hasan et al. (2005) have demonstrated the use of their transient temperature model that 

employs an assumption which reduced the number of variables in their original 

differential equation from two to one. Goal of this chapter is to attempt to improve this 

model and then to develop solutions that could predict flowing wellbore fluid 

temperatures for other conditions. Please note that for the models presented in this 

chapter and the next one, the Hasan et al. (2005) temperature distribution equation has 

not been modified in any way. Rather, new solutions have been created by using the 

temperature distribution equation in its original form with new boundary and initial 

conditions. 

 

Hasan et al. (2005) devised their model by applying energy balance for control volume 

within wellbore for two-phase fluid. Radial heat transfer between fluid and surrounding 

formation was modeled using an overall heat transfer coefficient which included thermal 

resistances for conduction due to tubing, insulation, casing and cement material. Forced 

convection due to tubing fluid and natural convection in the casing annulus was also 

taken into account. 
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Formation temperature distribution was modelled using heat diffusion equation where 

wellbore was modelled as finite cylindrical heat source. The principle of superposition 

was used to model the decrease of heat transfer from wellbore to formation over time. 

Their dimensionless temperature distribution solution had integrals of Bessel function so 

simpler algebraic approximation was used instead. Details are given in Hasan and Kabir 

(1991) and Hasan et al. (2005). 

 

Hasan et al. (2005) developed the following expression for transient fluid temperature,  
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Following boundary and initial conditions were used: 

Boundary condition: 
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Initial condition: 

  (   )        (   )       (3) 

We have used Laplace transform to solve Eq. 1 with the boundary and initial conditions 

given by Eqs. 2 and 3 respectively. Solution to Eq. 1 is: 
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Spindler (2011) arrived at the same solution given in Eq. 4 however this solution causes 

discontinuity in wellbore temperature profile because of the step (Heaviside) function. 

Approximation of step function as follows removes the discontinuity: 
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and 
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(10) 

 

 

Example Case and Discussion 

Here we compare the temperature profiles found using our proposed model of Eq. 7 with 

those of Bahonar et al. (2011). The parameters required for the study are listed in Table 

1 which are taken from Bahonar et al. (2011). 
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Fig. 1 compares the results of temperature profiles generated using Eq. 7 with those of 

Bahonar et al. (2011) for different times at a fixed flow rate. 

 

 

Fig. 1-Comparison of temperature profiles of Bahonar et. al (2011) and this study 
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Total Vertical Depth, ft 15000 

Measured Depth, ft 15000 

Inclination, degrees 90 

Pipe Roughness, ft 0.00001

8 
  

Tubing ID, in. 2 5/9 

Tubing OD, in. 3 ½ 

Casing ID, in. 9 

Casing OD, in. 10 ¾ 

Cement ID, in. 10 ¾ 

Cement OD, in. 16 

  

Surface Temperature, °F 70 

Bottomhole Temperature, °F  317.5 

  

Coefficient of Thermal Expansion (β), 1/°F 0.00209

07 
Critical Pressure, psia 675.43 

Critical Temperature, °R 384.41 

Specific gravity of gas 0.651 

Thermal conductivity of tubing fluid, Btu/(hr-ft-°F) 0.018 

Thermal conductivity of tubing, Btu/(hr-ft-°F) 25 

Thermal conductivity of annulus fluid, Btu/(hr-ft-°F) 0.01671

6 
Thermal conductivity of casing, Btu/(hr-ft-°F) 25 

Thermal conductivity of cement, Btu/(hr-ft-°F) 1.15 

Thermal conductivity of formation, Btu/(hr-ft-°F) 2 

Emissivity of casing inside surface 0.9 

(0.7) 
Emissivity of tubing outside surface 0.9 

(0.7) 
Specific heat of gas, Btu/(lbm-°F) 0.514 

Specific heat of annulus fluid, Btu/(lbm-°F) 0.241 

Geothermal gradient, °F/ft 0.0165 

  

Production rate, MMSCF/D 5 

  

CT, dimensionless 0 (0.5) 

 

Table 1-Input Parameters for the Production Example Case 
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Markers in Fig. 1 represent the temperature profiles that were digitized from Bahonar et 

al. (2011) while the solid lines are the results of this study. Bahonar et al. (2011) use the 

same energy balance equation in their model as Hasan et al. (2005) which is the reason 

why the temperature profiles obtained using Eq.7 and Bahonar et al. (2011) model are 

very similar. 

 

Fig. 2 compares the temperature profiles calculated using Hasan et al. (2005) and this 

study. The figure shows how the temperature profiles would look like when dTf/dz term 

in Eq. 1 is taken as time-variant as opposed to Hasan et al. (2005) model which take the 

dTf/dz term as time-invariant.  

 

Overall heat transfer coefficient was calculated using conventional heat transfer 

equations which are also present in Willhite (1967). Z factor was calculated using the 

method of  Dranchuk et al. (1973). Heat transfer coefficient because of natural 

convection in annulus was calculated using the  Hasan and Kabir (1994) adaption of 

correlation of Dropkin and Somerscales (1965). 5% of the calculated value was used as 

the convective heat transfer coefficient in annulus for further calculations. Wellbore was 

assumed to be of constant cross section throughout the depth of well. Friction factor in 

tubing was calculated using equation presented by Chen (1979). 
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Fig. 2-Comparison of temperature profiles of Hasan et. al (2005) and this study 

  

Input parameters listed in Table 1 are taken from the paper of Bahonar et al. (2011) 

while the values in small brackets are the values that were used to achieve a close match 

for temperature profiles with those of Bahonar et al. (2011). 



 

17 

 

The improvement in temperature profile is because of the Logistic function 

approximation of Heaviside function in Eq. 7. Fig. 3 compares the Heaviside function 

and its approximation at t=0.2778 hr. Heaviside function is a step function. Its value can 

either be zero or one. It controls the speed of the temperature transient that passes 

through the wellbore. This is the reason why it causes a sharp discontinuity in the 

temperature profile. Logistic function on the other hand transitions smoothly. 

 

 

Fig. 3- Comparison of Logistic function and Heaviside function at t=0.2778 hr 

 

Fig. 4 compares the temperature profile for the example case generated using the 

equation that uses Heaviside function as opposed to the equation that uses the Logistic 

function. Even though the difference between the profiles at 12000 foot depth is subtle, 

it can become more pronounced in certain cases. For example, if the effects of radiation 
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in annulus had been ignored (in case of low bottomhole temperatures or relatively 

shallow wells) the profile would make a very sharp turn at the same depth in case of 

Heaviside function as compared to Logistic function. (see Fig. 5) 

 

 

Fig. 4-Profiles generated using Heaviside and Logistic functions (with radiation) 
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Fig. 5-Profiles generated using Heaviside and Logistic functions (no radiation) 

 

Summary 

Transient temperature distribution equation of Hasan et al. (2005) model was solved 

using the method of Laplace transform. The same equation has already been solved by 

Spindler (2011) using method of characteristics. However, Spindler (2011) solution has 

a disadvantage of discontinuity around the region given by Eq. 9. 

 

The analytical method proposed in this chapter solved the problem of discontinuity by 

using Logistic function instead of Heaviside function. Since application of Laplace 

transform allows efficient solution of partial differential equations involving time, it will 

now be used to develop a model for a new flow configuration in next chapter.   
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CHAPTER IV  

TRANSIENT RATE PRODUCTION 

 

Introduction 

The model presented in the last chapter works only for a single constant flow rate. 

However, actual wells are flowed at various constant flow rates. There are situations in 

which knowing the transient temperature of wellbore fluids is important while flow rate 

is being changed. Knowledge of temperature becomes important during the well 

deliverability tests. One such example is flow after flow test. In this test, well is flowed 

at a constant flow rate until the flowing pressure reaches a pseudo-steady state. Flow rate 

is then increased and well is flowed again till it achieves pseudo-steady state again. 

Change of flow rate is repeated three or four times. Multirate test presents another area 

where knowledge of temperature with transient rate becomes important. During a 

multirate test there are a series of drawdowns and buildups. Well is flowed at different 

rates during each drawdown. Once the temperature is calculated density can be 

calculated accurately which allows calculation of pressure. This model is useful in 

situations where permanent downhole gages are not present and only wellhead pressure 

has to be used to calculate the bottomhole pressure. 

 

Eq. 1 can be solved for such a situation. Assume that well has flowed at a constant flow 

rate for a time after which the wellbore temperature profile has become steady. This is 

used as initial condition: 
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 Using boundary condition given by Eq. 2, the solution to Eq. 1 is given by: 
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This model is fully capable of predicting temperature profiles for two cases: 

1) Flow rate change 

2) Well shut-in 

Also notice that the solution given by Eqs. 12-15 is purely analytical in nature and 

approximations like Logistic function used in the model given by Eq. 7 have not been 

used here. There are two portions of the solution. Eq. 12 represents the transient portion 

of the solution. As time progresses, the solution degenerates into steady state equation 

represented by Eq. 14 here.   
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Example Case and Discussion 

For the example case, well was flowed at successive flow rates of 5, 10 and 15 

MMSCFD followed by a shut-in of 33 hours. Each drawdown lasted for 4 hours. Values 

listed in Table 1 are valid for this case unless otherwise stated in the body of this 

chapter. 

 

Fig. 6 shows the variation of wellhead temperature with time. Please note that shut-in 

was simulated by using a very small flow rate of 500 SCFD instead of zero.  

 

Fig. 7 shows wellbore fluid temperature profiles at various times during three 

drawdowns. 

 

Here is how calculations were done: Fluid temperature for first drawdown was 

calculated using Eq. 7 of the last chapter. For the second and third drawdowns and 

subsequent shut-in, Eqs. 12-15 were used to calculate the transient temperature.  

Overall heat transfer coefficient was calculated using the equations mentioned in 

Willhite (1967). Z-factor was calculated using the method of  Dranchuk et al. (1973). 

Natural convection heat transfer coefficient in annulus was calculated using the  Hasan 

and Kabir (1994) adaption of Dropkin and Somerscales (1965) correlation. 5% of the 

calculated value was used as the convective heat transfer coefficient in annulus for 

further calculations. Wellbore was assumed to be of constant cross section throughout 

the depth of well. Properties like thermal conductivity, specific heat are assumed to be 
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constant. CT value of 3 was used for the drawdown while for shut-in CT was chosen to be 

zero.  

 

 

Fig. 6- Wellhead temperature with time 
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Fig. 7-Temperature profiles during three drawdowns 

 

Fig. 8 shows temperature variation with time once the well is shut in. Observe that the 

temperature drops very rapidly right after the shut-in. This is because high temperature 

difference between the wellbore fluid and formation temperature causes heat transfer 

rate to be high initially. However as the time progresses the temperature difference 

decreases which reduces the speed with which temperature is dropping. Temperature 

matches the geothermal gradient at about t=45 hours.  
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Fig. 8-Temperature profiles at different values of time during shut-in 

  

Guo et al. (2006) have also developed a model for predicting temperature fluid in a 

pipeline after a rate change. However, they have considered conduction through the 

insulation as the only heat transfer mechanism while, in addition to conduction, our 

solution takes into account, various other resistances to heat transfer in the wellbore, 

especially the natural convective heat transfer in the annulus fluid. This model also takes 

into account effects of Joule-Thomson expansion and thermal storage of wellbore system 

which are absent in Guo et al. (2006) model. 
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Summary 

Hasan et al. (2005) temperature distribution equation was solved with appropriate 

boundary and initial conditions to develop a new model for predicting wellbore fluid 

transient temperature after a change in flow rate. A synthetic case was used to 

demonstrate the functionality of the model. It can predict wellbore fluid transient 

temperature after a flow rate change and shut-in and is very useful in calculating 

temperature and pressure profiles iteratively during multirate and flow-after-flow tests.  

 

Knowledge gained while making model for the production case has enabled us to 

implement same approach to model a physically and mathematically similar injection 

operations case in next chapter. 
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CHAPTER V  

SINGLE RATE INJECTION 

 

Introduction 

Approach taken for the production case can also be applied to model transient 

temperature for injection operation. Transient temperature during injection is of interest 

due to several applications. Acid placement is one of those applications. Huenges and 

Ledru (2010) discuss how temperature can affect tubulars adversely during acid 

treatments. High acid temperature increases the rate of corrosion of tubing. High 

temperature can also reduce the efficiency of corrosion inhibitors. Knowing exactly how 

the temperature profile would look like with respect to time and depth would enable the 

designing of acid treatment in a much more efficient way. Pre-flushing the well with 

cold water would decrease the temperature of tubulars. 

 

Model presented here would make it easy to take decisions regarding the type of acid 

used and/or how much water needs to be pumped into the reservoir to cool down the 

tubulars before final injection of acid can be done.  

 

This leads us to another important application: wax removal treatment. Paraffin 

deposition in the tubulars and the near-wellbore region is a frequently-occurring problem 

in many oil fields. Hot oil is injected downhole to remove the paraffin in the tubing and 

near wellbore region. According to Straub et al. (1989), for rod pump systems heated 
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crude oil is pumped downhole to melt paraffin wax deposits periodically. The model 

presented here would also enable the user to gage the effectiveness of the treatment. 

The temperature distribution model used for production in Hasan et al. (2005) model has 

been modified by only changing signs of terms for the case depicting the injection 

process as follows: 
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Eq. 16 is subject to following boundary and initial conditions: 
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Solution of Eq. 16 is given by: 
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For acid treatment, time required to cool down the total depth of wellbore using water 

preflush is given by: 

         
(    ) ( )

 
 

 
(21) 



 

29 

 

This is the time required by the temperature transient to reach bottomhole. At the value 

of time given by Eq. 21, wellbore temperature achieves pseudosteady state. At greater 

values of time the change of temperature with time is very small. 

 

For hot oil treatment, the depth of effectiveness of treatment is given by the equation: 
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(22) 

It will be shown in the following section that for hot oil treatment the temperature of 

injected fluid is greater than the geothermal gradient till a certain depth at which the 

fluid temperature and formation temperature become equal. At depths below this point 

the temperature of injected fluid remains lower than the geothermal gradient. The 

crossover point between fluid temperature and the geothermal gradient marks the 

effective depth of the treatment. This depth was found by substituting formation 

temperature with the wellbore fluid temperature in Eq. A-48. Details of the derivation 

are in Appendix. 

 

Example Case and Discussion 

The proposed model has been used to calculate temperature profiles of water injection 

for the well described by the parameters listed in Table 2. Following assumptions were 

employed to obtain the results: 

1. Heat conduction is ignored in vertical direction. 

2. Heat transfer by radiation is ignored. 
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3. Wellbore heat capacities, thermal conductivities, wellbore thermal storage 

coefficient and density of annular fluid do not change with temperature. 

4. Even though model is fully capable of handling Joule Thomson heating/cooling, 

it has been ignored for water injection. 

 

A simulator was set up in MS Excel while iterations were performed using rudimentary 

VBA code. Wellbore was divided into 51 divisions of equal length with each division 

having same properties. Pressure drop, temperature and other properties were calculated 

for each division. Thermal resistances were calculated using conventional heat transfer 

analysis. Natural convection heat transfer coefficient in annulus was calculated using the  

Hasan and Kabir (1994) adaption of Dropkin and Somerscales (1965) correlation. 4% of 

the calculated value was used as the convective heat transfer coefficient in annulus for 

further calculations. Viscosity of water was calculated using Kestin et al. (1978) 

correlation.  
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Total Vertical Depth, ft 10000 

Measured Depth, ft 10000 

Inclination, degrees 90 

Pipe Roughness, ft 0.0001

5 
  

Tubing ID, in. 2.28 

Tubing OD, in. 2.88 

Casing ID, in. 5.012 

Casing OD, in. 5.5 

Cement ID, in. 5.5 

Cement OD, in. 7.8 

  

Wellhead Pressure, psia 8000 

Wellhead Temperature, °F 50 

Surface Temperature, °F 50 

  

Coefficient of Thermal Expansion (β), 1/°F 0.0021

6 
Thermal conductivity of tubing fluid, Btu/(hr-ft-°F) 0.2 

Thermal conductivity of tubing, Btu/(hr-ft-°F) 25 

Thermal conductivity of annulus fluid, Btu/(hr-ft-°F) 2.1 

Thermal conductivity of casing, Btu/(hr-ft-°F) 25 

Thermal conductivity of cement, Btu/(hr-ft-°F) 0.5 

Thermal conductivity of formation, Btu/(hr-ft-°F) 1.4 

Specific heat of oil, Btu/(lbm-°F) 0.53 

Specific heat of water, Btu/(lbm-°F) 1 

Specific heat of annulus fluid, Btu/(lbm-°F) 1 

Geothermal gradient, °F/ft 0.016 

  

CT, dimensionless 5 

 

Table 2-Input Parameters for the Injection Example Case 
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Fig. 9-Temperature vs. depth for various times 

 

Fig. 9 gives the comparison of temperatures predicted by this study with those predicted 

by Eickmeier et al. (1970) for flow rate of 5760 BWPD at 0.25, 0.5, 1 and 4 hours.  

 

Fig. 10 compares results of this study with the Eickmeier et al. (1970) for flow rates of 

2880 BWPD, 5760 BWPD and 14400 BWPD at the injection time of 30 minutes.  

 

Markers in Figs. 9-10 are the temperature profiles digitized from Eickmeier et al. (1970). 
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Obtained temperature profiles are intuitive. As water goes down the wellbore it starts to 

heat up. Since temperature difference between the injected fluid and formation is high at 

the start of injection, water experiences large increase in temperature. For the initial few 

thousand feet the temperature increases slowly but as water goes deeper in the wellbore 

the temperature goes up rapidly and the temperature profile becomes parallel to the 

geothermal gradient. Well starts to cool down. After a certain time (depending on flow 

rate) the temperature profile achieves pseudo-steady state and the change in temperature 

with time becomes extremely slow. 

 

Results show a good match with Eickmeier et al. (1970) however model presented here 

has several advantages. Semianalytic nature makes this model much easier to implement 

using spreadsheets than the purely numerical model of Eickmeier et al. (1970). 

Moreover, since Hasan et al. (2005) temperature distribution equation, i.e. Eq. 16, has 

Joule Thomson term in it, temperature profiles for gas injection can also be calculated 

accurately. Also, Eickmeier et al. (1970) use a constant convective heat transfer 

coefficient for annulus fluids throughout the depth of the wellbore while for this study, 

heat transfer coefficient varies with depth and is therefore more representative of actual 

physical conditions. 
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Fig. 10-Temperature vs. depth for various flow rates at t = 0.5 hr 

 

The model was also used to calculate the temperature profiles for hot water injection for 

the same well. Input parameters listed in Table 2, except injection temperature, are valid 

for the temperature profiles shown in Figs. 11 and 12. Injection temperature is 70°F for 

both figures. 
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It is interesting to observe that for about first thousand feet the temperature of injected 

water is higher than the geothermal gradient until it becomes equal to the formation 

temperature. At deeper depths fluid temperature remains lower than the geothermal 

gradient. 

 

Fig. 11 shows temperature transient passing through the wellbore system. At 0.25 hr the 

transient is at a shallow depth (see the “bulge” in maroon temperature profile). As the 

time passes the transient has reached deeper towards the bottomhole at 0.5 hr. The 

transient has passed completely through the system and temperature has achieved 

pseudosteady state at about 1 hr.  

 

 

Fig. 11-Temperature vs. depth for various times at injection rate of 5760 BWPD 



 

36 

 

Physically this can be explained as follows: Before the injection is started, the fluid in 

wellbore is at rest and its temperature is same as the formation temperature. As the fluid 

is injected into the wellbore at a constant temperature it displaces the fluid originally 

present in the wellbore. The injection causes the temperature of fluid in shallower depths 

to achieve pseudosteady state faster while the temperature of the displaced fluid follows 

the same slope as the geothermal gradient. The “bulge” in the temperature profile 

represents the transient front where the injected fluid meets the displaced fluid that was 

originally present in the wellbore. 

 

 

Fig. 12-Temperature vs. depth for various flow rates at t = 0.5 hr 
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If hot fluid is being injected to melt paraffin wax in tubulars, the effectiveness of 

treatment would be limited to the depth, given by Eq. 22 where injected fluid 

temperature becomes equal to the geothermal gradient. This is because at deeper depths 

the injected fluid temperature will be much lower than the geothermal gradient. Any wax 

deposited beyond that depth would remain solid. This point is made clearer in Fig. 13 

which shows temperature profiles for various injection temperatures at injection rate of 

5760 BWPD. For injection temperature of 70°F the depth till which fluid temperature is 

higher than the geothermal gradient is 1400 ft. When injection temperature is increased 

to 100°F this depth is increased to 3200 ft. This means that increasing injection 

temperature by 30°F has increased the depth, till which injection treatment will be 

effective, by 1800 ft in this case. 

 

This depth can be further increased if tubing insulation is enhanced. Fig. 13 also shows 

that the model can predict temperature profile for injection temperature lower than the 

surface temperature. Time required to cool the entire wellbore depth can be calculated 

using Eq. 21. 

 

Please note that Squier et al. (1962) presented a short-time solution and a long time 

approximation for hot water injection. However their model ignores the presence of 

casing and cement zone. They consider the casing and cement zone as part of the 

formation.  
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Fig. 13-Temperature vs. depth for various injection temperatures 

 

Summary 

Hasan et al. (2005) temperature distribution equation was adapted for the case of fluid 

injection and solved using Laplace transform to create a model for prediction of 

temperatures of injected fluids. Model accounts for Joule Thomson expansion and is 

therefore capable of predicting accurate gas injection temperatures also. Since model 

takes into account the surface injection temperature it can be used to plan acid treatments 

as well as treatments for removal of paraffin wax that involve injection of hot fluids. 

Two additional equations can predict the time required to cool the entire depth of 

wellbore, in case of acidizing treatment and the effective depth for paraffin wax removal 
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treatment respectively. Equations presented in this chapter are simple enough to be used 

with any spreadsheet software. 

 

This chapter concludes the effort that was put in to model transient temperature for 

flowing wellbore fluids under different flow configurations. Details of how static 

borehole fluid temperature was modeled are presented in the next chapter. 
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CHAPTER VI  

TRANSIENT TEMPERATURE OF STATIC MUD AFTER CESSATION 

OF CIRCULATION 

 

Introduction 

Although the model presented here exclusively calculates transient temperature of static 

fluid column, a brief overview of a preceding flowing condition is necessary for our 

discussion. Flowing mud temperature is of great interest because of numerous reasons. 

Maury and Guenot (1995) have discussed the advantages of cooling drilling mud. Mud 

returning from downhole needs to be cooled down before it is pumped back in order to 

maintain bottomhole at a temperature cooler than the geothermal temperature at that 

depth. MWD and LWD tools can only operate within a certain temperature range and it 

becomes absolutely necessary to cool down the bottomhole before MWD/LWD tools 

can be used. In case of oil-base muds, temperature of return flow should not be higher 

than the flash point so that it doesn’t catch fire on the surface. Rheological properties of 

mud are temperature-dependent. In order for mud to perform its desired task, it has to be 

flowed at a temperature usually much cooler than the bottomhole temperature.  

  

 There are several models available that can predict the flowing mud temperature for 

mud flow in through annulus and out through tubing and vice versa. However, it is also 

necessary for the mud temperature to be determined once the flow stops. The model 

presented here can be used to determine the amount of time it would take for the mud to 
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heat up. This would help in estimating the amount of time driller has, to take corrective 

actions to re-establish flow in case of unplanned cessation of flow.  

 

The heating/cooling of the wellbore mud has been modeled as a conduction problem of a 

multilayer cylinder. Following assumptions have been made: 

1. Thermal properties do not vary with temperature. 

2. No natural convection is taking place within borehole. 

3. There is no heat conduction within the mud column in the longitudinal direction. 

4. Formation temperature is assumed to be constant and follows a geothermal 

gradient. 

5. The cross section of the hole is constant throughout the depth of hole. 

6. Even though presence of mudcake buildup can be modeled using this model, here 

it has been neglected for the sake of simplicity. 

 

Transient heat conduction equation in cylindrical coordinates is given by: 

    

   
 

 

 

   

  
 

 

  

   

  
   

(23) 

Steady state temperature calculated using Kabir et al. (1996) model was used as initial 

condition while formation temperature was used as the outside boundary condition. 

Details of the interfacial conditions and solution are in Appendix. 

 

Solution of transient heat conduction equation is: 
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where an and Rn are given by: 
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              (27) 

Analytical solution for conduction in multi-layer cylinder have already been published in 

literature like those of Bulavin and Kashcheev (1965) and Singh and Jain (2008), 

however such solution has never been applied or adapted to the borehole mud 

temperature calculation, to the best of author’s knowledge. 

 

Example Case and Discussion 

Consider a borehole, described by parameters listed in Table 3, in which mud has flowed 

for 44 hours. At this point in time the temperature for the mud flowing through annulus 

and tubing has achieved pseudosteady state that has been calculated using Kabir et al. 

(1996) model. At the end of 44
th

 hour the mud flow stops. This is exactly the time after 

which the model given by Eqs. 24-27 is used to calculate transient temperature of the 

borehole mud. 
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Total Vertical Depth, ft 15000 

Measured Depth, ft 15000 

Inclination, degrees 90 

Drillstem OD, in. 6.625 

Drill-bit size, in. 8.375 

  

Mud Inlet Temperature, °F 75 

Surface Temperature, °F 59.5 

  

Thermal conductivity of mud, Btu/(hr-ft-°F) 1 

Thermal conductivity of formation, Btu/(hr-ft-°F) 1.3 

Thermal conductivity of formation, Btu/(hr-ft-°F) 1.3 

Specific heat of mud, Btu/(lbm-°F) 0.4 

Specific heat of formation, Btu/(lbm-°F) 0.2 

Density of mud, ppg 10 

Density of formation, lbm/ft
3
 165 

Geothermal gradient, °F/ft 0.0127 

Viscosity of mud, lbm/ft.hr 110 

Circulation rate, bbl/hr 300 

 

Table 3-Input Parameters for the Static Mud Example Case 

 

Formation temperature is assumed to vary linearly with depth. It is also assumed that at 

the borehole mud - borehole wall interface the temperature remains constant and equal to 

the formation static temperature. Flowing mud temperature given by Kabir et al. (1996) 

model was used as initial condition for the proposed model.  

 

 Note that Eq. 23  is a radial conduction equation. This means that it can determine the 

temperature variation with respect to time in radial direction only. In order to use it for 

this example, borehole was divided into 50 segments of equal length and temperature 

was assumed to be same throughout the depth of each segment. Interfacial contact 
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resistance between borehole wall and the mud plays a very important role. Mud cake 

buildup, along with rough borehole wall surfaces mean that heat transfer would not be 

perfect. This was modeled by using the concept of effective thermal conductivity. ε is 

used as a multiplier for thermal conductivity of mud. ε = 1 means that perfect thermal 

contact exists between the borehole mud and borehole wall interface. However, there 

would always be a thermal contact resistance at the interface because of roughness of 

borehole wall and presence of mudcake. To mimic such contact resistance a value of ε < 

1 can be used. Model was used to predict the most conservative case of ε = 1 down to the 

best case scenario of ε=0.2. Latter is considered best case scenario because very small 

value of ε means mud would not heat up rapidly and thus would have better chance of 

avoiding deterioration of its properties.  

 

Figs. 14-15 show the temperature profile of tubing mud at various values of time for the 

values of ε=0.2 and ε=1. Steady state temperature profile achieved after 44 hours of flow 

is represented by t=0 here. Observe that mud temperature is higher than the geothermal 

gradient for the upper portion of borehole until it crosses the geothermal gradient at a 

depth of around 8000 ft and becomes cooler in the lower half of the borehole. Cooler 

temperatures near the bottomhole are desirable so that MWD/LWD tools can be used 

safely. Moreover, mud rheological properties deteriorate if the mud heats up to the 

geothermal gradient at the bottom half of the well depth. For the case of high interfacial 

contact resistance, the well heats up much slower than the perfect contact assumption 

case.   
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Fig. 14- Mud temperature vs. measured depth for different times (ε=0.2) 

 

Knowing how fast or slow the mud heats up near the bottomhole is important because if 

for any reason the mud circulation stops, corrective measures could be taken. This model 

gives the time window driller would have to prevent mud properties from deteriorating. 

 

Fig. 16 shows the variation of temperature with radius within tubing and annulus at 

different values of time for ε=0.2 near bottomhole where formation temperature is 245 

°F. Once the flow stops, mud starts to heat up until its temperature becomes equal to the 

formation temperature in about 17 hours. For the same depth, mud heats up much 

rapidly if perfect thermal contact is assumed at the interface.  
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Fig. 15-Mud temperature vs. measured depth for different times (ε=1) 

 

Fig. 17 shows that in a little over 2 hours mud heats up to the formation temperature. 

 

Since comparison has been made, in the foregoing, between two extreme values of ε, it 

is now appropriate to show how temperature would vary for the intermediate values of ε. 

 

Fig. 18 shows the variation of average tubing mud temperature with time. As the value 

of ε decreases from 1 to 0.2, the heat-up time of tubing mud increases. 
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Fig. 16-Variation of temperature with radius at different values of time (ε=0.2) 
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Fig. 17-Variation of temperature with radius at different values of time (ε=1) 
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Fig. 18-Change in average tubing temperature over time for different values of ε. 

 

Summary 

Knowledge of borehole mud temperature is important because temperature has strong 

implications on mud rheology, operational safety, use of MWD/LWD tools. Transient 

radial heat conduction equation has been solved for appropriate initial and boundary 

conditions to develop a model for predicting transient temperature of drilling mud 

column upon accidental interruption of flow during drilling, work-over or completions 

operation. Mud column in tubing and annulus was modelled as a multi-layer cylinder 
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conduction problem. Concept of effective thermal conductivity has been used to model 

thermal contact resistance between borehole mud and borehole wall. Mud temperature 

profiles have been plotted for different values of depths, radius and time. 

 

This chapter marks the end of the problems studied in this thesis. A final chapter that 

summarizes all that has been done so far is in order. 
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CHAPTER VII  

SUMMARY 

 

Thesis begins with the introduction of multiple problems for which transient temperature 

is important followed by the work that has already been done on the topics discussed in 

this thesis. Details of the problems are in separate chapters. Third chapter deals with the 

approximation of transient temperature solution of Hasan et al. (2005) done by Spindler 

(2011). Logistic function approximation of Heaviside step function has been used to 

smooth the solution. But this solution was only applicable for a single flow rate 

situation. 

 

A model was then created to calculate transient temperature of wellbore fluids for 

multiple constant flow rates. Pressure transient testing was used as an example 

application for this model. Pressure transient testing requires accurate measurement of 

flowing pressure. Accurate prediction of downhole temperature is necessary in order to 

determine flowing pressure because density of wellbore fluids, especially gases, is 

dependent on temperature. During the test, fluid temperature keeps on changing with 

time because well has still not achieved thermal equilibrium with the surrounding 

formation. This is exactly the reason why we need a model to predict temperature with 

time. The model becomes very useful when only wellhead conditions are known and 

bottomhole pressure has to be determined using the wellhead pressure. Multirate tests 

and flow-after-flow tests are two of the various pressure transient tests that involve flow 
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rate changes. A model for predicting transient temperature for transient rates was 

developed by solving Hasan et al. (2005) temperature distribution equation. Steady state 

temperature equation was used as initial condition for this solution. The model’s 

functionality was shown using a synthetic case. 

 

Fifth chapter introduces the reader to the transient temperature modeling of injection 

fluids. This is important for various reasons including acid treatments and paraffin wax 

removal. Certain acid treatments require that wellbore be flushed before injection of acid 

downhole. This is to reduce the temperature of wellbore system. This problem becomes 

more severe in deeper wells. Certain acids have very high rates of corrosion at high 

temperatures. Injection model presented will allow the planning of such acid treatments. 

It will allow users to calculate the time needed for the cooling of wellbore, flow rate 

required to achieve the cooling, net amount of fluid required and temperature at which 

the injection should be done. In case of paraffin wax removal, it was shown that 

effectiveness of the hot fluid treatment is dependent on injection temperature. 

Additionally, injected fluid temperature is higher than the geothermal gradient down till 

a certain depth. After that point the temperature of injected fluid is much lower than the 

geothermal gradient. The intersection point of geothermal gradient and injected fluid 

temperature represents the limit of effectiveness of the injection treatment.  

 

Sixth chapter deals with the transient temperature of static borehole mud column. This 

problem has been modeled as a radial conduction in a multilayer cylinder. Borehole mud 
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column has been modeled as multilayer cylinder with mud present in annulus and tubing 

as the two layers. Radial heat conduction equation was solved with steady state mud 

temperature calculated using Kabir et al. (1996) model as the initial condition and static 

formation temperature as the boundary condition at the borehole mud - borehole wall 

interface. Thermal contact resistance at the interface was modeled by bringing in the 

concept of effective thermal conductivity.   

 

All the solutions presented in this thesis are either analytical or semianalytical. One of 

the qualities of analytical solutions apart from being accurate is they take less time for 

calculation. All of the results presented here were calculated using MS Excel. All 

solutions are very simple and can be applied easily. 
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APPENDIX 

 

Single Rate Production 

Following is the attempt to solve the temperature distribution equation Eq. A-8 of Hasan 

et al. (2005) using Laplace transform. The beauty of this method is that Laplace 

transform enables us to find the solution of equation using boundary condition and initial 

condition simultaneously.  
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Subject to initial and boundary conditions: 
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Application of Laplace transform on both sides of Eqs. A-1, A-2 and A-3 yields: 
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Substitute Eq. A-5 in to Eq. A-4 yields: 
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Eq. A-7 is first order ordinary differential equation.  

 

Integration factor is given by: 
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Multiply Eq. A-7 by integration factor given in Eq. A-8. 
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Rearranging Eq. A-9 yields: 
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Integration of Eq. A-10 gives: 
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where c1 is integration constant and  

           
     

     
 

(A-12) 

Application of boundary condition Eq. A-6 to Eq. A-11 lets us find integration constant 

c1 as: 
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Substitute c1 from Eq. A-13 into Eq. A-11 gives:  
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Application of Laplace Inverse transform to Eq. A-14 gives: 
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where H is Heaviside function given by: 
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Since Heaviside is a step function it causes abrupt discontinuity in the temperature 

profile. This has to be replaced with Logistic as follows. Logistic function equation is 

given by: 
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 where  

A = minimum asymptote 

 ̂ = slope factor 
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C = inflection point 

D = maximum asymptote  

For our case  

x = z (A-18) 

   ̂ (A-19) 

A = 0 (A-20) 

        
  (A-21) 

D = 1 (A-22) 

where      
  is defined as the depth where condition given by the following equation is 

true: 
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Substitute the values of x, y, A, C and D into Eq. A-17 
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 ̂  can be calculated as follows: 

Define  

 ̂              (A-25) 

Substitute Eq. A-25  into Eq. A-24 
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After rearranging and taking natural log of both sides of Eq. A-26 we get: 
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Heaviside function in Eq. A-15 is replaced with Logistic function and the final transient 

temperature equation is given by: 
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Where  
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  ̂ and      
  are given by Eqs. A-27 and A-23. 

Equations for various parameters required to calculate temperature using Eq. A-28 are 

being reproduced here from Hasan et al. (2005) and Hasan and Kabir (1994). 
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Single Rate Injection 

For the case of injection following temperature distribution is solved: 
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Subject to initial and boundary conditions: 

  (   )       (A-35) 

  (   )               (A-36) 

Application of Laplace transform on both sides of Eqs. A-34, A-35 and A-36 yields: 
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Substitute Eq. A-38 in to Eq. A-37 yields: 
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Eq. A-40 is first order ordinary differential equation.  

 

Integration factor is given by: 
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Multiply Eq. A-40 by integration factor given in Eq.A-41. 
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Rearranging Eq. A-42 yields 
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Integration of Eq. A-43 gives: 
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where c1 is integration constant and  
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Application of boundary condition Eq.A-39 to Eq. A-44 lets us find integration constant 

c1 as: 
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Substitute c1 from Eq. A-46 into Eq. A-44 gives:  
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Application of Laplace Inverse transform to Eq. A-47 gives: 
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where H is Heaviside function given by: 
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Since Heaviside is a step function it causes abrupt discontinuity in the temperature 

profile. This has to be replaced with Logistic function as follows. Logistic function 

equation is given by: 
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(A-50) 

where  

A = maximum asymptote 

 ̌ = slope factor 

C = inflection point 

D = minimum asymptote  

For our case  

x =  z (A-51) 

   ̌ (A-52) 

A = 1 (A-53) 

      
  (A-54) 

D = 0 (A-55) 

where     
  is defined as the depth where the condition given by the following equation is 

true: 
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Substitute the values of x, y, A, C and D into Eq. A-50 
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 ̌ can be calculated as follows: 

Define  

 ̌              (A-58) 

Substitute Eq. A-58  into Eq. A-57 
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After rearranging and taking natural log of both sides of Eq. A-59 we get: 
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Heaviside function in Eq. A-48 is replaced with Logistic function and the final transient 

temperature equation is given by: 
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where  
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B and z’ are given by Eqs. A-60 and A-56 respectively. 

 

Arnold (1989) found that, at a certain depth, fluid temperature crosses the formation 

temperature and this is the depth to which heat treatment is effective. Similarly, our 

proposed model predicts such depth which can be obtained by substituting formation 

temperature for fluid temperature for a value of Heaviside function of 1 in Eq. A-48 as 

follows: 
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Rearrangement of above equation leads to: 
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Transient Rate Production 

For transient rate case, the governing equation would remain the same however different 

boundary condition will be used. 
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Subject to initial and boundary conditions: 
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Application of Laplace transform on both sides of Eqs. A-65, A-66 and A-67 yields: 
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Substitute Eq. A-69 in to Eq. A-68 yields: 
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Eq. A-71 is first order ordinary differential equation.  
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Integration factor is given by: 
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Multiply Eq. A-71 by integration factor given in Eq.A-72. 

 
 
  

  [(    )  
  

    
 ] 

    
 
  

  [(    )  
  

    
 ]  

 

  
[(    )  

  

  
  
 ]  

   
 
  

  [(    )  
  

    
 ]  

 

  
(    ) [      (   )      

  
    (   )  

  
 ]

 
 
 
  

  [(    )  
  

    
 ] 

 
[  

 (      (   )      )    

 
     

     
]    

(A-73) 

 

 

 

 

 

 

 

 

 

 



 

73 

 

Rearranging Eq. A-73 yields 
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For maintaining the readability of derivation lets define: 
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 Integration of Eq. A-74 gives: 
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where c1 is integration constant and  
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Application of boundary condition Eq. A-70 to Eq. A-76 lets us find integration constant 

c1 as: 
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Substitute c1 from Eq. A-78 into Eq. A-76 gives:  
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Application of Laplace Inverse transform to Eq. A-79 gives: 
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where values of Heaviside functions in Eqs. A-84 and A-86 are determined by Eq. A-87. 
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Transient Temperature of Mud after Cessation of Circulation 

Heat transfer in static borehole mud has been modeled as conduction through a 

concentric cylinder. Fig. 19 shows the cross section of a multilayer concentric cylinder. 

 

 

Fig. 19-Cross section of a multilayer concentric cylinder 

 

Heat conduction equation in radial coordinates for such multilayer concentric cylinder 

can be written as follows: 
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Initial condition: 

  (   )              (A-89) 

Boundary conditions: 

For i = 1 

  (   )         (A-90) 

Outer surface of nth annulus: 
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Inner interface of ith layer: 
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Outer interface of ith layer 
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Interface conditions given by Eqs. A-92 to A-95 are necessary for continuous heat 

flux.(De Monte 2003) 

 

Substitute  
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into Eqs. A-88 through A-95. 
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Boundary conditions: 

  ̌(   )               (A-98) 
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Inner interface of ith layer: 
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Outer interface of ith layer: 
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Now the problem defined by Eq. A-88 has been split into two solvable problems as 

follows: 

 

Non-homogeneous Steady State Problem 
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Boundary conditions: 
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Inner interface of ith layer: 
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        (      )

  
 

            (    )

  
 

(A-108) 

Outer interface of ith layer 

     (     )          (    ) (A-109) 

        (    )

  
 

            (    )

  
 

(A-110) 

General solution of above equation is: 

               (A-111) 

                                

         (A-112) 

        

          (A-113) 

                

Thus, 

          (A-114) 

It makes sense because temperature of everything inside tubing and annulus will reach 

earth temperature at some point in time. 

 

Transient Problem 

   ̌ 

   
 

 

 

  ̌ 

  
 

 

  

  ̌ 

  
    

(A-115) 

Boundary conditions 

  ̌(   )          (A-116) 
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 ̌ (      )      (A-117) 

Inner interface of ith layer: 

 ̌ (       )   ̌    (      ) (A-118) 

    ̌ (      )

  
 

      ̌   (    )

  
 

(A-119) 

Outer interface of ith layer 

  ̌(     )   ̌    (    ) (A-120) 

    ̌ (    )

  
 

      ̌   (    )

  
 

(A-121) 

Initial condition: 

  ̌(   )              (A-122) 

Apply method of separation of variables. 

 

Let solution be of the form: 

 ̌       (A-123) 

Substitute Eq. A-123 in Eq. A-115 to get: 

  
    

    
 

  
 

   

  
 

  

  

   
  

   
(A-124) 

  
    

    
 

  
 

   

  
 

  

  

   
  

 
(A-125) 

 

  

    

    
 

 

   

   

  
 

 

    

   
  

     
  

(A-126) 

 

We get two equations out of Eq. A-126: 
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     (A-127) 

  
          (A-128) 

Solution of Eq. A-128 is: 

       
      

   (A-129) 

General solution of Eq. A-127 is given by: 

   ( )       (     )       (    ) (A-130) 

Combining the two solutions given by Eqs. A-129 and A-130 using Eq. A-123: 

  ̌  ∑   
      

     (    )

 

   

 
(A-131) 

Orthogonality condition has to be used in order to evaluate an. This proof has been done 

by Singh and Jain (2008).  It is being done here to verify if it is applicable for our case. 

 

Orthogonality Condition Proof 

Let Rip and Riq be eigenfunctions satisfying Eq. A-127. 

 

Thus, 

 

 

 

  
( 

    

  
)      

       
(A-132) 

 

 

 

  
( 

    

  
)      

       
(A-133) 

Multiply Eq. A-132 by Riq and Eq. A-133 by Rip and subtract: 

   

 

 

  
( 

    

  
)  

   

 

 

  
( 

    

  
)  (   

     
 )         

(A-134) 
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Operate above equation with ∫    
  
    

 

∫    

 

  
( 

    

  
)  

  

    

  ∫    

 

  
( 

    

  
)  

  

    

 ∫  (   
     

 )        
  

    

   

(A-135) 

Take first integral of above equation and apply integration by parts twice to get: 

∫    

 

  
( 

    

  
)  

  

    

 [    

    

  
     

    

  
]
      

    

 ∫    

 

  
( 

    

  
)   

  

    

 

(A-136) 

Substitute Eq. A-136 into Eq. A-135. 

[    

    

  
     

    

  
]
      

    

 ∫  (   
     

 )        
  

    

   
(A-137) 

Multiply above equation by ki and sum over all i. 

∑ [      

    

  
       

    

  
]
      

    

 ∑  ∫  (   
     

 )        
  

    

 

   

 

   

   

(A-138) 

After application of interface conditions 

[      

    

  
       

    

  
]
    

 [      

    

  
       

    

  
]
    

 ∑  ∫  (   
     

 )        
  

    

 

   

   

(A-139) 

At nth layer outer interface we have   (    )    
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[      

    

  
       

    

  
]
    

   
(A-140) 

[      

    

  
       

    

  
]
    

   

             

(A-141) 

Thus 

∑  ∫  (   
     

 )        
  

    

 

   

   
(A-142) 

        √
  

  
  

(A-143) 

Substitute Eq. A-143 into Eq. A-142. 

∑  

  

  
∫  (   

     
 )        

  

    

 

   

   
(A-144) 

  (   
     

 )∑
  

  
∫          

  

    

 

   

   
(A-145) 

         (   
     

 )    

Thus 

∑
  

  
∫          

  

    

 

   

   
(A-146) 

   can now be evaluated. 

 

Apply initial condition to Eq. A-131 
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   ∑     (    )

 

   

 
(A-147) 

Multiply both sides by 
  

  
    and integrate. 

  

  
∫         

  

    

 ∑   

 

   

  

  
∫          

  

    

 
(A-148) 

                      ∫          
  

    

   

For n = q we have (also take summation of both sides for all layers i.e. from i =1 to k 

∑
  

  
∫         

  

    

 

   

 ∑  

 

   

  

  
∫     

   
  

    

 

(A-149) 

 

   
∑

  

  
∫         
  
    

 
   

∑
  

  
∫     

   
  
    

 
   

 

(A-150) 

Thus Eq. A-96 is: 

        ∑   

 

   

       
     (    ) 

(A-151) 

Where    is given by Eq. A-150 and Rin is given by Eq. A-130. 


