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ABSTRACT 

 

Research aimed at enhancing the thermoelectric performance of semiconductors 

comprised of only earth-abundant elements has recently come under renewed focus as 

these materials systems offer a cost-effective path for scavenging waste heat. In light of 

the prediction that nanostructuring could increase the thermoelectric performance of 

materials; semiconductor nanowires comprised of non-toxic, low cost, and earth-

abundant elements were synthesized and studied for their thermoelectric performance. 

For accomplishing this task, zinc phosphide (Zn3P2), zinc antimonide (Zn4Sb3), and zinc 

oxide (ZnO) nanowires were synthesized on the gram-quantity scale. Post-synthesis 

decomposition techniques were developed to controllably reduce the nanowire diameter 

and to create nanotubes. This decrease in nanowire diameter comes at an additional cost 

of an exponential decrease in surface stability. To combat this, a vapor phase surface 

passivation technique was developed to protect the nanowire surfaces from degradation 

and agglomeration. Finally, gram quantities of both functionalized and unfunctionalized 

nanowires were compressed into dense nanobulk pellets and characterized for their 

thermoelectric performance. 

The reactive vapor transport synthesis technique resulted in gram-quantities of 

single-crystalline nanowires with consistent 20 nm diameters. The nanowire diameters 

were further reduced to create sub-5 nm quantum wires and nanotubes using controlled 

decomposition. A self-consistent mechanism to describe this phenomenon was proposed. 

The nanowires were further surface-functionalized with various organic molecules to 
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prevent surface degradation and to control the interfacial transport properties within the 

consolidated nanowire-pellets. The stability enhancement of the nanowires using this 

vapor-phase self-assembled monolayer technique was shown using traditional organic 

characterization techniques and suspension stability. Zn3P2 and ZnO nanowires were 

then hot-pressed and spark plasma sintered, respectively, into nanobulk pellets. It was 

observed that the nanowires in the Zn3P2 pellet did not break upon compaction, but bent 

elastically to achieve their sintered density; this was confirmed using a single nanowire 

inside a TEM. The thermoelectric performance of the functionalized nanowires was 

shown to be 3-fold higher than that of unfunctionalized nanowires due to less nanowire 

surface oxidation. Finally, the ZnO nanowire-bulk pellets were optimally-doped 

resulting in a 30% decrease in thermal conductivity compared to the bulk and the highest 

reported n-type oxide zT to date of 0.60. 
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CHAPTER I  

INTRODUCTION  

 

Thermoelectric generators (TEGs) are solid state devices utilized to convert heat 

into electricity. These generators work by diffusing carriers down the temperature 

gradient from the device’s hot side to cold side. This net movement of carriers generates 

an electric potential that can be used for power generation. State-of-the-art modules are 

currently made of rare and toxic materials; consequently, these heat engines are cost 

prohibitive for most terrestrial applications and are only used in specialty applications 

such as space exploration and remote power systems.1, 2 Also thermoelectric generators 

are rather inefficient relative to other heat engines, with current materials boasting 

efficiencies of only 1/6 Carnot efficiency.2 If the efficiency of TEGs can be increased 

while reducing materials costs, the market base could potentially be extended to 

automobile waste heat recovery,1-3 small-scale cogeneration units,4, 5 and topping cycles 

for gas turbines.6, 7 

Semiconductors comprised of earth abundant elements have recently made large 

breakthroughs in thermoelectric performance due to their large elemental abundance, 

low cost, and relatively high stability under atmospheric conditions, relative to 

traditional thermoelectric materials. Therefore, the drive to make TEGs viable for 

terrestrial power generation using earth abundant semiconductors is substantial. In this 

context, the first question that must be addressed here is what materials give the best cost 

per Watt? After looking at various materials available, it was determined that very few 
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materials could compete with the extreme low cost of Zn3P2 and ZnO, yet they have not 

received the same attention from the thermoelectric community as Mg2Si and CoSb3, for 

example. Unfortunately, ZnO and Zn3P2 give subpar thermoelectric performance in the 

bulk material state. Hicks and Dresselhaus predicted that nanostructuring could increase 

the thermoelectric performance of materials of a given composition.8 This leads to the 

second question: what nanomorphology can give the maximum efficiency boost to 

thermoelectrics? It was reported that nanowire morphology relative to nanoparticles can 

potential give the maximum gains in thermoelectric efficiency due to the long single-

crystalline conduction pathways and ability to scatter phonons.9 Unfortunately, typical 

synthesis techniques for nanowires do not result in wires small enough in diameter to 

observe properties unique to the nanoscale. Also, current methods to create nanowires 

with ultra-small diameters result in contamination by catalyst or chemical etchant. 

Furthermore, application such as thermoelectrics require mass production of nanowires, 

which has not been discussed extensively in the current nanowire synthesis literature. 

Therefore the next question arises: how can these nanowires be synthesized on a gram-

quantity scale and their diameters be controllably reduced to observe these unique 

nanoproperties without degrading their pristine electronic properties from 

contamination? As the nanowire diameter decreases, the surface stability exponentially 

decreases. To make the nanowires process able at a low cost and under ambient 

conditions, the surfaces must be stable to atmospheric conditions. The surface area of 

nanomaterials is inversely proportional to their diameter and is typically over 10% of the 

entire volume compared to a fraction of a percent for bulk materials. This high reactivity 
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in conjunction with a high specific surface area leads to a high propensity to oxidation 

rendering the material useless for electronics. The next question then becomes how can 

the surfaces of nanowires be protected from degradation and agglomeration under 

ambient conditions? Additionally, the surface stabilization technique should also offer 

pathways for tuning interfacial transport between the nanowires. In the literature, there 

are few reports discussing the thermoelectric performance of individual nanowires. 

Although these studies exhibit excellent experimental control, high-resolution 

measurement techniques, and enhanced efficiency compared to the bulk, these single-

nanowire devices are useless for harvesting waste heat on any appreciable scale due to 

low power output and heat transfer limitations. Therefore, to make nanowires useful on 

the large scale, how can the performance enhancements observed in single nanowires be 

extended to assemblies of large quantities of nanowires? 

The overall objective of this dissertation is to answer these questions and deduce 

the maximum performance of nanowire-bulk thermoelectric modules. For iteration, the 

questions that will be answered are presented below: 

1. How can nanowires of various earth-abundant semiconductors be 

synthesized on a large scale? 

2. How can the diameter of these nanowires be controllably reduced to 

observe properties unique to the nanoscale? 

3. How can the highly reactive surfaces of the nanowires be protected from 

degradation and agglomeration upon exposure to atmosphere using 

interfacial chemistry control? 
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4. How can the nanowires be assembled into macro modules without 

damaging the interfaces or losing the property enhancements unique to 

the nanoscale? 

By the end of this document, it will be experimentally evident that the mass-

production and assembly of nanowires with controlled interfaces can greatly increase the 

thermoelectric performance of materials, specifically those comprised of earth-abundant 

elements. This will be shown to be due to the retention of the nanowire morphology 

within the highly dense nanobulk pellets obtained by consolidating the nanowires. This 

is due to the nanowires bending elastically instead of breaking upon compaction. Not 

only will these strategies be shown to produce the highest cost specific power output 

thermoelectric modules to date, but they also will be able to compete in a total efficiency 

and weight specific power output.  

This dissertation is divided into nine chapters, including this introduction 

chapter. Chapter II of this dissertation provides a general overview of relevant literature 

and background information, while Chapter III summarizes general nanowire synthesis 

and characterization methods. Chapter IV describes a controlled thermal decomposition 

technique to uniformly reduce the diameter of nanowires into quantum wires and their 

resulting properties. The variation of the thermal decomposition conditions can also 

create nanotubes using nanowires as templates. This result is discussed thoroughly in 

Chapter V. An in situ functionalization method for protecting the surfaces of nanowires 

is discussed in detail using Zn3P2 nanowires as an example system in Chapter VI. 

Finally, unfunctionalized and functionalized Zn3P2 nanowires were hot-pressed into 
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dense nanobulk pellets and the effect of the functionalization on the thermoelectric 

performance was discussed in Chapter VII. Chapter VIII describes how these oxide 

nanowires were pressed into optimally doped nanobulk solids using spark plasma 

sintering and characterized resulting in the highest n-type oxide zT reported to date. The 

conclusions drawn from the results in this dissertation and possible future work are 

discussed in Chapter IX. 
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CHAPTER II  

LITERATURE AND BACKGROUND*1 

 

Waste Heat Recovery Using Thermoelectrics  

 Demand for energy in the United States has been on a constant rise, increasing 

from 62.9 quads (1 quad = 1015 BTU) in 1982 13 to 97.3 quads in 2011 14 according to 

estimates from the Energy Information Administration (EIA). The increase in the 

demand for energy has been met through increased generation from both renewable and 

non-renewable sources. Data from EIA also indicates that ~ 56-57% of the energy 

generated is consistently rejected as waste heat.14 Future increases in the demand for 

energy, a certainty, can be met either through increased generation or by enhancing the 

energy efficiencies of the existing processes through waste heat scavenging. The 

potential amount of energy that could be saved through waste heat scavenging is 

staggeringly high, on the order of 10’s of quads.14 Solid-state thermoelectric modules 

could be used to convert a major portion of this waste heat into electricity, and thus 

increase the overall energy efficiency of the US. These solid-state thermoelectric 

modules offer many advantages over the conventional Rankine cycles in the scavenging 

of waste heat: they are portable, do not require intensive maintenance, have no moving 

parts, and last longer.15  
                                                 

* Excerpts are reprinted with permission from Cryst. Growth Des. 11 (10), 4559-4564 
(2011) - Copyright (2011) American Chemical Society,10 Physical Chemistry Chemical 
Physics 15 (17), 6260-6267 (2013) - Reproduced by permission of the PCCP Owner 
Societies,11 and Nanotechnology 25, 145401 (2014) - Copyright (2014) IOP Publishing.12 
 



 

7 

 

The efficiency of a thermoelectric material is gauged by the dimensionless figure 

of merit of a material, zT, is given by zT = S2σ

κe+κL
T where S is the Seebeck coefficient, σ 

is the electrical conductivity, T is the absolute temperature, and κe and κL are the 

electronic and lattice contributions to the thermal conductivity, respectively. An ideal 

thermoelectric material has electrical transport properties of a heavily-doped 

semiconducting single crystal and the thermal conductivity of a glass.15-17 In band-type 

semiconductors, Seebeck coefficient and electrical conductivity are inversely coupled 

via carrier concentration, and the Wiedemann-Franz law proportionally couples 

electrical conductivity and electronic thermal conductivity.15 These restrictions make 

engineering high-efficiency thermoelectric materials very difficult and have resulted in 

commercial materials having zTs of ~1.2 Therefore, one possible route for increasing the 

zT of optimally-doped band-type materials requires selectively reducing the lattice 

thermal conductivity via scattering at boundaries and interfaces. One way to enhance this 

scattering and reduce κL is to increase the number of interfaces within a material via 

nanostructuring.8, 18 Relative to other nanomorphologies, single-crystalline nanowires 

were previously shown to enhance charge transfer within a nanobulk TE material,19 

potentially giving the highest zT for a given optimally-doped material. If the efficiency 

of thermoelectrics can be increased while reducing materials costs, the market base 

could potentially be extended to automobile waste heat recovery,1-3 small-scale energy 

cogeneration units,4, 5 and topping cycles for gas turbines.6, 7 
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Nanowire Thermoelectrics 

Theoretical and more recent experimental studies indicated that thermoelectric 

efficiency can be increased via enhanced phonon scattering at boundaries interfaces 

using nanostructuring of materials.20, 21 Specifically, materials in nanowire form with 

either small diameters or rough surfaces have been shown to exhibit lower thermal 

conductivities relative to their bulk counterparts, without exhibiting any adverse changes 

in their electrical conductivities. For example, Boukai et al. reported efficiency 

enhancements as high as 100-fold in silicon by using nanowire morphology.22 They also 

demonstrated the ability to control the temperature at which maximum zT is attained by 

tuning the diameters and the carrier concentrations of the silicon nanowires.22 Hochbaum 

et al. showed a 50-fold enhancement in the zT of silicon nanowires relative to the bulk 

by creating rough surfaces to reduce the phonon transport via boundary scattering.23 

Zhou et al. measured the thermoelectric transport properties of individual 

electrodeposited Bi2Te3 nanowires and reported not only a decrease in the thermal 

conductivity, but also an enhancement in the power factor relative to the bulk.24 Li et al. 

fabricated bismuth nanotube arrays and indicated that the formation of a metal-

semiconductor transition at lower wall thicknesses enhances their thermoelectric 

performance due to quantum confinement.25 This same transition was also shown in thin 

bismuth nanowires.26 What is currently not known is whether the thermoelectric 

performance of individual nanowires translates to bulk assemblies of nanowires and how 

these nanowires can be synthesized on a large-scale. 
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Selection of Materials 

A semiconductor useful for thermoelectrics, zinc phosphide (Zn3P2), is a metal 

deficient p-type semiconductor with a bandgap of 1.5 eV.27, 28 It is also relatively 

inexpensive and is comprised of components that are abundantly available in the earth’s 

crust.29 One of the problems plaguing the fabrication of thermoelectrics based on Zn3P2 

is its low surface stability in the presence of moisture30 and oxygen.31, 32 Typically, Zn3P2 

reacts with moisture to form zinc hydroxide (reaction 1) and with oxygen to form zinc 

phosphate (reaction 2). This problem is amplified when Zn3P2 is synthesized in 

nanomaterial format due to the higher specific surface area, and consequently, higher 

reactivity relative to the bulk.33, 34 

Zn3P2 + 6H2O  3Zn(OH)2 + 2PH3        (1) 

            Zn3P2 + 4 O2  Zn3(PO4)2         (2) 

As mentioned in Chapter I, even though both Zn3P2 nanowires and nanoparticles 

can be used for the fabrication of energy conversion devices,35, 36 enhanced charge 

transfer is possible in nanowire format.37, 38 Consequently, Zn3P2 nanowires are an ideal 

material and format to be used in energy conversion devices including thermoelectrics. 

Employing Zn3P2 nanowires for the fabrication of energy conversion devices requires 

their synthesis on a gram-quantity scale and stabilizing their surfaces to enhance 

resistance against air- and moisture-assisted degradation.  

Similarly, “Zn4Sb3” (β-Zn13Sb10) is a p-type metal deficient valence 

semiconductor that can be used to convert waste heat into electricity. Zn4Sb3 exhibits the 

“phonon-glass electron crystal” behavior that is desired in thermoelectric materials due 
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to substantial zinc disorder and glass-like interstitial sites within its lattice.17, 39 The high 

thermoelectric figure of merit of this material can be attributed to this disordered lattice 

scattering phonons, and results in the lowest thermal conductivity of all optimally doped 

p-type thermoelectric materials.17 Nanostructuring has been predicted to enhance the 

thermoelectric efficiency of materials by reducing their lattice thermal conductivity.8, 18 

Additionally, single-crystalline nanowires have been shown to have enhanced charge 

transfer relative to other nanomorphologies.19 Consequently, Zn4Sb3 in nanowire 

morphology has the potential to further enhance the already significant figure of merit of 

bulk Zn4Sb3. Like Zn3P2, there have been no previously reported gram-scale synthesis 

techniques for zinc antimonide. 

Over the past two decades oxides have become viable thermoelectric materials 

due to their low cost, elemental abundance in the earth’s crust,29 low toxicity,40 and high 

stability relative to other state-of-the-art thermoelectric materials in oxidizing 

environments.40, 41 Many p-type materials have been shown to have thermoelectric 

performance on par with current commercial materials. Some of these polycrystalline 

materials include layered cobaltites such as Ca3Co4O9
42-47 with a high zT of 0.6145 and 

NaxCoO2
48-51 with a high zT of 0.92.51 Contrarily, many n-type oxides have yet to 

exhibit such performance. The state-of-the-art n-type oxide thermoelectrics are SrTiO3
52-

57 with a high zT of 0.3757 and ZnO alloy ceramics. Attempts to increase the efficiency 

of ZnO-based thermoelectrics using homologous compounds of ZnO-In2O3 resulted in 

small efficiency increases.58-61 Doping62-65 and co-doping66-69 of ZnO with aluminum has 
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shown to give the highest n-type zT of 0.65 in Zn1-x-yAlxGayO alloys.69 The samples with 

the high zTs were bulk materials with very high thermal conductivities.  

 

Nanowire Synthesis and Diameter Control 

A review of the literature shows that the small-scale synthesis of Zn3P2 

nanostructures has been reported. These reports include Zn3P2 trumpet-like 

nanostructure synthesis using a thermochemical method,70 branched Zn3P2 nanostructure 

synthesis using laser ablation,71 Zn3P2/ZnO and Zn3P2/ZnS core/shell nanowire synthesis 

using chemical vapor deposition,72 and Zn3P2 nanowire synthesis using a simple 

evaporation process.73 In all these studies, single-crystalline nanowires were obtained. 

None of these reports discussed the production of gram quantities of nanowires. 

However, a handful of reports in the literature discuss strategies for the mass production 

of nanowire powders using solution-based chemistry,46 metathesis,45 or an atmospheric 

plasma jet.47 All of these methods either involve the use of noble metal catalysts, oxide 

assisted growth, or are limited in application to a few material systems. 

There is also only one previously published report on the synthesis of Zn4Sb3 

nanowires.74 Chemical vapor transport of zinc and antimony from a Zn4Sb3 powder 

source onto silicon substrates led to the formation of nanowires in this study. Although 

the nanowire growth mechanism is not explicitly discussed, self-catalysis via the zinc 

droplets at the tips of the nanowires is the most probable mechanism in the absence of 

catalysts and contaminants. 
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Consequently, nanostructuring could potentially increase the thermoelectric 

performance of all the above material systems resulting in large decreases in the lattice 

thermal conductivity and increases in zT. When using materials in nanowire format, this 

can be accomplished by reducing the limiting dimension of the material: the nanowire 

diameter. 

Vapor phase synthesis of nanowires was mainly accomplished in the past using 

catalyst-mediated techniques,75-80 oxide-assisted methods81-83 or direct synthesis 

schemes.84-89 Typically, these processes suffer from two distinct disadvantages. Either 

the diameters of the nanowires obtained were greater than 20 nm,75-89 or the nanowires 

obtained were contaminated with the catalyst metal.90, 91 Typically, nanowire diameters 

need to be less than 20 nm to observe any quantum confinement effects in many of the 

III-V semiconductors. For example, diameters less than 11 nm are necessary to observe 

quantum confinement effects in GaN.92-94 Unfortunately, this decrease in diameter 

exponentially increases the surface reactivity of nanomaterials. Consequently, the 

surfaces of the nanomaterials should be passivated to maintain their properties. 

 

Surface Passivation 

Attempts have also been made to passivate the surfaces of many metals95-99 and 

compound semiconductors,97 including compound semiconductors of zinc using thiols. 

For example, Sadik et al. studied the passivation of ZnO films with dodecanethiol 

molecules. It was observed that the surface coverage of the organic molecules on the 

zinc terminated surfaces was twice that of the oxygen terminated surface.100 The 
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formation of Zn-S bonds between thiol functionalized ruthenium dye molecules101 and 

mercaptosilanes102 on nanoscale ZnO surfaces was also reported by Singh et al. Budz et 

al. compared many methods of surface treatment including atomic hydrogen cleaning, 

plasma treating, liquid phase assembly, and vapor phase assembly of octadecanethiol on 

GaAs surfaces.103, 104 It was determined that the functionalization of the surface inhibited 

oxide formation. It was also observed that vapor phase functionalization offered better 

surface coverage of the functional molecules compared to liquid phase 

functionalization.103 Sarigiannidis et al. grew ZnSe nanocrystals in the presence of 

pentanethiol, supplied via the vapor phase, and reported increases in surface stability. 

However, the concurrent supply of both pentanethiol and the precursors required for the 

formation of ZnSe crystals adversely impacted the morphology and size of the crystals 

obtained.105 Holmberg et al. synthesized germanium nanowires and in-situ passivated 

their surfaces with thiols and alkenes in the liquid phase to show oxidative corrosion 

resistance.106  

 

Nanobulk Materials  

Typically, nanostructuring in bulk-3D solids is accomplished by ball-milling,107 

solidification,108 eutectoid decomposition,109 and precipitation.110 These methods often 

result in insulating grain boundaries, a wide range of nanostructure sizes, and 

inconsistent results. Consequently, a bottom-up method to assemble nanowires into 

dense nanobulk masses without losing their morphology is required to overcome the 

shortcomings of current nanostructuring techniques. This can be accomplished by using 



 

14 

 

hot-pressing and spark plasma sintering (SPS).111-113 It is important when using these 

techniques to achieve high consolidated-densities with no porosity,114 while minimizing 

grain growth to maintain the nanostructuring115 and achieve the maximum 

thermoelectric efficiency. Relative to conventional methods, this bottom-up oriented 

nanowire method can deliver advantageous properties including independent selection of 

the nanowire material and nanowire aspect ratio. There are also only very few reports 

that discuss the bottom-up assembly of nanowires, and all of these reports are based 

upon Bi2Te3 heterostructures.116, 117 There are no other reports of large-scale nanowire 

assembly to date. 
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CHAPTER III  

NANOWIRE SYNTHESIS AND CHARACTERIZATION METHODS*2 

 

Introduction 

This chapter describes the techniques employed for the synthesis and 

characterization of nanowires and nanowire assemblies. More specifically, reactive 

vapor transport approaches utilized for the synthesis of binary compound semiconductor 

nanowires will be presented in detail. Additionally, the techniques utilized for 

consolidating nanowires, along with those used for measuring the nanowire-bulk 

electrical and thermal transport properties are discussed.  

Multiple techniques were employed in this work for characterizing nanowires, 

including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission 

electron microscopy (TEM), small angle electron diffraction (SAED), energy dispersive 

spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible 

spectroscopy (UV-Vis), and Fourier-transform infrared spectroscopy (FTIR). Many of 

these techniques were also utilized on the consolidated nanowire-bulk pellets. The 

thermoelectric performance of each nanowire-bulk system was gauged by the 

thermoelectric figure of merit. Determination of the figure of merit required 

measurement of the Seebeck coefficient, Van der Pauw electrical conductivity, Van der 
                                                 

* Excerpts are reprinted with permission from Cryst. Growth Des. 11 (10), 4559-4564 
(2011) - Copyright (2011) American Chemical Society,10 Physical Chemistry Chemical 
Physics 15 (17), 6260-6267 (2013) - Reproduced by permission of the PCCP Owner 
Societies,11 and Nanotechnology 25, 145401 (2014) - Copyright (2014) IOP Publishing.12 
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Pauw Hall coefficient, thermal diffusivity by laser flash analyzer (LFA), density by 

Archimedes Principle, and heat capacity from differential scanning calorimetry (DSC). 

All of these techniques for the synthesis and characterization of nanowires and their 

assemblies, and the information obtained from them, are discussed in detail in the 

following sections. 

 

Nanowire Synthesis Methods 

 Reactive vapor transport in multiple CVD chambers were used to synthesize the 

GaN, Zn3P2, and Zn4Sb3 nanowires utilized for this dissertation. Schematics of the 

reactors along with experimental conditions used for the synthesis of the nanowires are 

included in the sections below. 

 

GaN Nanowire Synthesis 

 The synthesis of GaN nanowires was performed in a custom-built chemical vapor 

deposition (CVD) chamber (Figure 1). This stainless steel vacuum chamber, capable of 

operating at pressures as low as 1 mTorr, is connected to mass flow controllers (1479A 

type mass flow controllers from MKS Instruments, Inc.) for the controlled flow of both 

hydrogen and ammonia into the chamber, and a pressure transducer (KJLC 317 type 

from Kurt J. Lesker Company®) for the measurement of pressure. The CVD chamber is 

also equipped with a ceramic substrate heater that can be heated to temperatures as high 

as 1400 oC. This setup was also described in detail previously.88  
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Figure 1. Schematic of the reactor used to synthesize GaN nanowires courtesy of 
Sreeram Vaddiraju. 
 

Synthesis of GaN nanowires was performed in a manner similar to that described 

by Li et al.86, using the reactive vapor transport approach 85, 86, 88, 89 with GaN powder 

and NH3 as the sources for gallium and nitrogen, respectively. The GaN source was 

placed in a heated crucible, and the substrate was physically placed on top of this 

crucible. The distance between the source and crucible was adjusted to 2 mm. The 

temperature of the substrate was measured using a backside thermocouple placed on the 

side of the substrate not facing the GaN powder source. All the experiments were 

performed under an ammonia flow of 75 sccm, at a substrate temperature of 850 oC and 

at a pressure of 100 mTorr. The typical duration of the synthesis experiments was 20 

minutes. 
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II-V Nanowire Synthesis 

Zn3P2 nanowires were synthesized using reactive vapor transport in a three-zone 

hot-walled chemical vapor deposition (CVD) chamber. A schematic of this chamber is 

shown in Figure 2. This hot-walled CVD chamber is primarily comprised of a 1.5 inch 

diameter quartz tube housed inside a three-zone high temperature furnace (Thermo 

Scientific Lindberg/Blue M). One end of the quartz tube is connected to mass flow 

controllers, while the other end is connected to a pressure transducer and a pump. The 

functional molecules necessary for the in-situ functionalization were held in a bubbler 

(Precision Fabricators, Ltd) and connected to the upstream end of the reactor. The 

organic molecules were transported to the substrate by heating the bubbler to achieve the 

desired vapor pressure using a heating tape.  
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Figure 2. Schematic of the three-zone tube furnace employed for the synthesis and in-

situ functionalization of Zn3P2 nanowires, indicating (a) the placement of the quartz 
substrate for the reactive vapor transport of zinc and phosphorus using Zn3P2 powder as 
the source for obtaining Zn3P2 nanowires on a small-scale (first experimental route), and 
(b) the placement of the coiled zinc foil employed for the large-scale synthesis of Zn3P2 
nanowires using phosphorus vapor transport onto zinc foils (second experimental route).     
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The synthesis of Zn3P2 nanowires was accomplished using either (i) 

commercially-available Zn3P2 powder (Figure 2a) or (ii) a combination of zinc foils and 

red phosphorus powder as sources (Figure 2b). In the first route, 20 mg of Zn3P2 was 

placed in a boron nitride crucible and vapor transported onto amorphous quartz 

substrates. Using this method the Zn3P2 powder source was upstream at a temperature of 

1000 oC, while the amorphous quartz substrates were downstream at a temperature of 

600 oC. Hydrogen was used as a carrier gas at 20 sccm to aid in the source transport. 

These experiments lasted for one hour at an operating pressure of 1 Torr.  

 In the second route, phosphorus was vapor transported onto zinc foils for the 

synthesis of Zn3P2 nanowires (Figure 2b). Here, 250 mg of red phosphorus was placed in 

a boron nitride crucible at the hot end of the reactor maintained at a temperature of 480 

°C, while zinc foil substrates cleaned using a 1M HCl solution for 5 minutes were placed 

at the downstream end of the reactor maintained at a temperature of 400 °C. Similar to 

the first experimental route, a flow of 20 sccm of hydrogen gas aided in the vapor 

transport of phosphorus onto zinc foils. These experiments also lasted for one hour and 

were performed at a pressure of 1 Torr. 

Likewise, the synthesis of Zn4Sb3 nanowires was achieved by passing an 

antimony precursor over heated zinc foils. One gram of antimony trichloride, SbCl3, was 

placed in the upstream end of the reactor maintained at a temperature of 280 oC. A flow 

of 20 sccm of hydrogen was used as a carrier gas to transport the SbCl3 onto the cleaned 

zinc foils placed at the downstream end of the reactor and maintained at a temperature of 
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400 oC. These experiments lasted a total duration of one hour and were conducted at a 

pressure of 1 Torr. 

The ZnO nanowires were synthesized using an atmospheric plasma jet reactor118 

at the University of Louisville in Dr. Mahendra Sunkara’s laboratory. 

 

Nanowire Characterization Techniques 

 All the techniques employed for the characterization of nanowires were 

previously listed. SEM was employed for determining the morphology of the nanowires 

using the secondary electron detector and if the sample is phase-pure using the back-

scattered electron detector. Further, an EDS attachment on the SEM was utilized to 

determine the elemental composition of the nanowire-bulk samples. Additionally, XRD 

was used to determine the crystal structure, lattice parameter, and mean particle size of a 

nanowire sample. TEM was further used to confirm the results of the SEM and XRD by 

generating electron diffraction (SAED) patterns to determine morphology, crystal 

structure, and growth direction. XPS was used to determine the bonding and chemical 

composition of a material. Also optical techniques, such as UV-Vis spectroscopy, were 

used to determine the bandgap of semiconductors. FTIR spectroscopy was used for 

determining how organic molecules are bound together or bound to nanomaterial 

surfaces. All of these techniques are commonly used to characterize materials and a 

plethora of information available on each of them can be found elsewhere.119-124 In the 

interest of brevity, these techniques not be further described. 
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Nanowire Consolidation Techniques 

The Zn3P2 and ZnO nanowires were compressed into dense bulk solids using hot-

uniaxial pressing and spark plasma sinter (SPS), respectively. In the case of Zn3P2 

nanowires, 1 gram of nanowires, either functionalized or unfunctionalized, were loaded 

into a 12 mm graphite die inside of an argon atmosphere glove box. The die was then 

sealed and transported to the uniaxial hot-press where the nanowires were sintered into a 

bulk mass for 1 hour at 650 °C and 100 MPa. The pellet was then removed from the die 

and mechanically polished to the specifications required by the characterization 

techniques listed below. 

The dually-doped ZnO nanowire bulk pellet was manufactured using a different 

procedure and pressing technique. ZnO nanowires used as a starting material for this 

study were synthesized using a microwave plasma jet reactor and were previously 

reported.118 These nanowires were mixed with Ga2O3 and Al2O3 nanoparticles in various 

ratios in a high-energy ball mill for 15 minutes at 20 Hz. The ceramic powders were then 

placed into a graphite die and consolidated using a Spark Plasma Sintering (SPS) 

apparatus. The nanowires were pressed at 1200 °C and 100 MPa for 5 minutes and then 

cooled to room temperature using water cooling. The consolidated Zn1-x-yAlxGayO 

pellets were then removed from the die and polished into flat 12 mm diameter by 1 mm 

thick cylindrical pellets. As these powder metallurgy techniques are widely known and 

used, they will not be discussed in further detail. Any additional information regarding 

these techniques can be found in various published sources.111-113 
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Thermoelectric Performance Characterization 

 Van der Pauw probe Hall Effect measurements were used to determine the 

carrier mobility, carrier concentration, and electrical resistivity of each of the samples as 

a function of temperature. Seebeck coefficient was determined by applying a 

temperature gradient across the sample and measuring the voltage generated using W-Ni 

thermocouples. In all cases, pressure contacts were used. The thermal diffusivity was 

measured using a Netzsch LFA. Density measurements were determined using 

geometrical measurements and confirmed using Archimedes principle. The heat capacity 

was determined using DSC. From all of these properties, the thermoelectric figure of 

merit can be determined. Again, due to all of these measurements being standardized, 

they will not be further elaborated on. Additional information on these characterization 

methods can be found in the provided references.125-128 
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CHAPTER IV  

POST-SYNTHESIS FORMATION OF QUANTUM WIRES* 

 

Introduction 

3As mentioned in Chapter II, only a few reports in the literature discussed the 

syntheses of nanowires with diameters less than 20 nm. A few examples include the 

synthesis of 7.8 nm diameter silicon and 5 nm diameter germanium nanowires by the 

laser ablation method using gold and iron as the catalysts by Lieber and coworkers,129 

the synthesis of 15 nm diameter silicon nanowires using TiSi2 followed by surface 

oxidation to reduce the diameter of the silicon core by Kamins and coworkers,130 and 

synthesis of InP rods with diameters as small as 3 nm in diameter by thermal 

decomposition of an InP-containing metalorganic precursor by Nozik and coworkers.131 

Further, Korgel and coworkers synthesized silicon nanowires as small as 4 nm132 and 

germanium nanowires as small as 7 nm133, 134 by the supercritical fluid-liquid-solid 

(SFLS) method using gold as the catalyst. A 0.3 eV shift in the bandgap of germanium 

was observed at these small diameters. Solution phase synthesis of 7 nm diameter and 9 

nm diameter CdSe nanowires using gold as the catalyst was also demonstrated by Kuno 

and coworkers.135 In a series of papers, Buhro and coworkers have also reported the 

synthesis of InP,136 CdSe,137 ZnSe-ZnTe,138 and InAs139 nanowires using the solution-

liquid-solid (SLS) method. Recently, SnO2 nanorods with diameters as small as 2 nm 
                                                 

* Excerpts are reprinted with permission from Cryst. Growth Des. 11 (10), 4559-4564 
(2011) - Copyright (2011) American Chemical Society.10  
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have also been synthesized.140 In general, it is observed that the vapor-liquid-solid (VLS) 

mechanism rarely yields wires with diameters less than 20 nm, while the SLS 

mechanism typically yields nanowires with diameters in the range of 4-10 nm.141 

Unfortunately, the SLS mechanism has not resulted in high quality nitride nanowires.141 

Due to the inability of the current methods in synthesizing nanowires with sub-10 nm 

diameters (or quantum wires), especially in III-nitride systems, a post-synthesis 

approach for reducing the diameter of nanowires would be ideal for obtaining quantum-

sized nanowires in a reliable manner, irrespective of the technique used for their 

synthesis. 

Two post-synthesis strategies useful for reducing the diameter of nanowires are 

thermal decomposition and chemical etching. In the case of III-nitrides nanowires, it is 

possible to devise strategies based on thermal decomposition easily. For example, it is 

well-known that GaN decomposes above temperatures of 850 oC. Consequently, it is 

important to know whether the decomposition of pre-synthesized GaN nanowires leads 

to a reduction in their diameters. Secondly, it is crucial to know if this diameter 

reduction is uniform all along the lengths of the nanowire. Finally, it is imperative to 

understand the parameters affecting the decomposition to obtain nanowires with 

diameters less than 10 nm in a uniform and controlled manner.  

Therefore, the primary aim of this chapter is to study whether post-synthesis 

decomposition could be employed as a strategy for reducing the diameter of nanowires. 

Specifically, the decomposition of GaN nanowires is studied and discussed in detail in 

this chapter. Our results indicated that the decomposition of GaN nanowires leads to a 
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uniform reduction in their diameter and results in the formation of quantum wires. It is 

also the aim of the chapter to understand the mechanism behind the uniform and 

controlled decomposition of GaN nanowires, along with the factors affecting the rates of 

decomposition of GaN. Based on the results, a layer-by-layer decomposition model is 

proposed to explain the uniform thinning of the GaN nanowire diameters all along their 

lengths. This layer-by-layer decomposition is a direct result of the ballistic diffusion of 

gallium adatoms, observed exclusively on nanoscale surfaces. Ballistic diffusion is 

intended to mean that the diffusion lengths are very large, on the order of tens of 

microns, in this chapter. A final aim of the chapter is to understand the variation in the 

optical bandgap of the nanowires with diameter. The bandgap of GaN nanowires was 

observed to increase with decreasing diameter. A blue-shift in the bandgap of GaN, as 

much as 0.5 eV, was observed. To our knowledge, no such studies indicating the use of 

post-synthesis decomposition as a strategy for uniformly reducing the diameter of 

nanowires currently exist in the literature. 

 

Decomposition Methods 

Experiments for the decomposition of GaN nanowires were performed by 

placing the pre-synthesized GaN nanowires on the heater and heating them to an 

elevated temperature of 900 oC. These experiments were performed both in the presence 

of only ammonia and only hydrogen in the gas phase for varying durations ranging from 

1 to 10 minutes. The as-obtained nanowires and the quantum wires obtained by their 

decomposition were characterized using scanning electron microscopy (SEM), X-ray 
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diffraction (XRD), transmission electron microscopy (TEM), and ultraviolet-visible 

absorption (UV-Vis) spectroscopy. As-obtained GaN nanowires and quantum wires 

were used for the SEM and UV-Vis analysis, without any sample preparation. Samples 

for TEM analysis were prepared by simply scraping the nanowires onto holey-carbon 

coated copper TEM grids.  

 

Results 

This section encompasses the results of the synthesis of the GaN nanowires, the 

decomposition, and the unique properties resulting from the uniform reduction of the 

diameters of the gallium nitride nanowires. 

 

Nanowire Synthesis 

The reactive vapor transport of gallium in the presence of decomposed ammonia 

proceeded as expected and led to the formation of GaN nanowires.86, 88 The as-obtained 

nanowires (Figure 3a) had an average diameter of 23 nm and are tens of microns long. 

XRD analysis of the GaN nanowires sample (Figure 3b) indicated that the obtained 

nanowires have a wurtzite crystal structure with lattice parameters of a=3.19 Å and 

c=5.17 Å.80  
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Figure 3. (a) Scanning electron micrograph of the as-synthesized GaN nanowires 
obtained by the reactive vapor transport approach. (b) XRD analysis of the nanowires 
indicating their wurtzite structure. 
 

Nanowire Diameter Reduction 

Decomposition of the as-obtained GaN nanowires was performed in the presence 

of ammonia in a sequential manner for durations of 3, 6 and 10 minutes. After each 

decomposition experimental step, the nanowires were characterized using SEM and 

TEM to understand the effect of high temperature decomposition on their morphology 

and size. Representative TEM micrographs of the 23 nm diameter as-synthesized 

nanowires, the 6.8 nm diameter nanowires resulting from their decomposition for 6 

minutes, and the 4.8 nm diameter nanowires resulting from their decomposition for 10 

minutes in the presence of NH3 are respectively shown in Figure 4a, b and c. From the 

Figure 4a-c, it can also be observed that the reduction in the diameters of the nanowires 

is uniform all along their lengths.  
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HR-TEM analysis of the nanowires indicated that the as-obtained nanowires are 

single-crystalline in nature (Figure 4d). The lattice spacing in the growth direction was 

observed to be 2.76 Å and indicated that they preferentially grew in the [100] growth 

direction (Figure 4d).86 HR-TEM analysis also indicated that the growth direction of the 

nanowires remained unaltered during the decomposition process, and remained [100] 

(Figure 4e). No change in the growth direction of the wires is indicative of the fact that 

the nanowires undergo a partial decomposition, leading to a uniform reduction in the 

wire diameters. If this process occurred via complete decomposition, followed by 

regrowth of the nanowires, then there would be a change in the growth direction of the 

nanowires from [100] to [001].86 
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Figure 4. Transmission electron micrographs of (a) as-obtained GaN nanowires and 
nanowires observed after (b) 6 minutes and (c) 10 minutes of decomposition in NH3. 
HR-TEM images of (d) an as-obtained nanowire and (e) a 3.2 nm GaN nanowire after 
decomposition indicating that the crystal structure and growth direction did not change. 
 

Decomposition Mechanism and Kinetics 

A plot showing the variation in the mean diameter of the nanowires with 

decomposition time is shown in Figure 5. It is essential to mention here that for each 

sample, the diameters of 25-50 nanowires were taken as a sample data set and measured 

for the determination of their mean diameter. The error in the measurement is no more 

than ± 0.5 nm. The diameter distributions of the as-synthesized nanowires, and 

nanowires decomposed for 3, 6 and 10 minutes are shown in the inset to Figure 5. The 
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mean diameter of the nanowires was found to decrease exponentially with 

decomposition time as shown in Figure 5 and Equation 1.  

              (1) 

From Equation 1, the decomposition rate (nm/min) can be determined to be  

                      (2) 

where, D is the mean diameter of the nanowires (nm) at time t (min), Do is the initial 

diameter of the nanowires, and k is a decomposition rate constant. This exponential rate 

of decomposition is proportional to the circumference (πD) due to monolayer step 

creation being the rate determining step. The decomposition rate constant is dependent 

on the experimental conditions employed: decomposition temperature, pressure and gas 

phase composition. From the plot in Figure 5, the value of k is determined to be 0.156 

min-1 under our experimental conditions. This implies that duration of 4.44 minutes is 

required for halving the diameter of the nanowires. The rate of decomposition depends 

on the initial diameter of the nanowire, and is observed to have a maximum of 3.28 

nm/min and an average of 1.66 nm/min. The maximum and average decomposition rates 

correspond to 13.12 and 6.64 monolayers per minute, respectively, assuming a thickness 

of 0.25 nm for one monolayer of GaN.142 The rate of decomposition of GaN nanowires 

is observed to be higher than that of bulk GaN crystals. In a previous study, Grandjean et 

al. studied the decomposition of bulk GaN in the presence of an ammonia flux.143 Using 

the correlation presented, the decomposition of bulk GaN under our experimental 

conditions (850 oC and 100 mTorr) was determined to be 0.36 nm /min. Assuming again 
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a thickness of 0.25 nm per monolayer for GaN,142 the bulk decomposition of GaN was 

estimated to be 1.44 monolayers per minute. From the above analysis, the decomposition 

rate of bulk GaN is estimated to be approximately one-tenth of the maximum 

decomposition rate and one-fifth of the average decomposition rate of GaN nanowires 

observed in our experiments. It was also observed that the diameter distribution of the 

wires was reduced as the decomposition proceeded (Figure 5), resulting in a much more 

narrow distribution in the decomposed wires than was found in the as-synthesized 

nanowires. 
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Figure 5. A plot showing the variation in the mean diameter of the GaN nanowires with 
decomposition time in the presence of ammonia at a temperature of 900 oC. The mean 
nanowire diameter is observed to decrease exponentially with time. The error in the 
measurement is estimated to be ±0.5 nm. The histogram insert shows the diameter 
distribution of the GaN nanowires at various times. 
 

Experiments performed to understand the effect of gas phase chemistry on 

decomposition of GaN indicated that the rate of decomposition of GaN nanowires is 

higher in the presence of hydrogen than in the presence of ammonia. These experiments 

were performed at a temperature of 900 oC, a pressure of 100 mTorr, and under a 

hydrogen flow rate of 100 sccm. In the presence of hydrogen, the complete 

decomposition of GaN nanowires (23 nm in diameter) into gallium was observed after 
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duration of only 6 minutes (Figure 6). It is essential to recall here that in the presence of 

ammonia 4.8 nm thin quantum wires were observed after 10 minutes of decomposition.  

 

 

Figure 6. (a) Scanning electron micrograph of as-synthesized GaN nanowires. (b) 
Micrograph of polycrystalline GaN resulting from the decomposition of GaN nanowies 
for 6 minutes in the presence of hydrogen.  
 
 

In order to understand whether the uniform reduction in the diameters of the 

nanowires is exclusive to nanoscale, the decomposition of bulk compound 

semiconductor wafers was also studied. Owing to the lack of single-crystal GaN wafers, 

these experiments were performed using GaAs wafers. As expected, the decomposition 

of a GaAs wafer led to the formation of etch pits along its surface (Figure 7). Similar 

behavior was previously observed and reported in GaN crystals by Pisch et al.144 
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Figure 7. Scanning electron micrographs of a (100) oriented GaAs wafer surface, (a) 
before and (b) after thermal decomposition. The formation of etch pits upon 
decomposition is clearly observed in the images shown in (b). 
 

In principle, the partial decomposition of GaN nanowires may follow three 

routes: (a) layer-by-layer decomposition if the diffusion of both decomposed Ga and N 

species can be fast over the length scales of nanowires, (b) creation of multiple etch 

steps and coalescence to remove a monolayer eventually leading to rough surfaces of the 

decomposed nanowires, and (c) creation of etch pits in nanowires ultimately leading to 

the breakdown of nanowires into individual crystals. The mode of decomposition is 

dependent on the gallium adatom diffusion lengths on the surfaces of GaN. If the 

diffusion lengths of gallium adatoms is ballistic, layer-by-layer decomposition on the 

surfaces of the nanowires occurs and leads to a uniform reduction in their diameters 

without changing their growth direction (Figure 8a and b). If the diffusion lengths of 

adatoms are smaller, then gallium droplets are formed all along the lengths of the 
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nanowires. The accelerated etching of GaN in the vicinity of the droplet breaks the 

nanowires into multiple crystals (Figure 8c). This leads to the formation of 

polycrystalline GaN.  

The diffusion lengths of gallium adatoms on the surfaces of bulk GaN crystals 

are well known to be in the range of 10-80 nm.145 Similarly, the diffusion lengths of 

gallium on GaAs crystal surfaces are also in the 10-100 nm range.146 It is also 

documented that gallium droplets aid in accelerating the decomposition in their 

vicinity.144 Hence, in the case of bulk crystals, the primary result of decomposition is the 

formation of etch pits all along the surfaces. These etch pits eventually break bulk 

crystals into a polycrystalline crust. Similar decomposition phenomena occur in thick 

nanowires (Figure 8c). In the case of thinner (sub-25 nm diameter) nanowires, ballistic 

diffusion of metal adatoms on the surfaces can occur with diffusion lengths on the order 

of tens of microns.86, 147 Therefore, the formation of gallium droplets on the surfaces of 

nanowires does not occur unless desorption of gallium adatoms proceeds slowly to allow 

its accumulation on the nanowire surface. Thus, layer-by-layer decomposition leads to 

the uniform shrinking of the nanowires diameters.   

In the case of layer-by-layer decomposition of nanowires, the monolayer etch 

rate can depend upon either the surface area of the nanowire or the circumference of the 

nanowire. In the case of slower kinetics, in the presence of ammonia, the rate of 

monolayer etching is limited by etch step creation which is proportional to the number of 

edge sites (or the circumference ∝ D). In this case, the decomposition is initiated at the 

edge of the nanowire and the step propagation occurs much faster than the next etch step 
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creation as seen in Figure 8a. In order for this mechanism to be operative, the gallium 

adatoms, resulting from the decomposition of GaN, diffuse away from the step edge and 

desorb quickly from the surface of the nanowire. Under these conditions, one can model 

the rate of monolayer etching as that proportional to the monolayer etch step creation, 

the rate determining step. In other words, the rate of monolayer etching is proportional to 

the diameter (or the circumference) of the nanowires and a rate constant as shown in 

Equation 2. Because the rate of decomposition is directly proportional to the diameter of 

the wire, larger nanowires (with larger circumferences) decompose faster than smaller 

nanowires. Consequently, the diameter distribution is expected to be narrowed as the 

decomposition proceeds. The above model is consistent with the experimental 

observations shown in Figure 5. 

In the presence of hydrogen, the activation energy of nitrogen desorption can be 

reduced leading to multiple etch step creation along the length of nanowires instead of 

primarily at the edges as illustrated in Figure 8b. In this case, the time required for the 

complete decomposition of a GaN surface layer depends primarily on the etch step 

propagation and coalescence time and is consequently not limited by the etch step 

creation time. Therefore, the rate of decomposition of GaN nanowires is higher in the 

presence of hydrogen than in the presence of ammonia. In sharp contrast, the diffusion 

lengths of adatoms on bulk GaN crystal/thick GaN nanowires surfaces is smaller (10-80 

nm).145 These lower diffusion lengths of gallium adatoms lead to their accumulation and 

the formation of droplets all along the surface of the nanowire/crystal. The accelerated 



 

38 

 

etching of GaN 144 in the vicinity of the droplet essentially breaks a nanowire into 

multiple crystals (Figure 8c). 

 

 

Figure 8. (a) A schematic illustrating the proposed mechanism of decomposition in thin 
GaN nanowires (diameters less than 25 nm) in the presence of (a) NH3, and (b) H2. (c) 
Mechanism of decomposition expected in thick GaN nanowires/bulk GaN crystals. 
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In situ TEM Decomposition 

Decomposition of GaN nanowires was also performed inside a TEM (FEI 

Technai F20) equipped with a heating stage. These experiments were performed in 

vacuum at 10-7 Torr, without the supply of a nitrogen containing gas, such as ammonia. 

The decomposition of GaN nanowires in the absence of ammonia was observed to be 

similar to that expected in bulk GaN. During this process, voids begin to form in 

nanowires as the result of nitrogen evaporation and nitrogen vacancies accumulation (as 

indicated by the white arrows in Figure 9a). Simultaneously, the gallium resulting from 

the decomposition of GaN accumulated into droplets. The preferential decomposition of 

GaN in the vicinity of the gallium droplets leads to the formation of holes (Figure 9b). It 

is documented that in the presence of a nitrogen containing gas, the activation energy of 

nitrogen desorption is increased;143 consequently, the amount of free gallium on the 

surface of the GaN nanowires is insufficient to accumulate into droplets. Therefore, 

controlled decomposition in the presence of ammonia is essential for uniformly thinning 

GaN nanowires. In contrast, the lower nitrogen desorption activation energy in absence 

of ammonia leads to the accumulation of gallium in the form of droplets, and hence the 

formation of etch pits in GaN nanowires. Additional experimentation on the in-situ 

decomposition of GaN nanowires inside a TEM are currently being performed, and will 

be reported later.   
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Figure 9. Micrographs of a GaN nanowire during decomposition as observed in-situ 
inside a transmission electron microscope equipped with a heating stage. (a) Voids 
formed due to nitrogen vacancies accumulation during the decomposition of the GaN 
nanowire (indicated by white arrows). The gallium adatoms resulting from the 
decomposition accumulate into gallium droplets. Preferential etching of the GaN in the 
vicinity of the droplets leads to the formation of holes within the GaN nanowires, as 
shown in (b). The in-situ decomposition experiments were performed in the absence of 
ammonia, and decomposition phenomenon observed is similar to that expected in bulk 
GaN crystals. 

 

Bandgap Blue-Shift 

In order to estimate the effect of diameter on the bandgap of GaN, UV-Vis 

absorption spectroscopic analysis of the as-synthesized GaN nanowires and the quantum 

wires resulting from their decomposition was performed. As-obtained nanowires and 

quantum wires on quartz substrates were directly employed for this purpose, without any 

additional sample preparation. A Tauc plot was also generated from the transmittance 

(T) vs. energy (hν) data obtained using UV-Vis spectroscopy (Figure 10).140, 148 The 

Tauc relation is given by  X

gEhBh    where α is the absorption coefficient, h is 
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Planck’s constant, ν is the frequency of the incident wave, and B is a constant. The factor 

x is 0.5 for direct bandgap semiconductors (such as GaN) and 2 for indirect bandgap 

semiconductors. The absorption coefficient (α) was calculated from the transmittance (T) 

vs. energy (hν) data using the procedure described previously.148-150 

The Tauc plot of GaN nanowires and quantum wires, showing the variation of 

(αhν)2 with energy (hν), is shown in Figure 10. The optical bandgap can be determined 

by the x-intercept of a tangent drawn through the linear portion of the plot. This 

technique confirmed that the bandgap of the as-synthesized 23 nm GaN wires is 3.4 

eV.92-94 The Tauc plot also indicated that the bandgaps of GaN nanowires with average 

diameters of 13.5 nm, 6.8 nm and 4.8 nm are respectively 3.4, 3.7 and 3.9 eV. A plot 

showing the variation of the bandgap of GaN with nanowire diameter is shown in the 

inset to Figure 10. As expected, the reduction in the diameter of GaN nanowires led to 

an increase in the bandgap.92 A maximum blue-shift of 0.5 eV in the bandgap of GaN 

was observed in nanowires with an average diameter of 4.8 nm. The bandgaps estimated 

from the Tauc plots were observed to be close to those predicted by theoretical 

estimates.94 For example, theoretical estimates predict a blue-shift of 0.5 eV is expected 

in GaN crystals with sizes of 4 nm.92, 94 The average diameter of our nanowires observed 

from SEM and TEM analysis exhibiting a bandgap of 3.9 eV was observed to be 4.8 nm, 

close to that predicted by theory.  
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Figure 10. Tauc plots of (A) as-obtained GaN nanowires, nanowires observed after 
decomposition in NH3 for (B) 3 minutes, (C) 6 minutes, and (D) 10 minutes showing a 
0.5 eV blue-shift in the bandgap as the diameter was decreased from 23 nm to 4.8 nm. 
The insert shows the variation in the bandgap of GaN nanowires as a function of their 
average diameters. 
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Conclusion 

In conclusion, a simple post-synthesis strategy for uniformly reducing the 

diameters of pre-synthesized nanowires and obtaining quantum wires is presented. The 

decomposition occurred in a layer-by-layer fashion in nanowires with sizes less than 25 

nm and led to the formation of quantum wires with diameters as small as 4.8 nm on 

average. This layer-by-layer decomposition is a result of the ballistic diffusion of 

gallium adatoms (resulting from the decomposition of GaN) on GaN nanowire surfaces. 

Layer-by-layer decomposition is exclusive to GaN nanowires with diameters less than 

50 nm and unlike that of bulk GaN crystals where decomposition leads to the formation 

of etch pits all along the surfaces. The rate of decomposition was also observed to be 

dependent on the gas phase chemistry, lower in the presence of ammonia and higher in 

the presence of hydrogen. A reduction in the diameter of the GaN nanowires resulted in 

an increase in their optical bandgap. A blue-shift in the bandgap of 0.5 eV is observed in 

the obtained GaN quantum wires with a mean diameter of 4.8 nm. This shift is attributed 

to quantum confinement resulting from the diameter reduction of the nanowires. This 

post-synthesis decomposition strategy for reducing the diameters of nanowires is 

expected to be applicable to other III-V compound semiconductor systems. 
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CHAPTER V  

POST-SYNTHESIS NANOTUBE FORMATION 

 

Introduction 

Nanotube morphology has been shown to be a viable option for photovoltaic19 

and photocatalytic151 cells. The absorption cross-section per unit volume of nanowires 

has been shown to be eight times that of nanoparticles,152 and charge transfer in the 

photoactive layer has been demonstrated to be enhanced by using nanowire 

morphology.38 Nanotubes have the same high external absorption area as nanowires, but 

also have smaller minority carrier radial diffusion distances,6 and their performance as 

photoabsorbers should be enhanced relative to nanowires with the same external 

diameter.  

State-of-the-art synthesis techniques for non-carbon nanotubes include various 

strategies involving anodic alumina (AAO) templates and oxide nanowire templates. 

AAO has been previously used to synthesize polycrystalline LiMn2O4 and LiCoO2 using 

thermal decomposition of sol-gel precursors,153 polycrystalline noble metal nanotubes 

using electroplating,154 and various polycrystalline semiconducting oxides using sol-gel 

chemistry.40 The “epitaxial casting” strategy has also been utilized to synthesize single-

crystalline GaN nanotubes using ZnO nanowires as templates.155 Also, α-Fe2O3,1, 156 

TiO2,4 and Ta2O5
5 nanotubes have been created without the use of a template using 

electrochemical methods, but all nanotube synthesis techniques involving 

electrochemistry typically result in polycrystalline material.7 To the best of the author’s 
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knowledge, no template free method has previously been used to create single-

crystalline non-carbon nanotubes. In this context, the template-free synthesis of single-

crystalline nanotubes is presented via a reverse VLS decomposition mechanism. Zinc 

phosphide (Zn3P2), a p-type semiconductor with a bandgap of 1.5 eV, useful for the 

fabrication of photovoltaic cells,28 will be used as an example system for this nanotube 

formation. The comprising elements of Zn3P2 are also earth abundant29 and relatively 

inexpensive.  

 

Decomposition Methods 

The zinc phosphide nanowires were synthesized using the small scale synthesis 

technique as stated in Chapter II. After 30 minutes, the source heat is terminated, and the 

nanowires are allowed to sit for 30 minutes at 600 °C to controllably decompose into 

nanotubes. 

 The nanotubes were characterized for morphology, crystal structure, and 

chemical composition using scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), scanning transmission electron microscopy (STEM), and energy 

disperse spectroscopy (EDS). 
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Results 

 This section contains all of the characterization of the nanowires, a proposed 

mechanism for their formation, and thermodynamic calculations to confirm that the 

mechanism is feasible. 

 

 

Figure 11. Scanning electron micrographs of Zn3P2 nanotubes formed after thermal 
decomposition of Zn3P2 nanowires with diameters of 40-50 nm and lengths of tens of 
microns. 
 

 

 

 

 

 

 

 



 

47 

 

Nanotube Characterization 

SEM images in Figure 11 confirm the existence of nanotubes with diameters that 

range from 40 to 50 nm and lengths in excess of 10 microns, similar to the Zn3P2 

nanowires previously reported using this technique.11 Dark field STEM images are 

indicative that the formation of the nanotubes is initiated at the tip of the wire (Figure 

12a). As time progresses, the amount of nanowire core is etched further from the tip 

(Figure 12b), and by the end of the experiment, the entirety of the wire has been 

transformed into a tube. High resolution TEM images illustrate that the walls of the 

nanotubes are single crystalline (Figure 12c), and selected area electron diffraction 

(SAED) of the wall of the nanotube also confirmed the single-crystalline structure as can 

be seen in Figure 12d. The lattice spacings are consistent with those reported previously 

for Zn3P2.11 
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Figure 12. Dark field scanning transmission electron micrograph of (a) the initial stages 
Zn3P2 nanotube formation and (b) further progression of the decomposition and tube 
formation. (c) High resolution bright field transmission electron micrograph of the same 
wire as in (a) with the inset showing the area of the single-crystalline tube wall imaged 
and (d) a transmission electron micrograph and SAED of the nanotube further showing a 
single-crystalline wall. 
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 Additionally, EDS analysis of the nanotubes confirms a uniform ratio of zinc 

to phosphorus across the diameter of the tube and a decrease in signal intensity in the 

center of the wire signifies its hollow structure (Figure 13). This is consistent with the 

idea that Zn3P2 decomposes congruently, as reported previously. 

 

 

Figure 13. Energy dispersive spectrograph line profiles of Zn3P2 nanotubes indicating 
the tubes are hollow with uniform zinc to phosphorus ratio across the diameter of the 
tube. 
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Decomposition Mechanism 

The mechanism believed to be responsible is the etching or “drilling” of the 

nanowires by the zinc droplet formed on the tip of the wire during vapor-liquid-solid 

(VLS) growth. Due to the termination of the source zinc phosphide, the equilibrium in 

Equation 3 shifts back to the left (i.e. nanowire decomposition) via Le Châtelier's 

principle. A schematic of this principle can be seen in Figure 14. 

 

     3Zn + 1

2
P4
600 °C
⇔    Zn3P2     (3) 

 

 

Figure 14. Schematic of the proposed solid-liquid-vapor (SLV) nanowire decomposition 
mechanism. 
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The most kinetically favorable pathway of decomposition is for the zinc 

phosphide to dissolve into the droplet, dissociate, and then evaporate, similar to the 

accelerated etching in the presence of metal droplets on bulk semiconductor surfaces.144 

This is essentially a solid-liquid-vapor (SLV), reverse VLS, mechanism in which the 

droplet is lowered through the nanowire forming the nanotubes. The observed hollowing 

of the single-crystalline nanowires results in single-crystalline nanotubes. The key to 

translate this mechanism into other material systems with uniform wall thicknesses is to 

determine the decomposition temperature and pressure that allows for the nanowire 

material to dissolve into the catalytic droplet at the same rate as it vaporizes. Due to the 

slow congruent decomposition rate of zinc phosphide at the reactor conditions of 1 Torr 

and 600 °C, the zinc formed from the decomposition on all surfaces but the droplet 

existing on the tip of the wire will vaporize before the critical droplet size can form. 

Likewise, the reasoning for the incomplete decomposition of some of the tubes is due to 

the zinc droplet evaporating faster than it can be replenished with the zinc from the zinc 

phosphide decomposition. Previous reports state that under similar decomposition 

conditions as presented in this work, the zinc droplet is replenished at a rate 1 order of 

magnitude more slowly than it vaporizes from the decomposition of Zn3P2.44 
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Figure 15. A plot of Gibbs energy of nucleation versus critical droplet radius 
demonstrating the minimum droplet size that can form under our reaction conditions 
(r*=14.6 nm), and consequently; the minimum tube external diameter that can be 
formed. 
 

Thermodynamic Limitations 

There are also limitations on the tube external diameter based on the critical 

radius of droplet formation at the desired decomposition conditions. For the Zn3P2 

nanowire system catalyzed by zinc droplets at 600 °C and 1 Torr, the minimum droplet 

diameter that can form is 29 nm (Figure 15) as calculated by the change in the Gibbs free 

energy for nucleation. The changes in the Gibbs free energy of homogeneous and 

heterogeneous nucleation from the vapor phase were calculated as shown previously.50 
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The contact angle of zinc on zinc phosphide is unavailable in the literature; consequently 

the contact angle value of 122° for zinc on zinc oxide51 was used instead for the 

calculation of heterogeneous nucleation energy. Any nanowire which has surfaces 

smaller than this critical diameter will not have droplets on any of its surfaces, and 

consequently, cannot form nanotubes. The decomposition of these smaller nanowires 

will result in a uniform reduction in the diameter of the nanowires via the ballistic 

diffusion of adatoms, as has been shown previously.10 Also if the wire is too large, 

droplets will form on all surfaces of the nanowire resulting in the accelerated etching or 

“drilling” effect occurring on all surfaces of the nanowire, resulting in porous structures. 

Scanning electron micrographs of the quantum wires and porous nanowires can be seen 

in the supplementary information Figure 16. Furthermore, the high energies of 

nucleation determined from the calculations can be justified by the vapor pressure of 

zinc being an order of magnitude higher than its boiling point at a reactor pressure of 1 

Torr. 
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Figure 16. Nanowires small enough that droplets cannot form result in quantum wires 
upon their decomposition are shown (a) before and (b) after their decomposition. Very 
large nanowires where droplets can form on all surfaces result in porous nanowires after 
decomposition are shown (c) before and (d) after their decomposition. 
 

Conclusions 

Single-crystalline zinc phosphide nanotubes were synthesized using a reverse 

VLS decomposition mechanism after the synthesis of single-crystalline nanowires. This 

mechanism is believed to be a viable route for the nanotube synthesis of any material 
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system which nanowires can be grown by the VLS mechanism providing the catalyst 

droplet is energetically favorable at the decomposition conditions.  
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CHAPTER VI  

NANOWIRE SURFACE PASSIVATION*4 

 

Introduction 

The aim of this chapter is to demonstrate that the large-scale synthesis of Zn3P2 

and Zn4Sb3 nanowire powders can be accomplished without the aid of any external 

templates and catalysts, and that in-situ vapor-phase functionalization, a one-step 

process involving the exposure of nanowires to a vapor of organic functional molecules 

immediately after their synthesis, can be utilized to enhance the surface stability of 

nanowires against air- and moisture-assisted degradation.  

In-situ vapor phase functionalization is expected to offer many advantages over 

the current methods reported in the literature for the passivation of surfaces, in addition 

to making the surfaces resistant against air- and moisture-assisted degradation. The 

surfaces of the nanowires are never exposed to ambient atmosphere, unlike ex-situ 

functionalization techniques. This procedure eliminates the probability of oxidation of 

the surfaces of semiconductors that are highly hygroscopic in nature, such as Zn3P2. 

Unlike liquid-phase functionalization, vapor-phase functionalization does not leave any 

unreacted functional molecules on the surfaces of the nanowires. Unreacted functional 

molecules not bound to the nanowire surfaces will simply be pumped out in this 

procedure. The binding of the functional molecules onto the nanowire surfaces forms a 
                                                 

* Excerpts are taken from Physical Chemistry Chemical Physics 15 (17), 6260-6267 
(2013) - Reproduced by permission of the PCCP Owner Societies.11  
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self-assembled monolayer (SAM) that acts as a diffusion barrier for moisture and 

oxygen. These SAMs have not only been shown to prevent corrosion and degradation 

through limiting the diffusion of molecules to the substrate,157 but also to enhance charge 

transfer at interfaces through electron tunneling158 or electron hopping.159 

 

Functionalization Methods 

In-situ functionalization of the synthesized Zn3P2 nanowires was accomplished 

by exposing the nanowires to a vapor of the organic functional molecules immediately 

after the conclusion of the nanowire synthesis. Experimentation for the in-situ 

functionalization of nanowires was executed by terminating the source material flow, 

cooling the substrates to a temperature of 85 oC, and subsequently supplying a vapor of 

organic functional molecules. Zn3P2 nanowires were functionalized using both 4-

aminothiophenol (4-ATP) and 3-propanedithiol in this study. The bubbler was 

maintained at a temperature of 100 oC for the supply of 4-aminothiophenol and a 

temperature of 75 oC for the supply of 3-propanedithiol.   

To compare the effect of the type of surface passivation on nanowire stability, 

liquid phase functionalization of Zn3P2 was also implemented. Ex-situ liquid phase 

functionalization of the nanowires was accomplished by mixing 5 mg of nanowires with 

20 ml of a solution of 5mM 4-aminothiophenol or 3-propanedithiol in isopropanol. The 

solution was then heated at 80°C for 30 minutes under constant stirring. 

The synthesized Zn3P2 and Zn4Sb3 nanowires, both functionalized and 

unfunctionalized, were characterized for morphology, crystal structure, and chemical 
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composition using scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), X-ray diffraction (XRD) using a Cu Kα source, Fourier-transform 

infrared spectroscopy (FTIR), Energy Dispersive Spectroscopy (EDS), and X-ray 

photoelectron spectroscopy (XPS) using a polychromatic Al Kα source. A small piece of 

polished graphite placed adjacent to the sample served as the reference for standardizing 

the obtained XPS spectra.  

 

Results  

 The nanowire characterization by both synthesis techniques for zinc phosphide 

nanowires, the zinc antimonide nanowires, the stability enhancement provided by the 

surface passivation, and the chemistry of the functional molecules binding to the 

nanowire surfaces is discussed thoroughly in this section. 

 

Nanowire Characterization 

The vapor transport of zinc and phosphorus (using Zn3P2 powder as source) onto 

substrates formed a green deposit on the substrate. SEM analysis of the deposit (Figure 

17a) showed that it is comprised of nanowires approximately 25-40 nm in diameter and 

tens of microns long. XRD analysis of the nanowires indicated that they are α-Zn3P2 

with a tetragonal unit cell and have lattice parameters of a = 8.095 Å and c = 11.47 Å. 

For comparison, an XRD spectrum of the Zn3P2 powder source (Sigma Aldrich) is also 

shown in Figure 17b. TEM analysis of the Zn3P2 nanowires indicated that they are 

single-crystalline with a growth direction of [101] and that there was an amorphous 
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oxide layer on the surfaces of the nanowires (Figure 17c). The amount of nanowire 

powder obtained using this experimental strategy is very small (~500 μg per run) and is 

limited by the area of the substrate employed for their deposition (~1 cm2). 

 

Figure 17. (a) Scanning electron micrograph of Zn3P2 nanowires synthesized by reactive 
vapor of transport of Zn and P from Zn3P2 powder source onto quartz substrates. (b) A 
spectrograph comparing the XRD spectrum of Zn3P2 nanowires synthesized using the 
above-mentioned approach with that of commercially-available Zn3P2 powder (Sigma 
Aldrich). (c) Transmission electron micrograph of a single-crystalline Zn3P2 nanowire 
indicating that the growth direction is [101]. 
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A second experimental route was employed to circumvent this limitation and 

synthesize gram quantities of nanowire powder. Here, the vapor transport of phosphorus 

onto heated zinc foils was employed for the synthesis of Zn3P2 nanowires. To maximize 

the area of the foil over which nanowires can be obtained in one experimental run, a 

large 30 x 8 cm2 foil was compacted by rolling it concentrically into a 1.5 inch diameter 

coil as shown in Figure 18a. Due to the high thermal conductivity of metallic zinc, no 

appreciable thermal gradients are expected across the length of the foil. Consequently, 

the entire foil is considered to be isothermal under the experimental conditions. The 

vapor transport of phosphorus onto the zinc foil resulted in the formation of Zn3P2 

nanowires. A pictorial representation of the experimental setup can be seen in Figure 2b. 

Photographs of a coiled zinc foil before and after the reaction are shown in Figure 18a 

and b, respectively. SEM analysis of the green deposit obtained on top of the foils after 

the reaction (Figure 18b and f) indicated that it is comprised of Zn3P2 nanowires 30-50 

nm in diameter and tens of microns long (Figure 18e). TEM analysis of these nanowires 

(Figure 18d) revealed that they are single crystalline and that their growth direction is 

along the [101] axis. This is consistent with the results observed in the small scale 

experiments. Following the synthesis, Zn3P2 nanowire powder was obtained by simply 

brushing the foils using the back side of a razor blade (Figure 18c). Using the second 

experimental route, approximately 250 mg of nanowire powder was produced per run; 

this is 500 times more per run relative to the small-scale synthesis method. 
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Figure 18. Photograph of a coiled zinc foil (a) before and (b) after the vapor transport of 
phosphorus. (c) Photograph of Zn3P2 nanowire powder obtained by brushing off the 
foils. (d) A transmission electron micrograph from a Zn3P2 nanowire indicating that the 
growth direction of the nanowires was not altered in the second experimental procedure 
and remained [101]. (e) A scanning electron micrograph of Zn3P2 nanowires obtained by 
the above-mentioned approach. (f) Photograph of the uncoiled zinc foil covered with 
Zn3P2 nanowires (green deposit) after the vapor transport of phosphorus onto its surface. 
 
 

Short-term experiments lasting for duration of 5 minutes were performed to 

understand the mechanism underlying the growth of nanowires on zinc foils. These short 

term experiments indicated that the formation of Zn3P2 crystal nuclei preceded the 

growth of nanowires (Figure 19). This suggests that self-catalysis via zinc droplets is 

responsible for the growth of Zn3P2 nanowires. In self-catalysis, the reaction of zinc foils 

with phosphorus leads to the formation of Zn3P2 crystal nuclei on the zinc foil. 

Subsequent zinc adatoms diffuse to form droplets on top of the Zn3P2 nuclei. These zinc 
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adatoms could come from the condensation of vaporized zinc or from the surface 

diffusion of zinc from the underlying foil. Phosphorus dissolution into these zinc 

droplets and the ensuing liquid phase epitaxy through the zinc droplets leads to the one-

dimensional growth of Zn3P2 nanowires.88 No zinc droplets were observed at the tips in 

these experiments due to their evaporation or reaction with phosphorus during 

experimental shutdown. The zinc foils served not only as the substrate, but also as the 

source of zinc in the large-scale synthesis of Zn3P2 nanowires.   

 

 

Figure 19. Scanning electron micrographs of a zinc foil after the vapor transport of 
phosphorus onto its surface for a short duration of 5 minutes. The formation of small 
Zn3P2 crystal nuclei preceded the formation of nanowires. This is indicative of the fact 
that self-catalysis via zinc droplets is responsible for the formation of nanowires. 
 

The heavier zinc pnictide nanowires were synthesized via a similar route. The 

reaction of heated zinc foils with SbCl3 supplied via the vapor phase formed 150 nm-

thick Zn4Sb3 nanowires (Figure 20a). An XRD spectrograph (Figure 20b) shows the 
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formation of the Zn5.92Sb5 phase of zinc antimonide, nearly identical to that previously 

reported by Mozhrivskuj et al.160 The variations in the stoichiometry of Zn4Sb3 have 

been previously attributed to a zinc void fraction or a zinc substitution at one of the 

antimony sites within the crystal lattice.17 The dotted line displayed is the simulated 

XRD pattern of the crystallographic information file (COD ID: 4001474) by 

Mozharivskyj et al.160 in the Crystallography Open Database.161, 162 The extra peaks are 

attributed to the zinc substrate (*) and a small amount of ZnSb phase impurity (†). No 

processing was performed on the data and the Cu Kα2 doublet peaks still remain. HR-

TEM bright field imaging (Figure 20c) reveal that the nanowires grow along the [101] 

axis. Lattice fringes can be seen with d-spacings of 5.49 Å and 3.04 Å that are 

characteristic of the (201) and (104) planes of Zn4Sb3, respectively. The synthesis of 

both the phosphide and antimonide nanowires via self-catalysis results in the same [101] 

growth direction. Like the Zn3P2 nanowires, no droplets can be seen at the tip of the 

nanowires due to the excess zinc being vaporized or consumed during reaction shut 

down. 
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Figure 20. (a) Scanning electron micrographs of 150 nm-thick β-Zn13Sb10 nanowires 
synthesized using direct reaction of zinc foils with antimony chloride. (b) An XRD 
spectrograph of β-Zn13Sb10 nanowires on a zinc substrate (*) is shown. A small amount 
of the ZnSb phase impurity is also in the spectrograph as indicated by †. The dotted line 
data is from a simulated Zn5.92Sb5 structure (COD ID: 4001474) by Mozharivskyj et 

al.160 in the Crystallography Open Database.161, 162(c) HR-TEM bright field image of a 
nanowire growing in the [101] direction. Lattice fringes can be seen with d-spacings of 
5.49 Å and 3.04 Å that are indicative of the (201)and (104) planes of Zn4Sb3, 
respectively. 
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Functionalized Nanowire Stability 

 

Figure 21. Scanning electron micrographs of (a) in-situ 4-aminothiophenol 
functionalized Zn3P2 nanowires, (b) ex-situ 4-aminothiophenol functionalized Zn3P2 
nanowires, and (c) unfunctionalized Zn3P2 nanowires after being suspended in THF for 
120 days. The in-situ functionalized nanowires show no signs of degradation, unlike the 
other samples. 
 

The 4-aminothiophenol functionalized nanowires were suspended in 

tetrahydrofuran (THF) for a period of 120 days to determine the effect of in-situ 

functionalization on the stability of Zn3P2 nanowires. Afterward, changes to the 

morphologies of the nanowires were studied using SEM. Unfunctionalized and ex-situ 

functionalized nanowire suspensions were also studied for comparison. The samples for 

the SEM analysis were prepared by drop casting the nanowire suspension onto silicon 

wafers sputtered with 5 nm of gold. The SEM analysis indicated that the in-situ 

functionalized nanowires (Figure 21a) were unchanged while the ex-situ functionalized 

(Figure 21b) and unfunctionalized nanowires (Figure 21c) exhibited signs of degradation 

and agglomeration. Similar results were obtained with Zn3P2 nanowires functionalized 

with 3-propanedithiol (Figure 22).   
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Figure 22. Scanning electron micrographs of Zn3P2 nanowires (a) in-situ functionalized 
with 3-propanedithiol, (b) ex-situ functionalized with 3-propanedithiol, and (c) 
unfunctionalized. These images were obtained after a period of 60 days. In-situ 
functionalized Zn3P2 nanowires did not exhibit signs of agglomeration and degradation, 
unlike ex-situ and unfunctionalized nanowires.  
 
 

Interfacial Chemistry 

XPS analysis performed to determine the effect of in-situ functionalization on the 

chemical composition of the nanowires indicated the formation of Zn-S bonds between 

the 4-aminothiophenol molecules and the Zn3P2 nanowire surfaces.100 A comparison of 

the zinc, sulfur and phosphorus peaks in both the unfunctionalized and the 4-

aminothiophenol functionalized Zn3P2 nanowires is presented in Figure 23a. Typically, 

the 3s valence band of zinc in phosphides appears at a binding energy of 140.8 eV. This 

peak was observed in both the unfunctionalized and 4-aminothiophenol functionalized 

nanowires. Additionally, the zinc 3s peak in 4-aminothiophenol functionalized 

nanowires exhibits a shoulder at a binding energy of 144.4 eV. This shoulder indicates 

that the zinc in Zn3P2 nanowires is not only bound to phosphorus, but also the sulfur of 

the 4-aminothiophenol molecules. The absence of a shift or broadening of the 

phosphorus 2s peak at a binding energy of 186.1 eV confirms that no bonding occurred 
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between phosphorus and sulfur.163 The formation of thiolate bonds between the zinc 

atoms of Zn3P2 and the sulfur atoms of 4-aminothiophenol molecules is also evident 

from the sulfur 2p3/2 peak at a binding energy of 163.8 eV.164, 165 As expected, these 

thiolate bonds are not found in the unfunctionalized nanowires in Figure 23a. The 

absence of a peak at higher binding energies (greater than 166 eV) in this region also 

rules out the formation of sulfone species.106 The slight amount of asymmetry on the 

sulfur 2p3/2 peak can be attributed to the physisorption of the 4-aminothiophenol to the 

nanowire surfaces, which is considerably less than that observed in functionalized 4-

aminothiophenol SAMs from solution based approaches.165, 166 This further emphasizes 

the quality of the in-situ vapor phase functionalization technique. A sulfur 2s peak at 

226.9 eV is also only present in the XPS spectrum of the 4-aminothiophenol 

functionalized nanowires in Figure 23a, consistent with that reported in the literature.167 

Phosphorus 2s peaks characteristic of phosphide bonds in Zn3P2 can also be observed at 

a binding energy of 186.1 eV in both the functionalized and unfunctionalized nanowire 

samples. These phosphorus 2s peaks are consistent with previously reported values of 

Zn3P2.163, 168 A phosphorus 2s peak at a binding energy of 191.1 eV is also present in the 

unfunctionalized Zn3P2 sample. This peak is characteristic of phosphate formation168, 169 

due to the oxidation of the nanowires. The in-situ functionalized nanowires do not have 

this phosphate peak.  
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Figure 23. (a) High resolution X-ray photoelectron spectrographs of both the 
unfunctionalized and 4-aminothiophenol (4-ATP) functionalized Zn3P2 nanowires. (the * 
represents a chlorine peak in ZnCl2 from the acid cleaning). (b) Deconvolution of the 
carbon 1s peak in the XPS spectrum of 4-ATP in-situ functionalized Zn3P2 nanowires 
using Voigt profiles indicated contributions from the 3 different types of carbon in the 4-
ATP molecule, namely aromatic C-C/C-S bonding (‡), aromatic C-N bonding (*), and 
adsorbed CO (†). (c) FTIR spectrographs of the in-situ functionalized Zn3P2 nanowires 
showing the absence of the thiol peak characteristic of the thiolation of the nanowires. 
For comparison, spectra from both unfunctionalized Zn3P2 nanowires and 4-ATP 
molecules are presented. 



 

69 

 

Figure 23b shows the deconvolution of the carbon peak of the in-situ 

functionalized nanowires sample. The fit Voigt profiles include the three different types 

of carbon atoms in the 4-aminothiophenol molecule. Peaks at binding energies of 248.6 

eV, 285.6 eV, and 288.6 eV are characteristic of aromatic carbon-carbon/carbon-sulfur 

bonding, aromatic carbon-nitrogen bonding, and carbon from surface adsorbed carbon 

monoxide (CO), respectively. This is consistent with data previously presented for 4-

aminothiophenol165 and for CO adsorption.170 The presence of all three peaks is evidence 

that the phenyl ring remains intact with no bonding changes within the aromatic 

functional molecules. Therefore, both the Zn3P2 nanowires and 4-aminothiophenol 

molecules are still intact with the only bonding change being a thiolate formation 

between zinc of the nanowires and sulfur of the 4-aminothiophenol. The 

unfunctionalized sample also exhibits signs of phosphate formation due to the lack of 

oxidation protection from the in-situ surface passivation with the 4-aminothiophenol. 

FTIR spectroscopy of both the unfunctionalized and functionalized nanowires (Figure 

23c) confirmed the XPS results and indicated the formation of thiolate bonds between 4-

aminothiophenol and Zn3P2 nanowires in the functionalized sample. An FTIR 

spectrograph showing the absence of a peak at 2550 cm-1
, characteristic of an S-H 

stretch,171 in the in-situ functionalized nanowires agrees with the XPS result of complete 

deprotonation of the 4-aminothiophenol and bonding of the sulfur with zinc (Figure 

23c). For comparison, FTIR spectrographs of 4-aminothiophenol, indicating a thiol 

stretch, and unfunctionalized nanowires with no stretch peak are also shown in Figure 

23c.  
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Conclusions 

Zinc phosphide and zinc antimonide nanowires were synthesized on a gram-

quantity scale by using a direct reaction of the elements in a hot-walled CVD reactor. 

Additionally, the nanowire surfaces were passivated using an in-situ vapor phase 

technique to protect them from oxidation when exposed to atmosphere and prevented 

their agglomeration when suspended as a colloid. Not only is this all-dry technique 

simple to execute, but it is also prevents a native oxide layer from forming on the 

nanowires upon exposure to the atmosphere. The absence of this native oxide layer 

removes the need for chemical etching that could adversely affect the size, morphology, 

and composition of the nanowires before they are used in device fabrication. These 

strategies for the large-scale production and in-situ functionalization of nanowire 

powders open many opportunities for not only zinc pnictides, but a broader range of 

nanomaterials to be used in energy conversion devices, despite their surface reactivity 

and stability short-comings. 
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CHAPTER VII  

Zn3P2 NANOWIRE THERMOELECTRIC PERFORMANCE*5 

 

Introduction 

As waste heat scavenging using thermoelectrics is a bulk application requiring 

macro devices, it is essential to study whether the enhanced thermoelectric performances 

exhibited by individual nanowires are translatable to a bulk device composed of many 

nanowires. Accomplishing this task requires strategies for the mass production of 

nanowires and the large-scale assembly of the obtained nanowires. Such large-scale 

assembly of nanowires into bulk thermoelectrics has seldom been attempted. In sharp 

contrast, nanoparticles of materials have been employed for the fabrication of bulk 

thermoelectric modules. Typically, bulk thermoelectric modules from nanomaterials 

have been assembled using a combination of top-down and bottom up approaches.172, 173 

These strategies primarily involved ball milling bulk materials into nanoparticles 

followed by pressing the nanoparticles into pellets. Although this strategy is simple and 

cost effective, the complete effect of nanostructuring on the thermoelectric performance 

may not be fully realized due to the wide size distribution 174 of the nanopowders created 

in this way. Similarly, the possibility of grain growth, and hence destruction of 

nanostructuring, during the compaction of nanoparticles prevents the realization of 

enhanced thermoelectric performance expected from nanomaterials. The problem of 
                                                 

* Excerpts are taken with permission from Nanotechnology 25, 145401 (2014) - Copyright 
(2014) IOP Publishing.12 
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compaction is more pronounced in nanowires as they are asymmetric in shape (unlike 

nanoparticles) with two distinct dimensions, the diameter and the length.  

The material system chosen for this study, zinc phosphide (α-Zn3P2), has been 

predicted to be a viable option as a thermoelectric material due to its low cost, large 

component-element abundance in the earth’s crust,29 and complex tetragonal crystal 

structure.175 The lattice of α-Zn3P2 is a distorted anti-fluorite structure with lowered 

symmetry to a tetragonal unit cell due to the partial filling of the lattice zinc sites 

resulting in a low lattice thermal conductivity176 and p-type electrical conductivity.177 

Previous studies have indicated that Zn3P2 exhibits a low thermal conductivity of 1.2 

Wm-1K-1,178 making it a material of interest for thermoelectric module fabrication. 

However, Zn3P2 lacks the high electrical conductivity 178 and the surface stability 32, 11, 30 

necessary for its widespread use in thermoelectric cells and modules. The high surface 

reactivity and instability of zinc phosphide makes it an ideal test material. It aids in 

understanding whether surface passivation of nanowires with conjugated organic 

molecules (e.g., 1,4-benzenedithiol, p-phenylenediamine etc.) prior to their assembly 

into pellets offers both enhanced interfacial electrical conductivity and stability 

necessary for their use in thermoelectric device fabrication. Specifically, consolidation 

of surface passivated (or functionalized) nanowires is expected to lead to interfaces that 

have different chemical compositions. This fact is expected to aid in determining the 

effect of interfacial chemical composition on the thermoelectric performance. 
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Nanowire Assembly Methods 

 α-Zn3P2 nanowires were synthesized on a gram-quantity scale using the reactive 

vapor transport of red phosphorus onto zinc foils in a hot-walled chemical vapor 

deposition (CVD) chamber, as previously reported.11 The same process was employed 

for obtaining 1,4-benzenedithiol (BDT) functionalized nanowires, in addition to 

unfunctionalized Zn3P2 nanowires. Functionalized nanowires were simply obtained by 

exposing the Zn3P2 nanowires to a vapor of BDT organic functional molecules 

immediately after their synthesis, and before their removal from the vacuum chamber.11 

This surface functionalization was performed at a temperature of 85 °C.11 Following the 

synthesis, the surfaces of both the functionalized and unfunctionalized foils were simply 

brushed off to obtain nanowire powders.11 The nanowire powders obtained were 

characterized for morphology, phase and chemical composition using scanning electron 

microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), 

X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), and 

Fourier-transform infrared spectroscopy (FTIR), and reported in a previous study 

emphasizing the synthesis and stability of the individual nanowires.11  

Consolidation of the synthesized Zn3P2 nanowire powders into pellets was 

performed by hot uniaxial pressing performed at a temperature of 650 °C and a pressure 

of 120 MPa for 1 hour. The temperature and pressure profiles employed are depicted in 

Figure 24. Following hot uniaxial pressing, the flat faces of the cylindrical pellets were 

mechanically polished to reduce their surface roughnesses and make them parallel to 

each other. In reiteration, pellet densities were determined by measuring their respective 
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masses and volumes and confirmed using Archimedes principle. The morphology, grain 

structure, and composition of the polished nanowire pellets were obtained using back-

scattered SEM, TEM and XRD. Finally, the heat capacity of the pellets was measured 

using differential scanning calorimetry (DSC), and the thermal diffusivity was 

determined by a laser flash apparatus (LFA). Electrical conductivity was measured using 

the Van der Pauw 4-point probe method, and the Seebeck coefficient was determined by 

varying the temperature gradient across the pellet cross-section and measuring the 

resulting voltage. All transport properties were measured from 300 K to 770 K. 

 

Figure 24. Temperature and pressure profiles employed for consolidating Zn3P2 
nanowires into dense pellets. 
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Results 

 This section includes the results of the zinc phosphide nanowire compaction and 

physical property characterization. Additionally, the thermal and electrical transport 

properties of the pellets are included. 

 

Physical Properties 

Nanowire pellets 12 mm in diameter and 1 mm in thickness resulted from the 

uniaxial pressing of nanowire powders (inset of Figure 25). The densities of both the 

unfunctionalized and BDT functionalized nanowire pellets were determined to be ≥ 98% 

of the theoretical density of Zn3P2 (4550 kg/m3).49 XRD analysis of both the 

unfunctionalized and BDT functionalized nanowire pellets (Figure 25) indicated that the 

hot-pressing procedure employed for consolidating nanowire powders did not alter their 

composition, and that the pellets retained the α-Zn3P2 crystal structure. The XRD 

analysis also indicated that any reaction between the sulfur of the BDT molecules and 

the Zn of Zn3P2 during the hot pressing of functionalized nanowire powders did not 

result in the formation of crystalline ZnS. Morphological analysis of cleaved surfaces of 

both unfunctionalized and BDT functionalized nanowire pellets using back-scattered 

scanning electron microscopy indicated that the nanowire morphology remained intact 

within them (Figure 26b and d, respectively), despite the high packing densities 

achieved. The average diameter of the nanowires also remained the same after the 

compaction implying that minimal grain growth occurred throughout the nanowire pellet 

(for comparison, micrographs of as-synthesized unfunctionalized and BDT 
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functionalized nanowires are respectively depicted in Figure 26a and c). To further 

confirm that the pellets are composed of only nanowires, destructive testing was also 

employed. This testing involved grinding the pellets into small pieces, followed by 

morphological analysis of the pieces using a TEM. Selected area electron diffraction 

(SAED) patterns of the Zn3P2 nanowires extracted from the pellets confirmed that their 

crystal structures remained unchanged after their consolidation. This was observed to be 

true for both functionalized and unfunctionalized nanowires (Figure 27).  

 

 

Figure 25. X-ray diffraction spectrographs of nanowire pellets indicating that they retain 
the Zn3P2 crystal structure of the orginal nanowires employed in their fabrication. While 
the unfunctionalized nanowire pellet indicated the presence of a contaminant Zn3(PO4)2 
phase ((Zn3(PO4)2 peaks are indicated with a ‘*’), BDT functonalized nanowire pellets 
indicated the presence of no contaminant crystalline phase. A photograph of a 12 mm 
wide Zn3P2 pellet obtained by hot pressing nanowire powders is included in the inset. 
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Figure 26. Scanning electron micrograph of (a) as-synthesized Zn3P2 nanowires, and (c) 
functionalized Zn3P2 nanowires. Scanning electron micrographs of cleaved surfaces of 
(b) unfunctionalized and (d) BDT functionalized nanowire pellets obtained using the 
back- scatter detector. The micrographs in (b) and (d) clearly indicate that nanowire 
morphology is retained within the pellet, despite the fact that consolidation resulted in 
highly dense pellets. 
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Figure 27. TEM micrographs of (a) unfunctionalized and (c) 1,4-benzenedithiol 
functionalized nanowires extracted from pellets by grinding. The analysis indicated that 
the nanowires still remain in the pellet despite the high densities of packing achieved in 
them. SAED micrographs of the (b) unfunctionalized and (d) 1,4-benzenedithiol 
functionalized nanowires, indicating that the nanowires retained their original Zn3P2 
crystal phase after hot uniaxial pressing. 
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Nanowire Bending 

Typically, the packing of randomly oriented rigid rods results in highly porous 

pellets. Monte Carlo simulations by Abreu et al. indicated that the mean porosity in 

monodispersed beds of rigid spherocylinders with aspect ratios of 3.5 is approximately 

47%.179 Any attempts to increase the packing densities of nanowires through the 

application of high pressures and temperatures will lead to the breaking of nanowires 

along their lengths. However, the packing density of randomly oriented nanowires can 

be increased, without breaking them along their lengths, if the nanowires are 

mechanically flexible. Such flexibility was recently observed and reported in silicon 

nanowires of various sizes.180-183 This enhanced flexibility was attributed to nanowires 

having fewer defects per unit volume, compared to their bulk counterparts.181 To 

confirm that enhanced flexibility is responsible for the high packing density of Zn3P2 

nanowires in the pellets with the simultaneously retention of their morphology, 

mechanical characterization of nanowires was performed using a TEM equipped with a 

Nanofactory SA 2000 in situ STM-TEM Stage. This in situ STM-TEM stage consists of 

an STM tip held on one-side, while the other end of the holder has a metal wire substrate 

on which the nanowires are mounted. The STM tip is mounted on top of a piezo-driven 

stage, capable of precise movements in x-, y- and z- direction with a resolution of 1 nm. 

For the determination of the mechanical robustness of the nanowires, different Zn3P2 

nanowires were mounted on a gold wire using silver paste and subjected to cycles of 

bending and relaxation by moving the STM tip relative to the gold wire (Figure 28a). 

Simultaneously, images of the nanowires under various stages of bending (Figure 28b-g)  



 

80 

 

 

Figure 28. (a) A schematic representing the experimental setup employed for testing the 
mechanical properties of the nanowires. This setup is mounted inside a TEM for 
determining the mechanical properties of the nanowires. The movement of the STM tip 
relative to the nanowire mounted on a metal wire is employed to determine whether the 
nanowires are mechanically flexible or rigid. (b-g) TEM images of a 50 nm-thick 
nanowire under various stages of bending. On application of stress, the nanowire was 
observed to bend at angles exceeding 90o. (h-j) The nanowire was observed to elastically 
return to its original state after the removal of the applied stress. 
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and relaxation (Figure 28h-j) were obtained using the TEM. Multiple nanowires were 

tested using the TEM, and the experimentation indicated that sub-50 nm thick Zn3P2 

nanowires are mechanically flexible and recover elastically back to their original shape, 

even after multiple bending cycles. No change in the morphology of the nanowires was 

observed after repeated bending/relaxation cycles. Overall, these results indicate that the 

nanowire morphology can remain intact in a dense pellet if the nanowires are flexible. 

 

Thermal Transport Properties 

The thermal conductivity of the Zn3P2 nanowire pellets was calculated from 

experimentally measured heat capacities and thermal diffusivities using the following 

relationship: 𝜅 = 𝛼𝜌𝐶𝑃.184 Here, κ is the thermal conductivity, α is the thermal 

diffusivity, ρ is the density, and Cp is the heat capacity of the material. The variation of 

thermal conductivities with temperature of both the unfunctionalized and functionalized 

Zn3P2 nanowire pellets is plotted in Figure 29. For comparison, the thermal conductivity 

of spark plasma sintered Zn3P2 microparticles previously reported by Nagamoto et al.178 

is also plotted in Figure 29. Examination of this data shows that at low temperatures (up 

to ~ 420 K) the thermal conductivities of both unfunctionalized and BDT functionalized 

Zn3P2 nanowires and the Zn3P2 microparticles are generally close to each other. 

However, at higher temperatures, the thermal conductivities of the nanowires were 

observed to be lower than that of the microparticles. A maximum reduction of 28% in 

thermal conductivity of Zn3P2 nanowire pellets relative to the Zn3P2 microparticles was 

observed at a temperature of 770 K. The enhanced phonon scattering resulting from the 
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presence of more interfaces per unit volume in Zn3P2 nanowires pellets relative to Zn3P2 

microparticle pellets employed by Nagamoto et al., is responsible for lower thermal 

conductivities. Such phonon scattering has been previously shown theoretically 185, 186 

and experimentally.187 There was virtually no difference in thermal transport between 

the unfunctionalized and the BDT functionalized nanowire pellets. This is attributed to 

the fact that both pellets have similar grain size and consequently the same number 

boundaries and interfaces to scatter phonons.  

 

Figure 29. Variation of the thermal conductivities of both unfunctionalized and BDT 
functionalized Zn3P2 nanowire pellets with temperature. For comparison, thermal 
conductivity of spark plasma sintered Zn3P2 microparticles, previously published by 
Nagamoto et al., is also included. As expected, nanostructuring reduced the thermal 
conductivity of Zn3P2 by 28% at 750 K, when compared to that reported by Nagamoto et 

al. 
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Electrical Transport Properties 

Variation of the electrical conductivities of both unfunctionalized and BDT 

functionalized nanowire pellets with temperature, along with that obtained from Zn3P2 

microcrystals by Nagamoto et al., is presented in Figure 30a. At low temperatures, the 

electrical conductivity of BDT functionalized nanowire pellets was observed to be orders 

of magnitude higher than that observed from unfunctionalized nanowire pellets. As the 

temperature increases, the conductivity values of both unfunctionalized and BDT 

functionalized nanowire pellets equalize. The thermal activation energy for electrical 

conduction is estimated to be 0.72 eV for both the samples at high temperatures. This 

indicates that the bandgap of the material, twice the activation energy of conduction for 

intrinsic semiconductors,65 is 1.44 eV. This estimated value is very close to the 

previously reported bandgap of Zn3P2 ~ 1.5 eV,35 especially when energy gap reduction 

of semiconductors at high temperatures is taken into consideration.64 The activation 

energy value of 0.72 eV is lower than the 1.10 eV reported previously by Nagamoto et 

al.178 This could be the result of poor interfacial charge transfer in spark plasma sintered 

Zn3P2 microparticles, unlike the dense Zn3P2 nanowire pellets obtained in this study. The 

differences in interfacial conductivities is also believed to be responsible for the large 

difference between the electrical conductivities of functionalized and unfunctionalized 

Zn3P2 nanowire pellets in the temperature range of 300-600 K (Figure 30a). The lower 

interfacial conductivity in unfunctionalized Zn3P2 nanowire pellets is believed to result 

of the presence of insulating Zn3(PO4)2 at the interfaces. In fact, XPS analysis of the 

unfunctionalized nanowire reported in a previous study clearly indicated that 
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unfunctionalized nanowires have a relatively thick Zn3(PO4)2 layer on their surfaces.11 

The average thickness of this layer is in the 3-5 nm range (Figure 27a). In sharp contrast, 

as-obtained functionalized nanowires have conjugated molecules bound to the surface 

through the formation of Zn-S bonds. During consolidation at high temperatures, these 

molecules decompose and are ultimately expected to lead to the formation of a relatively 

thin (relative to unfunctionalized nanowires) amorphous layer composed of Zn, P, S and 

C. The average thickness of this layer is in 1-2 nm range (Figure 27c). Both TEM 

(Figure 27a and c) and XRD analyses (Figure 25) prove this fact, by clearly indicating 

that no other crystalline phases were observed in the BDT nanowire pellets. As a result 

of the differences in the thicknesses and the chemical compositions of the interfaces, the 

number of charge carriers crossing the nanowire interfaces in the functionalized pellet is 

much larger than that observed in the unfunctionalized nanowires at low temperatures.66 

As the temperature increases to about 770K, the carriers have enough thermal energy to 

surmount the barrier at the nanowire interfaces. Hence, interfacial resistance only plays a 

minor role in the overall electrical conductivity of the pellets at high temperatures. 

Consequently, both the unfunctionalized and BDT functionalized nanowire pellets have 

similar electrical conductivities at high temperatures.   

The Seebeck coefficient as a function of temperature for both the BDT 

functionalized and unfunctionalized pellets are shown in Figure 30b. Both samples show 

the same p-type semiconducting trend in the temperature range of 400-770K range, with 

the functionalized sample showing a higher Seebeck coefficient. The Seebeck 

coefficients obtained in this study were found to be lower than that reported previously 
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by Nagamoto et al. However, BDT functionalization of Zn3P2 nanowires not only led to 

an increase in the electrical conductivity, but also the Seebeck coefficient, when 

compared to unfunctionalized nanowire pellets. This behavior is counter-intuitive to that 

expected of typical semiconductors. The semi-classical band theory predicts an inverse 

relationship between Seebeck coefficient and electrical conductivity for 

semiconductors.188 Recently, a few concepts have been proposed to decouple the anti-

correlation of the Seebeck coefficient and electrical conductivity to improve the 

thermoelectric efficiency of a material via power factor enhancement, in conjunction 

with the traditional approach of thermal conductivity reduction via enhanced phonon 

scattering at grain boundaries in nanobulk materials.189 One of the methods to decouple 

S and σ is to create a material in which energy-independent scattering mechanisms 

dominate in the desired temperature range;61 however, no evidence of this occurring in 

the Zn3P2 system exists.178 Another possible explanation of this apparent contradiction 

employs the use of energy filtering in heterostructures, where carrier scattering is 

energy-dependent and low energy charge carriers are selectively scattered at the 

nanomaterial interfaces.58-60 This filtering mechanism requires there be a band offset, 

usually on the order of ΔE < 0.2 eV, to obtain an enhancement in the power factor of the 

heterostructure material. Carrier filtering requires there be precise control over the 

energy gap between the Fermi level of the nanowire surface and that of the core to 

achieve the optimum power factor enhancement.21, 62 If the band offset between the 

materials is too low, then the low energy carriers can cross the barrier, and if the offset is 

too large, the net transport of the majority carriers will be drastically reduced.62 
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Consequently, it is required to have an optimized system in which the interfacial 

material is chosen in conjunction with a thermoelectric material with a predetermined 

doping level to maximize these effects. In the case of Zn3P2 unfunctionalized and BDT 

functionalized nanowires, the interfacial properties are governed by the energy barrier 

between similar Zn3P2 nanowire cores, but differing amorphous surface layers at the 

nanowire interfaces. It is believed that functionalization of nanowires and the subsequent 

formation of thin amorphous layers composed of Zn, P, S and C at the nanowire 

interfaces allowed for the formation of low energy barrier (ΔE < 0.2 eV) at the 

interfaces, and further led to the simultaneous increase in both σ and s. Although the 

energy barrier at the interfacial layers in these nanowire pellets could be calculated given 

carrier mobility measurements as a function of temperature for each pellet as given by 

Seto,62 the low electrical conductivity of the undoped samples 62, 63 prevented the 

generation of a coherent mobility plot for testing the carrier filtering hypothesis. Overall, 

the thermoelectric power factors of both unfunctionalized and BDT functionalized Zn3P2 

nanowire pellets (Figure 30c) are higher than those reported for bulk Zn3P2 by Babu et 

al.190 Also, the overall thermoelectric performance of BDT functionalized nanowires is 

on par with that observed in Zn3P2 microparticles by Nagamoto et al.     
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Figure 30. Plots showing the variation of (a) the electrical conductivity and (b) the 
Seebeck coefficient with temperature for both unfunctionalized and BDT functionalized 
Zn3P2 nanowire pellets. For comparison, data previously reported by Nagamoto et al. is 
also included. (c) Thermoelectric power factors of both unfunctionalized and BDT 
functionalized nanowire pellets, along with those obtained for bulk Zn3P2 by Babu et al. 
and for Zn3P2 microparticles by Nagamoto et al.   
 

Conclusions 

In summary, mass produced Zn3P2 nanowires, both unfunctionalized and BDT 

functionalized, were hot-pressed into dense pellets (densities ≥98% of the theoretical 

density) without altering their morphologies in the process. The intent here was to 

deduce the effect of nanostructuring, if any, on the thermoelectric performance of bulk 

assemblies of Zn3P2 nanowires. It was observed that the mechanical flexibility of the 



 

88 

 

nanowires, specifically observed when their thicknesses are 50 nm or less, afforded their 

consolidation into highly dense pellets. Thermoelectric performance of the consolidated 

nanowire pellets indicated that nanostructuring has a positive impact on their 

thermoelectric performance, as expected. The Zn3P2 nanowire pellets not only exhibited 

higher thermoelectric power factor compared to their bulk counterparts, but also lower 

thermal conductivities compared to Zn3P2 microparticles. BDT functionalization of 

Zn3P2 nanowires allowed for the formation of interfaces that filtered low energy carriers 

and allowed for the simultaneous increase in both the Seebeck coefficients and electrical 

conductivities, previously never observed in the Zn3P2 material system. It is believed 

that a further reduction of the nanowire diameters, coupled with doping them using 

copper,178 will enhance the zT values of Zn3P2 further and make it a viable 

thermoelectric material. 

 



 

89 

 

CHAPTER VIII 

ZnO NANOWIRE THERMOELECTRIC PERFORMANCE 

 

Introduction 

Over the past two decades oxides have become viable thermoelectric materials 

due to their low cost, elemental abundance in the earth’s crust,29 low toxicity,40 and high 

stability relative to other state-of-the-art thermoelectric materials in oxidizing 

environments.40, 41 Many p-type oxide semiconductor materials have been shown to have 

thermoelectric performance on par with current commercial materials. Some of these 

polycrystalline materials include layered cobaltites such as Ca3Co4O9
42-47 with a high zT 

of 0.6145 and NaxCoO2
48-51 with a high zT of 0.92.51 Contrarily, many n-type oxides have 

yet to exhibit such performance. The state-of-the-art n-type oxide thermoelectrics are 

SrTiO3
52-57 with a maximum zT of 0.3757 and ZnO alloy ceramics. Attempts to increase 

the efficiency of ZnO-based thermoelectrics using homologous compounds of ZnO-

In2O3 resulted in small efficiency increases.58-61 Doping62-65 and co-doping66-69 of ZnO 

with aluminum has shown to give the highest n-type zT of 0.65 in Zn1-x-yAlxGayO 

alloys.69 The samples with the high zTs were bulk materials with very high thermal 

conductivities. Consequently, the scope of this chapter is to combine the superior 

thermoelectric properties of the dually-alloyed samples with nanowire morphology to 

further increase the zT of the alloy. Ideally, this can be done by retaining the electrical 

conductivity of the nanobulk material via single-crystalline nanowire conduction 
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pathways while further reducing the thermal conductivity of the sample by scattering 

phonons at the nanowire interfaces. 

 

Results 

 This section includes the physical properties characterization along with the 

electrical and thermal transport properties of the ZnO alloy nanowire-bulk pellets. 

 

Physical Properties 

 XRD analysis (Figure 31) indicates that the formation of both aluminum and 

gallium spinels occur when attempts to dually-doped ZnO with them are performed. The 

analysis indicated no presence of unreacted gallium and aluminum oxide phases in the 

samples, and that alumina and the gallium oxide reacted with ZnO. Subsequently, some 

of the aluminum and gallium supplied precipitated as spinel from the alloy with 

compositions of (ZnO)x(Al2O3)y and (ZnO)x(Ga2O3)y, respectively, at all the 

concentrations studied. These solubility limits are less than the independent solubility 

limit of both aluminum and gallium in zinc oxide,191 and contradicts a previous claim 

that dual doping can increase the solubility limit of Group-III metals in zinc oxide.69 It is 

more likely in the previous report that peak broadening due to lattice distortions by Ga 

doping192 were responsible for engulfing the precipitant peaks. It has also been shown 

that as the temperature increases, spinel formation will be much faster due to faster 

diffusion kinetics.193 Despite the relatively low temperature of 1200 °C used during 

pressing, the local temperature at the nanowire grain boundaries will be very high when 
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using SPS due to their high resistivity and consequential Joule heating.194 Therefore, 

more spinel compound will form than would be expected at 1200 °C in 5 minutes. 

Representative, scanning electron micrographs of the nanowires before pressing (Figure 

32a) and the pellet after pressing (Figure 32b) indicate that the pellets are phase pure up 

to the maximum resolution of the back-scattered electron detector. Furthermore, HR-

TEM images of the nanowires before pressing (Figure 32c) indicate that they are single 

crystalline and grow in the [001] direction. Destructive analysis on the pellets was 

performed to determine if the same single-crystalline nanowire morphology still exists in 

the pellet. Although the nanowires were broken into pieces, anisotropic crystalline pieces 

of ZnO were still recovered in HR-TEM (Figure 32d).  
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Figure 31. XRD spectrograph of the dually-doped zinc oxide nanowire pellets of various 
compositions. As expected, the primary phase found was ZnO. The samples containing 
gallium indicated the formation of ZnGa2O4 (*) spinel and (ZnO)13(Ga2O3)2 (•) in 
increasing quantities as more gallium was added. Additionally smaller amounts ZnAl2O4 
(°) spinel and (ZnO)3(Al2O3) (†) are present.  
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Figure 32. (a) A scanning electron micrograph of the as-synthesized ZnO nanowires 
employed in this study. (b) A back-scatter SEM image of the nanowire pellet after 
densification in the SPS indicating phase purity on the macroscale. (c) HR-TEM of an 
individual ZnO nanowire showing that it is single crystalline and grew along the [001] 
direction. (d) HR-TEM of a piece of a ZnO nanowire obtained by crushing the nanowire 
pellet. This analysis indicated that single-crystalline nanowire-shaped anisotropic grains 
are still present within pellet after compaction. 
 

 Further inspection of the grains in the TEM led to the discovery of precipitates in 

the homologous series192 ZnmGa2Om+3 (Figure 33). These precipitates were on the order 

of 10-20 nm in size depending on the sample concentrations of Al and Ga and nucleated 

on the nanowire surfaces in an epitaxic manner. As the concentrations of Al and Ga 

increase in the samples, more nuclei could form during sintering resulting from inverse 
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proportionality between Group-III element diffusion lengths and concentration. 

Therefore, the precipitate nuclei could grow much faster in higher concentration samples 

resulting in larger precipitates. Analysis of the precipitates in HR-TEM (Figure 33a) 

viewing down the ZnO [110] and (Ga2O3)2(ZnO)13 [100] result in 2 ZnO planes per 1 

precipitate plane with a lattice mismatch of 1.25% as calculated from Equation 1. 

 

%∆ =  
𝟐[𝐙𝐧𝐎]𝟏𝟏𝟎 − [(𝐆𝐚𝟐𝐎𝟑)𝟐(𝐙𝐧𝐎)𝟏𝟑]𝟎𝟏𝟎

𝟐[𝐙𝐧𝐎]𝟏𝟏𝟎
× 𝟏𝟎𝟎 

 

Simulated electron diffraction using Fast Fourier Transform (FFT) of the corner of the 

nanowire (Figure 33b) shows the epitaxic alignment of the 2 phases relative to the 

wurtzite ZnO background pattern (Figure 33c). The small size of the precipitate ternary 

phase (<10 nm) can be attributed to the short pressing times preventing the samples to 

reach thermodynamic equilibrium.  
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Figure 33. (a)HRTEM image of a broken Zn96Al2Ga2O100 pellet indicating that the 
grains retained the single crystal morphology. Fast Fourier Transform (FFT) electron 
diffraction images of (b) the phase (Ga2O3)2(ZnO)13 precipitating out in crystalline 
format at the edge of a nanowire and (b) background single-crystalline ZnO beneath the 
precipitant phase. 
 

 

Electronic Transport 

 Both aluminum and gallium have previously been utilized as electron donors in 

ZnO. n-type conductivity is achieved by substituting Al or Ga with 3 valence electrons 

for Zn with 2 valence electrons in the wurtzite lattice. For every Zn atom replaced with a 

Group-III element, 1 electron is donated into the conduction band as can be seen in the 

charge balance (Equation 2).  

𝐙𝐧𝟐+ = 𝐈𝐈𝐈𝟑+ 𝐞− 

The known self-compensation of n-type carriers by zinc vacancies does not occur before 

the solubility limits of Al or Ga resulting in the maximum solubility of the dopants to 

solely determine the carrier concentration of the samples.195 The temperature 

dependence of electron mobility (µH) calculated from the resistivity (ρ) and Hall 
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coefficient (RH) can be seen in Figure 34a. For materials where mobility is limited by 

phonon scattering, μH ∝ T−x, where x is 1 for degenerate semiconductors and 1.5 for 

non-degenerate semicondcutors. A power law fit to the curves yields a trend with x 

slightly larger than 1, consistent with a degenerate semiconductor. This deviation from 

theory can be attributed to other scattering mechanisms playing a minor role in the 

electron transport. Carrier concentration (nH) was also calculated from the Hall 

coefficient and plotted versus temperature (Figure 34b). The resulting plots indicate that 

carrier concentration is independent of temperature and constant throughout the entire 

measurement, further confirming the degenerate semiconductor behavior. The calculated 

carrier concentrations at the pressing conditions are consistent with the phase diagram in 

this region which indicates that the equilibrium solubility of Al in ZnO is 0.2% at 1250 

°C and 0.5% at 1400 °C.196 Therefore, most of the dopant added to the ZnO is inactive 

and must have precipitated out from the alloy as spinel phases as can be seen in the XRD 

(Figure 31). Additionally, all carrier concentrations were less than the maximum values 

reported of 8 × 1020 cm-3 and 3.7 × 1020 cm-3 for aluminum197 and gallium198 doped 

ZnO, respectively. 
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Figure 34. Variation of the (a) carrier mobility and (b) carrier concentration with 
temperature for dually-doped zinc oxide nanowire pellets. The decay in the mobility is 
proportional to T-1, consistent with a degenerate semiconductor, in which acoustic 
phonon scattering limits mobility. The carrier concentration is independent of 
temperature for each sample, characteristic of degeneracy in the samples. 
 

 

 Electrical resistivity measurements were performed simultaneously with the Hall 

coefficient measurements and the resistivity increases linearly with an increase in 

temperature (Figure 35a). The Seebeck coefficient was also measured up to 1000 °C and 

with all samples has approximately linear temperature dependence (Figure 35b). All 

samples have a Seebeck coefficient that is inversely proportional to their carrier 

concentration and follow normal band-behavior except Zn97Al2GaO100. This seems to 

violate the classical band transport theory which predicts an inverse proportionality 

between carrier concentration and Seebeck coefficient for a given material. Such a 

behavior is expected due to resonant electron scattering.199-201 It has previously been 

reported that as the concentration of aluminum increases, the impurity band moves from 

a donor state with an ionization energy of 120 meV202 to well within the conduction 

band.203 Additionally the gallium impurity band has been predicted to always be inside 
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the conduction band.204 These impurity energy levels in the conduction band alone could 

potentially resonantly scatter the host semiconductors electrons, but would have weak 

effects above ~300K due to acoustic phonon scattering dominating transport. The 

Seebeck coefficient of the 2% Al, 1% Ga sample is enhanced independent of 

temperature, and makes the temperature-dependent scattering of electrons by the 

impurity band improbable. This mechanism also has never been seen before for ZnO and 

could be further eliminated by performing low temperature mobility measurements. 

Contrarily, another mechanism that could cause resonant scattering and is more 

dependent on the band-structure and less on temperature involves the hybridization of 

the host band-structure with that of the impurity band. In this case, the impurity bands 

have plane-wave-like wave functions that correspond with those of the host structure and 

allow the impurity electrons to enhance the power factor.201 The degree of hybridization 

between the bands must be balanced to achieve maximum resonance. If the degree of 

overlap is too much, then the impurity band will behave like the host, and no power 

factor enhancement will be observed. On the other hand, too little overlap will result in 

high-Seebeck localized states that do not contribute to the overall performance of the 

material.201 When this theory is applied to the dually doped ZnO system, the Group-III 

valence s-bands could hybridize with the ZnO conduction band resulting in an increased 

effective electron mass. This resonant phenomenon has not previously been observed in 

individually Al or Ga doped ZnO systems, but unexplainable Seebeck enhancements 

have been seen previously in other dually-doped samples69 in addition to this study. 

Resonance donor states have also been observed in many other transition metal-doped 
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II-VI compounds.205 If the conduction band is hybridized a changed effective mass 

would be observed; these values can be approximated using the single parabolic band 

model.206, 207 Effective mass calculations result in the lowest and highest nominally 

doped samples having an effective mass of 0.29me and 0.26me, respectively, similar to 

that of pure ZnO (0.29me).208 Contrarily, the samples with the two middle amounts of 

dopant added had effective masses of 0.41me and 0.90me. Table 1 summarizes the 

properties of the samples at 1073K for direct comparison. The large increase in the 

effective mass results in a much larger Seebeck coefficient, and consequently, larger 

power factor of the optimally performing sample (Zn97Al2GaO100). Therefore the 

hybridization of the impurity states with the conduction band is a very probable scenario 

to explain the enhanced thermopower, but further work both theoretically and 

experimentally must be performed to prove that these dually-doped samples can actually 

catalyze the excess DOS.  
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Figure 35. Plots indicating the variation of (a) electrical resistivity and (b) Seebeck 
coefficient of the dually-doped ZnO samples with temperature. All samples, except 
Zn97Al2GaO100, exhibited an inverse proportionality between the Seebeck coefficient and 
electrical resistivity, characteristic of classical degenerate semiconductors. The lone 
discrepancy is attributed to resonant-level scattering of electrons in optimally-doped 
samples of Zn97Al2GaO100. 
 
 
 
 
 
 
 
 

 
Table 1. Properties of each Zn100-x-yAlxGayO100 sample at 1073K including the carrier 
concentration (n), thermal conductivity (κ), electrical resistivity (ρ), Seebeck coefficient 
(S), and effective electron mass (m*). 
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Thermal Transport 

 The thermal conductivity of the pellets was calculated from the values of thermal 

diffusivity (α), density (ρ), and specific heat (Cp) using the following relationship:  𝜅 =

𝛼𝜌𝐶𝑝. It was observed that as the amount of Group-III dopant increased in the sample, 

the thermal conductivity was lowered (Figure 36a). A maximum 4-fold decrease in 

thermal conductivity at 300 K relative to single-crystalline ZnO is observed in these 

dually doped samples.156 In addition, it was observed that nanostructuring as expected 

led to a decrease in the thermal conductivity. Use of nanostructures in the fabrication of 

the pellets led to at least 25% reduction in the thermal conductivity relative to their bulk 

counterparts at 1073 K.69 Overall, alloy scattering, coupled with boundary scattering at 

the nanowire interfaces within the consolidated sample, can be attributed to these large 

decreases in thermal conductivity. The precipitated spinel phases also provide more 

interfaces and increase the phonon scattering within the samples as can be seen in the 

XRD (Figure 31) and TEM (Figure 33) analyses, thereby contributing to a reduction in 

the thermal conductivity of the samples. From these results, it can be concluded that this 

strategy for making ZnO alloy nanostructured thermoelectrics results in the lowest 

thermal conductivity reported to date for ZnO-based systems. The electronic thermal 

conductivity, κe, was calculated using the Wiedemann-Franz law, 𝜅𝑒 = 𝐿𝑇/𝜌, where L is 

the Lorenz number, T is the absolute temperature, and ρ is the electrical resistivity. For 

degenerate semiconductors, the Lorenz number varies as a function of the Fermi level 

resulting in values often orders of magnitude less than the free electron value of 2.44x10-

8 WΩK-2 for metals.207 Therefore, it is necessary to calculate these values for each 
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composition due to varying chemical potentials. Assuming Umklapp scattering as the 

dominant process for this material system, the single parabolic band model can be used 

to calculate the Lorenz numbers as shown previously.1, 207, 209 This results in values of L 

ranging from 1.66x10-8 to 2.08x10-8 WΩK-2, much less than that for metals. The lattice 

thermal conductivity, κL, can be calculated from 𝜅 = 𝜅𝑒 + 𝜅𝐿 and is plotted in Figure 

36b as a function of temperature. U-processes are confirmed as the dominant phonon 

scattering mechanism as the lattice thermal conductivities are proportional to T-1 for all 

carrier concentrations. The slight deviations from this value can be attributed to alloy 

and interfacial scattering, specifically at lower temperatures where U-processes are not 

as dominant. 

 

 

Figure 36. (a) A plot indicating the variation of the thermal conductivity of the dually 
doped ZnO nanowires pellets with temperature. The data indicated a reduction in the 
thermal conductivity with an increase in the dopant concentration. This is attributed to 
the creation of more phonon scattering centers with increasing dopant concentration. (b) 
A plot indicating the variation of the lattice thermal conductivity, kL, with temperature. 
The lattice thermal conductivities of all the samples decayed with temperature 
proportional to T-1, as expected in a degenerate semiconductor where U-processes 
dominate phonon scattering. 
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Total Efficiency 

 Plots indicating the variation of the zT values with temperature are shown in 

Figure 37. The zT of all samples increased with increasing temperature, as expected. The 

largest zT value measured was 0.60 at 1273 K for the sample with the composition with 

the largest effective mass, Zn97Al2GaO100. This value is consistent with that previously 

reported,69 and is the highest value experimentally reported to-date for ZnO alloys. 

Unfortunately, the previous report did not measure high temperature thermal 

conductivity or publish carrier concentration data to determine the differences in the 

amount of dopant added relative to the amount actually incorporated into the lattice. Due 

to the variations in pressing conditions, different amounts of the dopants could be 

incorporated relative to the reported work resulting in a slightly different composition 

with maximum zT. Nevertheless, the apparent anomalous result can be explained 

through band resonance that exists in both studies with similar amounts of dopant added 

to give the maximum zT of ~0.6. Overall, the results imply that a reduction in the lattice 

thermal conductivity by nanostructuring and alloying has a large effect on the overall 

thermoelectric performance. This in conjunction with resonant scattering enabled this 

high zT in the ZnO alloys. 
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Figure 37. Plot indicating the zT variation with temperature of the dually-doped ZnO 
samples. A peak zT of 0.6 at 1273 K was achieved at an optimal doping composition of 
Zn97Al2GaO100.  
 

 

Conclusions 

 ZnO nanowire dually-doped alloys with aluminum and gallium were synthesized 

using spark plasma sintering. These nanobulk alloys were characterized for their 

thermoelectric properties, and a peak zT of 0.6 was observed at temperature of 1273 K in 

one of the compositions employed in this study, Zn97Al2GaO100. This zT value is the 

highest experimentally reported to-date for any n-type oxide. The enhanced zT value of 

the Zn97Al2GaO100 composition is attributed to resonance scattering, coupled with the 

effects of nanostructuring. Although oxide materials are still behind the state-of-the-art 

thermoelectric materials in terms of thermoelectric performance, they can be synthesized 

into modules at a much lower cost per Watt. Consequently, despite their lower 
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performance, these ZnO alloy thermoelectrics can be cost-competitive in the terrestrial 

market for waste-heat recovery. 
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CHAPTER IX  

SUMMARY AND FUTURE WORK 

 

Summary 

Bulk assemblies of nanowires composed exclusively of earth abundant 

semiconductors with controlled diameters and surface chemistries were shown to greatly 

increase the thermoelectric performance of materials, especially when compared to their 

bulk counterparts. The performance increases shown for each of the material systems 

(Zn3P2 and ZnO) make them viable for future use in energy conversion devices, 

specifically thermoelectric modules (Table 2). In short, the prediction by Hicks and 

Dresselhaus that use of nanomorphology, specifically nanowires, results in an increase in 

the thermoelectric figure of merit was experimentally shown to be true. It was also 

realized that this performance increase is due to the preservation of nanowire 

morphology in these large-scale nanowire assemblies. It was postulated and 

experimentally verified that the mechanical flexible nature of the nanowires afforded 

their assembly into highly dense pellets, while also allowing for the retention of their 

morphologies within the pellets. Additionally, the increased reactivity of the nanowire 

surfaces, relative to the bulk, was combated by using an in situ vapor-phase 

functionalization technique to passivate the surfaces of the nanowires. This technique 

also allowed for tuning the interfacial chemistry of the nanowires within the pellets after 

their consolidation into bulk pellets. Such tuning of the interfacial chemistry further 

allowed for tuning the thermal and electrical transport through the nanowire pellets. By 
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completely maintaining the nanowire morphology in the nanobulk samples, higher 

thermoelectric performance was able to be realized. It was also confirmed that the gains 

observed in single nanowire devices also translate to the bulk scale.  

The thermoelectric performance of the Zn3P2 nanowire system was shown to 

surpass that of previous published in bulk samples. Despite its lower zT-value, higher 

performance is possible with the selection of the ideal dopant to optimally tune its carrier 

concentration. Additionally, the large-scale nanowire synthesis procedure described is 

scalable to the industrial level, resulting in a potentially commercial process. The 

thermoelectric performance for the dually-doped ZnO nanowire system was compared 

against state-of-the-art thermoelectric materials and found to be comparable to them in 

efficiency. When factoring in cost specific power and weight specific power, it was 

shown that the ZnO alloy nanowire system was superior. The high zT of 0.65 at 1273 K 

is the highest ever achieved for an n-type oxide, and now can be a viable option to go 

along with the current p-type oxide materials to make a complete thermoelectric couple.  

 

Table 2. Thermoelectric performance (zT) summary of materials in this dissertation 
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 Future Work 

Based on the conclusion of this work, it is believed that the future work should 

focus on improving the thermoelectric performance of the Zn3P2 nanowires further by 

optimally doping them to the degenerate state. Secondly, use of organic molecule 

functionalized, the optimally-doped ZnO nanowires for the fabrication of 

thermoelectrics should be performed to further reduce the thermal conductivity of the 

nanobulk pellet and increase the zT. Thirdly, the quantitative effect of nanowire 

diameter on the thermoelectric performance should be deduced. Deducing this effect for 

a given material system will be beneficial for future nanowire thermoelectric research. 

Finally, the application of these nanowire synthesis and assembly techniques to other 

material systems that are known to be good thermoelectric materials, such as CoSb3
210 

and Mg2Si1 could result in a large increase in their thermoelectric performance. If the 

trends of the materials utilized in this dissertation hold, it should be possible to see zTs 

on the order of 1.5 out of more well-known thermoelectric earth abundant 

semiconductors in the near future. 
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