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ABSTRACT 

 

Reduced rare-earth (Ln, lanthanide elements) compounds with low-dimensional 

Ln-Ln-bonded structures are promising candidates for magnetic materials because Ln-

Ln-bonded molecules and solids have delocalized 5d electrons that make strong 

magnetic coupling possible. Four new rare-earth compounds were synthesized in this 

work, I. Gd9Br16O4, II. Gd6Br7Si2, III. Pr3Si and IV. Pr2I2Ge. The first two gadolinium 

bromide compounds exhibit 1-dimensional Ln-Ln-bonded motifs imbedded within 

layered structures. Pr3Si is a new binary phase with a structure that can be more easily 

visualized by focusing on the interpenetrating (10, 3)-a silicon network. Pr2I2Ge has a 

double-layered structure. The results of EHTB band structure calculations indicate that 

the bottom the Gd9Br16O4 d bands and those of a hypothetical analogous yttrium 

compound (Y9Br16O4) are half filled; the Fermi levels of those two compounds cut 

through two d bands. Gd6Br7Si2 and Pr3Si are predicted to be metallic, as expected. The 

results of magnetic measurements on Gd6Br7Si2 show that it behaves like a soft magnet 

at 2 K and undergoes phase transitions at 27 K and 70 K. 
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NOMENCLATURE 

 

BLYP Becke-Lee-Yang-Parr function 

BSE Backscattered Electrons 

BZ Brillouin Zone 

CCD Charge-couple Device 

CELL_NOW A program for analyzing orientation matrix of twin domains. 

COOP Crystal Orbital Overlap Population 

DFT Density Functional Theory 

DMol3 The models can be applied to calculate solid state structures. 

DND Double Numerical Plus d-functions 

DOS Density of States  

ECF Effective Core Potential 

EDS Energy Dispersive Spectrometry 

EF Fermi Level 

EHT Extended Hückel Theory 

EHTB Extended Hückel-Tight Binding 

Gd Gadolinium 

LDA Local Density Approximation 

Ln Lanthanides 

LSDA Local Spin Density Approximation 

MATLAB A language for computing and programming. 
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MCE Magnetocaloric Effect 

MS Material Studio  

MPMS Magnetic Property Measurement System 

PDOS Partial Density of States 

Pr Praseodymium 

PXRD Powder X-ray Diffraction 

RKKY Ruderman-Kittel-Kasuya-Yosida  

RM Remanent Magnetization 

SADABS Bruker AXS detector scaling and absorption correction program 

SCF Self-Consistent Field 

SE Secondary Electrons 

SHELXTL Bruker AXS program for refining crystal structures 

SQUID Superconducting Quantum Interference Device 

STO Slater-type Orbital  

TOPAS A new generation of profile and structure analysis software 

TWINABS Bruker AXS scaling program for twinned crystals 

WDS Wavelength-dispersive Spectrometry 

YAeHMOP Yet Another Extended Hückel Molecular Orbital Program  
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1. INTRODUCTION  

 

Our interest in lanthanide chemistry arises from the magnetic properties, 

coordination chemistry, luminescence of lanthanide compounds and the variety of 

reduce phase from the rare-earth metal halides. Outstanding examples of lanthanide 

magnetic material are Nd-Fe-B alloys that are notable permanent magnets1 and 

Gd5Ge2Si22, 3 that exhibits a giant magnetocaloric effect3(MCE effect) at 276 K that 

make it a prototypical candidate for application to magnetic refrigeration2. Earlier 

research in the Gd/Si/Ge system2, 4-6 motivated our study of low dimensional structures 

constructed by rare-earth metal halides and Ge/Si or other main group components. 

Magnetic property of REXGe(Si) (RE= rare earth metal. X= halogen) compounds has 

not been reported until now. Seeking the development of the crystallography, magnetic 

property, and electronic structure in the REXGe(Si) system will be promising.  

This work mainly focuses on the synthesis, characterizations and computations of 

low-dimensional rare-earth metal-halide compounds with Si/Ge/O elements as an 

interstitial atom. Four new compounds, I.Gd9Br16O4, II.Gd6Br7Si2, III.Pr3Si, and 

IV.Pr2I2Ge were synthesized and discussed herein. Computational results applied to 

Gd9Br16O4 reveal the property of semilocalized bonding in the extended Gd-Gd bonded 

systems. The results of EHTB band structure calculations indicate that the bottom the 

Gd9Br16O4 d bands and those of a hypothetical analogous yttrium compound (Y9Br16O4) 

are half filled; the Fermi levels of those two compounds cut through two d bands. 

Gd6Br7Si2 and Pr3Si are predicted to be metallic, as expected.  The magnetic data of 
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Gd6Br7Si2 show interesting phase transitions at 27 K and 70 K. The structure of Pr3Si 

displays an interpenetrating (10, 3)-a silicon network. Pr2I2Ge has closed-packed 

doubled layers structure. This section will present an overview on the characteristics, 

structures and magnetic applications in the field of low dimensional rare-earth 

compounds. 

 

1.1 The Characteristics of Lanthanide Elements  

 

Rare earth metals have a greater extent than the d orbitals on transition metal 

atoms. The 4f orbitals on lanthanide atoms are highly contracted, so the direct 

participation in magnetic exchange coupling which is mediated by the 4f-overlap with 

ligand orbitals is precluded. (Figure 1.1) Instead, an indirect pathway related the 

localized 4f electrons and the 5d conduction electrons will cause the magnetic ordering.7, 

8 For instance, elemental gadolinium exhibits ferromagnetic ordering near the room 

temperature (293 K). The origin of strong exchange coupling that underlies 

ferromagnetism in gadolinium is the 5d conduction electrons which mediate the 4f-4f 

coupling via an indirect mechanism. When the conducted electrons are spin polarized 

will enhance the exchange coupling.9  
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Figure 1.1. Orbital radial distribution in gadolinium metal. 
 
 
 

About this process, how the potential from 4f 7 influences the electrons which 

locate at 5d and 6s orbitals is illustrated in Figure 1.2.9 The left side is an “unperturbed” 

system where the valence d electron experiences an average exchange potential from the 

half-filled 4f shell, so the d electron has no preferred spin orientations. After applying 

the exchange field, the spin aligned with (against) the 4f spins is stabilized (destabilized) 

by an energy δ. For a Gd atom, 2δ is the difference between the ground state (9D) and 

the first excited state (7D). These intraatomic exchange interactions are intrinsically 

“ferromagnetic”, favoring parallel alignment of the 4f and 5d spins. 
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Figure 1.2. Electronic splitting of the Gd atom as a function of 4f-5d exchange perturbation. 
 
 
 
1.2 The Structures of Low-Dimensional Lanthanide-Halide Compounds 
 

Rare-earth metal halides can form extensive variety of Ln-Ln bonded reduced 

phases(Ln: Lanthanide metals).10 Many of them, the structures are derived from Ln6 

octahedra as building units and contain interstitial species Z in the center of octahedra. 

The structures can be a cluster or condensed to be chains, layers and three-dimensional 

frameworks11. Based on the sequence of connection via cis- and trans- positioned of the 

octahedral edges, three distinct configurations of 1-D chains are listed in Figure1.3. The 

structures of ternary phases Ln4ZX5
12-16 (Z= C, C2, B, B4, X=halides), Ln4ZX6

17, 18 (Z=Si) 

and Ln6X7Z19 (Z=C2) are classified by a t-t-t sequence. (Figure 1.3.a) Interestingly, 

Ln4ZX6 (Z=B)20 with different interstitial entries will construct a configuration of t-c-t 

sequence (Figure 1.3.b) and Ln12Z3I17
21

 (Z=C2) can form t-c-c chains. (Figure 1.3.c)  

 

4 



 

 

Figure 1.3. Different types of connections via cis- and trans- positioned of octahedral edges 
 
 
 
1.3 The Magnetic Application of Low-Dimensional Rare-Earth Compounds 

 

In 1997, Pecharsky and Gschneidner discovered that Gd5Ge2Si23 exhibits a giant 

magnetocaloric effect (MCE)5, 22 at 276 K and the effect of Gd5Ge2Si2 almost doubled 

than previously observed gadolinium element at 294 K5, 23 The magnetocaloric 

properties of this compounds makes it a prototypical material candidate for magnetic 

refrigeration. The magnetocaloric effect is a temperature change caused by the material 

under an applied magnetic field and adiabatic cooling process. The famous system which 

has giant MCE is the Gd5(SixGe1-x)4 system3, 5 (0≦ x≦ ). In the RE5Tt4 (RE= rare earth 
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metal, Tt = Ge,Si) system, the physics of Gd5(SixGe1-x)4, was considered due to the 

unique 2-D crystal structure.  

There are three different structure types that play a part in RE5Tt4 giant MCE 

materials, which are depicted in Figure 1.4: (i) Gd5Si4-type, the layers are connected by 

the Tt-Tt single bonds, d(Tt-Tt)= 2.6 Å. (ii) Gd5Ge2Si2-type, the Tt-Tt interatomic  

distances between layers alternate between bonding and nonbonding. (iii) Sm5Ge4-type, 

the Tt-Tt interatomic distances between layers are all longer than 3.5 Å (non-bonding).  

 
 

 

Figure 1.4. Different structure types in RE5Tt4. Black circles are Tt. Blue circles are RE. 
 
 
 

The interplay between crystal structure, electronic structure and physical 

behavior is illuminated by counting electrons. If we assume that the rare-earth metal is 

formally trivalent (RE+3), single bonded Tt-Tt dimers, (Tt2)6-, are 14 valence electron- 

units (Octet rule); nonbonded Tt…Tt dimers are similar as two 8 valence electrons Tt4- 

units and two electrons would fill into the anti-bonding to break the Tt-Tt bonds. 
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Therefore, according to their structures, the formulas for three structure types will be: (i) 

(RE+3)5 (Tt2)6-
2．3e- (ii) (RE+3)5(Tt2)6-

1.5 (Tt)4-．2e- (iii) (RE+3)5 (Tt2)6-(Tt)4-
2．1e- (RE= 

rare earth metal. Tt= Ge, Si. In the structure of Sm5Ge4 type, there are 50% of Tt atoms 

are nonbonded; 50% are single bonded dimers). The formulas above show that an 

internal reduction-oxidation process occurs in the solid state as the structural phase 

transition occurs. 

 This example demonstrates how structural phase transitions can have an 

important effect on the electronic structure and physical behavior. Because structure 

phase transitions are relative to forming bonds or breaking bonds, and change electron 

concentration in the structures, they also influence the magnetic properties. In the Re5Tt4 

(Re= rare earth metal, Tt= Ge,Si) system, The 2-D structure is built by the Gd-Si/Ge-

Si/Ge-Gd networks and covalent like Si-Si, Ge-Si or Ge-Ge bonds which are believed to 

be the reason why the interlayer coupling can be enhanced23. Changing in the 

composition of Si and Ge makes this system to present fantastic variation in crystal 

lattices and magnetic properties. Besides, paramagnetic rare earth compounds usually 

have large effective magnetic moment at lower temperature, so they may be ideal 

magnetic materials. For example, Gd+3 salt, -ΔSm= 78.8 Jmol-1K-1 at 5 K under a field 

that ranges from 0 to 5T. (Comparing to Gd2Si2Ge2, -ΔSm =15.8 Jmol-1K-1 at 276 K, H= 

2 Tela).2 Those explanations above illuminate why Gd5(SixGe1-x)4  is an interesting 

system. 
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2. EXPERIMENTAL AND THEORETICAL METHODS 

 

In this section I will briefly describe the experimental methods that were used to 

synthesize new products and discuss methods used to characterize the physical 

properties of the products. Also, theoretical methods will be discussed in this section to 

explain the computational methods models which I chose for calculating the electronic 

structures, and to thereby study bonding in certain compounds. 

 

2.1 Experimental Method 

 

2.1.1 Solid State Synthesis 

 

There are several different solid state synthetic methods24, (i) conventional 

ceramic method , (ii) hydrothermal synthesis , (iii) molten salt fluxes synthesizes, and (iv) 

chemical vapor route synthesis. Molten salt fluxes synthesis is to dissolve reactants in a 

solvent. Chemical transport-route synthesis is to use gas as a transport to carry out the 

reactant into the gas phase. For most of the compounds reported here, the conventional 

ceramic method was used for their synthesis. Some other syntheses employed chemical 

vapor transport. In the conventional approach, one must first choose appropriate starting 

materials and try to get maximize surface area of reactants via grinding or cutting metal 

strips into several pieces. Secondly, weigh one out reactants, after choosing the target 

compound composition. Thirdly, starting materials are well mixed by grinding or 
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pulverizing a ball mill which helps minimizing a contact with the crucible, if a crucible 

is chose as a container.  Selection of an appropriate reaction container is important; we 

use ceramic refractories (crucibles) or an Nb tube and then, seal them in a Quartz jacket 

under vacuum. Finally, a specific temperature cycle into a controller governs the heat 

supplied by a furnace. The selection of the reaction temperature and the rate of 

temperature gradient are very important in reactions discussed here, because the 

sensitivity of these solid state reactions to the effect of diffusion. The diffusion 

coefficient increases with temperature and increase rapidly as the reactant reaches the 

melt points according to the Fick’s law. Fick’s law25 describes the relations between 

diffusive flux and the concentration. The law is “J=-D (  dα
  dx

)”. In the equation, ‘J’ is the 

diffusion flux. D is the diffusion coefficient (m2/second). ‘α’ is denoted the amount of 

substances per unit volume (mol/m3). ‘x’ is the position (m).Therefore, the length of an 

Nb tube is a factor in those reactions as well. In addition, the other fundamental concept 

on selecting the reaction temperature is based on the Tamman’s Rule26. Tamman’s Rule 

suggests a temperature which reaches at least two-thirds of the melting points of the 

main reactants and reactions are impractically slow below that temperature.  

 

2.1.2 Single-Crystal and Powder X-ray Diffractometer  

 

Bruker single-crystal APEXII CCD diffractometers and Bruker powder 

diffractometers were used to collect data used to determine crystal structures and 

characterize the purity of samples. The SMART APEXII in the department of chemistry 
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at Texas A&M University is equipped with a 3-circle goniometer, APEXII-CCD area 

detector, plus low temperature device and molybdenum-radiation. It provides high 

resolution data for normal crystals and produces high quality data for structure 

determinations. A single-crystal sample was mounted on a loop in a glove box filled 

with N2 for each measurement. The Bruker-AXS D8 advanced Bragg-Bretano X-ray 

powder diffractometer is equipped with D8 goniometer and copper X-ray radiation. The 

powder diffraction data is collected via using reflection geometry. Polycrystalline 

(powder) samples were prepared in a glove box for the measurements. General 

information about Bruke-AXS equipment can be found at the Bruker AXS website: 

www.bruker-axs.de 

 

2.1.3 Quantum Design MPMS-XL SQUID Magnetometer  

 

The Quantum Design MPMS-XL SQUID magnetometer was used for collecting 

the data of magnetization and magnetic susceptibility with AC and DC magnetic 

measurements. The MPMS27 system includes four different superconducting 

components. Firstly, a superconducting magnet is applied to generate large magnetic 

fields. Secondly, a superconducting detection coil is used to couples inductively to the 

sample. Thirdly, a Superconducting Quantum Interference Device (SQUID) is connected 

to the detection coil. Finally, a superconducting magnetic shield is surrounding the 

SQUID. The sample is located in the detection coil which is connected to the SQUID 

device via wires and the sample moves through a system of the detection coils; then, 
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change the current from the superconducting detection coil in order to couple inductively 

to the SQUID. All Air-sensitive samples were prepared in a N2-filled glove box. 

 

2.1.4 Energy-Dispersive and Wavelength-Dispersive Spectrometry Systems 

 

An Energy-Dispersive spectrometry (EDS)28 system was used to obtain semi-

qualitative analysis of our samples. Even for samples that are poorly suitable to EDS 

analysis, qualitative elemental analyses can be obtained often. A 15-KeV electron beam 

is required for a sample which is mounted on biotite mica in the measurement of EDS. 

The purpose of using Wavelength-Dispersive Spectrometry (WDS)28 system on an 

electron microprobe is to do quantitative analysis and determine the concentration of 

each element in the sample. If a sample has a nice crystal surface for the measurement, 

the percentage of the major element (which have the amount at least ≥ 10% by weight  ) 

can be roughly determined and the error is within ±2% of the calculated amount. The 

quantitative analysis is based on the ratio of the X-ray intensity from an element in an 

unknown sample to the intensity of a standard compound which has known composition.  

The standard compounds are KBr, SiO2 and GdPO4 in my measurements. 
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2.2 Theoretical Method  

 

In this section, I will briefly describe two calculation methods I used in this work. 

One is density functional methods. The other one is semiempirical method which I used 

in this work is extended Hűckel/tight binding method. The semiempirical extended 

Hückel theory (EHT) ignores the core electrons and uses a restricted basis set in the 

calculation, so it can generate fast evaluation of some properties. EHT is suitable for the 

system which has known experimental geometries for the adjustment of parameters. In 

order to understand the idea of two methods, a basic background about how to solve the 

Schrödinger equation, how to write the Hamiltonian of many-electron system, how to 

write a secular equation and the concept of Born-Oppenheimer approximation are 

required. Those concepts can be found in the textbook of quantum chemistry.29 

 

2.2.1 Extended Hückel/Tight Binding Method 

 

The extend Hückel theory is a very fundamental one-electron semi-empirical MO 

method for nonplanar molecules. It was used by Wolfsberg and Helmholz30 to calculate 

the energy of tetrahedral ions. This theory was further developed by Hoffmann.31-34 

Before we talk about the extended Hückel theory, we need to know the Hückel theory.35, 

36 Hückel theory espouses five conventions to set up a secular equation: (i) The basis set 

is consisted of 2p orbitals of parallel carbon on each atom. (ii) The overlap between any 

two p orbitals is zero and the overlap of the p orbital with itself is one. The overlap 
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matrix is defined by using the Κrönecker delta (δij=Sij) (iii) The matrix element Hii is 

usually presented as the symbol α which the negative value of the ionization potential.(iv) 

The matrix element Hij between parallel neighboring p orbitals is termed β which value 

is actually derived from experimental data. (v) The matrix elements Hij between non-

neighboring p and orbitals are set to zero. 

 On the other hand, extended Hückel theory (EHT) espouses two conventions to 

set up a secular equation. (i) EHT ignores all core electrons and uses the Slater-type 

orbital (STO) to express the basis function of valence orbital wave function. The form is 

the following: 

 

Ψ (r, θ, φ, ξ, n, l, m) = r n-1 e- ξrY m
l (θ, φ)       (2.1) 

 

The symbols of n, l, and m are the principal quantum number, and the angular 

momentum quantum numbers. ξ is an exponent which is a parameter of a basis set and it 

is developed by Slater.37 Y m
l (θ, φ) is the spherical harmonic function. 

(ii) About the off-diagonal matrix element Hij, it is expressed as: 

 

𝐻𝑖𝑗 = 1
2
𝐶𝑖𝑗�𝐻𝑖𝑖 + 𝐻𝑗𝑗�𝑆𝑖𝑗        (2.2) 

 

Sij is the overlap integral between the atomic orbitals i and j. Cij is a constant 

which is an empirical value and usually taken as 1.75. The diagonal value of Hii is an 

adjustable parameters and relative to the valence-shell ionization potential (VSIP).  
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Comparing to the simple Hückel theory, the Κrönecker delta is not applied to the overlap 

matrix elements in the extended Hückel theory. In addition, the valence molecular 

orbitals in the extended Hückel theory contain the contributions of the valence atomic 

orbits on each atom. 

Based on the rules above to figure out the overlay matrix S and Hamiltonian 

matrix H; in order to solve the secular equation we can set up a secular determinant as: 

 

�
𝐻11 − 𝐸𝑆11 ⋯ 𝐻1𝑁 − 𝐸𝑆1𝑁

⋮ ⋱ ⋮
𝐻𝑁1 − 𝐸𝑆𝑁1 ⋯ 𝐻𝑁𝑁 − 𝐸𝑆𝑁𝑁

�=0      (2.3) 

 

Then, solve the secular equation to get the energy. The secular equation can be 

presented as: 

 

HC=SC𝐸�⃑          (2.4) 

 

There are two free extended Hückel theory programs available on the web. One 

is CAESAR38, and the other one is YAeHMOP39 which was used in this work. 

 

2.2.2 Density Functional M𝒆thod 

 

 Early approximations of DFT models have no variational principles established 

and some errors were found in molecular calculation. Until Hohenberg and Kohn40 who 
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developed approximation methods to treat the interacting electrons proved that electron 

density ρ(x,y,z) can determine the ground-state molecular energy, wave function and 

other electronic properties in 1964. The ground-state energy was also defined as the 

function of electron density with the formation: 

 

E0=E0 [ρ]              (2.5) 

 

 However, the Hohenberg-Kohn theorem is not clear about how to find the 

electron density without the information of wave function. This problem was solved by 

Kohn and Sham41 who used the ground-state electron density to clearly define the exact 

ground-state purely electronic energy E0 of n-electron molecule as: 

 

E0=- 1
2
∑   ⟨𝜑𝑖(1)| 𝛻2|𝜑𝑖(1)⟩𝑛
𝑖=1 − ∑ ∫ 𝑍𝛼

𝑟1𝛼𝛼 𝑑𝑣1 + 1
2∬

𝜌(1)𝜌(2)
𝑟12

𝑑𝑣1𝑑𝑣2 + 𝐸𝑋𝐶[𝜌]   (2.6) 

 

 The first term is kinetic energy which is integrated over the coordinates of 

electron 1. The φi(1) is Kohn-Sham orbitals29. The φi(1) and ρ(1) are treated as the 

function of the coordinates of electron(1). The notation EXC[ρ] indicates the exchange-

correlation energy which is a function of ρ. The symbol “ρ” presents the exact ground-

state electron density which can be found from Kohn-Sham orbitals according to the 

equation below: 

 

ρ = ∑ |𝜑𝑖 |2𝑛
𝑖=1         (2.7) 
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 Via solving the one-electron equation below, the Kohn-Sham orbitals can be obtained. 

 

𝐹�𝑘𝑠(1)𝜑𝑖(1) = 𝜀𝑖𝑘𝑠𝜑𝑖(1)       (2.8) 

 

The notation 𝐹�𝑘𝑠 is the Kohn-Sham operator as: 

 

𝐹�𝑘𝑠 ≡  −  1
2
∇12 − ∑ 𝑧𝛼

𝑟1𝛼
+𝛼 ∑ 𝐽𝑗(1)𝑛

𝑗=1 + 𝑉𝑋𝐶(1)    (2.9) 

 

The symbol 𝐽𝑗(1)  is Coulomb operator29 and the notation 𝑉𝑋𝐶(1)  is the 

exchange-correlation potential which can be found via taking a derivation of EXC[ρ]. 

Finally, we can substitute (2.9) into (2.8) to get the eigenfunctions which are the Kohn-

Sham orbitals. One thing needs to be known that Kohn-Sham orbitals are used to 

calculate the exact electron density and there is no physical significance. The only 

problem of using the Kohn-Sham equations to get ρ and energy is how to get the correct 

functional exchange correlation energy EXC[ρ].for molecules. Therefore, the concept of 

local density approximation (LDA) and local spin-density approximation (LSDA)42, 43 

were come up in order to get a closer approach.  

 The discussion above and the details about the density functional theory and 

extended Hückel theory can be found in the publications of Cramer44 and Levine29. 
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3. GADOLINIUM LAYER COMPOUNDS 

 

3.1 Synthesis 

 

I. Gd9Br16O4 was first obtained as a minor by-product in a reaction intended to 

prepare the target compound, Gd6Br7Ge2. The stoichiometric mixing of the starting 

materials GdBr3
45, gadolinium, and germanium in a niobium tubes was designed to 

synthesize Gd6Br7Ge2. Although the mixing procedure was carried out in a glove box 

under N2 atmosphere, typical adventitious impurities, such as occur upon hydrolysis of 

GdBr3, for example, may be inside the tube that caused Gd9Br16O4 to be obtained. The 

reaction was heated at 1000 oC in a sealed niobium tube for 3 weeks. Black irregular 

crystals and shiny round black crystals are recognized as Gd9Br16O4 and 

Gd5Ge3
6(known). The major phase, black tiny unknown crystals, has not been identified 

successfully. All crystals are sensitive to moisture and air. Three reactions were tried in 

order to reproduce Gd9Br16O4. (i) The stoichiometric mixing of Gd2O3 , GdBr3 , and Gd. 

(ii) Using impure GdBr3 which contains GdOBr (assumed the ratio is 1:1), as a starting 

material and stoichiometric mixing of Gd. (Oxyhalides is the source of impurity in the 

preparation of trihalides via the ammonium halide route45) (iii) The stoichiometric 

mixing of GdOBr46, GdBr3 , and Gd. Minor black crystals and major white or gray 

powder would be obtained from those three reactions (Black crystals may be attached on 

the wall of Nb tubes). After indexing and using CELL_NOW to analyze the cell 

constants of black crystals, the results match the cell constants of Gd9Br16O4. 
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II. Gd6Br7Si2 was obtained by the stoichiometric mixing of the starting materials 

GdBr3, gadolinium, and silicon in a niobium tubes. The reaction was heated at 1000 oC 

for 2 weeks. The mixing procedure was carried out in a glove box under N2 atmosphere. 

Black rectangular crystals are obtained. The compound is sensitive to moisture and air. 

 

3.2 Single-Crystal X-ray Diffraction 

 

Black crystals of dimensions 0.115 x 0.045 x 0.060 mm3 for 1 and 0.019 x 0.038 

x 0.076 mm3 for 2 were selected for indexing and data collecting on a Bruker APEX II 

diffractometer at low temperature (110 K). The program SADABS47 and face indexing 

were applied for absorption correction. The structures were solved by direct methods and 

difference Fourier syntheses. The final cycles of least-squares refinement including 

atomic coordinates and anisotropic thermal parameters for all atoms were converged. 

There were residual electron densities in the final difference map which are close to 

heavy atoms Gd(1) in I and close to heavy atoms Gd(1), Gd(2) and Gd(3) in II. Use the 

SHELXTL48 version 6.12 software package to perform all structure refinements. The 

selected bond length for Gd6Br7Si2 is seen in Table 3.1. As seen in Table 3.2(a), Table 

3.2(b) and Table 3.3 are the information of atomic coordinates, equivalent isotropic 

thermal displacement parameters and the crystallographic data of compound I and II. 
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Table 3.1. Selected bond lengths [Å] for Gd6Br7Si2 

d ( Si-Gd)        Å                   d( Si-Gd)          Å d( Br-Gd)         Å   
Si(1)-Gd(1)#5  2.881(2) Si(2)#1-Gd(1)  2.886(8) Br(4)-Gd(1)#6  2.886(8) 
Si(1)-Gd(1)#6  2.881(2) Si(2)#3-Gd(2) 2.875(8) Br(4)-Gd(2)#3  2.875(8) 
Si(1)-Gd(1)#2  2.881(2) Si(2)#1-Gd(2) 2.885(6) Br(4)-Gd(2)#6  2.885(6) 
Si(1)-Gd(3)#5  2.880(2) Si(2)#1Gd(3)  2.880(6) Br(4)-Gd(3)#6  2.880(6) 
 

Symmetry transformations are used to generate equivalent atoms:  
#1 x,y+1,z      
#2 -x,-y,-z                           
#3 -x+1/2,-y-3/2,-z       
#4 -x+1/2,-y-1/2,-z                   
#5 -x,-y-1,-z                        
#6 x,y-1,z     

--

 

-- 
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Table 3.2(a). Atomic coordinates and equivalent isotropic displacement parameters (Å
2
x 10

3
) for 

Gd6Br7Si2. U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

_____________________________________________________________________ 

 x y z U(eq) 
_____________________________________________________________________  
Gd(1) 0.0923(1) 0 0.1654(2) 13(1) 
Gd(2) 0.2591(1) -0.5000 0.1656(2) 14(1) 
Gd(3) 0.0743(1) -0.5000 -0.1655(3) 14(1) 
Br(1) 0.0212(2) 0 0.3444(5) 13(1) 
Br(2) 0.3544(2) -1.0000 0.3446(5) 12(1) 
Br(3) 0.1875(2) -0.5000 0.3443(5) 12(1) 
Si(1) 0 -0.5000 0 23(1) 
Br(4) 0.1666(4) -1.0000 -0.0007(9) 23(1) 
Si(2) 0.1666(4) -1.0000 -0.0007(9) 23(1) 
_____________________________________________________________________ 

 
 
 

Table 3.2(b). Atomic coordinates and equivalent isotropic displacement parameters (Å
2
x 10

3
) 

for Gd9Br16O4. U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor.  

________________________________________________________________________ 
 x y z U(eq) 
________________________________________________________________________ 
Gd(1) 0.8222(1) 0.5951(1) 0.0195(1) 12(1) 
Gd(2) 0.7830(1) 0.7707(1) 0.0417(1) 12(1) 
Gd(3) 0.6250 0.6250 0.1250 13(1) 
Br(1) 0.8376(2) 0.5984(1) -0.0568(1) 14(1) 
Br(2) 0.9111(2) 0.6681(1) 0.0855(1) 15(1) 
Br(3) 0.10804(2) 0.7040(1) 0.0057(1) 14(1) 
Br(4) 0.7526(2) 0.5145(1) 0.0842(1) 14(1) 
O(1) 0.5634(19) 0.5621(7) 0.0116(4) 29(4) 
________________________________________________________________________________   
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Table 3.3. Crystal data and structure refinements for Gd9Br16O4 (I) and Gd6Br7Si2 (II) 

 

Identification code  Gd9Br16O4 Gd6Br7Si2 

Empirical formula  Gd9Br16O4 Gd6Br7Si2 

Formula weight  2757.76 1558.96 

Temperature  110(2) K 110(2) K 

Wavelength  0.71073 Å 0.71073 Å 

Crystal system   Orthohombic                            Monoclinic 

Space group  Fddd C2/m 

Unit cell dimensions a = 8.1902(4) Å a = 21.415(5) Å  

 b = 20.9843 (9) Å b = 4.123 (1) Å  

 c = 38.840(2) Å c = 10.907(3) Å  

  β=115.891(3)°. 

Volume (Å
3
) 6675(5) 866.5(4)  

Z 8 2 

Crystal size (mm3) 0.0115 x 0.045 x 0.060            0.019 x 0.038 x0.076 

Refinement method                                      least-squares on F
2                  least-squares on F

2
 

Goodness-of-fit on F2                                  0.944 0.901 

Final R indices [I>2sigma(I)]                       R1 = 0.0411,  R1 = 0.0353, 

                                                                     wR2 = 0.0930                          wR2 = 0.0845 

Absorption correction                                  0.367751/ 1.0000                    0.3774/ 0.9621  

Largest diff. peak and hole (e.Å
-3

)               2.130 and -2.420  2.825 and -3.111  

 

Weight = 1 / [ sigma2(Fo2) + ( 0.0404 * P )2 +   0.00 * P ]   where  P = ( Max ( Fo2, 0 ) + 2 * Fc2 ) 

/ 3 for (I) 

Weight = 1 / [sigma2 (Fo2) + (0.0439 * P)2 +  8.95 * P ], where P = ( Max ( Fo2, 0 ) + 2 * Fc2 ) / 3 

for (II) 
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3.3 Powder X-ray Diffraction 

 

Figure 3.1 is the result of charactering Gd6Br7Si2 phase via using TOPAS 

program. Since the crystal structure is refined by the data from single-crystal X-ray 

diffraction, the purpose of the using TOPAS is to verify the existence of target phase in 

the powder sample and do the quantitative phase analysis. The green peak is the 

calculated powder pattern of Gd6Br7Si2 from the sing-crystal X-ray data. The read fitting 

curves include three calculated powder patterns of three phases: GdOBr, GdBr3 and 

Gd6Br7Si2. From the match between the experimental powder pattern (blue peaks) and 

green peaks, it shows the existence of Gd6Br7Si2. This experimental powder pattern here 

can only provide the information of qualitative analysis to verify the phase of Gd6Br7Si2, 

and it can not be used as a quantitative analysis due to containing some unclassified 

peaks.  

 

 
Figure 3.1. The result of characterizing Gd6Br7Si2 phase from TOPAS  

 

GdBr3     0.00% 

GdOBr     8.51% 

Gd6Br7Si2     91.49% 
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3.4 Microprobe Analyses 

 

Energy-dispersive spectrometry (EDS)49 systems and wavelength-dispersive 

spectrometry (WDS)49 were used in the qualitative and quantitative analysis for 

Gd9Br16O4 and Gd6Br7Si2. Figure 3.2 and Figure 3.3 are the results of EDS 

measurements. The result confirms the existence of Gd, Si, and Br elements in 

Gd6Br7Si2. Also, it confirms the components of Gd. Br and oxygen in Gd9Br16O4. 

However, the samples were transferred into the instrument under air, so the peak which 

indicates the component of oxygen in the figures is of questionable value. Figure 3.4 (a) 

Right and (b) left are the secondary electron (SE) image and backscattered electron (BSE) 

images of Gd9Br16O4 .BSE and SE images can provide the topographic information of 

surface, and different surface details are usually more visible in BSE images. Because of 

extreme air sensitivity and poor sample surface, the results of WDS measurements did 

not exhibit reportable precision for both samples in the quantitative analysis. Samples 

were prepared in a glove box, but exposure to air could not be prevented during the 

process of transferring sample holders into the instrument. 
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Figure 3.2. Energy-dispersive spectrometry of Gd6Br7Si2 
 
 
 

 

Figure 3.3. Energy-dispersive spectrometry of Gd9Br16O4 
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Figure 3.4(a). Left and (b) Right are the SE image and BSE images of Gd9Br16O4 
 
 
 
3.5 Magnetic Measurements 

 

Magnetic measurements were performed with a Quantum Design SQUID 

magnetometer MPMSXL on polycrystalline samples of Gd6Br7Si2 and Gd9Br16O4. 

Temperature-dependent magnetization50 data were collected at 2-5 K intervals from 2 to 

300 K in applied fields of 0.01, 0.1, and 1 T. All data were corrected for the sample 

holder contribution and for the intrinsic diamagnetic contributions.51 The magnetic 

property of Gd6Br7Si2 at an applied field (0.1T) is shown in Figure 3.5(a). This 

compound exhibits distinct magnetic properties at different temperature range. From 300 

to 70 K, the data show paramagnetic behavior and the presence of ferromagnetic 

coupling. At around 70 Kelvin, it appears the first phase transition. After the first phase 

transition, the effect of antiferromagnetic coupling between 70 and 27 K becomes 
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obvious; then, the second phase transition occurs at about 27 K. Below 27 K, it may be a 

magnetically canted phase.  

 
 
 

 

Figure 3.5(a). (Left Axis): The plot of χT vs T for Gd6Br7Si2 at an applied field (0.1T) is labeled 

by blue dotted-line. The Curie constant for an “ideal” cluster with six uncoupled GdIII centers 

(S=7/2; g=2) is 47.25 emu K mol-1. The Curie-Weiss fit to Gd6Br7Si2 is shown as the pink line 

and Tc is at 10K. (Right Axis): The plot of 1/χ vs T for Gd6Br7Si2 is the green dotted-line. The 

Curie-Weiss fit to Gd6Br7Si2 is shown as the red line 
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A canted phase is caused by a physical phenomenon, a canting of the spins; 

originally, this substance should be antiferromagnetic primarily, but there exists a weak 

ferromagnetism52. In this sample, a canted phase is possible because Gd6Br7Si2 presents 

ferromagnetic coupling at higher temperature region (> 70 K); then it turns 

antiferromagnetic coupling below 70. K, but weak ferromagnetic coupling is reproduced 

again at 27 K due to a canting of the spins. Therefore, the overall effect described above 

may generate the canted phase. Some Gd ternary systems53, 54 which contain two 

nonmagnetic elements, exhibit the phenomenon of crossover from a ferromagnetic phase 

to antiferromagnetic phases, such as GdPt0.5Al0.5 which also has the canted configuration. 

 At higher temperature (> 70 K), normally, spin orientations on Gd metal should 

be random. However, when we apply an external magnetic field (0.1 T) to Gd6Br7Si2, 

the moments are all aligned in the same direction in this sample and it shows 

ferromagnetic coupling. At low temperature, exchange energy can compete with the 

thermal energy. A short-range correlation within the moments of exchange interaction 

may start to accumulate. When the effects is observed in a long-range scale, a transition 

from ferromagnetic moment to another magnetic moment with long range correlations 

between the moments is called a phase transition, which happens at 70 K and 27 K in 

this compound. The magnetic properties of Gd6Br7Si2  should be caused by the moment 

of Gd atoms at the octahedra sites. They may have different coupling between the 

adjacent chains and layers. 

 In rare-earth intermetallic compounds, usually the magnetic ordering is due to an 

indirect pathway involving the localized 4f electrons and the conduction band. The 
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exchange coupling to the conduction electrons can be very important. For examples, 

Nd2Fe14B and SmCo5
7
 are permanent magnets. Elemental gadolinium is a metallic 

ferromagnet at 294 K. Many studies have been proposed to understand the ferromagnetic 

or antiferromagnetic order, such as the satisfactory model of Ruderman-Kittel-Kasuya-

Yosida (RKKY)55 which is described with oscillatory terms and a periodic magnetic 

order is depend on Kf Rij, where Rij presents the distance between the magnetic ions. 

Although the Curie-Weiss fit to Gd6Br7Si2 is well, all data needs to be re-

confirmed again by measuring highly pure samples. If a result of neutron diffraction 

experiments on single crystals of Gd6Br7Si2 is available, it will provide more detail 

information concerning the phase transitions.  

The sample of Gd9Br16O4 is hand-picked crystals. The magnetic measurement of 

Gd9Br16O4 is unable to show good results due to insufficient samples. Besides, the 

sample is highly air-sensitive and it is easily oxidized.  
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The result of magnetic hysteresis measurement at 2 Kelvin for Gd6Br7Si2 is seen 

in Figure 3.5(b). The hysteresis loop56 is completed after applying a cyclic magnetic 

field. The magnetization starts from zero magnetic fields and reaches the max valued of 

magnetization (saturation magnetization). The hysteresis loop is narrow and a small 

value of coercive field (Hc) that means Gd6Br7Si2 is a soft magnet which only requires a 

small amount of dissipated energy in order to recurrently reverse the magnetization. 

There is a “residual magnetization (Mr)” observed at H=0, and the residual 

magnetization correspond to the real spontaneous magnetization which can be seen in 

Figure 3.5(c) as well.  

 
 
 

  

Figure 3.5(b). The result of magnetic hysteresis measurement at 2 Kelvin for Gd6Br7Si2 
 
 

T=2 Kelvin 
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The pink curve shows the remanent magnetization (RM) in Figure 3.5(c). The 

“remanent magnetization” is an equal term of “residual magnetization (Mr) ” which is 

usually used in engineering applications. A small residual magnetization is preferred in 

the application of transformer. The property of remanent magnetization is relative to the 

application of magnetic memory which can be used in the magnetic storage devices. 

 
 
 

 

Figure 3.5(c). A plot shows the result of zero field cooling and field cooling measurements. The 

pink curve is the remanent magnetization of Gd6Br7Si2. 
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3.6 Crystal Structures 

 

3.6.1. Gd9Br16O4: A 3-D Structure with a Reduced Metal Layer 

 

A black crystal of a new compound Gd(Gd8Br16O4) was synthesized in a solid 

state reaction. Figure 3.6 shows that the structure has 2D metal layers and it can be 

described in the term of oxo-centered OGd4 tetrahedra. Oxo-centered tetrahedra form 

one-dimensional [Gd∞
1

2O] zigzag chains by edge sharing. The cationic [Gd∞
1

2O] chains 

are connected together via Br3 atom to construct a 2-D network. 

 
 

 

Figure 3.6. The 2-D metal layer of Gd9Br16O4. The color of each atom is the following: blue 

(Gd), purple (Br3), red (Oxygen), and red oxy-centered tetrahedron (OGd4 tetrahedra). 
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Layers are interleaved by 8-coordinated gadolinium intra form of GdBr8 square 

antiprisms polyhedra which are like pillars that separate layers (Figure 3.7).  

 
 
 

 

Figure 3.7. The structure of Gd9Br16O4. The color of each atom is the following: blue (Gd), 

orange (Br1), green (Br2& Br4), purple (Br3), red (Oxygen), and red oxy-centered tetrahedron 

(OGd4 tetrahedra). 

 

The 2-D network is formed by 

[Gd∞
1

2O] chains and Br atoms. 

 GdBr8 square antiprisms 

 
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This compound has interesting and variable coordination environments. In the 

structure, there are three types of Br atoms. Firstly, Br2 and Br4 atoms form square 

antiprisms that surround Gd3 atoms. The coordination numbers (CN) of Br2 and Br4 

atoms have of three. Secondly, Br3 atoms sit among layers and connect to Gd1 and Gd2 

atoms constructing a zigzag network; the CN of Br3 atoms is four. Thirdly, Br1 atoms sit 

either on the top or at the bottom of Gd1 atoms just like a decoration within the interval 

of the tetrahedra-zigzag chains.  

Gd1 and Gd2 atoms are connected to each other to form tetrahedra that are 

centered by an oxygen atom. Within the edge sharing tetrahedral chains, the interatomic 

distance of shared edges, Gd2-Gd2, is 3.950 Å which is longer than the other sharing 

edges, Gd1-Gd1 (3.465 Å) and Gd1-Gd2 (3.785 Å), as seen in Figure 3.8. The CN of 

Gd1, Gd2 and Gd3 are 13, 12 and 8 respectively. Counting the charges of the formula 

(Gd+3)9(Br1-)16(O2-)4(e-)3, there are three electrons left. Additional electrons are attractive 

to positive layers [Gd∞
2

2O1Br2], so the metal layers are reduced. 

 
 

 
Figure 3.8. A single chain structure within the layer of Gd9Br16O4.  

Gd1 

Gd1 

Gd1 
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3.6.2 Gd6Br7Si2: Two Types of Interstitial Atoms with a Layer Structure 

 

The structure of Gd6Br7Si2 exhibits two dimensional layers, as seen in Figure 

3.9(a). Each layer consists of two different interstitially chains of edge-sharing Gd6Z 

octahedra (Z=Si, Si/Br), as shown in Figure 3.9(b). 

 
 

  

 

Figure 3.9(a). The structure of Gd6Br7Si2 is a layer. Green dashed line is drawn to show a unit. 
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Figure 3.9(b). There are two types of interstitial chains in every layer. The interstitial atoms 

centered in the blue octahedra are Si(1) atoms .The centers of grid octeahedra are half occupied 

by Si(2) and Br(4). Blue atoms are gadolinium. 

 

  

Br0.5/ Si0.5 Si1 
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For each octahedron, the Gd-Gd bond length of sharing edge is 4.026 Å and 

4.028 Å. The bond length without sharing edge is 4.123 Å. The intertial atoms centered 

in the oblique octahedra are not shown in order to get a celar view on the connection 

between each octahedron in Figure 3.10. 

 
 
 

 

 

 

Figure 3.10. Different interstitially stabilized chains are labeled distinctly. Two edages are 

sharing with neighboring chain for each octahedron. 
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The interstitial atoms centered in the blue octahedral are Si (1) atoms which 

occupy the special positions: (0, 1/2, 0) (see Table 3.2.). The other interstitial atoms sit 

in the center of oblique octeahedra are Si(2) and Br(4). This position is a substitutionally 

disordered; in our structure model, the site is half occupied with both Si(2) and Br(4) 

atoms. During the process of refinement, Si(1), Si(2) and Br(4) are position-relative 

because all of them are centered in the Gd6 octahedra. As seen in Table 3.1, the bond 

lengths between Gd and interstitial Br(4), d(Gd(1)-Br(4))=2.886(8) Å, d(Gd(2)-

Br(4))=2.885(6) Å, are shorter than the terminal Gd-Br bonds, d(Gd-Br)= 2.956(4) ~ 

2.959(5) Å. The bond lengths between Gd and interstitial Si(2) or Si(1), d(Gd(1)-

Si(2))=2.886(8) Å, d(Gd(2)-Si(2))=2.875 and 2.885(8) Å, are slightly different from the 

Gd(2)-Si(1) bonds, d(Gd(1)-Si(1))=2.881(2) Å. Comparing to Gd4Br6Si2
18 which has the 

bond length of Gd-Si from 2.741(1) ~ 2.807(1) Å, the Gd-Si distances of Gd6Br7Si2 are 

from 2.875(8) ~ 2.886(8) Å.  

Numerous interesting structures exist amongst rare earth metal halide compounds, 

and most of them are built up with condensed of M6X8 or M6X12 clusters57 building 

blocks. This Gd6Br7Si2 layer structure contains M6X12 type building units. Comparing to 

Gd2Br2C2
58, both of them have similar layer which are derived from Gd6Br12 cluster, but 

they have different cell constants. (Gd2Br2C2, C2/m, a = 7.025 Å, b = 3.836 Å, c = 9.868 

Å, β= 94.47). The d(Gd-Gd) of Gd2Br2C2 are from 3.45 to 4.00 Å and the d(Gd-Gd) of 

Gd6Br7Si2 are from 4.024(5) to 4.027(4) Å. Besides, Gd6Br7Si2 can be consider as 

(Gd+3)6(Br-)7(Si-4)2(e-)3, so there are an excess of electrons. However, for Gd2Br2C2, the 

ionic framework (Gd+3)2(Br-1)2 is assumed to provide 4 electrons per C2 unit.  

 

37 



 

3.7 Calculated Electronic Structure 

 

3.7.1 The Electronic Structure of Gd9Br16O4 

 

The electronic structure of Gd9Br16O4 was investigated by use of density 

functional theory (DFT) with the Becke exchange functional and the Lee-Yang-Parr 

correlation functional (BLYP)59, 60 and extended Hückel tight binding theory (EHTB). 

The DFT calculations presented here were performed using the DMol3 program from the 

Materials Studio suite of programs using the double numerical basis including d-

polarization functions (DND).61-63 A small frozen-core (1s2s2p3s3p3d), (1s2s2p) and 

(1s2s2p3s3p) effective potential were used for Gd and Br respectively. All calculations 

included scalar relativistic effects and open shell configurations. At the beginning, a 

nonmagnetic analogue, Y9Br16O4, was used as a model to run the DFT and EHTB 

calculations in order to consider an f-orbital free analog. (The electron configuration of 

the Gd atom is “[Xe]4f76s25d1” and the electron configuration of Y is “[Kr]5s24d1”.) The 

lattice parameter and coordinates of Y9Br16O4 were used from the crystallographic data 

of Gd9Br16O4 and the scaling of the lattice parameters due to different metal radius were 

considered via calculating the ratio of volumes between the real compounds: GdB2C2 

and YB2C2.After applying the cube root of the ratio to the lattice constants of Gd9Br16O4, 

the cell constants of hypothetical compound, Y9Br16O4, were obtained. EHTB 

calculations of Y9Br16O4 and Gd9Br16O4 were carried out on the program “YAeHMOP”39. 
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The valence ionization potentials Hii in eV of different shells64 and exponent (ξ)65 are 

listed in Table 3.4.  

 
 

Table 3.4. Extended Hückel Exponents(ξ), valence shell ionization potential (Hii in eV) and 

coefficients are listed. 

Atom Orbitals Hii (eV) ξ1
a  ξ2

a c1
b c2

b 

O 2s -32.3 2.750    

 2p -14.8 2.750    

Br 4s -28.0 2.64    

 4p -13.9 2.26    

Y 5s -7.02 1.74    

 5p -4.40 1.70    

 4d -6.8 1.40 3.60 0.8316 0.3041 

“Gd+”c 5s -7.12 1.74    

 5p -4.40 1.70    

 4d -7.03884 1.40 3.60 0.8316 0.3041 

“Gd+”c 5s -6.91 1.74    

 5p -4.40 1.70    

 4d -6.56116 1.40 3.60 0.8316 0.3041 

 
a Slater-type orbital exponents. b Coefficients used in double-ξ expansion on Gd+ and Gd- are 

used to model the spin-dependent energies of valence s and d electrons of Gd centers which have 

the spins that are aligned parallel and antiparallel respecting to the local spin direction of 4f 

electrons. 

 
 
 
The plot of density of states (DOS) from the EHTB calculation is shown in 

Figure 3.11(a). According to the DOS in Figure 3.11(a), the crystal orbital in the region 

near the Fermi level have mainly Y d orbital character; the green filled area indicates the 
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contributions of Y 4d orbitals. The energy of Fermi level is -6.248065 eV which is 

indicated with a red dashed line. The two lowest-lying bands (at ~-33 eV and -28eV) are 

from s orbitals of Br and O atoms. At ~ -15 eV, Br 4p and O 2p bands are overlapping. 

 
 

 

 

Figure 3.11(a). The partial density of states (PDOS) of Y9Br16O4 from EHTB calculation. The 

contributions from different orbitals are labeled with distinct colors. The details near the Fermi 

level is zoomed in and shown in the box. 
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About the DOS of EHTB calculation, there were 621 k-points used throughout 

the Brillouin zone in order to provide a nice mesh. Those 621 k-points were obtained via 

programming in MATLAB66 and evenly dividing the first Brillouin zone67, 68 which is 

shown in Figure 3.11(b).( Γ -Y-T-Z- Γ -X-A1-Y|T-X1|X-A-Z|L- Γ  ). An explicit 

examination was done for checking the symmetry of 621 k-points in the direct space. 

The spatial coordinates of each k point need to be converted from the conventional 

lattice to the primitive lattice via applying a transfer matrix. The weighting values of 

each k-point are determined through the symmetry operation of the points group.67 In the 

Figure 3.11(b), we can see there are four low-lying, overlapping d bands near the Fermi 

level. The very bottom two d band (< -6.5 eV) are fully filled by four electrons. However, 

the other two d bands (> -6.5eV) are hall filled by two electrons; the Fermi level cut 

through the two d bands. Therefore, there are total 6 e- available for metal-metal bonding 

per unit cell (e.g., Y18Br32O8= (Y+3)18(Br-)32(O-2)8(e-)6) 
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Figure 3.11(b). EHTB calculation.The band structure of Y9Br16O4 from -2 eV to -8 eV is 

displayed. The red dashed line indicates the Fermi level (-6.248065 eV). The big polyhedron is 

shown as the Brillouin zone of face centered orthorhombic lattice and the red polyhedron 

indicates the first Brillouin zone. The b1, b2, and b3 are expressed as the axes in the reciprocal 

space (Brillouin zone). 
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The comparisons between the band structure and the DOS of Y9Br16O4 at the 

same energy range are seen in Figure 3.11(c). About the band structure of EHTB 

calculation, fifteen special k points in the Brillouin zone68 of face centered 

Orthorhombic69 lattice were chosen as the path ( Γ-Y-T-Z-Γ-X-A1-Y|T-X1|X-A-Z|L-Γ ). 

Therefore, the bands went through those special points as: Γ-Y-T-Z-Γ-X-A1-Y|T-X1|X-

A-Z|L-Γ. Usually high symmetric properties were observed at those special points. The 

formula of the structure in a conventional cell is Y72Br128O32, according to the 

international tables for crystallography70. A primitive cell, Y18Br32O8, was used in the 

calculation in order to save the computational time. Therefore, there are 6 e- available for 

metal-metal bonding per unit cell (e.g., Y18Br32O8= (Y+3)18(Br-)32(O-2)8(e-)6). At the left 

in Figure 3.11(c), we can see the Fermi level (red dashed line) cuts through the two d 

bands (< -6.5 eV). At the right in Figure 3.11(c), the zoomed in box indicates the two d 

bands are half filled by two electrons and the Fermi level cuts through the peak of 

density of states. Of special interest to us is the electronic properties of Gd2Cl3.71, 72 The 

resistivity measurements on Gd2Cl3 indicates that it is a semiconductor and the band gap 

is about 0.85 eV. The results of photoelectron spectrum of Gd2Cl3 and band electronic 

structural calculation are consistent with the resistivity measurements.73 Interestingly, 

the resistivity measurement on Y2Cl3 
74shows essentially the same band gap as Gd2Cl3.  
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Figure 3.11(c). The band structure from -2 eV to -8 eV and the DOS of Y9Br16O4 are presented. 

The red dashed line is Fermi level (-6.248065 eV).The top polyhedron shows the Brillouin zone 

of face centered orthorhombic lattice. 

 

 

 

Based on the similarity between Y2Cl3 and Gd2Cl3, the estimated band gap from 

the EHTB band calculations of Y9Br16O4 should present a similar result of the real 

compound Gd9Br16O4 as seen in Figure 3.12 and Figure 3.13. The difference between 

two figures is the spins direction which are aligned respectively parallel and antiparallel 

with the local spin of the seven electrons from 4f orbitals.75 The d bands from parallel 

spin-calculations have lower energy than the antiparallel one because orbital energy of a 

given spin in 5d and 6s orbitals on a Gd atom with a like-spin 4f7 moment are stabilized 

by ½[E(7D)-E(9D)]65. The parameters of calculations are listed in the front Table 3.4.    
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Figure 3.12. The EHTB band calculations of Gd9Br16O4 with spins that are aligned antiparallel 

with the local spin direction of the 4f electrons. The red dashed line indicates the Fermi level. 

 
 
 

 

Figure 3.13. The EHTB band calculations of Gd9Br16O4 with spins that are aligned parallel with 

the local spin direction of the 4f electrons. The red dashed line indicates the Fermi level. 

  

 

Fermi Level: -6.4236 eV 

Blue Dashed Line: -6.6553 eV 

Fermi Level: -6.4236 eV 

Green Dashed Line: -6.1919 eV 
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Using the other method, DFT, to calculate the band structure of Y9Br16O4 is also 

performed in order to compare the results from both methods For the DFT calculation, 

the band calculation was carried out with a mesh of 216 k-points throughout the 

Brillouin zone in order to get plots of high resolution. The band structure and density of 

state (DOS) from DFT calculation are shown in Figure 3.14. The black dashed line 

indicates the scale of zero. The Fermi level is -0.0099459 Ha and equal to -2.706 eV. 

The unit of energy in the program DMol3 is Hatree. In order to compare the result of 

EHTB calculations, we need to convert the unit of energy.  

 

 

 

 
Figure 3.14. The band structure and density of state (DOS) of Y9Br16O4 from DFT calculation 

are shown. 
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DFT and EHTB band structures of Y9Br16O4 plotted along several symmetry 

lines in the same Brillouin zone (BZ) are shown in Figure 3.15(a), (b) and (c). The 

results from DFT and EHTB, the bands near the Fermi level “run” in a similar way. i.e., 

the consistency between DFT and EHTB treatments is fairly good, at least for the 

occupied and lowest unoccupied bands. The red dashed lines are indicated the 

normalized Fermi levels of both methods in order to compare both band structures in the 

same energy range. Based on the results of both methods, an EHTB scheme where the 

effects of 4f-5d and 4f-6s exchange interaction are effectively simulated. The details of 

the scheme are as following. (i) Using DFT to calculate the electronic structure of a 

nonmagnetic yttrium analogue of the Gd-containing compound. (ii) Carrying out a 

calculation on the same yttrium system via using extend Hückel theory, and adjusting 

the EHTB parameter( Hii and exponets, ξs) (iii) Introducing the 4f-5d and 4f-6s 

exchanging splitting in the EHTB parameters for the Gd 5d and 6s orbitals by splitting 

the Hii parameter of Gd atom as indicated in Table. 3.4. Comparing the EHTB band 

structure of Yd9Br16O4 with the band structures of Gd9Br16O4, EHTB band structures of 

Gd9Br16O4 show that the Fermi level shifts from the top of d band into the band gap 

(Figure 3.13 and Figure 3.12.) which indicates that Gd9Br16O4 is possible to be a 

semiconductor. However, a measurement of resistivity is required in order to support 

this assumption based on the result of the band structure calculation.  
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Figure 3.15(a). The calculated dispersion curves for the bands along 𝚪-Y of the BZ are shown. 

The left plot is the result from DFT method. The right plot is the result from EHTB method. 

 
 
 

 

Figure 3.15(b). The calculated dispersion curves for the bands along X-A1 of the BZ are shown. 

The left plot is the result from DFT method. The right plot is the result from EHTB method.  

𝚪                                                                    Y 𝚪                                                                     Y 
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Figure 3.15(c). The calculated dispersion curves for the bands along Y-T of the BZ are shown.  

The left plot is the result from DFT method. The right plot is the result from EHTB method. 
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3.7.2. The Electronic Structure of Gd6Br7Si2 

 

The electronic structure of model for Gd6Br7Si2 was investigated by use of 

density functional theory (DFT) with the Becke exchange functional and the Lee-Yang-

Parr correlation functional (BLYP).59, 60All calculations presented here were performed 

using the DMol3 program from the Materials Studio suite of programs using the double 

numerical basis including d-polarization functions (DND).61-63A small frozen-core 

(1s2s2p3s3p3d), (1s2s2p) and (1s2s2p3s3p) effective potential were used for Gd, Si, and 

Br respectively. All calculations included scalar relativistic effects and open shell 

configurations. Gd6Br7Si2 can be considered as (Gd+3)6(Br-)7(Si-4)2(e-)3, so there are 

excess of electrons which fill into Gd f, d, s- based bands. As seen in Figure 3.16, the left 

plot is the partial density of state (PDOS) of the Gd6Br7Si2 and the right one is the PDOS 

of Y6Br7Si2 which serves as a comparison. The difference of two plots is the contribution 

of f orbitals from Gd. 
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Figure 3.16. (Left) The plot of partial density of state of Gd6Br7Si2. (Right) The PDOS of 

Y6Br7Si2. 

 
 
 

The electronic band calculations for the nonmagnetic congener, Y6Br7Si2, were 

carried out using a mesh of 9 k-points throughout the Brillouin zone (BZ)68 As seen in 

Figure 3.17, the dashed line indicates the position of Fermi level. The convergence 

criterion of the energy was set at 10-6 a.u. The bottom band of the band structure is from 

the s orbitals of Br. In the middle of the band structure (-0.15 ~ -0.35 Hatree), the 

contributions are from the s orbital of Si and the p orbitals of Br. Near the Fermi level, 

the band is mainly made up by the 5d orbitals of Gd and 3p orbitals of Si. The band 

formed by the 4f orbitals of Gd is around -0.075 ~ 0.1 Ha. The energy of Fermi level is -

0.136353 Ha equal to -3.710 eV. 
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Figure 3.17. (Left) The band structure of Y6Br7Si2. (Right) The total DOS of Y6Br7Si2. 
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3.8 Result and Discussion 

 

3.8.1 Compound I: Gd9Br16O4 

 

Solid state materials can be categorized into four groups: insulators, 

semiconductors, conductors and superconductors. They are classified based on the 

conductivity and their energy band gap. The conductivity of insulators is smaller than 

10-8 S/cm and the energy band gap of insulators is larger than 9 ev. The conductivity of 

semiconductors is at the range from 10-8 S/cm to 103 S/cm and the energy gap of 

semiconductors is about 1ev. (The energy band gap of silicon is 1.1 ev which is a mid-

range value76). The conductivity of conductor is larger than 103 S/cm. According to the 

literature; Gd2Cl3
72 and Y2Cl374 have similar band gaps about 0.85Ev which are 

consistent with the resistivity measurements. Hence, we infer that using a hypothetical 

nonmagnetic yttrium analogous (Y9Br16O4) to run calculations should have similar result 

as Gd9Br16O4. The EHTB band structure calculations on real compound, Gd9Br16O4, and 

Y9Br16O4 show that there are four low-lying, overlapping d bands near the Fermi level 

on both band structures. The very bottom two d bands are fully filled by four electrons. 

The other two d bands are hall filled by two electrons; the Fermi level cut through the 

two d bands. The models of d electrons of Gd centers with spins that are aligned 

antiparallel or parallel with the local spin direction of the 4f electrons respectively 

demonstrate that orbital energys of a given spin in 5d and 6s orbitals on a Gd atom with 

a like-spin 4f7 moment are more stable. 

 

53 



 

3.8.2 Compound II: Gd6Br7Si2 

 

The first examples of reduced rare earth halides containing second-row non-metal 

interstitial atoms were Gd4I5Si and Gd3I3Si77 having iso-structures with Y4I5C19 and 

Gd3Cl3C 12. Both structures are built by edge-sharing gadolinium octaherdra with 

centered silicon to form one-dimensional chains and a three-dimensional network. 

Similarly, Gd4Br6S17, 18 has chains structure and is isotopic with Tb4SiBr6, Gd4CBr6 and 

Sc4CCl6.78 A lot of metal rich halides MXnA (n ≦ 2, A= H, C, N, O, X=Halogen) have 

been published.78, 79 However, Gd4I5Si, Gd3I3Si and Gd4Br6Si are the only known 

compounds with silicon as interstitial atom until now. The other metal halide compounds 

containing Si so far are MISi (M= La, Ce, Pr) and La4I3Si4
80

 which involve Si-Si 

bonding and are different from the isolated Si atom sitting at the center of Gd6 

octahedra.Gd6Br7Si2 is a special compound which has a two dimensional structure and 

contains two types of interstitial atoms (Si, Br). We believe that there is a stacking fault 

within the layers which may explain the problem of Si/Br disorder problem. Attempting 

to find a direct evidence from the arrangement of crystal diffraction reflections and find 

an appropriate enlarge unit cell to explain the possible permutation of the layers has not 

been completed. 
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4. PRASEODYMIUM LAYER COMPOUNDS  

 

4.1. Synthesis 

 

III. Pr3Si was obtained as a minor by-product in a reaction intended to prepare the 

target compound, Pr6I7Si2. The stoichiometric mixing of the starting materials PrI3
81

 

(prepared from HgI2 and Pr, purified by three subsequent sublimations), 

praseodymium(small pieces), and silicon (Aldrich; powder; -60 mesh; purity 99.999%; 

handled under argon) in a niobium tube was designed to synthesize Pr6I7Si2. The 

reaction was heated at 995~1000 oC in a sealed niobium tube for 2 weeks. Black tiny 

rectangular crystals are recognized as Pr3Si. All crystals are sensitive to moisture and air. 

IV. Pr2I2Ge was obtained in a reaction intended to prepare the target compound, 

Pr6I7Ge2.It was synthesized by the stoichiometric mixing of the starting materials PrI3 

(prepared from HgI2 and Pr), praseodymium (small pieces), and germanium in a niobium 

tube. The reaction was heated at 1000 oC for 2 weeks. The mixing procedure was carried 

out in a glove box under N2 atmosphere. Black tiny rectangular crystals are obtained. 

The compound is sensitive to moisture and air. 
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4.2. Single-Crystal X-ray Diffraction 

 

Black crystals of dimensions 0.036 x 0.020 x 0.030 mm3 for 1 and 0.025 x 0.050 

x 0.020 mm3 for 2 were selected for indexing and data collecting on a Bruker APEX II 

diffractometer at low temperature (110 K). The program TWINABS82 and 

CELL_NOW83 were applied for doing absorption correction and analyzing twinned 

domains. The structures was solved by the procedure84 of treating non-merohedrally 

twinned crystal data plus the direct methods and difference Fourier syntheses. The final 

cycles of least-squares refinement including atomic coordinates and anisotropic thermal 

parameters for all atoms were converged. There were residual electron densities in the 

final difference map which are close to heavy atoms Pr(1) in III and close to heavy 

atoms Pr(1) in IV. Use the SHELXTL version 6.12 software package48 to perform all 

structure refinements. The selected bond lengths of d(Si-Pr) and d(Ge-Pr) in Pr3Si and 

Pr2I2Ge are listed in Table 4.1. Atomic coordinates and displacement parameters are 

presented in Table 4.2(a) and (b). The crystallographic data for III and IV are shown in 

Table 4.3. 
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Table 4.1. Selected bond lengths [Å] for Pr3Si and Pr2I2Ge 

d ( Si-Pr) Å                   d( Ge-Pr)          Å d( Ge-Pr)         Å   
Si(2)-Pr(1)#1  2.930(1) Ge(1)#1-Pr(1)  3.0110(6) Ge(1)-Pr(1)#5 3.0110(6) 
Si(1)-Gd(1)#9  2.930(1) Ge(1)#2-Pr(1) 3.0110(6) Ge(1)-Pr(1)#6 3.0110(6) 
Si(1)-Gd(1)#8  2.930(1)) Ge(1)-Pr(1)#3 3.0110(6) Ge(1)-Pr(1)#7 3.0110(6) 
Si(1)-Gd(3)#6,7  2.930(1) Ge(1)-Pr(1)#4  3.0110(6)   
 

The Symmetry transformations used to generate equivalent atoms for Pr3Si: 

#1 x+0,-y+1,-z+3/2    #2 -z+1,x,y+1/2    #3 -y+1/2,z-1/2,x+1       

#4 y,z-1/2,-x+1    #5 z-1,-x+1/2,y+1/2    #6 -z+1,x+1/2,-y+3/2       

#7 z-1/2,x+1/2,y+1/2    #8 y-1/2,-z+3/2,-x+1    #9 -y+1/2,z+0,-x+1       

The Symmetry transformations used to generate equivalent atoms for Pr2I2Ge:  
#1 x-1,y,z    #2 x-1,y-1,z    #3 x+1,y+1,z    #4 x+1,y,z       
#5 -x+1,-y+2,-z    #6 -x+1,-y+1,-z    #7 -x+2,-y+2,-z        

-- 

-- 
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Table 4.2(a). Atomic coordinates and equivalent isotropic displacement parameters (Å
2
x 10

3
) for 

Pr3Si. U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

_____________________________________________________________________________  
 x y z U(eq) 

_____________________________________________________________________________  

Pr(1) 0.1250 0.3877(1) 0.8623(1) 9(1) 

Si(2) 0.1250 0.6250 0.8750 46(6) 

_____________________________________________________________________________ 

 
 
 
Table 4.2(b). Atomic coordinates and equivalent isotropic displacement parameters (Å

2
x 10

3
) 

for Pr2I2Ge. U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

_____________________________________________________________________________ 
 x y z U(eq) 

_____________________________________________________________________________ 

Pr(1) 0.3333 0.6667 0.515(1) 10(1) 

I(1) -0.3333 0.3333 0.1149(1) 10(1) 

Ge(1) 1.0000 1.0000 0 7(1) 

_____________________________________________________________________________  
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Table 4.3. Crystal data and structure refinement for Pr3Si (III) and Pr2I2Ge (IV) 

 

Identification code  Pr3Si Pr2I2Ge 

Empirical formula  Pr3Si Pr2I2Ge 

Formula weight  450.82 608.21 

Temperature  110(2) K 110(2) K 

Wavelength  0.71073 Å 0.71073 Å 

Crystal system   Cubic                                        Trigonal 

Space group  Ia3�d R3�m 

Unit cell dimensions a = 12.328(1) Å a = 4.3603(5) Å  

 b = 12.328(1) Å b = 4.3603(5) Å  

 c = 12.328(1) Å c = 32.063(5) Å  

  α=β=90˚ 

  γ=120°. 

Volume (Å
3
) 1873.6(3) 527.9(1)  

Z                                                                   16 3 

Crystal size (mm3) 0.036 x 0.020 x 0.030              0.025 x 0.050 x0.020 

Refinement method                                      least-squares on F
2                  least-squares on F

2
 

Goodness-of-fit on F2                                  1.411 1.232 

Final R indices [I>2sigma(I)]                       R1 = 0.0421  R1 = 0.0664, 

                                                                      wR2 = 0.0755                         wR2 = 0.01984 

Absorption correction                                   SADABS                                TWINABS 

Min. and max. transmission                          0.7991/0.9631                        0.351560/ 0.748661  

Largest diff. peak and hole (e.Å
-3

)                2.641 and -2.233  5.004 and -5.007  

 

Weight = 1 / [sigma2 (Fo2) + (0.0000 * P)2 + 652.84 * P ], where P = ( Max ( Fo2, 0 ) + 2 * Fc2 ) / 

3 for (III) 

Weight = 1 / [ sigma2(Fo2) + ( 0.0526 * P )2 + 298.14 * P ]   where  P = ( Max ( Fo2, 0 ) + 2 * Fc2 ) 

/ 3 for (IV) 
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4.3. Powder X-ray Diffraction 

 

4.3.1. The X-ray Powder Pattern of Pr3Si 

 

Figure 4.1(a) is the result of characterizing Pr3Si phase from TOPAS program. 

Since the crystal structure is refined by the data of single-crystal X-ray diffraction, the 

purpose of using TOPAS program on Pr3Si is to verify the existence of target phase in 

the powder sample and do the quantitative phase analysis. The green peak is the 

calculated powder pattern of Pr3Si from the sing-crystal X-ray data. The read fitting 

curves include three calculated powder patterns of three phases: Pr3Si, PrOI and Silicon 

as a standard. From the match between the experimental powder pattern (blue peaks) and 

green peaks, it shows the existence of Pr3Si. This experimental powder pattern can only 

provide the qualitative analysis to verify the phase of Pr3Si, and it can not apply to 

quantitative analysis due to containing some unclassified peaks. The sample was handled 

in a glove box filled with N2. The sample container for PXRD measurement is specially 

designed, and a thin film is covered on the top of sample in order to prevent the sample 

from exposing in air. However, the thin film would cause the background at low angle, 

as seen a little hill at the begging of the powder pattern. 
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Figure 4.1(a) The result of characterizing Pr3Si phase from TOPAS program. The blue curves 

are the experimental PXRD pattern. The green peaks are the cal. PXRD pattern of Pr3Si. The red 

pattern is the fitting curves of three phases. 

 

 

 

  

PrOI     19.46% 

Silicon     20.36% 

Pr3Si     60.18% 
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4.3.2. The X-ray Powder Pattern of Pr2I2Ge  

 

Figure 4.1(b) is the result of characterizing Pr2I2Ge phase via using TOPAS 

program. Since the crystal structure is refined by the data of single-crystal X-ray 

diffraction, the purpose of the using TOPAS program is to verify the existence of target 

phase in the powder sample and do the quantitative phase analysis. The green peak is the 

calculated powder pattern of Pr2I2Ge from the sing-crystal X-ray data. The read fitting 

curves include three calculated powder patterns of three phases: Pr2I2Ge, PrOI and 

Silicon as a standard. From the match between the experimental powder pattern (blue 

peaks) and green peaks, it shows the existence of Pr2I2Ge. This experimental powder 

pattern can only provide the qualitative analysis to verify the phase of Pr2I2Ge, and it can 

not apply to quantitative analysis due to containing some unclassified peaks and bad 

profile of peaks at the 2θ equal to 27°. The sample was handled in a glove box filled 

with N2 atmosphere. The sample container for PXRD measurement is specially designed, 

and a thin film is covered on the top of sample in order to prevent the sample from 

exposing in air. However, the thin film would cause the background at low angle, as 

seen a little hill at the begging of the powder pattern. 
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Figure 4.1(b). The result of characterizing Pr2I2Ge phase from TOPAS program. The blue 

curves are the experimental PXRD pattern. The green peaks are the cal. PXRD pattern of Pr2I2Ge. 

The red pattern is the fitting curves of three phases. 

 

 

 

 

  

PrOI     5.60% 

Silicon     79.71% 

Pr2I2Ge     14.69% 
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4.4 Crystal Structures 

 

4.4.1. The Structure of Pr3Si  

 

The binary phase diagram of Pr-Si has been reported by Eremenko85 et al in 1986. 

Not included among the ten known binary phases in Pr-Si system86-94 , is the new binary 

Pr3Si reported in this work. The space group of Pr3Si is Ia3�d and the structure is, of 

course, highly symmetric. One depiction of the structure is shown in a [111] projection 

in Figure 4.2.  

 
 
 

 

Figure 4.2. View a 3-D structure of Pr3Si along [111]. The red net is a (10, 3)-a silicon network.  
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The structure is constructed by Pr-Pr edge-sharing Pr6Si building units as seen in 

Figure 4.3(a). In Figure 4.3(a), the structure is slightly tilted a little bit in order to 

illustrate the stacking in the network. Also, the green polyhedral present Pr6Si octahedra 

and the blue/purple circles are Pr/Si atoms. 

 
 
 

 

Figure 4.3(a). Tilt the structure to view the stacking of polyhedra and the helix chains of 

red silicon networks. 
 

 

 

Selecting one of the octahedra from the structure displays a silicon atom sitting at 

the centre of Pr6 octahedron as seen in Figure 4.3(b). There are four different bond 

lengths within the octahedra. In Figure 4.3(c), the symbol ‘d1’ presents Si-Pr bonds and 

(a) 
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the bond length is 2.923 Å. The other three types of bonds, ‘d2’, ‘d3’ and ‘d4’ are Pr-Pr 

metal bonds. The bond lengths of metal bonds are distinct from the positions of 

connection in the structure. The shortest metal bonds, d2(Pr-Pr) equal to 3.907 Å, share 

bonding with neighboring octahedron. Longer bonds, d3(Pr-Pr) equal to 4.140 Å, are the 

metal bonds at the edges of octahedron without sharing bonds. The longest bonds are 

d4(Pr-Pr) equal to 4.243 Å which are the bonds to form the top and bottom trigon faces 

of an anti-trigonal prim within a octahedron.  

 
 
 

 

Figure 4.3(b). A single octahedron shows the connections between the interstitial silicon atom 

and Pr atoms. (c) There are four distinct bond lengths labeled with different bond symbols in a 

single octahedron. 

 
 
 

The interstitial Si atoms can artificially compose (10, 3)-a-nets topology via 

connecting the silicon atoms that helps us understanding the structure of Pr3Si, because 

each silicon atom presents a unit of octahedra. The (10, 3)-a net is a typical and frequent 

net of two 3-connecting nodes and it is described as a SrSi2 (SrS) net, which is also 
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observed in the solid state compounds.95-97 In SrSi2, of course, Si-Si contacts are 

indicative of Si-Si single bonds. In what follows, we show Si-based nets for the purpose 

of explaining the Pr3Si structural topology; there is no significant Si-Si bonding.  

There are two symmetry-related (10, 3)-a nets are revealed in Pr3Si. As Figure 

4.4(a) shows, the green and red nets present the interpenetration of two symmetry-

related silicon nets. Through viewing the three-membered net in a unit cell in Figure 

4.4(b), the three-membered helices in the green net are right-handed (D) and those in the 

red net are left-handed (L).Select two different single three-membered helices to get a 

clear view in Figure 4.4(c). (10, 3)-a nets in a [010] projection is shown in Figure 4.4(d). 

 
 
 

 

Figure 4.4(a). Two symmetry relative (10, 3)-a nets are labelled red and green. (b) Select the 

unit cell to see the directions of two helices. (c) Zoom in the rectangular box to recognize that 

the red net is the right-handed helix chain and the green net is the left-handed helix chain. 

 

(a) 

(b) 

(c) 
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Figure 4.4 (d). (10, 3)-a nets are shown in a [010] projection. 

 
 
 
The combination of two (10, 3)-a nets makes Pr3Si a racemic binary. According 

to the summary of Wells 98, there are seven known uniform (10, 3) nets. In the 

configuration of (10, 3)-a net, all Si-Si interatomic distances are equal and all interbond 

angles are 120˚ and there is one 31, three-fold screw axe, in each three-membered helices; 

in other word, a 32 axis is centred by the three-membered helices. Wells also predicted 

two possible interpenetrating nets which are formed by two identical (10, 3)-a nets: (i) 

two D-(10, 3)-a nets and (ii) D and L forms of (10, 3)-a nets. The second type of 

interpenetrating nets had been unknown until a molecule-based material of formula  with 

D and L forms of interpenetrating nets is reported by Janiak and Sanchiz groups in 

2010.99  The second type of interpenetrating polyhedra nets was in this compound. It is 

not common in the solid state compounds to have two (10, 3)-a net and two nets have 

interpenetrating relationship. Pr3Si is a rare compound with a high symmetric geometry.   
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4.4.2. The Structure of Pr2I2Ge  

 

The structure of Pr2I2Ge is a closed-packing layer structure, as seen in Figure 

4.5.Each layer is constructed by Pr6 octahedra and separated by iodine atoms. The 

interstitial atoms centered in the green Pr6 octahedral are Ge (1) atoms which occupy the 

special positions: (0, 0, 0) (see Table 4.2.). The bond lengths between Pr atom and 

interstitial Ge(1) atom is 3.0116 Å.  

 
 

 

Figure 4.5. The closed packed layers are separated by iodine atoms. Black dash line is presented 

a unit cell.  
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Select one layer and delete iodine atoms to get a close look on the connections of 

each octahedron in Figure 4.6. For each octahedron, there are six edges are sharing with 

neighboring octahedron to form a layer and the connection of each octahedra is extend 

along the ‘x’ and ‘y’ axis.  

 
 
 

 

Figure 4.6. The layer of Pr2I2Ge without showing iodine atoms. The black box specifies one 

octahedron which is connected to the neighboring octahedra via sharing six edges. The 

honeycomb closed packing of octahedra is seen in this Figure as well. 
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Then, put iodine atoms back to the structure and each iodine atom is filled in the 

tetrahedral sites above and below each layer as seen in Figure 4.7. Each iodine atom 

forms three bonds to connect with praseodymium atoms. 

 
 
 

 

Figure 4.7. The layer of Pr2I2Ge is shown. Each tetrahedral site is filled by an iodine atom. 
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If select one octahedron from the layer (Figure 4.6.) and zoom in as seen in 

Figure 4.8. There are two distinct metal-metal bond lengths in each octahedron. The 

shorter bonds are edge-sharing bonds equal to 4.155 Å. The longer bonds are the bonds 

without sharing edge equal to 4.360 Å. 

 
 
 

 

Figure 4.8. The building block of Pr2I2Ge is shown. Two distinct bond lengths in each 

octahedron are indicated in this Figure. 

 
 
 
4.5 Calculated Electronic Structure of Pr3Si 

The electronic structure of model for Pr3Si was investigated by use of extended 

Hűckle tight bonding theory (EHTB). The plot of density of state (DOS) is shown in 

Figure 4.9(a) and the band structure of Pr3Si is in Figure 4.9(b). As expected, Pr3Si turns 

out to be metallic based on the result of band structure. According to the DOS in Figure 
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4.9(a), it points out that the region around the Fermi level is made up mainly from the d 

orbital of Pr atoms. The energy of Fermi level is -9.308356 eV. 

 

 

 

 

Figure 4.9(a). DOS of Pr3Si. The selected area from -6 eV to -13 eV near the Fermi level is 

zoomed in to see the DOS contribution from each components 
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Figure 4.9(b). The band structure of Pr3Si. The red dashed line indicates the Fermi level (-

9.308356 eV.). The dodecahedron describes the Brillouin zone of body center cubic lattice. The 

path of special points: 𝚪-H-N-P-𝚪 is used in the band structure calculation. 

 
 
 

 The comparisons between the band structure and the DOS of Pr3Si at the same 

energy range are seen in Figure 4.9(c). For the calculation of band structure, four special 

k points in the Brillouin zone68 of body center cubic lattice were chosen as the path. 

Therefore, the bands went through the special points as: Γ -H-N-P- Γ . Usually high 

symmetric properties were observed at those special points. The formula of the structure in a 

conventional cell is Pr48Si16, according to the international table for crystallography.70 A 

primitive cell, Pr24Si8, was used in the calculation in order to save the computational cost. 
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Figure 4.9(c). The band structure with the plot of DOS of Pr3Si at the same energy range are 

presented. The red dashed line is Fermi level (-9.308356 eV.). 
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In the DOS calculation, 285 k-points were used throughout the irreducible edge 

of the Brillouin zone in order to provide a nice mesh. Those 285 k-points were obtained 

via programming in MATLAB66 and evenly dividing the first Brillouin zone67 (a 

tetrahedron, Γ-H-N-P). An explicit examination was done for checking the symmetry of 

285 k-points in the direct space, as seen in Figure 4.10. The spatial coordinates of each k 

point need to be converted from the conventional lattice to the primitive lattice via 

applying a transfer matrix. The weighting values of each k-point are determined through 

the symmetry operation of the points group and the values are listed in Table 4.4. The 

band calculation and DOS of Pr3Si were carried out on the program “YAeHMOP”39. The 

valence ionization potentials (Hii in ev)of different shells64 and exponent (ξ)65 are listed 

in Table 4.5. 

 

 

 

Figure 4.10. A mesh of 285 k-points throughout the first Brillouin zone (A tetrahedron, 𝚪-H-N-P) 
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Table 4.4. The weighting values of each K point in the first Brillouin zone of body center cubic. 

K points
 
 
  

 Coordinates Weighting  
Value 

Point Group 
(International 
notation) 

Point Group 
 

Calculation 
 

Gamma (0,0,0) 1 m3m Oh 48/48=1 
∑ (α, α,0) 12 mm2 C2V 48/4=12 
N (1/4,1/4,0) 6 mmm D2h 48/8=6 
G (α,1/2- α,0) 6 mm2 C2V 48/8=6 
H (0,1/2,0) 1 m3m Oh    48/48=1 
Δ (0, α, 0) 6 4mm C4V 48/8=6 
ʌ (α ,α, α) 8 3m C3V 48/6=8 
D (1/4,1/4, α ) 12 mm2 C2V  48/4=12 
F (α,1/2- α, α) 8 3m C3V 48/6=8 
P (1/4,1/4, 1/4) 24 -43m Td  48/24=2 

 

 

 
Table 4.5. Extended Hückel Exponents(ξ), valence shell ionization potential (Hii in eV) and 

coefficients are listed. 

Atom Orbitals Hii (eV) ξ1
a  ξ2

a c1
b c2

b 

Si 3s -17.3 1.383    

 3p -9.2 1.383    

Pr 6s -7.42 1.40    

 6p -4.65 1.40    

 5d -8.08 2.75 1.267 0.7187 0.4449 

 
a Slater-type orbital exponents. b Coefficients used in double-ξ exponent. 
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We wished to go in insight into the nature and relative importance of Pr-Pr and 

Pr-Si bonding in Pr3Si, so we focussed our attention especially on the overlap population 

calculations.100 As seen in Figure 4.11 COOP (Crystal Orbital Overlap Population) 

shows, the bottom of the s band is primarily metal-silicon bonding and the top is metal-

silicon antibonding. Up to the Fermi level, the integral of the COOP curves is the total 

overlap population of the given electron count. In this compound, Pr-Si bonding is the 

most important contributor to the stability of this compound, though Pr-Pr contributions 

are also significant. The result of COOP responds to the order of bond lengths in the 

structure which indicates that Pr-Si bonds have shorter bond length than Pr-Pr bonds. 

The electron concentration considered “optimal” in that there remain some Pr-Pr and Pr-

Si bonding levels above the Fermi level. The antibonding “crossover” is about 1 eV 

above the Ef for both kinds of bonds. Nevertheless, the extent of such bonding character 

is much less than that of the occupied levels. 
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Figure 4.11. COOP (Crystal Orbital Overlap Population) of Pr3Si. Positive population indicates 

bonding. 
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4.5 Result and Discussion 

 

4.5.1 Compound III: Pr3Si 

 

The structure types and lattice parameters of ten known binary phases in Pr-Si 

system are listed in Table 4.6. Comparing to the new binary phase Pr3Si, most of them 

belong to tetragonal and orthorhombic system, but Pr3Si is classified to cubic system. 

 
 

 
Table 4.6. Crystal structures and lattice parameters of intermediate phases in Pr-Si system. 

Formula Structures Cell 
Constants 
(Å) 

Type Reference Note 

α-Pr5Si3
87 Tetragonal 

I4/mcm 
a=7.814 / 
7.812(5) 
 
c=13.74 / 
13.75(1) 
 

Cr5B3 
 
 

Journal of the 
Less Common 
Metals, 1972, 29, 
25-31. / 
Acta 
Crystallographica
, 1967, 22, 940-
943 

Tc=330 K 
(Gd5Si4) 

Pr5Si4
88 Tetragonal 

P41212 
a=7.90 / 
7.9092(0) 
 
c=14.91/ 
14.9437(1) 

Zr5Si4 
 

Acta 
Crystallographica
, 1967, 22, 940-
943. / Journal of 
Alloys and 
Compounds 
(2002), 339(1-2), 
189-194. 

 

PrSi89 Orthorhombic 
Pnma 

a=8.243(2)    
b=3.941(1) 
c=5.918(2) 
 

FeB 
 
 
 

Solid State 
Communications, 
1977, 23, 821-
823. 

 

α-PrSi2
90 Orthorhombic 

Imma 
a= 4.23 
b= 4.20 
c= 13.68 
 

GdSi2 
 
 

Journal of 
physical 
chemistry, 1959, 
63, 2073-2074. 
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Formula Structures Cell 
Constants 
(Å) 

Type Reference Note 

β-PrSi291 Tetragonal 
I41/amd 

a=4.165 
c=13.766 
 

ThSi2 
 
 

Inorganic 
chemistry, 1968, 
7, 1904-1908. 

 

PrSi1.96
93 Tetragonal  

I41/amd 
a=4.205(5)   
c=13.73(2) 
 

ThSi2 Journal of 
Physics: 
Condensed 
Matter (1991) 3, 
3113-3124 

 

Pr2Si3 
101 Tetragonal 

Imma 
a=4.12  
b=4.16   
c=13.81 

NdSi2-x Applied Surface 
Science (1989) 
38, 156-161 

 

PrSi1.36
92 

(Pr2Si3-x , 

X=0.28) 

Orthorhombic 
Cmcm 

a=4.369(5) 
b=24.726(4) 
c=3.928(5) 
 

PrSi1.36 Journal of 
Magnetism and 
Magnetic 
Materials 1992, 
114, (1-2), 131-7. 
Form Si6 Rings 

d(Pr-Pr)= 
3.78~4.38 Å 
 
d(Pr-Si)= 
3.03~3.33 Å 
 
d(Si-Si)= 
2.18~2.45 Å 
 
CN(Pr)= 
6pr+7si 
 
CN(Si)= 
3si+2pr 

Pr3Si2 Tetragonal 
P4/mbm 

a=7.75(2)   
c=4.38(1) 

Si2U3 Inorganic 
Materials (1965) 
1, (5) p648-p651 

PDF 
unavailable 

Pr2Si3.6
94 Orthhombic 

Imma  
a=4.17 
b=4.15   
c=13.75 

NdSi2-x Journal of Alloys 
and Compounds 
(1994) 204, 251-
260 

 

Pr3Si1 (New) Cubic 
Ia-3d 

a=12.308(1) Pr3Si1 Manuscript in 
preparation. 

d(Pr-Pr)= 
3.25~4.27 Å 
 
d(Pr-Si)= 
2.93 Å 
 
CN(Pr)=7 
CN(Si)=6 

*Underline compounds are indicated in Pr-Si phase diagram.  

      Table 4.6. continued 
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4.5.2 Compound IV: Pr2I2Ge 

 

The structure of Pr2I2Ge is isostructural with Y2I2Ge and Gd2I2Ge.102 They all 

have two-dimensional closed-packed bilayers which are constructed by RE6 octahedra. 

The rare-earth metal layers are sandwiched by the layers of halogen atoms. Pr2I2Ge was 

synthesized at 1273 K for two weeks in a niobium tube. Y2I2Ge and Gd2I2Ge were 

synthesized at 1070 K in a Mo boat for 24 hours. According to the literature, it reported 

that Y2I2Ge and Gd2I2Ge display semiconductor behavior based on the result of the 

electrical resistivity measurements. The products of Pr2I2Ge are black crystals. However, 

it was failed to get highly pure sample to do electrical resistivity measurements. The 

space group of Pr2I2Ge is R-3m. The bond length of Pr-Ge is 3.0116 Å. Comparing to 

Gd2I2Ge, the Gd-Ge distance of 2.90 Å is shorter. The charge distribution of RE2X2Ge 

(RE=Rare earth, X=halides) can be expressed as (RE+3)2(X-1)2(Ge-4) with no valence 

electrons left on the metal framework. 
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5. CONCLUSIONS 

 

Four new compounds were synthesized in this work via solid state synthesis method (I 

Gd9Br16O4, II. Gd6Br7Si2, III. Pr3Si, and IV. Pr2I2Ge). The first three compounds have 

new structures and compound IV is iso-structural with Gd2I2Ge and Y2I2Ge.102 The 

electronic structures of compound I, II, and III were analyzed via theoretical density 

functional theory (DFT) calculations or extended Hückel/tight binding (EHTB) 

calculations. The results of EHTB band structure calculations indicate that the bottom 

the Gd9Br16O4 d bands and those of a hypothetical analogous yttrium compound 

(Y9Br16O4) are half filled; the Fermi levels of those two compounds cut through two d 

bands. Gd6Br7Si2 and Pr3Si are predicted to be metallic, as expected. The magnetic 

measurements on Gd9Br16O4 and Gd6Br7Si2 are done. The results show that Gd6Br7Si2 

has the property of soft magnets according to the plot of the hysteresis loop and it also 

appears two phase transitions at 27 K and 70 K based on the measurement of magnetic 

susceptibility vs temperature. The result of magnetic measurements on Gd9Br16O4 is not 

reportable due to insufficient sample and the property of easily oxidized. All the 

compounds are highly air-sensitive and moisture-sensitive. Espousing those compounds 

in the air would cause them decomposed.  

The measurements of energy-dispersive and wavelength-dispersive spectrometry 

systems (EDS and WDS) were applied to compound I and II to confirm the existence of 

the component elements. The crystal structures of fours compounds were obtained from 

a single-crystal X-ray data. Crystal twinning problems are common for compounds 
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synthesized via solid state synthesis and are required different process to collect or deal 

with the X-ray data. The Rietvield refinement is also applied to the X-ray powder 

patterns of compound II, III and IV in order to confirm the phase of each compound. 

The structure of Gd9Br16O4 is constructed by two different polyhedrons: tetrahedron 

(Gd4O) and square antiprisms (GdBr8). The tetrahedron (Gd4O) connects to each other 

via edge sharing to form a chain and Br atoms connect those chains to build up a slab. 

Square antiprisms (GdBr8) serve as pillars to connect the tetrahedral layers via point 

sharing. The building units of Gd6Br7Si2 are Pr3Si are RE6 octahedrons. (RE= Gd, Pr) 

However, they perform different geometries. The structure of II.Gd6Br7Si2 is a double-

chains layer consisted of Gd6Si and Gd6Si0.5(Br)0.5 octahedra. II.Pr2I2Ge forms closed-

packed bilayers and the metal layers are sandwiched by the layers of iodine atoms. The 

structure of III.Pr3Si is very unique because the building units, octahedra Pr6Si, build up 

an interpenetrating (10, 3)-a103 type topology of network. 

The comparisons of four crystal structures in this work are listed in Table 5.1. The 

common properties of those structures are that they all have interstitial atoms sitting in 

the center of polyhedra. There are three different types of polyhedra seen in four 

structures. They are square antiprisms, tetrahedra and octahedra. Those polyhedra 

become building units to construct the two dimensional or three dimensional structures 

via edge sharing or point sharing.   
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Table 5.1. The comparisons of four crystal structures in this work.  

Formula Crystal System 

Space Group 

Cell Constants Structure Building Units 

I. Gd9Br16O4 Orthorhombic 

Fddd 

 

a=8.1902(4) 

b=20.9843(9) 

c=38.840(2) 

α=β=γ=90° 

 

2-D Gd metal 

layer plus 

square 

antiprisms to 

form a 3-D 

structure 

1. Square 

antiprisms: 

GdBr8 

2. Interstitial 

Tetrahedra: 

Gd4O 

II. Gd6Br7Si2 Monoclinic 

C2/m 

a=21.415(5) 

b=4.123(1) 

c=10.907(3) 

β=115.891(3) 

2-D Gd metal 

layer 

1. Interstitial 

Octahedra: 

Gd6Si or 

Gd6Br 

III. Pr3Si 

 

 

 

Cubic 

Ia-3d 

 

 

a=12.328(1) 

α=β=γ=90° 

 

3-D inter-

penetrating 

octahedra 

(10,3)-a network 

1. Interstitial 

Octahedra: 

Pr6Si  

  

IV. Pr2I2Ge Trigonal 

R-3m 

 

a=4.3603(5) 

c=32.063(5) 

α=β=90° 

γ=120° 

2-D Pr metal 

layer 

1. Interstitial 

Octahedra: 

Pr6Ge 
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Because the common properties of those structures are the interstitial atoms of 

polyhedra, the comparisons of the bond lengths in different interstitial polyhedra are 

listed in Table 5.2. There is one interesting phenomenon is observed, after comparing the 

bond lengths of each polyhedron. The shorter metal-metal bonds are labeled with blue 

color in Table 5.2. Those shorter M-M bonds are all located at the edges which are 

sharing with the neighboring polyhedron to construct a chain or a layer. This 

characteristic is also observed in the chains built by M6X12 and M6X8 cluster.19, 104 A 

reference from Yee and Hughbanks72 reported a picture of semilocalized bonding via 

calculating the bonding orbitals of a semiconductor (Y2Cl3), and a hypothetical 

interstitial compound (Y4Cl6H2
+2) which provide us a clarification on the relationship 

between the structure-property and trends in interstitial chemistry. Although the question 

about where and whether, interstitial atoms will be bound is difficult to answer usually, 

viewing interstitial atoms as filled-shell donor and the RE6 metal octahedron as an 

acceptor we can expect that orbital overlapping interaction between the donor and 

acceptor should be stronger for extended systems. In other words, the interstitial atoms 

may stabilize the structure.   
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Table 5.2. The comparisons of bond lengths in different interstitial polyhedra. 

Formula Building Units Bond Length between 
metal and interstitial 
atom (Å) 

Bond Length 
between metal and 
metal (Å) 

I. 

Gd9Br16O4 

GdBr8  

 

d(Gd-Br)=2.943 

 

None 

 

Gd4O  

 

d(Gd1-O1)=2.251 

d(Gd1-O1)=2.263 

d(Gd2-O2)=2.237 

d(Gd2-O2)=2.258 

d(Gd1-Gd1)=3.465 

d1(Gd1-Gd2)=3.886 

d2(Gd1-Gd2)=3.785 

d(Gd2-Gd2)=3.950 

II. 

Gd6Br7Si2 

Gd6Si and Gd6Si0.5(Br)0.5 

 

d(Gd-Si)=2.881 

d(Gd-Br0.5/Si0.5)=2.879 

d(Gd-Br)=2.97 

d(Gd-Gd)=4.026 

d(Gd-Gd)=4.121 

III. Pr3Si 

 

Pr6Si 

 

d1(Pr-Si)=2.9301 d2(Pr-Pr)=3.907 

d3(Pr-Pr)=4.140 

d4(Pr-Pr)=4.243 

IV. Pr2I2Ge Pr6Ge 

 

d(Pr-Ge)=3.0110 d(Pr-Pr)=4.155 

d(Pr-Pr)=4.360 

 

Si0.5/Br 0.5  Si 

A 

d1 
d2 
d3 
d4 
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The first examples of reduced rare earth halides containing second-row non-

metal interstitial atoms were known as Gd4I5Si and Gd3I3Si 22 which have iso-structures 

with Y4I5C23 and Gd3Cl3C 24. Their structures are built by edge-sharing Gd6 octaherdra 

with centered silicon to form one-dimensional chains and a three-dimensional network. 

Similarly, Gd4Br6Si25 has chains structure and is isotopic with Tb4SiBr6, Gd4CBr6 and 

Sc4CCl626-27.  Although a lot of metal rich halides MXnA (n ≦ 2, A= H, C, N, O, 

X=Halogen) have been published. 27-29 However, compound I.Gd9Br16O4, II.Gd6Br7Si2, 

and III.Pr3Si, still have unknown new structures and show interesting magnetic or 

electric properties according to the magnetic measurements and band structure 

calculations. If the challenges of synthesizing high yield and high purity can be broken 

through, the potential applications of lanthanide-metal-halides compounds will be 

optimistic. 
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APPENDIX 

 

Appendix A-1. Extended Hückel Exponents (ξ), valence shell ionization potential (Hii in eV) 

and coefficients are listed. 

Atom Orbitals Hii (eV) ξ1
a  ξ2

a c1
b c2

b 

O 2s -32.3 2.750    

 2p -14.8 2.750    

Si 3s -17.3 1.383    

 3p -9.2 1.383    

Br 4s -28.0 2.64    

 4p -13.9 2.26    

Y 5s -7.02 1.74    

 5p -4.40 1.70    

 4d -6.8 1.40 3.60 0.8316 0.3041 

Pr 6s -7.42 1.40    

 6p -4.65 1.40    

 5d -8.08 2.75 1.267 0.7187 0.4449 

“Gd+”c 6s -7.12 1.74    

 6p -4.40 1.70    

 5d -7.03884 1.40 3.60 0.8316 0.3041 

“Gd-”c 6s -6.91 1.74    

 6p -4.40 1.70    

 5d -6.56116 1.40 3.60 0.8316 0.3041 

 
a Slater-type orbital exponents. b Coefficients used in double-ξ exponent.  Gd+ and Gd- are used to 

model the spin-dependent energies of valence s and d electrons of Gd centers which have the 

spins that are aligned parallel and antiparallel respecting to the local spin direction of 4f electrons. 
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