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ABSTRACT 

 

Understanding the early age behavior of concrete is an important issue in construction of 

concrete structures since different factors during construction, such as design 

consideration, material usage, and environmental influence, can alter the original 

configuration of the structure intended by the engineers and hence the structure may 

experience and exhibit undesired consequences. The primary interest of this research 

was to model the behavior of concrete under environmental excitations, such as the 

variation of temperature and relative humidity, during the early age after concrete 

placement. Experimental test results were obtained and mathematical models were 

developed for this research. 

Modeling the effect of curing process in response to the relative humidity 

variation was one of the main objectives of this research. A mathematical model for 

back-calculating the diffusion coefficient of cured concrete from experimental test was 

proposed. This back-calculated diffusion coefficient of concrete was indicative of the 

effectiveness of curing application provided during construction. Corner deflection 

model for predicting lift-off displacement and climatic stress model for predicting crack 

formations were formulated in order to predict the distress behavior of concrete for a 

given design and construction scenario. Probabilistic models for lift-off displacement 

and cracking were formulated to predict the probabilities of such distresses. Material 

properties, such as strength, elastic modulus, creep, drying shrinkage, were obtained 

from experimental program and were used as input in these distress prediction models. 
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In order to assess the effectiveness of different curing compounds, two indices, 

such as curing index and overall curing index, were proposed. These indices were able to 

distinguish the difference in performance among different curing compounds. For 

validating the proposed corner lift-off displacement model and climatic stress model, 

numerical simulations were performed and the obtained results were compared with the 

field observations. The probabilistic models for predicting lift-off displacement and 

cracking behavior were validated by comparing the numerical simulation results with the 

field observations at Houston Intercontinental, TX. The predictions from these models 

were found to be in close agreement with the experimental observations. Furthermore, in 

order to assess the impact of a given design and construction, analytical study was 

performed with these models. In the sensitivity analysis, parameters of interest were the 

geometry of the structure, the effect of curing application, and the influence of time as 

well as the season of construction on the distress potentials. Numerical simulations 

indicated that the curing application was able to lower the early age distress potentials. 

The thicker slabs/overlays versus the thinner ones exhibited differences in performance 

in terms of distress potentials. The analytical study also revealed that it was possible to 

vary the distress potentials by varying the time as well as the season of construction. 

Finally, a constructability index was proposed in order to assist in decision making with 

regard to different designs and construction scenarios with a view to minimize the 

distress potentials in concrete structure. The results indicated that the constructability 

index was able to capture and demonstrate the effect of different parameters mentioned 

above on the constructability of rigid pavement/overlay projects.   
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1. INTRODUCTION 

 

1.1 Background 

Concrete is one of the most widely used construction materials for constructing 

highways, roadways, intersections, airstrips, parking lots and more. It is suitable for any 

region and climatic conditions ranging from scorching summer to freezing winter. It 

provides durable and sustainable pavement surfaces with the best ride quality and offers 

an extended service life with the lowest life-cycle cost of all alternatives. Considering its 

performance and related cost, concrete has become a popular construction material for 

building new pavements as well as for rehabilitating and resurfacing old pavements 

(PCA 2013). 

Environmental conditions during construction are important considerations as 

those influence the temperature and the relative humidity distributions within concrete 

affecting the strength and stress development as well as the structural deformation 

characteristics of slab. Rapid change in temperature relative to the strength gain of 

concrete can lead to thermal cracking. A dry environment during construction can 

accelerate the evaporation of water from concrete resulting in drying shrinkage which is 

defined as the strain induced by loss of water (Mindess et al. 2003). Drying shrinkage 

can lead to the development of tensile stress and subsequent cracking due to the restraint 

of shrinkage (Grasley et al. 2006). Rapid surface drying can increase the potential for 

other distress types such as delamination, a mode of failure which causes separation 

within the concrete or an overlay from the underlying layer (Czubak 2011).  
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Early age distresses, such as crack formation and lift-off displacement, observed 

in concrete pavement and overlay impact the long-term performance. Pavements with 

cracks and lift-off displacement are more vulnerable to external exposures and are more 

prone to degradation due to wheel load application. With repetitive application of 

environmental and wheel loads, cracks can extend and connect with other cracks 

resulting in a deteriorated structure. Tensile, shear, and frictional stresses can develop 

across the cracked portion of the slab with load applications and can exhibit distresses 

like spalling. The problem is mainly to do with the loss of structural integrity and ride 

quality due to spalled joints. Also, early age damage can shorten the fatigue life which is 

a function of the conditions at the time of construction. If proper measures are taken, the 

distress potential during the early age can significantly be minimized leading to an 

extended service life of pavement structure. Curing, an element of the construction 

process, can help to minimize a portion of the strain and stress development as well as 

can assist in gaining the desired strength during the early phase of construction. The 

importance of curing and its effect during the construction phase are discussed in the 

following section. 

 

1.2 Curing and Its Importance 

Providing proper curing is a requirement for concrete to develop optimum properties 

(Mindess et al. 2003). Curing helps to control the moisture loss from hydrating concrete 

controlling indirectly the amount of drying shrinkage. Curing also aids in maintaining 

satisfactory moisture content and temperature for a period of time after placing and 
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finishing the concrete; this satisfactory ambience within the pavement supports the 

development of the desired properties of concrete (PCA 2013). Insufficient curing can 

weaken the surface concrete enough to disrupt the proper strength gain and can make it 

vulnerable to early cracking damage and spalling under applied loading cycles. 

When concrete is exposed to a dry environment, capillary pore water evaporates 

near the surface. Excessive evaporation can increase the permeability of the surface by 

five to ten fold (Powers 1947) and can result in undesirable cracking, delamination, 

debonding, and loss of strength (Ye et al. 2009; Walker and Bloem 1957). Curing 

minimizes the evaporation from the surface of concrete, assists in continued hydration 

and strength gain, and helps in minimizing the stress development at an early age. 

Curing is a way to minimize porosity and volume change in the surface of concrete. For 

maintaining the impermeability of the pavement surface, curing is considered to be an 

integral component of the construction process (Powers 1947; PCA 2013; Mindess and 

Young 1981, 2003; Neville 1996; Rasheeduzzafar and Al-Saadoun 1989; Taus et al. 

2008). 

 

1.3 Problem Statement  

The early age distress potentials, if great enough, can be detrimental to the long-term 

performance of a concrete pavement. It is not possible to completely eliminate the early 

age damage due to such effects as inherent variability involved in the construction 

process as well as the interaction of various factors affected by the nature of the design. 

For example, one can achieve higher concrete strength by lowering the water-cement 
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(w/c) ratio but is expected to have higher shrinkage strain and greater potential for early 

age cracking. On the contrary, this potential can be lowered by increasing the w/c ratio 

but such measures may result in lower strength as a result. The objective during 

construction should be to minimize the distress potentials as much as possible through 

implementing proper curing management. 

Proper curing management is an essential and feasible measure which can 

minimize the early age distress potential during construction. Curing helps to keep the 

environmental stresses below the tensile strength of concrete and assists in minimizing 

the volume instability of concrete after placement. It is, therefore, important to model the 

effect of curing and incorporate it in the design analysis for analyzing the outcome of the 

proposed design scenario.  

The process of curing can be modeled as a diffusion process and the quality of 

curing application can be manifested in the diffusion coefficient of concrete which is a 

parameter in the diffusion equation. The lower the value of this parameter is the better 

the quality of curing application is. Such a model can further help to distinguish and rank 

the effectiveness of the different curing compounds available for construction. 

After placing concrete, heat transfer and moisture diffusion take place in concrete 

depending on the ambient environmental conditions. The moisture diffusion and heat 

transfer process instigate the development of moisture and temperature gradients within 

the pavement. These gradients induce temperature and shrinkage strains that are 

responsible for different distresses. Since curing acts as an insulating barrier inhibiting 

the evaporation from concrete, it affects the moisture diffusion taking place at concrete 
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surface and has an influence on the drying shrinkage. Hence, it is necessary to model the 

influence of curing application on the moisture diffusion process taking place during 

construction.  

As thermal dilation and drying shrinkage take place, tensile stress develops 

within the pavement depending on the restraint condition. In response to this tensile 

stress, the structure also undergo time dependent deformation called tensile creep. 

Tensile creep is, however, beneficial for the concrete structure as it relieves portion of 

the induced tensile stress due to shrinkage (D'Ambrosia 2011). Depending on the 

magnitude of the net tensile stress, the pavement can exhibit cracking depending on the 

restraint condition and/ or can debond or delaminate from the underlying layer 

depending on the bonding condition.  

This research focuses on developing a framework to incorporate the curing 

process in the design analysis, to compare the effectiveness of different curing 

compounds, to model the effect of curing application on the moisture diffusion process, 

to model the cracking and lift-off displacement behavior of the slab due to induced strain 

composed of thermal strain, shrinkage strain, and creep strain, and finally to predict the 

probability of distress potentials, such as cracking and lift-off displacement or 

debonding, for a given design and construction scenario. The framework proposed and 

developed in this research can assist in decision-making process through assessing the 

proposed design and construction scenario and can contribute to improving the 

performance as well as extending the service life of concrete pavements and overlays.  
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1.4 Importance and Motivation  

Concrete pavement is usually cured by spraying curing compound on the surface after 

placement. The curing compound acts as a barrier coating limiting the evaporation of the 

mix water from the exposed concrete (Al-Gahtani 2010). There are different curing 

compounds available on the market for use during pavement construction. For better 

pavement construction management, it is necessary to distinguish and rank these curing 

compounds based on their performance and effectiveness which will dictate their use 

and application. A mathematical model capable of distinguishing the degree of 

effectiveness of various curing compounds and modeling the corresponding influence on 

the moisture diffusion process would be an essential tool to a design and construction 

manager. Furthermore, modeling the linkage between the induced stress due to 

environmental excitations and the potential for lift-off displacement and cracking would 

be necessary for evaluating a given design and construction scenario. The need for such 

a methodology for assisting the design engineers and construction managers during the 

design and construction phase was the motivation for this research. 

 

1.5 Research Scope and Objectives 

This research, at first, focused on modeling the time dependent diffusion coefficient of 

concrete which is reflective of the quality of curing application provided during 

construction. To predict the development of temperature and moisture gradients in 

concrete after placement, finite difference temperature and moisture models were 

formulated. The modeled diffusion coefficient of cured concrete was incorporated in the 



 

7 

 

finite difference moisture model to reflect the effect of curing on the moisture diffusion 

process taking place during the construction phase. The development of thermal strain, 

drying shrinkage, and creep strain in response to these gradients were taken into 

consideration, and the corresponding lift-off displacement and cracking behavior of 

concrete were modeled. The parameters of these models were calibrated with the 

experimental test results and the model predictions were validated with the experimental 

observations. The potential for lift-off displacement and cracking were also formulated 

and these probabilistic models were further validated with the information obtained from 

an overlay construction project at Houston Intercontinental, TX. 

The main objectives of this research are summarized below: 

 

(i) to formulate a mathematical model for back-calculating the diffusion coefficient 

concrete which is reflective of the effect of curing application and to incorporate 

the time dependent diffusion coefficient of cured concrete in a finite difference 

model for predicting moisture distribution within the pavement;  

(ii) to develop an index in order to differentiate the performance of different curing 

compounds;  

(iii) to formulate a model for predicting the slab corner lift-off displacement due to 

the nonlinear temperature and moisture gradients within the pavement;  

(iv) to formulate a model for predicting the cracking behavior of concrete under 

restrained condition due to the nonlinear temperature and moisture gradients 

within the pavement;  
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(v) to propose probabilistic models for predicting the potentials for lift-off 

displacement as well as cracking of the pavement for a given design and 

construction scenario; and 

(vi) to propose an index for assessing the constructability of a pavement or overlay 

construction project for a given design and construction scenario.  

 

The goal of this research was to develop and combine the above mentioned components 

into a decision making framework and to demonstrate how such information can be used 

in decision-making for assessing a given design and construction scenario. 

 

1.6 Organization of the Dissertation  

This dissertation has been divided into five sections. Section 1 includes an introduction 

to the research, curing and its importance, problem statement, importance and 

motivation of the research, research scope and objectives, and organization of the 

dissertation. Section 2 provides a literature review of the important concepts and 

elements required for this research. It includes a review for modeling coefficient of 

diffusion, heat transfer and temperature prediction of concrete, moisture transfer and 

relative humidity prediction of concrete, temperature and moisture gradients in concrete, 

time dependent deformation of concrete or creep, shrinkage of concrete, and system 

identification method. In Section 3, formulations of the different models have been 

described and discussed, such as modeling diffusion coefficient of concrete, modeling 

corner lift-off displacement due to curling and warping, modeling climatic stress in 
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concrete, and modeling probability of pavement or overlay failure. Section 4 contains 

the numerical simulation results obtained from the models discussed in Section 3. The 

simulation results and the experimental results were compared to validate the proposed 

models. With the validated models, sensitivity analysis was further conducted to provide 

insight regarding the constructability of concrete pavement and overlay projects. Finally, 

an index known as “constructability index” was proposed to assist in decision making 

for comparing different design and construction scenarios. Section 5 contains a brief 

summary as well as the conclusions of this research. A direction of future research was 

also suggested in this section. 
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2. LITERATURE REVIEW 

 

In Section 1, several objectives associated with this research were identified. To address 

those objectives, several interrelated concepts were discussed to ensure the effective and 

efficient achievement of those objectives. The main focus of the literature review was to 

examine and discuss: (i) modeling approaches for diffusion coefficient, (ii) heat and 

moisture prediction schemes in concrete, (iii) modeling approach of internal temperature 

and moisture gradients in concrete pavement, (iv) time dependent deformation or creep 

in concrete, (v) drying shrinkage in concrete, and (vi) a numerical approach called 

system identification method for solving diffusion coefficient of concrete. 

 

2.1 Modeling Coefficient of Diffusion 

Mitchel (1979) derived a closed form solution for moisture diffusion of a soil body 

subjected to evaporation at the surface. The solution of the moisture diffusion equation 

described the suction distribution throughout the soil body as a function of time and 

space. He solved the diffusion equation using the Laplace transform method for known 

boundary conditions. This soil evaporation situation was similar to that of concrete 

pavement subjected to external drying and the solution was applicable for concrete 

subjected to evaporation at surface.  

A brief description of the formulation and solution to the moisture diffusion 

problem solved by Mitchell is given below. This formulation is based on the assumption 

that a soil body is initially at a suction Ue and is subjected to atmospheric suction of Ua 
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at the surface. If the diffusion coefficient of the soil is assumed to be α, then the 

diffusion equation defining the movement of moisture through the unsaturated soil can 

be stated according to Equation 2.1 which is subjected to the boundary conditions given 

in Equations 2.2 through 2.4. 

 

 
2

2

u u

t x
α

∂ ∂
=

∂ ∂
 (2.1) 

 

boundary conditions:  

 

 ( ,0)
e

u y U=  (2.2) 

 ( , )
e

u y t U as y→ → ∞  (2.3) 

 { }
(0, t)

(0, t)
a

u
h u U

y

∂
= −

∂
 (2.4) 

where, 

( )y, t

y depth along the sample from soil surface

h evaporation constant

u soil suction at depth y and time t

=

=

=

 

   

He used a Laplace transformation to develop the closed form solution shown in 

Equation 2.5. The diffusion coefficient of soil calculated by Mitchel (1979) for a soil 

body subjected to evaporation is shown in Figure 2.1. This solution is applicable for 

concrete pavement subjected to evaporation and hence this solution was used in this 
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research to back-calculate the time dependent diffusion coefficient of cured concrete 

samples. The back-calculated diffusion coefficient of concrete was reflective of the 

effectiveness of curing provided during construction. 

 

 

( ) ( )

( ) ( )2

y, t
2

exp h
2

e a e

a e

y
u U U U erfc

t

y
U U hy h t erfc t

t

α

α α
α

 
= + −  

 

 
− − + + 

 

 (2.5) 

 

 

 

 

Figure 2.1: Soil Suction Profile Due to Evaporation 
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Goldstein (1932) provided a closed form solution to heat conduction problem in 

slab. The solution he provided can also be used for back-calculating the diffusion 

coefficient of cured concrete subjected to evaporation provided the variables for 

temperature and thermal conductivity were changed to moisture and moisture diffusivity, 

respectively. The solution to the heat conduction problem provided by Goldstein is 

discussed below.  

Assuming a slab of thickness of 2l is initially at a constant temperature and the 

slab is placed in a medium at a lower temperature. Without loss in generality, the heat 

conduction problem can be simplified by taking the initial slab temperature as unity and 

the medium temperature as zero (Berger 1931). If the temperature is denoted as θ, α as 

the thermal conductivity, h as the relative emissivity, t as the time, and z as the distance 

perpendicular to the face of the slab measured from the middle of the slab, then the 

differential equation describing the heat conduction in the slab can be expressed as 

shown in Equation 2.6 which is subjected to the boundary conditions expressed in 

Equations 2.7 through 2.9. 

 

 
2

2
t z

θ θ
α

∂ ∂
=

∂ ∂
 (2.6) 

 

boundary conditions: 

 1 0when tθ = =  (2.7) 

 0h when z
z

θ
θ

∂
+ = =

∂
l  (2.8) 
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 0h when z
z

θ
θ

∂
+ = = −

∂
l  (2.9) 

 

The closed form solution to Equation 2.6 obtained by Goldstein is shown in Equation 

2.10.  

 

 

( )

( )

2

2

1 1 exp 1
2 2

1 exp 1
2 2

z z
erf h t h z erf h t

t t

z z
erf h t h z erf h t

t t

θ α α
α α

α α
α α

  − −  
= − − − + − − +   

    

  + +  
− − − + + − +   

    

l l
l

l l
l

 (2.10) 

 

By changing the temperature and thermal conductivity to moisture and moisture 

diffusivity, this solution can be modified to back-calculate the diffusion coefficient of 

cured concrete subjected to evaporation at the surface. As this solution is applicable for a 

slab exposed to radiation at both faces, the closed form solution can be modified for the 

case where evaporation is taking place only at one face of the pavement by obtaining the 

solution for the upper half of the slab, i.e. z ranging from the center to the face of the 

slab. Therefore, either Equation 2.5 or 2.10 can be used to back-calculate the diffusion 

coefficient of cured concrete. Because of its simple and easier expression, Equation 2.5 

was used in the back-calculation procedure for this research.  
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2.2 Heat Transfer and Temperature Prediction of Concrete 

The prediction of temperature in concrete requires taking into account the heat 

generation and heat transfer that takes place during the hydration reaction of concrete. 

The heat generation and heat transfer involve a number of interrelated mechanisms and 

these interrelated steps need to be modeled for accurate prediction of temperature of the 

concrete during the hydration reactions and the corresponding predictions can be 

obtained iteratively (Riding et al. 2007). Modeling the heat transfer and heat generation 

in concrete can be divided into three components: (i) heat generation due to hydration 

reaction, (ii) heat conduction within the body of concrete, and (iii) heat exchange with 

the environment occurring at the boundary of the concrete structure. 

 

 Heat Generation Due to Hydration Reaction 

Within the body of available literature by authors, such as Schinder (2004) and van 

Breugel (1998), there is a description of available methods to model the heat generation 

by cement hydration. The most commonly used method combines the equivalent age 

maturity method and an exponential degree of hydration curve to characterize the rate of 

heat generation by hydration. Freieslenben Hansen and Pedersen (1977) developed the 

equivalent age maturity concept for concrete hydration as shown in Equation 2.11 which 

is also referred to as Arrhenious equation as it depends on the Arrhenius rate concept. 

This equation converts the real time concrete curing age to an equivalent age of concrete 

that is cured at any temperature (Schindler et al. 2002, Emborg 1989). 
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 ( )
0

1 1
exp

273 273

t

e r

r c

E
t T t

R T T

  
= − ⋅ ∆   + +  
∑  (2.11) 

where, 

( ) ( )

( )

t ( )

( / )

(8.3144 / /

r

c

e r

T reference temperature C

T average concrete temperature during timeinterval C

t T equivalent age at the reference curing temperature hours or days

E activation energy J mol

R universal gas constant J mol

= °

= ∆ °

=

=

= )C°

 

Freieslenben Hansen and Pedersen (1985) further described the relationship between 

degree of hydration and equivalent age with an exponential function. The model for 

degree of hydration as a function of equivalent age te is shown in Equation 2.12.  

 

 ( ) exp
e u

e

t
t

β

τ
α α

  
 = ⋅ −     

 (2.12a) 

 

 
1.031 /

0.50 0.30 1.0
0.194 /u FA SLAG

w cm
p p

w cm
α

⋅
= + + ≤

+
 (2.12b) 

 

( )
3 3 3

0.154 0.401 0.804 0.75866.78 exp 2.187 9.5C A C S SO SLAG FA FA CaOp p Blaine p p p pτ − − − −
−= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

  (2.12c) 

 

 ( )
3 3 3 3

0.146 0.227 0.535 0.558181.4 exp 0.647
C A C S SO SO

p p Blaine p pβ −= ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅  (2.12d) 
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where, 

( )

(hrs)

,

(hrs)

/

e

e e

u

t equivalent age at referencetemperature

t degreeof hydration at equivalent age t

ultimate degreeof hydration

hydrationtime parameter

hydration shape parameter

w cm water cementitious material ratio

α

α

τ

β

=

=

=

=

=

= −

3

3

3

,

C A

C S

SO

p weight ratio of tricalcium aluminate to total cement content

p weight ratioof tricalcium silicate to total cement content

p sulfate weight ratio to total cement content

Blaine Blain value specific surface area of cemen

=

=

=

= 2(m / kg)t

 

 

Once the degree of hydration and equivalent age are obtained, the rate of heat 

generation at time t during hydration reaction can be defined as shown in Equation 2.13. 

  

 ( ) ( )
1 1

273 273h u c

e e r c

E
Q t H C t

t t R T T

β
τ β

α
     

= ⋅ ⋅ ⋅ ⋅ ⋅ −     
+ +     

 (2.13) 

where, 

( ) 3

3

, ( / / m )

100 ( / )

( / )

( C)

h e e

u

c

r

c

Q t rateof heat liberation at equivalent age t J h

H total heat of hydration of cementitious materials

at percent hydration J kg

C cementitious materials content kg m

T reference PCC temperature

T nodal

=

=

=

= °

= ( C)PCC temperature °
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The ultimate heat development Hu in Equation 2.13 can be estimated from the 

cement chemistry (Bouge 1947) and the composition of the mineral admixtures (Kishi 

and Maekawa 1995). The ultimate heat development is defined according to Equation 

2.14. 

 

 461
u cem cem SLAG FA FA

H H p p h p= ⋅ + ⋅ + ⋅  (2.14) 

where, 

( )/

,

cem

cem

SLAG

FA

FA

H ultimate heat of hydration of the cement J g

p cement mass ratio to total cementitious content

p slag mass ratio to total cementitious content

p fly ash mass ratio to total cementitious content and

h heat of hydratio

=

=

=

=

= ( )/n of fly ash J kg

 

 

The maximum heat of hydration of cement Hcem in Equation 2.14 can be 

estimated by multiplying the percentage mass of each constituent with the respective 

heat of hydration as shown in Equation 2.15. 

  

 cem i iH h p= ⋅∑  (2.15) 

where, 

( )

( )

/

/ , and

cem

th

i

th

i

H ultimate heat of hydrationof thecement J g

h heat of hydrationof individual i component J g

p mass ratioof i component to total cement content

=

=

=
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Equation 2.15 can further be elaborated as follows: 

 

 3 2 3 4

3

500 260 866 420

624 1186 850

cem C S C S C A C AF

SO FreeCaO MgO

H p p p p

p p p

= ⋅ + ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅
 (2.16) 

 

A detailed description of the heat generation model can be found elsewhere (Schindler et 

al. 2002; Ruiz et al. 2005; Schinder 2004). 

 

 Heat Conduction in Concrete 

Thermal conduction is defined as the transfer of heat within a material from points of 

higher temperature to points of lower temperature. Thermal conduction in concrete is 

dependent of its moisture content, density, specific heat, and thermal conductivity. On 

the other hand, thermal conductivity is a material property that describes its ability to 

transfer heat between points in contact and is defined as the ratio of the rate of heat flow 

to the temperature gradient. It is an important property as it determines the rate of heat 

penetration into the material (Scaulon and McDonald 1994; Mindess and Young 1981; 

Janna 2000; Ruiz et al. 2005; Schindler et al. 2002; Riding et al. 2007). Both the thermal 

conductivity and specific heat of concrete are function of mixture proportions, 

composition, aggregate type, temperature, and degree of hydration of concrete (van 

Breugel 1998; Ruiz et al. 2005). 

The average thermal conductivity of maturing concrete is higher than the 

hardened concrete and the experimental results indicated that the average thermal 
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conductivity of maturing concrete was 33 percent higher than the hardened concrete 

(Khan et al. 1995). Similar observation was reported by others, which showed a 21 

percent reduction in conductivity from maturing state to hardened state (De Schutter and 

Taerwe 1995). In High PERformance PAVing (HIPEPAV®) II software program, a 

linear decline in thermal conductivity of concrete was assumed with the logarithm of 

time and the adopted relationship between the initial and the final thermal conductivity 

of concrete is shown in Equation 2.17 (Ruiz et al. 2005). 

  

 ( )1.33 0.33ik k α∞= − ⋅  (2.17) 

where, 
( / m/ C)

( / m/ C)

ik current thermal conductivity of the concrete W

k thermal conductivity of mature concrete W

degree of hydrationα

∞

= °

= °

=

 

 

 Heat Exchange at the Boundary of Concrete 

 

2.2.3.1 Convection 

Convection is the mechanism of heat transfer between a surface such as concrete and the 

surrounding environment and this mechanism of heat transfer is affected by wind and 

evaporation. Convection can be forced or free depending on the wind speed next to the 

concrete surface. The rate of heat flow from the surface depends on the temperature 

difference, wind speed, and texture of the surface (Ruiz et al. 2005). Convective heat 
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transfer from concrete slab is governed by Newton’s law of cooling as shown in 

Equation 2.18 (Incropera and Dewitt 2002). 

 

 ( )c c Sq h T T∞= −  (2.18) 

where, 
2

2

( / m )

( / m / )

( )

( )

c

c

S

q convectionheat flux W

h convectioncoefficient W C

T surfacetemperature C

T fluid temperature C∞

=

= °

= °

= °

 

 

The fluid temperature T∞ in Equation 2.18 can be approximated as the ambient 

temperature, Ta in degree Celsius (Riding et al. 2007). The expression for convection 

coefficient due to forced and free convection is shown in Equation 2.19 as follows 

(ASHRAE 1993). 

 

 ( )
0.181 0.266

3.727 C 0.9 32 1 2.857c S a S ah T T T T w
−

= ⋅ ⋅ ⋅ + + ⋅ − ⋅ + ⋅    (2.19) 
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where, 
2( / m / )

C

1.79

0.89

( )

(

c

S

a

h convectioncoefficient W C

constant depending onthe shapeand heat flowcondition

for horizontal plates warmer than air

for horizontal plates cooler thanair

T surfacetemperature C

T air temperature

= °

=

=

=

= °

= ° )

(m/ s)

C

w wind speed=

 

 

2.2.3.2 Solar Radiation 

Solar radiation at the entrance of the earth atmosphere is called extraterrestrial radiation. 

Solar absorption is the absorbed flux by a pavement surface due to incoming sunrays and 

it causes the surface to be heated more than the interior. As a result temperature gradient 

develops across the slab thickness (Hsieh et al. 1989). Several factors influencing solar 

radiation absorption are the time of the day or year, latitude, and cloud cover, etc. 

(Thepchatri et al. 1977; Chapman 1982; Branco et al. 1992). Surface horizontal solar 

radiation depends on the extraterrestrial horizontal solar radiation which in turn depends 

on the day of a year, local latitude, declination, and hour angle (Radosavljević and 

Đorđević 2001). 

The computation of solar radiation requires the determination of hour angle that 

involves several steps (Honsberg and Bowden 2013). The equation for Local Standard 

Time Meridian (LSTM), a reference meridian used for a particular time zone, can be 

expressed as follow: 
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 15
GMT

LSTM T= °×∆  (2.20) 

 

where ∆TGMT is the difference between the Local Time LT and Greenwich Mean Time 

GMT in hour. The Equation of Time EoT in minutes, an empirical equation that corrects 

for the eccentricity of the orbit and the axial tilt of earth, can be computed as follows: 

 

 

( ) ( ) ( )
360 360 360

9.87 sin 2 81 7.53 cos 2 81 1.5 sin 2 81
365 365 365

EoT d d d
     

= ⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ −     
     

  (2.21) 

 

where d is the number of days since the start of the year. After obtaining LSTM and EoT, 

Local Solar Time LST can be computed as per Equation 2.22. 

 

 
( )( )4

60

Longitude LSTM EoT
LST LT

⋅ − +
= +  (2.22) 

 

Then the parameter of interest is the Hour Angle HRA that converts the LST into the 

number of degrees the sun moves across the sky and HRA can be computed according to 

Equation 2.23. 

 

 ( )15 12HRA LST= °× −  (2.23) 
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Once the value of HRA is obtained, the energy of extraterrestrial radiation on 

horizontal surface for a particular day in a year can be calculated as follows 

(Radosavljević and Đorđević 2001): 

 

 ( )( )
360

1 0.033 cos sin sin cos cos cos
365oH SC

n
I I L L HRAδ δ

 ⋅  
= + ⋅ ⋅ ⋅ + ⋅ ⋅  

  
 (2.24) 

where, 

( )

( )

2

2

( / m )

1352 21( / m )

1 365

360
23.45 284

365

oH

SC

I extraterrestrial radiationon horizontal surface W

I solar constant W

n a day in a year n

L local latitude

declinationin degrees nδ

=

= = ±

= ≤ ≤

=

 
= = × + 

 

 

 

Finally, the surface horizontal solar radiation can be further updated by considering 

cloud cover C as shown in Equation 2.25: 

 

 ( )0.91 0.7s oHq C I= − × ×  (2.25) 

 

where qs is the surface horizontal solar radiation in (W/m2). 
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2.2.3.3 Atmospheric Radiation 

Objects or matters that are at a temperature greater than zero degrees Kalvin emit 

radiation. The gases that are at a higher temperature in the atmosphere also emits 

radiation though electromagnetic waves causing heat transfer. The heat transfer from the 

gas particles follow the Stefan-Boltzmann law as shown in Equation 2.26 (Riding et al. 

2007, Ruiz et al. 2005). 

 

 ( )
4

a a a
q Tσε=  (2.26) 

where, 
2( / m )

( )

a

a

a

q heat flux fromthe air W

emissivity of the air

T air temperature K

ε

=

=

=

 

 

The emissivity εa in Equation 2.26 is a function of atmospheric water vapor 

pressure, temperature, and cloud cover fraction and can be modeled according to 

Equation 2.27 (Wojcik 2004; Brutsaert 1975). 

  

 ( )

1

7

1.24 1 a
a

a

e
C C

T
ε

 
= + − × 

 
 (2.27) 
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where, 

( )

cover fraction

e

( )

a

a

a

emissivity of theair

C cloud

atmospheric water vapor pressure millibars

T air temperature K

ε =

=

=

=

 

 

Atmospheric water vapor pressure can be computed from the saturated water vapor 

pressure and relative humidity of the air. The expression for saturated water vapor 

pressure, as shown in Equation 2.28, is applicable for temperatures ranging from 0 to 

200 ºC (32 to 392 ºF) (ASHRAE 1993). 

 

 ( )2 31
2 3 4 5 6exp lnws a a a a

a

C
P C C T C T C T C T

T

 
= + + + + + 

 
 (2.28) 

where, 

3
1

2

2
3

5
4

8
5

6

5.8002206 10

5.516256

4.8640239 10

4.1764768 10

1.4452093 10

6.5459673

wsP saturated water vapor pressure

C

C

C

C

C

C

−

−

−

=

= − ×

= −

= − ×

= ×

= − ×

=
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The partial water vapor pressure can then be calculated using Equation 2.29 shown 

below (ASHRAE 1993).  

 

  
10

a h ws

millibar
e R P

kPa

 
= × × 

 
 (2.29) 

where, 
(%)

h
R air relative humidity=  

 

2.2.3.4 Radiation from Concrete Surface 

Concrete surface also emits radiation similar to atmospheric gas particles as a part of the 

heat transfer process. The radiation emitted by concrete surface also follows the Stefan-

Boltzmann law as shown in Equation 2.30. 

 

 ( )
4

c c c
q Tε σ=  (2.30) 

where, 
2( / m )

( )

c

c

c

q heat lost from concrete W

emissivity of concrete surface

T temperature of concrete surface K

ε

=

=

=

 

 

 Finite Difference Temperature Model 

The basic equation of heat transfer model for hydrating concrete in two dimensions is 

governed by the following Fourier law.  
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H p

d dT d dT dT
k k Q c

dx dx dy dy dt
ρ

  
⋅ + ⋅ + = ⋅ ⋅  

   
 (2.31) 

where, 
 

( )

3

3

p

( C)

(W/ m/ C)

(W/ m )

density(kg/ m )

c / / C

,

H

T Temperature

k thermal conductivity

Q rateof heat generation

specific heat capacity J kg

x y directions of heat flow

t time

ρ

= °

= °

=

=

= °

=

=

 

 

If only one dimension is considered, Equation 2.31 can further be rewritten as shown in 

Equation 2.32 (Jonasson et al. 1995; Byfors 1980). 

 

 H p

d dT dT
k Q c

dx dx dt
ρ

 
⋅ + = ⋅ ⋅ 

 
 (2.32) 

 

To solve the transient heat transfer problem, finite-difference method (FDM) was 

utilized in this research to predict the early age temperature distribution in concrete. The 

temperature distribution in concrete is governed by the heat generation in concrete (i.e. 

due to hydration reaction), heat conduction within the body, and heat exchange (i.e. 

convection, solar absorption, and irradiation) happening at the boundary surface due to 

the ambient environment. Boundary conditions representing the heat exchange occurring 
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at the surface were considered to solve the heat transfer problem in hand. There are 

several methods to solve FDM problems. Crank-Nicolson scheme, an implicit method, 

even though harder to implement but is unconditionally stable to solve FDM problems 

(Ames 1992; Burden and Faires 1997; Isaacson and Keller 1994; Recktenwald 2004; 

Riedel 2013). Therefore, the Crack-Nicolson algorithm was implemented to solve the 

heat transfer problem in concrete for this research. 

 

2.3 Moisture Transfer and Relative Humidity Prediction of Concrete 

Similar to the heat transfer process happening in hydrating concrete, concrete also 

undergoes moisture transfer while interacting with ambient environment. The ambient 

relative humidity is the driving force for such transfer. In comparison to the heat transfer 

process in concrete, the moisture transfer or diffusion in concrete is more complicated 

due to the complex pore structure (Yuan and Wan 2002). The moisture transfer in 

concrete can be modeled by applying the diffusion theory with appropriate boundary 

conditions. If we consider one-dimensional flow, the nonlinear diffusion equation for 

moisture transfer problem can be expressed as follows. 

 

 
( ) ( ) ( )sd RH d RH d RHd

dt dz dz dt
α
 

= ⋅ + 
 

 (2.33) 
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where, 
 

 

( )

2m( )

(s)

s

RH relative humidity of concrete

d RH change in RH due to hydration

diffusion coefficient of concrete
s

z direction of moisture flow

t time

α

=

=

=

=

=

 

 

For mixtures have higher water-cement ratio, the change in relative humidity due to 

hydration reaction becomes negligible and hence Equation 2.33 can be rewritten as 

shown in Equation 2.34. 

 

 
( ) ( )d RH d RHd

dt dz dz
α
 

= ⋅ 
 

 (2.34) 

 

Once concrete is placed at the construction site, the moisture transfer occurs at the 

concrete surface governed by the ambient relative humidity condition. The equation 

describing the boundary condition at the surface of concrete can be expressed as follows: 

 

 ( )
( ),

0

a w s amb

z

d RH
D k RH RH

dz
=

⋅ = × −  (2.35) 
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where, 
 

 
2

, ( )

( )

s

a

a w

RH relative humidity of concrete surface

RH ambient relative humidity

D diffusioncoefficient of water vapor in air m s

k convection mass transfer coefficient m s

=

=

=

=

 

 

The diffusion coefficient of water vapor in air Da,w in Equation 2.35 can be estimated 

using Equation 2.36 provided by Bolz and Tuve (1976): 

  

 
6 6 10 2

, 2.775 10 4.479 10 1.656 10a wD T T
− − −= − × + × + ×  (2.36) 

 

where T is the film temperature in Kelvin. The film temperature can be obtained by 

averaging the temperature of the air stream and the temperature of the concrete surface 

(ASHRAE 2005).  

The determination of convective mass transfer coefficient k in Equation 2.35 

involves several steps. At first the air properties, such as density and kinematic viscosity 

needs to be determined for the corresponding air film temperature. Then for a given 

wind speed, kinematic viscosity of air, diffusion coefficient of water vapor in air, the 

corresponding Renolds number Re and Schmidt number Sc needs to be obtained. 

Sherwood number Sh is also needed and can be determined using the computed Re and 

Sc. The expressions for Re, Sc, and Sh are shown in Equation 2.37.  
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( )

( )

,

11
32

4 1
5 3

:

:

: 0.664

0.037

e

c

a w

h e c

h e c

U L
Renolds number R

Schmidt number S
D

Sherwood number S R S for laminar flow

S R S for turbulent flow

ν

ν

∞=

=

=

=

 (2.37) 

where, 
 

 

( )
( )

( )

2

2

,

m

m( )

m( )
a w

U velocity of air stream
s

L characteristics length m

kinematic viscocity
s

D diffusioncoefficient of water vapor in air
s

mk convective mass transfer coefficient
s

ν

∞ =

=

=

=

=

 

 

Once the Sherwood number is computed, the corresponding convective mass 

transfer coefficient can be determined according to Equation 2.38 (ASHRAE 2005; Zhi 

et al. 2010; Nellis and Klein 2009; Nguyen 2013). 

 

 
,h a wS D

k
L

=  (2.38) 

 

The FDM was used again in this research to solve the transient moisture transfer 

problem in concrete. The diffusion equation given in Equation 2.34 coupled with the 
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moisture transfer boundary condition at the concrete surface were formulated and solved 

by employing Crank-Nicolson algorithm to obtain the relative humidity distribution in 

concrete with time.  

 

2.4 Temperature and Moisture Gradients in Concrete 

Once the temperature and moisture distribution in concrete slab is obtained through 

finite difference method, the next step is to compute the curling and warping strain due 

to such distributions. The temperature and moisture distributions across concrete slab 

can lead to differential shrinkage and development of tensile stresses depending on the 

restraint condition. Previously researchers have used the linear temperature and moisture 

gradient concept to estimate the corresponding tensile stresses (Westergaard 1927; 

Bradbury 1938) even though the actual gradients were found to be highly nonlinear 

(Thomlinson 1940; Mirambell 1990; Dempsey 1969; Janssen 1986; Armaghani et al. 

1988; Choubane and Tia 1992; Korenev and Chernigovskaya 1962). The assumption of 

linear temperature and moisture gradient across pavement thickness can result in 

underestimation in the resultant strain and stress development.  

Mohamed and Hansen (1996) took into account the nonlinear temperature 

gradient in pavement and proposed an approach to convert the nonlinear gradient to an 

equivalent linear gradient between the top and the bottom of the slab. They proposed a 

third degree polynomial as shown in Equation 2.39 to represent the shape of the 

temperature profile across the slab thickness. 
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 2 3T A B z C z D z∆ = + ⋅ + ⋅ + ⋅  (2.39) 

 

where ∆T is the temperature difference between any point in the pavement and the 

bottom, and z is the coordinate measured from the mid slab depth. The equivalent linear 

temperature difference between the top and the bottom of the slab can then be obtained 

as   

 

 
3

12
12 80eq

B h D h
T

 ⋅ ⋅
∆ = − + 

 
 (2.40) 

 

where h is the slab thickness. Once the temperature gradient is computed, the 

corresponding thermal strain due to such temperature difference can be computed as 

follows: 

 

 T eqTε α= ⋅∆  (2.41) 

where, 
 

 

T

eq

thermal strain

coefficient of thermal expansion

T equiavent linear temperature difference

ε

α

=

=

∆ =

 

 

The nonlinear moisture gradient across the slab thickness can induce drying shrinkage in 

concrete pavement. In a similar fashion adapting the equivalent linearization concept 
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proposed by Mohamed and Hansen (1996), the nonlinear moisture distribution across 

slab thickness can be converted into equivalent linear moisture difference coefficient 

(Jeong and Zollinger 2005). Using the equivalent humidity difference coefficient, the 

drying shrinkage strain induced in concrete can be computed as shown in Equation 2.42. 
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The drying shrinkage strain εsh computed from the equivalent humidity difference 

coefficient and the ultimate shrinkage εult of concrete was based on the concrete 

shrinkage model developed by Baźant and Panuala (1978a).  
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2.5 Time Dependent Deformation of Concrete: Creep 

 

 Mechanism of Creep 

Creep is the delayed mechanical response of concrete due to viscoelastic deformation of 

the paste under applied or sustained stress (Lee 2007; D'Ambrosia 2011). Creep is 

mainly a property of the paste component and it is restrained by the aggregate present in 

concrete (Mindess et al. 2003). Stresses can generate due to internal forces that can be 

attributed to changes in pore pressure and temperature as well as due to external forces, 

for example, applied structural load. Creep is considered to be a problem as it can result 

in loss in prestressing force in prestressed concrete structure. Tall structures and long 

span bridges can undergo large deflection as a result of creep due to the sustained weight 

of the structure. However, creep is also considered as beneficial under restrained 

conditions from a durability standpoint as it helps to relax the tensile stress induced in 

structures and can help minimize the potential for cracking. Many researchers have 

studied creep in concrete and tried to explain the mechanism of creep. However, none of 

these can explain adequately the mechanism of creep (Neville et al. 1983). Few 

mechanisms regarding occurrence of creep are summarized below. Interested readers are 

referred to Altoubat (2000), Tamtsia and Beaudoin (2000), Grasley (2006), Lee (2007), 

and D'Ambrosia (2011) for summaries on mechanism of creep.  
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� Seepage theory states that creep might be caused due to induced stress in the 

physically bound water under external load causing seepage of physically bound 

water from micropores to capillary pores (Powers 1967); 

� Interlayer theory states that creep could be attributed to structural changes in 

Calcium-Silicate-Hydrate (C-S-H) layers, i.e. deformation and restructuring the 

assembly C-S-H particles, and consequent formation of new interlayer spaces 

(Feldman 1972);  

� Viscous shear theory is based on the hypothesis that the sliding of C-S-H globules or 

layers induced by localized nanoscale shear stresses might result in creep 

deformation (Jennings 2004; Reutz 1968); 

� Plastic flow theory states that the slippage along planes in crystal lattice may 

contribute to creep (Neville et al. 1983);  

� The stress-induced dissolution theory is based on the notion that phases, such as CH 

may dissolve under high stress and reform again in a stress free state, contributing to 

creep deformation (Mindess et al. 2002). 

� Sellevold and Richards (1972) proposed the short-term creep mechanism, verified by 

Scherer (2000), stating that redistribution of capillary water under load results in 

creep deformation; and  

� Creep may result from permanent deformation due to microcracking, 

recrystallization, and formation of new physical bonds in the hydration products 

(Altoubat 2000; D'Ambrosia 2011).  
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Concrete, when exposed to drying, exhibits additional creep which is called 

drying creep. This phenomenon is called the Pickett effect which was first observed by 

Pickett (1942). Several empirical relationships regarding drying creep were formulated 

which were dependent on basic creep and free shrinkage (L’Hermite 1959; Gamble and 

Parrot 1978). Bazant and Panula (1978b) proposed an empirical relationship for drying 

creep as a function of drying shrinkage and mixture properties. Apparently, drying creep 

is more of a complex interaction between free shrinkage and basic creep (Altoubat 

2000).  

Several mechanisms were proposed by researchers to explain the phenomenon of 

drying creep, however none of them are universally accepted (Neville 1981). Basic and 

drying creep were separated experimentally by superposition analysis under the 

assumption that creep is linearly proportional to applied stress (Kovler 1994; Altoubat 

2000). Several proposed theories regarding the mechanism of drying creep are stated 

below: 

 

� The superposition of stresses due to drying shrinkage and external load leads to 

additional strain due to the nonlinearity in the stress strain relationship (Pickett 

1942); 

� The stress-induced shrinkage mechanism suggest that when drying is combined with 

external loading, shrinkage is influenced by applied loading, i.e. shrinkage increases 

under compressive load while decreases under tensile loads (Bazant and Xi 1994; 

Bazant and Chern 1985; Wittmann and Roelfstra 1980; Wittmann 1993).  
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� Microcracks might be another possible source of drying creep. Under high drying 

gradient microcracks form. The microcracks might contribute to an increase in the 

rate of creep (Pickett 1942; Bazant and Xi 1994); and  

� Bazant et al. (1997) proposed the microprestress-solidification theory suggesting that 

creep in the bridging nanostructure is the source of drying creep. Drying creep is 

manifested with the increase in creep rate in the bridging nanostructures due to the 

decrease in internal relative humidity. 

 

It is generally believed that combination of these suggested sources are responsible for 

both the compressive and tensile drying creep (Bazant and LꞌHermite 1988, Altoubat 

2000, Grasley 2006).  

 

 Predictive Models for Creep 

ACI committee 209 (1992) recommended a prediction equation for creep compliance 

function based on the work of Branson et al. (1977). The ultimate creep coefficient in the 

creep compliance function was modified by correction factors based on curing, relative 

humidity, load duration, slump, aggregate, and air content. The model for compliance 

function is shown in Equation 2.43. 

 

 ( )
( )

( )
( )

'

'

' '

1
, 1 u

t t
J t t v

E t d t t

ψ

ψ

 −
 = + ⋅
 + − 

 (2.43) 

  



 

40 

 

where, 
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 D'Ambrosia (2011) reexamined the validity of the ACI creep equation for the 

prediction of tensile creep at early ages due to restrained drying and autogeneous 

shrinkage. He found that the ultimate creep coefficient parameter used in the model 

needed to be modified beyond the recommended range to fit the experimental data at 

early ages. To improve the predictive capability of the model, he modified the ACI 

equation by incorporating the following creep correction factor. 
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 (2.44) 

 

where t is the time, t΄ is the loading time, and s is the setting time, in days. Parameter r 

depends on the early age strength gain and was obtained by fitting experimental data. He 

showed that the value of the correction factor becomes unity as the loading age exceeds 

seven days and thereby the equation reduces to its original form.  

Bazant and Baweja (1995) developed the B3 model for predicting the creep 

compliance of concrete. The creep compliance function and expressions for the 
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parameters are shown in Equation 2.45. Detailed description and explanation regarding 

the B3 model can be found elsewhere (Bazant and Baweja, 1995). 
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If the applied stress on the concrete specimen is σ at time t΄, the creep strain can be 

computed as J(t, t΄)σ. The total strain in B3 model is calculated according to Equation 

2.46.  
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 ( ) ( ) ( ) ( )',
sh

t J t t t T tε σ ε α= + + ∆  (2.46) 

 

where εsh(t) is the shrinkage strain and α∆T is the thermal strain.  

Østergaard et al. (2001) modified the B3 model in order to describe the early age 

tensile creep behavior of concrete. They showed that the original model was not able to 

give the accurate prediction of tensile creep for loading ages less than one day. He 

proposed an additional factor to account for the observed discrepancies. He modified the 

parameter q2 according to 
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 (2.47) 

 

where q6 is approximately the set time of concrete (D'Ambrosia and Lange 2005; 

D'Ambrosia et al. 2004; Grasley et al. 2006). D'Ambrosia (2011) used the B3 model 

with the modification of Østergaard et al. (2001) to compare its predictive capability of 

the tensile creep with the experimental data and he concluded that no additional terms 

were required in the model to account for the early age drying creep. 
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 Rheological Model for Creep 

In the literature there are several creep models based on a rheologic chain. Lee (2007) 

provided a summary of some available rheologic models for creep. Most of the models 

found in the literature used Generalized Kelvin Model (GKM) to represent more 

complex behavior.  

Zienkiewicz et al. (1968) used a GKM model (see Figure 2.2) to describe the 

concrete creep assuming that the applied stress was constant during a short time interval 

∆t. The expression for creep was given as follows. 
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Figure 2.2: Generalized Kelvin Model 

 

Bazant and Prasannan (1989a) used a Kelvin chain to describe the solidified 

matter with non-aging elastic moduli and viscosities. They derived an exact solution of 

GKM under the assumption that the stress varied linearly in a short time interval ∆t as 

shown in Equation 2.49.  
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where, 
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 Solidification Theory for Creep 

Solidification theory was proposed by Bazant (1977) to account for the effect of aging 

on creep. The underlying concept of the solidification theory is that the hydration 

products are non-aging viscoelastic material on a micro scale basis and the aging effect 

is manifested on a macro scale by the gradual solidification and volume growth of 

hydration product that accounts for the aging effect on creep. The thermodynamic 

justification of the solidification theory was published in (Bazant 1979) and summaries 

of this theory can be found in these references (Altoubat 2000; Grasley 2006; Lee 2007; 

D'Ambrosia 2011). The conceptual diagram of the solidification theory provided by 

Carol and Bazant (1993) is shown in Figure 2.3. The underlying concept of the theory is 

that the hydration products solidify in a stress free state and the newly solidified layer 

formed at age t participates in carrying the stress induced by load applied after time t. 

Bazant and Prasannan (1989b) derived an incremental form of solution for analyzing 

creep under varying stress as shown in Equation 2.50. The solidification theory, being 
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based on strong theoretical background and having a simple final form of solution, 

seems to be promising for describing concrete creep with material aging and has been 

used by researchers to explain the creep phenomenon of concrete (Lee 2007).  
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Figure 2.3: Solidifying Material Subjected to Applied Stress at Time = t (after 
D'Ambrosia 2011) 
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where, 
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The other variables are defined earlier in Equation 2.49.  

 

2.6 Shrinkage in Concrete 

 

 Mechanism of Shrinkage 

The driving mechanism of shrinkage is the reduction in internal humidity in concrete due 

to self-desiccation and external drying. The shrinkage due to external drying is called 

drying shrinkage and the same due to internal drying or self-desiccation is called 

autogenous shrinkage. External drying is a diffusion controlled process. The diffusion 

depends on the pore microstructure of the hardened cement paste. As the pore micro 

structure changes during hydration reaction with time, the trend in early age drying 

shrinkage may differ substantially from the long-term drying shrinkage trend 

(D'Ambrosia, 2011). 

 

2.6.1.1 Drying Shrinkage 

When concrete is placed in a dry environment i.e. the ambient humidity is lower than the 

internal humidity, moisture diffuses towards the surface. External drying results in 

removal of pore water causing volume reduction which is known as drying shrinkage. 
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There are three mechanisms for external drying: (i) capillary surface tension, (ii) 

disjoining pressure, and (iii) surface free energy (Mindess and Young 1981). Capillary 

surface tension develops in the pore fluid due to the reduction in pore fluid pressure. 

With the development of tension force, a balancing compressive stress develops in the 

solid microstructure that induces shrinkage (Bissonette et al. 2001). Disjoining pressure 

develops due to the adsorbed water on the C-S-H surface. The removal of moisture on 

the C-S-H reduces the disjoining pressure and this reduction in the disjoining pressure 

contributes to shrinkage (Powers 1968; Ferrais and Wittmann 1987; Lee 2007). The 

surface energy (tension) of C-S-H depends on the adsorbed water layers which is 

responsive to the partial vapor pressure. With the reduction in the partial vapor pressure, 

the thickness of the adsorbed layer also decreases. The reduction in the layer thickness 

creates a net compression on the solid inducing microscale shrinkage (Powers 1968; 

Mindess and Young 1981; Grasley et al. 2006). Therefore in short with the reduction in 

internal relative humidity, drying stress develops and deforms the microstructure, and 

hence shrinkage is manifested on a bulk scale (Lee 2007). 

 

2.6.1.2 Autogenous Shrinkage 

The difference between autogenous shrinkage and external drying shrinkage is that in 

autogenous shrinkage the relative humidity is lowered internally by chemical reaction 

due to cement hydration. The hydration reaction consumes water that causes volume 

reduction leading to the formation of empty pores. As the hydration reaction continues, 

the water is consumed from larger pores followed by successively smaller pores. Once 
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the pores smaller than 50 nm begin to empty, autogenous shrinkage is induced by a 

similar mechanism that induces external drying shrinkage. The use of low water-cement 

ratio and some mineral admixtures in the mix accentuates the autogenous shrinkage 

problem furthermore (Barcelo 2003; Grasley 2006). 

 

 Predictive Models for Drying Shrinkage 

ACI committee 209 (1992) recommended the prediction equation for drying shrinkage 

as given in Equation 2.51.  
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ACI provided recommendation for the numerical values of each constant based on 

standard test condition and provided equations to account for deviations from the 

standard test conditions as well. They also provide an estimation of the ultimate 

shrinkage based on initial moisture curing durations, ambient relative humidity, volume-

surface ratio of the specimen, slump of concrete, fine aggregate proportion, cement 

content, and air content (D'Ambrosia 2011; Lee 2007). D'Ambrosia (2011) showed that 
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the ACI shrinkage model was not able to predict the early age shrinkage accurately 

compared to the experimental observations. He modified the current ACI model by 

incorporating the following shrinkage correction factor as shown in Equation 2.52. 
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where t is time, to is the length of curing, s is the setting time in days. Parameter z was 

obtained by fitting experimental data and it depends on the diffusion rate. He showed 

that the shrinkage correction factor approaches unity as the curing time exceeds seven 

days, thus the model reduces to its original form.  

 Similar to the creep compliance function for concrete, Bazant and Baweja (1995) 

incorporated an empirical expression for drying shrinkage in the B3 model mentioned 

before. The expression for drying shrinkage in the B3 model is shown in Equation 2.53. 
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These empirical models have been developed based on the deformation for a 

specific geometry and these models consider the bulk strain over cross sectional average. 

It does not give the differential shrinkage across the location domain of the specimen. 

However, for certain circumstances, such as in moisture curling, the average shrinkage 

strain cannot capture the deformation and the differential shrinkage strain is required to 

explain such deformation (Lee 2007).  

D'Ambrosia (2011) proposed a modeling technique to predict concrete shrinkage 

as a response to internal stress in an aging viscoelastic porous medium. He used the 

relationship between relative humidity and capillary pressure to predict the shrinkage 

stress induced in concrete. The model prediction indicated good agreement with the 

shrinkage data for both sealed and drying conditions. The material model that he used 

was divided into two sets: an internal set representing the solid skeleton and an external 

set representing the porous body as shown in Figure 2.4. The material models accounted 

for both the aging viscoelastic behavior and the responses due to changes in temperature 

and internal relative humidity. Combination of the two model sets allowed for the 

coupled creep and shrinkage analysis for aging viscoelastic material. 

The internal model responded to changes in pressure due to any fluctuation in 

internal relative humidity as well as to any changes in external applied stress. The 

external set, however, responded to the changes in external applied load only. The aging 

material properties were incorporated using the solidification theory. D'Ambrosia (2011) 

reported that after calibrating the internal and external creep function of the material 
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model, the prediction of the model was in good agreement with the drying shrinkage 

data obtained through experimentation.  

 

 

 

Figure 2.4. Model Concept Diagram Showing Internal and External Material Models 
(after D'Ambrosia 2011) 

 

 

 

During the validation phase of this model, capillary pressure was computed from 

the internal relative humidity of concrete using the Kelvin-Laplace equation as shown 

below. 

  



 

53 

 

 ( )ln
RT

p RH
v

=  (2.54) 

where, 
 

 

p pore pressure

RH relative humidity

R universal gas constant

T temperaturein Kelvin

v molar volumeof water

=

=

=

=

=

 

 

The drying shrinkage was modeled using a hygrothermal strain model shown in 

Equation 2.55 (Bentz et al. 1998) as a function of capillary pore pressure.  
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For the internal and external component shown in Figure 2.4, the total 

deformation in one dimension was written as follows. 
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For a small time step, ∆t = ti+1-ti, total stain was modeled and solved in an incremental 

form as shown below. 

   

 
1 1 2 2total el cr el cr

ε ε ε ε ε∆ = ∆ +∆ +∆ +∆  (2.57) 

 

For the Generalized Kelvin Model shown in Figure 2.5 representing the internal and 

external material components, the incremental stress at each time step was computed 

according to the expression shown in Equation 2.58. 
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Figure 2.5: GKM Diagram for the Material Component (D'Ambrosia 2011) 

 

 

 

 
1

totalJ Rσ ε−∆ = ∆ −  (2.58) 

where, 
 

 

( )
( )

( )
( )

( )
( )

11 2

1

1

1 1 1
1 1

1
1 1

1 1

1

i

i

i

i

n t
o o i

io i

n t
o i

io i

t
i

io o

t
o

i

i

J compliance function at each step

F p
e

E E v t k t

F
e

v t m t

p
e

k tF pp
R

E v t p
e

k

τ

µ

τ

τ

σ τ

σ µ

τ

σ

σ
γ

−∆

=

−∆

=

−∆

−∆

=

+   
= + + − −  

∆   

  
+ − −  

∆   

 ∆   
− −  

∆   +∆
= +

 +  
+ − −  

  

∑

∑

( )
( )

1

1

1 i

n

i

n t
o

i

io i

F
e

v t m

µσ σ
β

=

−∆

=


 
 
 
 
 



  
+ − −  

  

∑

∑  



 

56 

 

 ( )

1 2

o

i i

i i

E and E internal and external elastic moduli at each step

F creep magnification factor

v t effectiveload bearing volume

k and m internal and external Kelvinchains

and internal and external retardationtimeτ µ

=

=

=

=

=

 

  

The model was validated using several experimental geometries and the predictions of 

the drying shrinkage and stress distribution indicated good agreement with the 

experimental observations (D'Ambrosia 2011). 

 

2.7 Selection of Creep and Shrinkage Model 

In the previous sections, several existing empirical creep and shrinkage model, such ACI 

model and B3 model, were summarized. D'Ambrosia (2005, 2011) showed that the ACI 

model and the B3 creep and shrinkage model in its existing form were not able to predict 

the early age creep and shrinkage of concrete. He proposed modifications to these 

existing models to improve the predictability of the creep and shrinkage behavior of 

concrete. Also, these empirical models, such as the shrinkage model, were developed 

based on the deformation with a specific geometry and these model provide bulk strain 

over the cross sectional average rather than the differential shrinkage (Lee 2007). Lee 

(2007) mentioned that such predictions can be applicable for certain structural analysis 

whose global behavior is not governed by differential shrinkage. However, for certain 

cases, such as moisture curling, differential shrinkage across the thickness of the slab is 
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required to explain the curling behavior of the structure. Hence, because of these 

limitations, these empirical models were not selected in this research.  

 The solidification theory, discussed previously, seems to be promising for 

describing the concrete creep with material aging because of its strong theoretical 

background and simple final form of solution (Lee 2007). Due to these benefits many 

researchers, such as Baweja et al. (1998), Altoubat (2000), Grasley (2006), Lee (2007), 

and D'Ambrosia (2011), have adapted the theory for analyzing concrete creep. 

D'Ambrosia (2011) used the solidification theory and proposed a material model (see 

section 2.6.2) to predict the early age autogenous shrinkage and drying shrinkage of 

concrete. Such model facilitated the coupled creep and shrinkage analysis for concrete 

and the model predictions were found to be in good agreement with the experimental 

observation. Hence, the material model proposed by D'Ambrosia (2011) based on the 

solidication theory were used in this research. 

 

2.8 System Identification Method: A Solution Methodology 

System identification (SID) method is an iterative approach which is used to identify the 

characteristics of a system using the input and output data from the system. The purpose 

of this method is to identify a mathematical model that can describe the behavior of a 

real physical process or a system. The mathematical representation or model is 

considered to be identical to the system when the error between the output of the model 

and the system satisfies the error criterion. The model parameters should be updated 

using some parameter adjustment algorithm till the desired level of agreement is 
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achieved (Natke 1982). Using SID with an efficient parameter adjustment algorithm, 

mathematical models with several unknowns can be calibrated accurately and 

convergence can be obtained rapidly (Wang and Lytton 1993). Many researchers, for 

example Wang and Lytton (1993), Lytton et al. (2010), and Lee (2010), have 

successfully implemented SID method in their research efforts to identify appropriate 

mathematical models to represent the behavior of the system of interest.   

Successful implementation of SID requires accurately measured output data of 

the unknown system, a suitable model representing the behavior of the system, and an 

efficient parameter adjustment algorithm (Wang and Lytton 1993). Three general 

strategies are available for minimizing the error in the system identification method: (i) 

forward approach, (ii) inverse approach, and (iii) generalized approach. These three 

strategies are depicted in Figure 2.6. Forward approach involves minimizing the output 

error between the model and the system using the same input. The inverse approach 

deals with minimizing the input error using the same output. Generalized approach is a 

combination of forward and inverse approaches provided that the model is invertible 

(Natke 1982). 
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Figure 2.6: Methods for System Identification Process. (a) Forward Model, (b) Inverse 
Model, and (c) Generalized Model (Natke 1982) 

 

 

 

A parameter adjustment and adaptation algorithm was developed by Wang and 

Lytton (1993) based on the Taylor series expansion. A brief description and formulation 

of the parameter adjustment algorithm is given below (Wang and Lytton 1993). 

Assuming a mathematical model defined by n parameters as shown in Equation 2.59, is 

appropriate for describing the behavior of a system: 

 

 ( )1 2, ,...., ; ,nf f p p p x t=  (2.59) 

 

where x and t are independent spatial and temporal variable. The parameter adjustment 

algorithm can be expressed as follows. 
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The residual vector is determined from the outputs of the model and the real 

system. The minimization of the error in the residual vector is analogous to the reduction 

of error used in least squared error analysis; however, because of the presence of random 

error, the values in the residual vector should not be forced to zero (Zollinger et al. 

2008). The elements of the sensitivity matrix [Fki] reveal the sensitivity of the output fk 

to the model parameters pk.  The vector β is an unknown vector and reflects the relative 

changes in the parameters of interest. Depending on the condition of the sensitivity 

matrix, whether well behaved or ill conditioned, generalized inverse procedure or 

singular value decomposition technique can be used to obtain stable solutions (Stubbs 

1987; Torpunuri 1990; Press et al. 2007). Equation 2.60 can be rewritten as follows: 
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 { } [ ] { }
1 TT

i ki ki ki k
F F F rβ

−
 =    (2.61) 

 

After obtaining the values of β after the first iteration, the new set of parameters are 

updated in the next iteration as: 

  

 ( )1 1j j

i i i
p p β+ = +  (2.62) 

 

where j is the iteration count. Solutions of the parameters are obtained by minimizing the 

change vector {β} iteratively; therefore, the iteration process is repeated until the desired 

convergence is reached (Wang and Lytton 1993). In this research, SID method was used 

as a solution methodology to back-calculate the time dependent diffusion coefficient of 

cured concrete using the relative humidity measurements of the concrete and the ambient 

environment.  
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3. MODELING AND NUMERICAL IMPLEMENTATION 

  

In this section, modeling efforts to meet the objectives of this research described in 

Section 1 are addressed. The first objective of this research was to incorporate the effect 

of curing into the pavement design analysis. Therefore, a mathematical model for back-

calculating the diffusion coefficient of cured concrete, which is reflective of the curing 

quality, was discussed. In the subsequent sections, the formulation of a corner 

displacement model as well as the development of climatic stress model in a slab 

subjected to temperature and relative humidity variations are shown. Finally, 

representing the variability associated with the strength and stress, the formulation of 

probabilistic models for predicting lift-off displacement and cracking for a given design 

scenario is described.  

 

3.1 Early Age Diffusion of Concrete 

 

 Laboratory Testing Regime 

The early age diffusion coefficient α for concrete changes with time as the hydration 

reaction progresses. In order to back-calculate the moisture diffusion coefficient of cured 

concrete during early ages, internal relative humidity (RH) of concrete and ambient 

relative humidity information were required. The internal and ambient relative humidity 

information of a cured concrete sample were obtained by following the laboratory 

testing regime proposed by Ye (2007). The back-calculated diffusion coefficient of a 
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cured concrete sample is reflective of the quality of curing provided during construction. 

Furthermore, as subsequently shown it is also possible to rank the performance of 

different curing compounds based on the back-calculated diffusion coefficients of cured 

concrete samples.  

In order to conduct experiment as per a laboratory testing regime proposed by Ye 

(2007), a curing monitoring system and a high accuracy weighing scale were used. 

Figure 3.1 shows the curing monitoring device used in this research. The weighing scale 

was used to obtain the moisture loss data and the curing monitoring system was used to 

collect three different temperature and relative humidity’s: (i) of the ambient 

environment, (ii) of the concrete surface, and (iii) inside of the concrete sample. The 

relative humidity measurements at the surface and inside the concrete were termed as 

filtered relative humidity and sealed relative humidity, respectively. Concrete mixture 

was prepared and placed in a cylindrical mold of 12 inch in diameter and 4 inch in 

height. After placing concrete in the mold, the curing monitoring system was placed over 

the mold. 

The curing monitoring system consisted of two chambers: (i) sealed chamber and 

(ii) filtered chamber. The sealed chamber collected the temperature and relative 

humidity information inside the concrete sample whereas the filtered chamber collected 

the temperature and relative humidity information of the surface of the concrete sample. 

Figure 3.2 shows the schematics of the different components of the test setup. Figure 3.3 

presents an example of concrete placement in the mold as well as the two chambers of 

the curing monitoring device used in the experiment.  
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After placing the sealed and filtered chambers over the mold, the curing 

monitoring device was mounted over the chambers using a housing system. Figure 3.4 

shows the entire setup of the curing monitoring system for obtaining the temperature and 

relative humidity information from a cured concrete sample. Figure 3.5 presents an 

example of internal and ambient relative humidity information collected for a cured 

concrete sample using the laboratory testing regime discussed above.  

 

  

 

  

Figure 3.1: Curing Monitoring Device (Sun 2013) 
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Figure 3.2: Side View and Top View of the Mold with the Sealed and Filtered Chambers 
 with Housing System (Zollinger 2013) 

 

 

 

  

Figure 3.3: Test Setup in the Laboratory with the Mold and the Curing Plate.  
(a) Concrete Placed in the Mold and (b) Curing Plate Placed over the Mold (Sun 

2013) 

(a) (b) 
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Figure 3.4: Entire Curing Monitoring System (Sun 2013) 

 

 

 

Figure 3.5: Relative Humidity Information Collected using the Curing Monitoring 
System  
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 Early Age Diffusion Coefficient of Cured Concrete 

In this section, a procedure for back-calculating the diffusion coefficient of cured 

concrete with the collected relative humidity information is discussed. The moisture 

diffusion equation derived by Mitchell (1979) in Equation 2.5 along with the system 

identification method as a solution methodology were utilized for back-calculating the 

diffusion coefficient of cured concrete sample. As mentioned before, this back-

calculated diffusion coefficient of cured concrete is reflective of the effectiveness of 

curing provided during the construction phase. 

Mitchell derived the moisture diffusion equation for soil with constant diffusion 

coefficient α and constant evaporation constant h. However, in this case as the concrete 

is undergoing hydration reaction, these variables are changing with time. Hence, the 

equation derived by Mitchell was modified by making the diffusion coefficient α and the 

evaporation constant h as a time dependent variable. Hence, for the case of concrete, 

Equation 2.5 can be rewritten as follows: 

 

( ) ( ) ( ) ( ){ }
( )

( ) ( ){ } ( ) ( ){ } ( )
( )

( ) ( )
2

z, t
2

exp
2

c a c

a c

z
RH RH t RH t RH t erfc

t t

z
RH t RH t h t z h t t t erfc h t t t

t t

α

α α
α

 
 = + − ⋅
 ⋅ 

 
   − − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅
   ⋅ 

 

  (3.1) 
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where, 
 

 

( )

( )

( )

,

a

c

RH z t relative humidity of concrete at depth z at timet

RH t ambient relative humidity at timet

RH t sealed or concrete relative humidity at timet

=

=

=

 

 

The other variables in Equation 3.1 were described in Equations 2.1 through 2.5. The 

expression given in Equation 3.1 is the mathematical model that gives the relative 

humidity of concrete at any depth and time for a given value of diffusion coefficient, 

evaporation constant as well as the ambient and concrete (sealed) humidity. The 

unknown parameters α(t) and h(t) can be solved using the partial derivatives of Equation 

3.1 and SID method as follows: 

 

[ ] [ ] [ ]

( )
( )

( )

( )

( )
( )

( )

( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

( )

1

1

, ,, ,

, , ,

i i
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h t

β

α α
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α

+

+

=

− 
 

   −∂ ∂  
⋅ ⋅ =     ∂ ∂ −       

  

  (3.2) 

where, 
 

 
( )

( )

, 3.1

,
m

RH z t calculated relative humidity from Equation

RH z t measured relative humidity

=

=
 

 

The matrix in Equation 3.2 can be rewritten and solved as follows:  
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 [ ] [ ] [ ]
1 TTF F F rβ

−
 =    (3.3) 

 

and the new set of updated parameters required for the next iteration can be obtained as 

shown below: 

 

 ( ) ( ) ( )
1

1
i i

t tα α β
+

= ⋅ +  (3.4) 

 ( ) ( ) ( )
1

1
i i

h t h t β
+

= ⋅ +  (3.5) 

 

where i is the iteration count. For a given time t the iterations were continued till the 

elements in the change vector [β] were less than 0.05 and the parameter α(t) and h(t) 

were considered as the final result for that given time t. The procedure was repeated for 

the remaining time steps to obtain the history of diffusion coefficient α for the given 

cured concrete specimen. The numerical example of the back calculation procedure is 

provided in Section 4.  

 

3.2 Modeling Lift-off Displacement Due to Curling and Warping 

Concrete pavement deforms into a concave configuration when the pavement is 

subjected to a resultant negative gradient of temperature and moisture through the 

thickness. The deformation of the slab due to a temperature gradient is called curling and 

likewise that for moisture gradient is called warping. The tendency of slab deformation 

due to such gradients can induce tensile stress at the interface of the slab and the 
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underlying layer.  If the negative temperature and moisture gradients are high enough, 

the interfacial tensile stress will be higher and the slab edge or corner may separate from 

the underlying structure as in an overlay. Therefore, it is essential to model the slab 

curling and warping behavior in order to assess the potential for interfacial separation. 

Westergaard (1926) derived a closed form solution for assessing the interfacial 

displacement and tensile stress due to the temperature gradients where he characterized 

the curling or thermal bending stresses in concrete pavements as a result of restrained 

vertical movements by the dead weight of the slab. His solution was derived based on 

the assumption that the temperature through the thickness of the slab was linear even 

though such linear gradient is nonexistent in concrete pavement. His solution has been 

widely used by other researchers, e.g. Yoder and Witczak (1975) and Okamoto et al. 

(1991) for estimating the thermal stress in a curled pavement (Tang and Zollinger 1993).  

Later, a variation of the methodology was described by Tang and Zollinger 

(1993) and then by Wang and Zollinger (2000) to determine the slab separation 

displacement along the slab-underlying structure interface due to curling and warping. 

The methodology described herein represents an improvement in terms of how boundary 

conditions were taken into account. Medium-thick plate theory provided the basis for 

arriving at the different boundary conditions required for modeling the slab corner lift-

off displacement. Figure 3.6 presents a concrete slab which is resting on a subgrade and 

is subjected to curling and warping. The coordinate system of the slab is also shown in 

the figure. The solution of the displacement w due to curling and warping was assumed 

to be of the general form shown in Equation 3.6.   
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Figure 3.6: Corner Lift-off Displacement Due to Curling and Warping 
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This form of equation was chosen based on its capability to represent the effect of the 

boundary conditions on the lift-off displacement. 

Now letting the bending moment and the shear force in the X direction be 

denoted as Mx and Vx, respectfully per unit width of the cross section and using the 

medium-plate theory, the moment at the slab corner, i.e. at (0, 0), can be expressed as: 

 

 
( )2 2

2 2

1
0

x

w w
M D

x y h

ε ν
ν

+ ∂ ∂
= + + = 

∂ ∂ 
 (3.7) 

where, 
 

 

( )
( )

3

2

'

12 1

Poisson s ratio

total strain

E t h
D flexural rigidity of slab

ν

ε

ν

=

=

⋅
= =

−

 

 

The other variables in Equation 3.7 were denoted in Equation 3.6. It should be noted that 

the total strain ε is composed of thermal strain, drying shrinkage strain, and creep strain.  

Assuming that the slab corner detaches itself from the underlying layer due to 

curling and warping and let the separation distance of the slab along the X direction be 

denoted as S, i.e. the slab is in contact with the underlying layer at a distance S from the 

corner along the X axis. The bending moment at the point of contact, i.e. (S, 0), in the X 

direction can be given as: 
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( )2 2

2

2 2

1 1

6x

w w
M D S h

x y h

ε ν
ν ρ

+ ∂ ∂
= + + = − 

∂ ∂ 
 (3.8) 

 

where ρ is the density of concrete.  

Because the slab has not separated from the underlying layer at a distance X=S, 

the deflection at that point will still be zero. Hence, the deflection at the point of contact 

can be written as: 

 

 ( )1 2 1cos sin 0s
A s A s B e

−+ =  (3.9) 

 

where Ss =
l

and other variables were denoted before. 

Using the medium-thick plate theory, the equation for shear force can also be 

written for the given curling-warping lift-off displacement problem. The shear force 

along the X axis denoted as Vx at the corner of the slab, i.e. at (0, 0), is zero and can be 

expressed as: 

 

 
3 3

3 2
0

x

w w
V D

x x y
ν

 ∂ ∂
= + = 

∂ ∂ ∂ 
 (3.10) 

 

Once the slab corner deflects upward from the ground, the shear force at the 

point of lift-off along the X axis, i.e. at X=S and Y=0, has to be equal to the dead weight 



 

74 

 

of the portion of the slab that has separated itself from the underlying layer. The shear 

force along the X axis at the point of contact can be given as: 

  

 
3 3

3 2

1

2x

w w
V D Sh

x x y
ν ρ

 ∂ ∂
= + = − 
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 (3.11) 

 

Substituting the expression for deflection w in Equation 3.6 into Equations 3.7 

through 3.11 and after simplifying these equations, the end expressions are given in 

order in Equations 3.12 through 3.16 as follows. 
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 (3.13) 

 ( )1 2 1cos sin 0s
A s A s B e

−+ =  (3.14) 

 

 ( ) ( )1 2 1 2 1 2 0B A A B A A+ − − =  (3.15) 
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For a given curling and warping situation material properties, such as υ, ρ, k, E(t), 

and slab dimensions such as, length, width, and thickness h, are known beforehand. In 

the above mentioned system of equations there are five unknowns A1, A2, B1, B2, and S 

that need to be solved. Since there are five equations as well as five unknowns, the 

system of equations can be solved for a given total strain ε. The corresponding vertical 

displacement w and the delamination or separation distance S can then be obtained for 

the given curling and warping problem.  

 

3.3 Modeling Climatic Stress in Concrete 

 

Placement of concrete at the construction site exposes concrete pavement to 

environmental excitations, such as temperature and moisture variations. Concrete slab 

experience volume change due to such excitations and this results in the development of 

undesired stress even before being exposed to traffic loading. Once the stress is 

sustained in the structure, concrete will exhibit time dependent deformation called creep. 

Besides these, the material properties will evolve with time as the hydration reaction 

continues. All these complicated aspects make it difficult to predict the structural 

response of concrete due to the temperature and moisture variations as well as due to the 

applied mechanical load (Lee 2007).  

The material model used in this research was a combination of the models 

proposed by Lee et al. (2011) and D'Ambrosia (2011). The model has components that 

represents the instantaneous response to stress, delayed response to stress (i.e. creep), 
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volume change due to temperature and moisture variation, as well as the effect of aging 

on its properties. Figure 3.7 shows the material model used in this study.  

 

 

 

HT

T
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Instantaneous Response

Moisture Response

Temperature Response

Delayed Response

 

Figure 3.7: Components of Material Model for Aging Concrete (after Lee 2007) 

 

 

Each component in the material model is connected in series indicating that each of the 

strain components are independent of each other and the total strain can be obtained by 

accumulating the individual strain components. It should be noted that the superposition 

of strains is only valid for infinitesimal strain assumptions. In this research, it was 

assumed that the concrete structure was uncracked and hence the strain was small 

enough making the infinitesimal strain assumption to be valid. Based on the series 

model, the total strain can be expressed as: 

 

 Total EL T HT CRε ε ε ε ε= + + +  (3.17) 
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where, 
 

 

Total

EL

T

HT

CR

total strain

elastic strain

thermal strain

hygrothermal strain

creep strain

ε

ε

ε

ε

ε

=

=

=

=

=

 

 

In the incremental form, Equation 3.17 can be rewritten as: 

 

 Total EL T HT CRε ε ε ε ε∆ =∆ +∆ +∆ +∆  (3.18) 

  

An internal material model representing the solid skeleton and an external 

material model representing the porous body proposed by D'Ambrosia (2011) were used 

to model the elastic strain, hygrothermal strain, and creep strain components. The 

conceptual diagram for the model is shown in Figure 3.8. Combination of the internal 

and external material models enabled to perform the coupled shrinkage and creep 

analysis. It should be noted that the internal model responds to the applied stress σ as 

well as the capillary stress p, whereas the external model responds only to the applied 

stress σ. The GKM models used by D'Ambrosia (2011) for representing the internal and 

external components are presented in Figure 3.9. 
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Figure 3.8: Model Concept Diagram Showing Internal and External Material Models 
(D'Ambrosia 2011) 

 

 

  

Figure 3.9: GKM Diagram for the Material Component (D'Ambrosia 2011) 
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 Model for Thermal Strain 

Concrete expands and contracts due to increase and decrease in temperature, 

respectively. Thermal strain εT in concrete can be calculated from the coefficient of 

thermal expansion α and the change in temperature ∆T. Thermal strain can be expresses 

as follows. 

 

 T Tε α= ⋅∆  (3.19) 

 

For a short time interval ∆t the increment in thermal strain can be written as follows. 

  

  ( ) ( )T T T
t t tε ε ε∆ = +∆ −  (3.20) 

 

 Hygrothermal Model for Drying Shrinkage  

The model for drying shrinkage due to moisture variation has been reviewed (see 

Equation 2.55) in Section 2 and is restated here for convenience. 

  

  
1 1

3
S

pS

K K
ε

 
= − 

 
 (3.21) 
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where, 
 

 

S

p pore fluid pressure

S saturation factor

K bulk modulus of concrete

K bulk modulus of solid skeleton

=

=

=

=

 

 

The pore fluid pressure can be computed using the Kelvin-Laplace equation shown in 

Equation 2.54. The bulk modulus can be obtained from the modulus of elasticity with a 

constant Poisson’s ratio. The saturation factor S can be described using the desorption 

isotherm that states the relationship between the saturation and the relative humidity. An 

approximate relationship for S as a function of the relative humidity was proposed by 

D'Ambrosia (2011) and this expression for S, as shown in Equation 3.22, was used in 

this study. 

 

 
100

RH
S =  (3.22) 

where, 
 RH relative humidity=  

 

For a short time interval ∆t the hygrothermal strain can be written in incremental form as 

follows. 

 

  ( ) ( )HT HT HT
t t tε ε ε∆ = +∆ −  (3.23) 
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 Model for Delayed Response (Creep) of Concrete 

 

3.3.3.1 Solidifying Model for Creep  

Lee et al. (2011) employed a model for creep based on the solidifying material theory 

(Bazant, 1977) and the implementation of the solidifying material model was based on 

the work done by Bazant and Prasanna (1989a, 1989b). D'Ambrosia (2011) also used the 

solidification theory to derive a material model for aging concrete. The creep model 

employed in this research was based on the work done by D'Ambrosia (2011). 

The material model, as described previously in this section, consisted of an 

internal set and an external set as shown in Figure 3.8. The model had two components: 

(i) non-aging viscoelastic response of the hydration product, and (ii) aging effect 

incorporated by the effective load-bearing volume growth of the hydration product. The 

one dimensional expression of the creep rate of the internal and external viscoelastic 

component can be given as: 

 

 
( )

INT

INT

CR

CR
v t

γ
ε =

&
&  (3.24) 

 
( )

EXT

EXT

CR

CR
v t

γ
ε =

&
&  (3.25) 

where, 
 

 
( )

INT EXTCR CRand non aging viscoelastic response

v t effective load bearing volume

γ γ = −

= −

& &
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The effective load bearing volume can be given as: 

  

 
( )
1

m

o

v t t

λ
α

 
= + 
 

 (3.26) 

 

where m, λo, and α are material constants that depend on the hydration rate. The non-

aging viscoelastic response of the model was implemented using separate chains of 

GKMs for both the internal and the external material components as shown in Figure 

3.9. Assuming that the stress in the solid material varies linearly during the short interval 

∆t the incremental creep response can be computed according to Equation 3.27. 
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 (3.27) 

 
where, 
 

 
i i

i i

incremental stress

p incremental pore fluid pressure

k and m internal and external Kelvin chains

and internal and external retardation time

σ

τ µ

∆ =

∆ =

=

=
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The specific creep compliance exhibit different behavior under uniaxial tension 

versus compression (Atrushi 2003). This directional characteristics of creep was 

incorporated here in a similar manner following the work of Lee et al. (2011). 

Depending on the stress status, either tension or compression, the parameters of the 

internal and external GKMs were modified as follows:  

 

for internal set, 

 ( ) 0tension

i i
k k for pσ= + >  (3.28) 

 ( ) 0compression

i i
k k for pσ= + <  (3.29) 

 

for external set, 

 0tension

i im m forσ= >  (3.30) 

 0compression

i im m forσ= <  (3.31) 
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 Scheme for Numerical Analysis 

After modeling each strain component, such as thermal, hygrothermal, and creep 

strain as a function of time, the next step was to compute the stress induced in concrete 

due to these imposed strains. Piece-wise static analysis was the fundamental scheme for 

solving this time-dependent problem. The temperature and relative humidity history was 

divided into n steps of small time interval ∆t and with the known stress at the beginning 

of the time step, the resultant induced stress by the excitation history was obtained and 

was accumulated at the end of each time step. In this incremental formulation, it was 

assumed that the material properties were constant at the beginning of the time step. 

After the completion of the stress computation for a given time step, the material 

properties were updated at the end of that time step and these updated properties were 

used at the beginning of the next time step. The formulation described here is for the ith 

time step. For convenience, all the known information at the beginning of the time step 

was denoted with a subscript ‘o’. For example, the time at the beginning of time step 

was denoted as to and the stress and pore pressure were denoted as σo and po, 

respectively. A description of similar numerical implementation can be found in the 

work done by Lee (2007) and Lee et al. (2011). 

The incremental total strain, as shown in Equation 3.18, is restated here for 

convenience. 

  

 Total EL T HT CRε ε ε ε ε∆ =∆ +∆ +∆ +∆  (3.32) 



 

85 

 

Considering the material model being composed of an internal and an external set as 

shown in Figure 3.8, the incremental creep strain can be given as: 
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∑

∑

 

  (3.33) 

 

And the elastic strain can be written as: 

  

 
( ) ( )1 2

1 1
EL

o oE t E t
ε σ

 
∆ = ∆ + 

 
 (3.34) 

 

Substituting Equations 3.33 and 3.34 into Equation 3.32, total strain increment can be 

expressed as: 
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After rearranging Equation 3.35, the incremental stress can be given as: 

 

 ( )1
Total T HT CRJσ ε ε ε ε−∆ = ⋅ ∆ −∆ −∆ −∆  (3.36) 

where, 
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At the beginning of each time step, thermal strain, hygrothermal strain, and CRε∆ are 

known quantities. Therefore if the total strain is known, the stress increment at each time 

step can be computed from Equation 3.36. 
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3.4 Probabilistic Model for Structural Failure 

Structural failure of concrete is a broad aspect that requires consideration during the 

design phase. In this study two modes of failure, such as (i) lift-off displacement and (ii) 

cracking were considered to assess and evaluate the given design and construction 

scheme. Assessment of the reliability of a given design and construction scenario can be 

performed by adopting the Stress-Resistance (S-R) model which is commonly applied to 

structural safety evaluation (Ang and Tang 1984; Tokumaru et al. 1987; JSCE 2002; van 

Breugel and Lockhorst 2001; Kanda et al. 2008). 

When applying the S-R model to the problem of cracking, it is assumed that 

cracking will be induced when the restrained stress (the crack driving force, S) exceeds 

the critical level of tensile strength (the resistance force, R) of concrete, i.e. S ≥ R. In this 

research, the stress was denoted by σ and the strength was denoted by f with an 

appropriate subscript.   

The probability of failure, for instance cracking, can be modeled assuming that 

the σ and the f are random variables and they follow a certain probability distribution. 

Therefore, following the work of Nakamura et al. (1999), the probability of cracking Pcr 

can be expresses as:  

 

 ( )P 0cr cr tP Z fσ= = − ≥  (3.37) 
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Imamoto et al. (2004) simplified the calculation of Pcr as shown in Equation 3.38 by 

assuming that σcr and ft are independent from each other and they follow normal 

distribution. 

  

 
[ ] [ ]

2 22

1
cr

t cr

P

COV f COV

ξ
φ

ξ σ

 
− =

 + ⋅ 

 (3.38) 

where, 
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After simplification, Equation 3.38 can be rewritten as 
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Using a similar analogy as described above, the probability of lift-off or 

debonding can also be computed. The lift-off or separation of a slab will occur when the 

debonding stress (force inducing lift-off, σlift-off) exceeds the tensile bond strength of 

concrete (the resistance force, ftb). The probability of lift-off can be modeled in a similar 

manner like Equation 3.37 (Nakamura et al. 1999), that is 

 

 ( )P 0
lift off lift off tbP Z fσ

− −
= = − ≥  (3.40) 

 

Equation 3.40 can be further simplified as Equation 3.39 as follows: 
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where, 
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Therefore, using Equations 3.39 and 3.41 the probability of cracking as well as 

the probability of lift-off can be assessed, respectively with time. The concept of the 

probability of failure has been demonstrated in Figure 3.10 according to the description 

given above. The intersection between the stress and the strength distribution represents 

the area of failure (or the probability of failure) as enclosed within the thick line in the 

following figure.   

 

 

 

 

Figure 3.10: Stress and Strength as the Normally Distributed Variables (after Radlinska 
2008) 
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4. NUMERICAL SIMULATION RESULTS AND VALIDATION 

 

In the preceding section, several model formulations were presented and described. In 

this section, the validation as well as the application of those models were discussed. In 

the first subsection, the application of the back-calculation procedure was outlined for 

obtaining the diffusion coefficients of concrete samples cured with different curing 

compounds. With the quantified diffusion coefficients, the concept of curing index  and 

overall curing index were proposed to facilitate the comparison and the decision making 

with regard to curing compound selection. The following two subsections describe the 

validation efforts for the corner lift-off displacement model and the climatic stress model 

for concrete pavement. The material properties as well as other information used in the 

validation procedure were obtained from the slab test performed by Jeong and Zollinger 

(2005). The fourth subsection dealt with the validation effort of the probabilistic model 

for lift-off displacement and cracking failures and the simulation results from the 

probabilistic models were compared with the field experiment performed by a third 

entity in Houston, TX. In the fifth subsection, sensitivity analysis was conducted to 

provide insight regarding the influence of the different important factors on the 

constructability of overlay and concrete pavement. In the last subsection, the results 

from the sensitivity analysis were combined to formulate a constructability index to 

illustrate how the proposed index can assist in decision making with regard to different 

design and construction scenarios. The different components of the research 

implementation framework are shown in Figure 4.1. 
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Figure 4.1: Research Implementation Framework 

 

 

4.1 Back-calculated Diffusion Coefficient of Concrete 

In Section 3, laboratory testing regime and mathematical model (see Equations 3.1 

through 3.5) for computing the early age diffusion coefficient of concrete cured with 

curing compound were described. Application of a numerical procedure, i.e. system 

identification method, for aiding in back-calculation of diffusion coefficient was also 

discussed. In this section, relative humidity information collected in the laboratory were 

presented and the resulting back-calculated diffusion coefficients of different cured 

concrete samples were illustrated.  
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In order to demonstrate the back-calculation procedure, three different concrete 

samples with the same water-cement ratio were prepared. In order to facilitate the 

comparison of the effectiveness of different curing compound, one concrete sample was 

prepared without applying any curing compound on it and this sample was considered to 

be as the base case scenario. The other two samples were cured with two different curing 

compounds in the laboratory. The two different resin based compounds used in this 

study were denoted by symbolic terms, such as A and B. After preparing the concrete 

specimens as shown in Figure 3.3, each curing compound was applied on the respective 

specimens at a rate of one gallon per 225 square feet of concrete surface.  

For each specimen, three different relative humidity measurements were 

obtained: (i) the sealed relative humidity (i.e. inside concrete sample), (ii) the filtered 

relative humidity (i.e. at concrete surface), and (iii) the ambient relative humidity at a 

frequent interval. System identification method was used to back-calculate the diffusion 

coefficients of the different concrete samples for each observation. Figures 4.2 through 

4.7, respectively present the collected relative humidity data for the three different 

concrete samples as well as the corresponding back-calculated diffusion coefficients. It 

may be noted that for the concrete sample cured with curing compound B, the relative 

humidity data were collected up to hour 47. The corresponding back-calculated diffusion 

coefficient indicated that the diffusion coefficient at hour 47 reached a plateau. Hence, 

the stabilized diffusion coefficient was extrapolated and extended up to hour 72 based on 

the observed trend to keep the observation range consistent with other samples.     
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Figure 4.2: Relative Humidity Data for the Base Case 

 

 

 

 

Figure 4.3: Back-calculated Diffusion Coefficient of Concrete for the Base Case 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

R
e

la
ti

ve
 H

u
m

id
it

y

Time (Hour)

Base Case

Sealed RH Filtered RH Ambient RH

1.00E-06

1.00E-05

1.00E-04

1.00E-03

0 10 20 30 40 50 60 70 80

D
if

fu
si

o
n

 C
o

e
ff

ic
ie

n
t 

(c
m

2
/s

) 

Time (Hour)

Base Case



 

95 

 

 

Figure 4.4: Relative Humidity Data for Concrete Cured with Curing Compound A 

 

 

 

 

Figure 4.5: Back-calculated Diffusion Coefficient of Concrete with Curing Compound A 
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Figure 4.6: Relative Humidity Data for Concrete Cured with Curing Compound B 

 

 

 

 

Figure 4.7: Back-calculated Diffusion Coefficient of Concrete with Curing Compound B 
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It can be seen from Figures 4.3, 4.5, and 4.7 that the diffusion coefficient of cured 

concrete starts with a higher value (i.e. about 1×10 -4 cm2/s) after placement. But as the 

curing compound (or the bleed water as in the base case) starts becoming effective with 

time, the diffusion coefficient exhibits a gradual decline in magnitude followed by 

reaching a lowest value. After some time as the curing compound (or the bleed water as 

in the base case) starts becoming ineffective, an increase in the value of the diffusion 

coefficient can be observed exhibiting higher moisture diffusion rate. These histories of 

diffusion coefficient depict the fact that curing compound helps to minimize the 

moisture diffusion rate from concrete sample to the surrounding environment. The time 

dependent back-calculated diffusion coefficient was used as an input in the finite 

difference moisture model described in Section 2.3 to perform the sensitivity analysis 

described in the later part of this section. 

 

 Curing Index 

In order to compare the performance of different curing compounds, a curing index (CI), 

ranging from 0 to 1, was proposed in this study. The calculated diffusion coefficient 

obtained from the laboratory test was compared against the two possible extremes, i.e. 

the lowest possible (worst case) and the highest possible (best case) diffusion coefficient. 

Since the curing compound acts as an insulation or barrier coating, the lowest possible 

diffusion coefficient can theoretically be obtained when the curing-insulation prevents 

any moisture loss from the concrete surface resulting in the concrete surface humidity 

(i.e. filtered) being equal to or approaching to be equal to the inside concrete humidity 
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(i.e. sealed). In contrast, when curing-insulation fails to prevent any moisture loss from 

concrete resulting in the concrete surface humidity being equal to or approaching to be 

equal to the ambient humidity, the concrete is going to have the highest possible 

diffusion coefficient. Therefore, a time-dependent curing index was formulated as 

follows based on the concept stated above: 

 

 ( )
( ) ( )

( ) ( )
, highest calc

highest lowest

t t
Curing Index CI t

t t

α α

α α

−
=

−
 (4.1) 

where, 
 

 

( )

( )

( )

calc

lower

higher

t calculated diffusion coefficient obtained fromtest at time t

t lowest possible diffusion coefficient at timet

t highest possible diffusion coefficient at timet

α

α

α

=

=

=

 

 

A curing compound with CI equal to one indicates that it is able to provide the perfect 

insulation against moisture loss from concrete whereas a CI of zero would indicate the 

opposite. For demonstration purpose, the highest, the calculated, and the lowest diffusion 

coefficient of concrete for the base case is shown in Figure 4.8. The curing indices 

computed for the base case as well as for the other specimens cured with curing 

compounds A and B are shown in Figure 4.9. This time dependent CI history can be 

useful for inspection and monitoring during the construction phase of rigid pavements. 

For example, the construction manager can monitor the CI curve with time during the 
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construction and if the CI drops below a certain threshold value, the manager can apply 

additional coating of curing compound to reach the desired level of CI value. 

   

 

 

Figure 4.8: Calculated and the Two Extreme Diffusion Coefficients for the Base Case 

 

 

 

Figure 4.9: Curing Indices for Different Curing Compounds 
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In order to compare the overall performance of the curing compounds up to a 

given time span, for example 72 hours, an additional index called the “overall curing 

index” was proposed which is shown in Equation 4.2. The index was formulated by 

taking the ratio between the area under the observed curing index curve to the area under 

the ideal curing index curve. The ideal CI curve would have a value of one throughout 

the first 72 hours and therefore, the area under the ideal curing index curve would be 

(72×1.0=) 72 CI-hour. The overall curing indices for the given specimens were 

computed from the CI histories shown in Figure 4.9 and are presented in Figure 4.10. 

 

 , overall

area under the CI curve
OverallCuring Index CI

area under the ideal CI curve
=  (4.2) 

 

 

 

Figure 4.10: Overall Curing Indices for Different Specimens 
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4.2 Validation of the Lift-off Displacement Model 

In this section, the lift-off displacement model proposed in Section 3 (see Equation 3.6) 

was validated with the experimental data collected by Jeong and Zollinger (2005). They 

reported information regarding several key parameters, for example the internal 

temperature and relative humidity, the evolution of strength and elastic modulus, the unit 

weight, the coefficient of thermal expansion, and the ultimate shrinkage of concrete, that 

were essential for performing the validation effort. The temperature gradient observed at 

the setting time of concrete, called the set gradient, was taken into consideration during 

the validation process. The concrete properties and the pertinent information required for 

this validation are presented in Table 4.1.  

 

 

 

Table 4.1. Concrete Properties and Pertinent Data 

Thickness 

(in) 

Unit 

Weight 

(lb/ft3) 

Poisson’s 

Ratio 

Modulus 

of 

Subgrade 

Reaction, 

(pci) 

Coefficient 

of Thermal 

Expansion 

(per °C) 

Ultimate 

Shrinkage  

 

12 

 

144 0.15 

 

100  

 

 

11.3×10-6 

 

 

524×10-6 
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The thermal strain was calculated using the simple linear thermal strain model 

described in Section 2. The temperature differences or gradients between the top and the 

bottom of the pavement were calculated from the measured temperatures at different 

locations across the slab thickness, reported by Jeong and Zollinger (2005). The 

nonlinear temperature gradient was converted to an equivalent linear temperature 

gradient ∆Teq, as shown in Equation 2.40 in Section 2, following the method proposed by 

Mohamed and Hansen (1996).  

The set gradient or the built-in gradient of slab, i.e. the temperature gradient 

observed during the final setting time of concrete, was accounted for in the analysis. 

According to Jeong and Zollinger (2005), the concrete was placed at 10:15 am and the 

final set occurred at 3:30 pm. The temperature gradient observed during the setting time 

of concrete is presented in Figure 4.11. The coordinate across the slab thickness was set 

equal to zero at the mid slab and the coordinate was considered to be positive while 

moving upward from the mid slab and vice versa. The equivalent temperature set 

gradient computed using Equation 2.40 was found to be +10.89 °C. The positive 

temperature gradient indicated that the temperature at the slab surface was higher than 

that at the bottom during setting. As the temperature difference between the top and the 

bottom of the slab starts dropping below +10.89 °C, the slab corner will tend to curl up 

and hence the built-in temperature gradient in this case was computed as -10.89 °C. 

Figure 4.12 shows the equivalent linear temperature gradient and the equivalent linear 

temperature gradient including the set gradient defined as the effective linear 

temperature gradient between the top and the bottom of the pavement.  
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Figure 4.11: Temperature Measurements across the Slab Thickness 

 

 

 

 

Figure 4.12: Equivalent and Effective Equivalent Temperature Gradient 
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The thermal strain including the built-in curling was computed using Equation 2.41 

given in Section 2 and is rewritten here for convenience.  

 

 T eq set
T Tε α α= ⋅∆ + ⋅∆  (4.3) 

where, 
 

 

T

eq

set

thermal strain

coefficient of thermal expansion

T equiavent linear temperature difference

T equiavent linear temperature difference during setting

ε

α

=

=

∆ =

∆ =  

 

The value of the coefficient of thermal expansion was reported in Table 4.1 and the 

value of ∆Tset used in this study was equal to -10.89 °C. The strain associated with the 

built-in curling was found to be as -1.23x10-4
. 

 The shrinkage strain was computed using the drying shrinkage model shown in 

Equation 4.4 instead of the model shown in Equation 2.42 because the former indicated 

a better fit with the corner displacement observations compared to that by the later. 

 

 
100

100sh ult

eq

RH
ε ε

− 
= ⋅∆  

 (4.4) 
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where, 
 

 100

100

sh

ult

eq

shrinkage strain

ultimate shrinkage strain

RH
equiavent shrinkage potential difference

RH measured relative humidity within pavement

ε

ε

=

=

− 
∆ =  

=

 

 

The computation of the equivalent linear shrinkage potential difference was 

performed in a similar fashion to the computation of the equivalent linear temperature 

difference ∆Teq. The potential for drying shrinkage was obtained by computing the 

difference between 100% relative humidity and the measured relative humidity at 

different locations across the slab thickness. Once the shrinkage potential indicated by  

(100-RH)/100 was obtained at each location across the slab thickness, the nonlinear 

shrinkage potential difference between the top and the bottom of the slab was converted 

to an equivalent linear shrinkage potential difference according to the method proposed 

by Mohamed and Hansen (1996). 

The delayed response of concrete i.e. the creep strain εCR was computed 

following the numerical scheme described for Equations 3.32 through 3.36. For the 

creep function, as shown in Equation 3.33, a series of four Kelvin chains were used in 

each creep function (internal and external) with the retardation times τ and µ having 

values of 0.1, 1.0, 10, and 100 days. The coefficients ki and mi in Equation 3.33 were 

calibrated to fit the shrinkage data (Jeong and Zollinger 2005) shown in Figure 4.13. 
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 With the given excitation history, the temperature and relative humidity were 

divided into n steps of small time interval ∆t. In a restrained condition, the structural 

response of the slab due to the induced excitation was computed at each time step. Once 

the incremental stress ∆σ was computed using Equation 3.36, the incremental creep 

strain ∆εCR was updated according to Equation 3.33 for that given time step. The 

incremental creep strain was accumulated to obtain the total creep strain and the process 

was repeated for the entire time history of interest.  

 

 

 

 

Figure 4.13: Drying Shrinkage Data and Calibrated Shrinkage Model 

 

 

 

-3.5E-04

-3.0E-04

-2.5E-04

-2.0E-04

-1.5E-04

-1.0E-04

-5.0E-05

0.0E+00

0 1 2 3 4 5 6 7 8

S
h

ri
n

k
a

g
e

 S
tr

a
in

Time After Placement (Days)

Experimental Data Fitted Model



 

107 

 

Finally, the time dependent total strain εTotal was computed by adding the thermal 

strain, drying shrinkage, and creep strain together as shown below: 

  

 ( ) ( ) ( ) ( )Total T sh CRt t t tε ε ε ε= + +  (4.5) 

 

in which all the variables have been defined before. This total strain was one of the 

required input for Equations 3.12 through 3.16 for solving the displacement model. 

The modulus of elasticity was also another required input that goes into the 

displacement model. Jeong and Zollinger (2005) computed the evolution of elastic 

modulus based on field samples and the reported elastic modulus with time is shown in 

Figure 4.14.  

 

 

 

Figure 4.14: Evolution of Modulus of Elasticity (Jeong 2003, Jeong and Zollinger 2005) 
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The concrete properties shown in Table 4.1 and the elastic modulus E(t) shown 

in Figure 4.14 were provided to the lift-off displacement model. The thermal strain and 

the shrinkage strain were computed for the given temperature and relative humidity 

histories reported by Jeong and Zollinger (2005). The creep strain corresponding to the 

excitation history was computed according to the procedure described above. The lift-off 

displacement of the pavement observed on the second and fourth day after placement 

was compared with the model predictions for illustration purpose and the comparisons 

are shown in Figures 4.15 and 4.16, respectively. It can be observed that the model 

predictions were in good agreement with the field observations. The displacement of the 

slab along the diagonal was further computed and few examples of the displacement 

profiles predicted by the model at different times of the day are shown in Figures 4.17 

and 4.18, respectively.  

 

 

 

Figure 4.15: Observed Corner Lift-off Displacement and Model Predictions at Day 2  
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Figure 4.16: Observed Corner Lift-off Displacement and Model Predictions at Day 4 

 

 

 

 

Figure 4.17: Predicted Displacement Profiles at Day 2 
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Figure 4.18: Predicted Displacement Profiles at Day 4 

 

 

4.3 Validation of the Climatic Stress Model 

When a slab undergoes bending in both the x and y directions, for instance as is in the 

case of temperature curling, the stresses in both directions can be superimposed to obtain 

the total stress. The stress in the x direction due to bending in the x direction can be 

obtained as (Huang 2004):   

 

 21
x

x

E ε
σ

ν

⋅
=

−
 (4.6) 

where, 
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'

x

x

stress in x direction

strain in x direction

Poisson s ratio

E elastic modulus of concrete

σ

ε

ν

=

=

=

=

 

 

The total stress in the x direction due to bending in both the x and y directions can be 

given as: 

 

 
Totalx x yσ σ ν σ= + ⋅  (4.7) 

 

where, σy is the stress in the y direction due to bending in the y direction. 

If ∆t is the temperature differential between the top and the bottom of the slab as 

shown in Figure 4.19 and α be the coefficient of thermal expansion, the maximum strain 

in the x and y directions for a completely restrained slab can be given as: 

 

 
2

x y

tα
ε ε

⋅∆
= =  (4.8) 

 

where, εy is the strain in y direction. Therefore, the total stress in the x direction, shown 

in Equation 4.7 due bending in both the x and y directions can be written as: 
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 2 2

2 2

1 1Totalx

t t
E E

α α

σ ν
ν ν

⋅∆ ⋅∆   
⋅ ⋅   
   = + ⋅
− −

 (4.9) 

 

 

Neutral Axis

αΔt/2

αΔt/2

Neutral Axis

 

Figure 4.19: Temperature Differential in Concrete Slab (after Huang 2004) 

 

 

After simplifying Equation 4.9, the total stress due to curling can be expressed as 

(Huang 2004): 

 

 
( )1 2Totalx

E tα
σ

ν

⋅ ∆ 
= ⋅ 

−  
 (4.10) 

 

The concept described above was applied in this research to predict the induced curling 

and warping stress in the concrete pavement and the prediction of climatic stress was 

validated against the experimental observation reported by Jeong and Zollinger (2001).  
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Equation 3.36 in Chapter 3, rewritten here in Equations 4.11 for convenience, 

was used in the computation of stress development due to the resulting thermal, 

hygrothermal, and creep strain.   

 

 ( )1
Total T HT CRJσ ε ε ε ε−∆ = ⋅ ∆ −∆ −∆ −∆  (4.11) 

 

If a slab is completely restrained and prevented from movement, Totalε∆ in the above 

equation becomes zero. Hence, Equation 4.11 can be rewritten as: 

 

 ( ){ }1
T HT CRJσ ε ε ε−∆ = ⋅ − ∆ + ∆ + ∆  (4.12) 

 

In order to compute the total stress in one direction due to the bending in both directions 

of the pavement, Equation 4.12 can be modified in the light of Equation 4.10 as follows: 

 

 
( ){ }

( )
1

1

T HT CR

J
ε ε ε

σ
ν

−
− ∆ +∆ +∆

∆ = ⋅
−

 (4.13) 

 

The temperature and relative humidity profiles at the construction site reported 

by Jeong and Zollinger (2005) was used in the validation effort of the climatic stress 

model. The nonlinear temperature and pore fluid pressure gradients in the pavement 

were converted to equivalent linear gradients, similar to the one shown in Figure 4.19, 
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using the linearization concept proposed by Mohamed and Hansen (1996). The variables

Tε∆ , HTε∆ , and CRε∆ in Equation 4.12 were known at the beginning of each time step. 

The restrained tensile stress was computed incrementally using Equation 4.13 and was 

accumulated in the result at the end of time step.  

Model predicted environmental stress and concrete strength curves are plotted in 

Figure 4.20. The two curves intersect between hour 9 and hour 10 after placement and 

this indicates the time interval when cracks are likely to occur. The experiment 

observations of Jeong and Zollinger (2005) indicated that cracks were formed between 

hour 11 and hour 12 after concrete placement and the time interval of crack occurrence 

at the experimental site is illustrated by the shaded area in the graph. 

 

 

 

Figure 4.20: Prediction of Time of Crack Initiation versus Experimental Observation 
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From Figure 4.20 it can be concluded that the prediction of the climatic stress model 

seems to be in reasonable agreement with the experimental observation. 

 

4.4 Validation of the Probabilistic Models for Failure 

In this research, two modes of failure were considered, such as lift-off displacement or 

debonding and crack formation. The formulation of the probability of crack formation 

and the probability of lift-off have been mentioned before in Equations 3.39 and 3.41, 

respectively. The probabilistic models were validated using the available information for 

an overlay construction project in Houston Intercontinental, TX. The date and time of 

construction were known and the corresponding weather history, such as ambient 

temperature, ambient relative humidity, and wind speed, were obtained from the website 

(The Weather Underground, LLC 2014).  

The overlay, with a design water-cement ratio of 0.42, was of 8 inch in thickness 

and was constructed over an existing concrete pavement of 18 inch starting on 23 

February 2011. The available weather information contained the minimum and 

maximum ambient temperature and relative humidity as well as average wind speed. The 

weather history was used to model the development of temperature and relative humidity 

gradients within the concrete overlay starting from the time of placement up to the next 

72 hours. Since the temperature and relative humidity follow a sinusoidal pattern, a sine 

function was used to model the daily temperature and relative humidity variations during 

the construction period. The minimum and maximum temperatures and relative 
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humidities for each day up to the first 72 hours were used to fit the sine function to 

represent the ambient temperature and relative humidity variations.  

The prevalent weather information during the construction period used in this 

validation effort are shown in Table 4.2. The minimum and maximum temperatures were 

assumed to occur around 7 am and 16 pm, respectively and the maximum and minimum 

relative humidities were assumed to commence during the same hours, i.e. 7 am and 16 

pm, respectively. The placement of concrete started at 10 am and hence the sinusoidal 

curves were fitted through the minimum and maximum temperatures and relative 

humidities starting from 10 am for that particular day up to the next 72 hours. The 

ambient temperature and relative humidity modeled with sine functions, for example 

starting on 28 February 2011 up to next 72 hours, are shown in Figures 4.21 and 4.22, 

respectively. It should be noted that the time of concrete placement 10 am was denoted 

as hour 1 and the subsequent hours were denoted sequentially in the above mentioned 

figures.  

Finite difference numerical scheme, as described in Section 2, was used to model 

the temperature and relative humidity distribution within the concrete overlay for a given 

ambient temperature and relative humidity histories. For the finite difference models, 

appropriate temperature and humidity boundary conditions, such as convection, solar 

radiation, atmospheric radiation, concrete radiation, and moisture convection, described 

in Equations 2.18, 2.25, 2.26, 2.30, and 2.35 were incorporated to predict the 

temperature and humidity gradients developed within the overlay. The finite difference 

models were solved for the weather histories shown in Figures 4.21 and 4.22, and the 
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simulated temperature and humidity differences between the top and the bottom of the 

overlay are presented in Figures 4.23 and 4.24, respectively for illustration purpose. The 

obtained temperature and humidity gradients were converted to equivalent linear 

temperature difference, equivalent linear shrinkage potential difference, and equivalent 

linear pressure gradient to further model the strain and stress development in the 

concrete overlay.  

 

 

 

Table 4.2. Ambient Temperature, Relative Humidity, and Wind Speed 

Date of 

Construction 

Temperature (°C) Relative Humidity (%) 
Wind Speed 

(mph) 

Min Max Min Max Average 

23 Feb. 2011 18.9 27.2 51 97 9.2 

24 Feb. 2011 20.0 26.1 60 94 10 

25 Feb. 2011 11.7 25.0 32 100 5 

26 Feb. 2011 10.5 22.8 72 93 5 

27 Feb. 2011 19.4 28.3 55 93 12 

28 Feb. 2011 12.8 25.6 19 83 11 

01 Mar. 2011 7.8 23.9 19 80 6 

02 Mar. 2011 7.8 23.9 21 71 4 

03 Mar. 2011 7.8 22.8 55 100 4 

04 Mar. 2011 17.2 25 52 100 7 

05 Mar. 2011 8.9 18.9 51 100 8 

06 Mar. 2011 4.4 20.6 22 79 9 
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Figure 4.21: Ambient Temperature History Starting from 10 am, 28 February 2011 

 

 

 

 

Figure 4.22: Ambient RH History Starting from 10 am, 28 February 2011  
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Figure 4.23: Temperature Difference between the Top and the Bottom of the Overlay 
Starting from 10 am, 28 February 2011 

 

 

 

 

Figure 4.24: Humidity Difference between the Top and the Bottom of the Overlay  
Starting from 10 am, 28 February 2011 
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 Probability of Cracking 

Given the history of stress σ and the strength development f, the probability of crack 

formation during the early age of concrete can be described using Equation 3.39 which is 

rewritten here for convenience. 

 

 
[ ] [ ]

2 22 2

f

cr

f

P

COV f COV

σ

σ

µ µ
φ

µ µ σ

 
− =

 ⋅ + ⋅ 

 (4.14) 

where, 
 

 

[ ]

[ ]

cr

f

P probability of cracking

standard normal probability distribution function

expected valueof

expected valueof f

COV coefficient of variationof

COV f coefficient of variationof f

σ

φ

µ σ

µ

σ σ

=

=

=

=

=

=

 

 

The incremental stress ∆σ development for the overlay project in Houston was modeled 

according the numerical scheme described for Equation 4.13. The evolution of strength, 

in this case modulus of rupture, was modeled using Equation 4.15 which is similar to the 

form of equation describing the evolution of compressive strength provided by ACI 

Committee 209 (ACI Committee 209 1992). Using the stress and the strength evolution 

model described above, a typical stress versus strength curve is shown in Figure 4.25. 
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 (4.15) 

where, 
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28

,

r

r

f modulus of ruptureat aget

f modulus of ruptureat ageof days
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=
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=

=

 

 

 

 

 

Figure 4.25: Typical Stress and Strength Evolution 
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For the overlay construction project, the modulus of rupture at 28 days was 

considered to be 700 psi based on the knowledge of the agency specification for concrete 

strength. The coefficient of variations of stress and strength, as shown in Equation 4.14, 

was assumed to be 0.25 and 0.15, respectively. Since there was not enough information 

available to be confident on the modulus of rupture of 700 psi, the probability 

estimations were performed based on a strength envelop having a lower limit of 600 psi 

and an upper limit of 800 psi extending one standard deviation of 100 psi (≈ 700×0.15) 

around the mean strength (≈ 700 psi).  

Field observations, i.e. crack survey information, were available for the overlay 

panels paved on each day. Table 4.3 presents the number of panels paved on each day 

and the number of panels that experienced cracking subsequently. As for example, on 

February 23, 48 panels were paved and 17 panels out of those 48 panels cracked 

eventually. Therefore, the percentage of panels that were cracked was estimated to be as 

35.4. 

Figure 4.26 shows the predicted as well as the observed probability or percent 

cracking for each day of paving operation. The predicted probability envelop was 

computed for a 28 day strength envelop ranging from 600 psi to 800 psi with a mean 

strength of 700 psi. Another additional narrower 28 day strength envelop was added 

ranging from 650 psi to 750 psi to compute a further narrower cracking-probability 

envelop. The observed percentages of slab cracking were superimposed with the 

probability envelops to compare the accuracy of the prediction. It can be seen that three 

field observations on February 23, February 24 and March 02 of 2011 were within the 
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narrower envelop. The observations on February 25 and March 01 of 2011 fell within 

the wider envelop. 

 

 

Table 4.3. Crack Survey Information for the Overlay Construction Project 
Date of 

Construction 

No. of Panels 

Paved 

No. of Cracked 

Panels 

Percent of Slab 

Cracked 

02/23/2011 48 17 35.4 

02/24/2011 12 2 16.7 

02/25/2011 78 7 9.0 

03/01/2011 76 28 36.8 

03/02/2011 77 36 46.8 

03/03/2011 3 2 66.7 

 
 
 
 
 

 

Figure 4.26: Predicted and Observed Probability of Cracking at Different 28-Day 
Modulus of Rupture 
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It should be noted that the observed percent cracking for the construction on February 25 

of 2011 was in close proximity to the narrower envelop represented by the strength of 

750 psi and the corresponding observed cracking probability versus predicted cracking 

probability were 9% versus 10.6%, respectively. The only observation that was outside 

the predicted probability envelop was associated with the panels paved on March 03 of 

2011. However, this observation might be considered as an anomaly or outlier as three 

panels might not constitute a sufficient sample size to make a conclusive evidence of the 

accuracy of the prediction. Hence, it can be concluded that with reasonable assumptions 

on strength variations, the probability of cracking model predictions were in sufficient 

agreement with the field observations. 

 

 Probability of Lift-off or Debonding 

The probability of lift-off can be estimated using Equation 3.41, which is rewritten in 

Equation 4.16, provided the stress and strength history are known. The tensile stress at 

the interface between the overlay and the old pavement due to corner lift-off 

displacement can be computed by multiplying the corresponding lift-off displacement 

and the modulus of subgrade reaction k as shown in Equation 4.17 (Shin 2000). The 

strength, in this case termed as split tensile bond strength (Shin 2000), was estimated in 

this study by relating the split tensile strength of concrete with the split tensile bond 

strength of concrete.  

The split tensile strength of a cylindrical concrete specimen can be obtained as 

per ASTM C496 by applying load laterally along the diameter till the specimen splits at 
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the middle. The schematic diagram depicting the split tensile test of concrete is shown in 

Figure 4.27. The split tensile bond strength between the old concrete substrate and the 

new overlay concrete can be obtained by a testing procedure developed by Shin (2000). 

In his method, Shin casted a concrete cylinder, cured and dried it for 60 days to make it 

of similar condition of an old substrate. The cylinder was then saw-cut in half 

longitudinally as shown in Figure 4.28 and was placed in a mold. The remaining space in 

the mold was then filled with the new overlay concrete. The split tensile bond strength 

was obtained by following the similar procedure as per ASTM C 496.  
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where, 
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 lift off kσ − = ⋅∆  (4.17) 
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where, 
 

 

lift off lift off or debonding stress

k modulus of subgrade reaction

corner lift off displacement of slab

σ − = −

=

∆ = −

 

 

 

LoadLoad

Concrete Cylinder

Before After  

Figure 4.27: Split Tensile Test for Measuring Split Tensile Strength 

 

 

Load

Sawn Surface

Overlay Concrete Old Substrate

 

Figure 4.28: Split Tensile Test for Measuring Tensile Bond Strength (after Shin, 2000) 
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In his study, Shin reported the compressive strength and the 7-day split tensile 

bond strength for the four different specimens as shown in Table 4.4. The 7-day split 

tensile bond strength was used to back-calculate the 28-day split tensile bond strength 

using the strength evolution model having the similar form as Equation 4.15. The split 

tensile strength for those specimens were estimated from the reported compressive 

strength using Equation 4.18 proposed by Arioglu et al. (2006). 

 

 

 

Table 4.4. Compressive, Split Tensile, and Split Tensile Bond Strength Information 

Sample 

Water-

Cement 

Ratio 

Compressive 

Strength 

(psi) 

Split Tensile 

Bond Strength  

(psi) 

Split 

Tensile 

Strength 

(psi) 

Bond 

Strength 

Factor  

28-day 7-day 28-day 28-day 

(1) (2) (3) (4) (5) (6)  (7)=(6)/(5) 

HPC 0.30 8187 109 155 712 4.60 

FRC II 0.40 7460 215 306 672 2.20 

FRC 0.51 4387 194 276 481 1.74 

OPC 0.65 4217 253 260 469 1.30 
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 0.370.387tsp

c

c

f
f

f

−= ⋅  (4.18) 

where, 
 

 
( )

( )

tsp

c

f split tensile strength MPa

f compressive strength MPa

=

=
 

 

With Shin’s reported split tensile bond strength and the estimated split tensile strength 

from Equation 4.18, a parameter termed as “bond-strength- factor” was defined as 

follows: 

 

 
tsp

tb

f
f

bond strength factor
=

− −
 (4.19) 

 

where tbf  is the split tensile bond strength. The bond-strength-factor was used later to 

estimate the split tensile bond strength for the overlay construction project in Houston, 

TX. The estimated bond strength factor for the four specimens of Shin’s study are shown 

in Table 4.4. It can be seen from Table 4.4 that the bond strength factor varied from 

about one to five for the different specimens having varied water-cement ratio.  

For the overlay construction project in Houston, the strength of concrete was 

estimated using Bolomey’s equation (Bolomey 1935; Brandt 1995; Brandt 1998; 

Rajamane and Ambily, 2012; de Larrard 1999) as shown in Equation 4.20: 
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1

0.5
/cf A

w c

 
= − 

 
 (4.20) 

 

where A is an empirical constant related to cement and aggregate, w/c is the water-

cement ratio, and fc is the compressive strength in MPa. The split tensile strength was 

then estimated using Equation 4.18 with the estimated compressive strength. Finally, the 

28-day split tensile bond strength ftb was computed using the bond-strength-factor and 

the split tensile strength ftsp according to Equation 4.19. The evolution of split tensile 

bond strength was then computed from the 28-day split tensile bond strength using a 

similar form of strength evolution model as shown in Equation 4.15. Finally, using the 

computed stress and strength, the probability of lift-off or debonding was then computed 

using Equation 4.16. The coefficient of variations for the stress and the strength in 

Equation 4.16 were assumed to be 0.25 and 0.15, respectively.  

Therefore, for a water-cement ratio of 0.42, the estimated 28-day compressive 

strength fc and 28-day split tensile strength ftsp were found to be 5,245 psi and 540 psi, 

respectively. From Table 4.4, it can be seen that the bond-strength-factor was 2.20 for a 

water-cement ratio of 0.40. For the given problem in hand with a water-cement ratio of 

0.42, the bond-strength-factor can be approximated as 2.20. Henceforth, the lift-off -

probability was computed with the split tensile bond strength ftb estimated from the 

bond-strength-factor of 2.20. However, as there was not enough information available to 

be confident in the estimation of split tensile bond strength, a strength envelop was used 

in the computation of the probability of lift-off. The strength envelop was estimated with 



 

130 

 

the bond-strength-factors varying between 2 and 3. The resulting 28-day split tensile 

bond strengths estimated from the bond-strength-factors of 3 and 2 were 179 psi and 269 

psi, respectively. A bond-strength-factor of 2.5 (i.e. ftb = 215 psi) was also used in the 

lift-off - probability computation to provide an additional perspective of the probability 

envelop.  

Table 4.5 presents the required information used in the computation of the 

probability of lift-off for the overlay project in Houston, TX. Figure 4.29 presents the 

predicted and the observed probability of lift-off for the overlay project. It may be 

observed that most of the probability estimations corresponding to the 28-day split 

tensile bond strength of 245 psi (i.e. with a bond-strength-factor = 2.20) were in close 

agreement with the field observations. The probability of lift-off for the overlay 

constructed on 23 February 2011 was the only one that was not in close proximity of the 

probability estimations associated with the bond-strength-factor of 2.20. However, that 

observation was within the limits of the probability envelop predicted by the model. 

Hence, it can be concluded that with reasonable assumption on the strength parameters, 

the probability of lift-off model predictions were in good agreement with the field 

observations. 
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Table 4.5. Compressive, Split Tensile, and Split Tensile Bond Strength Information 

for the Overlay Construction Project 

Compressive 

Strength (psi) 

Split Tensile 

Strength (psi) 
Bond Strength 

Factor  

Split Tensile 

Bond Strength  

(psi) 

28-day 28-day 28-day 

(1) (2)  (3) (4)=(2)/(3) 

5245 540 

2.2 245 

3.0 179 

2.5 215 

2.0 269 

 

 

 

  

Figure 4.29: Predicted and Observed Probability of Lift-off for Various Split  
Tensile Bond Strength 
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4.5 Sensitivity Analysis 

In this section, sensitivity analysis was performed to gain insight regarding the 

constructability of overlay and concrete pavements. Several key parameters considered 

in the analysis was the slab thickness, the time of concrete placement, the season of 

construction, and the effect of curing compound. In order to study the effect of time of 

concrete placement as well as the effect of season of construction, the ambient 

temperature and relative humidity variations during February and July were taken into 

consideration for demonstration purpose only. The minimum and maximum 

temperatures and relative humidity information for the chosen three-day periods 

covering 72 hours in each month, shown in Table 4.6, were used to fit a sine function to 

define the hourly ambient temperature and relative humidity variations throughout the 72 

hours. The ambient temperature and relative humidity histories for February and July 

that were used in the sensitivity analysis are shown in Figures 4.30 through 4.33. 

 

 

Table 4.6. Environmental Information for February and July  
Date of 

Construction 

Temperature (°C) Relative Humidity (%) 

Min Max Min Max 

24 Feb. 2011 20.0 26.1 60 94 

25 Feb. 2011 11.7 25.0 32 100 

26 Feb. 2011 10.6 22.7 72 93              

02 July 2011 23.3 38.9 29 94 

03 July 2011 24.4 36.7 35 94 

04 July 2011 25.6 36.1 35 85 
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Figure 4.30: Ambient Temperature History Starting from 24 February 2011 

 

 

 

 

Figure 4.31: Ambient Relative Humidity History Starting from 24 February 2011 
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Figure 4.32: Ambient Temperature History Starting from 02 July 2011  

 

 

 

 

Figure 4.33: Ambient Relative Humidity History Starting from 02 July 2011 
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 The Effect of Time of Construction or Placement 

The first parameter of interest was the time of construction or placement to investigate 

whether there is any effect of time of construction on the potentials for cracking and lift-

off. Numerical simulations were performed by placing concrete slab at different times of 

the day for a given environmental excitation history. While holding all the other 

parameters constant expect the time of placement, the temperature and the relative 

humidity gradients within the pavement were simulated up to the 72 hours after placing 

the concrete. Using the simulated temperature and relative humidity gradients across the 

slab thickness, the corresponding induced stress in the slab was computed. Then 

comparing the evolution of stress and strength, the potentials for lift-off as well as 

cracking were computed. The time of placements or constructions were considered in 2 

hour increments starting from hour 2 up to hour 24.  

To demonstrate the effect of time of placement, the ambient temperature and 

relative humidity histories for a three-day period in February, as shown in Figures 4.30 

and 4.31, were selected for illustration purpose only. These were used to simulate the 

temperature and the relative humidity gradients within an 8 inch overlay for different 

placement hours along the day and the corresponding probabilities of lift-off and 

cracking were computed. The computed probabilities of lift-off and cracking for an 

overlay constructed at different times of the day are plotted in Figures 4.34 and 4.35, 

respectively. Both the figures depict the fact that the time of construction has an impact 

on the potential for distresses and it can be seen that slabs constructed between hour 17 

and hour 21 are less prone to lift-off as well as cracking.  
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Figure 4.34: The Effect of Time of Placement on Lift-off Potential  

 

 

 

 

Figure 4.35: The Effect of Time of Placement on Cracking Potential 
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The interpretation of such a phenomenon is that the after-hours of the time window, i.e. 

hour 17 to hour 21, has a favorable environment for the pavement for which the 

temperature and set gradients and the relative humidity gradients induced lower stresses 

within the pavement and as a result lowered the potentials for lift-off as well as cracking. 

 

 The Effect of Thickness 

The effect of slab thickness was the second parameter of interest for investigating its 

impact on the probability of lift-off and cracking.  Two different slab thicknesses, such 

as 4 inch and 8 inch, were considered in the analysis. Numerical simulations were 

performed with the two different slab thicknesses by placing those at different times of 

the day at 2 hour time interval starting from 2 am. Simulations were conducted up to 72 

hours after concrete placement to obtain the temperature and the relative humidity 

gradients across the slab thicknesses for a given environmental history and the 

corresponding potentials for lift-off as well as cracking were computed using those 

gradients.  

To demonstrate the effect of thickness, the temperature and the relative humidity 

histories for the three-day period in February, as described before, were used for 

illustration purpose only. The probabilities of lift-off and cracking, computed for the two 

chosen slab thicknesses are presented in Figures 4.36 and 4.37, respectively. 

Comparing the variations of lift-off potential for the two chosen slab thicknesses 

placed at different times over a 24-hour period, as shown in Figure 4.36, it is evident that  

a thinner overlay (i.e. 4 in.) performed better than a thicker overlay (i.e. 8 in.) in resisting 
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lift-off displacement. The thinner structure, constructed at any time throughout the day, 

exhibited insignificant potential for lift-off. On the other hand, the thicker structure 

exhibited lift-off potentials ranging from 0% to 55% depending on the time of 

construction. Thus, thin structures are found to be less prone to lift-off displacement 

compared to thick structures and the potential for lift-off for the thicker structure showed 

a variation with the time of construction throughout the day. 

The cracking potentials, as shown in Figure 4.37, for the thin and thick structures 

indicated that the thicker pavement, except few observations, exhibited lower cracking 

potentials compared to that of the thinner pavement. The cracking potential for the 4 

inch pavement varied from about 0.18 to 0.40 whereas the cracking potential for the 8 

inch pavement ranged from about 0.04 to 0.50 depending on the time of construction. 

Compared to the 8 inch pavement, the 4 inch pavement was more prone to cracking 

between hour 4 and hour 18, and the probability of cracking during that time span did 

not fall below 0.15. However, during the same time window, the 8 inch pavement 

exhibited a gradual decline in cracking potentials and the cracking probability went as 

low as 0.05. There were few exceptions where the 8 inch pavement experienced higher 

cracking probability compared to the 4 inch pavement as can be seen for the placement 

hours before hour 4 and after hour 18. The explanation to such phenomenon is that the 

combined environmental gradients for those construction hours induced a higher strain 

in the 8 inch structure compared to the 4 inch structure and thus, an 8 inch pavement 

exhibited a higher cracking potential. Overall, depending on the time of construction, the 
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thicker pavement was found to perform better in terms of resisting crack formation 

compared to the thinner pavements. 

 

 

 

Figure 4.36: The Effect of Slab Thickness and Time of Placement on Lift-off Potential  

 

 

Figure 4.37: The Effect of Slab Thickness and Time of Placement on Cracking Potential 
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 The Effect of Season of Construction  

The third parameter of interest was the season of construction and the sensitivity analysis 

was performed on the season of construction to assess the corresponding effect on the 

cracking and lift-off potentials.  The temperature and the relative humidity gradients in 

an 8 inch slab was obtained through simulation using the environmental histories for 

February and July as shown in Figures 4.30 through 4.33 representing the spring and the 

summer season, respectively. The 8 inch slab thickness was chosen arbitrarily for 

illustration purpose. The computed probabilities of lift-off and cracking for the spring 

and the summer are shown in Figures 4.38 and 4.39. 

It is seen from Figure 4.38 that the season of construction has an impact on the 

lift-off potential. The construction during the summer exhibited a noticeably higher lift-

off potential compared to that of the spring for the time of construction varying from 

hour 2 to hour 16. For the rest of the day, the summer construction seemed to have equal 

or better performance in terms of resisting lift-off.  

Figure 4.39 also exhibits similar impact of construction season on the cracking 

potential. For the time of construction ranging between hour 2 and hour 18, the summer 

construction again showed a prominently higher cracking potential compared to that of 

the spring construction. Similar to the lift-off potential trend for the rest of the day, the 

cracking potential is seen to be lower for the summer construction compared to that of 

the spring construction.  
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Figure 4.38: The Effect of Season of Construction on Lift-off Potential  

 

 

 

 

Figure 4.39: The Effect of Season of Construction on Cracking Potential  
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 The Effect of Curing Compound  

The last parameter studied was the effect of curing compound on the both types of 

distress potentials. Keeping the other conditions constant, numerical simulations were 

performed for an 8 inch slab with two curing methods: base case without any curing 

application and the other with application of curing compound B for both the spring and 

the summer construction. The effect of curing compound on the lift-off and the cracking 

potentials for both the seasons are presented respectively in Figures 4.40 through 4.43. It 

can be seen that the construction with curing compound B performed better in resisting 

lift-off displacement compared to the base case representing no curing application. 

Similarly, while considering the potential for cracking, the construction with curing 

compound B seemed to have a substantially lower cracking tendency compared to that of 

the base case. Hence as expected, curing compound can contribute to better construction 

outcome through minimizing both the lift-off and cracking potentials.  

The information regarding the performance of a pavement or an overlay structure 

obtained from the sensitivity analysis were combined and an index termed as 

“constructability index” was defined which is discussed in the following subsection.  
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Figure 4.40: Lift-off Potentials with Curing Compound during Spring  

 

 

 

 

Figure 4.41: Cracking Potentials with Curing Compound during Spring  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16 18 20 22 24

P
ro

b
a

b
il

it
y

 o
f 

Li
ft

-o
ff

Time of Placement (Hour)

Lift-off Potential-Spring Construction

Base Case Curing Compound B

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20 22 24

P
ro

b
a

b
il

it
y

 o
f 

C
ra

ck
in

g

Time of Placement (Hour)

Cracking Potential-Spring Construction

Base Case Curing Compound B



 

144 

 

 

Figure 4.42: Lift-off Potentials with Curing Compound during Summer 

 

 

 

 

Figure 4.43: Cracking Potentials with Curing Compound during Summer 
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4.6 Constructability Index 

In this section, an index called “constructability index” was proposed with a view to 

assist the design engineers and construction managers for arriving at an optimal and best 

construction option. The potentials for two distresses, such as cracking and lift-off 

displacement, were taken into consideration in formulating the constructability index. 

The index varies from zero to one, where one indicates the best possible construction 

option and zero being indicative of the opposite extreme. The constructability index, in 

this study, was formulated as follows: 

 

 ( )1cons delam cr cr delamI P P P P= − + − ⋅  (4.21) 

where, 
 

 

cons

delam

cr

I constructability index

P probability of delamination

P probability of cracking

=

=

=

 

 

The constructability index was computed for both the construction seasons of 

spring and summer for two curing methods: the base case without any curing application 

and the other with application of curing compound B for the construction time varying 

from hour 2 to hour 24. The computed indices are presented in Figures 4.44 and 4.45. It 

can be seen that the proposed constructability index captures the differences in 

performance between the two curing methods, depicting a performance variation with 

time of construction. Also the index was capable of manifesting the seasonal effect on 
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the constructability of the project. Comparing Figures 4.44 and 4.45 for the computed 

constructability indices, it can be seen that the spring construction was found to be more 

favorable compared to the summer construction. The design engineers and project 

managers can benefit from this index through studying the effect of different key 

elements on the distress potentials, incorporating those estimates in the constructability 

index for assessing the given design and construction scenario followed by controlling 

and adjusting those elements to obtain the best possible construction outcome.    

 

 

 

Figure 4.44: Constructability Index for Project Constructed in Spring 
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Figure 4.45: Constructability Index for Project Constructed in Summer 
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5. CONCLUSION AND RECOMMENDATION  

 

5.1 Summary and Conclusion 

In this research a methodology was proposed and developed to assess the 

constructability of concrete pavement and overlay in order to improve the performance 

as well as to extend the service life of pavement system. The main core of this research 

was based on incorporating the effect of curing process (i.e. curing compound) as well as 

modeling the impact of environmental excitations, i.e. temperature and relative humidity 

histories, into the design analysis in order to assess the distress potentials of concrete 

pavement and overlay. Curing compound, in effect, influences the relative humidity or 

the moisture transfer process between the pavement and the ambient environment. 

Depending on the quality of curing compound applied on the concrete pavement and the 

overlay, it can control the drying shrinkage taking place during the construction phase to 

some possible extent. The effect of environmental excitations can also be assessed and 

minimized by simulating its effect on pavement distresses by adjusting the time and 

season of construction in a modeling framework.  

The results obtained from this study indicated that it is possible to minimize the 

potential for distresses through applying curing compound during the construction phase 

as well as by adjusting the time and season of construction. The construction assessment 

methodology developed in this study involved modeling several elements as stated 

below: 
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(i) incorporating the effect of curing process in a design framework through 

adjusting the diffusion coefficient of concrete and modeling the influence of 

curing method on the moisture transfer process taking place during the 

construction phase;  

(ii) proposing two indices: (a) curing index and (b) overall curing index to facilitate 

comparison among the performance of different curing compounds; 

(iii) predicting the probability of the pavement and the overlay to experience lift-off 

displacement as well as cracking due to the stresses induced by environmental 

excitations; and  

(iv) finally incorporating these probabilities of distress into a decision making 

framework through proposing an index defined as “constructability index”. 

  

The effect of curing compound applied during the construction of concrete 

pavement is manifested in the time dependent diffusion coefficient of concrete. A 

mathematical model was proposed in this study to back-calculate the diffusion 

coefficient of concrete that had curing compound applied on its surface. For a concrete 

sample prepared in the laboratory, three different relative humidity measurements were 

obtained, such as sealed RH, filtered RH, and ambient RH, in order to back-calculate the 

time dependent diffusion coefficient of cured concrete. With the three relative humidity 

measurements and the solution methodology called system identification method, it was 

possible to back-calculate the diffusion coefficient of cured concrete with time. The 

back-calculated diffusion coefficients of concrete without any curing compound (i.e. the 
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base case) as well as with two different curing compounds A and B were illustrated in 

the study. 

An indexing system with the back-calculated time dependent diffusion 

coefficient α(t) was formulated. Two different indices were proposed in this study: (i) 

the curing index depicting the time dependent effectiveness of the curing compound and 

(ii) the overall curing index demonstrating the overall performance of the curing 

compound for a given time span. The time dependent curing index was formulated by 

taking into account the two possible theoretical extremes i.e. the lowest (best) and the 

highest (worst) possible values of the diffusion coefficient and the curing index was 

defined as follows. 

 

 ( )
( ) ( )

( ) ( )
, highest calc

highest lowest

t t
Curing Index CI t

t t

α α

α α

−
=

−
  

  

The overall curing index was computed by taking the ratios of the area under the CI 

curve to the area under the ideal CI curve for a given time span - in this study the time 

span was taken as 72 hours. The ideal curing index curve was considered to have a value 

of one throughout the considered time span, i.e. 72 hours. The overall curing index in 

this study was defined as follows. 

 

 , overall

area under the CI curve
Overall Curing Index CI

area under the ideal CI curve
=   
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 With these two indices, it was possible to capture the difference in performance between 

the two different curing methods considered in the study, i.e. the base case without any 

curing application and the other with application of two different curing compounds A 

and B.  

 Lift-off displacement model and climatic stress model were formulated for 

concrete pavement or overlay to predict the lift-off displacement and cracking behavior 

for a given environmental excitation history. Both these models were validated with the 

experimental observations obtained by Jeong and Zollinger (2001 and 2005). The 

temperature and the relative humidity histories, the evolution of strength and elastic 

modulus reported by Jeong and Zollinger (2001 and 2005) were used as input in the lift-

off displacement and climatic stress models. The predictions from both the models 

indicated that the models were in good agreement with the experimental observation. 

   Probabilistic models were formulated for predicting the potentials for lift-off and 

cracking for a given design and construction scenario. Both the probabilistic models 

were validated with the experimental observations for an overlay project constructed at 

Houston Intercontinental, TX. Finite difference models were formulated to predict the 

temperature and the relative humidity distributions within the concrete for the given 

weather history. The evolution of concrete strength and elastic modulus were computed 

with the available project specifications. With the computed concrete strength, elastic 

modulus as well as the temperature and moisture gradients, the probabilities for cracking 

and lift-off were computed and were compared with the field observations. The 
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predictions of both the probabilistic models exhibited sufficient agreement with the field 

observations. 

 With the validated lift-off and cracking models, sensitivity analysis was 

performed to compute the potential for lift-off and cracking with a view to gain insight 

regarding the constructability of a pavement or overlay construction project for a given 

design and construction scenario. Parameters of interest were the thickness of the 

structure, the time of placement or construction, the season of construction, and the 

application curing compound. The results of the sensitivity analysis are briefly discussed 

below: 

 

� The effect of thickness on the lift-off and cracking potentials indicated that the 

thicker pavement was less prone to cracking compared to the thinner pavement. 

On the other hand, the thicker overlay were more prone to lift-off displacement 

compared to that of the thinner one. 

� The effect of time of construction on the lift-off and cracking potentials indicated 

that both the probability of lift-off and the probability of cracking followed a 

sinusoidal variations along the day. This revealed that the possibility of lift-off 

and cracking can be minimized by constructing the pavement and the overlay 

during a particular time window of the day, such as approximately between 5 pm 

and 9 pm as found in simulation results of this study; 

� The effect of season of construction on the lift-off and cracking potentials 

revealed that the season of construction has an impact on the probability of lift-
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off as well as the probability of cracking. For example, in this study the spring 

construction exhibited less distress potentials compared to the summer 

construction for the time of construction taking place between about 2 am and 6 

pm.  

� The effect of curing compound on the distress potentials was investigated by 

comparing the construction having no curing application (termed as base case) 

with the construction having curing application. Simulation results indicated that 

the lift-off and cracking potentials for the construction projects having curing 

applications were noticeably less compared to the construction projects without 

any curing applications. 

 

With the results from the sensitivity analysis, an index called “constructability 

index” was proposed and demonstrated in this research in order to assist the design and 

construction managers to study the effect of different key elements of a construction 

project on the constructability of a pavement and overlay project. The constructability 

index was formulated by incorporating the probability of lift-off as well as the 

probability of cracking as shown below.  

 

 ( ), 1cons delam cr cr delamConstructability Index I P P P P= − + − ⋅   

  

The proposed constructability index was able to capture the difference in performance 

between the two curing method, i.e. with no curing application versus with curing 
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application, as well as demonstrated a performance variation with the time of 

construction as well as the season of construction. The design engineers and the 

construction managers can design and construct better pavements and overlays using this 

constructability index through controlling and adjusting the different key elements of a 

construction projects.  

  

5.2 Recommendations for Further Study 

This research deals with modeling and incorporating the curing process into design 

analysis as well as providing a methodology for assessing the constructability of 

concrete pavement and overlay projects. Based on the outcome of the research, the 

following needs have been identified for future research that would make logical 

extensions of this research. 

  

� The result from this research indicated that the quality and duration of curing during 

the initial phase of construction was important. This initial time window when the 

pavement construction is vulnerable to environmental excitations needs to be 

established through experimentation. Close monitoring and inspection regarding the 

quality and the duration of curing and the corresponding effect on the distress 

potentials during this time frame will be required. 

� Relationship between the quality and the duration of curing (represented by curing 

index and overall curing index) and the intensity of distress potential needs to be 

established and validated through laboratory and field experimentations.  
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� The current code and design guidelines need to be updated with better curing 

management approach. Current industry practice indicated that curing process is 

neither paid for nor is specified and inspected during the construction phase. 

Acceptance criteria regarding the curing process needs to be established in order to 

minimize the negative impact on the long term durability of the pavement and the 

overlay.  

� This research focused on modeling the effect of curing compound on the 

constructability of pavement projects. Internal curing, another mitigation strategy for 

concrete projects, can further be modeled and incorporated in the assessment of 

constructability of concrete projects to capture the additional benefits manifested 

through minimizing the risk of cracking and lift-off displacement. 

� In the current lift-off displacement model, only split tensile bond strength of concrete 

was considered as the strength parameter. Suction can also be incorporated as an 

additional strength parameter to study the effect of suction on the lift-off 

displacement and the delamination distance of concrete overlay.   

� In this research only environmental load induced distresses were considered to assess 

the constructability of concrete pavement and overlay. The research can be further 

extended through incorporating the effect of traffic load induced distresses and 

subsequently simulating the performance of the pavement and overlay after opening 

to traffic.  
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� The constructability index proposed in this research needs to be validated with the 

outcome of construction projects to see if further adjustment or modification of the 

index is necessary to correlate with the field observations.  

� The proposed constructability index in this study incorporated only cracking and 

delamination potentials. The constructability index can further be extended through 

incorporating other forms of distress, such as spalling, to better predict the outcome 

of a design and construction scenario.  

 

It is obvious that there are opportunities for future research in modeling the 

constructability of both asphalt and concrete pavement projects. The modeling approach 

proposed in this research can be used as a basis for further development, refinement, and 

applications of these concepts. 
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