
EXPONENTIALLY-CONVERGENT MONTE CARLO FOR THE

ONE-DIMENSIONAL TRANSPORT EQUATION

A Thesis

by

JACOB ROSS PETERSON

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jim Morel
Co-Chair of Committee, Jean Ragusa
Committee Member, Bani Mallick
Head of Department, Yassin Hassan

May 2014

Major Subject: Nuclear Engineering

Copyright 2014 Jacob Ross Peterson

ABSTRACT

An exponentially-convergent Monte Carlo (ECMC) method is analyzed using the

one-group, one-dimension, slab-geometry transport equation. The method is based

upon the use of a linear discontinuous finite-element trial space in position and di-

rection to represent the transport solution. A space-angle h-adaptive algorithm is

employed to maintain exponential convergence after stagnation occurs due to in-

adequate trial-space resolution. In addition, a biased sampling algorithm is used to

adequately converge singular problems. Computational results are presented demon-

strating the efficacy of the new approach. We tested our ECMC algorithm against

standard Monte Carlo and found the ECMC method to be generally much more effi-

cient. For a manufacture solution the ECMC algorithm was roughly 200 times more

effective than the standard Monte Carlo. When considering a highly singular pure

attenuation problem, the ECMC method was roughly 4000 times more effective.

ii

ACKNOWLEDGEMENTS

First and forememost I thank my advisors Dr. Jim Morel and Dr. Jean Ragusa

for their help and guidance. Without them none of this would have been possible.

Thank you to Dr. Bani Mallick as a committee member, and to Dr. Yassin Hassan

as department head. I also thank the faculty and staff in the Nuclear Engineering

department for all they have done.

Finally, I thank my family and friends. My wife Katherine Peterson has given me

neverending love and support. Without her I couldn’t handle the stress of graduate

school. My parents Sara Peterson and Chris Peterson have always being there for

me. They have believed in me my entire life without fail. And my buds in the

Singing Cadets for helping me keep my sanity during the process.

iii

NOMENCLATURE

ECMC Exponentially-Convergent Monte Carlo

L linear system

u system solution

q system source

ũ ECMC solution approximation

r residual associated with the approximation

ε pointwise error in ECMC approximation

L̂−1 solution method to approximate L−1

δ approximation to ε from L̂−1

x position cm

µ angular cosine

ψ angular flux n−cm
cm3−ster−s

σt total neutron cross section reactions
n−cm

σs scattering neutron cross section scatterings
n−cm

σa absorption neutron cross section absorptions
n−cm

φ scalar flux n−cm
cm3−s

Q internal source n
cm3−ster−s

T domain length cm

ψ+
inc incoming flux from the left n−cm

cm3−ster−s

ψ−inc incoming flux from the right n−cm
cm3−ster−s

ψ̃ FEM representation of the angular flux n−cm
cm3−ster−s

φ̃ FEM representation of the scalar flux n−cm
cm3−s

Q̃ FEM representation of the internal source n
cm3−ster−s

iv

ψai,m FEM projection coefficient: average value n−cm
cm3−ster−s

ψxi,m FEM projection coefficient: slope in position n−cm
cm3−ster−s

ψµi,m FEM projection coefficient: slope in direction n−cm
cm3−ster−s

hi width of cell column i in position cm

hm width of cell row m in direction

r̃ residual associated with the FEM representation n
cm3−ster−s

r̃int cell interior residual piece n
cm3−ster−s

r̃fac cell face residual piece n
cm3−ster−s

I inti,m absolute integral of the interior residual in cell (i,m) n
s

Ifaci,m absolute integral of the face residual in cell (i,m) n
s

ρ random number generated ∈ (0, 1)

s path length traced in a cell cm

x̄ average position a particle has in a cell cm

w particle weight

Np number of particle histories in a batch

x′ next position sampled cm

α magnitude of the residual-norm ratio

ξi the jump error indicator for cell i

NC number of cells in the mesh

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

NOMENCLATURE . iv

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . ix

1. INTRODUCTION . 1

1.1 Brief History of the Monte Carlo Method 1
1.2 Variance Reduction Techniques . 2
1.3 Previous Work on Exponentially-Convergent Monte Carlo 3
1.4 Motivation for Current Work . 4

2. ALGORITHM DESCRIPTIONS . 5

2.1 ECMC General Algorithm . 5
2.2 Transport Equation . 7

2.2.1 One-Group, One-Dimension Transport 7
2.2.2 Linear-Discontinuous Discretization 7

2.3 Sampling and Counting . 9
2.3.1 Residual Calculation . 9
2.3.2 Source Sampling and Rejection Method 12
2.3.3 Tallies . 14
2.3.4 Particle Tracking . 17

2.4 Adaptivity . 22
2.4.1 General Concept . 22

vi

2.4.2 Detecting Convergence Stagnation 24
2.4.3 Determining Refined Cells . 25

2.5 Biased Sampling . 26
2.5.1 General Concept . 26
2.5.2 Sampling Algorithm . 27

3. TEST PROBLEM DESCRIPTIONS . 28

3.1 Constant Solution . 28
3.2 Manufactured Solution . 29
3.3 Pure Attenuation . 31
3.4 Internal Source with Scattering . 32

4. RESULTS . 33

4.1 Constant Solution . 34
4.2 Manufactured Solution . 36
4.3 Pure Attenuation . 39
4.4 Internal Source with Scattering . 44

5. CONCLUDING REMARKS . 47

REFERENCES . 48

APPENDIX A. RESIDUAL INTEGRATION 51

APPENDIX B. JUMP ERROR INDICATORS 54

APPENDIX C. MANUFACTURED SOLUTION MESHES 59

APPENDIX D. ATTENUATION SOLUTION MESHES 67

APPENDIX E. INTERNAL SOURCE MESHES 75

vii

LIST OF FIGURES

FIGURE Page

2.1 Indexing and Bounds for the Space-Direction Cell (i,m). 8

2.2 Upwind Example for µ > 0. The face value is represented by the
closed circle. 8

4.1 Convergence for Constant Solution Problem. 34

4.2 Convergence for Manufactured Solution Problem. 36

4.3 Batch Time for Manufactured Solution Problem. 37

4.4 Convergence for Attenuation Solution Problem - Scalar Flux. 39

4.5 Convergence for Attenuation Solution Problem - Angular Flux. 40

4.6 Scalar Flux for Attenuation Solution Problem. 41

4.7 Batch Time for Attenuation Solution Problem. 42

4.8 Convergence for Internal Scattering Problem. 44

4.9 Batch Time for Internal Scattering Problem. 45

4.10 Scalar Flux for Internal Scattering Problem. 46

viii

LIST OF TABLES

TABLE Page

4.1 Regular Monte Carlo on Manufactured Solution 38

4.2 Regular Monte Carlo on Attenuation Solution 43

ix

1. INTRODUCTION

1.1 Brief History of the Monte Carlo Method

The Monte Carlo method was first utilized by Los Alamos National Laboratory.

While various statistical methods had been theorized prior, it was not until the

invention of the computer that the full simulations could be realized. In 1945, re-

searchers at the University of Pennsylvania in Philadelphia created the ENIAC: the

first electronic computer. Scientists at Los Alamos reviewed the device in 1946 and

were intrigued by the possibilities. They tested the method in 1947, and the method

was deemed effective and favorable. In 1952 Los Alamos built their own computer,

the MANIAC, for the Monte Carlo simulations [1]. They called the simulation code

they created MCS. Features were added to this code over the years, and in 1977 the

codes culminated in Los Alamos National Lab’s Monte Carlo N-Particle transport

code (MCNP).

Other entities have developed Monte Carlo codes over the years. Notable ones

include ITS TIGER developed at Sandia National Laboratory [2], TART devel-

oped at Lawrence Livermore National Laboratory [3, 4], VIM developed at Argonne

National Laboratory [5, 4], TRIPOLI developed by the Commissariat à l’énergie

atomique, CEA/SACLAY, Cedex, France [6, 4], SHIELD developed at the Insti-

tute for Nuclear Research of the Russian Academy of Science, Moscow, Russia [7, 4],

MONK/MCBEND developed by Serco in the United Kingdom [8, 4], Geant4 a world-

wide collaboration initially developed at CERN [9], and OpenMC developed origi-

nally at Massachusetts Institute of Technology [10].

1

1.2 Variance Reduction Techniques

The Monte Carlo method involves randomly sampling variables, applying a sys-

tem to these variables, and tallying the calculated results. The tallies are averaged

together to obtain the quantities of interest. By the Central Limit Theorem, this

algorithm has a convergence rate of 1/
√
N , where N is the number of histories ran.

That is, to double the accuracy, four times as many particles need to be ran. This

can make complicated systems take prohibitively long to simulate.

Variance reduction methods reduce the error without using more particles, thus

allowing these complicated systems to be feasibly solved. Presented here are a few

of the common methods, as utilized in MCNP [11]. They are splitting, weight dis-

persion, exponential transformation, forced collisions, implicit absorption, correlated

sampling, and source biasing. All of these involve the weight of the particle, which

is discussed more in Chapter 2.

Splitting is utilized when there are areas in the space-energy domain of less im-

portance relative to that region. If a particle enters the less important region from a

more important region, there is a certain probability it will be terminated. The par-

ticles that survive are given a higher weight to maintain accuracy in the simulation.

Conversely, if a particle enters a more important region, more particles are created.

These split particles are given lower weights to maintain the solution.

Weight dispersion helps keep the particle weights within a certain bound. If the

weights fall too low, the particle will terminate with a certain probability. If not,

the weight is raised to account for the fewer particles. Similarly, if the weight of a

particle becomes too large the code will split the particle and decrease the weights.

When large transport distances need to be simulated, exponential transformation

is used. The distance between collisions is artificially increased and the weight is

2

correspondingly artificially decreased.

A particle can be forced to undergo certain collisions, namely when it enters

a region almost transparent to it. The particle is split into two parts, collided an

uncollided. The weights are appropriately set to represent the probability of collision.

In a normal Monte Carlo simulation, the particle is killed with an absorption

interaction. Implicit absorption doesn’t kill the particle, but rather reduces the

weight of the particle based on the absorption probability. This permits important

particles to survive longer.

Slight changes in the problem specification can create small variations in the so-

lution. These can be masked by the statistical fluctuations in a normal Monte Carlo

simulation. Normally a particle’s random number sequence begins where the previ-

ous particle ended. Changing the problem specification has the potential to change

every particle’s random walk. Correlated sampling always starts the ith history at a

specified point within the random number sequence, regardless of the previous par-

ticles’ simulations. This reduces the statistical fluctuations caused by slight changes

in the problem.

Source biasing generates more particles in areas of phase space with more impor-

tance. To maintain the correct solution, the weights are lowered in these regions.

This method is utilized in this Thesis, as explained in Section 2.5.

1.3 Previous Work on Exponentially-Convergent Monte Carlo

As opposed to the 1/
√
N convergence of regular Monte Carlo methods, it is possi-

ble to define a method which converges exponentially [12]. Exponentially-convergent

Monte Carlo (ECMC) methods have previously been shown to be practical for finite-

dimensional systems such as the discretized radiative diffusion equations [13]. They

have also been demonstrated for the continuous neutron transport equation [14, 15],

3

but only for homogeneous 1-D problems using Case eigenfunction-based algorithms

impractical for realistic problems. A successful approach was demonstrated for the

3-D spatially-continuous Sn equations using global polynomial trial spaces [16], but

further generalizations of the approach were not successful. It has recently been

demonstrated for the simple two-stream transport equations that an ECMC ap-

proach based upon a spatial linearly-discontinuous finite-element trial spaces can

yield exponential convergence [17].

1.4 Motivation for Current Work

The failure of the global polynomial approach was related to the use of highly

oscillatory trial spaces that generated excessive numerical error in the solution. The

finite-element approach has significant advantages when compared to previous ap-

proaches. First, one can achieve convergence of the solution without increasing the

oscillatory nature of the trial space by refining the mesh. Conversely, global polyno-

mial trial spaces become increasingly oscillatory as the order is increased. Second,

finite-element trial spaces can be used to efficiently represent fully-realistic solutions.

Third, the use of finite-element spaces will enable the seamless coupling of Monte

Carlo transport physics with other physics components in multiphysics calculations.

4

2. ALGORITHM DESCRIPTIONS

2.1 ECMC General Algorithm

The ECMC algorithm can be used on any system which is solvable via Monte

Carlo, expressed in the following form:

L[u] = q, (2.1)

where L is the linear system with source q, and u is the solution to this system. The

ith iteration solution approximation is represented by ũ(i). The ith residual is thus

r(i) = q − L[ũ(i)]. (2.2)

Substituting Eq. (2.1) for the source in Eq. (2.2) yields

r(i) = L[u]− L[ũ(i)] = L[u− ũ(i)] = L[ε(i)], (2.3)

where ε(i) is the pointwise error of the ith solution approximation. Note that this

formulation is the same linear system as Eq. (2.1) with the residual as the source.

Any method that adequately solves the original system can also solve Eq. (2.3).

Introducing L̂−1 as the method to solve the system, the general algorithm becomes

as follows:

r(i) ← q − L[ũ(i)] (2.4a)

δ(i) ← L̂−1[r(i)] (2.4b)

ũ(i+1) ← ũ(i) + δ(i) (2.4c)

5

Since L̂−1 may not exactly represent L−1, δ(i) is the typical Monte Carlo approxi-

mation of ε(i). The algorithm begins with ũ(0) uniformly 0, so the first iteration is

simply solving a single batch on the original system. If the Monte Carlo solver esti-

mates the solution with sufficient accuracy, each successive batch estimates a smaller

component of the solution and exponential convergence is obtained as a function of

the number of batches (and hence as a function of the number of particle histories).

Because the transport equation is continuous, the angular flux solution has an

infinite number of degrees of freedom and hence must be approximately represented

in general. For a given angular flux representation, exponential convergence will be

obtained until the remaining error in the Monte Carlo solution can no longer be accu-

rately represented in the trial space. At this point the Monte Carlo solution stagnates

at an average fixed error level. Note that the solution obtained using the ECMC ap-

proach does not represent a standard finite-element solution but rather represents a

least-squares projection of the exact solution onto the trial space. This is in general

a far more accurate approximation than a standard finite-element approximation. In

standard Monte Carlo calculations, one usually computes projections of the solution

rather than the solution itself. For instance, the average scalar flux within a volume

represents a projection of the solution. Thus no desired information relating to the

solution is necessarily lost by using the ECMC method.

6

2.2 Transport Equation

2.2.1 One-Group, One-Dimension Transport

For this research the steady-state, one-dimensional form of the transport equation

was used:

µ
∂

∂x
ψ(x, µ) + σt(x)ψ(x, µ) =

σs(x)

4π
φ(x) +Q(x, µ), x ∈ [0, T], µ ∈ [−1,+1],

ψ(x = 0, µ > 0) = ψ+
inc(µ),

ψ(x = T, µ < 0) = ψ−inc(µ).

(2.5)

This formulation has one energy group, isotropic scattering, and no fission. The

scalar flux is defined as

φ = 2π

+1∫
−1

ψ dµ. (2.6)

2.2.2 Linear-Discontinuous Discretization

The finite-element trial space is defined on a space-direction mesh with rectan-

gular cells. The indexing for a single cell before adaptation occurs is illustrated in

Fig. 2.1.

The initial grid is defined by spatial vertices, {xi}N+1/2
i=1/2 , where x1/2 = 0 and

xN+1/2 = T ; and direction vertices, {µm}M+1/2
m=1/2 , where µ1/2 = −1, µM+1/2 = +1.

The finite-element representation for the solution associated with cell (i,m) is as

follows:

ψ̃(x, µ)
∣∣
i,m

= ψ̃i,m(x, µ) = ψai,m + ψxi,m
2

hi
(x− xi) + ψµi,m

2

hm
(µ− µm). (2.7)

This representation is upwinded at the cell boundaries. This means that the value

on a spatial face is determined by the cell the particle is leaving, as shown in Fig. 2.2.

7

i,m

m−1/2

µ m+1/2

X i+1/2X i−1/2 X

µ

µ

Figure 2.1: Indexing and Bounds for the Space-Direction Cell (i,m).

Figure 2.2: Upwind Example for µ > 0. The face value is represented by the closed
circle.

8

Thus the bounds for the projection in cell (i,m) are

 x ∈ (xi−1/2, xi+1/2], µ ∈ (µm−1/2, µm+1/2] µ > 0,

x ∈ [xi−1/2, xi+1/2), µ ∈ [µm−1/2, µm+1/2) µ < 0.
(2.8)

This ensures a unique definition for ψ̃ on each spatial face in the domain. The

definition at µ = 0 is not necessary because there are no µ-derivatives in the transport

equation. Similar discretizations are defined for Q and φ.

2.3 Sampling and Counting

2.3.1 Residual Calculation

For this equation the residual is defined as

r̃ = Q̃+
σs
4π
φ̃− σtψ̃ − µ

∂ψ̃

∂x
. (2.9)

Due to the discontinuities of ψ̃ at each cell interface, the derivative involves a delta

function.

∂ψ̃i,m
∂x

=

 ψxi,m
2
hi

+ δ(x− xi−1/2)
(
ψ̃i,m − ψ̃i−1,m

)
µ > 0,

ψxi,m
2
hi

+ δ(x− xi+1/2)
(
ψ̃i,m − ψ̃i+1,m

)
µ < 0.

(2.10)

9

The delta term can be treated as a face source for the cell. The residual is thus

expressed as two pieces, internal and face, as follows:

r̃int(x, µ)
∣∣
i,m

= rai,m + rxi,m
2

hi
(x− xi) + rµi,m

2

hm
(µ− µm), (2.11a)

rai,m = Qa
i,m +

σs
4π
φai,m − σtψai,m − µm

2

hi
ψxi,m, (2.11b)

rxi,m = Qx
i,m +

σs
4π
φxi,m − σtψxi,m, (2.11c)

rµi,m = Qµ
i,m − σtψ

µ
i,m −

hm
hi
ψxi,m; (2.11d)

r̃fac(x, µ)
∣∣
i,m

= δi,mµ

(
rc1i,m + rc2i,m

2

hm
(µ− µm)

)
, (2.12a)

δi,m =

 δ(x− xi−1/2) µ > 0,

δ(x− xi+1/2) µ < 0,
(2.12b)

rc1i,m =


(
ψai−1,m + ψxi−1,m

)
−
(
ψai,m − ψxi,m

)
µ > 0,(

ψai+1,m − ψxi+1,m

)
−
(
ψai,m + ψxi,m

)
µ < 0,

(2.12c)

rc2i,m =

 ψµi−1,m − ψ
µ
i,m µ > 0,

ψµi+1,m − ψ
µ
i,m µ < 0.

(2.12d)

For cells on the edge of the domain,
(
ψai−1,m + ψxi−1,m

)
,
(
ψai+1,m − ψxi+1,m

)
, ψµi−1,m,

and ψµi+1,m are determined from the face source distributions ψ+
inc and ψ−inc. The L1

10

norm of the residual is calculated over the entire domain:

||r̃||L1 =

T∫
0

+1∫
−1

|r̃|dµ dx

=
N∑
i=1

M∑
m=1

 xi+1/2∫
xi−1/2

µm+1/2∫
µm−1/2

|r̃|dµ dx


=

N∑
i=1

M∑
m=1

 xi+1/2∫
xi−1/2

µm+1/2∫
µm−1/2

|r̃int + r̃fac|dµ dx


≈

N∑
i=1

M∑
m=1

 xi+1/2∫
xi−1/2

µm+1/2∫
µm−1/2

|r̃int|dµ dx+

xi+1/2∫
xi−1/2

µm+1/2∫
µm−1/2

|r̃fac|dµ dx


=

N∑
i=1

M∑
m=1

[
I inti,m + Ifaci,m

]
,

(2.13)

where I inti,m is the value of the interior integral and Ifaci,m is the value of the face integral.

The integrals over a cell are calculated exactly. Since it is possible for the residual

to be negative within a cell, these integrals must be taken with care. The exact

integration is shown in Appendix A.

11

2.3.2 Source Sampling and Rejection Method

The ECMC algorithm uses the residual as the source. To determine the starting

cell the relative magnitudes of the L1 norms within the cells are used, as described

in the following algorithm:

generate random number ρ ∈ (0, 1)

define temporary sum TS = 0

FOR i = 1, N

FOR m = 1,M

TS ← TS +
Iinti,m+Ifaci,m

||r̃||L1

IF ρ < TS

define the starting cell as (i,m)

EXIT the algorithm

END

END

END

Once the starting cell is determined, the code determines whether the particle

starts on the face or within the cell. Another random number ρ is generated and

compared to
Ifaci,m

Iinti,m+Ifaci,m

. If ρ is less than this quantity, then the particle is sampled on

the face; else the particle is sampled within the interior of the cell.

The position and direction of the particle are determined via the rejection method.

The properties are determined using the absolute value of the residual function. The

first step in the rejection method is determining the maximum value of the function.

12

For the interior particles, this is simply the values on the corners. Namely,

MAX
(∣∣ψai,m + ψxi,m + ψµi,m

∣∣ , ∣∣ψai,m + ψxi,m − ψ
µ
i,m

∣∣ ,∣∣ψai,m − ψxi,m + ψµi,m
∣∣ , ∣∣ψai,m − ψxi,m − ψµi,m∣∣) . (2.14)

On the cell edges, the residual is quadratic in µ. Thus it is possible for the maximum

value to occur elsewhere than the corners. The maximum value the residual can take

is thus

MAX

(∣∣∣∣µm +
hm
2

∣∣∣∣ ∣∣rc1i,m + rc2i,m
∣∣ , ∣∣∣∣µm − hm

2

∣∣∣∣ ∣∣rc1i,m − rc2i,m∣∣ ,∣∣∣∣µr (rc1i,m + rc2i,m
2

hm
(µr − µm)

)∣∣∣∣) . (2.15)

where µr is the location of the maximum value:

µr =
µm
2
− hm

4

rc1i,m
rc2i,m

. (2.16)

The last term is only considered if µr ∈ (µm − hm
2
, µm + hm

2
), or

∣∣∣∣rc1i,mrc2i,m + 2
µm
hm

∣∣∣∣ < 2. (2.17)

13

The rejection method applied to an arbitrary function f(x, µ) (with fmax pre-

calculated) is as follows:

BEGIN LOOP

generate 3 random numbers ρ1, ρ2, ρ3 ∈ (0, 1)

calculate f1 ← ρ1fmax

calculate x2 ← xi + hx
(
ρ2 − 1

2

)
calculate µ2 ← µm + hm

(
ρ3 − 1

2

)
calculate f2 ← f(x2, µ2)

IF f1 < f2

define the starting position as x2 and the starting direction as µ2

EXIT the algorithm

END

END

The function used for the rejection method is the absolute value of the residual

function. The weight of the particle is either +1 or −1, depending on the sign of the

residual at the sampled location.

2.3.3 Tallies

The particle tallies compute the flux average, the x-slope, and the µ-slope. The

formulas are derived by taking moments of Eq. (2.7). The zeroth moment is as

14

follows:∫
cell(i,m)

ψ̃i,mdxdµ =

∫
cell(i,m)

ψai,m + ψxi,m
2

hi
(x− xi) + ψµi,m

2

hm
(µ− µm)dxdµ

= ψai,m

∫
cell(i,m)

dxdµ

= ψai,mhihm.

(2.18)

Thus ψai,m is an estimate of the integral

1

hihm

∫
cell(i,m)

ψdxdµ. (2.19)

This integral is approximated by averaging the path lengths within the cell. Consider

a single particle streaming through cell (i,m), from x1 to x2 with direction µ0. The

integral of the resulting angular flux is

∫
cell(i,m)

ψ0dxdµ =

x2∫
x1

1

µ0

dx =
x2 − x1

µ0

= s. (2.20)

The first x-moment over the cell is weighted with respect to the cell midpoint:

∫
cell(i,m)

(x− xi)ψ̃i,mdxdµ = ψxi,m
2

hi

∫
cell(i,m)

(x− xi)2dxdµ

= ψxi,m
h2
ihm
6

.

(2.21)

Thus ψxi,m is an estimate of the integral

6

h2
ihm

∫
cell(i,m)

(x− xi)ψdxdµ. (2.22)

15

Considering the single particle,

∫
cell(i,m)

(x−xi)ψ0dxdµ =

x2∫
x1

x− xi
µ0

dx =
x2 − x1

µ0

(
x2 + x1

2
− xi

)
= s(x̄−xi). (2.23)

The first µ-moment over the cell is weighted with respect to the cell midpoint.

∫
cell(i,m)

(µ− µm)ψ̃i,mdxdµ = ψµi,m
2

hm

∫
cell(i,m)

(µ− µm)2dxdµ

= ψµi,m
hih

2
m

6
.

(2.24)

Thus ψµi,m is an estimate of the integral

6

hih2
m

∫
cell(i,m)

(µ− µm)ψdxdµ. (2.25)

The angular distribution of the single particle is a delta function. Thus the integral

is

∫
cell(i,m)

(µ− µm)ψ0dxdµ =

x2∫
x1

µ0 − µm
µ0

dx =
x2 − x1

µ0

(µ0 − µm) = s(µ0 − µm). (2.26)

The flux average tally is thus computed as

δai,m ≈
1

hihmNp

Np∑
j=0

sj,i,mwj, (2.27)

16

where sj,i,m is the path length particle j travels within cell (i,m) and wj is the weight

associated with particle j. The x-slope tally is

δxi,m ≈
6

h2
ihmNp

Np∑
j=0

(x̄j,i,m − xi)sj,i,mwj, (2.28)

where x̄j,i,m is the average position within cell (i,m) for particle j. The µ-slope tally

is

δµi,m ≈
6

hih2
mNp

Np∑
j=0

(µj − µm)sj,i,mwj, (2.29)

where µj is the direction associated with particle j.

2.3.4 Particle Tracking

Once the starting position is determined, the particle history is continued until

it escapes the system or it is absorbed. First, the distance to the next collision

is randomized. The probability that a particle will travel a distance s to its next

collision is given by

σte
−σts. (2.30)

To properly determine s, the random variable ρ is set equal to the cumulative dis-

tribution function, as follows:

ρ =

s∫
0

σte
−σtxdx

=
σt
−σt

(
e−σts − e−σt0

)
= 1− e−σts.

(2.31)

17

Since ρ is uniformly distributed ∈ (0, 1), (1−ρ) has the same probability distribution

as ρ. To simplify the procedure, the distance is sampled as

ρ = e−σts, (2.32)

leading to

s =
1

−σt
ln(ρ). (2.33)

The next position is then given by

x′ = x+ sµ. (2.34)

If this value lies outside of the current cell, then the particle history is moved to the

cell boundary and the tallies are performed. Assuming this cell boundary is not on

the domain boundary, the tracking process loops back to determine a new distance

to collision. Since the probability of interaction is independent of how far the particle

has already traveled, the same process as before is used.

If the next position x′ occurs within the cell, then an interaction occurs. Whether

a scatter or absorption occurs is randomized by comparing another generated ρ with

σa
σt

. If ρ is less than this ratio, then the particle is absorbed and the history is termi-

nated. Else, the particle scatters. At this stage only isotropic scatter is considered,

but anisotropic scattering could be added. The code randomly determines the new

direction and continues the particles history.

18

The entire algorithm is as follows:

initialize the tallies δai,m, δxi,m, and δµi,m to 0

FOR j ∈ (1, Np)

sample cell (i,m), position x, direction µ, and weight w

BEGIN LOOP: particle

generate random number ρ ∈ (0, 1)

calculate distance to next collision s← − 1
σt

ln(ρ)

calculate next position x′ ← x+ sµ

IF x′ ∈ (xi − hi
2
, xi + hi

2
)

[the particle interacted within the current cell]

ELSE

[the particle interacted outside of the current cell]

END

END

END

19

For interactions within the current cell, the algorithm continues as follows:

[the particle interacted within the current cell]

calculate mean position x̄← x+x′

2

δai,m ← δai,m + sw
hxhmNp

δxi,m ← δxi,m + 6
hx

(x̄−xi)sw
hxhmNp

δµi,m ← δµi,m + 6
hm

(µ−µm)sw
hxhmNp

generate random number ρ ∈ (0, 1)

IF ρ < σa
σt

the particle is absorbed, EXIT LOOP: particle

ELSE

[the particle scattered]

x← x′

generate random number ρ ∈ (0, 1)

calculate scattered direction isotropically µ← 2ρ− 1

determine new cell (i,m)

END

20

For interactions outside of the current cell, the algorithm continues as follows:

[the particle interacted outside of the current cell]

determine final position xb: ← xi − hx
2

IF µ < 0

← xi + hx
2

IF µ > 0

calculate mean position x̄← x+xb
2

calculate distance traveled s← xb−x
µ

δai,m ← δai,m + sw
hxhmNp

δxi,m ← δxi,m + 6
hx

(x̄−xi)sw
hxhmNp

δµi,m ← δµi,m + 6
hm

(µ−µm)sw
hxhmNp

IF xb is not on the boundary

[move the particle to the next cell]

x← xb

determine cell (i,m)

ELSE IF the boundary is reflective

µ← −µ

x← xb

determine cell (i,m)

ELSE

the particle leaked, EXIT LOOP: particle

END

21

2.4 Adaptivity

2.4.1 General Concept

As previously discussed, the error in the ECMC solution will saturate at some

level if the true solution does not exist in the linear-discontinuous trial space. The

error level at which the method stagnates is directly proportional to the projection

error, as the ECMC solution is the projection of the true solution onto the trial space.

To reach further convergence the mesh must be made finer. Previous work shows

that starting with a finer initial mesh does increase the convergence [17]. Adaptivity

is implemented to automate the procedure, as well as to allow local refinement.

The refinement is executed by separating the rectangular cell into four equal-sized

pieces. Since this adaptation removes the regularity of the mesh, the previous (i,m)

cell denotation no longer applies. Thus, each cell is denoted by a single index i and

must “remember” its location and dimensions. The quantities needed for cell i are

the left and right boundary positions, the top and bottom boundary directions, the

cell midpoint, and the widths in the position and direction. Note that not all of

these are independent, and thus only half of them need to be stored. The rest are

calculated on the fly.

Adding in adaptation also changes the algorithms needed to calculate the residual

integral and the scalar flux, as well as the initial cell sampling and the methods to

find the neighboring cell. These are performed in a recursive manner, starting with

the parent cells on the initial mesh. In the case of the residual and scalar flux,

the algorithm performs the calculations on the four daughter cells then sums it all

together. If the cell hasn’t been refined, the calculations are performed as described

previously. For the sampling algorithm, the parent cell is first sampled. Then the

code recursively samples in which of the daughter cells to initialize the particle.

22

Once a non-refined cell has been determined, the rejection method is performed as

previously described.

In order to simplify the implementation of mesh adaptivity, a “single-level differ-

ence” is enforced: each cell can be no more than one refinement level away from each

cell adjacent. Without this enforcment, two adjacent cells could have vastly different

dimensions, and thus the projection onto the cells becomes highly discontinuous and

irregular. This also allows for easier calculation of the delta terms in the residual, as

these terms must account for the different refinement levels. If each cell is at most

one level away, there are only three options for the calculations in Eq. (2.12). If both

the current cell and the adjacent cell are at the same refinement level, then

rc1i =


(
ψaj + ψxj

)
− (ψai − ψxi) µ > 0,(

ψaj − ψxj
)
− (ψai + ψxi) µ < 0,

(2.35a)

rc2i =

 ψµj − ψ
µ
i µ > 0,

ψµj − ψ
µ
i µ < 0,

(2.35b)

where j represents the adjacent cell (left for positive µ, right for negative µ). If the

adjacent cell is more refined than the current cell, then there are actually two cells

adjacent. The equations become as follows:

rc1i =


1
2

(
ψaj + ψxj + ψak + ψxk

)
− (ψai − ψxi) µ > 0,

1
2

(
ψaj − ψxj + ψak − ψxk

)
− (ψai + ψxi) µ < 0,

(2.36a)

rc2i =


1
4

(
ψµj + ψµk + 3

(
ψaj + ψxj − ψak − ψxk

))
− ψµi µ > 0,

1
4

(
ψµj + ψµk + 3

(
ψaj − ψxj − ψak + ψxk

))
− ψµi µ < 0,

(2.36b)

where j represents the adjacent cell relatively on top, and k represents the cell

23

relatively on bottom. Again, for positive µ, j and k refer to the cells on the left, and

they refer to the right adjacent cell for negative µ. If the current cell is more refined

than the adjacent cell, there are two possibilities: the current cell is either relatively

on the bottom or relatively on the top. If the current cell is relatively on the top,

rc1i =


(
ψaj + ψxj + 1

2
ψµj
)
− (ψai − ψxi) µ > 0,(

ψaj − ψxj + 1
2
ψµj
)
− (ψai + ψxi) µ < 0,

(2.37a)

rc2i =


1
2
ψµj − ψ

µ
i µ > 0,

1
2
ψµj − ψ

µ
i µ < 0.

(2.37b)

Whereas, if the current cell is relatively on bottom,

rc1i =


(
ψaj + ψxj − 1

2
ψµj
)
− (ψai − ψxi) µ > 0,(

ψaj − ψxj − 1
2
ψµj
)
− (ψai + ψxi) µ < 0,

(2.38a)

rc2i =


1
2
ψµj − ψ

µ
i µ > 0,

1
2
ψµj − ψ

µ
i µ < 0.

(2.38b)

2.4.2 Detecting Convergence Stagnation

Convergence stagnation is generally detected based on the L2 norm of the residual.

In each batch, the magnitude of the norm is compared with magnitude of the norm

calculated in the previous batch, as

α = ln

(
||r̃(i−1)||L2

||r̃(i)||L2

)
. (2.39)

24

Since ECMC should exhibit exponential convergence, this α should remain roughly

constant and represent the rate of convergence. Thus,

||r̃(i)||L2 = Ce−αi, (2.40a)

−αi = ln
(
||r̃(i)||L2

)
− lnC, (2.40b)

α = −α(i− 1) + αi

= ln
(
||r̃(i−1)||L2

)
− lnC − ln

(
||r̃(i)||L2

)
+ lnC

= ln

(
||r̃(i−1)||L2

||r̃(i)||L2

)
.

(2.40c)

If this value falls below a preset tolerance or goes negative, then the solution has

stopped converging exponentially. To avoid any “hiccups” or “blips” induced by the

stochastic nature of the Monte Carlo method, the average of the the past three ratios

is compared with the tolerance. These ratios are initialized to 1 at the beginning

and after each adaptation occurs.

2.4.3 Determining Refined Cells

The refined cells are determined based on the discontinuities in the estimated

solution at the cell interfaces [18]. There are four of these “jump error indicators”

per cell, and each one has a different formulation based on the relative refinement

levels. There are thus twelve equations total, fully specified in Appendix B. For an

example, this is the equation for the left boundary when both cells have the same

refinement level:

ξlefti =

µTi∫
µBi

∣∣∣∣(ψaj + ψxj + ψµj
2

hµj
(µ− µCj)

)
−
(
ψai − ψxi + ψµi

2

hµi
(µ− µCi)

)∣∣∣∣ dµ, (2.41)

25

where j represents the cell to the left, µBi is the bottom direction boundary for cell

i, µTi is the top direction boundary for cell i, and µCi is the cell center direction for

cell i. It should be noted that in this instance, hµj = hµi and µCj = µCi . A prescribed

percent of the total number of current cells is refined based on the maximum jump

error in the cells. Once these cells are refined, the code refines additional cells as

required such that the refinement level is always one between adjacent cells.

2.5 Biased Sampling

2.5.1 General Concept

To ensure enough particles reach the smaller cells created during refinement, a

biased sampling method is employed. Instead of sampling the starting cell for the

particle based on the magnitude of the residual, an equal number of particles is

generated in each cell. As with the non-biased method, the particle is still randomly

started on either a face or the interior of the cell, and the position and direction are

still sampled from the cell-based distribution. To maintain the correct solution the

weights of the particles are altered to reflect the relative magnitudes of the residual.

Consider the true probability distribution P with associated weighting w. The

biased probability and weighting are defined as P ∗ and w∗, respectivley. In order for

these to yield the same solution, the two distributions must be related by

Pw = P ∗w∗. (2.42)

In this case, P is the real distribution based on the residual. Thus w is uniformly 1.

Since the biased sampling generates an equal number of particles in each cell, P ∗ is

uniformly 1
NC

, where NC is the number of cells. The particle weights for the biased

26

sampling are thus

w∗ = PNC . (2.43)

2.5.2 Sampling Algorithm

The biased sampling algorithm is similar to the normal algorithm. The main

difference is the starting cell is set instead of randomized. Given the cell, face or

linear is determined as before and the rejection method is applied. The weight is

then set as described before. Namely, for cell i the weight is

w∗i =
I inti + Ifaci

||r̃||L1

NC . (2.44)

As before, this value is set negative if the residual evaluates negative at the sampled

position and direction. Very little changes in the Monte Carlo algorithm. Instead of

running through all the particles and randomizing the cells, the code loops through

every cell and runs a specified number of particles starting in that cell. Thus the

total number of particle histories Np needs to be set as a multiple of the number of

cells NC . The algorithm appears as follows:

initialize the tallies δai , δ
x
i , and δµi to 0

FOR i ∈ (1, NC)

FOR j ∈ (1, Np
NC

)

given cell i, sample position x, direction µ, and weight w∗

BEGIN LOOP: particle

...

END

END

END

27

3. TEST PROBLEM DESCRIPTIONS

3.1 Constant Solution

If the angular flux is constant in space and angle, then the following equations

hold:

∂ψ

∂x
= 0, (3.1a)

φ = 4πψ. (3.1b)

Substituting these into Eq. (2.1) yields

σtψ = σsψ +Q,

ψ =
Q

σa
. (3.2)

Thus Q must have the same functional form as σa. In this case, they are both con-

stant. To have a constant solution throughout the domain, the incoming boundary

fluxes are set equal to this value. Since this solution exists in the disconinuous-linear

trial space, exponential convergence should be achieved until the ECMC solution is

exact to round-off. This is true for any starting mesh and without any adaptation.

As such, this problem is intended to verify the algorithms and research code.

28

3.2 Manufactured Solution

Consider the solution of the form

ψ = C(1 + µ2)x(T − x)e−(x−x0)2 = Cf(x)g(µ), (3.3)

where C is a constant chosen to normalize the source to 1. This solution has no

singularities, is always non-negative, is continuous and smooth, and is zero at the

boundaries. Given this form, the following are true:

∂ψ

∂x
= Cg(µ)

∂f(x)

∂x

= Cg(µ)e−(x−x0)2 (T − 2x− 2x(T − x)(x− x0))

= Cf(x)g(µ)

(
T − 2x

x(T − x)
− 2(x− x0)

)
,

(3.4)

φ = 2π

+1∫
−1

ψ dµ = 2πCf(x)

+1∫
−1

(1 + µ2) dµ =
16π

3
Cf(x). (3.5)

Thus,

Q = µ
∂ψ

∂x
+ σtψ −

σs
4π
φ

= µCf(x)g(µ)

(
T − 2x

x(T − x)
− 2(x− x0)

)
+ σtCf(x)g(µ)− σs

4π

16π

3
Cf(x)

= Cf(x)

(
µg(µ)

(
T − 2x

x(T − x)
− 2(x− x0)

)
+ σtg(µ)− 4

3
σs

)
.

(3.6)

Given that the exact solution is zero at the boundaries,

ψ−inc = ψ+
inc = 0. (3.7)

29

To normalize the solution, C is chosen such that the integral of Q is 1:

1 = 2π

+1∫
−1

T∫
0

Qdxdµ

= 2π

+1∫
−1

T∫
0

Cf(x)

(
µg(µ)

(
T − 2x

x(T − x)
− 2(x− x0)

)
+ σtg(µ)− 4

3
σs

)
dx dµ

= C2π

T∫
0

f(x)

 +1∫
−1

(µg(µ)) dµ

(
T − 2x

x(T − x)
− 2(x− x0)

)
+ σt

+1∫
−1

g(µ) dµ− 4

3
σs2

 dx

= C2π

T∫
0

f(x)

(
8

3
σt −

8

3
σs

)
dx = C

16π

3
σa

T∫
0

f(x) dx.

(3.8)

Let I be the integral of f , as follows:

I =

T∫
0

x(T − x)e−(x−x0)2 dx

=
1

2
(x0 − T + x)e−(x−x0)2

[T
0
−
√
π

4
(2x2

0 − 2x0T + 1)erf(x− x0)
[T

0

=
1

2

(
x0e
−(T−x0)2 + (T − x0)e−x

2
0

)
−
√
π

4
(2x2

0 − 2x0T + 1) (erf(T − x0) + erf(x0)) .

(3.9)

Thus,

C =
3

16πσaI
. (3.10)

Since this solution exists outside of the trial space, the algorithm is expected to

stagnate at some error. At this point, the adaptivity algorithms will refine the mesh

and continue reducing the error. Due to the potential of small cells, the biased

algorithm is utilized.

30

3.3 Pure Attenuation

Consider the transport equation with no scattering, no internal source, and an

isotropic incoming flux:

µ
∂ψ

∂x
+ σaψ = 0, x ∈ [0, T], µ ∈ [−1,+1], (3.11a)

ψ+
inc =

1

2π
, (3.11b)

ψ−inc = 0. (3.11c)

The exact solution for this is

ψ =


1

2π
e−

σax
µ µ > 0,

0 µ ≤ 0,
(3.12)

φ =

1∫
0

e−
σax
µ dµ =

∞∫
1

e−σaxz

z2
dz = E2(σax). (3.13)

As with the manufactured problem, the solution lies outside the trial space. This

means the adaptivity algorithms must be utilized. Note the singularity as µ → 0+.

In order to sufficiently resolve the mesh around µ = 0 the cell dimensions must be

quite small. Thus the biased sampling must be used to control the error.

31

3.4 Internal Source with Scattering

Consider the full transport equation with zero incoming flux.

µ
∂ψ

∂x
+ σtψ =

σs
4π
φ+Q, x ∈ [0, T], µ ∈ [−1,+1], (3.14a)

ψ+
inc = ψ−inc = 0. (3.14b)

The exact solution will not lie within the trial space, meaning the adaptivity algo-

rithms must be utilized. Due to the potential of small cells, the biased algorithm

is utilized. Since the exact solution for this equation is not known, the results were

visually compared with an Sn transport code solution.

32

4. RESULTS

The relative L2 norm of the actual error in the scalar flux is used as the error

measure when the exact solution is known. That is,

ε(i) =
||φe − φ̃(i)||
||φe||

=

(∫ xN+1/2

x1/2

(
φe(x)− φ̃(i)(x)

)2

dx

) 1
2

(∫ xN+1/2

x1/2
(φe(x))2 dx

) 1
2

=

(∑
j∈{cells}

∫ xRj
xLj

(
φe(x)− φ(i)

j (x)
)2

dx

) 1
2

(∑
j∈{cells}

∫ xRj
xLj

(φe(x))2 dx

) 1
2

,

(4.1)

where φe is the exact solution, and φ̃(i) is the ECMC generated approximation in

batch i. When the exact solution is not known, the error measure used is the L2

norm of the residual normalized by the L2 norm of the source. This is as follows:

ε(i) =
||r(i)||
||Q||

=
||L[ψe − ψ̃(i)]||
||L[ψe]||

=

(∫ xN+1/2

x1/2
2π
∫ +1

−1

(
r(i)(x, µ)

)2
dµdx

) 1
2

(∫ xN+1/2

x1/2
2π
∫ +1

−1
(Q(x, µ))2 dµdx

) 1
2

=

(∑
j∈{cells}

2π
∫ xRj
xLj

∫ µTj
µBj

(
r(i)(x, µ)

)2
dµdx

) 1
2

(∑
j∈{cells}

2π
∫ xRj
xLj

∫ µTj
µBj

(Q(x, µ))2 dµdx

) 1
2

,

(4.2)

33

where Q also includes the incoming flux. These integrals are calculated using a

two-dimensional Gaussian quadrature rule.

For all problems the domain thickness was set at 3 cm, and the total interaction

cross section was set at 1 cm. Thus the domain was 3 mean-free-paths thick. The

starting grid was 100 cells, 10 each for position and direction. The total source is

always normalized to 1 n
cm3−ster−s .

4.1 Constant Solution

The error as a function of the number of batches is given in Fig. 4.1, with NP

being the number of histories run per cell in each batch.

Figure 4.1: Convergence for Constant Solution Problem.

The results and observations from this problem are similar to the results obtained

34

previously [17]. There are several important characteristics to be noted from Fig. 4.1.

The first is that the error decreases linearly on a semi-log plot. Thus exponential

convergence is achieved. The second is that exponential convergence is achieved until

the error reaches the tolerance (10−12) and then saturates. This is expected because

the solution lies within the trial space and it strongly indicates that the algorithms

and research code are valid.

The third is that the convergence rate increases as the number of histories per

batch is increased. This is a very important property. Exponential convergence will

only be achieved if a sufficient number of histories are run per batch, i.e., if the

error per batch is sufficiently reduced. This makes a very important point about the

potential applicablity of the ECMC method. This approach will not make problems

that are extremely difficult easier, but it has the potential to reduce the statistical

error associated with tenable problems to negligible levels. In addition, this explains

why highly oscillatory global polynomial trial spaces can be a very poor choice.

The highly oscillatory nature of the trial space functions yields large and nearly

equal positive and negative contributions to the expansion coefficients, resulting in

excessive statistical errors that ultimately cause immediate error saturation or even

divergence.

Note from Fig. 4.1 that the error for the NP=80 case is reduced from roughly one

to about 10−12 after 25 batches. With standard Monte Carlo, the error reduction

after 25 batches would be be expected to be about 1/
√

25 ∗ 80 ≈ 0.022, and 1022

batches would be required to achieve the same error reduction as the ECMC method.

In this case, the improvement in efficiency with the ECMC algorithm relative to the

standard algorithm is astonishing. In general, the efficiency realized for any particular

problem will be a trade-off between the extra cost associated with the estimation of

the full solution at all points in the problems and the rapid reduction in error achieved

35

with an ECMC algorithm. ECMC algorithms are clearly most promising when the

solution is required throughout the problem and the statistical error must be reduced

to negligible levels.

4.2 Manufactured Solution

For the manufactured solution problem the scattering ratio was set to 0.05. The

error as a function of the number of batches is given in Fig. 4.2, for both the problem

executed with adaptivity and without.

Figure 4.2: Convergence for Manufactured Solution Problem.

As discussed previously, the solution exists outside of the trial space. Thus with-

out refinement the error saturates. When the adaptivity algorithm is used, the code

36

detects this saturation and refines the mesh. For this problem 30% of the cells were

refined at each adaptivity step. The meshes are given in Appendix C.

The refinement did indeed maintain the convergence of the problem. However,

exponential convergence is not observed between the refinement steps. This is due

to the relatively small gain in accuracy with the finer mesh. The decreases in error

before the first saturation exhibit an exponential quality, and these jumps are much

larger than the differences in accuracy between refinement levels. The method does

converge exponentially, it is just hidden in the error saturation.

Displayed in Fig. 4.3 is the time associated with running a batch as a function of

the number of particles in that batch.

Figure 4.3: Batch Time for Manufactured Solution Problem.

37

Without any mesh refinement the time per batch would be directly proportional

to the number of particles. However, it takes longer to run a single history with a

finer mesh. Thus, the time in a given batch should increase at a rate higher than

the increase in the number of particles. As shown in Fig. 4.3, this problem exhibits

order 1.4 time increase.

This same problem was run with a normal Monte Carlo script. This code used the

mesh from the ECMC code corresponding to a scalar flux error of 10−4. The error in

the scalar flux from the Monte Carlo code as a function of number of particles is given

in Table 4.1. Also given is the constant for the data to represent 1/
√
N convergence,

and the resulting number of particles required to reach an error of 10−4.

Table 4.1: Regular Monte Carlo on Manufactured Solution
NP L2 error, scalar flux Fit constant NP to converge

3.35E+06 3.4423E-03 6.30 3.96E+09
1.34E+07 1.5964E-03 5.84 3.41E+09
2.01E+07 1.3588E-03 6.09 3.71E+09
2.68E+07 1.1726E-03 6.07 3.68E+09
3.35E+07 1.1425E-03 6.61 4.37E+09
4.35E+07 9.0087E-04 5.94 3.53E+09

As shown in the table, about 3.8 x 109 total histories would need to be run to

reduce the error to 10−4. The ECMC algorithm only ran 1.8 x 107 particles, including

the ”wasted” batches between stagnation and refinement. This demonstrates the

efficiency of the algorithm over standard Monte Carlo.

38

4.3 Pure Attenuation

The error in the attenuation problem as a function of the number of batches is

given in Fig. 4.4, for both the problem ran with biased sampling and without.

Figure 4.4: Convergence for Attenuation Solution Problem - Scalar Flux.

When the problem is ran without biased sampling, the error blows up. The effect

is easier to see when looking at the L2 error of the angular flux, as given in Fig. 4.5.

This is due to relatively few particles reaching the smaller cells near the boundary.

While these cells have the largest residual magnitudes, the areas are very small. This

means the sampling algorithm is less likely to sample particles in those regions. With

the biased sampling, particles are guaranteed to be generated in those areas. The

39

Figure 4.5: Convergence for Attenuation Solution Problem - Angular Flux.

adapted meshes are given in Appendix D.

One interesting thing to note is how the problem ran with the biased samplin

ghas consistently higher error and adapts at later batches than the problem ran

without biased sampling . This is due to the relatively fewer particles in the biased

sampling that have meaningful weight. Consider the first batch. Both methods ran

100 particles per cell, starting with a 10x10 cell grid. There is no internal source,

and only a surface source on the left boundary. Thus only five cells contain a source.

Without the biased sampling, all 10,000 histories are sampled on the far left edge.

With the biased sampling, only the 500 particles that start in these five edge cells

have any weight; the other 9,500 have a zero weight and no contribution to the

tallies. In subsequent batches a similar issue occurs with the cells with a negative

40

direction. The particles that are generated below the midline have no contribution to

the tallies. Thus, in this specific instance, the biased sampling method has a higher

error and thus lags behind the real-sampling. That is, until the real sampling error

blows up and the biased sampling continues converging.

Fig. 4.6 shows the scalar flux solution at various batch steps for this problem.

Figure 4.6: Scalar Flux for Attenuation Solution Problem.

After a single batch the error in the ECMC result is quite obvious. However,

after 32 batches the human eye can discern virtually no error. This verifies the code

is indeed converging to the correct solution.

Displayed in Fig. 4.7 is the time associated with running a batch as a function of

the number of particles in that batch.

41

Figure 4.7: Batch Time for Attenuation Solution Problem.

As previously stated, the time in a given batch should increase at a rate higher

than the increase in the number of particles. As shown in Fig. 4.7, this problem

exhibits order 1.43 time increase.

Again, this same problem was run with a normal Monte Carlo script to a scalar

flux error of 10−4. The values are given in Table 4.2.

42

Table 4.2: Regular Monte Carlo on Attenuation Solution
NP L2 error, scalar flux Fit constant NP to converge

1.73E+06 1.7193E-02 22.5 5.10E+10
3.45E+06 1.1868E-02 22.0 4.86E+10
6.90E+06 7.2870E-03 19.1 3.66E+10
1.38E+07 5.3572E-03 19.9 3.96E+10
2.59E+07 3.4646E-03 17.6 3.11E+10

For the attenuation problem, about 4.1 x 1010 total histories would need to be

run to reduce the error to 10−4. The ECMC algorithm only ran 9.3 x 106 parti-

cles, including the ”wasted” batches between stagnation and refinement. This again

demonstrates the efficiency of the algorithm over standard Monte Carlo.

43

4.4 Internal Source with Scattering

For the scattering problem, the scattering ratio was set to 0.75. The residual

as a function of the number of batches is given in Fig. 4.8. Displayed are both the

L1 norm, which is simply the absolute integral of the residual, and the L2 norm, as

discussed earlier in this section. The adapted meshes are given in Appendix E.

Figure 4.8: Convergence for Internal Scattering Problem.

This problem exhibits the same behavior as the previous ones. One thing to

note is the residual norm is normally an order of magnitude or more higher than the

scalar flux in the previous problems. Thus the apparent slow convergence and higher

errors.

44

Displayed in Fig. 4.9 is the time associated with running a batch as a function of

the number of particles in that batch.

Figure 4.9: Batch Time for Internal Scattering Problem.

As previously stated, the time in a given batch should increase at a rate higher

than the increase in the number of particles. As shown in Fig. 4.7, this problem

exhibits order 1.37 time increase.

45

As the exact solution to this problem is not known, the ECMC solution was

compared to an Sn solution. Fig. 4.10 compares the scalar flux at different refinement

levels.

Figure 4.10: Scalar Flux for Internal Scattering Problem.

The solution closely matches the deterministic code after 40 batches. This verifies

that our code works in high scattering environments and when the exact solution

isn’t known.

46

5. CONCLUDING REMARKS

The ECMC algorithms were studied utilizing finite-element trial spaces. The al-

gorithms were applied to the one-dimension, one-speed, slab transport equation and

utilized adaptive mesh algorithms and biased sampling. The results are encouraging

and clearly indicate that further research relating to this approach is warranted. A

next step would be to add further complexity to the equation studied. Anisotropic

scattering would be a relatively simple next step, as the direction is already dis-

cretized. Energy could also be added to the equation, in the form of a multi-group

discretization. Fission could also be taken into consideration. Future work should

also extend the work into multiple dimensions, allowing for more realistic systems to

be taken into account.

47

REFERENCES

[1] Nicholas Metropolis. “The Beginning of the Monte Carlo Method”. Los Alamo

Science (Special Issue dedicated to Stanislaw Ulam), pages 125–130, 1987.

[2] Brian C. Franke, Ronald P. Kensek, Thomas W. Laub. ITS Version 5.0: The

Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport

Codes with CAD Geometry. SAND2004-5172, Sandia National Laboratories,

2005.

[3] D.E. Cullen. TART2005-A Coupled Neutron-Photon 3-D, Combinatorial Ge-

ometry, Time Dependent Monte Carlo Transport Code. UCRL-SM-218009,

Lawrence Livermore National Laboratory, 2005.

[4] B. L. Kirk. “Overview of Monte Carlo radiation transport codes”. Radiation

Measurements, 45(10):1318–1322, 2010.

[5] R.N. Blomquist. VIM Monte Carlo Neutron/Photon Transport Code Users

Guide Version 5.1. Argonne National Laboratory, 2009.

[6] O. Petit, F.-X. Hugot, Y.-K. Lee, C. Jouanne, A. Mazzolo. TRIPOLI-4 Ver-

sion 4 User Guide. Rapport CEA-R-6169, Commissariat à l’énergie atomique,

CEA/SACLAY, Cedex, France, 2008.

[7] A.V. Dementyev, N.M. Sobolevsky. “SHIELD - A Monte Carlo hadron transport

code”. In Proc. of a Specialists Meeting “Intermediate Energy Nuclear Data:

Models and Codes”, page 237. Issy-les-Moulineaux, France, 1994.

[8] S.D. Richards, C.M.J. Baker, A.J. Bird, P. Cowan, N. Davies, G.P. Dobson,

T.C. Fry, A. Kyrieleis., P.N. Smith. “MONK and MCBEND: Current Status and

48

Recent Developments”. In Joint International Conference on Supercomputing

in Nuclear Applications and Monte Carlo. Paris, France, 2013.

[9] Geant4 Collaboration. Introduction to Geant4. 2006. http://geant4.web.

cern.ch/geant4/UserDocumentation/Welcome/IntroductionToGeant4/

html/index.html.

[10] Paul K. Romano and Benoit Forget. “The OpenMC Monte Carlo Particle Trans-

port Code”. Annals of Nuclear Energy, 51:274–281, 2013.

[11] X-5 Monte Carlo Team. MCNP - A General Monte Carlo N-Particle Trans-

port Code, Version 5. Volume I: Overview and Theory. Los Alamos National

Laboratory, 2003.

[12] R. Kong and J. Spanier. “A New Proof of Geometric Convergence for Gen-

eral Transport Problems based on Sequential Correlated Sampling Methods”.

Journal of Computational Physics, 227:9762–9777, 2008.

[13] T.M. Evans, T.J. Urbatch, H. Lichtenstein, J.E. Morel. “A Residual Monte

Carlo Method for Discrete Thermal Radiation Diffusion”. Journal of Computa-

tional Physics, 189:539–556, 2003.

[14] T. Booth. “Exponential Convergence on a Continuous Monte Carlo Transport

Problem”. Nuclear Science and Engineering, 127:338–345, 1997.

[15] H. Lichtenstein. “Exponential Convergence Rates for Reduced-Source Monte

Carlo Transport in [X,Y] Geometry”. Nuclear Science and Engineering, 133:258–

268, 1999.

[16] Jeffrey A. Favorite and Henry Lichtenstein. “Exponential Monte Carlo Conver-

gence of a Three-Dimensional Discrete Ordinates Solution”. Transactions of the

American Nuclear Society, 81:147–148, 1999.

49

[17] Jim E. Morel, Jared P. Tooley, Brandon J. Blamer. “Exponentially-Convergent

Monte Carlo via Finite-Element Trial Spaces”. In International Conference

on Mathematics and Computational Methods Applied to Nuclear Science and

Engineering. Rio de Janeiro, RJ, Brazil, May 8-12 2011.

[18] Yaqi Wang and Jean C. Ragusa. “Standard and Goal-Oriented Adaptive Mesh

Refinement Applied to Radiation Transport on 2D Unstructured Triangular

Meshes”. Journal of Computational Physics, 230:763–788, 2011.

50

APPENDIX A

RESIDUAL INTEGRATION

The residual is defined in Eq. (2.11) and Eq. (2.12). The interior integral is

defined as

I inti,m =

xi+1/2∫
xi−1/2

µm+1/2∫
µm−1/2

|r̃int|dµ dx

=

xi+1/2∫
xi−1/2

µm+1/2∫
µm−1/2

∣∣∣∣rai,m + rxi,m
2

hi
(x− xi) + rµi,m

2

hm
(µ− µm)

∣∣∣∣ dµ dx.
(A.1)

Since the residual is linear, there can only be a maximum of one sign-change per

face. As well, if a sign change occurs within a cell, then a sign change will occur on

exactly 2 faces. Given this, there are seven possible results for the integral:

1. No sign change

I inti,m = hihm|rai,m|; (A.2)

2. Sign change on left and right faces

I inti,m =
hihm
2|rµi,m|

(
|rai,m|2 +

|rxi,m|2

3
+ |rµi,m|2

)
; (A.3)

3. Sign change on top and bottom faces

I inti,m =
hihm
2|rxi,m|

(
|rai,m|2 + |rxi,m|2 +

|rµi,m|2

3

)
; (A.4)

51

4. Sign change on top and left faces

I inti,m = hihm

∣∣∣∣rai,m +
(rai,m − rxi,m + rµi,m)3

12rxi,mr
µ
i,m

∣∣∣∣ ; (A.5)

5. Sign change on bottom and left faces

I inti,m = hihm

∣∣∣∣rai,m +
(rai,m − rxi,m − r

µ
i,m)3

12rxi,mr
µ
i,m

∣∣∣∣ ; (A.6)

6. Sign change on top and right faces

I inti,m = hihm

∣∣∣∣rai,m +
(rai,m + rxi,m + rµi,m)3

12rxi,mr
µ
i,m

∣∣∣∣ ; (A.7)

7. Sign change on bottom and right faces

I inti,m = hihm

∣∣∣∣rai,m +
(rai,m + rxi,m − r

µ
i,m)3

12rxi,mr
µ
i,m

∣∣∣∣ . (A.8)

The face integral is defined as

Ifaci,m =

xi+1/2∫
xi−1/2

µm+1/2∫
µm−1/2

|r̃fac|dµ dx

=

µm+1/2∫
µm−1/2

|µ|
∣∣∣∣rc1i,m + rc2i,m

2

hm
(µ− µm)

∣∣∣∣ dµ.
(A.9)

There is always an even number of cells in the initial mesh, and each cell has the

same width. Thus µ does not change sign within a cell in the initial grid. This fact

can not change with our refinement method. This makes this integral similar to the

interior integral. The linear part can change sign at most once within a cell. There

52

are thus two possibilities:

1. No sign change

Ifaci,m = hm

∣∣∣∣µmrc1i,m +
hm
6
rc2i,m

∣∣∣∣ ; (A.10)

2. Sign change

Ifaci,m =
hm

(rc2i,m)2

∣∣∣∣µm2 (rc2i,m)3 − hm
12

(rc1i,m)3 +
µm
2

(rc1i,m)2rc2i,m +
hm
4
rc1i,m(rc2i,m)2

∣∣∣∣ .
(A.11)

53

APPENDIX B

JUMP ERROR INDICATORS

As discussed in section 2.4, there are a total of twelve possible formulations for the

jump error indicators, three for each of the four boundaries. For the left boundary,

these are as follows:

1. Adjacent cell and current cell at the same refinement level

ξlefti =

µTi∫
µBi

∣∣∣∣(ψaj + ψxj + ψµj
2

hµj
(µ− µCj)

)
−
(
ψai − ψxi + ψµi

2

hµi
(µ− µCi)

)∣∣∣∣ dµ;

(B.1)

2. Adjacent cell is more refined

ξlefti =

µTi∫
µBi

∣∣∣∣12 (ψaj + ψxj + ψak + ψxk
)

+
1

4

(
ψµj + ψµk + 3

(
ψaj + ψxj − ψak − ψxk

)) 2

hµj
(µ− µCj)

−
(
ψai − ψxi + ψµi

2

hµi
(µ− µCi)

)∣∣∣∣ dµ;

(B.2)

3. Current cell is more refined, two options:

(a) Current cell is relatively on top

ξlefti =

µTi∫
µBi

∣∣∣∣(ψaj + ψxj +
1

2
ψµj +

1

2
ψµj

2

hµj
(µ− µCj)

)

−
(
ψai − ψxi + ψµi

2

hµi
(µ− µCi)

)∣∣∣∣ dµ;

(B.3a)

54

(b) Current cell is relatively on bottom

ξlefti =

µTi∫
µBi

∣∣∣∣(ψaj + ψxj −
1

2
ψµj +

1

2
ψµj

2

hµj
(µ− µCj)

)

−
(
ψai − ψxi + ψµi

2

hµi
(µ− µCi)

)∣∣∣∣ dµ.
(B.3b)

For the right boundary, these are as follows:

1. Adjacent cell and current cell at the same refinement level

ξrighti =

µTi∫
µBi

∣∣∣∣(ψaj − ψxj + ψµj
2

hµj
(µ− µCj)

)
−
(
ψai + ψxi + ψµi

2

hµi
(µ− µCi)

)∣∣∣∣ dµ;

(B.4)

2. Adjacent cell is more refined

ξrighti =

µTi∫
µBi

∣∣∣∣12 (ψaj − ψxj + ψak − ψxk
)

+
1

4

(
ψµj + ψµk + 3

(
ψaj − ψxj − ψak + ψxk

)) 2

hµj
(µ− µCj)

−
(
ψai + ψxi + ψµi

2

hµi
(µ− µCi)

)∣∣∣∣ dµ;

(B.5)

3. Current cell is more refined, two options:

(a) Current cell is relatively on top

ξrighti =

µTi∫
µBi

∣∣∣∣(ψaj − ψxj +
1

2
ψµj +

1

2
ψµj

2

hµj
(µ− µCj)

)

−
(
ψai + ψxi + ψµi

2

hµi
(µ− µCi)

)∣∣∣∣ dµ;

(B.6a)

55

(b) Current cell is relatively on bottom

ξrighti =

µTi∫
µBi

∣∣∣∣(ψaj − ψxj − 1

2
ψµj +

1

2
ψµj

2

hµj
(µ− µCj)

)

−
(
ψai + ψxi + ψµi

2

hµi
(µ− µCi)

)∣∣∣∣ dµ.
(B.6b)

For the top boundary, these are as follows:

1. Adjacent cell and current cell at the same refinement level

ξtopi =

xRi∫
xLi

∣∣∣∣(ψaj − ψµj + ψxj
2

hxj
(x− xCj)

)
−
(
ψai + ψµi + ψxi

2

hxi
(x− xCi)

)∣∣∣∣ dx;

(B.7)

2. Adjacent cell is more refined

ξtopi =

xRi∫
xLi

∣∣∣∣12 (ψaj − ψµj + ψak − ψ
µ
k

)
+

1

4

(
ψxj + ψxk + 3

(
ψaj − ψ

µ
j − ψak + ψµk

)) 2

hxj
(x− xCj)

−
(
ψai + ψµi + ψxi

2

hxi
(x− xCi)

)∣∣∣∣ dx;

(B.8)

3. Current cell is more refined, two options:

(a) Current cell is relatively on right

ξtopi =

xRi∫
xLi

∣∣∣∣(ψaj − ψµj +
1

2
ψxj +

1

2
ψxj

2

hxj
(x− xCj)

)

−
(
ψai + ψµi + ψxi

2

hxi
(x− xCi)

)∣∣∣∣ dx;

(B.9a)

56

(b) Current cell is relatively on left

ξtopi =

xRi∫
xLi

∣∣∣∣(ψaj − ψµj − 1

2
ψxj +

1

2
ψxj

2

hxj
(x− xCj)

)

−
(
ψai + ψµi + ψxi

2

hxi
(x− xCi)

)∣∣∣∣ dx.
(B.9b)

For the bottom boundary, these are as follows:

1. Adjacent cell and current cell at the same refinement level

ξbottomi =

xRi∫
xLi

∣∣∣∣(ψaj −+ψµj + ψxj
2

hxj
(x− xCj)

)
−
(
ψai − ψ

µ
i + ψxi

2

hxi
(x− xCi)

)∣∣∣∣ dx;

(B.10)

2. Adjacent cell is more refined

ξbottomi =

xRi∫
xLi

∣∣∣∣12 (ψaj + ψµj + ψak + ψµk
)

+
1

4

(
ψxj + ψxk + 3

(
ψaj + ψµj − ψak − ψ

µ
k

)) 2

hxj
(x− xCj)

−
(
ψai − ψ

µ
i + ψxi

2

hxi
(x− xCi)

)∣∣∣∣ dx;

(B.11)

3. Current cell is more refined, two options:

(a) Current cell is relatively on right

ξbottomi =

xRi∫
xLi

∣∣∣∣(ψaj + ψµj +
1

2
ψxj +

1

2
ψxj

2

hxj
(x− xCj)

)

−
(
ψai − ψ

µ
i + ψxi

2

hxi
(x− xCi)

)∣∣∣∣ dx;

(B.12a)

57

(b) Current cell is relatively on left

ξbottomi =

xRi∫
xLi

∣∣∣∣(ψaj + ψµj −
1

2
ψxj +

1

2
ψxj

2

hxj
(x− xCj)

)

−
(
ψai − ψ

µ
i + ψxi

2

hxi
(x− xCi)

)∣∣∣∣ dx.
(B.12b)

Note that each of these is a one-dimension absolute integral of a linear function.

Thus the exact integral can be calculated, similar to Appendix A.

58

APPENDIX C

MANUFACTURED SOLUTION MESHES

59

60

61

62

63

64

65

66

APPENDIX D

ATTENUATION SOLUTION MESHES

67

68

69

70

71

72

73

74

APPENDIX E

INTERNAL SOURCE MESHES

75

76

77

78

79

80

81

