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ABSTRACT 

 The attenuation of wave energy by submerged or near-emergent coastal 

vegetation is one of the prominent methods of energy dissipation in areas with 

significant presence of wetlands. In this thesis, the nature of this dissipation in nearshore 

random wave fields is investigated using a parabolic frequency-domain nonlinear wave 

model, modified to incorporate different mechanisms which represent energy dissipation 

by the vegetation. The nonlinear wave model with the various dissipations mechanisms 

is tested against data, and the performance evaluated.  

Two individual dissipation descriptions which give different importance to the 

effect of vegetation motion on the damping are studied and the model results are 

compared with available data in literature to determine the importance of plant stem 

sway. We then further show the effect of vegetation-induced damping on non-linear 

wave-wave interactions via bi-coherence analysis. 
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NOMENCLATURE 

ω Wave angular frequency 

k Wave number 

E Wave energy per unit wavelength 

Cg Group velocity 

D   Rate of wave energy dissipation 

   Density of sea water 

CD Drag coefficient 

D Diameter of plant stem 

s Height of vegetation 

h Total water depth 

g Acceleration due to gravity 

b Horizontal spacing between plant stems 

N Stem density per unit area 

A Local wave amplitude 

ki Amplitude decay coefficient 

Fx Horizontal drag force 

Fz Vertical drag force 

u Horizontal particle velocity 

w Vertical particle velocity 

   Wave elevation 

   Velocity potential 
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C Wave velocity 

f Wave cyclic frequency 

H Local wave height 

HRMS Root-mean-square wave height 

Rn Reynolds number 

   Kinematic viscosity of water 

( )S    Spectral amplitude at frequency ω, of power spectrum of wave 

 heights 

   Fundamental frequency 
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CHAPTER I  

INTRODUCTION 

1.1 Role of Coastal Vegetation 

Coastal vegetation is one of several large scale multi-purpose systems existing in 

nature. First and foremost, it protects and nourishes countless species of marine and 

amphibious organisms. As most of the wetlands are found where freshwater interacts 

with saltwater, they form an important transitional zone, mediating the exchange of 

nutrients and nutrient-rich sediments (Philips 1989). Wetland plant stems alter the 

hydrodynamic conditions (Kadlec 1995) thereby indirectly determining the strength and 

extent of exchanges.  

The water flowing through vegetation is found to contain dissolved gases and 

nutrients that affect the movement of gametes or spores during their reproductive stage 

(Koehl 1986). These gametes and spores form an essential link in the food chain that 

leads to cultivation good fisheries (Mottet 1981).  

Wetlands also act as a buffer that regulates water levels during the tidal cycles 

and other flooding events such as hurricane surge (Costanza et al. 2008), as they tend to 

naturally store water and control its spread uniformly over the area. Other mechanisms 

that enable vegetation to reduce flood damage during storms include reduction of fetch 

for generating wind waves, increasing drag on water motion and direct absorption of 

wave energy. 

Flora along the coast influences the movement of sediment alongshore and can 

aid in formation and expansion of beaches (Liu and Shen 2008). Typically shoreline 
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protection involves construction of hard structures such as groins and breakwaters. 

These methods are effective as they hinder and reduce the wave orbital velocities (Price 

et al. 1968), but they also alter fluctuations of temperature, salinity, water levels and 

hydrology (Williams and Thom 2001). They also disturb local sediment transport, and 

nearshore circulation patterns (Macdonald et al. 1994) and are prone to form a system 

that is in unstable equilibrium. Wetlands can also be used for similar purposes due to 

their adverse effect on wave energy and tend to quickly assimilate the local wave 

features and properties and result in stable sustainable beach configuration (Rogers 

1987). 

1.2 Objective of Study 

The primary effect of vegetation on the incident wave field is via dampening of 

wave energy. This has a profound effect on irregular wave propagation, as this 

dampening is a function of frequency, affecting the shape of the wave spectrum. As 

vegetation is also in turn affected by the waves (particularly during storms, in the form 

of stem breakage), understanding the nature of the feedback between waves and 

vegetation involves detailed analysis of the dynamics of the wave field.  

Further driving this work is the fact that forecasting wave models are being 

formulated to include shallow water wave characteristics (e.g. Booij et al 1999) to 

predict near shore wave properties for operational forecasts (Allard et al 2008). This 

represents a notable break from traditional forecasting domains, which have ranged from 

global to regional (e.g. Rogers et al. 2007), and is reflective of the need for regular 

nearshore forecasts (Allard et al. 2008). While these adapted models are well able to 
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replicate bulk parameters of nearshore waves measurements (peak wave period, 

significant wave height), their performance is less satisfactory for more detailed 

statistical measures (skewness, asymmetry, spectral shape).  In the nearshore, wave 

nonlinearity at second order in wave amplitude becomes a larger factor in the process of 

nearshore wave evolution, and in turn affects free surface and velocity moments, which 

are identically zero in instances where the irregular wave field is completely linear 

(Elgar and Guza 1985). These measures are useful for calculating inputs to other process 

models such as those for instantaneous sediment transport (Bailard 1981). Any 

comprehensive study of the physical processes in the coastal region, therefore, must 

allow some degree of non-linearity. This will enable us to determine extent of influence 

of wave-vegetation interaction on energy exchanges among the frequency bands, the 

shape of the evolving spectra and statistics of the wave shape. 

Various representations of the damping behavior of vegetation will be examined. 

Historically, much previous work focused on the variation in root-mean-square wave-

height (HRMS) as the waves move over vegetation. The general approach has been to 

develop a mechanism which dictates the manner in which HRMS would change with 

distance of wave propagation, with parameters based on a drag coefficient representing 

the drag on the wave motion caused by the individual plant stems (Kobayashi et al. 

1993; Mendez and Losada 2004). These bulk representations assumed that the evolution 

characteristics of the waves were adequately modeled by linear wave theory, and 

considered neither the nonlinear characteristics of the waves, nor the shape of the 

resulting spectrum. 
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In this work, we use a nonlinear, deterministic, phase-resolving shoaling model 

which tracks evolution of the complex amplitudes of the free surface, coupled with a 

dissipation formulation for wave-vegetation interaction. One of the main challenges in 

incorporating these mechanisms into a phase resolving nonlinear wave model is the 

representation of the drag coefficient for the formulation in question. This is based on 

Reynolds number, which depends on a characteristic velocity representative of the 

irregular wave field. Here, we choose the characteristic velocity to be horizontal wave 

particle velocity at the head of the vegetation stem. 

Since we obtain values of spectral amplitudes at various locations along the path 

of the wave, we will evaluate some higher order properties of waves, such as wave 

skewness and bicoherence. 

1.3 Overview of Thesis 

This thesis is organized into four chapters. Chapter I introduces the importance of 

wetlands, and puts forth the need to have an improved understanding of their interaction 

with shoaling waves. The first section of this chapter contains an overview of role of 

wetlands as an important asset to the shorelines. A brief description of the facts that have 

driven this research, together with its intent is presented in section two. 

Three parts comprise Chapter II, which details the advancements in modeling of 

waves over vegetation. Section one briefly summarizes the need to predict statistics of 

shoaling waves by using phase-resolved models in the frequency domain. An overview 

of advantages of using a non-linear model is also included in the same. A few 

experiments that have propelled studies to determine the underlying nature of wave-
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wetland interaction are outlined in section two. Wave attenuation theories for flow 

through emergent and submerged vegetation are recapitulated in section three. 

Chapter III is divided into four parts that present a detailed description of the 

wave model and the methodology used in this research. A discussion of the non-linear 

shoaling model is given in section one. Section two reiterates the theory behind the 

development of various formulations to represent wave attenuation by vegetation and 

takes note of some of the important parameters like stem density and drag coefficient 

that influence the simulation. Studies conducted to model flow through vegetation 

considering them as stiff and flexible cylindrical rods are reviewed in section three. 

Also, it contains a discussion about various efforts to determine the drag coefficient by 

either assuming it to be an averaged quantity or using empirical formulations based on 

other flow parameters (such as Reynolds number or Keulegan-Carpenter number) 

obtained from experiments. The final section in this chapter presents the methods used in 

this study to compute drag coefficient using outputs available from the model. 

Chapter IV shows a validation of the model and computation of several higher-

order wave statistics such as wave shape skewness and bicoherence. The effect of 

wetlands on spectral shape evolution is illustrated in detail. It also discusses the 

influence of vegetation motion on its damping characteristics. 

Conclusions and avenues to further develop the current work are contained in 

Chapter V. 
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CHAPTER II  

LITERATURE REVIEW 

2.1 Modeling Waves in Shallow Water 

One major component of wave transformation in the nearshore is triad nonlinear 

energy exchange (nonlinear energy exchange between waves of three different 

frequencies). This energy exchange mechanism comes from quadratic nonlinearity 

(second order in wave steepness) and arises from near-resonant interaction between 

wave components.  

Resonant interaction occurs when the frequency-vector wavenumber 

combination of two waves (ω1, k1) and (ω2, k2) excite waves at (ω1+ ω2, k1+k2) and (ω2 - 

ω1, k2-k1). In deep water, there are no waves which satisfy this condition; one must 

continue to the third order to see this interaction between quartets of waves (Phillips 

1960). In shallow water, waves both approach shore normal in direction and become less 

dispersive, so the triad resonance condition is generally closer to being satisfied (Phillips 

1981a). Additionally, complete satisfaction of the resonant interaction conditions is not 

necessary, as near- resonant interactions are capable of significant energy exchange 

(Bryant 1973). These interactions force variations in spectral shape over distances of 

tens of meters (Kaihatu 2003), in contrast to the very slow energy exchange scales at 

third order in deep water.  

Whalin (1971) ascertained the nonlinear transfer of energy from lower to higher 

frequency components when waves were allowed to shoal over parallel symmetric 

circular contours. Boczar-Karakiewicz (1972) performed experiments of forced 
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sinusoidal waves propagating over a flat bottom, in which significant cycling of energy 

between the fundamental and higher harmonics were evident; this behavior (called 

recurrence) was developed into an analytical solution by Mei and Unluata (1972).  

The behavior seen in the above experiments can be replicated in the classical 

Boussinesq equations, first adapted for waves over varying bathymetry by Peregrine 

(1976). These equations, first cast in the time domain, were recast into the frequency 

domain by Freilich and Guza (1984). The resulting equations dictate the evolution of the 

amplitudes of time-periodic waves, coupled via the nonlinear interaction terms.  These 

models were shown to accurately predict Fourier coefficients of the wave field in field 

data. Comparison of the power spectrum of sea-surface elevation revealed a significant 

lower coherence between predictions by linear finite-depth theory and experimental data 

in regions where nonlinear effects were important (shallower waters). This was 

corroborated by Elgar and Guza (1985a, 1985b and 1986) whose bispectrum and biphase 

observations (viz. Kim and Powers 1979) show transfer of energy between sum and 

difference frequencies. These interactions cause harmonic growth via excitation of 

modes in frequencies other that peak frequency. They were also noted to be significant 

contributors to sea-surface elevation skewness and asymmetry. 

The advantage of nonlinear models to provide enhanced predictions of wave 

shape properties was used by Kaihatu (2001), which is an extension of Kaihatu and 

Kirby (1995), to demonstrate improved comparisons to data from Mase and Kirby 

(1992) using a fully dispersive nonlinear frequency-domain model. 



 

8 

 

In addition to wave shape statistics, the use of a nonlinear model has been shown 

to explain high frequency damping seen in very dissipative environments. For example, 

Kaihatu et al. (2007) showed that the high frequency energy attenuation seen in muddy 

areas (Sheremet and Stone 2003) can be explained by nonlinear energy transfer from 

energetic high frequencies to lower frequencies directly undergoing damping. It is 

probable that similar characteristics can be seen with vegetation-induced damping. 

2.2 Experimental Observations of Waves over Vegetation 

The wave-vegetation interaction phenomenon has been investigated via several 

experiments and field studies. Field experiments often record the variability in wave 

attenuation as a result of variation in plant species, coverage and wave conditions 

(Knutson et el. 1982, Moeller et al. 1999, Bradley and Houser 2009). 

Knutson et al. (1982) conducted a field study to quantify wave damping in 

smooth cordgrass marshes in the eastern shore of Chesapeake Bay in Virginia. They 

reported that more than 50 percent of wave energy was dissipated within the first 2.5 m 

and a 94% wave height reduction at the end of the considered 30 m length. As wave 

energy impacting a shoreline is reduced, an increased potential for sediment deposition 

was observed. It was also concluded from the data that marshes are most effective in 

damping waves when they are in emergent conditions. 

Quantitative evidence for the effectiveness of a salt marsh in attenuating 

incoming waves over mudflats was presented by Moeller et al. (1999). Comparison of 

wave spectra obtained from pressure records were found to support the argument that 

salt marshes can act as an efficient wave energy buffer during several water depth, wind 
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and wave conditions.  It was also found that the wave energy dissipation over salt 

marshes is four times the corresponding reduction over mudflats. No marked shift of 

energy from spectral peak to lower frequency was observed, thus displaying no obvious 

biased dissipation of particular wave frequencies. 

Bradley and Houser (2009) analyzed the effect of low-energy oscillatory flow on 

the seagrass blades’ motion and quantitatively studied the influence of blade motion on 

wave attenuation. Wave attenuation was noted to decrease as the incident wave height 

was increased. From video evidence, this was observed to be the result of reduced drag 

due to streamlining of grass blades caused by higher orbital velocities in conditions with 

higher wave amplitudes. It was also noted that the loss of energy was not uniform over 

the range of wave frequencies. Waves at the peak frequency were attenuated but waves 

at lower frequencies were observed to be unaffected by the vegetation. 

There have been several attempts to replicate and study waves over wetlands 

under controlled conditions in laboratory flumes with either natural (Tschirky et al. 

2000) or artificial vegetation (Asano et al. 1988, Dubi and Torum 1994, Augustin et al. 

2008). These experiments are more often used to conduct parametric studies, where the 

influence of properties of plant beds is analyzed. By varying one particular property of 

interest at a time, such as plant stem density, extent of vegetation or incident wave height 

and period, the flume experiments isolate the effect of that parameter on wave energy 

dissipation. 

Wave energy reduction by four kinds of coastal vegetation (H. wrightii, S. 

filiforme, T. testudinum and Z. marina) commonly found along Gulf Coast, US, was 
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evaluated by Fonseca and Cahalan (1992) in their laboratory studies. Live plants were 

collected as intact sods from several sites in Florida. A fairly consistent effect on 

transmission of wave energy was achieved through the experiments, and it was noted 

that stem length was one of the most significant parameters that influenced the amount 

of energy dissipated by the vegetation. 

Tshirky et al. (2000) utilized field monitoring and laboratory testing and showed 

that the plants of bulrush beds reduced wave heights up to 60 percent of the incident 

wave height. A set of parameters, such as average plant density and plant bed length, 

that are significant contributors to energy dissipation were identified and an empirical 

relationship was formulated to determine the energy that was transmitted through 

bulrushes under typical Great Lakes conditions. 

A study by Augustin et al. (2008) compared wave attenuation effects of synthetic 

emergent and nearly emergent wetland vegetation in varying wave conditions and plant 

stem densities. The data collected showed that reduction in significant wave height under 

emergent conditions is 50 to 200 percent greater per wavelength than that of near-

emergent conditions for the same plant configuration and wave condition. It was noted 

that there was little difference between attenuation by flexible and rigid plant stems 

within the conditions that were tested which largely were corresponding to the turbulent 

regime (Rn > 3000) of flow within the vegetation. The results also suggested weaker 

dependence of drag coefficient on wave period as the submergence of plant stem was 

increased.  
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2.3 Simulation of Wave-Vegetation Interaction 

The field observations and laboratory experiments were consistently augmented 

by efforts to understand, model and replicate the underlying physics of wave-vegetation 

interaction through various numerical representations. Since coastal wetlands comprise a 

significant portion of the US bordering the Gulf of Mexico, an area subject to hurricanes 

and other strong episodic events, they were studied as a possible means of reducing 

storm wave and flooding intensity via wave diffraction/attenuation. 

Camfield (1977) analyzed the generation and propagation of wind-waves in areas 

covered with submerged and emergent vegetation.  A preliminary method to determine 

wave height transformations through vegetation was developed using high Darcy-

Weisbach friction factors to represent flooded wetlands. For a given wind speed and 

water depth, wave decay over the extent of plant bed was assumed to be equal to the 

wave decay over a much longer fetch with sand bottom. Existing shallow water wave 

forecasting curves, together with a decay factor defined by Bretschneider (1952, 1958) 

were used to compute adjusted fetch length. The method was not verified due to limited 

data availability. 

Darlymple et al. (1984) argued that the effect of vegetation was a localized 

presence of high energy dissipation in the water column, which causes the waves to 

attenuate. Wetlands were modeled as arrays of rigid cylinders and wave energy 

dissipation was calculated to be the work done by depth-averaged drag force, exerted on 

the cylinders. The National Academy of Sciences (1977) formulation to compute wave 
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height decay through trees during coastal flooding due to storms, was extended to 

arbitrary water depth and tree (cylinder) height to be obtained as: 

33
3

3 2

( ) sinh 3sinh 1
2

3 3cosh
g D

D

Ec C D ks ks gk
A

x k kh b
 

 
                

     (2.1) 

where 21

2
E gA is the wave energy, gc  is group wave velocity, D  is the time-

averaged, depth-averaged energy loss due to vegetation,   is fluid density, DC  is the  

drag coefficient (assumed constant), D  is the plant/tree stem diameter, g   is gravity, k  

is the wavenumber,  is the wave frequency, s  is the height of tree stem, h  is the total 

water depth, b  is the spacing between trees/cylinders and A  is the wave amplitude. 

This formulation was developed assuming that linear theory of wave propagation 

was applicable in water column which included submerged vegetation. It was to be used 

when vegetation encountered monochromatic waves. A wave amplitude decay equation 

was derived using equation (2.1): 

0

1

1

A

A x



         (2.2) 

in which, 

302 4
(sinh 3sinh )

3 3sinh (sinh 2 2 )
D AC D k

ks ks
b b kh kh kh




            
    (2.3) 

is the decay coefficient obtained from equation (2.1) and 0A  is the incident wave 

amplitude. 

A similar exposition to that of Dalrymple et al. (1984) was developed by 

Kobayashi et al (1993) to derive a model that simulates data obtained from artificial kelp 
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experiments conducted by Asano et al. (1988). Kobayashi et al. (1993) assumed the 

vegetation motion was infinitesimally small in comparison to wave amplitude and 

argued that the wave height decays exponentially as the wave propagates through the 

vegetation. 

A two-dimensional problem of small-amplitude waves propagating over 

submerged vegetation was articulated and an analytical solution was obtained for 

monochromatic waves using the exponential wave height decay assumption which is as 

follows: 

0
ik xH H e          (2.4) 

where, H  and 0H  are wave height at any location x  and initial wave height 

respectively. The decay coefficient ik  was derived as an imaginary component of 

complex wave number: 

r ik k ik           (2.5) 

Within the vegetation the linearized horizontal momentum equation per unit 

volume was expressed as: 

x

u p
F

t x
  

  
 

          (2.6) 

Linearized drag force used in equation (2.6) to represent dissipation due to 

presence of stiff cylindrical plant stem, in terms of density (  ), horizontal velocity (u ) 

and a coefficient ( D ) is as follows: 

xF Du          (2.7) 
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The coefficient D , which was expressed in terms of physical properties of 

vegetation such as stem height, density and drag coefficient DC , was used as an indicator 

of damping of wave energy caused by the drag force. 

The analytical solution developed was used to compare with the results obtained 

by Asano et al. (1988). The measured wave heights were fitted to the exponential decay 

expression using the method of least squares to calibrate the drag coefficient until the 

calculated values of ik equaled the measured values of ik . The observed trends in wave 

heights were satisfactorily reproduced by the model and it was inferred that the local 

flow field was being affected by the vegetation even for the case of small damping. 

Waves over vegetation cause some motion in the vegetation, depending on its 

stiffness. This motion was assumed to be small in most of the previous literature, 

although experimental evidence (Asano et al. 1988, Dubi and Torum 1994, Bradley and 

Houser 2009) have shown significant large amplitude sinusoidal motions in low energy 

flow conditions (Rn < 1000). Mendez et al (1999a) suggested that vegetation motion be 

incorporated into the governing equations in the vegetation region, in the form of a non-

dimensional friction coefficient. This was obtained by normalizing the average work 

done by the total force on the vegetation (drag and inertial components) with respect to 

the velocity in the vegetation region (Lorentz hypothesis of equivalent work). 

The fluid domain was divided into four regions (as shown in Fig. 1) and the 

boundary value problem was solved using eigen-function expansion technique after 

applying appropriate boundary conditions in each of them. 
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Fig. 1: Sketch of fluid domain (Mendez et al. 1999a) 

To facilitate inclusion of stem motion in the vegetation region, drag force was 

linearized and two factors, λ, an added mass factor and μ, a non-dimensional friction 

coefficient, were introduced. The added mass factor was derived from stem properties 

and the friction factor was computed using relative velocity ( ru ) and amplitude (ξ) of the 

vegetation stem motion. The plant stems were assumed to undergo harmonic cantilever 

type of oscillations and interactions between the stems were ignored. 

This model was used to replicate the experimental results of Dubi and Torum 

(1994). The drag coefficient was used as the calibration parameter and the results from 

theoretical formulation were in good agreement with the observations. 

Presumption of the shape of the wave-height decay curve when comparing model 

results and data can be seen to be a common practice. Root-mean-square wave height, 

which is obtained from the area under the wave energy spectrum, cannot be used to 

compute spectral shape evolution. This is also compounded by the usage of linear theory 

which results in application of a uniform energy dissipation to all frequencies in the 

Incident waves 

Region 1 

Region 2 

Region 3 Region 4 

ξ
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wave spectrum. But as irregular waves propagate over dissipative medium, change in the 

shape of the wave spectrum has been observed (Mase and Kirby 1992, Sheremet and 

Stone 2003) as the waves propagate. This, therefore, deems usage of a non-linear model 

necessary to obtain evolution of spectrum of irregular waves, which offers a better 

understanding of energy shifts between frequency bands and to compute other higher 

order properties. 
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CHAPTER III  

METHODOLOGY 

3.1 Nonlinear Model in Frequency Domain 

The model used as a basis for nonlinear wave propagation is a one-dimensional 

version of Kaihatu and Kirby (1995). The model is fully dispersive and uses triad 

interactions between wave frequencies in intermediate and shallow water; these 

interactions are nearly resonant, which allows for detuned nonlinear interactions caused 

by dispersive effects. It is generally considered an extension of the model of Freilich and 

Guza (1984) and Liu et al. (1985). 

A wave field, denoted in the terms of free surface elevation ( , , )x y t  , over a 

spatially varying bottom, ( , )h x y  is considered by Kaihatu and Kirby (1995). The 

boundary value problem for the velocity potential,  is formulated as: 

2 0;h zz          h z           (3.1) 

. ;z h hh         z h         (3.2) 

2 21 1
( ) ( ) 0;

2 2t h zg           z          (3.3) 

. 0;t z h h           z          (3.4) 

where h  denotes the gradient operator in horizontal coordinates ( , )x y  and g  is the 

acceleration due to gravity.  
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As the free surface boundary conditions are applied at a position not known a 

priori, they are expanded using Taylor series about 0z  . Also, due to nonlinearity of the 

conditions, terms smaller than 2( )O   are ignored and the resulting equations are: 

2 0;h zz           0h z         (3.5) 

. ;z h hh          z h        (3.6) 

2 2 31 1
( ) ( ) ( ) 0;

2 2t h z ztg O              0z         (3.7) 

3. ( ) 0;t z h h zz O               0z         (3.8) 

(ka  , where k  is the wave number and a  is a characteristic wave amplitude) is the 

nonlinearity parameter. 

Assuming a superposition of solutions, similar to approach of Smith and Sprinks 

(1975), the velocity potential is given by: 

~

1

( , , z, t) ( , , ) ( , , , , )
N

n n n n n
n

x y f k h z k x y t  


          (3.9) 

As the model seeks to extend its validity to deeper waters, the frequency, n  

and nk , the wave number of thn  frequency component are related by linear dispersion 

relationship: 

2 tanhn n ngk k h                       (3.10) 

and the depth dependence function nf  is defined by linear theory: 

cosh ( )

cosh
n

n
n

k h z
f

k h


                      (3.11) 
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To render the governing equations to frequency domain 
~

n  is expressed as: 

^^
*~

( , , )
2 2

n ni t i tn n
n x y t e e              (3.12) 

^ ( , )
( , ) ni k x y dx

n n
n

ig
A x y e


           (3.13) 

where nA  is the complex amplitude and is assumed to be a slowly varying function in 

horizontal coordinates ( , )x y . 

Applying Green’s identity on the variables nf  and
~

n  , and allowing resonant 

triad interaction among three frequency components (Phillips 1981a), equations (3.5) – 

(3.8), are simplified into the following by using equations (3.9), (3.11) – (3.13). 

 

1
( ) ( )*

1 1

( )
( 2 )

2( ) 8( )
l n l n n l l n

n N n
i k k k dx i k k k dxg nx

nx n n n l l n l
l lg n g n

kCC i
A A RA A e SA A e

kCC kCC
 

 
   

 
 

     
            (3.14) 

In equation (3.14), C  and gC  are phase and group velocities respectively. R and 

S, are the interaction coefficients that are obtained by substituting triad resonance 

condition into the governing equations. 

2
2 2 2[ ( )( ) ] ( )n
n n n l n n l l n l l n l n l l n l n l

l n l

g
R k k k k k k

g

      
      



                  (3.15) 

2
2 2 2[ ( )( ) ] ( )n
n n n l n l n l n l l n l n l l n l n l

l n l

g
S k k k k k k

g

      
      



                  (3.16) 
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Equation (3.14) is further improved upon by Kaihatu (2001), by incorporating a 

second-order relationship between   and  in the truncated dynamic free-surface 

boundary condition (eq. 3.3). The following expression for amplitude was assumed:  

  
1

n n
N i k dx t

n
n

B e conjugate







          (3.17) 

which resulted in: 

1
( ) ( )*

1 1

1
2

4
l n l n n l l n

n N n
i k k k dx i k k k dx

n n n n l l n l
l l

B A IA A e JA A e
g

 
 

   

 
 

     
 
      (3.18) 

where 

2 2 2 l n l
l l n l n l

l n l

k k
I g  




 


            (3.19) 

2 2 2 l n l
l l n l n l

l n l

k k
J g  




 


            (3.20)  

Equation (3.14) is the primary evolution formulation for complex wave 

amplitudes, nA  , but the free surface elevation is obtained from equations (3.17)-(3.20). 

The wave energy loss due to change in seabed conditions or breaking is included 

by introducing a damping term n nA  in the left hand side of equation (3.14). The form 

of n  depends on the frequency dependency of the dissipation that is considered. 

Kaihatu and Kirby (1995) simulated waves shoaling and breaking over a variable 

bottom, and for this purpose, the simple model of Thornton and Guza (1983) was used to 

incorporate the change of energy flux due to wave breaking. 
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 
~

3
5

4 3

3

16 rms
x

B f
E gh g H

h

 


          (3.21) 

where, E   is the wave energy at any location x  , 
~

f  and   are characteristic frequency 

of the incident wave spectrum and ratio of rmsH  to the water depth, h  respectively. The 

dissipation mechanism of Thornton and Guza (1983) is based on a narrow-banded 

process, and additional assumptions need to be imposed to accommodate its inclusion 

into a frequency domain phase-resolving model. Kirby and Kaihatu (1996) presented a 

physical argument for distributing the dissipation across the frequency range as a 

weighted function of frequency squared; this was confirmed by Kaihatu et al. (2007) via 

analysis of several sets of laboratory data. 

Equation (3.21) was compared with a simplified form of equation (3.14) to 

formulate the damping coefficient, n , and the following equation was used to compare 

the model performance to experimental observations in Case 2 of Mase and Kirby 

(1992). 

1
( ) ( )*

1 1

( )
( 2 )

2( ) 8( )
l n l n n l l n

n N n
i k k k dx i k k k dxg nx

nx n n n n n l l n l
l lg n g n

kCC i
A A A RA A e SA A e

kCC kCC
  

 
   

 
 

      
             (3.22) 

Our objective is to use equation (3.22) to model wave propagation over 

vegetation by using similar techniques to convert wave energy flux dissipation into a 

damping term. 
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3.2 Wave Attenuation Theory 

Vegetation submergence ratio, stem density and drag coefficient of the plant 

stem are a few of the important factors that have been used to parameterize the role of 

vegetation in many of theories put forth (Dalrymple et al. 1984, Asano et al. 1992, Dubi 

and Torum 1994, Mendez et al. 1999a, Dean and Bender 2006). Their effect on the 

potential of vegetation to dampen the incident wave energy is also well documented by 

many experiments and field observations (Knutson et el. 1982, Asano et al. 1988, 

Augustin et al. 2009, Bradley and Houser 2009). 

Dalrymple et al. (1984) examined the effect of plants on wave heights of 

monochromatic waves assuming the plants to be rigid cylinders. Averaging the change 

in energy flux due to presence of vertical cylinders, wave height decay was derived to be 

inversely proportional to the distance propagated (Eqs 2.1-2.3). It should be noted that 

the vegetation was assumed to be homogenous. Though the assumption of rigid plant 

stems ascribes different values to the drag coefficient, it was deemed necessary by the 

authors to make up for the lack of extensive contemporary experimental/theoretical 

knowledge of plant motion in flooded conditions. Therefore equations (2.1)-(2.3) can be 

regarded as a preliminary method to estimate wave characteristics in vegetated regions. 

Kobayashi et al. (1993) used an exponential decay assumption to evolve root-

mean-square wave height through the vegetation field. The following is a brief overview 

of the derivation. The problem examined is depicted in Fig. 2, in which x  and z  are 

horizontal and vertical coordinates respectively. Height of submerged vegetation is 

denoted by d , and still water depth is h . We denote 1  as the free surface elevation 
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oscillating about 0z   and 2  is the vertical displacement of the interface between 

regions above and within the vegetation. 

 

Fig 2: Experimental setup of Asano et al. (1988) 

Using standard definitions of horizontal and vertical velocities, u  and w  

respectively, the continuity equations are given by: 

0i iu w

x z

 
 

 
         (3.23) 

where the subscript 1,2i  denotes the region above and within the vegetation 

respectively. The linearized horizontal and vertical momentum equations in region 2 are: 

x

u p
F

t x
  

  
 

        (3.24) 

z

w p
F

t z
  

  
 

        (3.25) 

in which, xF  and zF  are the horizontal and vertical forces exerted on vegetation by the 

fluid column per unit volume respectively. 

Wave Gages 
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Incident 
wave 

    Wave 
absorber 
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The kinematic and dynamic free surface boundary conditions are linearized akin 

to development of linear wave theory. At the interface, the kinematic boundary condition 

is obtained assuming no discontinuity in the interface, i.e., no separation of flow due to 

vegetation motion. This stems from the assumption that the plant stems exhibit similar 

behavior to that of rigid vertical cylinders with small diameter, for which drag force is 

much greater in magnitude than inertial force exerted due to propagation of small-

amplitude waves. Horizontal drag force, xF  is obtained using the drag component of 

Morison’s equation (e.g. Dean and Dalrymple 1984) as: 

2 2

1

2x DF C bN u u         (3.26) 

and the lift force zF is assumed to be negligible. 

0zF             (3.27) 

where DC  is the drag coefficient of plant stem and b  and N  are plant cross-sectional 

area per unit stem length and stem density per unit area, respectively. As the motion of 

the plant stem is not included in the analysis, the velocity used in equation (3.26) is 

simply the horizontal fluid velocity and not the velocity relative to the plant stem. 

The momentum equations are linearized by neglecting the shear stress terms. 

Therefore the presence of drag force in the region with vegetation results in discontinuity 

in horizontal velocity at the interface. i.e.,  

1 2u u  at z h          (3.28) 

Hence, the matching conditions at the interface are given by only: 

1 2w w  at z h           (3.29) 
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1 2p p  at z h           (3.30) 

Equations (3.23)-(3.25), are solved analytically using equation (2.7), a linearized 

form of equation (3.26), and assuming the following expression for the free surface 

elevation: 

0
1 cos( )

2
ik x

r

H
e k x t           (3.31) 

The incident wave height at 0x   is 0H ,  is the radian frequency of the wave, 

ik  and rk  are exponential decay coefficient and wave number respectively. In order to 

reduce the computational effort, a complex wave number, k  is defined such that: 

r ik k ik           (3.32) 

The time-averaged energy equation for the flow in the entire water column is 

obtained by adding the individual components, 1F  and 2F  which are the time-averaged 

energy flux per unit width in regions above and within the vegetation, respectively. 

1 2( ) d

d
F F D

dx
            (3.33) 

Multiplying the momentum equations (eqs. 3.24 and 3.25) with corresponding 

velocity components ( 2u  and 2w ) and integrating their time-averages over the depth, 

after adding the two equations together, yields 2F . The equations for region 1 are used to 

obtain 1F  in a similar method. 
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The dissipation dD  is defined as the time-averaged rate of energy dissipation 

per unit horizontal area due to drag force xF and is evaluated using the following 

equation: 

2
2 2 2( ) ( )

1

2

h h

d x Dh d h d
D u F dz C bN u u dz

 

   
        (3.34) 

Assuming weak damping, and using a linearized drag force (eq. 2.7), the 

analytical solutions obtained for free surface elevation, vertical displacement of the 

interface, and the dynamic pressures in two regions above and within the plant stems are 

used to compute 1F  and 2F .  

The energy fluxes can be represented using wave energy 21

8
E gH and group 

celerity
2 ( )

1
2 sinh(2 ( ))

r
g

r

k h d
c

k k h d

  
   

. Equation (3.33) can thus be rendered in the form 

of standard wave energy budget formulation as follows: 

3 3

3

( ) sinh 3sinh2

3 2 3 cosh ( )
g r r r

d D
r r

Ec k gH k d k d
D C bN

x k k h d


 
         

  (3.35) 

Thus, it can be seen that through this approach, effect of the height, width and 

density of vegetation stems have been appropriately described. Although, this 

formulation was verified to be a good representation of wave damping due to vegetation 

by Kobayashi et al. (1993) through comparisons to experimental results obtained by 

Asano et al. (1988), the drag coefficient is shown to be a very uncertain parameter, as 

several iterations were performed by varying drag coefficient until the model results 

were in good agreement to the laboratory data. This could also be due to fact that drag 
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coefficient formulation is dependent on the wave conditions and physical properties of 

vegetation. Thus an exact description would need extensive laboratory study of various 

types of plant stems and wave conditions prevalent in the coastal wetlands. 

In addition to numerical models, several experimental studies have also verified 

the uncertainty in the drag coefficient (Dubi and Torum 1994, Augustin et al 2008, 

Bradley and Houser 2009). Therefore, analysis of various representations for drag 

coefficient is to be done before making an effort to model spectral evolution through 

vegetation. 

3.3 Wave-Vegetation Interaction 

Frictional effects of vegetation on waves and flow over them have been the focus 

of several modeling studies. These studies have mainly resulted in development of 

expressions and parameterizations for 1-dimensional (or 2-dimensional) frictional drag. 

The drag coefficient for any element in a flow is determined by its wake structure 

(Dean and Dalrymple 1984). Hence, it depends of the Reynolds number, /nR Ud   

where   is the kinematic viscosity, U  and d  are characteristic velocity of the flow and 

characteristic dimension of the element in the direction of flow respectively. Through 

field observations in near-shore conditions, nR  has been found to be O (1-103) (Hammer 

and Kadlec 1986, Leonard and Luther 1995), a range which covers both laminar and 

turbulent wake structures. 

Kiya et al. (1980) investigated the effect of transverse velocity gradient on vortex 

shedding frequency due to a circular cylinder in a moderate Reynolds number 

(35 1500nR  ) flow and noted that the critical nR , where the vortex shedding was 
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initiated, was higher in the presence of the cylinder. The characteristics of flow past two 

cylinders in tandem were analyzed by Bokaian and Geoola (1984) and later by Luo et al. 

(1996). The former was more interested in the “galloping” motion of the downstream 

cylinder, but it was noted that the transverse extent of drag force on the downstream 

cylinder increased as stem gap increased. Through experiments, it was also observed 

that, for nR of 2600, a limited increase in nR  does not affect the change in drag 

coefficient due to change in separation distance. Luo et al. (1996) examined flow over 

cylinders with very small spacing and observed reduced drag on the downstream 

cylinder due to lower surface pressure differential, which is a result of turbulence 

enforced delay in point of separation on the downstream cylinder.  

Nepf et al. (1997) adapted a random walk model to describe the contribution of 

stem wakes to the turbulent diffusivity within marsh grasses. Although it produced 

excellent agreement with a simple plant-like array of rigid cylinders, to predict 

diffusivity of canopies that contain complicated morphology with more flexible 

members, the wake structure of the flow around the individual element has to be 

characterized as a function of plant characteristics. Vegetative drag was linked to 

generation of turbulence intensity to model turbulence diffusivity by Nepf (1999). It was 

postulated that using drag to describe turbulence intensity can improve our 

understanding of particle dispersal in coastal marsh systems. 

The brief literature review conducted above demonstrates the importance of drag 

force on the cylinder/stem in the description of flow through vegetation. Wave modelers 

have largely considered horizontal drag force (eg. equations 3.26 and 3.27) and 
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neglected the lift force, while defining external forces in the boundary value problems to 

describe wave propagation over vegetation.  

In the earlier efforts to model waves through vegetation, an averaged drag 

coefficient is used to represent the effect of vegetation on wave propagation (Dalrymple 

et al. 1984). This assumes that the plant stems behave as though they are a bundle and 

the drag force does not vary significantly within the marsh system (Bokaian and Geoola 

1984). 

Alternatively, efforts have been made to compute the drag force and in turn, drag 

coefficient, CD, more precisely. The inability to capture the details of the feedback 

mechanism between change in wave parameters and change in plant motion has 

hampered representation of flow through vegetation accurately. 

Solutions to the problem of vegetation motion have been attempted by Asano et 

al. (1992), Dubi and Torum (1994) and Mendez et al. (1999), by representing plant stem 

motion as a forced vibration with one degree of freedom. The equation of motion is 

linearized either by depth-averaging the equation or assuming linear profiles for plant 

stem amplitude and water particle velocity or both. The resultant equation is used to 

calibrate the drag coefficient CD (by using Morrison’s equation for drag force), by 

having prior knowledge of the nature of the velocity field through measurements. 

The drag coefficient CD used in the simulations carried out in this thesis were 

obtained from Kobayashi et al. (1993) and Mendez et al. (1999a). Both used a calibrated 

drag coefficient in their respective models, derived by fitting their model results to the 

corresponding experimental observations. 
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The following equations describe the relationship between CD and nR . 

2.4
2200

0.08D
n

C
R

 
  
 

       (3.36) 
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 
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       (3.37) 

2.9
4600

0.4D
n

C
R

 
  
 

        (3.38) 

Equation (3.36) is obtained by Kobayashi et al. (1993) with the assumption that 

the plant stems behave as rigid cylinders. The range of nR  was between 2200 and 18000 

in the experiments conducted by Asano et al. (1988), for which the model was 

developed. It was observed that CD decreased with increase in nR . As the plant stem 

diameter was constant in the experiments, this led to the conclusion that CD decreased as 

characteristic velocity uc increased. The characteristic velocity used to compute nR  is 

obtained from the wave particle velocity encountered by the vegetation. This was 

partially explained by the fact that, in monochromatic wave propagation, as velocity 

increases, the rigid plant stem tends to attain a slightly bent configuration if the phase of 

velocity is same as that of the negligibly small amplitude of plant motion. This reduces 

the surface available to impede the flow (Bradley and Houser 2009). 

Mendez et al. (1999a) retained the vegetation motion in their model to derive 

equations (3.37) and (3.38) for model runs without and with stem motion respectively. It 

is to be noted that 200 15500nR   for equation (3.37). Although, they are 

representation of flow over vegetation assumed to be rigid cylinders, the difference in 



 

31 

 

eq. (3.36) and eq. (3.37) could be due to the fact that Mendez et al. consider evanescent 

modes of wave propagation after interaction with vegetation field and wave reflection 

towards wave-maker due to presence of the same.  

Equation (3.38) is derived for 2300 20000nR  by Mendez et al. including 

swaying motion of plant stem. The plant motion causes a decrease in the relative 

velocity which results in an increase in the drag coefficient CD and equation (3.38) 

captures that trend quite adequately. 

3.4 Computation of Drag Coefficient in Model 

The model that is used in this study computes evolution of amplitude of each 

frequency in an incident spectrum (eq 3.22). This complex amplitude, which varies as 

the wave propagates, is used to obtain the characteristic velocity needed to compute 

Reynolds number, nR in the following way. 

From linear theory, for a progressive wave field given by cos( )A kx t    we 

know the horizontal wave velocity, 

cosh ( )

sinh ( )

k h d z
u

k h d
 
  

   
       (3.39) 

where h  is the water depth above vegetation, d  is the height of plant stem and z  is the 

vertical coordinate of any location in the water column. (Fig 2) 

 If the wave field is irregular, then the power spectral density, ( )S   and the 

complex amplitude nA  (used in equation 3.22) of frequency component n , are related 

as: 



 

32 

 

 
21

( )
2

n
n

A
S 


 

   
         (3.40) 

Using properties of spectral analysis, the power spectral density of velocityu can 

be obtained as: 
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sinh ( )uu n n n

k h d z
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k h d   
  

   
     (3.41) 

( ) 2* * ( )uuu S           (3.42) 

where   is the fundamental frequency. 

Assuming the plant stem undergoes forced harmonic oscillation (cantilever type 

motion) due to presence of waves, the sway motion at the head of the plant will be the 

maximum. Consequently, the horizontal velocity at the head of plant stem ( z h  ) will 

be the most affected due to the plant stem oscillation and will play an important role in 

damping the flow field energy. Therefore, the velocity at that location is used as the 

characteristic velocity of the flow to compute the Reynolds number, 

( )*
n

u d
R




          (3.43) 

which can be used together with equations (3.36)-(3.38) to compute drag coefficient CD. 

The wave energy dissipation term derived by Kobayashi et al. (1993) (eq. 3.35) 

is used along with CD defined by Kobayashi (1993) and Mendez (1999a) and the results 

of spectral evolution obtained using equation (3.22) are provided in the following 

section. 



 

33 

 

CHAPTER IV 

VALIDATION AND RESULTS 

4.1 Validation of the Model 

4.1.1 Experiments by Dubi and Torum (1994) 

The model described in the previous chapter was to be verified and validated 

with experimental results available in the literature. After reviewing several laboratory 

studies, the model was used to recreate the evolution of root-mean-square wave height 

from experimental data obtained by Dubi and Torum (1994). 

Dubi and Torum (1994) studied the dissipative characteristic of artificial 

Norwegian Kelp using propagation of irregular random waves. Kelp (Fig. 3) is a 

macroalga that grows on hard surfaces, consisting a stem (stipe) which may be as long as 

two meters in a fully grown kelp. 

 

Fig. 3: Description of a Norwegian Kelp (Dubi and Torum 1994) 
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The experiment was conducted in a 33m long, 1 m wide and 1.6 m high wave 

tank as shown in Fig 4. The extent of vegetation was set as 9.3 m along the length of 

wave propagation, approximating a vegetation density of 12 plants per unit square meter. 

Wave heights were measured using eight wave gauges placed one meter apart from each 

other starting 17.85 m from wave paddle as shown in Fig 4. In total, 50 tests were 

carried out with various wave periods.  

 

Fig. 4: Experimental Setup of Dubi and Torum (1994). 

The Dubi and Torum (1994) data were used by Mendez and Losada (2004) for 

evaluating their plant dissipation mechanism. Among the results published in Mendez 

and Losada (2004), we chose to simulate test IR12WD44, which had a peak period of 

3.79s and water depth of 0.4m; and IR5WD63, which had a peak period of 1.58s and 

water depth of 0.6m. The former has a relative depth kh of 0.341 that represents 

intermediate water depth and the latter corresponds to that of deeper water with a kh of 

1.1727. In both the cases, the vegetation is well submerged in the water column. We do 

not consider shallower depths because that would lead to emergent stems; in this case 

the dissipation would need to be represented via a different mechanism. 

Wave Direction 
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The wave characteristics of the tests are summarized in the table below: 

Table 1: Wave characteristics of selected tests from Dubi and Torum (1994) 

 HRMS (m) TP (s) h (m) hveg/h kh Rn (at stem head, approx.) 

IR12WD44 0.084 3.79 0.4 0.33 0.341 2014.5 

IR5WD63 0.114 1.58 0.6 0.33 1.173 1672.1 

 

4.1.2 Comparison with Model Results 

Time series from the experiment were not available, so a synthetic time series 

was generated for model initialization. The model was run with an input spectrum 

obtained from time series generated using a TMA spectrum for shallow water with 

parameter γ = 3.3 and random phases. This time series was divided into seven 

realizations of 1024 points each and was converted into Fourier component amplitudes 

via a Fast Fourier Transform (FFT). These Fourier amplitudes are then used directly for 

model initialization. Output spectra were obtained at experimental gage locations by 

Bartlett-averaging the outputs from all seven realizations. 

As we have seen earlier, the most important factor in this model is the description 

of drag coefficient due to presence of the vegetation. This has been treated using three 

different descriptions in the tests associated with Dubi and Torum (1994) experiments. 

Along with stiff-vegetation description of Kobayashi et al (1993) and vegetation-sway 

included Mendez et al (1999a), we also use bulk CD, as derived by Mendez and Losada 

(2004) in their effort to empirically model the same lab data. This bulk CD was derived 

as a calibration parameter to fit their model results to the lab results.  
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A linear model, which is uses equation (3.18) with right-hand-side set to zero, is 

also run with CD description of Mendez et al (1999a) for the deep water case. This was 

done to show that the shape of wave spectrum is unchanged when a linear model is used. 

Figures 5 and 6 show the evolution of HRMS: 
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Fig. 5: Evolution of HRMS for Test IR12WD44 from Dubi and Torum (1994) 
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Fig. 6: Evolution of HRMS for Test IR5WD63 from Dubi and Torum (1994) 

The green vertical lines in Figures 5 and 6 represent the extent of vegetation; the 

waves move from left to right in the figure. The performance of the model using Mendez 

et al (1999a) description for CD appears to be the most effective. Usage of stiff-

vegetation assumption to describe CD (Kobayashi 1993) seems to underdamp the wave 

energy, resulting in wide discrepancy in HRMS prediction. This could be explained by the 

following theory. Using linear theory, the Reynolds numbers of the flow in the 

experiments have been determined approximately (Table 1) to be of the order of 

transition and turbulent regime, which is an indication of influence of swaying of 

vegetation (Mendez et al 1999a). Thus, considering the stem motion has resulted in 

improved regeneration of the lab results through the model. 
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Also, we can see that the HRMS evolution predicted by the linear model follows 

the one predicted by non-linear model (Figure 6), thus verifying the model’s ability to 

predict bulk characteristic such as root-mean-square wave height. 

The close match between the linear and nonlinear model estimates of HRMS  

shows that it is not an adequate metric to evaluate the nonlinear characteristics of the 

model. The next step is to study the output wave spectra from the nonlinear model and to 

analyze the evolution characteristics of these spectra. Since no wave spectra were 

reported in Dubi and Torum (1994), this exercise is less of a model validation than an 

exploration into the physics of the characteristics of nonlinear spectral evolution over 

vegetation, but is still instructive. 
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Fig. 7: Evolution of Spectrum for Test IR12WD44 from Dubi and Torum (1994) 



 

39 

 

0 0.5 1 1.5 2 2.5 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

f (Hz)

S
(f

) 
m

2 se
c

 H
rms0

 = 0.114, T
P
 = 1.58s, h = 0.6m, h

veg
/h = 0.33 

 

 
Input
WG @ 15 m
WG @ 19.85 m
WG @ 22.85 m
WG @ 26.0 m

 
Fig. 8: Evolution of Spectrum for Test IR5WD63 from Dubi and Torum (1994) 

The emergence of the second harmonic of the spectral peak in the evolution of 

spectrum in shallower water depth (Fig 7), indicates distinct flow of energy into regions 

of twice the peak frequency. This energy transfer to higher harmonics (super-harmonic 

transfer of energy) is a hallmark of shallow water nonlinear processes. This means 

exchange of energy between fp-2fp could be the strongest in shallower waters. A 

contrasting case appears in Figure 8; here we can see that there is pronounced sub-

harmonic interaction as the frequencies below peak frequency get the most amplified as 

waves propagate through vegetation. This has implications regarding the use of wetlands 

as a means of arresting long waves and surge (Williams and Thom 2001), as it appears 

that in some cases, long wave energy can remain undamped. It can also be observed in 
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both shallow and deep water cases that the most damped part of the spectrum is that of 

peak frequency (Anderson and Smith 2013). 
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Fig. 9: Evolution of Spectrum for Test IR12WD44 obtained using Linear Model 

Spectral evolution of waves in shallow water case (kh = 0.341), obtained using 

linear model (as described earlier) is shown in Fig 9. Conforming to the nature of models 

based on linear theory, the spectral shape remains a constant (Elgar and Guza 1985a) in 

comparison to Fig 7 (which is from non-linear model) as waves move over vegetation. 

The spectral energy evolution over the entire course of the experimental setup 

can be seen in Fig 10, which contrasts the spectral evolution with and without vegetation 

(the latter being a hypothetical model run). This figure is a false color plot of spectral 

amplitude densities (red being high) as the random wave train evolves through the 
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vegetation field (represented by black lines). The damping of energy at peak frequency 

and evolution of second harmonic can be seen by comparing regions under the black 

oval. 

 

Fig. 10: Evolution of Spectrum for Test IR12WD44 through the test domain 
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Waves and vegetation submergence conditions similar to ones discussed here can 

be found when storm surges flood the coastal wetlands. This will lead to additional wave 

setup (Dean and Bender 2006) and long wave generation resulting in increase in water 

levels. We can observe that, in shallow water case, evolution of sub-harmonic energy is 

being suppressed due to the presence of vegetation. This could imply that long wave 

generation in wetlands during storm surge, will be damped out by the vegetation when 

the increase in water depth due to flooding is minimal. 

4.1.3 Conclusion from study of Dubi and Torum (1994). 

As the model has predicted the evolution of HRMS accurately using CD definition 

suggested by Mendez et al (1999a), we use the same for simulation of other laboratory 

experiments, whose analysis is presented in the following section. 

4.2 Experiments by Anderson and Smith (2013) 

A physical model study to investigate the dissipation of wave energy by artificial 

Spartina alterniflora was conducted in a large-scale two-dimensional flume (Anderson 

and Smith 2013). S. alterniflora is a dominant species of seagrass in the frequently 

flooded low marsh habitat of Gulf of Mexico and East Coast of United States. (USDA 

and NRCS, 2012). The study investigates the roles of different factors such as stem 

density, submergence, incident wave height, and peak period with respect to wave 

attenuation. 

4.2.1 Description of Experiment 

The flume measures 63.4m long, 1.5m wide and 1.5m deep. The depth 

configuration of the flume is as shown in Fig 11. The wave gauge arrangement is 
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described in Fig 12. The data for 4 different kinds of test scenarios, summarized in the 

table below, were analyzed and used to initiate the model. 

Table 2: Description of test scenarios from Anderson and Smith (2013) 

 h, at vegetation (m) TP (s) fP (Hz) HRMS (m) hveg/h 

Test 1 0.533 1.5 0.667 0.111 0.78 

Test 3 0.533 2.0 0.500 0.111 0.78 

Test 6 0.457 1.5 0.667 0.081 0.91 

Test 12 0.457 2.0 0.500 0.192 0.91 

 

 

 
Fig 11: Profile of wave flume (Anderson and Smith 2013) 

 

 
Fig 12: Wave gauge arrangement (Anderson and Smith 2013) 

 

Gauge 1 Gauge 10 
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4.2.2 Comparison with Model Results 

The model was initiated with the wave spectrum from Gauge 1 (shown in Fig 

12), and the data at further gauges were used to compare, validate and interpret the 

results. The wave elevation time series at Gauge 1 was divided into three realizations of 

4096 points each. The model necessitates a maximum value for fundamental frequency, 

which is dependent of number of points in a realization and sampling rate. Division of 

time series into more realizations would result in higher fundamental frequency, which 

causes the model to behave erratically. Complex Fourier amplitudes, obtained by 

applying FFT on the wave spectrum from each realization was used as input to the 

model and during post-processing, output spectra were obtained after Bartlett averaging. 

Figures 13 and 14 show the evolution of root-mean-square wave height which, as 

verified earlier with the data of Dubi and Torum (1994), is predicted well by the model. 

The solid green line represents the extent of vegetation. Tests 6 and 12 too are well 

simulated through the model and Figure 15 shows the comparison of predicted HRMS, 

obtained from area under the wave energy spectrum, against the measured value. 



 

45 

 

22 24 26 28 30 32 34 36
0

0.02

0.04

0.06

0.08

0.1

0.12

 Distance from wave maker (m)

 H
rm

s (
m

)

 H
rms0

 = 0.111m, T
P
 = 1.5s, h = 0.533m, h

veg
/h = 0.78 

 

 
Anderson and Smith (2013)
Model results

 
Fig 13: Comparison of wave height evolution for Test 1 
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Fig 14: Comparison of wave height evolution for Test 3 
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Fig 15: Model Prediction vs Lab Data Comparison for HRMS 

Although the HRMS (zeroth order quantity from a spectrum) has been predicted 

well with the current formulation (Figure 15: R2 = 0.97), it is to be noted that the wave 

heights in the Test 12 (circled black), which uses an input HRMS that is nearly double of 

other tests, are off the 45o line. This could be due to usage of velocity at stem head in the 

damping formulation. As the wave heights increase, the velocity profile penetrates 

deeper in the water column, thus exerting more drag force on the vegetation (Nepf 

1999). This results in higher damping. Therefore, usage of a different metric such as 

depth-averaged velocity in the dissipation formulation may lead to improved 

comparisons. 
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We now inspect the change in spectral shape as the wave train propagates 

through the vegetation. Comparisons for the same are provided below in Figures 16 and 

17, which correspond to Tests 1 and 3 respectively. 
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Fig 16: Spectral evolution comparison for Test 1 
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Fig 17: Spectral evolution comparison for Test 3 

 We can observe that, while the maximum damping is seen at peak frequency 

(fpeak = 0.67 and 0.5 Hz, respectively), the model tends to over predict the evolution of 

second harmonic peak (fpeak = 1.33 and 1 Hz, respectively) in both the cases. The error in 

prediction of spectral tail by the model is quantified in the following table using spectral 

energy predicted by the model and lab data available at Gauge 10, located at 9.3 m from 

beginning of vegetation. The root-mean-square value of difference between model and 

lab data is expressed in percentage of spectral energy in the peak frequency. 
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Table 3: Error in prediction of spectral evolution by model at Gauge 10 

 fP (Hz) HRMS (m) hveg/h RMS error in 
spectral tail 
as % of peak 

spectral 
energy 

Total RMS 
error as % of 
peak spectral 

energy 

Test 1 0.667 0.111 0.78 2.08 2.34 

Test 3 0.500 0.111 0.78 2.28 3.38 

Test 6 0.667 0.081 0.91 5.17 5.67 

Test 12 0.500 0.192 0.91 1.05 8.95 

 

In Tests 1 and 3, we can see that the error in spectral tail evolution constitutes a 

large part of total error. This could be due to inadequacy of the mechanism employed to 

distribute the dissipation effect over the spectrum, which may not have resulted in the 

appropriate amounts of energy exchange between the harmonics. Also, in the laboratory 

conditions, development of standing wave, would have suppressed the transfer of 

spectral energy from lower to higher harmonics, thereby limiting the evolution of second 

harmonic peak. 

It is also to be noted that % error in Test 12, which has nearly twice the incident 

wave height than other tests, is significantly larger. This is an indication of lesser 

damping generated by the model due to use of velocity at stem head. In this case, as the 

incident wave energy is higher, the velocity profile will penetrate deeper into the water 

column. Thus, usage of velocity at stem head is inadequate in conditions where 

vegetation is near emergent and encounters higher wave energy, because even the lower 
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parts of stem will “feel” the propagation of waves over it. This also affects the nature of 

vegetation motion, which further contributes to its dissipation effects. 

The exchange of spectral energy between various harmonics can also be studied 

using a metric called bi-coherence (Kim and Powers 1979) of interacting triads, in which 

three frequencies ( kf  , mf  and k mf   ) are in “resonance” with each other. Bi-coherence is 

defined as *( , )k m k m k mB f f A A A   , where kf  and mf  are interacting frequencies and A 

represents the complex spectral amplitude of corresponding frequency. Bi-coherence 

correlates gains and losses of energy in any given frequency pair ( kf  and mf ) with gains 

and losses of energy in a third resonant frequency ( k mf   ). 

We will adopt some useful terminology to help distinguish between different 

interactions. Interactions between triads ( peakf  , peakf  and 2 peakf ) and ( peakf  , 2 peakf  

and3 peakf ) are termed “harmonic interactions” since they include the peak frequency and 

its harmonics, and ( 0.5 peakf  , peakf  and1.5 peakf ) is termed “off-harmonic interaction” and 

represent trading of energy to and from sub-harmonic frequencies. 

Figures 18 and 20 show the bi-coherence of aforementioned triads for model runs 

of Tests 1 and 3 respectively. Figures 19 and 21 are the same metric as obtained from lab 

data. 
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Fig 18: Bi-coherence plot for Test 1 using Model Results 

26 28 30 32 34 36 38
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance from wave−maker (m)

Test 1 − Bicoherence − Lab Data

 

 

f
p
 − f

p
 − 2f

p
0.5f

p
 − f

p
 − 1.5f

p
f
p
 − 2f

p
 − 3f

p

 

Fig 19: Bi-coherence plot for Test 1 using Lab Data 
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Fig 20: Bi-coherence plot for Test 3 using Model Results 
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Fig 21: Bi-coherence plot for Test 1 using Lab Data 
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We can observe that the model tends to excite the off-harmonic transfer (denoted 

by the green star) of energy much more than that of in the Test 1 experiments, where it 

tends to be suppressed (Figs 18 and 19). This corroborates our earlier observation of 

development of second harmonic peak, which is non-existent in the laboratory 

conditions. While the same interaction is stronger in Test 3 (Fig 20), which is observed 

in the form of second harmonic peak in Fig 17, the model seems to transfer a little more 

energy than is seen in the experiment. 

The red squares and blue circles, which represent the harmonic interactions of 

peak frequency, tend to be suppressed in Test 1 (Fig 19), which results in pronounced 

under evolution of spectral tail in laboratory conditions (Fig 16). As discussed earlier, 

this could be explained by possible presence of resonant standing waves, which could 

excite the flow of energy from peak to sub-harmonic frequencies (thereby suppressing 

harmonic interactions) and disrupt interaction with higher harmonics.  

These observations are to be noted in contrast to the bi-coherence measurements 

of the same experiment (eg. Test 1) without the vegetation. As we can see in Fig 22, in 

wave propagation without vegetation, there is no marked suppression of any type of 

energy transfer. This means that the vegetation has a selective influence on the energy 

transfer between harmonics. 
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Fig 22: Bi-coherence plot of Test 1 from Lab Data: no vegetation 
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Fig 23: Bi-coherence plot of Test 1 from Model Result: no vegetation 
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The evolution of higher harmonics in a wave train can also be analyzed using 

study of evolution of a quantity called skewness. Skewness is defined as the asymmetry 

of wave shape with respect to horizontal axis. As the higher frequencies are excited in a 

wave train, the wave troughs flatten and crests sharpen, thereby resulting in a positive 

skewness of the wave shape. Skewness is defined as 
3

3/22




 . 

Figures 24 and 25 show the evolution of skewness for Test 1 and 3 respectively. 
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Fig 24: Evolution of wave shape skewness in Test 1 
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Fig 25: Evolution of wave shape skewness in Test 3 
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Fig 26: Model Prediction vs Lab Data Comparison for skewness 
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From the above figures, it can be observed that the model adequately simulates 

the general trend in both the cases (Fig 26: R2 = 0.68 > 0). We can also note that in 

accordance with general observation all along, the transfer of energy to higher 

frequencies is suppressed, as the skewness tends to drop (although there is an initial 

increase) as the wave progress through the vegetation. But it is to be noted that more 

data is needed as skewness measurement improves when computed with more 

realizations. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The simulation of various laboratory experiments of waves over vegetation using 

the non-linear model described in this thesis has shown that damping due to vegetation is 

most accurately represented by using the formulation that accounts for sway motion of 

vegetation (Mendez et al. 1999a). It is also observed that the dissipation is most 

pronounced at the peak frequency and seems to affect other frequencies quite uniformly. 

But this could also be due to a destructive interference of variable energy exchange and 

skewed distribution of damping over frequencies. Further laboratory tests and more 

realizations (i.e., longer time series) are required to conduct sound analysis of bi-

coherence interaction to determine the frequency dependency of damping behavior. 

Harmonic energy transfer to higher frequencies is apparently effectively damped 

out due to presence of vegetation. This is due to the fact that second harmonic peak is 

very weakly evolved in the cases observed so far. The sub-harmonic energy exchange, 

which corresponds to long wave generation, is also damped, but not to the same extent 

as the peak-peak-2*peak interactions. But further studies need to be conducted to 

determine the existence or generation of standing waves, which could excite the sub-

harmonic energy in the spectra. Experiments with longer duration, would help in 

discretizing the spectrum more finely, thereby leading to a closer inspection of sub-

harmonic energy evolution. 
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The model performs very well in tracking the evolution of bulk characteristic 

such as HRMS, thus validating this damping mechanism and subsequently, this 

formulation could be integrated with phase-averaged nearshore circulation models. This 

model also adequately simulates spectral and skewness evolution, although, it tends to 

over predict spectral tail evolution (Table 3). 

5.2 Future Work 

The scope of future work remains focused on correlating the drag coefficient to 

the energy dissipation due to presence of plant stems, using means which are listed 

below: 

1. Throughout the simulation, model uses velocity at stem head to compute the 

Reynolds number and correspondingly, the drag coefficient. But this method 

may lead to inadequate representation of damping due to vegetation, if either 

the vegetation is more than 80% of water column (as in the case of Test 6) or 

if the root-mean-square wave height is substantially greater than the current 

values (Test 12). In the latter case, the velocity profile will be much more 

pronounced as we go deeper. Therefore, we propose usage of depth averaged 

velocity to determine the drag coefficient, which will be a definitive 

improvement over the current methodology. 

2. One more avenue of improvement could be to rework the model using a 

different depth dependency in the boundary value problem, as opposed to the 

hyperbolic cosine in the existing wave theory, which accounts for the 
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presence of vegetation. In this case it is possible that, there would be a 

distinct depth dependency for each of the different categories of wetlands. 

3. Analyze the lab data to filter any infra-gravity or standing waves in the 

vegetation region and rerun the model with filtered data to obtain a more 

consistent output from the model to that of corrected lab data. 

4. Also, this model, which is based on evolution of spectrum, would better 

perform, if a probabilistic form of vegetation damping, akin to the one 

developed by Thornton and Guza (1983) for dissipation due to wave-

breaking, is used. 
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