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ABSTRACT 

 

 Cholecystokinin (CCK) is an important neuroendocrine peptide in the 

gastrointestinal tract, being the major stimulant for exocrine pancreatic secretion and gall 

bladder contraction. As such, cholecystokinin release may be altered in many 

gastrointestinal diseases. Assays for the measurement of cholecystokinin in humans have 

previously been developed and validated. However, to our knowledge, no assay for the 

measurement of CCK in dogs has been analytically validated.  Thus, the objectives of 

this study were to adapt a radioimmunoassay used for the measurement of plasma CCK 

in humans for use in dogs, perform the assay without human reagents, and to analytically 

validate this modified immunoassay for use with canine serum. 

 A human cholecystokinin radioimmunoassay protocol and antiserum were 

generously provided to us by the laboratory of Jens Rehfeld, Copenhagen, Denmark. 

Assay runs were set up to replace all human reagents that are part of the original 

protocol, followed by analytical validation of the adapted assay using canine serum 

samples by determination of sensitivity, dilutional parallelism, spiking recovery, intra-

assay variability, and inter-assay variability. A reference interval for cholecystokinin in 

canine serum was established using 90 serum samples from clinically healthy, fasted 

dogs (12 hrs), using the bottom 97.5th percentile. 

 The sensitivity of the assay was calculated to be 0.5 pmol/L. The lower limit of 

the working range of the assay was taken as the sensitivity at 0.5 pmol/L. For dilutional 

parallelism, observed-to-expected ratios ranged from 101.9 % to 253.6 % for 3 different 
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canine serum samples at dilutions of 1 in 2, 1 in 4, and, 1 in 8. For spiking recovery, 

observed to expected ratios ranged from 96.1 % to 68.2 % for 3 different canine serum 

samples at 4 different spiking concentrations. Coefficients of variation for intra-assay 

variability for 4 pooled serum samples were 3.8, 13.5, 7.9, and 3.9 %. Coefficients of 

variation for inter-assay variability of 4 pooled serum samples were 12.3, 11.6, 7.4, and 

6.4 %. The reference interval for serum CCK concentration was established as 0.0 to 2.8 

pmol/L. 

 All objectives outlined above were successfully met, analytically validating a 

radioimmunoassay for the measurement of cholecystokinin in canine serum. The 

radioimmunoassay for CCK described here is sufficiently accurate, precise, and 

reproducible, but has limited linearity in the lower end of the working range.  
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CHAPTER I  

INTRODUCTION 

 

CHOLECYSTOKININ 

 In 1928, Ivy and Oldberg observed that canine intestinal extracts stimulated 

gallbladder contractions when infused into other dogs, and proposed the name 

cholecystokinin (CCK) for the causative agent.1,2 In 1943, Harper and Raper found that 

similar intestinal extracts could also stimulate pancreatic enzyme secretion in cats, and 

proposed the name pancreozymin for the causative substance.1 In 1971, Mutt and Jorpes 

purified the active substance in both of the intestinal extracts and determined their amino 

acid sequences. It was discovered then that CCK and pancreozymin were the same 

hormone, and the hormone is now exclusively referred to as cholecystokinin, regardless 

of the stimulatory function.1,3 As such, CCK was among the first gastrointestinal 

hormones to be discovered.4 

 Although CCK is known to play a major role in the central nervous system 

(CNS), its vastly complex and diffuse effects in the CNS are unrelated to its function in 

the gastrointestinal tract.2,3 The effects of CCK outside the gastrointestinal system are 

beyond the scope of this thesis.  

In all species studied thus far, there is a single gene that encodes CCK.1 In 

humans, the CCK gene is located on chromosome 3 in the 3q12-3pter region.1,5 Mature 

CCK mRNA is about 750 bases long, exists in the brain and intestine in almost 

equivalent amounts, and it is most abundant in the cerebral cortex and the duodenum.1 
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Intestinal expression of CCK mRNA is modified by diet with levels declining in fasting 

animals and increasing after feeding.1 CCK is synthesized from large peptide precursors 

and posttranslationally modified through sulfation of the seventh tyrosine residue of the 

COOH-terminus and amidation of the COOH-terminus.3 Somatostatin has been shown 

to inhibit CCK gene expression, and exogenous bombesin can stimulate CCK secretion 

without affecting CCK gene expression.1   

CCK exists in the body in many different forms; this is due to the peptide having 

a varying number of amino acid residues. CCK isoforms described include CCK 58, 

CCK 39, CCK 33, CCK 22, CCK 18, CCK 12, CCK8, CCK 7, CCK 5, and CCK 4.1,6 

The multiple forms of CCK are the result of differential processing by proteolytic 

enzymes of the main 115 amino acid precursor, preprocholecystokinin, which contains a 

single copy of cholecystokinin.6 All of these N-terminally extended forms of CCK have 

in common an α-amidated carboxy-terminal end and require a sulfated tyrosine residue 

for full physiological activity.1,6  

Sulfation is unusual for hormones, but in the case of CCK it is critical for 

biological potency.1 In the pancreas and gallbladder, the unsulfated form of CCK is 

about 1,000-fold less active than the sulfated form.1 CCK 8 is the major form of CCK 

found in the brain, and is the most biologically potent form of CCK that has been 

isolated.1,5 In the intestine, brain, and blood of many species, the larger forms of CCK 

(CCK 33 and 58) are predominant, but are still less potent on a molar basis than CCK 8, 

and are less reactive with CCK antibodies.1,5 It is thought that intracellular processing of 
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CCK occurs to produce the smaller, more biologically potent forms of CCK that are 

secreted into the blood.1 

Gastrin, which has a similar structure to CCK, shares 5 carboxyl-terminal amino 

acids with CCK (Gly-Trp-Asp-Met-Phe-NH2).1,5 As such, gastrin and CCK can interact 

with the receptors of each other and illicit vague responses.1 Moreover, the close 

molecular similarity to gastrin has hampered earlier attempts to measure CCK 

concentrations by use of immunoassays, as almost all antiserum raised against CCK also 

cross-reacted with gastrin.1 In order to bind specifically to CCK receptors, the CCK 

peptide must be extended to 7 amino acids.1 Another problem that has hampered 

accurate quantification of CCK in serum is the fact that the average blood concentration 

of circulating gastrin is 10-100 times greater than that of CCK.1 

CCK is able to exert its biological effects by binding to specific receptors on 

target cells. There are two forms of CCK receptors, the CCK-A receptor and the CCK-B 

receptor. In dogs, CCK-A receptors are found in the stomach and exocrine pancreas, and 

bind sulfated CCK approximately 1,000-fold more efficiently than unsulfated CCK or 

gastrin.1,3 CCK-B receptors in dogs are found in the stomach, exocrine pancreas, 

endocrine pancreas, and brain, and bind both CCK and gastrin with equal affinity.1 

Recent cloning and expression of CCK receptor cDNAs has determined that the gastrin 

receptor in the brain and stomach and are identical to the CCK-B receptor in the brain.1 

Structurally, CCK receptors are composed of a seven transmembrane protein typical of a 

G-protein coupled receptor, and consist of 444 amino acids.1 CCK binds to both 

receptors with three different affinities: very low, low, and high.3 The dissociation 
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constant (Kd) values for the binding of CCK to the CCK-A receptor are: 10 µM (very 

low), 50-200 nM (low), and 50-300 pM (high).3 The Kd values for the binding of CCK to 

the CCK-B receptor are: 10 µM (very low), 2-5 nM (low), and 100-300 pM (high).3  

CCK receptors are activated through several pathways. Both CCK receptors 

activate phospholipase C (PLC), which causes the mobilization of intracellular calcium 

and the activation of protein kinase C (PKC), the mitogen-activated kinase (MAPK) 

cascade, and phosphatidylinositol 3 kinase (PI3K) pathway, causing the CCK-A receptor 

to increase pancreatic secretion and the CCK-B receptor to activate cell proliferation.3  

The CCK-A receptor also activates adenyl cyclase (AC), causing increased cyclic AMP 

concentration (cAMP), and the nitric oxide (NO)/cGMP pathway, causing cell 

proliferation and pancreatic secretion.3 The CCK-B receptor is also responsible for 

mediating growth effects via activation of the JAK2/STAT3 pathway.3  

CCK in the gastrointestinal tract is produced by endocrine cells of the intestinal 

mucosa.1 A cell density gradient exists in the intestine, resulting in a greater number of 

CCK-producing cells in the proximal small intestine, and less CCK-producing cells in 

the distal small intestine.1 Secretory granules containing CCK are concentrated around 

the basolateral surface of the cell.1 Due to this orientation, food and other factors are 

allowed to interact with the apical surface of the cell, with the resulting signal cascade 

eventually leading to the release of CCK from the surface of the cell into the 

bloodstream.1 Outside the gastrointestinal tract, CCK is synthesized in the pituitary 

gland and adrenal medulla of the central nervous system.1 Although distributed in 

neurons throughout the brain, CCK is found in its highest concentrations in the cerebral 



 

 

 5 

cortex; the only neuropeptide that is more predominant in the brain than CCK is 

neuropeptide Y (NPY).1,5 

The exact mechanisms by which food causes CCK release in the gastrointestinal 

tract is still largely unknown, but food directly interacting with the exposed apical 

surface of the I cells (CCK cell) in the intestine as well as endogenously produced 

releasing factors secreted into the intestine are both thought to play a role.1 The exact 

mechanisms regulating the production and secretion of CCK in the gastrointestinal 

system are also largely unknown, although evidence suggests that negative feedback is 

of great importance in the regulation of CCK secretion.1  

 The biological effect of CCK in the gastrointestinal tract, after being secreted 

locally or into the bloodstream, is to cause exocrine pancreatic secretion, pyloric 

contraction, gallbladder contraction, delay gastric emptying, and regulate satiety.1,2 In 

the lower esophageal sphincter, sphincter of Oddi, and other sphincter regions, CCK 

produces relaxation as a result of its ability to stimulate nonadrenergic inhibitory 

neurons.6 In regions like the gall bladder and small intestine, CCK produces a neurally 

mediated contraction due to its ability to release the contractile neurotransmitter 

acetylcholine.6 CCK also acts on receptors in the stomach and various nerves to delay 

gastric emptying and regulate satiety.1 Overall, CCK is responsible for coordinating 

ingestion, digestion, and disposal of nutrients in the gastrointestinal system.1 
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CHOLECYSTOKININ RADIOIMMUNOASSAYS 

The technology of radioimmunoassays (RIA) was first developed by Yalow and 

Berson in the 1950s.7 The development of a RIA for the measurement of insulin earned 

Dr. Yalow a Nobel Prize in Medicine in 1977.8 This RIA for insulin allowed, for the first 

time, the accurate measurement of the concentration of peptide hormones in plasma.7 It 

was the unmatched sensitivity and specificity of the RIA that allowed hormones that 

physiologically are present in only very low concentrations in the blood to be studied. 

By the 1970s, the methodology of the RIA had spread to other medical fields, including 

pharmacology, toxicology, infectious diseases, oncology, and hematology.7  

An RIA is, in essence, a sensitive in vitro assay technique used to measure 

concentrations of antigens. An antigen can be defined as any substance that binds to an 

antibody. A hormone is an example of a frequently measured antigen. To perform an 

RIA, a known quantity of the antigen that is to be measured is linked to a radioactive 

molecule, for instance, by iodination with I125. A known amount of the radiolabeled 

antigen is then mixed with a known concentration of antibody directed against said 

antigen. A plasma or serum sample containing an unknown amount of the same antigen 

is then added to the mixture. This results in competitive antibody binding between the 

radiolabeled antigen and the sample antigen, since the antigens compete for the same 

antibody binding sites. This mixture is allowed to incubate for varying amounts of time 

and at various temperatures. Then a separation solution is added to separate bound 

antigen-antibody complexes, and unbound antigen and antibody and the radioactivity of 

the antigen-antibody complexes is measured using a gammacounter.  
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In general, the greater the concentration of sample antigen, the less radiolabeled 

antigen is bound, and thus a lower count of radioactivity is measured. If the sample 

antigen concentration is low, the opposite is true; a greater amount of radioactivity will 

be measured. Using a set of known antigen standards, a binding curve is generated and 

the concentration of the unknown antigen is estimated based on its binding in relation to 

this curve. RIAs have many advantages, such as their generally low cost, consistency of 

results, and simplicity. 

Early attempts at developing an RIA for the measurement of CCK were met with 

great difficulty. This was due to a variety of factors: conventional isotope labeling 

techniques involved oxidation, which had deleterious effects on the structure and thus 

biological function of CCK, there was a shortage of peptides for immunization, and the 

COOH-terminal sequence of CCK is shared with gastrin, and is strongly immunogenic, 

making antisera raised against CCK non-specific.9,10 Typical isotopic labeling 

techniques led to oxidation of the two methionyl residues on CCK 8; this was overcome 

using nonoxidative labeling as previously mentioned.9 Currently, peptides are no longer 

in short supply; sulfated CCK 8 and iodinated sulfated CCK 8 are commercially 

available for use as standard and tracer, respectively. 

Radioimmunoassays were first described in the 1950s, but it was not until 1977 

that the first reliable CCK RIA was developed by Jens Rehfeld, Copenhagen, Denmark.9 

This assay measured porcine CCK 33, sulfated CCK 8, and a portion of CCK 39. The 

hallmark of this assay was the use of a nonoxidative radiolabeling technique to create a 

suitable I125 tracer, which was found to have the same immunoreactivity as native CCK 
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33.9 This non-oxidative radiolabeling technique involves conjugation of an I125 ester to 

two of the free NH2 groups on the lysyl side chains of CCK.9 An antiserum was raised 

against CCK 33 in guinea pigs and rabbits through injection of purified porcine CCK 33. 

The result was the development of the first sensitive and reliable RIA for CCK.9  

In 1983, Jansen and Lamers described one of the first assays with adequate 

specificity and sensitivity to accurately measure CCK in human plasma.11 Similar to the 

Rehfeld assay; they used porcine CCK 33 as a standard, and also as a stimulus for 

antibody production in both guinea pigs and rabbits. A major flaw of this assay was that 

their antibody did not reliably bind to CCK peptides with less than 14 amino acid 

residues.11 This limitation is of great significance as we know today that CCK 8 has a 

major biological role in the gastrointestinal tract. However, this assay was highly 

sensitive for CCK, showed no cross-reactivity with gastrin, and was shown to be capable 

of accurately measuring CCK in human tissue and plasma.11 This report was also among 

the first to describe that the infusion of exogenous CCK results in pancreatic enzyme 

secretion and gallbladder contraction in humans.11  

Around the same time as the previous assays, other assays for CCK were under 

development.12 Like the previous assays they also measured CCK 33, both in humans 

and also dogs. However, similar to the Jansen and Lamers assay, these RIAs did not 

reliably measure CCK 8.12  

In 1988, yet another CCK RIA was described by Ohgo et al.; this assay was the 

first to use an antiserum produced from sulfated CCK 8 injected into rabbits.13 This 

assay was used to measure CCK in human plasma before and after a meal. It was found 
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that CCK increased as much as 4 fold following ingestion of a test meal.13 They also 

showed that their antibody bound CCK 39, CCK 33, and CCK 8 with equimolar 

potency.13  

In 1998, the early CCK RIAs were improved by the production of a highly 

specific CCK antiserum, antibody 92128. This antibody proved to bind sulfated CCK 8, 

CCK 22, CCK 33, and CCK 58 with equimolar potency, and showed no cross-reactivity 

with gastrin, a problem that had plagued all previous CCK RIA antisera to some 

degree.10 Binding with equimolar potency allows the measurement of the major 

biologically active forms of CCK simultaneously, instead of individually, allowing for a 

more accurate measurement and estimation of total plasma CCK concentration. Thus, a 

single assay for the accurate measurement of cholecystokinin in plasma had been 

described using a highly specific antibody.10 This same antibody was generously 

supplied to the Gastrointestinal Laboratory at Texas A&M University by Jens Rehfeld, 

Copenhagen, Denmark, for use in the development of a CCK radioimmunoassay for 

dogs.  

As of 2013, there are several commercial RIA and ELISA kits available for the 

measurement of CCK. However, to our knowledge, none of these assays have been 

analytically validated for use with canine serum. Thus, the objectives of this study were 

to modify the RIA for measurement of serum CCK in humans described by Rehfeld for 

use in dogs without using human reagents, and to analytically validate this modified 

immunoassay for use with canine serum.10 This work will allow future studies on the 
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role and biological function of CCK in the dog, and in dogs with suspected alterations in 

CCK secretion.  

 

CLINICAL APPLICATION 

To date, there are no assays that have been analytically validated for use with 

canine serum. Being able to accurately measure CCK in dog serum is important to 

determine alterations in CCK secretion in dogs with gastrointestinal disease. In humans, 

alterations in CCK secretion have been described in patients with celiac disease, chronic 

pancreatitis, hepatic cirrhosis, Nelson’s disease, and Cushing’s disease11,14,15,16,17,18 

Increased plasma CCK concentrations in patients with chronic pancreatitis have been 

reported in the literature.16 Increased plasma CCK concentrations in patients with  

hepatic cirrhosis have also been reported in the literature.17 Large amounts of CCK have 

been found in pituitary adenomas of patients with Nelson´s syndrome and some patients 

with Cushing´s disease.18 

 

OBJECTIVE 

While there is a wealth of information on CCK and alterations of CCK secretion 

in humans, there is a distinct lack of information on similar abnormalities in dogs. This 

is likely due to the complexity of the commonly used RIAs, their antiserum, and their 

inclusion of human reagents, which require special permits, safety precautions, and 

clearance by the governing bodies of the laboratory. In order to measure CCK in dogs, 

an analytically validated assay for this species and sample type (serum, plasma, whole 
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blood) to be used should exist before reliable and reproducible measurements can be 

made. This will then allow studies to be conducted in order to determine if a clinical 

disorder might be a result of an abnormal CCK secretion. The assay proposed here 

would allow for continued research without the issues associated with using human 

reagents, or in using an assay protocol that has not been analytically validated for use 

with canine serum. 

The research plan was to establish the original protocol as described by Rehfeld 

at the Gastrointestinal Laboratory at Texas A&M University, changing steps sequentially 

in order to modify the assay to remove all human reagents.10 The human reagents to be 

removed are human plasma and 5% human serum albumin. Changes made to the 

original protocol included: the transition from plasma samples to serum samples, a 

change of incubation time from 7 days to 3 days, the use of canine plasma instead of 

human plasma, and the use of 5% newborn calf serum in place of 5% human albumin.  
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CHAPTER II 

MODIFICATION OF RADIOIMMUNOASSAY 

 

INTRODUCTION 

The first step in the process of developing a canine CCK radioimmunoassay was 

the modification of the assay for use in humans described by Jens F. Rehfeld, Dept. of 

Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark. After several 

successful runs using the original protocol, all human reagents were sequentially 

replaced with reagents of either canine or bovine origin. The resulting sets of reagents 

were tested for agreement with the original assay. The original radioimmunoassay uses 

human plasma and human albumin, both of which require special handling and disposal 

procedures, as well as special permits, which were among the main reasons these 

reagents were selected for replacement. The following sections detail the process of 

assay modification from the original protocol up until the working protocol was 

established prior to analytical validation.  

 

MATERIALS AND METHODS 

 Materials - All commonly used research materials and supplies were obtained 

from VWR Scientific, West Chester, PA. Radiolabeled I125CCK-8 was purchased from 

Perkin Elmer, Waltham, MA (NEX203010UC) in 10 µCi amounts and used until its 

expiration date. Synthetic sulfated CCK-8 used for making standards was purchased 

from Sigma-Aldrich, St. Louis, MO (C2175) and immediately reconstituted, diluted to a 
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8 nM stock solution, aliquoted, and stored at -20°C. Antibody 92128-5 was obtained by 

generous donation from Professor Jens F. Rehfeld, Dept. of Clinical Biochemistry, 

Rigshospitalet, DK-2100 Copenhagen, Denmark. Anti-CCK-8 was purchased from 

Sigma-Aldrich, St. Louis, MO (C2581). Activated charcoal used in the separation 

solution was purchased from Sigma-Aldrich, St. Louis, MO (C7606) and stored at room 

temperature until use. Thimerosal, used in Barbital Buffer I, was purchased from Sigma-

Aldrich, St. Louis, MO (T4687) and stored at room temperature until further use. 

Sodium azide, used in barbital buffer II, was purchased from Sigma-Aldrich, St. Louis, 

MO (S8032) and stored at room temperature until use. Barbital for use in the RIA 

buffers was purchased from Sigma-Aldrich, St. Louis, MO (B0375) via usage 

certification from the Large Animal Pharmacy at the Texas A&M University College of 

Veterinary Medicine. Canine serum albumin was purchased from Equitech-Bio, Inc., 

Kerrville, TX (CASA62) or purified from canine plasma using an ÄKTA Fast Protein 

Liquid Chromatography purification system with Hi-Trap Blue HP columns, all 

purchased from GE Life Sciences, Pittsburgh, PA. Canine fresh frozen plasma was 

purchased from Animal Blood Resources International, Dixon, CA, or obtained through 

use of outdated bags from the Veterinary Medical Teaching Hospital at Texas A&M 

University. Bovine serum albumin was purchased from Milipore, Billerica, MA (Cat # 

126593). Newborn calf serum was purchased from Sigma-Aldrich, St. Louis, MO 

(N4637). Human fresh frozen plasma was purchased from SeraCare Life Sciences, 

Milford, MA (23D00). Human serum albumin was purchased from CSL Behring, King 

of Prussia, PA (44206-251-05). Amicon Ultra-15 50 kDa centrifugal filters were 
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purchased from Milipore, Billerica, MA. The gamma counter used (1470 Wallac 

Wizard) was purchased from Perkin Elmer, Waltham, MA. The gel electrophoresis 

system used for SDS-PAGE was purchased from Life Technologies, Grand Island, NY. 

The gel used for estimation of purity and molecular weight was a NuPAGE Bis-Tris 

10% MiniGel purchased from Life Technologies, Grand Island, NY.   

 Original Protocol - To establish the assay protocol received from Dr. Jens 

Rehfeld, Copenhagen, Denmark, a 25% human albumin solution was combined with 

deionized water in a 1:5 ratio creating a 5% human albumin solution. Four-hundred µL 

aliquots of the 5% human albumin solution were transferred to 2 mL sample tubes. 

Eight-hundred µL of 96% (vol/vol) ethanol were pipetted into each 400 µL albumin 

aliquot. The aliquots were intermittently vortexed for 10 seconds each. After vortexing, 

all tubes were centrifuged for 15 minutes at 4,000 rpm and room temperature. The 

resulting clear supernatant was decanted from each tube into a fresh sample tube. The 

supernatants were then evaporated at room temperature in a vacuum concentrator for 5 

hours. These extracts were then reconstituted to their original 400 µL volume with either 

standards or controls. For each assay run 13 human albumin extracts were used: one 

each for the nonspecific binding tubes and the total binding tubes, one each for the 8 

standards, and one each for the 3 controls. Barbital buffers I (20 mM barbital, 0.6 mM 

thimerosal, 0.11% human albumin, pH 8.4) and II (20 mM barbital, 0.13 g/L sodium 

azide, pH 8.4) were used as buffers for the assay: both buffers were filtered through a 0.2 

µm filter and degassed. Barbital buffer I was used as an RIA buffer, and for dilutions and 

reconstitutions. Barbital buffer II was used as a separation solution for the measurement 
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of bound vs. unbound CCK concentration. After the buffers were prepared, standards 

were made using commercially available synthetic sulfated CCK-8. One mg of CCK-8 

was reconstituted in 10 mL of barbital buffer I. The resulting 8.8 µM solution was 

diluted to 8x10-10 M using barbital buffer I to make a working solution. Standards of 1, 

2.5, 5, 10, 20, 30, and 50 pM were made from the standard working solution. Four, 7.5, 

and 15 pM controls were also made from this standard working solution. Each standard 

was raised to the desired volume using barbital buffer I as the diluent. Antibodies were 

diluted using barbital buffer I from 10 µL aliquots of antibody 92128-5, which was 

originally reconstituted into 250 µL of pure water. To carry out the assay, the RIA was 

set up in duplicate fashion with two tubes for each preparation (total count, non-specific 

binding, total binding, standards, controls, and samples). On the day of the assay, 

antibody 92128-5, albumin extracts, standards, and controls were taken out of the freezer 

and thawed at room temperature. Barbital buffer I was taken out of the 4°C refrigerator 

and allowed to warm to room temperature (approximately 22°C). RIA tubes were 

arranged and labeled. RIA tracer was taken from the freezer and diluted with barbital 

buffer I to 1,000 cpm +/- 100 cpm based on gammacounter readings for 60 seconds. 

Barbital buffer I was placed in each tube in the respective amounts as described in 

Figure 1. Albumin extracts were reconstituted to 400 µL with standard and control 

solutions, and then added to each tube in an amount as described in Figure 1. Antibody 

92128-5 was diluted to the desired concentration using barbital buffer I, and then added 

to each tube in an amount as described in Figure 1. All tubes were then taken to a 

separate radiation room where 100 µL of tracer were added to each tube. All tubes were  
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Figure 1 – RIA setup. This figure shows reagent volumes required for the RIA setup as 
described in the original protocol. All tubes are set-up and assayed in duplicate fashion. 
The 0 sample is one of the extract tubes filled with buffer. 
 

  Reference: 

   TC:  1,300 µL Barbital Buffer I 

     100 µL Tracer 

 

   NSB:  1,150 µL Barbital Buffer I 

     150 µL 0 Sample 

     100 µL Tracer 

 

   TB:  1,000 µL Barbital Buffer I 

     150 µL 0 Sample 

     150 µL Antibody 

     100 µL Tracer 

 

  Standards/Controls/Samples: 

   Std/Control: 1,000 µL Barbital Buffer I 

     150 µL Standard/Control 

     150 µL Antibody 

     100 µL Tracer 

 

   Sample:  1,000 µL Barbital Buffer I 

     150 µL Sample 

     150 µL Antibody 

     100 µL Tracer 
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vortexed and allowed to incubate for 7 days at 4°C. On day 7, a separation solution was 

prepared using 80 mL barbital buffer II, 20 mL of human plasma, and 6 g of activated 

charcoal. The solution was kept on ice while being vigorously mixed with a magnetic 

stirrer for 30 minutes. After 30 minutes, 500 µL of separation solution was added to each 

tube. All tubes were vortexed and allowed to incubate at room temperature for 15 to 30 

minutes. All tubes were then centrifuged for 10 minutes at 4,000 rpm and 4°C. The 

supernatants from all tubes (except TC tubes) were transferred from the original tube to 

a new tube, tapping once. The supernatant tubes were counted in an automatic 

gammacounter for 5 minutes. Counts per minute (cpm) were measured for all tubes. The 

cpm data was entered into an Excel® spreadsheet where average, standard deviation, 

correlation of variance, and B/B0 were calculated. B/B0 was calculated using the 

formula: B/B0 = (B - NSB) / (B0 - NSB), where B is the count of the supernatant and B0 

the count of the total binding (TB). A four-parameter log-logistic (4PL) standard curve 

was generated in Prism 6® by plotting the logarithm of the concentration against B/B0. 

All unknown values were extrapolated based on the standard curve. 

After the original protocol was established, the following changes were made to 

the protocol to facilitate the measurement of CCK in canine serum: human plasma in the 

separation solution was replaced with canine fresh frozen plasma, human serum albumin 

in the albumin extracts and barbital buffer I were replaced with bovine serum albumin, 

canine albumin, or newborn calf serum, and the incubation time of the assay was 

decreased from 7 days to 3 days. Success was determined through comparison of an 
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assay run with and without the proposed changes. The materials and methods used to 

modify the assay are outlined as follows:  

 Sigma Anti-CCK-8 - After establishing the original protocol, a commercial 

antibody for CCK was purchased from Sigma Aldrich. Antibody 92128-5 that was 

received from Jens Rehfeld is only available in a limited amount. As a proactive step to 

avoid running out of the original antibodies, the commercial antibody against CCK was 

purchased and used in an attempt to replace the original antibody. The assay was carried 

out using the protocol described above, with the addition of the following steps: Sigma 

anti-CCK-8 was reconstituted and diluted to the desired concentrations for testing 

binding percentage, and run in comparison to antibody 92128-5 in the same assay runs. 

 Canine Plasma - After finding suitable antibody dilutions for antibody 92128-5 

and Sigma anti-CCK-8, the next step in modifying the original assay was to try to 

replace all human reagents with non-human reagents. The assay was carried out using 

the protocol described above, with the addition of the following steps: human plasma in 

the separation solution was replaced with canine fresh frozen plasma. Also, Sigma anti-

CCK-8 was used instead of antibody 92128-5. 

 Canine Albumin Purification - Due to an indefinite backorder of canine 

albumin, the expense of the limited quantities that were available, and the need to 

replace all human reagents with canine reagents, the decision was made to purify canine 

albumin using FPLC. Canine fresh frozen plasma was thawed at room temperature. 

After thawing, 5 mL plasma aliquots were filtered through 0.8 µm, 0.45 µm, and 0.2 µm 

syringe filters, and then frozen at -20°C for future use. A binding buffer (50 mM 
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KH2PO4, pH 7.0) and an elution buffer (50 mM KH2PO4, 1.5 M KCl, pH 7.0) were 

prepared, filtered at 0.2 µm, and degassed. A storage solution consisting of 0.1 M 

KH2PO4 and 20% ethanol was made and used to store columns, when not in use, at 4°C. 

Five mL of 0.2 µm filtered canine plasma was thawed and diluted 1:2 with binding 

buffer immediately before use. The FPLC ÄKTA Purifier was set up with three 5 mL Hi 

Trap Blue HP columns connected in series to scale up operation. Binding buffer was 

introduced to the columns at 5 mL per minute to wash out the preservative and storage 

solution. The columns were then equilibrated with 5 column volumes of binding buffer 

(75 mL) at a rate of 5 mL per minute. Ten mL of diluted and filtered canine plasma was 

injected onto the columns at a rate of 5 mL per minute. The columns were then eluted 

with 5 column volumes (75 mL) of elution buffer at a rate of 5 mL per minute and 

collected as 5 mL fractions until no more material appeared in the effluent. The elution 

buffer was washed out with storage solution and all columns were stored at 4°C until 

use. All secondary peak fractions were collected and combined. Secondary peak 

fractions were divided among 4 Amicon Ultra-15 50 kDa centrifugal filters and placed in 

swinging bucket rotors and centrifuged at 4,000 x g and 25°C for 15 minutes. The eluent 

beneath the filter was discarded and 1X PBS, pH 7.4 was added to raise the concentrated 

solution remaining in the filter to its original volume. Three more centrifugations were 

carried out in this fashion and the remaining 4 100-500 µL canine albumin concentrates 

were combined and frozen at -80°C. The combined frozen concentrate was placed in a 

lyophilizer and allowed to freeze-dry until no moisture remained. Approximate albumin 

concentrations were determined using Nanodrop, Bradford, and Ultrospec 2000. SDS-
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PAGE with a NuPAGE 10% Bis-Tris 10 well mini-gel was used with 1X MOPS and 

SeeBlue +2 and Mark 12 standards to determine the presence of canine albumin and 

estimate its approximate purity. FPLC runs and purification were continued until enough 

canine albumin was obtained to test assay compatibility. The freeze-dried canine 

albumin was reconstituted with 1X PBS, pH 7.4 before use.  

 Barbital Buffer I with Canine Albumin - The next step in modifying the 

original assay was replacing human albumin in barbital buffer I with canine albumin 

obtained from FPLC. The assay was carried out using the protocol described above, with 

the addition of the following steps: Sigma anti-CCK-8 was used in conjunction with 

antibody 92128-5, and 0.55 g of canine albumin was used instead of human albumin in a 

fresh 500 mL batch of barbital buffer I. Ten canine samples were obtained and extracted 

using the methods in the original protocol. The samples were used to compare the 

effectiveness of both antibodies, and to verify that canine albumin was a viable 

replacement for human albumin. Four-hundred µL aliquots of each sample were 

transferred into 2 mL sample tubes. Eight hundred µL of 96% (vol/vol) ethanol was then 

pipetted into each 400 µL albumin aliquot. The aliquots were then intermittently 

vortexed for 10 seconds each. After vortexing, the tubes were centrifuged for 15 minutes 

at 4,000 rpm and room temperature. The resulting clear supernatant was decanted from 

each tube into a fresh sample tube. The supernatants were evaporated at room 

temperature in a vacuum concentrator for 5 hours. Another 800 µL of 96% (vol/vol) 

ethanol was pipetted into each dried 400 µL albumin aliquot and dried for another 5 

hours. These sample extracts were then reconstituted to their original 400 µL volume 
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with barbital buffer I or stored at -20°C until use. Several assay runs were performed 

using the original protocol to compare the two antibodies and canine albumin versus 

human albumin in barbital buffer I. 

 7 Versus 3 Day Incubation - Seven day RIA incubations were becoming a 

hindrance to the project, so steps were taken to decrease the incubation time. The assay 

was carried out using the protocol described above, with the addition of the following 

steps: canine albumin was used instead of human albumin in barbital buffer I, canine 

plasma was used instead of human plasma in the separation solution, both 3 and 7 day 

incubations were used, and a 1:20,000 antibody 92128-5 dilution was used. 

 New Barbital Buffer I - The canine albumin that had been purified using FPLC 

was determined to be produced in an amount that was insufficient for continued use 

based on the time required for purification. The decision was made to replace canine 

albumin in barbital buffer I with either newborn calf serum (NCS) or bovine serum 

albumin (BSA). The assay was carried out using the protocol described above, with the 

addition of the following steps: canine albumin, BSA, and NCS were used in separate 

solutions of barbital buffer I, canine plasma was used instead of human plasma in the 

separation solution, a 3 day incubation time was used instead of a 7 day incubation time, 

and a 1:20,000 antibody 92128-5 dilution was used. The BSA barbital buffer I was 

prepared using 1.1 g/L of bovine serum albumin. A NCS barbital buffer I was prepared 

using 0.11 % newborn calf serum. 

     Albumin Extracts - The final step in converting the original assay protocol 

was replacement of human albumin in the albumin extracts. BSA extracts were made by 
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adding 1 g of bovine serum albumin in 20 mL deionized water and then taking 400 µL 

aliquots of the 5% BSA solution and adding 800 µL of 96% (vol/vol) ethanol into each 

400 µL albumin aliquot. The aliquots were then intermittently vortexed for 10 seconds 

each. After vortexing, the tubes were centrifuged for 15 minutes at 4,000 rpm and room 

temperature. The resulting clear supernatant was decanted from each tube into a fresh 

sample tube. The supernatants were evaporated at room temperature in a vacuum 

concentrator for 5 hours. These albumin extracts were then reconstituted to their original 

400 µL volume with barbital buffer I, standards, or controls, or stored at -20°C until use. 

Newborn calf serum extracts were obtained by adding 1 mL of NCS in 20 mL deionized 

water and then taking 400 µL aliquots of the 5% NCS solution and adding 800 µL of 

96% (vol/vol) ethanol into each 400 µL NCS aliquot. The aliquots were then 

intermittently vortexed for 10 seconds each. After vortexing, the tubes were centrifuged 

for 15 minutes at 4,000 rpm and room temperature. The resulting clear supernatant was 

decanted from each tube into a fresh sample tube. The supernatants were then 

evaporated at room temperature into a vacuum concentrator for 5 hours. These NCS 

extracts were then reconstituted to their original 400 µL volume with barbital buffer I, 

standards, or controls, or stored at -20°C until further use. The assay was carried out as 

described above, with the addition of the following steps: barbital buffer I was made 

with canine albumin, NCS, or BSA as three separate barbital buffers, extracts used were 

human serum albumin extracts, NCS extracts, or BSA extracts, canine plasma was used 

in the separation solution, a 3 day incubation time was used, and a 1:20,000 antibody 

92128-5 dilution was used.  
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RESULTS 

The optimal antibody dilution was determined for antibody 92128-5 using the 

original protocol (Table 1). Although the results of an antibody dilution assay run 

originally showed desired binding when using Sigma anti-CCK-8 (Table 2), antibody 

92128-5 was unsuccessfully replaced by Sigma anti-CCK-8 when the standard curve 

was generated and the samples were measured (Table 3). Human plasma in the 

separation solution was successfully replaced by canine fresh frozen plasma (Table 4). 

Canine albumin was purified by FPLC (Figs 2 and 3) and used in barbital buffer I to 

replace human serum albumin (Tables 5 and 6). Antibody 92128-5 was successfully 

used to measure canine samples with canine albumin in barbital buffer I and canine 

plasma in the separation solution (Table 6). A 3-day assay incubation time was 

determined to be equivalent to a 7-day incubation time (Table 7). Newborn calf serum 

was used to replace canine albumin in barbital buffer I (Table 8). Newborn calf serum 

was used to replace human albumin in the albumin extracts (Table 9). A typical standard 

curve is shown in Figure 4. 

 

 

 

 

 

 

 



 

 

 24 

Table 1 – Determination of optimal antibody dilution. This table shows the results of an 
assay run using antibody 92128-5 at different dilutions, barbital buffer I with human 
albumin, human albumin extracts, and human plasma in the separation solution. This 
table shows the results for determining an antibody dilution that would result in 
approximately 40% binding. Binding percent (B%) is calculated by dividing the average 
cpm (counts per minute) of the antibody dilution by the average cpm of the TC (total 
count) and multiplying by 100. (SD = standard deviation; %CV = coefficient of 
variation).   
 

 

Tube%ID% Tube%1% Tube%2% Mean% SD% %CV% B%%

%% cpm% cpm% cpm% cpm% %% %%

TC% 1029.7% 1009.9% 1019.8% 14.0% 1.4% %%

NSB% 22.1% 24.1% 23.1% 1.4% 6.1% %%

1:10,000% 591.8% 574.2% 583.0% 12.4% 2.1% 57.2%

1:15,000% 449.2% 457.7% 453.5% 6.0% 1.3% 44.5%

1:20,000% 357.6% 382.4% 370.0% 17.5% 4.7% 36.3%

1:25,000% 311.5% 311.9% 311.7% 0.3% 0.1% 30.6%

%

%

%

%

%

%

%

%

%

%

%

%
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Table 2 – Determination of optimal commercial antibody dilution. This table shows the 
results of an assay run using Sigma anti-CCK-8 at different dilutions, barbital buffer I 
with human albumin, human albumin extracts, and human plasma in the separation 
solution. This figure shows the results for determining an antibody dilution that would 
result in approximately 75% binding. Binding percent (B%) is calculated by dividing the 
average cpm (counts per minute) of the antibody dilution by the average cpm of the TC 
(total count) and multiplying by 100. (SD = standard deviation; %CV = coefficient of 
variation).  
  
 
 
 

Tube%ID% Tube%1% Tube%2% Mean% SD% %CV% B%%

%% cpm% cpm% cpm% cpm% %% %%

TC% 968.9% 963.7% 966.3% 3.7% 0.4% %%

NSB% 25.6% 27.8% 26.7% 1.6% 5.8% %%

1:5,000% 804.3% 774.4% 789.4% 21.1% 2.7% 81.7%

1:10,000% 789.5% 780.7% 785.1% 6.2% 0.8% 81.2%

1:20,000% 769.0% 813.0% 791.0% 31.1% 3.9% 81.9%

1:40,000% 754.7% 755.3% 755.0% 0.4% 0.1% 78.1%

1:80,000% 672.5% 704.4% 688.5% 22.6% 3.3% 71.2%

1:160,000% 511.4% 512.6% 512.0% 0.8% 0.2% 53.0%

1:320,000% 359.1% 331.0% 345.1% 19.9% 5.8% 35.7%

1:640,000% 192.2% 185.6% 188.9% 4.7% 2.5% 19.5%
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Table 3 – Use of Sigma anti-CCK-8 antibody for generation of a standard curve. This 
table shows the results of an assay run using Sigma anti-CCK-8 at a 1:60,000 dilution 
with standards and controls, barbital buffer I with human albumin, human albumin 
extracts, and canine plasma in the separation solution. B/B0 is calculated by subtracting 
the average non-specific binding (NSB) cpm (counts per minute) from the average cpm 
of the standards, and dividing by the average cpm of the TB (total binding) minus the 
NSB cpm. This number is multiplied by 100 to get the percent binding (B%; which is 
the binding percent relative to TB). (Std = standard; Ctrl = control; SD = standard 
deviation; %CV = coefficient of variation; CCK = CCK concentration). 
 
 
 
 

Tube%ID% Nominal% Tube%1% Tube%2% Mean% SD% %CV% B/B0% B%% CCK%

%% pM% cpm% cpm% cpm% cpm% %% %% %% pM%

TC% %% 1007.5% 1065.8% 1036.7% 41.2% 4.0% %% %% %%

NSB% %% 28.1% 29.0% 28.6% 0.6% 2.2% %% %% %%

TB% %% 820.4% 806.3% 813.4% 10.0% 1.2% 1.0% 100.0% %%

Std%1% 1.0% 799.4% 799.4% 799.4% 0.0% 0.0% 1.0% 98.2% %%

Std%2% 2.5% 778.2% 766.0% 772.1% 8.6% 1.1% 0.9% 94.7% %%

Std%3% 5.0% 781.7% 773.6% 777.7% 5.7% 0.7% 1.0% 95.5% %%

Std%4% 10.0% 760.6% 750.5% 755.6% 7.1% 0.9% 0.9% 92.6% %%

Std%5% 20.0% 675.9% 649.3% 662.6% 18.8% 2.8% 0.8% 80.8% %%

Std%6% 30.0% 625.1% 686.2% 655.7% 43.2% 6.6% 0.8% 79.9% %%

Std%7% 50.0% 568.7% 556.5% 562.6% 8.6% 1.5% 0.7% 68.0% %%

Ctrl%1% 4.0% 760.8% 738.8% 749.8% 15.6% 2.1% 0.9% 91.9% 8.2%

Ctrl%2% 7.5% 737.8% 732.6% 735.2% 3.7% 0.5% 0.9% 90.0% 10.7%

Ctrl%3% 15.0% 724.9% 695.0% 710.0% 21.1% 3.0% 0.9% 86.8% 15.4%
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Table 4 – Removal of human plasma from the separation solution. This table shows the 
results of an assay run using Sigma anti-CCK-8 at different dilutions, barbital buffer I 
with human albumin, human albumin extracts, and canine plasma in the separation 
solution. Binding percent (B%) is calculated by dividing the average cpm (counts per 
minute) of the dilution by the average cpm of the TC (total count) and multiplying by 
100. (SD = standard deviation; %CV = coefficient of variation).  
 

 

Tube%ID% Tube%1% Tube%2% Mean% SD% %CV% B%%

%% cpm% cpm% cpm% cpm% %% %%

TC% 1139.9% 1092.5% 1116.2% 33.5% 3.0% %%

NSB% 28.3% 30.5% 29.4% 1.6% 5.3% %%

1:40,000% 738.4% 771.1% 754.8% 23.1% 3.1% 67.6%

1:60,000% 772.2% 776.7% 774.5% 3.2% 0.4% 69.4%

1:80,000% 688.6% 703.5% 696.1% 10.5% 1.5% 62.4%
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Figure 3 – SDS-PAGE of partially purified canine albumin. This NuPAGE 10% Bis-Tris 
gel was stained with Coomassie blue. A molecular weight standard was loaded into lane 
1. An FPLC flow-through peak was loaded into lane 2. An FPLC eluent peak was loaded 
into lane 3. The molecular weight of canine albumin is around 66 kDa. 
 

 

 

 

 
        myosin                              200 kDa 
        β galactosidose                 116 kDa 
 
        phosphorylase b                 97 kDa  
   
 

bovine serum albumin      66 kDa                                                            66 kDa     canine albumin                                                                                             
  
        glutamic dehydrogenase    55 kDa   
 
 
 
        lactate dehydrogenase        36 kDa 
 
 
 
        carbonic anhydrase            31 kDa    
 
 
 
 
        trypsin inhibitor                 21 kDa 
        lysozyme                           14 kDa      
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Table 5 – Sigma anti-CCK-8 with standards and samples. This table shows the results of 
an assay run using Sigma anti-CCK-8 at a 1:60,000 dilution with standards/controls and 
samples, barbital buffer I with canine albumin, human albumin extracts, and canine 
plasma in the separation solution. Several serum samples from healthy dogs were 
included in this assay run. B/B0 is calculated by subtracting the average non-specific 
binding (NSB) cpm (counts per minute) from the average cpm of the standards, and 
dividing by the average cpm of the TB (total binding) minus the NSB cpm. This number 
is multiplied by 100 to get the percent binding (B%; which is the binding percent relative 
to TB). (Std = standard; Ctrl = control; SD = standard deviation; %CV = coefficient of 
variation; CCK = CCK concentration). 
 

 

Tube%ID% Nominal% Tube%1% Tube%2% Mean% SD% %CV% B/B0% B%% CCK%

%% pM% cpm% cpm% cpm% cpm% %% %% %% pM%

TC% %% 1134.3% 1132.8% 1133.6% 1.1% 0.1% %% %% %%

NSB% %% 25.1% 25.1% 25.1% 0.0% 0.0% %% %% %%

TB% %% 734.2% 803.4% 768.8% 48.9% 6.4% 1.0% 100.0% %%

Std%1% 1.0% 748.7% 767.9% 758.3% 13.6% 1.8% 1.0% 98.6% %%

Std%2% 2.5% 792.3% 766.4% 779.4% 18.3% 2.3% 1.0% 101.4% %%

Std%3% 5.0% 760.6% 733.9% 747.3% 18.9% 2.5% 1.0% 97.1% %%

Std%4% 10.0% 720.4% 687.9% 704.2% 23.0% 3.3% 0.9% 91.3% %%

Std%5% 20.0% 648.7% 654.4% 651.6% 4.0% 0.6% 0.8% 84.2% %%

Std%6% 30.0% 627.7% 625.0% 626.4% 1.9% 0.3% 0.8% 80.8% %%

Std%7% 50.0% 580.5% 566.1% 573.3% 10.2% 1.8% 0.7% 73.7% %%

Ctrl%1% 4.0% 704.2% 759.5% 731.9% 39.1% 5.3% 1.0% 95.0% 7.1%

Ctrl%2% 7.5% 738.1% 729.7% 733.9% 5.9% 0.8% 1.0% 95.3% 6.8%

Ctrl%3% 15.0% 706.0% 736.5% 721.3% 21.6% 3.0% 0.9% 93.6% 8.6%

Sample%1% %% 804.8% 797.8% 801.3% 4.9% 0.6% 1.0% 104.4% %%

Sample%2% %% 824.4% 819.5% 822.0% 3.5% 0.4% 1.1% 107.1% %%

Sample%3% %% 789.8% 799.4% 794.6% 6.8% 0.9% 1.0% 103.5% %%

Sample%4% %% 776.9% 795.0% 786.0% 12.8% 1.6% 1.0% 102.3% %%

Sample%5% %% 821.3% 830.1% 825.7% 6.2% 0.8% 1.1% 107.7% %%

Sample%6% %% 748.2% 764.8% 756.5% 11.7% 1.6% 1.0% 98.3% 3.4%

Sample%7% %% 820.5% 808.9% 814.7% 8.2% 1.0% 1.1% 106.2% %%

Sample%8% %% 826.7% 850.5% 838.6% 16.8% 2.0% 1.1% 109.4% %%

Sample%9% %% 765.5% 803.7% 784.6% 27.0% 3.4% 1.0% 102.1% %%

Sample%10% %% 796.8% 829.3% 813.1% 23.0% 2.8% 1.1% 105.9% %%
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Table 6 – Antibody 92128-5 with standards and samples. This table shows the results of 
an assay run using antibody 92128-5 at a 1:20,000 dilution with standards/controls and 
samples, barbital buffer I with canine albumin, human albumin extracts, and canine 
plasma in the separation solution. Several serum samples from healthy dogs were 
included in this assay run. B/B0 is calculated by subtracting the average non-specific 
binding (NSB) cpm (counts per minute) from the average cpm of the standards, and 
dividing by the average cpm of the TB (total binding) minus the NSB cpm. This number 
is multiplied by 100 to get the percent binding (B%; which is the binding percent relative 
to TB). (Std = standard; Ctrl = control; SD = standard deviation; %CV = coefficient of 
variation; CCK = CCK concentration). 
 

 

Tube%ID% Nominal% Tube%1% Tube%2% Mean% SD% %CV% B/B0% B%% CCK%

%% pM% cpm% cpm% cpm% cpm% %% %% %% pM%

TC% %% 1095.5% 1101.8% 1098.7% 4.5% 0.4% %% %% %%

NSB% %% 27.7% 31.8% 29.8% 2.9% 9.7% %% %% %%

TB% %% 455.2% 443.5% 449.4% 8.3% 1.8% 1.0% 100.0% %%

Std%1% 1.0% 411.0% 391.0% 401.0% 14.1% 3.5% 0.9% 88.5% %%

Std%2% 2.5% 346.4% 373.3% 359.9% 19.0% 5.3% 0.8% 78.7% %%

Std%3% 5.0% 291.5% 287.0% 289.3% 3.2% 1.1% 0.6% 61.8% %%

Std%4% 10.0% 217.2% 222.9% 220.1% 4.0% 1.8% 0.5% 45.4% %%

Std%5% 20.0% 153.9% 160.4% 157.2% 4.6% 2.9% 0.3% 30.4% %%

Std%6% 30.0% 119.6% 131.5% 125.6% 8.4% 6.7% 0.2% 22.8% %%

Std%7% 50.0% 88.2% 97.0% 92.6% 6.2% 6.7% 0.1% 15.0% %%

Ctrl%1% 4.0% 303.2% 323.1% 313.2% 14.1% 4.5% 0.7% 67.5% 4.0%

Ctrl%2% 7.5% 243.3% 238.2% 240.8% 3.6% 1.5% 0.5% 50.3% 8.3%

Ctrl%3% 15.0% 197.6% 182.0% 189.8% 11.0% 5.8% 0.4% 38.1% 13.7%

Sample%1% %% 391.8% 384.5% 388.2% 5.2% 1.3% 0.9% 85.4% 1.4%

Sample%2% %% 381.2% 405.8% 393.5% 17.4% 4.4% 0.9% 86.7% 1.3%

Sample%3% %% 392.3% 432.2% 412.3% 28.2% 6.8% 0.9% 91.2% 0.8%

Sample%4% %% 336.5% 320.5% 328.5% 11.3% 3.4% 0.7% 71.2% 3.4%

Sample%5% %% 399.1% 395.2% 397.2% 2.8% 0.7% 0.9% 87.6% 1.2%

Sample%6% %% 330.7% 330.5% 330.6% 0.1% 0.0% 0.7% 71.7% 3.3%

Sample%7% %% 387.9% 386.2% 387.1% 1.2% 0.3% 0.9% 85.2% 1.5%

Sample%8% %% 406.1% 403.3% 404.7% 2.0% 0.5% 0.9% 89.4% 1.0%

Sample%9% %% 359.8% 356.1% 358.0% 2.6% 0.7% 0.8% 78.2% 2.3%

Sample%10% %% 346.1% 365.7% 355.9% 13.9% 3.9% 0.8% 77.7% 2.4%
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Table 7 – Assay run with 3 day incubation. This table shows the results of an assay run 
using antibody 92128-5 at a 1:20,000 dilution with standards/controls and samples, 
barbital buffer I with canine albumin, human albumin extracts, canine plasma in the 
separation solution, and a 3 day incubation time. Several serum samples from healthy 
dogs were included in this assay run. B/B0 is calculated by subtracting the average non-
specific binding (NSB) cpm (counts per minute) from the average cpm of the standards, 
and dividing by the average cpm of the TB (total binding) minus the NSB cpm. This 
number is multiplied by 100 to get the percent binding (B%; which is the binding 
percent relative to TB). (Std = standard; Ctrl = control; SD = standard deviation; %CV = 
coefficient of variation; CCK = CCK concentration). 
 

 

Tube%ID% Nominal% Tube%1% Tube%2% Mean% SD% %CV% B/B0% B%% CCK%

%% pM% cpm% cpm% cpm% cpm% %% %% %% pM%

TC% %% 951.3% 970.0% 960.7% 13.2% 1.4% %% %% %%

NSB% %% 18.1% 24.1% 21.1% 4.2% 20.1% %% %% %%

TB% %% 427.8% 401.2% 414.5% 18.8% 4.5% 1.0% 100.0% %%

Std%1% 1.0% 374.1% 379.8% 377.0% 4.0% 1.1% 0.9% 90.5% %%

Std%2% 2.5% 312.4% 325.9% 319.2% 9.5% 3.0% 0.8% 75.8% %%

Std%3% 5.0% 247.1% 262.6% 254.9% 11.0% 4.3% 0.6% 59.4% %%

Std%4% 10.0% 203.4% 204.9% 204.2% 1.1% 0.5% 0.5% 46.5% %%

Std%5% 20.0% 153.1% 147.5% 150.3% 4.0% 2.6% 0.3% 32.8% %%

Std%6% 30.0% 110.7% 112.5% 111.6% 1.3% 1.1% 0.2% 23.0% %%

Std%7% 50.0% 75.4% 83.9% 79.7% 6.0% 7.5% 0.1% 14.9% %%

Ctrl%1% 4.0% 287.4% 286.2% 286.8% 0.8% 0.3% 0.7% 67.5% 3.9%

Ctrl%2% 7.5% 218.2% 239.2% 228.7% 14.8% 6.5% 0.5% 52.8% 7.5%

Ctrl%3% 15.0% 167.8% 164.3% 166.1% 2.5% 1.5% 0.4% 36.8% 15.0%

Sample%1% %% 287.3% 284.6% 286.0% 1.9% 0.7% 0.7% 67.3% 3.9%

Sample%2% %% 365.6% 353.8% 359.7% 8.3% 2.3% 0.9% 86.1% 1.2%

Sample%3% %% 335.3% 364.2% 349.8% 20.4% 5.8% 0.8% 83.5% 1.5%

Sample%4% %% 379.5% 383.7% 381.6% 3.0% 0.8% 0.9% 91.6% 0.7%

Sample%5% %% 390.3% 364.8% 377.6% 18.0% 4.8% 0.9% 90.6% 0.8%

Sample%6% %% 353.3% 348.0% 350.7% 3.7% 1.1% 0.8% 83.8% 1.5%

Sample%7% %% 360.9% 361.5% 361.2% 0.4% 0.1% 0.9% 86.5% 1.2%

Sample%8% %% 320.1% 353.0% 336.6% 23.3% 6.9% 0.8% 80.2% 1.9%

Sample%9% %% 272.7% 283.3% 278.0% 7.5% 2.7% 0.7% 65.3% 4.3%

Sample%10% %% 360.0% 364.5% 362.3% 3.2% 0.9% 0.9% 86.7% 1.2%
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Table 8 – Barbital buffer I with newborn calf serum. This table shows the results of an 
assay run using antibody 92128-5 at a 1:20,000 dilution with standards/controls, barbital 
buffer I with newborn calf serum, human albumin extracts, canine plasma in the 
separation solution, and a 3 day incubation time. B/B0 is calculated by subtracting the 
average non-specific binding (NSB) cpm (counts per minute) from the average cpm of 
the standards, and dividing by the average cpm of the TB (total binding) minus the NSB 
cpm. This number is multiplied by 100 to get the percent binding (B%; which is the 
binding percent relative to TB). (Std = standard; Ctrl = control; SD = standard deviation; 
%CV = coefficient of variation; CCK = CCK concentration). 
 
 

Tube%ID% Nominal% Tube%1% Tube%2% Mean% SD% %CV% B/B0% B%% CCK%

%% pM% cpm% cpm% cpm% cpm% %% %% %% pM%

TC% %% 1067.8% 1053.1% 1060.5% 10.4% 1.0% %% %% %%

NSB% %% 22.0% 22.9% 22.5% 0.6% 2.8% %% %% %%

TB% %% 448.2% 434.3% 441.3% 9.8% 2.2% 1.0% 100.0% %%

Std%1% 1.0% 404.8% 395.9% 400.4% 6.3% 1.6% 0.9% 90.2% %%

Std%2% 2.5% 327.3% 337.2% 332.3% 7.0% 2.1% 0.7% 74.0% %%

Std%3% 5.0% 274.8% 296.2% 285.5% 15.1% 5.3% 0.6% 62.8% %%

Std%4% 10.0% 208.5% 204.3% 206.4% 3.0% 1.4% 0.4% 43.9% %%

Std%5% 20.0% 134.8% 141.0% 137.9% 4.4% 3.2% 0.3% 27.6% %%

Std%6% 30.0% 107.0% 119.5% 113.3% 8.8% 7.8% 0.2% 21.7% %%

Std%7% 50.0% 73.4% 71.8% 72.6% 1.1% 1.6% 0.1% 12.0% %%

Ctrl%1% 4.0% 313.2% 306.0% 309.6% 5.1% 1.6% 0.7% 68.6% 3.7%

Ctrl%2% 7.5% 230.2% 217.7% 224.0% 8.8% 3.9% 0.5% 48.1% 8.6%

Ctrl%3% 15.0% 169.2% 167.7% 168.5% 1.1% 0.6% 0.3% 34.9% 14.8%
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Table 9 – Assay run with newborn calf serum extracts. This table shows the results of an 
assay run using antibody 92128-5 at a 1:20,000 dilution with standards/controls, barbital 
buffer I with newborn calf serum, newborn calf serum extracts, canine plasma in the 
separation solution, and a 3 day incubation time. B/B0 is calculated by subtracting the 
average non-specific binding (NSB) cpm (counts per minute) from the average cpm of 
the standards, and dividing by the average cpm of the TB (total binding) minus the NSB 
cpm. This number is multiplied by 100 to get the percent binding (B%; which is the 
binding percent relative to TB). (Std = standard; Ctrl = control; SD = standard deviation; 
%CV = coefficient of variation; CCK = CCK concentration). 
 

 

Tube%ID% Nominal% Tube%1% Tube%2% Mean% SD% %CV% B/B0% B%% CCK%

%% pM% cpm% cpm% cpm% cpm% %% %% %% pM%

TC% %% 1043.4% 1048.7% 1046.1% 3.7% 0.4% %% %% %%

NSB% %% 29.0% 28.6% 28.8% 0.3% 1.0% %% %% %%

TB% %% 428.0% 450.4% 439.2% 15.8% 3.6% 1.0% 100.0% %%

Std%1% 1.0% 382.3% 368.7% 375.5% 9.6% 2.6% 0.8% 84.5% %%

Std%2% 2.5% 313.7% 347.1% 330.4% 23.6% 7.1% 0.7% 73.5% %%

Std%3% 5.0% 263.5% 276.4% 270.0% 9.1% 3.4% 0.6% 58.8% %%

Std%4% 10.0% 210.7% 206.1% 208.4% 3.3% 1.6% 0.4% 43.8% %%

Std%5% 20.0% 151.2% 147.7% 149.5% 2.5% 1.7% 0.3% 29.4% %%

Std%6% 30.0% 115.1% 115.4% 115.3% 0.2% 0.2% 0.2% 21.1% %%

Std%7% 50.0% 85.8% 92.1% 89.0% 4.5% 5.0% 0.1% 14.7% %%

Ctrl%1% 4.0% 290.0% 305.0% 297.5% 10.6% 3.6% 0.7% 65.5% 3.7%

Ctrl%2% 7.5% 244.8% 230.1% 237.5% 10.4% 4.4% 0.5% 50.8% 7.3%

Ctrl%3% 15.0% 172.6% 176.0% 174.3% 2.4% 1.4% 0.4% 35.5% 14.7%
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Figure 4 – A typical standard curve of the CCK RIA. This figure shows a typical four-
parameter log-logistic (4PL) standard curve generated in Prism 6®. The standard 
concentrations are: 1, 2.5, 5, 10, 20, 30 and 50 pM, which are plotted on the x-axis in a 
logarithmic scale. Zero pM was plotted as 1x10-14, the smallest non-zero value capable 
of being plotted by Prism 6. B% values are plotted on the y-axis and are calculated from 
B/B0 = (B - NSB) / (B0 - NSB), where B is the supernatant cpm, and B0 is the total 
binding (TB) cpm. All unknown values are extrapolated based on where their B/B0 falls 
along the standard curve. All unknown values were multiplied by a factor of 10,000 to 
obtain the actual results. 
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DISCUSSION 

 The original radioimmunoassay protocol was used to successfully determine the 

optimal dilution of antibody 92128-5 to an approximate tracer-antibody binding of 40%. 

Due to the limited supply of antibodies used in the original protocol, a commercial 

antibody against CCK (Sigma anti-CCK-8) was purchased and compared to the original 

antibody. A 1:60,000 Sigma anti-CCK-8 dilution was determined to be ideal with a 

tracer-antibody binding of approximately 70%. The antibody dilutions were repeated and 

used to test the replacement of human plasma with canine plasma in the separation 

solution. No obvious differences were observed between the binding percentages of the 

assay runs with human plasma and canine plasma. Due to an indefinite backorder of 

canine albumin, canine albumin was purified from canine plasma using affinity-

chromatography FPLC columns, molecular weight centrifugal filters, and lyophilization. 

The purified canine albumin was used to replace human albumin in barbital buffer I. 

After testing the purified canine albumin in barbital buffer I with the Sigma anti-CCK-8 

antibodies, it was noted that the binding percentages among standards were non-sensible 

in that similar binding percentages were observed with standards of very different 

concentrations. Thus, the commercial antibodies (Sigma anti-CCK-8) were not useful to 

establish a standard curve and a decision was made to progress with the original 

antibodies for all subsequent assay runs due to desired binding and separation in the 

standards and samples. The results of the 7 versus 3 day incubation time showed no 

obvious differences between the two incubation times. Due to the dramatic time-savings, 

the 3 day incubation time was used for all subsequent assay runs. The results of the 
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albumin extract assay run showed no obvious difference between human albumin or 

NCS in the albumin extracts. Thus, newborn calf serum was used to produce the albumin 

extracts for all subsequent assay runs. The assay protocol, now in its final form, was 

used to validate the radioimmunoassay for measurement of CCK concentrations in 

canine serum. 
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CHAPTER III 

VALIDATION OF A CANINE CHOLECYSTOKININ RADIOIMMUNOASSAY 

 

INTRODUCTION 

  After successfully replacing all human reagents in the original CCK assay 

protocol with reagents of either canine or bovine origin, the adapted protocol had to be 

validated. The assay was validated by determination of sensitivity, linearity, accuracy, 

precision, and reproducibility by testing assay sensitivity, dilutional parallelism, spiking 

recovery, intra-assay variability, and inter-assay variability and by establishing a 

reference interval and assessing analyte stability.  

 

MATERIALS AND METHODS 

Materials - All commonly used research materials were purchased from VWR 

Scientific, West Chester, PA. Radiolabeled I125CCK-8 was purchased from Perkin 

Elmer, Waltham, MA (NEX203010UC) in 10 µCi amounts and used until its one-month 

expiration date. Synthetic sulfated CCK-8 used for making standards was purchased 

from Sigma-Aldrich, St. Louis, MO (C2175) and immediately reconstituted, diluted to a 

2.18 nM stock solution, aliquoted, and stored at -20°C. Antibody 92128-5 was obtained 

by generous donation from the lab of Jens Rehfeld, Copenhagen, Denmark. Activated 

charcoal used in the separation solution was purchased from Sigma-Aldrich, St. Louis, 

MO (C7606) and stored at room temperature until use. Thimerosal, used in Barbital 

Buffer I, was purchased from Sigma-Aldrich, St. Louis, MO (T4687) and stored at room 
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temperature until use. Sodium azide, used in Barbital Buffer II, was purchased from 

Sigma-Aldrich, St. Louis, MO (S8032) and stored at room temperature until use. 

Barbital for use in the RIA buffers was purchased from Sigma-Aldrich, St. Louis, MO 

(B0375) via usage certification from the Large Animal Pharmacy at the College of 

Veterinary Medicine and Biomedical Sciences at Texas A&M University. Canine fresh 

frozen plasma was purchased from Animal Blood Resources International, Dixon, CA, 

or obtained from outdated bags within the laboratory or the Veterinary Medical 

Teaching Hospital at Texas A&M University. Newborn calf serum was purchased from 

Sigma-Aldrich, St. Louis, MO (N4637). The gamma counter used (1470 Wallac Wizard) 

was purchased from Perkin Elmer, Waltham, MA. Polypropylene RIA tubes were 

purchased from VWR Scientific, West Chester, PA. 

Adapted Protocol - After multiple assay runs as discussed in Chapter II, the 

final protocol, having been established, was used to validate the CCK radioimmunoassay 

for use in dogs. The adapted protocol used for validation is outlined as follows: One mL 

of NCS was thawed and diluted 1:20 with deionized water to create a 5% NCS solution. 

Four hundred µL aliquots of 5% NCS were dispensed into 2 mL sample tubes. Eight 

hundred µL of 96% (vol/vol) ethanol was then pipetted into each 400 µL NCS aliquot. 

The aliquots were then intermittently vortexed for 10 seconds each. After vortexing, the 

tubes were centrifuged for 15 minutes at 4,000 rpm at room temperature. The resulting 

clear supernatant was decanted from each tube into a fresh sample tube. The 

supernatants were evaporated at room temperature in a vacuum concentrator for 5 hours. 

These extracts were then reconstituted to their original 400 µL volume with standards or 
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controls for the assay run, or stored at -20°C until use. Canine samples were obtained 

through external jugular venipuncture and placed in either red whole blood tubes or 

serum separator tubes and centrifuged for 18 minutes at 3,500 rpm. Serum was pipetted 

from the remaining blood components and 400 µL aliquots were placed into 2 mL 

sample tubes. Eight hundred µL of 96% (vol/vol) ethanol was then pipetted into each 

400 µL sample aliquot. The aliquots were then intermittently vortexed for 10 seconds 

each. After vortexing, the tubes were centrifuged for 15 minutes at 4,000 rpm at room 

temperature. The resulting clear supernatant was decanted from each tube into a fresh 

sample tube. The supernatants were evaporated at room temperature in a vacuum 

concentrator for 5 hours. After drying, another 800 µL of 96% (vol/vol) ethanol was 

pipetted into each dried sample aliquot. The solution was evaporated at room 

temperature in a vacuum concentrator for another 5 hours. The sample extracts were 

then reconstituted to their original 400 µL volume with barbital buffer I (20 mM barbital, 

0.6 mM thimerosal, 0.11 % NCS, pH 8.4) for the assay run, or stored at -20°C until use.  

Barbital buffer II contained 20 mM barbital and 0.13 g/L sodium azide, also pH 8.4. 

After achieving proper pH, both buffers were filtered through a 0.2 µm filter and 

degassed. Standards were made using commercially available synthetic sulfated CCK-8. 

Two hundred-fifty µg of CCK-8 was reconstituted in 10 mL of barbital buffer I. The 

resulting 2.19 x 10-5 M solution was diluted to 2.19 x 10-10 M using barbital buffer I to 

create a working solution. One, 2.5, 5, 10, 20, 30, and 50 pM standards were prepared 

from the standard working solution. Four, 7.5, and 15 pM controls were also prepared 

from the standard working solution. Each standard was raised to the desired volume 
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using barbital buffer I as the diluent. To carry out the assay, RIA tubes were used in 

duplicate, with tubes for total count (TC), non-specific binding (NSB), total binding 

(TB), and each standard or control. On the day of the assay, the antibody, albumin 

extracts, standards, and controls were taken out of the freezer and thawed at room 

temperature. Barbital buffer I was taken out of the refrigerator and allowed warm to 

room temperature. RIA tubes were arranged and labeled in duplicate fashion. Tracer was 

taken out of the freezer in the GI Lab radiation room and then diluted with barbital 

buffer I to 1,000 cpm +/- 100 cpm based on gammacounter readings for 60 seconds. 

Barbital buffer I was placed in each tube in the respective amounts as described in 

Figure 1. Newborn calf serum extract tubes were reconstituted to 400 µL with standard 

and controls, and then added to each tube in an amount as described in Figure 1. Sample 

extract tubes were reconstituted to 400 µL with barbital buffer I and added to each tube 

in an amount as described in Figure 1. Antibody 92128-5 was diluted to a dilution of 

1:20,000 using barbital buffer I and added to each tube in an amount as described in 

Figure 1. All tubes were then taken to a separate radiation room where 100 µL of tracer 

were added to each tube. All tubes were vortexed and allowed to incubate for 3 days at 

4°C. On day 3, a separation solution was prepared using 80 mL barbital buffer II, 20 mL 

canine plasma, and 6 g of activated charcoal. The solution was kept on ice and 

vigorously mixed on a magnetic stirrer for 30 minutes. After 30 minutes, 500 µL of 

separation solution was added to each tube. All tubes were vortexed and allowed to 

incubate at room temperature for 25 minutes. All tubes were then centrifuged for 10 

minutes at 4,000 rpm at 4°C. The supernatant from all tubes (except TC tubes) was 
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transferred from the original tube to a new tube, tapping once. The supernatant tubes 

were counted in an automatic gammacounter for 5 minutes and results were expressed as 

counts per minute. The cpm data was entered into an Excel® spreadsheet where average, 

standard deviation, correlation of variance, and B/B0 were calculated. B/B0 was 

calculated using the formula: B/B0 = (B - NSB) / (B0 - NSB), where NSB is the non-

specific binding cpm, B is the supernatant cpm, and B0 is the total binding (TB) cpm. A 

four-parameter log-logistic (4PL) standard curve was generated in Prism 6® by plotting 

the logarithm of the concentration against B/B0. All unknown values were extrapolated 

based on where their B/B0 falls along the standard curve. 

Validation - Assay sensitivity was determined using 10 duplicates of the total 

binding tube. Each duplicate received 1,000 µL barbital buffer I, 150 µL reconstituted 

NCS extract, 150 µL diluted antibody 92128-5, and 100 µL I125CCK-8 tracer. The 

modified canine RIA protocol was run with standards, and the resulting cpm data was 

evaluated by calculating the mean and standard deviation of the 10 duplicates. Three 

standard deviations were subtracted from the mean count and the value plotted on the 

standard curve to determine the corresponding CCK concentration. This calculated 

sensitivity was also used as the lower limit of the working range. To determine dilutional 

parallelism, spiking recovery, intra-assay variability, and inter-assay variability, 300 

leftover serum samples from dogs for which serum had been submitted for diagnostic 

testing to the Gastrointestinal Laboratory at Texas A&M University were evaluated 

using the new protocol to find samples with CCK concentrations that fell into different 

areas of the working range of the assay. For dilutional parallelism, 3 serum samples were 
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selected and tested at full strength, and at dilutions of 1 in 2, 1 in 4, and 1 in 8. For 

spiking recovery, 3 pools of serum were generated from the 300 serum samples to obtain 

sufficient serum volume to carry out the validation experiments. Serum pools were 

spiked with a known concentration of CCK-8 such that they would fall into different 

areas of the working range of the assay. Spiking recovery was determined by taking 

samples from the 3 serum pools and spiking them with 0, 1.25, 2.5, and 5 pM of CCK in 

barbital buffer I. For intra-assay variability and inter-assay variability, 4 pools of serum 

were generated from the 300 serum samples to obtain sufficient serum volumes to carry 

out the assay. Serum pools were spiked with a known concentration of CCK-8 such that 

they would fall into different areas of the working range of the assay. Intra-assay 

variability was determined by evaluating 4 different serum samples 6 times within the 

same assay run. Inter-assay variability was determined by evaluating 4 different serum 

samples in 6 consecutive assay runs. A reference interval for CCK in canine serum was 

established using 90 serum samples from clinically healthy, fasted (12 hrs) dogs using 

the lower 97.5th percentile. A stability study was conducted to determine the stability of 

CCK in canine serum under different storage conditions. Nine canine serum samples 

were obtained from healthy, fasted dogs (12 hrs). The samples were aliquoted into 5 

different 2 mL sample tubes using a volume of 400 µL each. An aliquot from each dog 

was measured for CCK at the following time points: immediately (baseline); after 24 

hours at 4°C or -80°C; after 1 week at -80°C; and after 4 weeks at -80°C. Prism 6® was 

used for all analyses. Each data set was tested for normality by use of a Kolmogoro-
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Smirnov normality test. For stability evaluation, serum CCK concentrations were 

compared by use of repeated-measures ANOVA with multiple comparisons.   

 

RESULTS 

 A typical standard curve for the assay is shown in Figure 4. The sensitivity of the 

assay was calculated to be 0.5 pM using three standard deviations from the mean of 10 

assay runs of a sample containing no CCK (Table 10). Thus, the lower limit of the 

working range of the assay was also 0.5 pM. For dilutional parallelism, observed-to-

expected ratios ranged from 101.9 % to 253.6 % (162.4 % ± 54.4 %) for 3 different 

canine serum samples at dilutions of 1 in 2, 1 in 4, and 1 in 8 (Table 11). For spiking 

recovery, observed-to-expected ratios ranged from 81.4 % to 68.2 % (73.2 % ± 4.0 %) 

for 3 different canine serum samples at 4 different spiking concentrations (Table 12). 

Coefficients of variation for intra-assay variability of 4 pooled serum samples were 3.8, 

13.5, 7.9, and 3.9 % (Table 13). Coefficients of variation for inter-assay variability of 4 

pooled serum samples were 12.3, 11.6, 7.4, and 6.4 % (Table 14). The reference interval 

for serum CCK concentration was established as ≤ 2.8 pM (Fig 5). The serum 

concentrations for each of the 9 serum samples did not vary significantly in samples 

stored at 4°C for 24 hours or at -80°C for 24 hours, 1 week, or 4 weeks (Fig 6 and Table 

15). 
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Table 10 – Sensitivity of CCK RIA. This table shows the results for the determination of 
the sensitivity of the assay using 10 duplicates of the total binding (TB) tube. The mean 
minus 3 standard deviations was plotted on a standard curve to obtain the sensitivity. 
(SD = standard deviation). 
  
 
 

Tube%ID% Tube%1% Tube%2% Mean%

%% cpm% cpm% cpm%

TB%1% 433.0% 428.9% 431.0%

TB%2% 428.1% 453.2% 440.7%

TB%3% 427.7% 425.1% 426.4%

TB%4% 423.2% 442.1% 432.7%

TB%5% 422.0% 437.8% 429.9%

TB%6% 431.7% 441.8% 436.8%

TB%7% 428.1% 442.2% 435.2%

TB%8% 443.0% 429.8% 436.4%

TB%9% 445.0% 431.8% 438.4%

TB%10% 397.6% 438.2% 417.9%

Mean% 432.5%

SD% 6.3%

Mean%I%3(SD)%=%413.5%⇨%0.5%pM% %%
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Table 11 – Dilutional parallelism of CCK RIA. This table shows the data from serial 
dilutions of 3 serum samples throughout the working range of the assay. All 3 serum 
samples were measured at dilutions of 1 in 1, 1 in 2, 1 in 4, and 1 in 8. 
 
 
 

Sample%A% Observed% Expected% O/E%ratio%

Dilution% pm% pm% %%

1%in%1% 14.2% %% %%

1%in%2% 7.3% 7.1% 101.9%

1%in%4% 5.2% 3.6% 146.7%

1%in%8% 2.6% 1.8% 143.9%

% % % % % % %

Sample%B% Observed% Expected% O/E%ratio%

Dilution% pm% pm% %%

1%in%1% 3.9% %% %%

1%in%2% 2.8% 1.9% 146.5%

1%in%4% 1.4% 1.0% 140.3%

1%in%8% 1.1% 0.4% 247.8%

% % % % % % %

Sample%C% Observed% Expected% O/E%ratio%

Dilution% pm% pm% %%

1%in%1% 3.9% %% %%

1%in%2% 2.1% 1.9% 107.7%

1%in%4% 1.7% 1.0% 173.2%

1%in%8% 1.2% 0.5% 253.6%
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Table 12 – Spiking recovery of CCK RIA. This table shows the data obtained from the 
spiking recovery performed on 3 different serum sample pools in the lower end of the 
control range. All 3 serum pools received CCK-8 additions of 0, 1.25, 2.5, and 5 pM.  
 

 

Pool%A%

Added% Observed% Expected% O/E%ratio%

pM% pM% pM% %%

0% 2.9% % %

1.25% 3.0% 4.1% 72.3%

2.5% 3.7% 5.4% 68.2%

5% 6.1% 7.9% 77.8%

% % % % % % %

Pool%B%

Added% Observed% Expected% O/E%ratio%

pM% pM% pM% %%

0% 1.6% % %

1.25% 2.1% 2.8% 72.9%

2.5% 3.3% 4.1% 81.4%

5% 4.7% 6.6% 70.7%

% % % % % % %

Pool%C%

Added% Observed% Expected% O/E%ratio%

pM% pM% pM% %%

0% 2.4% % %

1.25% 2.6% 3.7% 70.6%

2.5% 3.5% 4.9% 71.5%

5% 5.5% 7.4% 73.5%
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Table 13 – Intra-assay variability of CCK RIA. This table shows the results obtained 
from the determination of intra-assay variability for CCK RIA using 4 different serum 
pools. (SD = standard deviation; %CV = coefficient of variation).  
 

 

% % % Pool%1% Pool%2% Pool%3% Pool%4%

Number%of%repeats% 6% 6% 6% 6%

Mean%(pM)% 2.2% 3.0% 10.6% 21.1%

SD%(pM)% 0.1% 0.4% 0.8% 0.8%

%CV% 3.8% 13.5% 7.9% 3.9%

 

 

 

 

 

Table 14 – Inter-assay variability of CCK RIA. This table shows the results obtained 
from the determination of inter-assay variability for CCK RIA using 4 different serum 
pools. (SD = standard deviation; %CV = coefficient of variation). 
 
 
 
  
% % % Pool%1% Pool%2% Pool%3% Pool%4%

Number%of%repeats% 6% 5% 6% 6%

Mean%(pM)% 2.1% 3.5% 10.2% 19.9%

SD%(pM)% 0.3% 0.4% 0.7% 1.3%

%CV% 12.3% 11.6% 7.4% 6.4%
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Figure 5 – Reference interval for CCK RIA. The mean serum concentration for CCK as 
measured in 90 clinically healthy dogs was 1.03 ± 0.83 pmol/L. The reference interval 
was determined by the bottom 97.5th percentile and was ≤ 2.8 pmol/L. Several serum 
samples from healthy dogs were included in this assay run. The mean CCK 
concentration is depicted by the solid line. The reference interval is shown by the dotted 
line.  
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Table 15 – ANOVA of stability study. This table shows the results of an ANOVA for 
assessing the stability of serum CCK concentrations at different storage conditions.  
 

 

RepeatedImeasures%ANOVA%with%multiple%comparisons%

Number%of%families% 1% % %

Number%of%comparisons%

per%family% 4% % %

α%(alpha)% 0.05% % %

Dunnett's%multiple%

comparisons%test% Mean%Diff.% 95%%CI%of%diff.% Significant?%

Baseline%vs.%4oC%for%24%h% I0.21% I0.52%to%0.10% No%

Baseline%vs.%I80oC%for%24%h% 0.27% I0.28%to%0.82% No%

Baseline%vs.%I80oC%for%7%d% 0.03% I0.38%to%0.45% No%

Baseline%vs.%I80oC%for%30%d% 0.11% I0.37%to%0.59% No%
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DISCUSSION 

 A radioimmunoassay for the measurement of CCK in canine serum was 

successfully analytically validated. The observed-to-expected ratios for dilutional 

parallelism ranged from 101.9% to 253.6%. All 3 pools had adequate dilution ratios at 1 

in 2; however, all 3 pools went above 140% at the 1 in 4 and 1 in 8 dilutions. This 

suggests that the assay has limited linearity in the lower end of the working range. 

Inferences for the higher end of the working range cannot be determined from this data. 

The observed to expected ratios for spiking recovery ranged from 81.4% to 68.2%. 

While no specific criteria exist for acceptable values of spiking recovery, all samples 

measured had a low recovery rate (81% to 68%). However, spiking led to increased 

concentrations suggesting, that while some of the spiked material was lost to 

measurement the assay does indeed measure the analyte in question.  

Coefficients of variation for intra-assay variability of 4 pooled serum samples 

were 3.8, 13.5, 7.9, and 3.9%. All 4 pools had CVs below 15%, which suggests that the 

assay is sufficiently precise. Coefficients of variation for inter-assay variability of 4 

pooled serum samples were 12.3, 11.6, 7.4, and 6.4%. Pool 2 only had 5 repeats due to 

an error encountered during the assay. All 4 pools had CVs below 15%, which suggests 

that the assay is sufficiently reproducible. The reference interval for the assay was 

calculated to be ≤ 2.8 pM from the lower 97.5th percentile of serum CCK concentrations 

in 90 clinically healthy dogs.  

The results of the stability study indicate that CCK is stable in serum when stored 

for no more than 30 days at temperatures that samples are routinely exposed to during 
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shipping and storage until extraction. Stability was not evaluated for samples at room 

temperature, thus samples obtained for analysis should be shipped at a maximum of 4°C. 

There was some variation of results between the different time points, but the sample 

with the highest CCK concentration showed the lowest variability.  

The radioimmunoassay for CCK described here is sufficiently accurate, precise, 

and reproducible, but has limited linearity in the lower end of the working range. To our 

knowledge, this is the first validation of a CCK RIA specific for canine serum, and 

without human reagents. Target values for the purposes of assay validation were taken 

from previously validated radioimmunoassays, although no specific standards for 

validation have been established.10,19 The purpose of this project was to successfully 

modify a CCK RIA for use in humans for the measurement of canine serum CCK. 

Clinical studies are necessary to determine the clinical usefulness of measuring CCK 

concentrations in dogs with gastrointestinal disease.  
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CHAPTER IV 

CONCLUSIONS 

 

Cholecystokinin is an important neuroendocrine peptide in the gastrointestinal 

tract, being the major stimulant for exocrine pancreatic secretion and gall bladder 

contraction. Current research focuses on CCK outside the gastrointestinal tract in 

humans. While there is a wealth of information on CCK and disorders associated with 

alterations in CCK release in humans, there is a distinct lack of information on similar 

disorders in dogs. This is likely due to the complexity of current CCK RIAs and the use 

of human reagents.  

Thus, the objectives of this study were to modify a radioimmunoassay used for 

the measurement of plasma CCK in humans for use in dogs, to perform said assay 

without human reagents, and to analytically validate this modified immunoassay for use 

with canine serum. To accomplish the objectives, assay runs were set up to replace all 

human reagents that are part of the original protocol, followed by analytical validation of 

the adapted assay using canine serum samples by determination of sensitivity, dilutional 

parallelism, spiking recovery, intra-assay variability, and inter-assay variability. All 

objectives outlined above were successfully met, analytically validating a 

radioimmunoassay for the measurement of cholecystokinin in canine serum. An assay 

now exists that has been analytically validated for canine serum and is free of human 

reagents, allowing for accurate measurements to be made from routinely drawn canine 
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serum samples. This will allow future studies to determine the role of altered CCK 

secretion in dogs with GI disease.  

The radioimmunoassay for CCK described here is sufficiently accurate, precise, 

and reproducible, but has limited linearity in the lower end of the working range. After 

evaluating 90 serum samples from clinically healthy dogs with the validated RIA, the 

reference interval was established as 0.0 to 2.8 pM. Further research is needed to 

determine the usefulness of this assay in research animals or clinical patients.  
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