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ABSTRACT

Despite advances in modern computing and simulation, wind tunnel testing re-

mains the most trusted method for determining aerodynamic vehicle behavior. Cor-

rections are applied to accurately obtain results representative of free-air performance

due to the presence of wind tunnel walls. The standard correction procedure adjusts

for the presence of these boundaries using approximations based on linear potential

flow theory. Separately, tare and interference removal involves the linear subtraction

of mounting strut effects, accomplished using mirrored mounting systems. Uncer-

tainty in wind tunnel data is quantified throughout each step in the data analysis

procedure. Additionally, an updated procedure for the analysis and correction of

wind tunnel data for strut mounted models is recommended.
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1. INTRODUCTION

1.1 Background and Objective

Wind tunnel testing remains an important tool for understanding the behavior of

bodies immersed in fluid flow. Models are tested to assess aerodynamic performance

and vehicle stability. Benjamin Robins’s whirling arm apparatus was employed as

the only testing device until the late 19th century when Frank H. Wenham operated

the first wind tunnel, moving air past the test article rather than the converse [1].

Testing is necessary because the Navier-Stokes equations that govern fluid mo-

tion do not have a general analytic solution and can only be solved analytically for

special cases or solved numerically using intensive numerical simulation. The field

of computational fluid dynamics (CFD) is an important one, as wind tunnel testing

is an expensive undertaking. Aerodynamicists can execute a large portion of the

design and optimization phases without requiring a wind tunnel. Despite a surge

in computing power, wind tunnels remain necessary because some phenomena still

cannot be reliably predicted using CFD. As such, an important function of wind

tunnels is the validation of CFD results. In all cases, it is desirable for the resulting

data to be representative of free-flight vehicle behavior.

The aerodynamic response measured during a wind tunnel test necessarily differs

from free-flight behavior due to the existence of the test section boundaries. Data

are made more representative of free-flight by accounting for wall effects and effects

of the model mounting hardware. A well-established technique for achieving this is

outlined by Barlow, Rae and Pope [2]. A series of linear wall and blockage “correc-

tions” was developed in the middle 20th century. Barlow et al. also outline a testing

procedure for strut-mounted tests that allows for the removal of effects arising from
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a mounting strut. This is accomplished by testing a model configuration while both

upright and inverted. A mirror-image mounting system is also used for this proce-

dure, a setup which reveals any flow angularity present in the test section. Data

from equivalent runs are subtracted from each other, resulting in support-free data.

Much like the wall correction techniques, the procedure for the removal of mounting

hardware effects is based on a simple linear model. Despite a substantial increase

in computing power since the advent of these techniques, the same approximations

used to simplify the calculations remain in place, potentially causing avoidable er-

rors in the resulting data. Surprisingly however, the uncertainty associated with the

wall-correction methodology has yet to be quantified.

This thesis aims to quantify the error introduced into the final “free-air” data due

to the use of approximation and the assumption of linearity. With upflow present in

the test section, a direct subtraction of upright and inverted data in practice may

introduce errors due to the fact that the upright and inverted configurations are

not precisely equivalent (see Figure 1.1). Errors will be quantified by comparing

the data resulting from the standard correction procedure outlined by Barlow et al.

to that resulting from a modified approach. One modification to the approach is

the removal of all simplifications presumably arising from lack of computing power,

including small angle approximations such as sinα ≈ α. Additionally, an interpo-

lation step will be added so that the removal of support effects will be computed

for equivalent configurations. Data uncertainty will be monitored and propagated

throughout each step of the data analysis procedure in order to make direct com-

parisons between approaches. Finally, recommendations will be made as to whether

the rigorous computations are indeed necessary and whether the interpolation step

is needed for removal of support effects.

The following sections describe the facility used to execute large-scale wind tunnel

2
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Figure 1.1: Angle of attack discrepancy between upright (φ = 0◦) and inverted
(φ = 180◦) orientations.
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testing of a strut-mounted models, followed by an explanation of the standard testing

and data reduction processes. An example of one of these tests will be discussed in

detail, followed by a review of the standard testing technique, where recommenda-

tions will be made about the validity and accuracy of the current approach.

1.2 Tare and Interference Testing Principles & Example

The tare and interference testing approach is a standard method for execution

of a wind tunnel test where aerodynamic forces and moments on a strut-mounted

model are measured using an external balance. This method makes balance data

more representative of free-air flight behavior by estimating and removing the effects

associated with the presence of the support strut. At the crux of the tare and

interference strategy is the assumption that both the tare (the effect of the strut’s

presence alone on balance measurements) and the interference effects (the effect

of the strut on the flow around the test article plus the converse) can be linearly

subtracted from the measured data. In order to estimate tare and interference (T&I)

effects, the test article must feature an image strut system which allows mounting

in upright (φ = 0◦) and inverted (φ = 180◦) orientations while matching the amount

of support strut exposure underneath the model (ventral surface). Following the

recommendations of Barlow, Rae and Pope [2], execution of a tare and interference

sequence requires three sets of runs: inverted with and without an image system and

upright without the image system. The setup for these three configurations is shown

in Figure 1.2.

Tare and interference affects all aerodynamic loads. For specificity, consider just

the drag force. The measured drag in the upright configuration with a strut pene-

trating the ventral surface is Dmeas,up = Dtrue +TL+IL, the sum of the true drag, the

lower-strut tare TL and the interference drag IL on the vehicle due to the lower strut

4



a b c

Figure 1.2: T&I setup: (a) inverted without image, φ = 180◦, (b) inverted with
image, φ = 180◦, (c) upright without image, φ = 0◦

and fairing (which may be positive or negative). The task is to remove the TL + IL

contributions to the measured drag to reveal the “true” drag that would presumably

affect the vehicle in free flight. It is not necessary to separate the contributions of

TL and IL so they are lumped as TIL.

To find TIL, two inverted runs are performed, with and without an image strut

penetrating the ventral surface. The image strut in this configuration is identical to

the “lower” strut that connects the model to the balance in the upright configuration.

Thus, it retains the subscript L in this orientation. The strut connecting the model to

the external balance is referred to as the “upper” strut (subscript U) in the inverted

orientation. The image (lower) strut is metric and small clearance between it and

the image strut fairing (needed for symmetry) avoids an unwanted load path from

the model. The measured drag in the two inverted orientations are

Dmeas,inv/out = Dtrue + TIU

Dmeas,inv/in = Dtrue + TIU + TIL

5



where the subscripts inv/out and inv/in indicate “inverted, image strut out” and

“inverted, image strut in” respectively. Subtracting Dmeas,inv/out from Dmeas,inv/in

yields an estimate of TIL. This can subsequently be subtracted from the measured

drag in the upright orientation Dmeas,up to give an estimate of the true drag because

Dmeas,up = Dtrue+TIL. Figures 1.3 and 1.4 show the drag and lift TIL as a function of

α for an inverted (φ = 180◦) model configuration. TIL remains fairly constant with

α but departs sharply near stalled regions. Additionally, the T&I effect is virtually

nonexistent in the lift force, but affects drag by as much as 60% near CD,min. The

lift component of TIL is slightly positive near α = 0◦ because of the flow angularity

induced by the lower strut. Without the image system, the induced upflow angle

due to the lower strut causes the model to experience a greater lift force than the

equivalent configuration with the image system.

Figures 1.5 and 1.6 show the effect of linearly subtracting TIL from upright,

gravity-tare-removed data. Because separation is a nonlinear phenomenon, a point-

by-point subtraction such as this may behave unpredictably – especially in unstable

regions – due to the discrepancy in angle of attack discussed above. The TIL curve

shows a discontinuity at α = −12◦, presenting another potential source of error

associated with the direct subtraction method.

The T&I calculations are all performed in the wind-oriented coordinate system at

the balance moment reference center. To account for small variations in the point-by-

point dynamic pressure, the forces and moments are non-dimensionalized and given

in coefficient form. Forces are divided by qactS and moments by qactSb or qactS c,

where qact is the dynamic pressure and S, b, and c are respectively the wing planform

area, span and mean aerodynamic chord (MAC).

6
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Figure 1.3: Pitch sweep: inverted T&I drag data
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Figure 1.4: Pitch sweep: inverted T&I lift data
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Figure 1.5: Pitch sweep: T&I-removed drag data
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Figure 1.6: Pitch sweep: T&I-removed lift data
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1.3 Wind Tunnel Boundary Correction Principles

Strut effects are subtracted from data using the technique described in Section 1.2.

However, the wind tunnel walls are boundaries that do not exist around the full-scale

flight vehicle. The boundaries become streamlines of the flow in order to enforce the

no-penetration boundary condition at the walls. The effects of each of the rele-

vant flow phenomena caused by the existence of a wing in flow are contained within

the tunnel boundaries using the method of images outlined by Glauert [3]. These

phenomena are modelled by linearly superposing infinite sets of mirrored flow singu-

larities – sources and vortices – derived from linear potential flow theory.

Because the behavior of the streamlines flowing past the test model is largely

governed by the circulation Γ generated by the wing, the wing itself is modelled as a

distribution of vortices. A horseshoe vortex originating at the wing’s quarter-chord

location remains consistent with Helmholtz’s second theorem that a vortex filament

can neither begin nor end in a fluid [4]. A simplified illustration of the horseshoe

vortex distribution is shown in Figure 1.7. Image vortices model the presence of

boundaries by ensuring that only the tangential velocity component exists at the

walls. Figure 1.8 shows the direction of the induced velocity for the existing bound

vortex Vi and that of the top mirrored vortex Vi,m. Examining the top half of the

system, the bound vortex and image vortex are equidistant from a given boundary,

meaning their effect on the flow at the boundary is equivalent. The no-penetration

condition is enforced since the vertical components of the induced velocity vectors

sum to zero. Enforcing the tunnel boundary conditions modifies the flow field in the

vicinity of the model. The modified flow field causes a change in the aerodynamic

response of the model, necessitating a set of data corrections to make measurements

more representative of free flight.
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Figure 1.7: Horseshoe vortex comprised of bound vortex at quarter-chord and trailing
tip vortices

Vi,m

Vi

h

Figure 1.8: First image system vortex pair for bound vortex filament
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Figure 1.9: Flow field resulting from bound vortex image systems.

The vertical image systems for the bound vortex filament effectively constrict

the resulting streamlines such that the body appears more cambered and at greater

angle of attack (see Figure 1.9). The induced angle of attack due to the vertical

image systems (bounding the vortices along the wing’s span) is referred to as the

streamline curvature correction.

The wingtip trailing vortices are bounded using similar logic (see Figure 1.10).

In free flight, tip vortices generate downwash which induces an angle of attack at the

tail. The presence of the wind tunnel walls alters the downwash that would be seen by

the tail in free flight (see Figure 1.11). The foremost result is an alteration in pitching

moment. Additionally, the altered downwash causes too large a minimum drag and

too small a lift-curve slope. The induced angle of attack due to the horizontal image

11
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Figure 1.10: First image system vortex pair for trailing tip vortices

system (bounding the trailing tip vortices) is referred to as the normal downwash

correction.

The streamline curvature and normal downwash corrections both affect the an-

gularity of the flow field around the model. Another source of flow angularity is

aerodynamic balance misalignment. This accounts for a discrepancy between the

upstream flow direction and the balance’s drag direction. The misalignment is esti-

mated by executing one upright-model pitch sweep with the image strut installed.

Comparing the lift curves for the upright and inverted model configuration, both with

the image system installed, reveals a discrepancy at equivalent upright and inverted

angles of attack. Because the configurations are nominally symmetric, differences in

the lift curves of the two configurations arise due to upflow in the test section. The

shift in the lift curve is 2∆αup where ∆αup is the upflow angle and is assumed to be

12
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Figure 1.11: Flow field resulting from trailing tip vortices and image systems.

constant spatially (xw, yw, zw) and insensitive to model attitude (α, β, φ). Figure 1.12

shows the discrepancy in the upright and inverted configuration lift curves due to

upflow.

In addition to flow angularity, the presence of the model effects a change in the

effective test section cross sectional area which causes a change in the effective dy-

namic pressure. Two corrections are applied. The solid blockage correction depends

only on model and wind tunnel geometry. Constant mass flux requires A1V1 = A2V2.

A1 and A2 respectively represent the test section cross sectional area with and with-

out blockage, and V1 and V2 are the corresponding flow velocities. The presence of

the model causes A2 > A1 and hence V1 > V2. In practice, the solid blockage velocity

increment is proportional to the ratio of model volume to test section volume, but

includes other terms derived from empirical data. The wake blockage correction is

derived by placing a line source at the trailing edge of the wing to represent the

13



Figure 1.12: Lift discrepancy (inverted vs. upright) due to upflow

accelerated fluid in the region outside the decelerated wake. The flow stagnates up-

stream of the source to form a Rankine half-body as the model of the wake. To

preserve continuity, a line sink of equal strength is placed downstream at x→ +∞.

Again, an infinite system of sources and sinks is then distributed above and below

the trailing edge source. The result is an increment in flow velocity due to the wake

blockage in the test section.
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2. LOW SPEED WIND TUNNEL FACILITY DETAILS

Section 1 discussed the principles and motivation behind wind tunnel testing.

The goal of the following section is to introduce the reader to a wind tunnel facility

used for a variety of industries. The testing and data analysis techniques discussed

previously are primarily employed for vehicles tested by the aerospace industry. The

facility details and operational notes described below will also help to motivate dis-

cussions in later sections.

2.1 Oran W. Nicks Low Speed Wind Tunnel Overview

The Oran W. Nicks Low Speed Wind Tunnel (LSWT) at Texas A&M is a large-

scale closed circuit wind tunnel (Appendix A) facility. It was erected as an open-

circuit tunnel in 1948, and has since undergone various renovations and modifications

which have improved upon the accuracy of experimental measurements and have

added to the overall capability of the facility. Among these improvements are the

conversion of the LSWT to a closed-circuit tunnel in 1958 and the addition of a 3000

HP motor with variable-frequency drive system in 2013 to couple with the existing

variable-pitch propeller. In combination, these modifications help to improve the

overall efficiency of the wind tunnel and allow for a greater range of free stream

conditions while maintaining high-quality flow. For a more in-depth history of the

Oran W. Nicks LSWT, see Hidore [5].

The LSWT circuit length at the centerline is 398 feet. The tunnel cross section

is circular from the power section at the exit of the diffuser around to the entrance

of the contraction section. The maximum diameter of 30 feet occurs in the settling

chamber. Turning vanes are located at each of four 90◦ turns in the circuit. A single

screen, located at the settling chamber entrance, and a double screen upstream of

15



the contraction section provide a uniform inflow and reduce turbulence.

The test section is 14 feet long, 7 feet high and 10 feet wide with one-foot corner

chamfers. Its cross sectional area is 68 ft2. Three inch vertical venting slots in the side

walls at the test section exit maintain test section static pressure near atmospheric

pressure. The test section walls diverge about 1 inch in 12 feet to account for bound-

ary layer growth and eliminate streamwise buoyancy. A 7-ft-diameter floor turntable

rotates with the external balance system. Access to the test section is through a

removable ceiling and an overhead crane. Fluorescent lights are positioned in the

corner fillets. The test-section side walls are large plate glass windows. A 30-ft-long

contraction section acts as a transition from the circular to the rectangular cross

section. The contraction ratio is 10.4. A 46-ft-long diffuser downstream of the test

section returns the flow to a circular cross section. The horizontal and vertical ex-

pansion angles of the diffuser are 1.43◦ and 3.38◦, respectively. The tunnel fan is

a variable-pitch 12.5-ft-diameter, four-blade Curtiss Electric propeller. It is driven

by a 3000 hp variable-speed Teco-Westinghouse motor. Blade tips are inset into

the tunnel wall to minimize tip interference effects. Test section dynamic pressures

between zero and 100 psf (200 mph) can be obtained by adjusting the blade pitch

and speed.

The external balance is a six-component, pyramidal electromechanical system

located on the first floor of the facility, below the test section. It resolves aerody-

namic forces and moments in a wind-oriented coordinate system with its origin the

geometric center of the test section. Force, moment and attitude measurements are

transmitted to the data acquisition system control via optical encoders. The balance

turntable yaw range is −120◦ to +190◦. Lift force can be measured from −1000 lb to

+3000 lb; drag and side force can be measured from ±1000 lb. Forces are accurate

to the greater of 0.2 lb or 0.2% of the applied load. Pitching and rolling moments
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can be measured to ±2000 ft·lb; yaw can be measured to ±1000 ft·lb. Moments

are accurate to the greater of 0.2 ft·lb or 0.2% of the applied moment. A variety of

support systems are available for mounting models to the external balance. Typical

models employ one, two or three vertical struts or sting supports. The facility has a

selection of such mounting systems suitable for accommodating models.

Electronic pressure instrumentation are available for up to 300 simultaneous mea-

surements. Signal conditioning for strain-gage balances and instruments are avail-

able. The test section is outfitted with a three-axis traversing mechanism for hotwire

anemometers or pressure probes. This equipment allows the positioning of instru-

mentation with repeatable accuracy of 0.01 inches.

2.2 Tunnel Operation

Flow speed is controlled using the calculated dynamic pressure of the airflow at

the center of the test section. Two static pressure rings, consisting of four ports

each, are used to measure the average static pressure drop across the length of

the settling chamber. This difference, denoted qset, is used to calibrate the actual

dynamic pressure qact in the center of the empty test section. A calibration curve is

created and used to calculate qact from qset when the calibration Pitot tube is not

installed in the test section. From Hidore, qact = 1.042qset ± 0.02 psf. While the

tunnel is in operation, qset is directly measured, and control logic ensures that qact

(calculated as part of the control) remains within 0.2% of the prescribed dynamic

pressure. This approach provides the test section dynamic pressure that would be

measured upstream of any model influence.

The temperature inside the tunnel is measured with a thermocouple that is lo-

cated on the wall at the beginning of the test section. The barometric pressure is

recorded in the balance room, beneath the test section. These measurements are
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Figure 2.1: Wind-oriented coordinate system

used to calculate tunnel flow speed for the current tunnel conditions. The total

and static pressure in the tunnel are also measured during a test using a Pitot tube

located on the back (+yw) wall.

2.3 Coordinate System Definitions and Transformations

Various coordinate systems are used during testing following the convention de-

scribed by Barlow et al. In the wind-oriented coordinate system (shown in Fig-

ure 2.1), xw points upwind, zw is aligned with the gravity vector and yw maintains

the right-handed system. Rotations about the wind-fixed xw, yw and zw axes are

φ, θ and ψ, respectively. These angles are used to specify vehicle/model attitude

during tests. When the model is upright (φ = 0◦), the aerodynamic angles are α = θ

and β = −ψ. When the model is inverted (φ = 180◦), α = −θ and β = ψ. The

body-oriented coordinate system rotates with the vehicle such that the xb axis points

forward through the nose, yb points out through the right side of the fuselage and

zb points out (down) through the ventral surface of the fuselage. When the body is

upright and at θ = ψ = 0◦, the wind axes and body axes are aligned.

The external balance gives forces and moments in the wind oriented coordinate
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system, defined as:

D = −Fxw S = +Fyw L = −Fzw

RM = +Mxw PM = +Myw YM = +Mzw

where L, D and S are lift, drag and side force and PM , RM and YM are pitch,

roll and yaw moments, respectively. The reference center for the moments measured

by the external balance is 42 inches above the wind tunnel floor along the turntable

rotation axis, i.e., the geometric reference center of the test section. Typically, an

aerodynamic vehicle is mounted with its pitch axis along the test section centerline,

42 inches above the floor. However, the pitch axis may be located some distance

fore or aft of the balance moment center (BMC). Furthermore, the model’s aerody-

namic moment reference center (MRC) may be located at some other location. The

transformation from BMC to MRC for a non-rolled model (φ = 0◦) is given by:

xMRC = −[dxpivot + dxb cos θ − dzb sin θ] cosψ

yMRC = −[dxpivot + dxb cos θ − dzb sin θ] sinψ

zMRC = dxb sin θ + dzb cos θ

(2.1)

In Equations 2.1, dxpivot is the horizontal distance (in the xw direction) between the

BMC and pivot point location, and dxb and dzb are respectively the horizontal and

vertical distances between the pivot point and model MRC. Transferring moments

from the BMC to the MRC is then accomplished using:

RMMRC = RMBMC − zMRCS − yMRCL

PMMRC = PMBMC − zMRCD + xMRCL

YMMRC = YMBMC + xMRCS + yMRCD

(2.2)
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In the body axis system, the forces and moments are

A = −Fxb Y = +Fyb N = −Fzb

`b = +Mxb mb = +Myb nb = +Mzb

(Note the possible nomenclature ambiguity of the wind-oriented yaw moment,

YM and the body-oriented y-direction force Y .) When φ = 0◦, converting from the

wind-oriented forces to body-axis forces is achieved by the rotation


−A

+Y

−N

 =


cosψ cos θ sinψ cos θ − sin θ

− sinψ cosψ 0

cosψ sin θ sinψ sin θ cos θ



−D

+S

−L

 (2.3)

The same rotation matrix is use to transform moments from wind- to body-

oriented coordinates. For the moments, RM , PM and YM replace −D, S and −L,

while `b, mb and nb replace −A, Y and −N . Transformation to stability axes follows

the same procedure with θ set to zero.
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3. STANDARD PROCEDURE FOR EXPERIMENT AND DATA ANALYSIS

Aerodynamic force and moment data are used for performance estimation and

assessment of stability derivatives for the vehicle. As such, the accuracy of final,

corrected data is extremely important. In Section 4, wall corrections to force and

moment data are applied according to the approach outlined by Barlow et al. for

a typical tare and interference test to illustrate the effect on the resulting aerody-

namic response. The first step in the sequence is to remove gravity effects using

corresponding wind-off data. Next, blockage corrections to the dynamic pressure are

applied, followed by the subtraction of support T&I effects. The final step in the data

analysis procedure is to apply wall corrections for streamline curvature and normal

downwash. Each step of the process is described below. A few minor changes were

made to the conventional approach in order to improve efficiency and to make the

corrections more consistent with aerodynamic theory. The two principal differences

are:

• Gravity effects (tares) are subtracted prior to removal of support effects and

are calculated through a model-fitting procedure.

• Both the lift and drag force are corrected for alignment, rather than only the

drag force.

• Induced angles of attack due to streamline curvature and normal downwash do

not contribute to αc.

The analysed data is insensitive to the position of the static-tare-removal step, so

this alteration will not be discussed in detail. The latter two changes, however, will

be discussed further in Section 5.
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3.1 Static Tare Removal

For a given configuration, a wind-off pitch sequence is followed by an identical

wind-on sequence. In order to save time during wind tunnel tests, a mathematical

model was developed to describe the motion of a point-mass – the model’s center

of gravity (CG) – with an arbitrary initial position that then moves through a yaw

angle ψ followed by a pitch angle θ. The wind-frame forces due to the model weight

are constant, so:

~M
(W )

BMC = ~r
(W )

BMC/CG × ~F
(W )

CG

In the above notation, BMC/CG denotes r is a vector from the BMC to the model

CG, and (W ) denotes a vector is in the wind frame. ~F
(W )

CG is the force vector acting

at the model CG, ~F
(W )

CG = [0 0 +Wm]T, where Wm is the weight of the model. The

LSWT external balance turntable also has a center of gravity that is located at a

point (x1, y1, z1) relative to the BMC. As the turntable rotates through yaw angle ψ,

it provides a similar contribution to resulting moment. It is convenient to define two

intermediate coordinate systems: one model-fixed (M) and one balance-fixed (B).

The position of the model CG is constant in the model frame:

~r
(M)

BMC/CG = const =


x0

y0

z0


(M)

for a point at arbitrary position (x0, y0, z0) relative to BMC (expressed in model-

frame coordinates). Because both the model frame and balance frame rotate with
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yaw angle ψ, a vector in the model frame is expressed in the balance frame as:

~r (B) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

~r (M)

The balance frame and wind frame differ only by yaw angle ψ. A vector in the

balance frame is expressed in the wind frame as:

~r (W ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

~r (B)

If the model CG is displaced by angles (θ, ψ), then

~r
(W )

BMC/CG =


(x0 cos θ + z0 sin θ) cosψ − y0 sinψ

(x0 cos θ + z0 sin θ) sinψ + y0 cosψ

−x0 sin θ + z0 cos θ


In practice, the external balance is “zeroed” by subtracting the forces and moments

observed at θ = ψ = 0 from other readings. This zeroes all force readings and offsets

moment measurements so that:

~M
(W )

BMC = WmRm +WtRt
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where

Rm =


(x0 cos θ + z0 sin θ) sinψ + y0(cosψ − 1)

−[(x0 cos θ + z0 sin θ) cosψ − y0 sinψ − x0]

0

 ;Rt =


x1 sinψ + y1(cosψ − 1)

−[x1(cosψ − 1)− y1 sinψ]

0


At this point, some of the cumbersome notation will be dropped. The first and second

components of ~M
(W )

BMC will be denoted RM (rolling moment) and PM (pitching

moment), respectively. Additionally, some simplifications to the above expression

are made using the following substitutions:

M0 = `0Wm M1 = `1Wt RM0 = Wmy0 +Wty1

x0 = `0 cos θ0 x1 = `1 cosψ1 PM0 = −(Wmx0 +Wtx1)

y0 = `0η0 y1 = `1 sinψ1

z0 = `0 sin θ0

The final result is:

RM(θ, ψ) = (cosψ − 1)RM0 + sinψ{M0[cos(θ − θ0)− cos θ0]− PM0} (3.1)

PM(θ, ψ) = (cosψ − 1)PM0 +RM0 sinψ −M0 cosψ[cos(θ − θ0)− cos θ0] (3.2)

For a pitch sweep, RM = const = 0 since the balance is zeroed prior to the run.

The pitching moment for a pitch sweep at zero yaw is:

PM(θ, 0) = −M0[cos(θ − θ0)− cos θ0] (3.3)
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For a yaw sweep at zero pitch,

RM(0, ψ) = RM0(cosψ − 1)− PM0 sinψ (3.4)

PM(0, ψ) = (cosψ − 1)PM0 +RM0 sinψ (3.5)

Static tare removal is then accomplished with the following procedure: First, a pitch-

sweep static tare run is performed at zero-sideslip, where rolling moment is constant

with varying pitch. The recorded pitching moment values from the pitch sweep are

then fit to Equation 3.3, yielding estimates of the parameters M0 and θ0. Next,

a yaw-sweep static tare run is performed at zero pitch. The pitching moment and

rolling moment data are fit to Equations 3.4 and 3.5 to yield estimates of RM0 and

PM0. Following this procedure, a discrepancy often appears between the values of

RM0 and PM0 resulting from Equation 3.4 versus those resulting from Equation 3.5.

This discrepancy is explained by considering the Taylor series representations of the

sine and cosine functions.

To second order, Equations 3.4 and 3.5 reduce to

RM(0, ψ) ≈ −RM0
ψ2

2
− PM0 ψ (3.6)

PM(0, ψ) ≈ −PM0
ψ2

2
+RM0 ψ (3.7)

For small values of ψ, PM0 dominates in the RM equation, while RM0 dominates

in the PM equation. In practice, the larger variation in these dominant terms results

in a lower uncertainty in the outcome of the data fitting procedure. As such, the

parameter PM0 is taken from Equation 3.4, and RM0 is taken from Equation 3.5.
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3.2 Blockage Corrections

Once the static tare is removed, blockage corrections are applied to the upright

data in the wind-oriented coordinate system. The solid blockage correction depends

only on model and test section geometry. Following Barlow et al., the solid blockage

correction takes the form:

εsb =
∆Vsb

Vu
= εsb,W + εsb,B =

K1τ1,WVW
C3/2

+
K3τ1,BVB
C3/2

(3.8)

In the above equation, K1 and K3 are respectively body shape factors for the wing

and fuselage determined by model geometry, and τ1,W and τ1,B are respectively

model-to-test-section ratio shape factors for the wing and fuselage, dependent on

model and tunnel geometry. VB and VW are the body and wing volumes, respec-

tively and ε is the incremental change in velocity – in this case, due to solid blockage

(subscript sb). Finally, C is the test section cross-sectional area; C3/2 is a repre-

sentative test section volume. For the LSWT, C3/2 = 561 ft3. From inspection,

Equation 3.8 is consistent with the reasoning in Section 1, i.e., εsb ∝ Vmodel/Vtunnel.

The shape factors K and τ were empirically determined, and plots are given by Bar-

low et al. The incremental velocity εsb is typically quite small. For the experiment

discussed in Section 4, εsb = O(10−3).

The wake blockage effect increases with increasing drag. Not accounting for

strongly separated bluff-body flow, the incremental velocity due to wake blockage is

computed using:

εwb =

(
S

4C

)
CDu (3.9)

where S is again the wing planform area and CDu is the uncorrected drag coefficient,

defined for clarity as CDu = D/qactS. This equation is derived by modelling the de-
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celerated wake region downstream of the wing as a source singularity. The correction

to qact is then:

qc = qact(1 + εsb + εwb)2 (3.10)

where qc is the corrected dynamic pressure. After applying corrections to the dynamic

pressure, T&I effects are removed and the data is transferred to model aerodynamic

moment reference center. The data is then further corrected for the presence of the

test section walls.

3.3 Support Tare & Interference Removal

At this point, the support T&I data from the sequence described in Section 1

are subtracted from the corresponding upright data. This is done for all forces and

moments (as opposed to just the drag force). The first step is to determine the

combined tare and interference effects associated with the support strut, TIL. For

notational simplicity, let ∆ = TIL. As discussed in Section 1, ∆ is calculated using a

direct, point-by-point subtraction of the inverted-with-image data from the inverted-

without-image data. The support ∆ is then subtracted (again point-by-point) from

the upright-without-image data to yield “free-flight” wind tunnel data (see Figs 1.3–

1.6 in Section 1). Aerodynamic moments are transferred from BMC to MRC using

Equations 2.2 in Section 2 to yield “support-free,” model-center forces and moments.

These are then nondimensionalized using qc, leaving true “uncorrected” coefficients

CDu, etc. Note that at this point, these coefficients are referred to as “uncorrected”

because all of the wall corrections remain to be applied. The first boundary correction

applied is the streamline curvature correction.
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3.4 Wall Corrections

After transferring moments to the model MRC, corrections for streamline curva-

ture and normal downwash are applied. The induced angle of attack due to streamline

curvature is given by:

∆αsc = τ2δ

(
S

C

)
CLW (3.11)

where CLW is the wing lift coefficient, and τ2 and δ are factors representing boundary-

induced upwash for a particular combination of model size and test section geometry.

This change α affects the uncorrected lift coefficient, and the uncorrected pitching

moment coefficient as a result. The effects on the lift and pitching moment coefficients

are respectively:

∆CL,sc = −dCL
dα

∆αsc

∆Cm,sc = −0.25∆CL,sc

(3.12)

For this test, CLW was approximated by subtracting wing-off data from full-model

data, shown in Figure 3.1.

The normal downwash correction is applied in a similar manner:

∆αnd = δ

(
S

C

)
CLW (3.13)

and

∆CD,nd = CLW∆αnd = δ

(
S

C

)
C2
LW (3.14)

The fully corrected angle of attack is:

αc = αg + ∆αup + ∆αsc + ∆αnd

where αg is the geometric angle of attack, i.e., the angle measured relative to a
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Figure 3.1: Estimate of CLW using full-model and fuselage-only configurations

reference waterline using a spirit level. The uncorrected drag coefficient is then

modified due to the drag induced by the test section walls:

CDc = CDu + CLW∆αup︸ ︷︷ ︸
∆CD,up

+ δ
S

C
C2
LW︸ ︷︷ ︸

∆CD,nd

(3.15)

In the above equation, ∆CD,up and ∆CD,nd are computed by approximating ∆αup

and ∆αnd as small angles. The induced drag due to lift is then L sin ∆α ≈ L∆α.

The change in the final data resulting from this approximation is discussed further

in Section 5.

The final coefficient correction is applied to pitching moment; due to the altered

downwash component, the tail is at a different angle of attack than it would be in
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free flight. This correction is computed using:

∆Cm,CG = −
(
∂Cm,CG

∂δs

)
∆αtail (3.16)

In the above equation, the induced angle ∆αtail is identical to ∆αsc mentioned ear-

lier, except that the factor τ2 is determined using tail geometry rather than c/4.

∂Cm,CG/∂δs is the rate of change of pitching moment with respect to the tail stablizer-

incidence angle. Since the change in pitching moment due to stabilizer deflection is

unknown a priori, a run sequence with varying stabilizer incidence was conducted

to determine the tail effectiveness ∂Cm,CG/∂δs. Again, Barlow et al. contains the

figures used to determine all the empirical factors in the above equations.
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4. EXAMPLE APPLICATION TO A TARE & INTERFERENCE TEST

4.1 Introduction

The Oran W. Nicks LSWT is capable of performing a wide variety of aerodynamic

testing. Apart from aerospace vehicles, offshore structures such as oil platforms and

ships are tested by matching relevant flow and geometry conditions. Blockage correc-

tions are applied for all applications, but the remaining wall corrections only apply

to vehicles generating lift. Furthermore, the T&I strategy discussed in Section 3 is

typically reserved for strut-mounted models rather than for sting- or floor-mounted

models.

The LSWT was recently contracted to collect data for a twin-engine aircraft in

multiple configurations. Because this was a proprietary test, no specific details will

be given about the actual vehicle. Applied forces and moments were measured using

the LSWT external balance for pitch angles α ranging from −20◦ to +30◦ and yaw

angles β between ±30◦ at a nominal dynamic pressure qact of 95 psf. Including

blockage corrections, this corresponds to an approximate flow speed of 290 ft/sec.

An extensive test schedule was executed which included inverted, inverted-with-

image and upright model configurations necessary for tare and interference removal.

Upright-with-image configurations were also tested to establish the upflow angle.

Accurate execution of this method requires the main support strut to penetrate

either the top or bottom fuselage surface and that the model pitch point be such

that the installed model is symmetric about the wind-tunnel midplane (which is

also the location of the balance reference center). Most critical is that the distance

between the model floor and image strut fairing in the inverted orientation is equal

to the distance between the model floor and the main strut fairing in the upright
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Figure 4.1: Mounting dimensions for LSWT T&I test (shown with generic model
image).

configuration. Figure 4.1 shows the relevant dimensions for the inverted-with-image

configuration. When the model is upright, the key dimension to match is the 14.88-

inch offset between the ventral surface and the horizontal face of the strut fairing.

4.2 Model Description

The aircraft model used in the wind-tunnel test was fabricated at the LSWT using

drawings supplied by the customer. The model’s main component is an aluminum

fuselage machined on CNC mills, assembled and hand finished. To accommodate a

drag build-up study, many of the removable model components had close-outs that

gave a smooth outer model surface when the component of interest was removed.

Depending on the part, these add-on components were fabricated of aluminum using
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the CNC mill or were fabricated of rapid-prototyper (RP) resin using one of several

RP machines at the LSWT. Bolt holes were filled with model clay and seams were

covered with aluminum tape.

The overall model length is approximately 62 inches measured from the nose to

the aftmost point on the tail in a waterline plane. The overall wingspan is 70 inches,

and the wing is rectangular and unswept. In the middle of the fuselage, the main

aluminum body is approximately 10 inches wide.

4.3 Experimental Setup

The model was mounted to a 2.25-inch diameter annular steel strut connected

to the external balance; the center of the strut provided a data channel for internal

instrumentation to reach the data acquisition (DAQ) system below the test section.

The portions of the struts exposed to the flow were knurled during manufacturing

to trip turbulent transition and minimize Reynolds number effects (see Figure A.2

in Appendix A). The image strut was the same outer diameter as the main strut,

but was not attached to the test section walls so as to directly measure the tare

and interference effects of the ventral strut. Both struts were shielded from the flow

by 25-inch-tall fairings shaped as symmetric tapered airfoils which were designed

to match the 14.88-inch offset from the model’s ventral surface. The main-strut

fairing was attached to the LSWT upper turntable, which was maintained in a fixed

position throughout the test. With this setup, the lower turntable is able to provide

yaw motion while the fairing attached to the upper turntable remains at a 0◦ angle

of attack relative to the flow. Clearance of approximately 0.25 inches between the

struts and fairings ensure that the entire model load passes through the external

balance. Fouling circuits ensure the load path is not compromised during testing.

An internal Exlar GSX40-0401 linear actuator (Appendix A) mounted between
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the model and strut allowed a commanded pitch attitude while maintaining attitude

and resisting applied loads. The GSX40 features a roller screw mechanism which

maintains precise positioning under larger loads and an internal brake which enables

the decoupling of the actuator from the electrical system once position is attained.

These were favorable features as the actuator showed virtually no displacement from

the desired attitude while under load, nor did it contribute to any signal noise. An

electronic inclinometer with 0.05◦ accuracy inside the model provided pitch-angle

feedback throughout the test.

The model was installed into the test section through the removable ceiling using

an overhead hoist. The main strut was installed followed by the lower fuselage half,

which mounts to the main strut using the linear actuator. Following this, an optical

transit located downstream of the model was used to bring the model to zero yaw

and zero the wind-tunnel turntable. Before testing, a large load was placed on the

nose of the model to test pitch actuator rigidity. Virtually no play was observed,

proving the system to be suitably stiff. Removable sliding seals were installed to

mitigate flow-through for each run. Free motion of the sliding seals was promoted

by lightly sanding key portions of the knurled struts.

4.4 Pitch and Yaw Sweeps

The main activity of the test program consisted of pitch and yaw sweeps during

which external balance data were recorded. Pitch sweeps were performed across a

range α = −20◦ to +30◦, always at β = 0◦. Yaw sweeps were performed across a

range ψ = ±30◦ in 2◦ increments. These were typically executed at pitch angles

α = 0◦, 6◦ and 14◦. Before a sequence of sweeps for any new configuration, the

external balance was zeroed at model attitude α = β = 0◦. Two static tare runs

were executed for each significant model configuration; one pitch sweep at β = 0◦ and
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one yaw sweep at α = 0◦. A configuration was deemed ‘significant’ if the addition

or removal of a component would greatly alter the overall weight and/or center of

gravity location of the model. A non-linear least squares fit was then applied which

defined the behavior of the load response for a yaw sweep at any pitch angle. The

static tare data were then subtracted from wind-on data to yield only aerodynamic

forces and moments, using the procedure described in Section 3.

For a pitch sweep, data were taken first with wind off and the model oriented at

α = β = 0◦. Next, the flow was brought to speed with qact = 95 psf. Calibration

between qset and qact as discussed in Section 2 last occurred in July 2011. With wind

on and an initial α = β = 0◦ data point recorded, the model was moved through

a pitch sweep while recording a data point at each prescribed pitch angles. Pitch

sweeps incremented 2◦ between each point. For consistency, the model nose swept

from test section floor to ceiling in the upright configuration (θ moving from negative

to positive) and from ceiling to floor in the inverted orientation. The highest angle of

attack was α = +30◦. After recording this point, the model was returned to α = 0◦

for a final wind-on data point. Then, wind speed was brought to zero and a final

wind-off data point was recorded at α = 0◦.

The procedure was similar for yaw sweeps. Yaw sweeps were always conducted

with body-fixed sideslip angle β starting at +30◦ and sweeping to −30◦. For upright

runs, this meant that ψ swept from negative to positive (the converse being the case

for inverted runs). The model was brought to the appropriate pitch attitude and a

wind-off data point was recorded at ψ = 0◦. Next, the tunnel was brought to qact

= 95 psf and a wind-on point was recorded at the same attitude. The model was

then moved to β = +30◦ (wind impinging on the starboard side of the fuselage) and

stepped in 2◦ increments to β = −30◦. After recording the last wind-on data point

at β = −30◦, the model was returned to β = 0◦ for the final wind-on and wind-off
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data points. The purpose of each wind-off data point is to provide a measure of

experimental repeatability.

Throughout sweeps of both types, qact was continuously monitored by wind-tunnel

personnel and the appropriate setting was maintained by manually adjusting fan

pitch, an operation required throughout each run to ensure a constant flow rate is

maintained despite the changing test section blockage. The data acquisition and

experiment control program only record data when qact falls within 0.15 psf of the

setpoint.

Near the midpoint of the test, configurations of both inverted-with-image and

upright-with-image were swept through a sequence of pitch angles to determine the

balance-to-flow misalignment as discussed in Section 1. The best fit to (CL,upright −

CL,inverted) = 0 is ∆α = +0.5◦. Figures 4.2 and 4.3 show the effect of the upflow

correction to angle of attack.

4.5 Experimental Data Analysis

Experimental data were analysed using the methods described in Section 3. The

test section cross-sectional area C is 68 ft2. The total wing volume is approximately

1.1 ft3. The wing thickness ratio yields K1 ≈ 1.10 and the wing-to-tunnel span ratio

b/B = 48% yields τ1,W ≈ 0.865 for tunnel span-to-height ratio B/H = 1.43. The

velocity increment due to wing blockage is then εsb,W = 1.7 × 10−3. The model

fuselage volume is 1.48 ft3 with geometry yielding K3 ≈ 0.932. The fuselage-to-

tunnel span ratio b/B = 0 (for a body of revolution) yields τ1,B ≈ 0.865 for tunnel

span-to-height ratio B/H = 1.43. The incremental velocity due to fuselage blockage

is εsb,B = 2.1× 10−3. The total velocity increment due to solid blockage is:

εsb =
∆Vsb

Vu
= εsb,W + εsb,B = 3.8× 10−3
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Figure 4.2: Upright and inverted CL data, unaligned
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Figure 4.3: Upright and inverted CL data, aligned with ∆αup = 0.5◦

37



Wake blockage also affects the dynamic pressure, but is proportional to the drag

force:

εwb =
1

4Cqact

D ≈ 3.9× 10−5 lb−1
f ·D

The blockage-corrected dynamic pressure experienced by the model is calculated

from Equation 3.10 repeated below:

qc = qact(1 + εsb + εwb)2

Following the correction to dynamic pressure, the support ∆ is removed using the

process outlined in Section 1.

The downwash correction factor τ2 = 0.05, determined using lt/B ≈ 2%, k =

b/B = 48% and λ = H/B = 0.7. The boundary correction factor δ = 0.1125,

computed for a closed octagonal jet using the same values for k and λ. The lift and

pitching moment coefficients are then incremented using Equations 3.12. The normal

downwash correction is applied using Equations 3.13 and 3.14 with the same value of

δ used in the streamline curvature correction. Finally, the tail-upwash correction is

applied using Equation 3.16; for this application, τ2 is determined with lt/B = 23%

so that τ2 = 0.6.

Ultimately, the objective is to obtain performance and stability data of a free-

air vehicle. Figure 4.4 shows the effect of T&I removal and application of moment

transfers and boundary corrections. The decreasing effect of T&I-removal can be

seen at high angles of attack, and a discrepancy in negative-stall angle appears near

CL,min. The latter phenomenon may result from the angle of attack bias discussed

above. This concept will be explored further in Section 5.

Appendix B contains tables listing key constants and reference dimensions dis-
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Figure 4.4: Effect of corrections on maximum L/D

cussed in the preceding sections. The six wind-frame forces and moments are trans-

ferred to other reference frames following the application of the wall corrections.

Model-frame force and moments are calculated with Equation 2.3.
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5. UNCERTAINTY ANALYSIS AND ERROR PROPAGATION

Section 3 focused on the conventional method for analysing aerodynamic mea-

surements obtained during a wind tunnel tare and interference test. As mentioned

earlier, the procedure as given by Barlow et al. makes use of approximations which

may introduce avoidable errors into the final aerodynamic force and moment data.

Estimating these errors is the objective of this section. The principles of uncertainty

analysis are first introduced, followed by an examination of the uncertainty present

in the external balance measurements and the data reduction procedure for a tare

and interference test with boundary corrections. Recommendations will be made as

to whether the approximations made in the current approach lead to an unacceptable

amount of error.

One of the caveats of measuring a physical system is that the experimenter can

never be completely confident that the resulting measurement values are the “true”

measurement values; indeed, if the true values were known a priori, there would be

no purpose to the experiment. Illegitimate errors, which arise from experimental

mistakes such as misread instrumentation, will not be considered in this thesis. In-

stead, the focus will be on random fluctuations in measurements and on model and

systematic errors that limit the precision and accuracy of the final result.

5.1 Overview of Uncertainty Analysis Techniques

It is important to first note the distinction between accuracy and precision. Bev-

ington and Robinson [6] define accuracy as the proximity of an experimental result

to its true value. Precision, however, is a measure of how well a result was deter-

mined, i.e., the repeatability of a result without reference to its true value. As one

may expect, the overall “goodness” of a result depends on both high accuracy and
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precision. The term “uncertainty” refers to the precision with which a result is deter-

mined. Because the true aerodynamic values are not known a priori, the actual error

is unknown. As such, it is necessary to develop a consistent method for determining

and quoting the estimated error.

Bevington and Robinson make another distinction between systematic error and

random error. Systematic error describes repeatable errors that cause the measured

result to differ from the true result. Faulty calibrations and observation bias are

two examples of systematic errors. Model form errors are another type of systematic

error and arise when modifications are applied to precise wind tunnel data. Despite

potentially perfect measurements of aerodynamic loads, the transformation from

wind tunnel data to free-air data may introduce additional error.

Random errors are typically assumed to follow a Gaussian distribution. Con-

sidering a generic function x(u, v), the difference between the true value of x and

its estimate based on uncertain measurements of u and v can be estimated using a

first-order Taylor-series expansion:

xest − xtrue =
∂x

∂u
(umeas − utrue) +

∂x

∂v
(vmeas − vtrue) (5.1)

The above expression quantifies the departure of the estimated value of x from its

true value based on its sensitivity to u and v.

In practice, the actual differences on the right-hand side are replaced with un-

certainties because true values are unknown. Furthermore, to ensure the propagated

uncertainty on x is positive and to account for the possibility that errors in u and v

are correlated, Equation 5.1 is squared to yield:

σ2
x = σ2

u

(
∂x

∂u

)2

+ σ2
v

(
∂x

∂v

)2

+ 2σ2
uv

(
∂x

∂u

)(
∂x

∂v

)
(5.2)
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The term σ2
uv is the statistical representation of how errors in u and v are cor-

related, known as the covariance (which can be positive or negative). Equation 5.2

propagates measured uncertainties σu, σv, and their covariance σ2
uv into the resulting

uncertainty σx. The covariance terms are often uncorrelated or are small in relation

to the other terms and are ignored for the following discussion. In this case, the error

propagation formula reduces to:

σ2
x =

∑
i

σ2
ui

(
∂x

∂ui

)2

(5.3)

5.2 Measurement Uncertainty In Wind Tunnel Testing

Measurement uncertainty is first introduced into any measurements taken due

to random error. The external balance is calibrated periodically, and load checks

are routinely performed during operation. The load checks hang a known weight

from a known location in order to generate six known forces and moments. The

balance is zeroed prior to a data run with the model in its starting position (usually

θ = ψ = 0◦). The force and moment measurement uncertainties σF and σM are the

greater of:

σF = 0.2 lbf or 0.2% and σM = 0.2 ft · lbf or 0.2%

In many cases, uncertainty due to random error is approximated as the root-mean-

squared error (rmse):

rmse =

√∑N
n=1 (yn − ŷn)2

N
(5.4)

After wind-off data are obtained, the flow is brought to speed and the model is

set to an attitude θ, ψ. The test section dynamic pressure qact is calulated from qset

through the calibration mentioned beforehand. From Hidore, the measurement un-
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certainty in qact is 0.02 psf. The pitch angle θ is routinely verified, first with a digital

inclinometer and again if necessary with a bubble clinometer. These instruments are

placed on a surface parallel to waterline zero (WL 0) with the linear actuator set

zero pitch. For this wind tunnel entry, a digital inclinometer was also mounted inside

the model to provide constant pitch-angle feedback throughout the test. Figure 5.1

shows pitch-angle feedback for the T&I runs. The rmse for this case was 0.004◦, far

smaller than instrument’s bias error. As such, a conservative estimate of the uncer-

tainty in αg is 0.1◦, which is twice the bias error mentioned in Section 4. Prior to

the start of a test, the external balance turntable is aligned with the geometric cen-

ter of the test section (the theoretical flow direction) using a surveyor’s transit and

physical markings fore and aft of the test section ceiling. The model is then aligned

with the flow using the same procedure, this time with a scribe line machined down

the center of the model. From Hidore, this process yields an uncertainty in model

yaw angle of σψ0 = 0.05◦, where σψ0 is the uncertainty with which zero-sideslip is

set. This distinction is made because once ψ0 is set, no verification process exists to

ensure that the commanded sideslip angle is equivalent to that of the model. It is

thought that the uncertainty in yaw increment σ∆ψ from the ψ = 0◦ position is less

than 0.1◦.

5.3 Static Tare

The three forces and the yawing moment are nominally constant for a wind-off

sweep in either pitch or yaw, as mentioned in the static tares discussion (Sec. 3). As

such, the uncertainty in the measurement of those four aerodynamic loads remains

unchanged from that discussed earlier. Figure 5.2 shows every load except FZ remains

within measurement uncertainty from zero. This may result from issues with model

setup and will not be considered an additional contribution to the measurement
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Figure 5.1: Pitch-angle feedback for T&I runs

uncertainty. The rolling and pitching moments are predicted by the mathematical

model derived in Section 3. The measured moments are fit to the mathematical

model, whose goodness of fit is determined using the rmse (Equation 5.4). For this

application, yn are measured values, ŷn are the values predicted by MT, and N is

the number of data points in the pitch or yaw sweep.

The first step in the static tare procedure is a pitch sweep at zero sideslip. Pitching

moment data are fit to Equation 3.3, repeated below:

PM(θ, 0) = −M0[cos(θ − θ0)− cos θ0]

The result is shown in Figure 5.3. For this fit, M0 = −98 ft·lbf and θ0 = −55.6◦

which yields an rmse of 0.05 ft·lbf .
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The pitch sweep is followed by a yaw sweep at zero pitch. Rolling and pitching

moment data are respectively fit to Equations 3.4 and 3.5 to yield estimates of PM0

and RM0. For the example shown in Figure 5.4, the coefficients computed from

Equation 3.4 are RM0 = −276 ft·lbf and PM0 = −123 ft·lbf . However, those

computed from Equation 3.5 are RM0 = −274 ft·lbf and PM0 = −137 ft·lbf . The

maximum rmse for the zero-pitch yaw sweep is approximately 1 ft·lbf . As discussed

earlier, PM0 dominates in Equation 3.4 and RM0 dominates in Equation 3.5. Using

RM0 = −274 ft·lbf and PM0 = −123 ft·lbf , Equations 3.1 and 3.2 can predict the

behavior of the model CG for a yaw sweep at any pitch angle between −20◦ ≤ α ≤

+30◦. Figure 5.5 shows the accuracy of the computed fitting function for θ = α = 14◦.

The maximum rmse for the overall static tare procedure is also 1 ft·lbf . Note that

the error bars in Figures 5.3–5.5 are magnified by a factor of 5 in order to make them

visible.
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Figure 5.4: Yaw sweep static tare fit result, θ = α = 0◦. Error bars magnified 5x
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Uncorrected coefficients are computed using the blockage-corrected value of dy-

namic pressure qc to scale gravity-subtracted forces and moments. For a generic force

measurement F :

CFu =
F

qcS
=

F

qact(1 + εT)2

where εT = εsb +D/4qactC. For εT � 1, the binomial theorem is used to approximate

the above result as:

CFu ≈
F

qactS
(1− 2εT) =

F

qactS

(
1− 2εsb −

D

2qactC

)

Similarly, for a generic moment measurement M :

CMu ≈
M −MT

qactS`
(1− 2εT) =

M −MT

qactS`

(
1− 2εsb −

D

2qactC

)

where MT is the wind-off moment, and ` is a reference length (c for My and b for

Mx).

Assuming exact reference dimensions S and `, the uncertainty in CMu depends

on the measured moment and dynamic pressure, the goodness of the static tare

fit model, and on the accuracy of the blockage correction factors ε. εwb is itself

sensitive to the drag force measurement D and the uncorrected dynamic pressure

qact. Assuming no covariance between the five variables, the uncertainty in CMu is

calculated with Equation 5.3:

σ2
CMu

=

(
CMu

M −MT

)2

(σ2
M + σ2

MT
) +

[
CMu

qact

(
1− εwb

1− 2εT

)]2

σ2
qact

+

(
2
CMu

1− 2εT

)2

σ2
εsb

+

(
εwb

CMu

1− 2εT

)2

σ2
D

(5.5)
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Equation 5.5 is further simplified by examining the parenthetical term multiplying

σ2
qact . The term εwb/(1 − 2εT) can be neglected because it is small compared to 1.

Additionally, the term multiplying σ2
D can be neglected in the final result because

ε2wb ∼ 0 appears in the numerator when expanded. Equation 5.5 then reduces to:

(
σCMu

CMu

)2

=
σ2
M + σ2

MT

(M −MT )2
+

(
σqact
qact

)2

+ 4

(
σεsb

1− 2εT

)2

(5.6)

From this progression, it is evident that the drag uncertainty has a negligible

contribution to the uncertainty in CMu. Furthermore, because of the assumed model

form error associated with the solid blockage correction, a conservative estimate

for the uncertainty in the solid blockage correction factor is σεsb ≈ εsb, i.e., the

uncertainty equals the value of the correction. The final contribution to σCMu
is the

uncertainty in the static tare fit procedure, to be discussed in the following section.

The uncertainty in an uncorrected force coefficient CFu is found using similar logic:

(
σCFu

CFu

)2

=

(
σF
F

)2

+

(
σqact
qact

)2

+ 4

(
σεsb

1− 2εT

)2

(5.7)

From the preceding sections, σM and σF are 0.2% of the measured load and σqact =

0.02 psf. From the discussion above, σMT
≈ 1 ft · lbf and σεsb ≈ εsb.

5.4 Determination of Flow Angularity

The upflow angle is determined by comparing the lift curves for the upright-with-

image and inverted-with-image configurations. An elegant approach to finding this

angle is to first perform a linear fit on the linear portion of the lift data for both

configurations. The fitting function takes the form:

CL(α) ≈ a0α + CL,α=0
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where a0 is the lift-curve slope and CL,α=0 is the lift coefficient at zero angle of

attack. This is a straightforward operation, since the lift curve can be considered

linear between the positive and negative stalled regions. The zero-lift angle of attack

αCL=0 is computed for both configurations by evaluating the quotient CL,α=0/a0.

The difference between the two zero-lift angles is twice the upflow angle. For this

wind tunnel test, the unstalled portion of lift curve had two distinct slopes as shown

in Figure 5.6. If the linear portions of the lift curves are split at the discontinuity

occurring at α ≈ 6◦, two distinct upflow angles result from the computation. This

approach yields

∆αup = 0.42◦ ± 0.03◦ or

∆αup = 0.66◦ ± 0.04◦

Despite the low uncertainty associated with each potentially correct upflow angle,

there is an approximate 0.2◦ discrepancy between the two upflow angles. Another

approach is to fit the entire linear portion of the lift data. This predicts an upflow

angle of ∆αup = 0.49◦ with an uncertainty σ∆αup = 0.03◦. Finally, a brute-force

approach can be followed, where the rms error is defined using Equation 5.4 with

yn = CL,upright and ŷn = CL,inverted. A shooting method approach is then used to

determine the upflow angle as the rmse is driven to zero. This approach yields

∆αup = 0.48◦ ± 0.03◦. From the preceding argument, a conservative estimate of the

upflow angle is:

∆αup ≈ 0.5◦ ± 0.15◦

The value of σ∆αup is chosen from the spread of the above results.
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5.5 Support T&I Removal

Following the same procedure outlined in Section 3, support-free forces and mo-

ments are obtained by subtracting the support ∆ from upright data. The procedure

calls for a point-by-point subtraction to determine support strut effects. Using drag

as an example, the uncorrected drag coefficient measured in wind-axis coordinates

at balance-center (wabc) is computed using

CD,wabc = CDu|upright −∆Du|inverted = CDu|upright − (CDu|inv/in − CDu|inv/out)

The total uncertainty in CD,wabc is

σCD,wabc
=
√

3σCDu

Likewise, the uncertainty for any T&I-subtracted data is
√

3 multiplied by the un-

certainty of the relevant uncorrected coefficient.

Barlow et al. assume a point-by-point subtraction method for the support T&I

correction. This could introduce error because it does not account for ∆αup. As such,

forces and moments measured at specific attitudes while inverted are subtracted from

those at somewhat different upright angles of attack. Theoretically, one would miti-

gate this issue by first interpolating the inverted data to the upflow-corrected values

of α seen by the upright data. The interpolation process introduces no additional

uncertainty, as the aerodynamic forces and moments tend to vary smoothly over

increments less than 1◦. Additional uncertainty is however introduced when extrap-

olating in the post-stall region.

An interpolation scenario is shown in Figure 5.8. Here, the inverted data at

α = αg −∆αup are interpolated to the upright angles of attack α = αg + ∆αup. The
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Figure 5.8: Effect of interpolation of inverted CL data

rmse between the two CL curves is 0.018. Figure 5.9 shows the result of the same

approach for the drag data. The rmse between the two CD curves in this case is

0.005.

Flow angularity affects yaw-sweep data as well. The effect is computed by fitting

dCD/dα to a generic function f(α). The advantage of this strategy is the ability to

derive an analytic expression for dCD/dα by differentiating f(α) with respect to α

so that f ′(α) ≈ dCD/dα. Figures 5.10 and 5.11 respectively show the accuracy of

the CD(α) and dCD/dα fitting functions. A parabolic fit to CD(α) results in errors

of 0.023 in CD and 0.01 in dCD/dα. A quartic fit to CD results in errors of 0.012 in

CD and 0.008 in dCD/dα. Figure 5.11 additionally shows the largest discrepancies

between the fitting functions and measured data to occur near stall.

The effect of flow alignment on CD(β) is derived using a first-order Taylor series
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expansion to represent the change in CD due to upflow. Figure 5.12 shows the effect of

an upflow of ∆αup = 0.5◦ on CD(β). Data points represent measured data while solid

lines show the value of CD accounting for ∆αup. At 0◦, the interpolation produces

virtually no discrepancy between the CD curves. The rmse at 0◦ is 7.4 × 10−4.

The rmse increases linearly with increasing pitch angle, and reaches 1.4 × 10−2 at

α = 14◦. Extrapolating, the drag uncertainty associated with the upflow correction

could reach approximately 0.02 at α = 20◦.
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5.6 Moment Transfers to Model MRC

Forces and moments are then translated from wind-axis, balance-center (wabc)

to wind-axis, model-center (wamc). In coefficient form, Equations 2.2 become

C`,wamc = C`,wabc −
yMRC

b
CLu −

zMRC

b
CY u

Cm,wamc = Cm,wabc −
zMRC

c
CDu +

xMRC

c
CLu

Cn,wamc = Cn,wabc +
xMRC

b
CY u +

yMRC

b
CDu

(5.8)

This operation applies only to measured moments, so no uncertainty is introduced

into the force measurements. Additionally, b, c, and the position of the model MRC

relative to the BMC (xMRC, yMRC, zMRC) are considered exact because they are all

reference dimensions. These dimensions do however effectively serve to amplify un-

certainties of uncorrected force coefficients, resulting in an additional contribution

to the uncertainty in the moment coefficients. Assuming no covariance between the

external balance’s force and moment readings,

σ2
C`,wamc

= σ2
C`,wabc

+
(yMRC

b

)2

σ2
CLu

+
(zMRC

b

)2

σ2
CY u

σ2
Cm,wamc

= σ2
Cm,wabc

+
(zMRC

c

)2

σ2
CDu

+
(xMRC

c

)2

σ2
CLu

σ2
Cn,wamc

= σ2
Cn,wabc

+
(xMRC

b

)2

σ2
CY u

+
(yMRC

b

)2

σ2
CDu

(5.9)

5.7 Boundary Corrections

Recall that the wing is generating circulation to achieve lift. Furthermore, be-

cause a wing has tips (unlike an airfoil), spanwise flow moving from root to tip on

the pressure side of the wing creates tip vortices which trail downstream. Due to

the presence of the wind tunnel walls, the resulting flow pattern due to the wing’s
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circulation is altered. As discussed earlier, a horseshoe vortex is constructed with a

bound vortex filament distributed along the wing’s quarter-chord (with vorticity in

the +yw direction) which turns 90◦ at the wingtips and continues downstream (with

vorticity in the ±xw direction).

For an infinite vortex filament, the induced vortical velocity at a distance r away

is vθ = −Γ/2πr, where Γ is the circulation. The velocity w in the −zw direction is

w = vθ cos θ and the induced angle of attack along the centerline (z = 0) due to a

single pair of image vortices located at ±h is:

αi(x) ≈ w(x)/U∞ =

(
cLS

2π

)
x

(x2 + h2)

where cL is the lift coefficient per unit span CL/b. The approximation is further

simplified by restricting the streamwise location of the correction to the wing quarter-

chord on test section centerline. Figure 5.13 shows the flow field induced by a number

of image vortex systems located at ±nh, n = 1 . . . N relative to the test section

centerline. The vertical velocity components are amplified for effect, showing the

spatial variation of ∆αsc. Additionally, if the unstalled portion of the lift curve is

approximated as a line:

CL = 2Γb/U∞S ≈ a0 · α

where a0 is the lift-curve slope dCL/dα. This shows Γ ∝ α, which would cause

further variation in ∆αsc.

The added wingtip vortex image systems cause a reduction in induced downwash,

causing a wing to appear to have a larger aspect ratio than in reality. Figure 1.10

shows the general image setup for a pair of tip vortices located at yw = ±b/2. Again,

since the total circulation must remain constant, the wing and its tip vortices are
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Figure 5.13: Induced flow field due to bound vortex and image systems

enclosed within a circular boundary of radius R. As before, the boundary becomes

a streamline of the flow using the method of images (Figure 5.14). Because the tip

vortices are of opposite sense relative to each other, so too must the image vortices.

The induced downwash that would have been present in free flight is thus reduced,

resulting in a decrease in both induced angle and in drag. Additionally, the tip

vortices are modelled as semi-infinite vortex filaments because in two dimensions,

they appear to originate at the wing’s quarter-chord (unlike the spanwise vortex

modelled as an infinite filament). Recall that the tip vortices are in fact part of

a continuous horseshoe vortex so that Kelvin’s circulation theorem is observed. It

can be shown that the location of the image vortices must be at ±2R2/b in order to

enforce the zero velocity condition at r = R. The vortical velocity induced by a semi-
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Figure 5.14: Induced flow field due to trailing vortices and image systems

infinite vortex filament at a distance r is vθ = −Γ/4πr, with horizontal and vertical

components of vy = −vθ sin θ and vz = vθ cos θ. Along the centerline, the induced

vertical velocity due to the two image vortices at (r, θ) = (2R2/b, 0) and (2R2/b, π)

is

vz = 2
Γ

4π

b

2R2
=
SU∞
8πR2

CL

Noting that for this case, the test section cross-sectional area C = πR2, the change

in induced upflow due to normal downwash is

∆αi ≈
vz
U∞

=
1

8

(
S

C

)
CL = δ

(
S

C

)
CL

For the circular test section represented in Figure 1.10 with wing on centerline,

δ = 0.125 is exact. Changes to δ arise from different test section cross-sectional

profiles and from differing test setups.
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Figure 5.15: Magnitudes of induced angles of attack due to upflow, streamline cur-
vature, and normal downwash

In order to define uncertainties for the boundary corrections, the empirical data

for correction factors are compared with the theoretical results. Based on the figures

given in Barlow et al., σδ = 0.01, στ2,wing
= 0.01 and στ2,tail = 0.1.

Figures 5.15 and 5.16 show the induced angle of attack as a function of CLW . Fig-

ure 5.15 shows induced angle magnitudes, while Figure 5.16 shows the contribution

of each correction to the total angularity correction. From both figures, it is evident

that the induced angle of attack due to streamline curvature is negligible as its the

magnitude is bounded by the uncertainty in ∆αup. This flow angularity causes a

change in lift due to the altered flow field which results in induced drag.
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Figure 5.16: Contributions of induced angles of attack to total angularity correction

From the boundary correction discussion above,

CDc = CDu + CLW∆αup︸ ︷︷ ︸
∆CD,up

+ δ
S

C
C2
LW︸ ︷︷ ︸

∆CD,nd

This is an appropriate approximation due to the magnitude of the two induced

angles. Currently, the streamline curvature correction does induce any drag force,

nor do the downwash or upflow corrections induce lift force. From Barlow et al.,

CD,aligned = CD,meas + CL,meas tan ∆αup ≈ CD,meas + CL,meas∆αup. The latter term in

the preceding equation is the same as ∆CD,up from Equation 3.15, so one must be

careful to apply the correction only once.

The standard approach does not correct CL,meas for misalignment. If the lift-to-
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Figure 5.17: Effect of data reduction process on lift and drag force

drag ratio L/D is assumed large for aerodynamic vehicles, the induced lift due to

drag is less consequential than the converse. From a theoretical standpoint, it may

be incorrect to include the induced angle due to streamline curvature in the expres-

sion for αc given in standard practice (Section 3) because the streamline curvature

effect does not impart a constant upward flow angularity to the entire flow field (see

Fig. 5.13). Similarly, the angle induced by the trailing tip vortices affects the flow

aft of the wing’s quarter-chord location. A change in angle of attack may accurately

represent the change in vehicle response but does not affect the angularity of the

global flow field. Figures 5.17 and 5.18 show the effect of the data reduction process

for pitching moment and the lift and drag force. Note the increased uncertainty in

the wall-corrected CD as CL passes through stall.
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Figure 5.18: Effect of data reduction process on pitching moment
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6. SUMMARY AND RECOMMENDATIONS

The goal of this thesis is to characterize the uncertainty associated with the

standard data analysis procedure used for wind tunnel testing. While the majority

of the procedure does not require approximation, the final step in the process relies

heavily on it. As discussed earlier a facility with near-perfect precision can produce

repeatable data, which is an important step in evaluating the aerodynamic stability

of the vehicle. The precise data may not be accurate however, i.e., it may still not be

representative of the behavior of the vehicle in flight. The application of boundary

corrections is the current solution to this problem. The model for doing so may be

outdated however.

Throughout the preceding arguments, the uncertainty associated with each step

of the process was quantified. Doing this allowed an assessment of each component’s

overall contribution to the error present in the final data. The static tare math-

ematical model and fitting process proved to be a precise method for computing,

verifying and predicting wind-off moments. Additionally, the static tare methodol-

ogy has a sufficiently small uncertainty. As such, it should be used in future wind

tunnel testing to improve operational efficiency without loss of precision.

The remaining steps introduce additional uncertainty into the finalized data. The

point-by-point T&I subtraction method is acceptable, but would produce a more

accurate result if inverted data is first interpolated to eliminate the ∆αup discrepancy

between inverted and upright configurations. The upflow angle should be calculated

using the shooting method approach as it yields the lowest uncertainty with the

best estimate of upflow. Because the upflow angle is an artifact of the experimental

setup and test section, it should be treated as a change in reference frame prior to
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performing the other boundary corrections. Doing so will still account for the drag

contamination resulting from upflow. The streamline curvature correction borders on

trivial because the magnitude of ∆αsc is negligible compared to the other angularity

corrections. This causes insignificant changes to the lift force and pitching moment.

The streamline curvature correction should still be applied, however, because the

goal is to obtain representative free-flight data. Furthermore, ∆αsc should not be

included in the correction to angle of attack due to its variability, though the error

introduced by doing so is small. The flow angularity due to the normal downwash

correction contributes much more to the overall correction to angle of attack. Finally,

the alignment correction should be applied to both the lift and drag forces. The most

accurate application of this correction would be to treat the correction as a reference

frame change. This requires use of the rigorous equations including the trigonometric

terms rather than making small angle approximations so that:

CD,aligned = CD,meas cos ∆αup + CL,meas sin ∆αup

CL,aligned = −CD,meas sin ∆αup + CL,meas cos ∆αup

The small-angle approximations lead to an approximate discrepancy of 6× 10−5, so

it is at the discretion of the test engineer to apply the correction as necessary.

In conclusion, the standard approach leads to a maximum aerodynamic force co-

efficient uncertainty of 0.1 and a maximum moment coefficient uncertainty of 0.04.

The recommended modifications to this approach do not reduce the overall uncer-

tainty, but produce a more accurate result from a theoretical standpoint. These

claims can be readily verified by comparing wind tunnel test data to full scale flight

vehicle diagnostics. Due to the nature of the atmosphere however, any readings taken

in free-flight are subject to even greater measurement uncertainties due to freestream
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fluctuations, foreign object strikes, etc. As such, it may not be possible to obtain a

true metric of the accuracy of wind tunnel data relative to free-flight data.
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APPENDIX A

TEST SETUP AND LSWT FACILITY FIGURES
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Figure A.1: Schematic view of the LSWT.
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Figure A.2: Knurling on main strut

Figure A.3: GSX40 linear actuator
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APPENDIX B

REFERENCE TABLES
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K1 = 1.095
τ1,w = 0.865 B/H = 1.4286, 2b/B = 0.476
K3,b = 0.932
τ1,b = 0.865 B/H = 1.4286, 2b/B = 0

Table B.1: Solid blockage constants

δ = 0.1125 be/B = 0.476, H/B = 0.7
τ2,wing = 0.05 lt/B = 0.017
τ2,tail = 0.6 lt/B = 0.233

Table B.2: Streamline curvature constants

σ Description Maximum Value
F Force Measurement Uncertainty 0.2% of applied load
M Moment Measurement Uncertainty 0.2% of applied load
αg Geometric Angle of Attack 0.1◦

ψ Yaw Angle 0.1◦

�sb Incremental Solid Blockage Velocity �sb ≈ 4× 10−3

qact Uncorrected Dynamic Pressure 0.2 psf
MT Moment Gravity Tare 1 ft·lbf
Δαup Upflow Angle 0.15◦

CF,wabc T&I-removed Force Coefficient 0.02
CM,wabc T&I-removed Moment Coefficient 0.03

δ Boundary Correction Factor 0.01
τ2w Wing Downwash Correction Factor 0.01
τ2t Tail Downwash Correction Factor 0.1

CF,corrected Fully Corrected Force Coefficient 0.030
CM,corrected Fully Corrected Moment Coefficient 0.035

Table B.3: Data reduction uncertainties
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