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ABSTRACT

Certain diseases comprise an initial asymptomatic period during which they

can be identified only by a screening test. In many such cases, early detection trans-

lates into benefits of more treatment options and potentially better prognosis. In this

dissertation, we consider the optimal policy to screen for a preclinical disease while

under limited budget. Our objective is to place any given number of screening epochs

over an individual’s lifetime, such that the probability of identifying the disease while

preclinical is maximized. We make mild assumptions about the sojourn times of the

individual in the healthy and preclinical states, and we consider the possibility of

fallible screening tests. We show that a unique optimal sequence of screening times

exist for our model, and that it can be quickly found by any greedy-search algorithm.

We further conduct numerical experimentations by which we identify sensitive model

inputs. We lastly apply our model to breast cancer screening using practical infor-

mation and we investigate additional characteristics of this model.
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1. INTRODUCTION

Certain chronic diseases are characterized by an initial phase with no outward

symptoms on the patients (a.k.a. “preclinical” period). Screening tests are available

to find a disease in its preclinical period. Once a preclinical disease is detected, ben-

efits could be reaped in terms of less aggressive treatment options and/or improved

prognosis. On the other hand, if the disease is left untreated and enters its symp-

tomatic (“clinical”) stage, then the treatment procedures may become much more

involved and chances of long term survival much reduced. Examples of diseases that

comprise such features include hypertension, diabetes, and a collection of cancers

such as breast, cervical, colorectal and prostate cancers.

Despite the general acceptance on benefits of screening, different professional

and governmental organizations are recommending different schedules for the public

to go on screening tests. In the case of breast cancer for example, the American Can-

cer Society recommends all women at ages 40 and over to go on both mammography

and clinical breast exam annually; the National Cancer Institute recommends only

mammography every one or two years beginning at age 40; and the U.S. Preventive

Services Task Force suggests mammography only for women between 50 to 75, and

only biennial exams. International debates over screening policies in terms of their

starting age and their frequency are ongoing.

It is clear that by scheduling many screenings over his/her life, one obtains

an improved potential of detecting a preclinical disease, yet one also incurs higher

cost. In the end, some of the capital spent on screening for one disease might have

been better utilized to treat/screen for other diseases. On the other hand, certain

screening exams are themselves risky, e.g. colonoscopy if not well performed may
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cause perforation of the intestine, bleeding or incontinence, and mammography can

be harmful if the device is not calibrated at its right radiation level. Also complicating

the practice of screening are the side-effects associated with false-positive screening

results. Usually if a screening tests positive, more accurate (and oftentimes more

aggressive) follow-up procedures are required to confirm the case, e.g. biopsy for

breast cancer. As such, a falsely-produced positive result by screening will translate

into additional costs, medical risks, and negative emotions for the patient which are

in fact unnecessary.

In this dissertation, we study the optimal policy to screen for a preclinical

disease while considering cost. We use the term “screening policy” to mean a series

of time points at which an individual is supposed to go on screening exams even

if he/she seems healthy. Our goal is to develop a methodology that could be used

by the public health community to provide informed recommendations for disease

screening.

Our model aims to find the screening policy that detects the preclinical disease

with maximal probability, and we consider cost in terms of a screening budget, which

is defined as the maximum number of screenings allowed in a person’s lifetime. In

implementation, we may solve the model at a variety of budget levels and observe

the performance of the optimal screening policy at each one. This process may be

continued until the best trade-off is met between screening budget and the probability

of detection in the eyes of a decision maker.

We assume known information about the evolvement of the disease and about

the sensitivity of screening exams. In practice such information is not directly col-

lectable and needs to be estimated by rather sophisticated statistical procedures.

Specifically, we assume the population’s healthy sojourn time has a density that is

a log-concave function, and the preclinical sojourn time has a general density on
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infinite support. We also model false-negative screening results by assuming a fixed

sensitivity for all screenings.

The main result is that the model consists of a unique optimal screening

policy, and that this policy can be quickly found by a greedy-search procedure due

to the nice structure of the objective function.

We then numerically conduct a variety of sensitivity analyses on the model

inputs. The results reveal that the variances of the distributions for both disease-

free and preclinical sojourn times play a key role in the performance of the optimal

solution.

We apply our model to the screening of breast cancer. With parameters

assumed to the best of our knowledge, we observe that the equal-interval screen-

ing policy performs rather closely to the optimum. Additionally, we examine the

expected number of screenings (for both disease-free and disease-affected popula-

tions) and the expected lead time (i.e. time gained in diagnosis due to screening for

the disease-affected population). We show with practical evidence that the disease-

free population actually receives many more screening examines compared with the

disease-affected population who is our target. We also show for our particular breast

cancer screening model that the screening policy which maximizes the probability of

screening detection also maximizes the expected lead time to clinical detection.

We want to also point out that our model can be applied to other settings in

which a system that comprises a non-self-announcing “incipient-failure” state and a

self-announcing “hard-failure” state is maintained. One example as such is the infras-

tructure maintenance problem, in which invisible degradations could have occurred

long before they become visible and dangerous.

This dissertation is organized as follows. In Section 2, we review the relevant

literature on preclinical disease screening. In Section 3, we lay down our formulation
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for the optimal screening policy model. The analytical solution to the model will

be shown in Section 4. In Section 5, we present our sensitivity analysis results. In

Section 6, we show our numerical results as we apply our model to breast cancer

screening. Lastly, Section 7 will conclude our research and point out a few directions

for future research.
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2. LITERATURE REVIEW

Model-based studies of asymptomatic disease screening date back to Zelen

and Feinleib (1969). In this pioneering study, the authors develop a statistical model

to estimate the mean lead time for a public screening program. The lead time is

defined to be the time gained in disease detection by screening than it normally

would due to symptoms.

Under considerably strong assumptions, e.g. a single and perfectly sensitive

screening conducted far from the time origin, and a constant prevalence level of pre-

clinical samples in the population over time (so-called “stable disease model”), the

authors derive a mean lead time estimator for the screen-detected population that

is based solely on moments of the population’s preclinical sojourn time distribution.

Zelen and Feinleib (1969) further estimate these moments by information on the clin-

ical incidence rates and preclinical prevalence level of the disease, which are collected

from practice.

The model of Zelen and Feinleib (1969) is applied to data from the Health

Insurance Plan for Greater New York (HIP) program, one of the earliest large-scale

screening trials conducted in the US for better treating breast cancer. The outputs

suggest that the preclinical sojourn time in this case is well-modeled by an exponen-

tial distribution.

Later, Albert et al. (1978a,b) and Louis et al. (1978) present a series of three

reports, in which they mathematically define a large collection of traditional epi-

demiologic terms that are relevant to a preclinical disease. These terms include mean

sojourn time, age-specific incidence rate, age-specific prevalence, lifetime attack rate

and a variety of cohort effects. The definitions are based on a disease progression
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model that consists of three disease states, namely, disease-free, preclinical and clin-

ical states; and all quantities are expressed in terms of the joint-distribution of a

population’s age mix and its sojourn times in the various states. This disease pro-

gression model is so-called a “natural history model”, for the reason that it considers

only the progression of the disease undisturbed, without say, any early interventions

due to results of screening.

As in Zelen and Feinleib (1969), evaluation of screening programs forms the

goal of an early stream of studies of disease screening. Essential to this is knowledge

about the population’s experience while in the preclinical state, such as the sojourn

time distribution and the sensitivity of screening tests. As these quantities are not

directly observable from practice, estimation of them is the normally the first step

of a program evaluation model.

Walter and Day (1983) and Day and Walter (1984) then adopt the stable

disease model as proposed by Zelen and Feinleib (1969) and continue estimating the

lead time of a screening program. As a generalization, their model considers multiple

screenings and the possibility of false-negative screening results. In particular, the

sensitivity of the screening test is treated as an unknown constant which is also

to be estimated. In Walter and Day (1983), a few statistical distributions for the

preclinical sojourn time are considered, and while applied to the HIP data, the

exponential model again outperforms all others; thus in Day and Walter (1984),

estimates on test sensitivity and the exponential density parameter are applied to

derive the mean lead time. In doing this, each clinical incidence is assigned a zero

lead time value, and the mean is taken over the entire screened population. The

outcome is thus a program-wide mean lead time.

Relaxing the assumption of a stable disease, Lee and Zelen (1998) present the

first work that estimates the time-dependent rates for the population’s preclinical
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incidences. By first recognizing the clinical incidence rates as convolution of the

preclinical state’s incidence rates and sojourn time density, and by assumed knowl-

edge of clinical incidence rates and preclinical sojourn time distribution, the authors

develop a de-convolution approach to infer preclinical incidence rates. As data of

incidence rates are normally generated by age groups in practice, the output of the

de-convolution procedure has the format of a step function.

With this update on the underlying disease progression model, Shen and

Zelen (1999) consider again the estimation of mean screening program lead time yet

with multiple screening modalities and possibly dependent test sensitivities among

them. The statistical model developed is rather intricate, with many parameters

to be estimated on test sensitivities and on the incidence rates and sojourn time

distribution for the preclinical state.

In Parmigiani and Skates (2001), a generalized disease progression model is

considered that allows for dependencies among the population’s sojourn times in the

disease-free, preclinical and clinical states, and that models the population’s deaths

due to other causes, i.e. competing risks, explicitly in each state. This model is first

proposed in Parmigiani (1993) in which the cost-effectiveness of various screening

strategies are compared. By assumed knowledge of clinical incidence rates, preclinical

sojourn time distribution, and overall competing death rates for the population, the

authors develop a de-convolution procedure to obtain preclinical incidence rates as

well as competing death rates for the population while being preclinical. The latter

rates are relevant to evaluating the over-diagnosis effects of a screening program.

Pinsky (2001) estimates preclinical incidence rates and sojourn time distribu-

tions, and tests sensitivity all at once while treating sensitivity as a linear function

of sojourn time in the preclinical state at the time of screening. The de-convolution

procedure consists also of a smoothing method to produce a continuous incidence
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rate function.

Indeed, the lead time has been used by many studies as a performance measure

to evaluate screening programs. Though it reflects the potential for better disease

prognosis, for a total assessment of a screening program, one is more concerned with

the program’s benefit time. The benefit time is defined to be the additional time

of survival a person gets as a result of early disease detection and treatment, and it

should be measured relative to the situation in which the case is found and treated

as a clinical incidence. To evaluate a screening program by its benefit time, a long

follow-up period is required to generate the needed data. Ideally, data collection

should last until all samples in the population die out.

Kafadar and Prorok (1994) develop a statistical model to simultaneously es-

timate the average lead time and benefit time of a screening program. The study

adopts the stable disease model of Zelen and Feinleib (1969), and estimation is done

by relating the screened and control populations’ survival time distributions while

having average lead time and benefit time treated as unknown constants. For each

population, two distributions are considered that measure the survival times from

the start of screening program and start of case treatments respectively. Quite many

simplifications are made in Kafadar and Prorok (1994), such as perfect screening

sensitivity, no competing death risks, and the independence of the survival distribu-

tion with respect to sojourns times in the healthy and preclinical states. Due to the

lack of data from existing screening trials, the authors use simulation to evaluate the

quality of the estimators.

Based on the same model, Kafadar et al. (1998) examine the variances of the

two derived estimators. Later in Kafadar and Prorok (2003), various methods of

categorizing the screening trial data are studied with the goal of minimizing biasness

in estimation. Then in Kafadar and Prorok (2009), the effects of length-biased
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sampling, i.e. the tendency of a screening to pick up samples with longer preclinical

sojourn times, towards final estimation is investigated.

In addition to all the statistical models developed that evaluate screening

programs, another type of model can be formulated that takes in the various char-

acteristics of the system, such as sojourn time distributions and test sensitivities,

as known inputs and generates an optimal schedule of screening. As we discussed,

such model inputs are often by themselves the products of those screening program

evaluation models, in which case the schedule of screening is treated as fixed and

known.

To this end of optimal screening policy models, Zelen (1993) presents a pi-

oneering model to place any given number of screening epochs over a population’s

lifetime, such that the probability of detecting the disease while preclinical is max-

imized. He adopts his earlier stable disease model, and solves the optimization

problem by considering the first-order conditions. The main result of this work is

the proof that the optimal solution has an equally-spaced structure if and only if the

test sensitivity is one.

Another significant stream of models are due to Parmigiani and Kamlet (1993)

and Parmigiani (1993, 1997). These models are all concerned with the overall cost-

effectiveness of a screening program and seek the best screening schedule for it.

In Parmigiani and Kamlet (1993), the general disease progression model with

competing death risks is first considered. Screening costs are assumed fixed for

each exam and are considered also for the populations that die in any state due to

competing risks. Treatment costs are treated alongside the Quality-Adjusted-Life-

Years (QALY) as functions depending on sojourn times in the healthy and preclinical

states. The model considers a baseline screening schedule and compares the marginal

expected cost against the marginal expected QALY for several proposed screening
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schedules.

Parmigiani (1993) presents a general optimization model to minimize the

overall screening program cost. In the particular case of perfect screening, the author

derives conditions on the input cost functions such that the optimal screening policy

consists either of zero or of infinite number of screenings. In the latter situation,

additional conditions are found to ensure a recursive algorithm to find the optimum.

Indeed, this approach is reminiscent to a classical work in system reliability literature

due to Barlow et al. (1963). Based on first-order optimality conditions, a set of

equations are derived that can generate the screening schedule sequentially once the

first epoch is fixed. In implementation, if either this first screening time is fixed

before or after the optimum, particular faulty patterns will arise in the downstream

schedule calculated. As such, a binary-search algorithm is in place to find the optimal

schedule.

Then in Parmigiani (1997), the author takes a detour approach and approxi-

mates screening schedules by continuous intensity functions. The objective function

remains at minimizing total costs and is also approximated. The optimal solution is

searched from the space of intensity functions, and needs ultimately to be converted

back into a discrete screening schedule. Optimality conditions are studied for this

model.

Later, Lee and Zelen (1998) consider an alternative screening scheme based

on their non-stable disease model. Under this scheme, screening times are placed

in such a way that the prevalence of preclinical samples in the population is always

bounded by a pre-specified upper threshold level. The prevalence function, which

is unobservable, is derived based on assumed sojourn time distributions and test

sensitivity. Once the schedule is derived by the scheme policy, its performance is

measured by the overall probability of preclinical disease detection.
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Parmigiani et al. (2002) study the optimal placement of a single screening

time. Two objective functions are considered, which include the probability of screen-

ing detection and the expected life length for the disease-affected population. De-

pendent sojourn times are considered for the disease-free and preclinical states, and

fallible tests were treated whose specificity depends on the sojourn times. The first-

order conditions for optimality is derived. In a case study conducted on colorectal

cancer, the authors obtain optimal solution by arbitrarily plotting out the objective

function.

Ahern et al. (2011) consider two frameworks for an optimal screening policy.

First, the policy is restricted to be equally spaced, and the authors seek the optimal

number of planned screenings that minimizes the weighted cost between the number

of screenings and the probability of screening detection. A sufficient condition for

a unique optimum is derived, and the authors argue that the practical parameters

for breast cancer will easily satisfy this condition. Secondly, the authors consider

the optimal placement of any given number of screenings and prove the existence

of optimal solution for this framework. Throughout the work the authors treat

the disease-free duration with piece-wise linear densities, assuming an exponential

distribution for the preclinical time, and consider independent and fallible screening

tests.

11



3. OPTIMAL SCREENING POLICY MODEL FORMULATION

We adopt the natural history model of Parmigiani et al. (2002) as the frame-

work for our decision making. As shown in Figure 3.1, we consider five states for

the disease under screening. These are the “healthy”, “preclinical” and “clinical”

states as well as two “dead” states which correspond, respectively, to cases due to

the disease and to competing risks. Transitions can occur as an individual progresses

from healthy to preclinical, from preclinical to clinical, and from clinical to dead as

a result of the disease; meanwhile, it is possible for one to die of other causes while

s/he is in any state up to clinical.

Figure 3.1: Disease Natural History Model

Our optimal screening policy model aims at finding the screening schedule

that produces the maximal probability of preclinical disease detection. We model

budget in terms of the total number of screenings allowed in a person’s lifetime and

in practice this can be easily converted to a dollar value. In our model, we confine

our attention to samples that will develop clinical symptoms (before dying of a

competing risk) if not screened. We acknowledge that in practice screening costs are

also incurred for those who die without the disease and are thus actually irrelevant to
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the screening program. We will discuss such implications of program-wide screening

costs in our numerical analysis chapter.

Therefore, we assume that an individual will, with probability one, transit

over three states: healthy, preclinical, and clinical. Let random variables X0 and X1

be the sojourn times, respectively, in the healthy and the preclinical states, and let f

and g be the p.d.f.’s for X0 and X1. Figure 3.2 shows the simple disease progression

model that we consider. Note that all individuals will eventually be “diagnosed”,

either by a screening, or due to clinical symptoms.

Figure 3.2: Scope of Our Optimal Screening Policy Model

We make the following assumptions:

• f is a log-concave function over (a, b) for 0 ≤ a < b ≤ ∞,

• g is independent of f and is supported over (0,∞),

• all screenings are independent and have sensitivity β.

The class of log-concave density functions include a broad range of models

such as all uniform, exponential and normal distributions as well as all Weibull

and Gamma densities with shape parameter greater than one. Many interesting

properties can be found in this class of functions (see Barlow et al. (1963)). In

particular, all log-concave densities have increasing failure rates.
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The other two assumptions are mild and can be found in many other studies

(e.g. Day and Walter (1984), Zelen (1993), Lee and Zelen (1998), Shen and Zelen

(1999), Ahern et al. (2011)).

Now, let D ⊂ Rn := {(τ1, τ2, ..., τn) | 0 < τ1 < τ2 < ... < τn < b} be the set of

all possible screening policies. Note that for each fixed policy, an individual will be

missed detection either if his/her preclinical period covers no screening epoch on the

schedule (see Figure 3.3); or, all the screening(s) performed during the preclinical pe-

riod fail to report the truth. All other scenarios correspond to the event of successful

detection. Figure 3.4 presents a few scenarios of possible successful detections. Note

a detection only happens if at least one of the screenings during X1 was accurate.

Figure 3.3: Examples of Missed Detections

We, therefore, derive our objective function as follows:

14



Figure 3.4: Examples of Potential Successful Detections

Proposition 1 The objective function

P (τ ) = Pr({Preclinical Detection})

= 1−
n∑
i=0

n∑
j=i

βj−i
∫ τi+1

τi

[G(τj+1 − u)−G(τj − u)]f(u)du,

where τ0 = 0 and τn+1 = ∞, β is the false-negative rate for screenings, and where

F/f and G/gare the distribution and density functions for the random sojourn times

X0 and X1, respectively, of an individual in the healthy and preclinical states.

Proof:

We have

P (τ ) := Pr({Preclinical Detection}) = 1− Pr({Missed Detection})

= 1−
n∑
i=0

n∑
j=i

Pr
(
X0 ∈ (τi, τi+1), X0 +X1 ∈ (τj, τj+1),Missed Detection

)
= 1−

n∑
i=0

n∑
j=i

∫ τi+1

τi

Pr
(
X0 ∈ (τi, τi+1), X0 +X1 ∈ (τj, τj+1),

Missed Detection | X0 = u
)
f(u)du

= 1−
n∑
i=0

n∑
j=i

∫ τi+1

τi

Pr
(
X1 ∈ (τj − u ∨ 0, τj+1 − u),

Missed Detection | X0 = u
)
f(u)du

= 1−
n∑
i=0

n∑
j=i

∫ τi+1

τi

βj−i · [G(τj+1 − u)−G(τj − u)]f(u)du

15



[by independence and the number of screenings while in preclinical state]

Note the above expression is regardless of b.

�
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4. MODEL SOLUTION FOR PERFECT SCREENING CASE

We first consider the partial derivatives of the objective function.

Proposition 2 For each k ∈ {1, 2, · · · , n},

∂

∂τk
P (τ ) =(1− β)

{
f(τk)

[
(1− β)

n−k∑
j=1

βj−1G(τk+j − τk) + βn−k
]

−
k−2∑
i=0

βk−i−1

∫ τi+1

τi

g(τk − u)f(u)du−
∫ τk

τk−1

g(τk − u)f(u)du

}
.

Proof:

For each k ∈ {1, 2, · · · , n} and τ ∈ D, it holds that:

∂

∂τk
P (τ ) =− ∂

∂τk

{
k−2∑
i=0

∫ τi+1

τi

βk−i−1[G(τk − u)−G(τk−1 − u)]f(u)du

+
k−2∑
i=0

∫ τi+1

τi

βk−i[G(τk+1 − u)−G(τk − u)]f(u)du

+
n∑

j=k−1

∫ τk

τk−1

βj−k+1[G(τj+1 − u)−G(τj − u)]f(u)du

+
n∑
j=k

∫ τk+1

τk

βj−k[G(τj+1 − u)−G(τj − u)]f(u)du

}

=− ∂

∂τk

{
(1− β)

k−2∑
i=0

βk−i−1

∫ τi+1

τi

G(τk − u)f(u)du

+ (1− β)
n−k∑
j=0

βj
∫ τk

τk−1

G(τk+j − u)f(u)du

+ (1− β)
n−k∑
j=1

βj−1

∫ τk+1

τk

G(τk+j − u)f(u)du

− (1− β)βn−kF (τk)

}

17



=− (1− β)

{
k−2∑
i=0

βk−i−1

∫ τi+1

τi

g(τk − u)f(u)du

− (1− β)
n−k∑
j=1

βj−1G(τk+j − τk)f(τk)

+

∫ τk

τk−1

g(τk − u)f(u)du− βn−kf(τk)

}

=(1− β)

{
f(τk)

[
(1− β)

n−k∑
j=1

βj−1G(τk+j − τk) + βn−k
]

−
k−2∑
i=0

βk−i−1

∫ τi+1

τi

g(τk − u)f(u)du−
∫ τk

τk−1

g(τk − u)f(u)du

}

�

Our main result is the following.

Theorem 1 If screenings are perfectly sensitive (i.e. β = 0), then there exists a

unique optimal policy σ = {σ1, σ2, · · · , σn}, which is characterized by the following

criterion:



(1)
∫ σ1−σ0

0
f(σ1−s)
f(σ1)

g(s)ds = G(σ2 − σ1)

...
...

(i)
∫ σi−σi−1

0
f(σi−s)
f(σi)

g(s)ds = G(σi+1 − σi)
...

...

(n)
∫ σn−σn−1

0
f(σn−s)
f(σn)

g(s)ds

 =

≤

1 (if σn < b)

1 (if σn = b).

18



Proof:

If β = 0, the partial derivative for each τk is:

∂

∂τk
P (τ ) = f(τk)G(τk+1 − τk)−

∫ τk

τk−1

g(τk − u)f(u)du

= f(τk)
[
G(τk+1 − τk)−

∫ τk−τk−1

0

f(τk − s)
f(τk)

g(s)ds
]
.

Now notice that for τk over interval (τk−1, τk+1), G(τk+1−τk) strictly decreases

from G(τk+1−τk−1) to 0, and the term
∫ τk−τk−1

0
f(τk−s)
f(τk)

g(s)ds strictly increases from 0

to
∫ τk+1−τk−1

0

f(τk+1−s)
f(τk+1)

g(s)ds. The latter monotonicity holds because for any s ∈ (0, b),

f(τ−s)
f(τ)

is non-decreasing in τ if f is logconcave (see Barlow et al. (1963)). As a result,

for τk−1 < τk < τ ′k < τk+1, we have:

∫ τk−τk−1

0

f(τk − s)
f(τk)

g(s)ds ≤
∫ τk−τk−1

0

f(τ ′k − s)
f(τ ′k)

g(s)ds

<

∫ τk−τk−1

0

f(τ ′k − s)
f(τ ′k)

g(s)ds+

∫ τ ′k−τk−1

τk−τk−1

f(τ ′k − s)
f(τ ′k)

g(s)ds

=

∫ τ ′k−τk−1

0

f(τ ′k − s)
f(τ ′k)

g(s)ds.

Meanwhile, notice f(τk) is positive and continuous over (τk−1, τk+1).

Therefore, we know from the partials that for any chosen policy τ ∈ D, as we

vary each τk, the objective function will always turn from increasing to decreasing

over (τk−1, τk+1), with the only exception that it could possibly never decrease in

τn. As such, the optimal solution must have at least n − 1 zero partials, hence our

criterion.

To show uniqueness, suppose two different solutions τ and ψ both satisfy the

optimal criterion. Let i = min{k : τk 6= ψk} be the first element where the two

19



solutions differ, and without loss of generality, assume τi < ψi. We have:



(i)
∫ τi−τi−1

0
f(τi−s)
f(τi)

g(s)ds = G(τi+1 − τi)
...

...

(n− 1)
∫ τn−1−τn−2

0
f(τn−1−s)
f(τn−1)

g(s)ds = G(τn − τn−1)

(n)
∫ τn−τn−1

0
f(τn−s)
f(τn)

g(s)ds

 =

≤

1 (if τn < b)

1 (if τn = b),

and



(i)′
∫ ψi−ψi−1

0
f(ψi−s)
f(ψi)

g(s)ds = G(ψi+1 − ψi)
...

...

(n− 1)′
∫ ψn−1−ψn−2

0
f(ψn−1−s)
f(ψn−1)

g(s)ds = G(ψn − ψn−1)

(n)′
∫ ψn−ψn−1

0
f(ψn−s)
f(ψn)

g(s)ds

 =

≤

1 (if ψn < b)

1 (if ψn = b).

Now, sequentially for each k ∈ {i, · · · , n− 1}, it follows that:

(k)⇔ τk+1 − τk = G−1
(∫ τk−τk−1

0

f(τk − s)
f(τk)

g(s)ds
)

< G−1
(∫ ψk−ψk−1

0

f(ψk − s)
f(ψk)

g(s)ds
)

= ψk+1 − ψi ⇔ (k)′,

which gives τk+1 − τk < ψk+1 − ψk and τk+1 < ψk+1.

Therefore, we have τn − τn−1 < ψn − ψn−1 and τn < ψn. But this is a

contradiction, as:

(n)⇔ 1 =

∫ τn−τn−1

0

f(τn − s)
f(τn)

g(s)ds <

∫ ψn−ψn−1

0

f(ψn − s)
f(ψn)

g(s)ds ≤ 1⇔ (n)′.

As a result, a unique solution satisfies the optimality criterion.

�
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In fact, for the general case where β > 0, note that:

∂

∂τk
P (τ ) =(1− β)

{
f(τk)

[
(1− β)

n−k∑
j=1

βj−1G(τk+j − τk) + βn−k
]

−
k−2∑
i=0

βk−i−1

∫ τi+1

τi

g(τk − u)f(u)du−
∫ τk

τk−1

g(τk − u)f(u)du

}

=(1− β)f(τk)

{[
(1− β)

n−k∑
j=1

βj−1G(τk+j − τk) + βn−k
]

−
∫ τk−τk−1

0

f(τk − s)
f(τk)

g(s)ds

}
− (1− β)

k−2∑
i=0

βk−i−1

∫ τi+1

τi

g(τk − u)f(u)du,

where the expression in

{}
is strictly decreasing in τk from a positive quantity near

τk−1. However, to guarantee uniqueness of optimal solution, more assumptions are

required about densities f and g in order to leverage the last term.

In the following contents in this chapter, unless otherwise specified we assume

that β = 0.

Now, notice that for any arbitrary τ1 we may specify, the optimality criterion

nicely allows us to calculate {τ2, τ3, · · · , τn} sequentially through its first n− 1 equa-

tions. And finally, the last condition is used to check for optimality of the solution

generated. Consider the following algorithm.

Binary First Epoch Search Algorithm (BFESA)

Step 0: Let L = 0. If b <∞, let U = b; otherwise, let U be a number big enough to

contain σ1, e.g. U = 2F−1( 1
n
). Let ε be an arbitrary small number.

Step 1: Set τ1 = L+U
2

.
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Step 2: For each k ∈ {2, · · · , n}, calculate τk = τk−1+G−1
( ∫ τk−1−τk−2

0

f(τk−1−s)
f(τk−1)

g(s)ds
)

.

Step 3: If
∫ τk−1−τk−2

0

f(τk−1−s)
f(τk−1)

g(s)ds > 1 for any k ∈ {2, · · · , n}, or if τk ≥ b for any

k ∈ {2, · · · , n − 1} or τn > b, or if
∫ τn−τn−1

0
f(τn−s)
f(τn)

g(s)ds > 1 + ε, then set

U = τ1 and return to Step 1. Otherwise, if
∫ τn−τn−1

0
f(τn−s)
f(τn)

g(s)ds < 1 − ε,

then set L = τ1 and return to Step 1.

Step 4: The algorithm stops and the screening policy {τ1, τ2, · · · , τn} is reported.

We prove that the BFESA finds the optimal solution.

Theorem 2 The BFESA converges to the optimal solution.

Proof:

We first prove that either τ1 is chosen to be too large or too small, there will

be one distinctive signal throughout calculating τ2 through τn to report this.

Specifically, if τ1 > σ1, we have:

τ2 − τ1 = G−1
(∫ τ1

0

f(τ1 − s)
f(τ1)

g(s)ds
)
> G−1

(∫ σ1

0

f(σ1 − s)
f(σ1)

g(s)ds
)

= σ2 − σ1.

Note it is possible to have
∫ τ1

0
f(τ1−s)
f(τ1)

g(s)ds > 1, or that τ2 ≥ b. In either case,

we obtain a signal that our chosen τ1 is larger than σ1.

If τ2 < b, we get τ2 − τ1 > σ2 − σ1 and τ2 > σ2, and we proceed to equation

(2). Now as each equation (k) is applied where k ∈ {2, · · · , n− 1}, we have:

τk+1 − τk = G−1
(∫ τk−τk−1

0

f(τk − s)
f(τk)

g(s)ds
)

> G−1
(∫ σk−σk−1

0

f(σk − s)
f(σk)

g(s)ds
)

= σk+1 − σk,

under which it is possible that
∫ τk−τk−1

0
f(τk−s)
f(τk)

g(s)ds > 1 or τk+1 ≥ b, i.e. signals for
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τ1 > σ1. If not, we get τk+1 − τk > σk+1 − σk and τk+1 > σk.

Now assume we have sequentially applied equations (1) through (n − 1) to

find such {τ2, · · · , τn} thatτk − τk−1 > σk − σk−1 and τk > σk for all k ∈ {2, · · · , n}.

Assume also that τn ≤ b. But from equation (n), we have:

∫ τn−τn−1

0

f(τn − s)
f(τn)

g(s)ds >

∫ σn−σn−1

0

f(σn − s)
f(σn)

g(s)ds = 1,

which again indicates τ1 to be too large.

On the other hand, if τ1 < σ1, then by applying equations (1) through (n−1)

we will obtain such {τ2, · · · , τn} that τk − τk−1 < σk − σk−1 and τk < σk for all

k ∈ {2, · · · , n}. But in this case, equation (n) will give:

∫ τn−τn−1

0

f(τn − s)
f(τn)

g(s)ds <

∫ σn−σn−1

0

f(σn − s)
f(σn)

g(s)ds = 1,

a signal that τ1 < σ1.

In each iteration, notice the BFESA collects a signal and responds accordingly

to cut off half of the search region for σ1. It therefore converges to the optimal

solution.

�

We next devote some effort to study the structure of the optimal screening

policy. We have the following important result.

Theorem 3 For each τ1 ∈ (0, b), there exists a unique τ ∗(τ1) = {τ ∗2 (τ1), τ ∗3 (τ1), · · · , τ ∗n(τ1)}

that maximizes P (τ1, ·). Further, τ ∗ behaves in such a way that each of its elements

τ ∗k is strictly increasing and concave in τ1 (with the only exception that τ ∗n could

remain constant once it reaches b).
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Proof:

For fixed τ1 ∈ (0, b) and each k ∈ {2, · · · , n}, note the partial derivative of

P (τ ) with respect to τk can be treated as follows:

∂

∂τk
P (τ ) =f(τk)

[
G(τk+1 − τk)−

∫ τk−τk−1

0

f(τk − s)
f(τk)

g(s)ds
]

=[1− F (τ1)]
f(τk)

1− F (τ1)

[
G(τk+1 − τk)−

∫ τk−τk−1

0

f(τk−s)
1−F (τ1)

f(τk)
1−F (τ1)

g(s)ds
]

=[1− F (τ1)]f τ1(τk)
[
G(τk+1 − τk)−

∫ τk−τk−1

0

f τ1(τk − s)
f τ1(τk)

g(s)ds
]
,

where we define

f τ1(s) :=
f(s)

1− F (τ1)
for s ∈ (τ1, b)

to be the conditional p.d.f. for random variable X0 given that it is greater than τ1.

As the logarithm of f is concave, it is necessary that f τ1 , which is f by a

scalar, is log-concave also. Therefore, we may view the n− 1 partials as a full set of

derivatives for the problem of n − 1 screenings, which has f τ1 as the p.d.f. for X0

and is scaled by a positive constant. Thus, by Theorem 1 there is a unique policy

{τ ∗2 (τ1), τ ∗3 (τ1), · · · , τ ∗n(τ1)} to maximize P (τ ).

To show monotonicity and concavity of each τ ∗k with respect to τ1, we pick

0 < τ1 < τ ′1 < b, and let τ = {τ1, τ2, · · · , τn} and τ ′ = {τ ′1, τ ′2, · · · , τ ′n} be the

policies to maximize P (τ1, ·) and P (τ ′1, ·) respectively. Also, let ∆k = τk+1 − τk and

∆′k = τ ′k+1 − τ ′k for each k ∈ {1, · · · , n− 1}.

We want to show that: (a) ∆′k < ∆k for each k ∈ {1, · · · , n − 1}, and (b)

τ ′k > τk for each k ∈ {2, · · · , n} (except for possibly τn = τ ′n = b). Notice if (a) holds,

then we will have τ ′k−τk = (τ ′1 +
∑k−1

j=1 ∆′j)− (τ1 +
∑k−1

j=1 ∆j) = (τ ′1−τ1)+
∑k−1

j=1(∆′j−
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∆j) < τ ′1− τ1 for each k ∈ {2, · · · , n}. As a result, each τ ∗k is increasing and concave

in τ1, and the theorem is thus proven.

By the optimality criterion from Theorem 1, we have the following:



(2)
∫ τ2−τ1

0
f(τ2−s)
f(τ2)

g(s)ds = G(τ3 − τ2)

...
...

(i)
∫ τi−τi−1

0
f(τi−s)
f(τi)

g(s)ds = G(τi+1 − τi)
...

...

(n)
∫ τn−τn−1

0
f(τn−s)
f(τn)

g(s)ds

 =

≤

1 (if τn < b)

1 (if τn = b)



(2)′
∫ τ ′2−τ ′1

0

f(τ ′2−s)
f(τ ′2)

g(s)ds = G(τ ′3 − τ ′2)

...
...

(i)′
∫ τ ′i−τ ′i−1

0

f(τ ′i−s)
f(τ ′i)

g(s)ds = G(τ ′i+1 − τ ′i)
...

...

(n)′
∫ τ ′n−τ ′n−1

0
f(τ ′n−s)
f(τ ′n)

g(s)ds

 =

≤

1 (if τ ′n < b)

1 (if τ ′n = b)

We shall prove our claims in the order of ∆′1 < ∆1, τ ′2 > τ2, ∆′2 < ∆2, · · · ,

∆′n−1 < ∆n−1, and b ≥ τ ′n ≥ τn. Consider the following algorithmic arguments:

For claim (a): suppose we have proven up to some k ∈ {1, · · · , n − 1} that

τ ′j > τj ∀j ∈ {1, · · · , k} and ∆′j < ∆j ∀j ∈ {1, · · · , k − 1}. We want to show

∆′k < ∆k.

Assume the claim is NOT true, i.e. ∆′k ≥ ∆k. Let i = k, then:

(*) By assumption, it holds that ∆′i ≥ ∆i and τ ′i+1 > τi+1.
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If now i = n− 1, we will have:

(n)⇔ 1 =

∫ ∆n−1

0

f(τn − s)
f(τn)

g(s)ds <

∫ ∆′n−1

0

f(τ ′n − s)
f(τ ′n)

g(s)ds ≤ 1⇔ (n)′,

which is a contradiction.

Otherwise, we have:

(i+ 1)⇔ τi+2 − τi+1 = G−1
(∫ ∆i

0

f(τi+1 − s)
f(τi+1)

g(s)ds
)

< G−1
(∫ ∆′i

0

f(τ ′i+1 − s)
f(τ ′i+1)

g(s)ds
)

= τ ′i+2 − τ ′i+1 ⇔ (i+ 1)′,

which is ∆′i+1 > ∆i+1.

Now let i := i+ 1, and go back to step (*). The same arguments will then go

through iteratively until i reaches n− 1, at which point we get a contradiction and

conclude that ∆′k < ∆k.

For claim (b): suppose we have proven up to some k ∈ {1, · · · , n − 1} that

τ ′j > τj and ∆′j < ∆j ∀j ∈ {1, · · · , k}. We want to show τ ′k+1 > τk+1 if k < n− 1, or

that b ≥ τ ′n ≥ τn if k = n− 1.

Again assume the claim is NOT true, i.e. τ ′k+1 ≤ τk+1 if k < n− 1 or τ ′n < τn

if k = n− 1. Let i = k, then:

(*) By assumption, it holds that ∆′i < ∆i and τ ′i+1 ≤ τi+1.

If i = n− 1, then we have:

(n)⇔ 1 ≥
∫ ∆n−1

0

f(τn − s)
f(τn)

g(s)ds >

∫ ∆′n−1

0

f(τ ′n − s)
f(τ ′n)

g(s)ds = 1⇔ (n)′,

which is a contradiction.
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Otherwise, we have:

(i+ 1)⇔ τi+2 − τi+1 = G−1
(∫ ∆i

0

f(τi+1 − s)
f(τi+1)

g(s)ds
)

> G−1
(∫ ∆′i

0

f(τ ′i+1 − s)
f(τ ′i+1)

g(s)ds
)

= τ ′i+2 − τ ′i+1 ⇔ (i+ 1)′,

which is ∆′i+1 < ∆i+1.

Now let i := i+ 1, and go back to step (*). The same arguments will then go

through iteratively until i reaches n− 1, at which point we get a contradiction and

conclude that τ ′k+1 > τk+1.

�

We have the following corollary.

Corollary 1 Given event {X0 > σ1}, the policy {σ2, σ3, · · · , σn} is the optimal

solution to the (n− 1)-screening problem.

Proof: Clear from proof to Theorem 3.

�

Practically, Theorem 3 is helpful for people who enter the screening program

late. Indeed, provided a delayed first screening time, we now know that all the

subsequent screenings shall be postponed for better probability of detection. On the

other hand, Corollary 1 verifies that the optimal screening policy is self-consistent.

We have an additional result on the locations of the optimal screening epochs

with respect to the optimal policy from the previous budget level.
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Theorem 4 Let φ = {φ1, φ2, · · · , φn−1} denote the optimal policy for the (n − 1)-

screening problem. Define also that φ0 = 0 and φn = b. Then the optimal n-screening

policy σ is such that all its n screening epochs lie in the intervals created by φ, i.e.

σk ∈ (φk−1, φk) for k ∈ {1, · · · , n− 1}, and φn−1 ≤ σn ≤ φn.

Proof:

To show σk > φk−1 for each k ∈ {1, · · · , n− 1} and σn ≥ φn−1, we may treat

φ as the policy to optimize an n-screening problem, given that the first screening

epoch is at time 0. Since σ1 > φ0, the inequalities follow by Theorem 3.

And to show σk < φk for each k ∈ {1, · · · , n− 1}, notice σ is such that:



(1)
∫ σ1−σ0

0
f(σ1−s)
f(σ1)

g(s)ds = G(σ2 − σ1)

...
...

(i)
∫ σi−σi−1

0
f(σi−s)
f(σi)

g(s)ds = G(σi+1 − σi)
...

...

(n)
∫ σn−σn−1

0
f(σn−s)
f(σn)

g(s)ds

 =

≤

1 (if σn < b)

1 (if σn = b)

And φ is such that:



(1)′
∫ φ1−φ0

0
f(φ1−s)
f(φ1)

g(s)ds = G(φ2 − φ1)

...
...

(i)′
∫ φi−φi−1

0
f(φi−s)
f(φi)

g(s)ds = G(φi+1 − φi)
...

...

(n− 1)′
∫ φn−1−φn−2

0
f(φn−1−s)
f(φn−1)

g(s)ds

 =

≤

1 (if φn−1 < b)

1 (if φn−1 = b)

Recall our proof to Theorem 1. If σ1 ≥ φ1, then for each i ∈ {1, · · · , n− 2},
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we have σi+1 − σi ≥ φi+1 − φi and σi+1 ≥ φi+1. Further, it holds that:

G(σn−σn−1) =

∫ σn−1−σn−2

0

f(σn−1 − s)
f(σn−1)

g(s)ds ≥
∫ φn−1−φn−2

0

f(φn−1 − s)
f(φn−1)

g(s)ds = 1,

therefore, necessarily σn =∞. But now, check that:

lim
σn→∞

∫ σn−σn−1

0

f(σn − s)
f(σn)

g(s)ds >

∫ σn−1−σn−2

0

f(σn−1 − s)
f(σn−1)

g(s)ds = 1,

which is a contradiction by (n) in the optimality criterion. As a result, we have

σ1 < φ1.

Consequently, again by applying the first n − 1 equations in the optimality

criterion, we obtain σi < φi for all i ∈ {1, · · · , n− 1}.

�

Next, we investigate some models with more specific assumptions. In the

class of logconcave densities, note that the uniform and the exponential models

respectively have a constant and a linear logarithm which are special cases of concave

functions. We have the following result for the case of uniform disease-free duration.

Proposition 3 If X0 ∼ Unif(0, b) for some b > 0, then the optimal screening policy

is equally spaced, i.e., σ = { b
n
, 2b
n
, · · · , (n−1)b

n
, b}, if and only if β = 0.

Proof:

When X0 ∼ Unif(0, b) and β = 0, for each k ∈ {1, 2 · · · , n}, we have:

G(σk+1 − σk) =

∫ σk−σk−1

0

f(σk − s)
f(σk)

g(s)ds

=

∫ σk−σk−1

0

g(s)ds [f =
1

b
]

= G(σk − σk−1).
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Therefore σk − σk−1 = b
n

for all k ∈ {1, 2, · · · , n}.

Conversely, if β > 0, assume that τ = { b
n
, 2b
n
, · · · , (n−1)b

n
, b} is the optimal

policy. We have:

∂

∂τ1

P (τ ) =(1− β)

{
f(τ1)

[
(1− β)

n−1∑
j=1

βj−1G(τ1+j − τ1) + βn−1
]
−
∫ τ1

0

g(τ1 − u)f(u)du

}

=
1− β
b

[
(1− β)

n−1∑
j=1

βj−1G(τ1+j − τ1) + βn−1 −G(τ1)
]

=
1− β
b

[
(1− β)

n−1∑
j=1

βj−1G(
jb

n
) + βn−1 −G(

b

n
)
]

=
1− β
b

{
n−2∑
j=1

βj
[
G
((j + 1)b

n

)
−G(

jb

n
)
]

+ βn−1
[
1−G

((n− 1)b

n

)]}
> 0,

which is a contradiction to the assumption that τ is optimal.

�

Notice, however, that in the single-screening case where:

d

dτ
P (τ) =(1− β)

[
f(τ)−

∫ τ

0

g(τ − u)f(u)du
]

=
1− β
b

[1−G(τ)] > 0 ∀τ ∈ (0, b),

the optimal policy is to wait until time b to screen, regardless of β.

We have yet another interesting result about the structure of optimal policy

for the case of exponential X0 with perfect screenings.

30



Proposition 4 If X0 ∼ Exp(λ) for some λ > 0, and β = 0, then the optimal policy

σ is such that σi+1− σi > σi− σi−1 ∀i ∈ {1, · · · , n− 1}, i.e., the screening interval

gets wider as the person gets older.

Proof:

When X0 ∼ Exp(λ) and β = 0, for each k ∈ {1, 2 · · · , n}, we have:

G(σk+1 − σk) =

∫ σk−σk−1

0

f(σk − s)
f(σk)

g(s)ds

=

∫ σk−σk−1

0

e−λ(σk−s)

e−λσk
g(s)ds

=

∫ σk−σk−1

0

eλsg(s)ds

>

∫ σk−σk−1

0

g(s)ds [eλs > 1 ∀s > 0]

= G(σk − σk−1).

�

We hereby highlight that in the literature, Barlow et al. (1963) and Yang

and Klutke (2000) have shown for various inspection problems with an exponential

system lifetime that the optimal schedules have equal intervals. However, with the

additional preclinical state in our model, and with our particular objective to capture

the disease while in that state, the structure of the optimal solution is different.

Lastly, on the sideline, we prove that all logconcave densities are bounded.

Proposition 5 If f is logconcave over (0, b), where b ≤ ∞, then it is bounded.

Proof:

Since f is continuous, it suffices to show lim
x→0

f(x) and lim
x→b

f(x) are finite. We

will prove for the end of x→ b and the other side will follow in the same way.
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As logf is concave, (logf)′ decreases over (0, b). There are then two possibil-

ities:

One, there is some x∗ ∈ (0, b) for which (logf)′(x) ≤ 0 ∀x ∈ [x∗, b). In this

case, logf decreases over [x∗, b), and so does f = elogf . As f > 0, lim
x→b

f(x) must be

finite.

Otherwise, if lim
x→b

(logf)′(x) ≥ 0, let x∗ := b
2
. It then holds that (logf)′(x∗) ≥

(logf)′(x) ∀x ∈ [x∗, b), and so logf(x) ≤ logf(x∗) + (x−x∗)(logf)′(x∗) ≤ logf(x∗) +

b
2
(logf)′(x∗), which is a constant. As a result, f = elogf is bounded over [ b

2
, b) and

lim
x→b

f(x) is finite.

�
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5. SENSITIVITY ANALYSIS

In the previous chapter we have shown that a unique optimal solution exists

for our preclinical disease screening model once the screening sensitivity and the

distribution functions for the healthy and the preclinical durations are specified. In

this chapter, we investigate the effects of changing these model inputs on the optimal

screening policy and its performance.

We solve all our optimization instances by Matlab’s “constrained optimiza-

tion” (fmincon) routine. Indeed, the only constraints involved are those that ensure

the increasing order of screening epochs.

5.1 Effect of Screening Sensitivity

We have proven in Proposition 3 that if the healthy duration X0 follows a uni-

form distribution and if screening sensitivity is one, then the optimal screening policy

is equally spaced. Our first investigation is then the effect of screening sensitivity on

a uniform X0 model.

We assume X0 follows a uniform distribution with a range of 24 years. One

could interpret this with arbitrary starting and ending ages, e.g. from 40 to 64, or

from 50 to 74 years old. In all our numerical results to follow, we assume all X0

densities start at age 40. On the other hand, we assume that the preclinical duration

X1 has an exponential distribution with mean of 3 years. We consider the screening

budget to be from 1 to 24 times in a person’s lifetime. The 24-screening scenario

corresponds to holding an average of one screening per year over the support of X0.

We consider four false-negative rates of screening (β-errors), namely, 0, 0.4,

0.8, and 0.99. The computation time for a typical case across all 24 budget levels is

about 10 seconds on a computer with Intel(R) Core(TM)2 Duo CPUs each running
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at 3.16GHz and with 4.00G RAM.

Figure 5.1 shows the performances of both optimal and equal-interval policies

across budget levels.

Figure 5.1: Effect of β-error on Policy Performances - Uniform X0 Model

As expected, the performance of optimal screening policies decreases as β-

error increases. Meanwhile, Figure 5.1 shows that even with 99% false-negative

screenings, there is no distinctive difference between optimal and equal-interval poli-

cies’ performances.

We then take a closer look at the change of optimal policy itself as we vary β.

In Figure 5.2 we plot the optimal policies for the 12-screening scenario over various

levels of β-error.
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Figure 5.2: Effect of β-error on Optimal Policy Structure - Uniform X0 Model

As shown, as β-error increases, the screening epochs appear postponed in the

optimal policy.

We next investigate the effect of β-error for another model in which there

exists considerable difference between the optimal and equal-interval policies’ per-

formances. We assume that both X0 and X1 follow gamma distributions, with respec-

tive means of 12 and 3 years, and respective variances of 16 and 3. We experiment

with three levels of β-error respectively at 0.2, 0.6, and 0.9. Figure 5.3 plots the

performances of both optimal and equal-interval policies across β-error levels.
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Figure 5.3: Effect of β-error on Policy Performances - Gamma X0 Model

As depicted, by increasing β there is no significant change on the difference

between optimal and equal-interval policies’ performances. This result is consistent

with that of the uniform X0 model.

We further plot the structure of optimal policies for the 12-screening case:
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Figure 5.4: Effect of β-error on Optimal Policy Structure - Gamma X0 Model

As shown in Figure 5.4, as β-error increases the optimal screening epochs tend

to tighten up as opposed to getting postponed as in the uniform X0 case.

5.2 Effect of X0 Distribution

We next consider two alternative log-concave models for X0, namely, the

gamma model and the 2-parameter Weibull model each with shape parameter no

less than one. Since both models comprise two parameters, we may match their first

two moments to that of the uniform distribution we considered in the earlier section.

Table 5.1 summarizes the parameters of our double-moment-matching alter-

native models for X0. Their p.d.f.’s are plotted in Figure 5.5. Note that all three

density functions consist of a mean of 12 years and a variance of 48. We assume

that X1 follows exponential distribution with mean of 3 years and that screening

sensitivity is 0.8 in this section.
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Table 5.1: Parameters for Double-Moment-Matching Models for X0

Model Parameters

Uniform a = 0, b = 24
Gamma k = 3, θ = 4
Weibull λ = 13.4908, k = 1.7915

Figure 5.5: Plot of Double-Moment-Matching p.d.f.’s for X0

The performances of these models are shown in Figures 5.6 and 5.7. A typical

instance with gamma X0 takes about 2 hours to solve, and with Weibull X0 1.5 hours.
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Figure 5.6: Sensitivity Analysis - Double-Moment-Matching Gamma X0

Figure 5.7: Sensitivity Analysis - Double-Moment-Matching Weibull X0
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As shown, for both gamma and Weibull X0 models, the performances of

the optimal policies are slightly worse than in the uniform model. Also, not much

probability of screening-detection will be sacrificed even if we simply apply the equal-

interval policies. These results suggest that when the first two moments are fixed

for X0, the exact density function would not impact the optimal policy performance

greatly.

We next investigate cases where only the mean of X0 is fixed. Specifically, for

each alternative model, we consider two additional values for its variance, namely,

16 and 144. Notice that in both gamma and Weibull families, the only density that

has mean of 12 and variance of 144 is the exponential distribution with rate 1/12,

which is the special case having shape parameter one in each family.

Table 5.2 summarizes the parameters of the three gamma densities we con-

sider. Their p.d.f.’s are plotted in Figure 5.8, and the performances of optimal policies

for the three models are shown in Figure 5.9.

Table 5.2: Parameters for Gamma Densities for X0

Choice Parameters

Uniform k = 9, θ = 4/3 (Mean= 12, Var= 16)
Gamma k = 3, θ = 4 (Mean= 12, Var= 48)
Weibull k = 1, θ = 12 (Mean= 12, Var= 144)
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Figure 5.8: Plot of Gamma p.d.f.’s for X0

Figure 5.9: Sensitivity Analysis - Variance of Gamma X0
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Additionally, Table 5.3 summarizes the parameters of the three Weibull den-

sities we consider. The p.d.f.’s are plotted in Figure 5.10, and the performances of

optimal policies for the three models are shown in Figure 5.11.

Table 5.3: Parameters for Weibull Densities for X0

Choice Parameters

1 λ = 13.3770, k = 3.3035 (Mean= 12, Var= 16)
2 λ = 13.4908, k = 1.7915 (Mean= 12, Var= 48)
3 λ = 12.0000, k = 1.0000 (Mean= 12, Var= 144)

Figure 5.10: Plot of Weibull p.d.f.’s for X0
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Figure 5.11: Sensitivity Analysis - Variance of Weibull X0

As shown in Figures 5.9 and 5.11, the variance of X0 does play a key role

on the optimal policy’s performance. In the 24-screening scenario, the probability of

detection ranges from around 70% to 85% at optimality as variance decreases, for

both gamma and Weibull X0 models.

5.3 Effect of Distribution of X1

We now consider alterative models for X1. We assume that X0 follows an

exponential distribution with mean of 12 years and that screening sensitivity is 0.8

in this section.

We first consider gamma densities for X1. Again, we fix the first moment, at 3

years, and we consider three versions of distribution that respectively have variances

of 3, 9, and 27. Notice the second choice is the exponential distribution.

The parameters considered for the gamma densities for X1 are summarized
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in Table 5.4, and their corresponding p.d.f.’s are plotted in Figure 5.12.

Table 5.4: Parameters for Gamma Densities for X1

Choice Parameters

default a = 1, b = 3
1 a = 3, b = 1
2 a = 1/3, b = 9

Figure 5.12: Plot of Gamma p.d.f.’s for X1

The model outputs are presented in Figure 5.13. The computation time for

a typical instance up to 24 screenings is 1.5 hours.
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Figure 5.13: Sensitivity Analysis - Variance of Gamma X1

As in the case of X0, the performance of optimal policy is sensitive to the

variance of X1. At the 24-screening budget level, the probability of screen-detection

can reach as high as 0.85 when X1 has variance 3, and as low as 0.40 when X1

has variance 27. From Figure 5.12, one would not reject the small variance gamma

density as a realistic representation for a disease. If this is the underlying truth, then

promising screening performance can be achieved at optimality.

We next consider a lognormal model for X1. The parameters considered are

summarized in Table 5.5, and the p.d.f.’s plotted in Figure 5.14.
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Table 5.5: Parameters for Lognormal Densities for X1

Choice Parameters

1 µ = 0.9548, σ = 0.5364 (Mean= 3, Var= 3)
2 µ = 0.7520, σ = 0.8326 (Mean= 3, Var= 9)
3 µ = 0.4055, σ = 1.1774 (Mean= 3, Var= 27)

Figure 5.14: Plot of Lognormal p.d.f.’s for X1

The optimal policy performances are shown in Figure 5.15. A typical case

takes about 1.5 hours to solve.
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Figure 5.15: Sensitivity Analysis - Variance of Lognormal X1

Similar results hold on the strong sensitivity of X1’s variance over the perfor-

mance of optimal policy. In addition, at all three variance levels, the optimal policy

from the lognormal X1 model outperforms that of the gamma X1 model.

47



6. A CASE STUDY USING BREAST CANCER DATA

In this chapter, we present the results we obtain as we apply our model to

the screening for breast cancer.

The practice of breast cancer screening started as early as in the 1960s. Several

screening modalities are currently in place to detect initial stage of breast cancers,

including mammogram, clinical breast exam, breast self-exam, and in some cases,

ultrasound and magnetic resonance imaging (MRI). However, the very questions of

when the screening should start and how often it should be conducted have been

debated over the decades.

In the literature, it is often considered that the population progresses into

the preclinical breast cancer stage at a constant rate (see Zelen and Feinleib (1969),

Zelen (1993), Walter and Day (1983), Day and Walter (1984)). Such models are called

“stable disease models”, and they essentially assume that the healthy duration follows

a uniform distribution. Furthermore, based on stable disease models, statistical

works have been done that found the exponential model for X1 to best represent

data collected from the actual screening trials (see Zelen and Feinleib (1969), Walter

and Day (1983)). Thus, we set up our case-study model by assuming uniform and

exponential distributions for the two random times.

We first set up our model by specifying its objective function and by extracting

parameters from the literature for the two density functions and the sensitivity of

screening exams. We then solve the model to optimality and consider its robustness.

We last investigate issues of average number of screenings and the expected lead time

under optimal policies.
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6.1 Model Setup

We first analytically specify the objective function for our case-study model.

This takes away unnecessarily numerical integrations in running the optimization

routine.

Proposition 6 If X0 ∼ Unif (0, b) for some b < ∞ and X1 ∼ Exp(λ) for λ > 0,

then the objective function is

max
τ∈D

1− β
λb

n−1∑
i=0

n∑
j=i+1

βj−i−1
[
e−λ(τj−τi+1) − e−λ(τj−τi)

]

Proof:

max
τ∈D

1−
n∑
i=0

n∑
j=i

βj−i
∫ τi+1

τi

[G(τj+1 − u)−G(τj − u)]f(u)du

= 1−
{ n−1∑

i=0

n−1∑
j=i+1

βj−i
1

b

∫ τi+1

τi

e−λ(τj−u) − e−λ(τj+1−u)du

+
n−1∑
i=0

1

b

∫ τi+1

τi

[1− e−λ(τi+1−u)]du+
n−1∑
i=0

βn−i
1

b

∫ τi+1

τi

e−λ(τn−u)du+
1

b

∫ b

τn

1 du
}

= 1−
{ n−1∑

i=0

n−1∑
j=i+1

βj−i
1

b
(e−λτj − e−λτj+1)

∫ τi+1

τi

eλudu

+
n−1∑
i=0

1

b

[
(τi+1 − τi)− e−λτi+1

∫ τi+1

τi

eλudu
]

+
n−1∑
i=0

βn−i
1

b
e−λτn

∫ τi+1

τi

eλudu

+
1

b
(b− τn)

}
= 1−

{ n−1∑
i=0

n−1∑
j=i+1

βj−i
1

λb

[
e−λ(τj−τi+1) + e−λ(τj+1−τi) − e−λ(τj+1−τi+1) − e−λ(τj−τi)

]
−

n−1∑
i=0

1

λb

[
1− e−λ(τi+1−τi)

]
+

n−1∑
i=0

βn−i
1

λb

[
e−λ(τn−τi+1) − e−λ(τn−τi)

]
+ 1
}
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= 1− 1

λb

n−1∑
i=0

{
(1− β)

n∑
j=i+2

βj−i−1
[
e−λ(τj−τi) − e−λ(τj−τi+1)

]
+(1− β)

[
e−λ(τi+1−τi) − 1

]}
− 1

=
1− β
λb

n−1∑
i=0

n∑
j=i+1

βj−i−1
[
e−λ(τj−τi+1) − e−λ(τj−τi)

]

�

We parameterize our model as follows. The uniform distribution of X0 is

assumed to have a range of 24 years. We take this number based on U.S. Preventive

Services Task Force’s recommendation that women should be screened between ages

50 and 75. We choose 24 years as the actual range as we can then easily refer to a

collection of periodic policies (e.g. yearly, biennial , 3-yearly and 4-yearly screenings)

which all divide the support exactly. We further assume that the risk of preclinical

breast cancer begins at age 40, according to American Cancer Society. As a result,

we treat random variable X0 with a uniform (40, 64) distribution.

The exponential distribution for X1 is assumed to have mean length of 3

years, and the rate of β-error for screening exams is assumed to be 0.2. We take

these numbers off various works in the literature (see Walter and Day (1983), Shen

and Zelen (1999), Shen and Parmigiani (New York: Springer, 2006)), and from

surveying domain experts.

In Table 6.1, we summarize our choices of distributions and parameters in our

breast cancer screening model.
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Table 6.1: Breast Cancer Screening Model Parameters

Input Distribution/Parameter

r.v. X0 Unif(40, 64)
r.v. X1 Exp(1/3)
β-error 0.2

6.2 Optimal Solution and Its Robustness

In Figure 6.1 we plot the performance of optimal screening polices across

budget levels 3 through 8, which we consider practical. Recall our objective function

is the probability of detection by screening. Recall also that in Figure 5.2 we had

shown for a model with the same setup that the equal-interval policy performs almost

as greatly as optimal.

Figure 6.1: Breast Cancer Model - Optimal Policy Performance
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As shown, with 12 screenings planed, at optimality about 65% preclinical

cases can be found by screening.

Next we investigate the robustness of the above result.

We first consider varying the range of X0 and the mean duration of X1. To

this end, we show a simple yet insightful result for the special case in which screening

is perfectly sensitive. As we know that the optimal policy is equally spaced in this

case, we may derive a closed-form expression for the optimal objective value.

Proposition 7 If X0 ∼ Unif (0, b), X1 ∼ Exp(λ) and β = 0, then the optimal

objective value is P (σ(n)) = n
bλ

(1−e− bλn ), which increases in n and 1/λ, and decreases

in b.

Proof:

If β = 0, then

P (σ(n)) =
n−1∑
i=0

∫ σ
(n)
i+1

σ
(n)
i

f(s)[1−G(σ
(n)
i+1 − s)]ds

=
n−1∑
i=0

∫ b
n

(i+1)

b
n

(i)

1

b
e−λ[ b

n
(i+1)−s]ds

=
1

b

n−1∑
i=0

e−
bλ
n

(i+1)

∫ b
n

(i+1)

b
n

(i)

eλsds

=
1

bλ

n−1∑
i=0

e−
bλ
n

(i+1)[e
bλ
n

(i+1) − e
bλ
n
i]

=
1

bλ

n−1∑
i=0

(1− e−
bλ
n )

=
n

bλ
(1− e−

bλ
n )

Now, let x = bλ
n

, and consider P (σ(n)) as P (x) = 1−e−x
x

. Note as x → 0, both
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numerator 1−e−x and denominator x tend to 0; but for all x > 0, (1−e−x)′ = e−x < 1

while x′ = 1. We therefore have P (x) is a decreasing function for positive x.

�

The above result suggests that the longer the preclinical sojourn time is in

comparison to the disease-free time, the easier it will be for screenings to capture the

disease.

We next consider a few alternative configurations on the distributions of X0

and X1. Specifically, we hold the means of the two random variables respectively

at 12 years and 3 years, and we consider Weibull and gamma models for X0 with a

variance of 16 (original being 48), and also a gamma model for X1 with a variance

of 3 (original being 9). We hold β at 0.2 throughout this investigation.

Additionally, for all alternative models, we consider Quantile-Based Inspec-

tion (QBI) policies as follows: at each budget level n, we schedule the screening

epochs at the 1/(n+ 1) through n/(n+ 1) quantiles of the X0 distribution. The QBI

policies were initially considered in the context of replaceable system inspection by

Yang and Klutke (2000).

We compare the performances of optimal, QBI and EI policies for our four

alternative models and we present the results in Figures 6.2 through 6.5.
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Figure 6.2: Breast Cancer Model Robustness - Gamma X0 and Exponential X1

Figure 6.3: Breast Cancer Model Robustness - Gamma X0 and Gamma X1
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Figure 6.4: Breast Cancer Model Robustness - Weibull X0 and Exponential X1

Figure 6.5: Breast Cancer Model Robustness - Weibull X0 and Gamma X1
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As shown, in all four cases, the EI policies perform much worse than optimal.

We raise our concern about this observation as in practice most screening recom-

mendations are equally-spaced in nature. Although many studies assume a uniform

X0, there has been rather limited empirical evidence to support this treatment. Our

results reveal that when the underlying preclinical incidence is not stable, the EI

policy can act far off the mark.

On the other hand, the QBI policies perform rather closely to optimal in all

four cases. We consider the reason for this as that the QBI in its nature exploits

the information about X0 distribution. In practice, QBI may serve as a good heuris-

tic to compute high-quality screening policies without running the time-consuming

optimization routines.

Furthermore, as we had seen from the previous chapter, when variance is not

so high for either X0 or X1’s underlying distribution, the performance of optimal

policy can be much enhanced. In cases of both small variances on X0 and X1 (see

Figures 6.3 and 6.5), close to 90% probability of detection is achievable with only 12

screenings planned.

6.3 Additional Evaluations

We last study a few additional issues in our disease screening model and we

evaluate these numerically for our breast cancer screening case.

6.3.1 Expected Number of Screenings

First, we note that throughout our analysis, the “screening budget” is defined

as the “maximum number of screenings allowed” in a person’s lifetime. The actual

number of screenings for an individual is indeed a random variable which depends

not only on internal factors such as the disease-free and preclinical sojourn times,

but also external ones like screening sensitivity and the screening policy itself.
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We therefore first derive an expression for the expected number of screenings

for an individual in the disease-affected population.

Proposition 8 For screening policy τ = {τ1, τ2, ..., τn}, and for a disease-affected

population that has f and g respectively as its disease-free and preclinical sojourn

time densities and β as screening sensitivity, the average number of screenings per

person (denote this by “ND”) is:

ND(τ ) =
n∑
i=1

i
{∫ τi+1

τi

G(τi+1−u)f(u)du+(1−β)
i−1∑
j=0

∫ τj+1

τj

[1−G(τi−u)]βi−j−1f(u)du
}
,

where τn+1 :=∞.

Proof:

ND(τ ) =
n∑
i=1

i · Pr
(

Number of Screenings = i
)

=
n∑
i=1

i
{ i−1∑

j=0

∫ τj+1

τj

Pr(Number of Screenings = i | X0 = u)f(u)du

+

∫ τi+1

τi

Pr(Number of Screenings = i | X0 = u)f(u)du
}

=
n∑
i=1

i
{ i−1∑

j=0

∫ τj+1

τj

[1−G(τi − u)]βi−j−1(1− β)f(u)du

[event happens when X1 survives at least τi − u amount of time, first

i− j − 1 screenings are all false-negative, and the (i− j)th screening

is successful]

+

∫ τi+1

τi

G(τi+1 − u)f(u)du
}

[event happens when X1 does not survive till τi]

=
n∑
i=1

i
{∫ τi+1

τi

G(τi+1 − u)f(u)du
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+(1− β)
i−1∑
j=0

∫ τj+1

τj

[1−G(τi − u)]βi−j−1f(u)du
}

�

The above expression is derived by assigning the right probabilities to each

number of screenings while considering the two sojourn times and the β-errors. We

omit the details as these are similar to our derivation for the probability of screening

detection in Proposition 1.

In particular, under our basic breast cancer model assumptions, we have the

following.

Corollary 2 If X0 ∼ Unif(0, b) and X1 ∼ Exp(λ), then:

ND(τ ) =
n−1∑
i=1

i

b

{
(τi+1 − τi)−

1

λ
[1− e−λ(τi+1−τi)]

+
1− β
λ

i−1∑
j=0

βi−j−1[e−λ(τi−τj+1) − e−λ(τi−τj)]
}

+
n

b

{
(b− τn) +

1− β
λ

n−1∑
j=0

βn−j−1[e−λ(τn−τj+1) − e−λ(τn−τj)]
}
.

Proof:

ND(τ ) =
n−1∑
i=1

i

b

{∫ τi+1

τi

[1− e−λ(τi+1−u)]du+ (1− β)
i−1∑
j=0

βi−j−1

∫ τj+1

τj

e−λ(τi−u)du
}

+
n

b

{∫ b

τn

1du+ (1− β)
n−1∑
j=0

βn−j−1

∫ τj+1

τj

e−λ(τn−u)du
}
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=
n−1∑
i=1

i

b

{
(τi+1 − τi)− e−λτi+1

∫ τi+1

τi

eλudu

+(1− β)
i−1∑
j=0

βi−j−1e−λτi
∫ τj+1

τj

eλudu
}

+
n

b

{
(b− τn) + (1− β)

n−1∑
j=0

βn−j−1e−λτn
∫ τj+1

τj

eλudu
}

=
n−1∑
i=1

i

b

{
(τi+1 − τi)−

1

λ
[1− e−λ(τi+1−τi)]

+
1− β
λ

i−1∑
j=0

βi−j−1[e−λ(τi−τj+1) − e−λ(τi−τj)]
}

+
n

b

{
(b− τn) +

1− β
λ

n−1∑
j=0

βn−j−1[e−λ(τn−τj+1) − e−λ(τn−τj)]
}

�

Next, we examine the expected number of screenings per person in a popula-

tion that never develops the disease in its lifetime. This measure reflects the impact

of a screening programme to people who are not benefitted yet who follow the same

recommendation to screen.

The following is clear.

Proposition 9 For screening policy τ = {τ1, τ2, ..., τn}, and for a disease-free pop-

ulation with lifetime distribution function H, the average number of screenings per

person (denote this by “NF”) is:

NF (τ ) =
n∑
i=1

i[H(τi+1)−H(τi)],

where H(τn+1) := 1.
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We then apply the above two definitions to data from breast cancer screening.

Specifically, for the disease-affected population, we assume the model with param-

eters in Table 6.1, and for the disease-free population, we take the 2008 American

females life table (National Vital Statistics System (2012)) for its lifetime distribu-

tion. In doing so, we assume that the proportion of disease-affected samples is rather

small in the overall population. We calculate the expected number of screenings for

both populations as the optimal policy is applied at each budget level. The results

are shown in Table 6.2 and plotted in Figure 6.6.

Table 6.2: Expected Number of Screenings under Optimal Policies

Budget Disease-affected Group Disease-free Group

1 0.1 0.9
2 1.6 1.8
3 2.1 2.8
4 2.6 3.7
5 3.1 4.7
6 3.6 5.6
7 4.0 6.6
8 4.5 7.5
9 5.0 8.5
10 5.5 9.4
11 5.9 10.3
12 6.4 11.3
13 6.9 12.2
14 7.4 13.2
15 7.9 14.1
16 8.4 15.1
17 8.8 16.0
18 9.3 16.9
19 9.8 17.9
20 10.3 18.8
21 10.8 19.8
22 11.3 20.7
23 11.8 21.7
24 12.2 22.6
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Figure 6.6: Expected Number of Screenings under Optimal Policies

As depicted, both populations appear to consist of a fairly linear relationship

between screening budget and the average number of screenings their individuals

will experience. For the disease-free population, screening budget is almost identical

to the actual number of screenings. This is because in reality not many women

will die between ages 40 and 64 (our assumed age range for the preclinical breast

cancer incidence) and as a result, almost every woman ends up going on all the

planned screening exams. As for the disease-affected population, the ratio between

expected number of screenings and screening budget is approximately 1 to 2. Recall

an individual may stop screening at any time due to occurrence of clinical symptoms

or due to screen-detection of the disease.

As a result, in evaluating the real benefits of a screening programme, one

needs not only to beware of the very big number of redundant screenings performed
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to people who are never to develop the disease, but also, to the “diluted” number

of screenings even for the relevant group, thanks to the drastic ratio between the

“nominal” screening budget and the “effective” number of screenings per person.

6.3.2 Expected Lead Time

Our last investigation is on the expected lead time of a screening policy for the

disease-affected population. Indeed, the expected lead time (denote this by “ELT”)

has been used in numerous studies as performance measure of screening policies (e.g.

Zelen and Feinleib (1969), Walter and Day (1983), Parmigiani (1993), Shen and Zelen

(1999), Kafadar and Prorok (2009)). We first derive this quantity as follows.

Proposition 10 For screening policy τ = {τ1, τ2, ..., τn}, and for a disease-affected

population with f and g respectively as disease-free and preclinical sojourn time

densities and β as screening sensitivity, the expected lead time is:

ELT (τ ) = (1− β)
n−1∑
i=0

n∑
j=i+1

j∑
k=i+1

βk−i−1

∫ τi+1

τi

∫ τj+1−u

τj−u
(u+ s− τk)g(s)f(u)dsdu.

Proof:

ELT (τ ) =
n−1∑
i=0

∫ τi+1

τi

E[Lead Time | X0 = u]f(u)du

=
n−1∑
i=0

n∑
j=i+1

∫ τi+1

τi

∫ τj+1−u

τj−u
E[Lead Time | X0 = u,X1 = s]g(s)f(u)dsdu

=
n−1∑
i=0

n∑
j=i+1

∫ τi+1

τi

∫ τj+1−u

τj−u

j∑
k=i+1

(1− β)βk−i−1(u+ s− τk)g(s)f(u)dsdu

= (1− β)
n−1∑
i=0

n∑
j=i+1

j∑
k=i+1

βk−i−1

∫ τi+1

τi

∫ τj+1−u

τj−u
(u+ s− τk)g(s)f(u)dsdu.

�
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In particular, when X1 is exponential and β = 0, we have the following result.

Proposition 11 If X1 ∼ Exp(λ) and β = 0, then ELT (τ ) equals 1
λ
P (τ ) and is

therefore also maximized by σ.

Proof:

ELT (τ ) =
n−1∑
i=0

∫ τi+1

τi

∫ ∞
τi+1−u

(s+ u− τi+1)g(s)dsf(u)du

=
n−1∑
i=0

∫ τi+1

τi

{
(u− τi+1)e−λ(τi+1−u) −

∫ ∞
τi+1−u

s(e−λs)′ds

}
f(u)du

=
1

λ

n−1∑
i=0

∫ τi+1

τi

∫ ∞
τi+1−u

λe−λsdsf(u)du

=
1

λ

n−1∑
i=0

∫ τi+1

τi

e−λ(τi+1−u)f(u)du.

On the other hand,

P (τ ) = 1−
n∑
i=0

∫ τi+1

τi

G(τi+1 − u)f(u)du

=
n−1∑
i=0

∫ τi+1

τi

[1−G(τi+1 − u)]f(u)du

=
n−1∑
i=0

∫ τi+1

τi

e−λ(τi+1−u)f(u)du

= λ · ELT (τ ).

�

The above result follows from the memoryless property of exponential distri-

bution. Indeed, knowing that the disease is captured by a screening, the lead time,

i.e. the remaining time in the preclinical state, is but a new exponential quantity.
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As lead time is 0 for cases that are missed by screening, the expected lead time is

simply the probability of detection times the mean of the exponential X1. The next

corollary follows.

Corollary 3 If X0 ∼ Unif(0, b), X1 ∼ Exp(λ), and β = 0, then the expected lead

time is maximized by the equally spaced policy σ, and ELT (σ) = n
bλ2

(1− e− bλn ).

Proof: Clear from Propositions 7 and 11.

�
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7. CONCLUSIONS

In this dissertation, we have studied the problem of how to schedule a se-

quence of screening times over a person’s lifetime in order to maximize the chance

of capturing a disease while preclinical. Our main result is the proof of uni-modality

of the objective function, by which any problem instance in practice is guaranteed

to be solved optimally with a greedy-search algorithm.

In our numerical experiments we have found that the variances of both the

disease-free and the preclinical sojourn times have large impacts on the performance

of the optimal screening policy. The application of our model to breast cancer screen-

ing further reveals that the equally spaced screenings policies can perform far from

optimal, when the preclinical incidence is non-uniform and when the two sojourn

time distributions have small variances. We further found with our breast cancer

screening model that the disease-free population in practice is screened many more

times than the disease-affected population. We argue that without convincing prac-

tical evidence about the underlying disease progression and screening sensitivity, we

should remain alert about the effectiveness of our current guidelines.

We consider several directions of future work valuable. First, from the mod-

elling’s perspective, it will be beneficial to relax the independence assumptions (be-

tween disease-free and preclinical sojourn times, and between screening sensitivity

and preclinical duration at the time of screening), in order to handle more general

cases. We note that such assumptions played a crucial role for our proofs, and we

expect more specific distributions and/or models to be assumed in order to attain

good analytical results.

Also, it may be interesting to model the disease development (e.g. tumor
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growth) in the preclinical state by some stochastic process models as opposed to a

simple sojourn time as in our approach. The challenge to this end is on the one hand

that the model will become much more intricate to handle, while on the other, there

has been rather limited data from practice to validate/parameterize such models.

Thirdly, other optimization criteria may as well be considered. In this work,

we have shown that maximizing the expected lead time is equivalent to maximizing

the probability of detection for our basic breast cancer model. However, this result is

not easily generalized to cases with different distributions for the two sojourn times.

Analytically, it will be more challenging to handle objective functions that comprise

higher orders of integration such as the expected lead time. Additional techniques

must be developed to tackle such harder problems.

Last but not least, in light of the drastic difference on the expected number

of screenings between the disease-free and the disease-affected populations, it will be

of great economic value to consider tailored screening policies for populations with

varying risk factors. Take breast cancer again for example, certain genetic markers

(e.g. BRAC1, BRAC2) are known to distinguish women’s risk profiles significantly.

The question remains on how we can effectively collect data to characterize the

various risk groups and how to communicate any tailored yet distinctive screening

policies to the public.

In short, despite the almost half-century history of quantitative research on

preclinical disease screening, many more significant and interesting results are yet to

be reaped.
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APPENDIX A. MODEL OUTPUTS

Table A.1: Model Outputs - X0 ∼ Unif(40, 64), X1 ∼ Exp(1/3), β = 0

Scr. Perf. Optimal Screening Policies
Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 12% 64.0 - - - - - - - - - - - - - - - - - - - - - - -
2 25% 52.0 64.0 - - - - - - - - - - - - - - - - - - - - - -
3 35% 48.0 56.0 64.0 - - - - - - - - - - - - - - - - - - - - -
4 43% 46.0 52.0 58.0 64.0 - - - - - - - - - - - - - - - - - - - -
5 50% 44.8 49.6 54.4 59.2 64.0 - - - - - - - - - - - - - - - - - - -
6 55% 44.0 48.0 52.0 56.0 60.0 64.0 - - - - - - - - - - - - - - - - - -
7 60% 43.4 46.9 50.3 53.7 57.1 60.6 64.0 - - - - - - - - - - - - - - - - -
8 63% 43.0 46.0 49.0 52.0 55.0 58.0 61.0 64.0 - - - - - - - - - - - - - - - -
9 66% 42.7 45.3 48.0 50.7 53.3 56.0 58.7 61.3 64.0 - - - - - - - - - - - - - - -
10 69% 42.4 44.8 47.2 49.6 52.0 54.4 56.8 59.2 61.6 64.0 - - - - - - - - - - - - - -
11 71% 42.2 44.4 46.5 48.7 50.9 53.1 55.3 57.5 59.6 61.8 64.0 - - - - - - - - - - - - -
12 73% 42.0 44.0 46.0 48.0 50.0 52.0 54.0 56.0 58.0 60.0 62.0 64.0 - - - - - - - - - - - -
13 75% 41.8 43.7 45.5 47.4 49.2 51.1 52.9 54.8 56.6 58.5 60.3 62.2 64.0 - - - - - - - - - - -
14 76% 41.7 43.4 45.1 46.9 48.6 50.3 52.0 53.7 55.4 57.1 58.9 60.6 62.3 64.0 - - - - - - - - - -
15 78% 41.6 43.2 44.8 46.4 48.0 49.6 51.2 52.8 54.4 56.0 57.6 59.2 60.8 62.4 64.0 - - - - - - - - -
16 79% 41.5 43.0 44.5 46.0 47.5 49.0 50.5 52.0 53.5 55.0 56.5 58.0 59.5 61.0 62.5 64.0 - - - - - - - -
17 80% 41.4 42.8 44.2 45.6 47.1 48.5 49.9 51.3 52.7 54.1 55.5 56.9 58.4 59.8 61.2 62.6 64.0 - - - - - - -
18 81% 41.3 42.7 44.0 45.3 46.7 48.0 49.3 50.7 52.0 53.3 54.7 56.0 57.3 58.7 60.0 61.3 62.7 64.0 - - - - - -
19 82% 41.3 42.5 43.8 45.1 46.3 47.6 48.8 50.1 51.4 52.6 53.9 55.2 56.4 57.7 58.9 60.2 61.5 62.7 64.0 - - - - -
20 82% 41.2 42.4 43.6 44.8 46.0 47.2 48.4 49.6 50.8 52.0 53.2 54.4 55.6 56.8 58.0 59.2 60.4 61.6 62.8 64.0 - - - -
21 83% 41.1 42.3 43.4 44.6 45.7 46.9 48.0 49.1 50.3 51.4 52.6 53.7 54.9 56.0 57.1 58.3 59.4 60.6 61.7 62.9 64.0 - - -
22 84% 41.1 42.2 43.3 44.4 45.5 46.5 47.6 48.7 49.8 50.9 52.0 53.1 54.2 55.3 56.4 57.5 58.5 59.6 60.7 61.8 62.9 64.0 - -
23 84% 41.0 42.1 43.1 44.2 45.2 46.3 47.3 48.3 49.4 50.4 51.5 52.5 53.6 54.6 55.7 56.7 57.7 58.8 59.8 60.9 61.9 63.0 64.0 -
24 85% 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0
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Table A.2: Model Outputs - X0 ∼ Unif(40, 64), X1 ∼ Exp(1/3), β = 0.2

Scr. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 10% 10% 64.0 - - - - - - - - - - - - - - - - - - - - - - -
2 20% 20% 52.3 64.0 - - - - - - - - - - - - - - - - - - - - - -
3 28% 28% 48.4 56.2 64.0 - - - - - - - - - - - - - - - - - - - - -
4 35% 35% 46.5 52.3 58.2 64.0 - - - - - - - - - - - - - - - - - - - -
5 41% 41% 45.3 50.0 54.7 59.4 64.0 - - - - - - - - - - - - - - - - - - -
6 46% 46% 44.4 48.4 52.3 56.3 60.2 64.0 - - - - - - - - - - - - - - - - - -
7 50% 50% 43.9 47.2 50.6 54.0 57.4 60.8 64.0 - - - - - - - - - - - - - - - - -
8 54% 54% 43.4 46.4 49.4 52.3 55.3 58.3 61.3 64.0 - - - - - - - - - - - - - - - -
9 57% 57% 43.1 45.7 48.4 51.0 53.7 56.3 59.0 61.6 64.0 - - - - - - - - - - - - - - -
10 60% 60% 42.8 45.2 47.6 49.9 52.3 54.7 57.1 59.5 61.9 64.0 - - - - - - - - - - - - - -
11 62% 62% 42.5 44.7 46.9 49.1 51.2 53.4 55.6 57.8 60.0 62.1 64.0 - - - - - - - - - - - - -
12 64% 65% 42.3 44.3 46.3 48.3 50.3 52.3 54.3 56.3 58.3 60.3 62.3 64.0 - - - - - - - - - - - -
13 66% 66% 42.2 44.0 45.9 47.7 49.6 51.4 53.3 55.1 57.0 58.8 60.6 62.5 64.0 - - - - - - - - - - -
14 68% 68% 42.0 43.7 45.5 47.2 48.9 50.6 52.3 54.1 55.8 57.5 59.2 60.9 62.6 64.0 - - - - - - - - - -
15 70% 70% 41.9 43.5 45.1 46.7 48.3 49.9 51.5 53.1 54.7 56.3 58.0 59.6 61.2 62.8 64.0 - - - - - - - - -
16 71% 71% 41.8 43.3 44.8 46.3 47.8 49.3 50.8 52.3 53.8 55.3 56.9 58.4 59.9 61.4 62.9 64.0 - - - - - - - -
17 72% 72% 41.7 43.1 44.5 45.9 47.4 48.8 50.2 51.6 53.0 54.5 55.9 57.3 58.7 60.1 61.6 63.0 64.0 - - - - - - -
18 73% 74% 41.6 42.9 44.3 45.6 47.0 48.3 49.7 51.0 52.3 53.7 55.0 56.4 57.7 59.0 60.4 61.7 63.1 64.0 - - - - - -
19 75% 75% 41.5 42.8 44.1 45.3 46.6 47.9 49.2 50.4 51.7 53.0 54.2 55.5 56.8 58.1 59.3 60.6 61.9 63.1 64.0 - - - - -
20 76% 76% 41.4 42.7 43.9 45.1 46.3 47.5 48.7 49.9 51.1 52.3 53.5 54.8 56.0 57.2 58.4 59.6 60.8 62.0 63.2 64.0 - - - -
21 76% 77% 41.4 42.5 43.7 44.8 46.0 47.1 48.3 49.5 50.6 51.8 52.9 54.1 55.2 56.4 57.5 58.7 59.8 61.0 62.1 63.3 64.0 - - -
22 77% 77% 41.3 42.4 43.5 44.6 45.7 46.8 47.9 49.0 50.1 51.2 52.3 53.4 54.5 55.6 56.7 57.8 58.9 60.0 61.1 62.2 63.3 64.0 - -
23 78% 78% 41.3 42.3 43.4 44.4 45.5 46.5 47.6 48.6 49.7 50.8 51.8 52.9 53.9 55.0 56.0 57.1 58.1 59.2 60.2 61.3 62.3 63.4 64.0 -
24 79% 79% 41.2 42.2 43.2 44.2 45.3 46.3 47.3 48.3 49.3 50.3 51.3 52.3 53.3 54.4 55.4 56.4 57.4 58.4 59.4 60.4 61.4 62.4 63.5 64.0
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Table A.3: Model Outputs - X0 ∼ Unif(40, 64), X1 ∼ Exp(1/3), β = 0.4

Scr. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 7% 7% 64.0 - - - - - - - - - - - - - - - - - - - - - - -
2 15% 15% 52.8 64.0 - - - - - - - - - - - - - - - - - - - - - -
3 21% 21% 49.0 56.5 64.0 - - - - - - - - - - - - - - - - - - - - -
4 27% 27% 47.1 52.8 58.5 64.0 - - - - - - - - - - - - - - - - - - - -
5 32% 32% 45.9 50.5 55.1 59.7 64.0 - - - - - - - - - - - - - - - - - - -
6 36% 36% 45.0 48.9 52.8 56.6 60.5 64.0 - - - - - - - - - - - - - - - - - -
7 40% 40% 44.4 47.8 51.1 54.4 57.8 61.1 64.0 - - - - - - - - - - - - - - - - -
8 44% 44% 44.0 46.9 49.8 52.8 55.7 58.6 61.6 64.0 - - - - - - - - - - - - - - - -
9 47% 47% 43.6 46.2 48.8 51.5 54.1 56.7 59.3 61.9 64.0 - - - - - - - - - - - - - - -
10 49% 49% 43.3 45.7 48.0 50.4 52.8 55.1 57.5 59.9 62.2 64.0 - - - - - - - - - - - - - -
11 52% 52% 43.0 45.2 47.4 49.5 51.7 53.8 56.0 58.2 60.3 62.5 64.0 - - - - - - - - - - - - -
12 54% 54% 42.8 44.8 46.8 48.8 50.8 52.8 54.8 56.7 58.7 60.7 62.7 64.0 - - - - - - - - - - - -
13 56% 56% 42.6 44.5 46.3 48.2 50.0 51.8 53.7 55.5 57.4 59.2 61.1 62.9 64.0 - - - - - - - - - - -
14 58% 58% 42.5 44.2 45.9 47.6 49.3 51.1 52.8 54.5 56.2 57.9 59.6 61.3 63.1 64.0 - - - - - - - - - -
15 60% 60% 42.3 43.9 45.5 47.1 48.8 50.4 52.0 53.6 55.2 56.8 58.4 60.0 61.6 63.2 64.0 - - - - - - - - -
16 61% 61% 42.2 43.7 45.2 46.7 48.2 49.8 51.3 52.8 54.3 55.8 57.3 58.8 60.3 61.8 63.3 64.0 - - - - - - - -
17 63% 63% 42.1 43.5 44.9 46.4 47.8 49.2 50.6 52.1 53.5 54.9 56.3 57.7 59.2 60.6 62.0 63.4 64.0 - - - - - - -
18 64% 64% 42.0 43.3 44.7 46.0 47.4 48.7 50.1 51.4 52.8 54.1 55.5 56.8 58.2 59.5 60.8 62.2 63.5 64.0 - - - - - -
19 65% 66% 41.9 43.2 44.5 45.7 47.0 48.3 49.6 50.8 52.1 53.4 54.7 56.0 57.2 58.5 59.8 61.1 62.4 63.6 64.0 - - - - -
20 66% 67% 41.8 43.0 44.3 45.5 46.7 47.9 49.1 50.3 51.6 52.8 54.0 55.2 56.4 57.6 58.8 60.1 61.3 62.5 63.7 64.0 - - - -
21 67% 68% 41.7 42.9 44.1 45.2 46.4 47.5 48.7 49.9 51.0 52.2 53.3 54.5 55.7 56.8 58.0 59.1 60.3 61.5 62.6 63.8 64.0 - - -
22 68% 69% 41.7 42.8 43.9 45.0 46.1 47.2 48.3 49.4 50.5 51.7 52.8 53.9 55.0 56.1 57.2 58.3 59.4 60.5 61.6 62.8 63.9 64.0 - -
23 69% 70% 41.6 42.7 43.7 44.8 45.9 46.9 48.0 49.0 50.1 51.2 52.2 53.3 54.4 55.4 56.5 57.5 58.6 59.7 60.7 61.8 62.9 63.9 64.0 -
24 70% 71% 41.5 42.6 43.6 44.6 45.6 46.6 47.7 48.7 49.7 50.7 51.7 52.8 53.8 54.8 55.8 56.8 57.9 58.9 59.9 60.9 61.9 63.0 64.0 64.0
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Table A.4: Model Outputs - X0 ∼ Unif(40, 64), X1 ∼ Exp(1/3), β = 0.8

Scr. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2% 2% 64.0 - - - - - - - - - - - - - - - - - - - - - - -
2 5% 5% 54.4 64.0 - - - - - - - - - - - - - - - - - - - - - -
3 7% 7% 51.1 57.7 64.0 - - - - - - - - - - - - - - - - - - - - -
4 9% 10% 49.4 54.4 59.4 64.0 - - - - - - - - - - - - - - - - - - - -
5 11% 12% 48.3 52.4 56.5 60.6 64.0 - - - - - - - - - - - - - - - - - - -
6 13% 14% 47.4 50.9 54.4 57.9 61.4 64.0 - - - - - - - - - - - - - - - - - -
7 15% 16% 46.8 49.9 52.9 55.9 59.0 62.0 64.0 - - - - - - - - - - - - - - - - -
8 17% 17% 46.3 49.0 51.7 54.4 57.1 59.8 62.5 64.0 - - - - - - - - - - - - - - - -
9 19% 19% 45.9 48.4 50.8 53.2 55.6 58.0 60.5 62.9 64.0 - - - - - - - - - - - - - - -
10 20% 21% 45.6 47.8 50.0 52.2 54.4 56.6 58.8 61.0 63.2 64.0 - - - - - - - - - - - - - -
11 22% 22% 45.3 47.3 49.3 51.4 53.4 55.4 57.5 59.5 61.5 63.5 64.0 - - - - - - - - - - - - -
12 23% 24% 45.0 46.9 48.8 50.7 52.5 54.4 56.3 58.2 60.0 61.9 63.8 64.0 - - - - - - - - - - - -
13 25% 26% 44.8 46.5 48.3 50.0 51.8 53.5 55.3 57.0 58.8 60.5 62.3 64.0 64.0 - - - - - - - - - - -
14 26% 27% 44.6 46.2 47.8 49.5 51.1 52.7 54.3 56.0 57.6 59.2 60.9 62.5 64.0 64.0 - - - - - - - - - -
15 27% 28% 44.4 45.9 47.4 49.0 50.5 52.0 53.5 55.1 56.6 58.1 59.6 61.2 62.7 64.0 64.0 - - - - - - - - -
16 29% 30% 44.2 45.6 47.1 48.5 49.9 51.4 52.8 54.2 55.7 57.1 58.6 60.0 61.4 62.9 64.0 64.0 - - - - - - - -
17 30% 31% 44.0 45.4 46.8 48.1 49.5 50.8 52.2 53.5 54.9 56.2 57.6 59.0 60.3 61.7 63.0 64.0 64.0 - - - - - - -
18 31% 32% 43.9 45.2 46.5 47.8 49.0 50.3 51.6 52.9 54.2 55.5 56.7 58.0 59.3 60.6 61.9 63.2 64.0 64.0 - - - - - -
19 32% 33% 43.8 45.0 46.2 47.4 48.6 49.9 51.1 52.3 53.5 54.8 56.0 57.2 58.4 59.6 60.9 62.1 63.3 64.0 64.0 - - - - -
20 33% 35% 43.6 44.8 46.0 47.1 48.3 49.5 50.6 51.8 53.0 54.1 55.3 56.4 57.6 58.8 59.9 61.1 62.3 63.4 64.0 64.0 - - - -
21 35% 36% 43.5 44.6 45.8 46.9 48.0 49.1 50.2 51.3 52.4 53.5 54.6 55.8 56.9 58.0 59.1 60.2 61.3 62.4 63.5 64.0 64.0 - - -
22 36% 37% 43.4 44.5 45.6 46.6 47.7 48.7 49.8 50.9 51.9 53.0 54.1 55.1 56.2 57.3 58.3 59.4 60.5 61.5 62.6 63.6 64.0 64.0 - -
23 37% 38% 43.3 44.3 45.4 46.4 47.4 48.4 49.4 50.5 51.5 52.5 53.5 54.6 55.6 56.6 57.6 58.6 59.7 60.7 61.7 62.7 63.7 64.0 64.0 -
24 38% 39% 43.2 44.2 45.2 46.2 47.2 48.1 49.1 50.1 51.1 52.1 53.0 54.0 55.0 56.0 57.0 57.9 58.9 59.9 60.9 61.9 62.9 63.8 64.0 64.0
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Table A.5: Model Outputs - X0 ∼ Unif(40, 64), X1 ∼ Exp(1/3), β = 0.99

Scr. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0% 0% 64.0 - - - - - - - - - - - - - - - - - - - - - - -
2 0% 0% 52.0 64.0 - - - - - - - - - - - - - - - - - - - - - -
3 0% 0% 55.2 56.5 64.0 - - - - - - - - - - - - - - - - - - - - -
4 0% 0% 54.9 57.8 58.9 64.0 - - - - - - - - - - - - - - - - - - - -
5 1% 1% 54.6 57.0 59.8 60.8 64.0 - - - - - - - - - - - - - - - - - - -
6 1% 1% 54.2 56.4 58.7 61.3 62.3 64.0 - - - - - - - - - - - - - - - - - -
7 1% 1% 53.3 55.0 56.9 59.1 59.1 61.6 64.0 - - - - - - - - - - - - - - - - -
8 1% 1% 53.1 54.8 56.5 58.2 60.4 60.4 62.5 64.0 - - - - - - - - - - - - - - - -
9 1% 1% 52.8 54.4 56.1 57.7 59.3 61.5 61.5 63.3 64.0 - - - - - - - - - - - - - - -
10 1% 1% 52.5 54.0 55.5 56.9 58.4 59.9 61.4 62.3 64.0 64.0 - - - - - - - - - - - - - -
11 1% 1% 52.3 53.7 55.1 56.5 57.9 59.3 60.8 62.4 62.9 64.0 64.0 - - - - - - - - - - - - -
12 1% 1% 52.0 53.3 54.6 55.9 57.2 58.5 59.8 61.2 62.6 63.2 64.0 64.0 - - - - - - - - - - - -
13 1% 2% 51.8 53.0 54.2 55.4 56.7 57.9 59.1 60.3 61.5 62.9 63.8 64.0 64.0 - - - - - - - - - - -
14 2% 2% 51.6 52.7 53.9 55.0 56.1 57.3 58.4 59.6 60.8 62.2 62.4 63.5 64.0 64.0 - - - - - - - - - -
15 2% 2% 51.4 52.4 53.5 54.6 55.7 56.8 57.8 58.9 60.0 61.1 62.5 62.9 64.0 64.0 64.0 - - - - - - - - -
16 2% 2% 51.2 52.2 53.2 54.2 55.2 56.2 57.2 58.2 59.3 60.3 61.3 62.4 62.9 64.0 64.0 64.0 - - - - - - - -
17 2% 2% 51.0 52.0 52.9 53.9 54.9 55.8 56.8 57.8 58.7 59.7 60.7 61.6 62.7 63.4 64.0 64.0 64.0 - - - - - - -
18 2% 2% 50.8 51.8 52.7 53.6 54.5 55.5 56.4 57.3 58.2 59.2 60.1 61.1 62.3 62.5 63.4 64.0 64.0 64.0 - - - - - -
19 2% 2% 50.7 51.6 52.4 53.3 54.2 55.1 56.0 56.8 57.7 58.6 59.5 60.4 61.2 62.1 63.0 63.8 64.0 64.0 64.0 - - - - -
20 2% 2% 50.5 51.4 52.2 53.1 53.9 54.8 55.6 56.5 57.3 58.2 59.0 59.8 60.9 62.0 62.1 62.9 63.7 64.0 64.0 64.0 - - - -
21 2% 3% 50.4 51.2 52.0 52.8 53.6 54.4 55.2 56.0 56.8 57.6 58.4 59.2 60.1 60.9 61.7 62.4 63.2 64.0 64.0 64.0 64.0 - - -
22 2% 3% 50.2 51.0 51.8 52.5 53.3 54.1 54.9 55.6 56.4 57.2 58.0 58.7 59.5 60.2 61.3 61.8 62.5 63.2 64.0 64.0 64.0 64.0 - -
23 3% 3% 50.1 50.9 51.6 52.4 53.1 53.9 54.6 55.4 56.1 56.9 57.6 58.4 59.1 59.9 60.6 61.4 62.3 62.7 63.5 64.0 64.0 64.0 64.0 -
24 3% 3% 50.0 50.8 51.5 52.2 52.9 53.7 54.4 55.1 55.8 56.6 57.3 58.0 58.7 59.5 60.2 61.1 61.9 62.2 62.8 63.5 64.0 64.0 64.0 64.0
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Table A.6: Model Outputs - X0 ∼ 40 +Gamma(9, 4/3), X1 ∼ Gamma(3, 1), β = 0.2

Scr. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2% 23% 52.7 - - - - - - - - - - - - - - - - - - - - - - -
2 25% 39% 51.1 54.6 - - - - - - - - - - - - - - - - - - - - - -
3 29% 51% 50.2 52.9 55.9 - - - - - - - - - - - - - - - - - - - - -
4 39% 59% 49.5 51.8 54.1 56.9 - - - - - - - - - - - - - - - - - - - -
5 47% 66% 49.0 51.1 53.0 55.1 57.8 - - - - - - - - - - - - - - - - - - -
6 54% 71% 48.6 50.5 52.2 53.9 55.9 58.5 - - - - - - - - - - - - - - - - - -
7 60% 75% 48.2 50.0 51.5 53.1 54.7 56.6 59.2 - - - - - - - - - - - - - - - - -
8 65% 78% 47.9 49.6 51.0 52.4 53.8 55.4 57.3 59.8 - - - - - - - - - - - - - - - -
9 69% 81% 47.7 49.2 50.6 51.8 53.1 54.5 56.0 57.8 60.3 - - - - - - - - - - - - - - -
10 73% 83% 47.4 48.9 50.2 51.4 52.6 53.8 55.1 56.6 58.4 60.8 - - - - - - - - - - - - - -
11 76% 85% 47.2 48.7 49.9 51.0 52.1 53.2 54.4 55.7 57.1 58.8 61.2 - - - - - - - - - - - - -
12 78% 87% 47.0 48.4 49.6 50.6 51.7 52.7 53.8 54.9 56.2 57.6 59.3 61.7 - - - - - - - - - - - -
13 80% 88% 46.9 48.2 49.3 50.3 51.3 52.3 53.2 54.3 55.4 56.6 58.0 59.7 62.1 - - - - - - - - - - -
14 82% 89% 46.7 48.0 49.1 50.0 51.0 51.9 52.8 53.8 54.8 55.8 57.0 58.4 60.1 62.4 - - - - - - - - - -
15 84% 90% 46.6 47.8 48.8 49.8 50.7 51.5 52.4 53.3 54.2 55.2 56.3 57.4 58.8 60.5 62.8 - - - - - - - - -
16 85% 91% 46.5 47.7 48.7 49.5 50.4 51.2 52.0 52.9 53.7 54.6 55.6 56.7 57.8 59.2 60.8 63.1 - - - - - - - -
17 87% 92% 46.3 47.5 48.5 49.3 50.1 50.9 51.7 52.5 53.3 54.2 55.0 56.0 57.0 58.2 59.5 61.1 63.4 - - - - - - -
18 88% 92% 41.4 46.3 47.5 48.5 49.3 50.1 50.9 51.7 52.5 53.3 54.2 55.0 56.0 57.0 58.2 59.5 61.1 63.4 - - - - - -
19 89% 93% 41.3 46.2 47.4 48.3 49.1 49.9 50.7 51.4 52.2 53.0 53.7 54.6 55.4 56.4 57.4 58.5 59.8 61.4 63.7 - - - - -
20 90% 93% 41.2 46.1 47.2 48.1 49.0 49.7 50.4 51.2 51.9 52.6 53.4 54.1 54.9 55.8 56.7 57.7 58.8 60.1 61.7 64.0 - - - -
21 90% 94% 41.2 46.0 47.1 48.0 48.8 49.5 50.2 50.9 51.6 52.3 53.0 53.7 54.5 55.3 56.1 57.0 58.0 59.1 60.4 62.0 64.3 - - -
22 91% 94% 41.1 45.9 47.0 47.9 48.6 49.3 50.0 50.7 51.4 52.0 52.7 53.4 54.1 54.8 55.6 56.4 57.3 58.3 59.4 60.7 62.3 64.5 - -
23 92% 95% 41.1 45.8 46.9 47.7 48.5 49.2 49.8 50.5 51.1 51.8 52.4 53.1 53.7 54.4 55.2 55.9 56.7 57.6 58.6 59.7 61.0 62.5 64.8 -
24 92% 95% 41.0 45.7 46.8 47.6 48.3 49.0 49.7 50.3 50.9 51.5 52.2 52.8 53.4 54.1 54.8 55.5 56.2 57.0 57.9 58.9 60.0 61.2 62.8 65.0
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Table A.7: Model Outputs - X0 ∼ 40 +Gamma(9, 4/3), X1 ∼ Gamma(3, 1), β = 0.6

Scr. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1% 12% 52.7 - - - - - - - - - - - - - - - - - - - - - - -
2 12% 21% 51.5 54.1 - - - - - - - - - - - - - - - - - - - - - -
3 15% 28% 50.8 52.8 55.0 - - - - - - - - - - - - - - - - - - - - -
4 20% 34% 50.3 52.0 53.7 55.7 - - - - - - - - - - - - - - - - - - - -
5 24% 40% 49.9 51.4 52.8 54.4 56.3 - - - - - - - - - - - - - - - - - - -
6 28% 44% 49.5 50.9 52.2 53.5 54.9 56.8 - - - - - - - - - - - - - - - - - -
7 32% 48% 49.3 50.6 51.7 52.9 54.1 55.5 57.2 - - - - - - - - - - - - - - - - -
8 36% 52% 49.0 50.2 51.3 52.4 53.4 54.6 55.9 57.6 - - - - - - - - - - - - - - - -
9 39% 55% 48.8 50.0 51.0 52.0 52.9 53.9 55.0 56.3 58.0 - - - - - - - - - - - - - - -
10 42% 58% 48.6 49.7 50.7 51.6 52.5 53.4 54.4 55.4 56.7 58.4 - - - - - - - - - - - - - -
11 45% 61% 48.4 49.5 50.4 51.3 52.1 53.0 53.8 54.8 55.8 57.0 58.7 - - - - - - - - - - - - -
12 48% 63% 48.3 49.3 50.2 51.0 51.8 52.6 53.4 54.2 55.1 56.1 57.4 59.0 - - - - - - - - - - - -
13 50% 65% 48.1 49.1 50.0 50.7 51.5 52.2 53.0 53.8 54.6 55.5 56.5 57.7 59.3 - - - - - - - - - - -
14 53% 67% 48.0 49.0 49.8 50.5 51.2 51.9 52.6 53.4 54.1 54.9 55.8 56.8 57.9 59.5 - - - - - - - - - -
15 55% 69% 47.9 48.8 49.6 50.3 51.0 51.7 52.3 53.0 53.7 54.4 55.2 56.1 57.1 58.2 59.8 - - - - - - - - -
16 57% 71% 47.8 48.7 49.4 50.1 50.8 51.4 52.1 52.7 53.4 54.0 54.8 55.5 56.4 57.3 58.5 60.0 - - - - - - - -
17 59% 71% 41.4 47.8 48.7 49.4 50.1 50.8 51.4 52.1 52.7 53.4 54.0 54.8 55.5 56.4 57.3 58.5 60.0 - - - - - - -
18 61% 72% 41.3 47.6 48.5 49.3 49.9 50.6 51.2 51.8 52.4 53.0 53.7 54.3 55.0 55.8 56.6 57.6 58.7 60.2 - - - - - -
19 62% 74% 41.3 47.5 48.4 49.1 49.8 50.4 51.0 51.6 52.2 52.8 53.4 54.0 54.6 55.3 56.1 56.9 57.8 58.9 60.5 - - - - -
20 64% 75% 41.2 47.4 48.3 49.0 49.6 50.2 50.8 51.4 51.9 52.5 53.1 53.7 54.3 54.9 55.6 56.3 57.1 58.0 59.2 60.7 - - - -
21 66% 76% 41.2 47.3 48.2 48.9 49.5 50.1 50.6 51.2 51.7 52.3 52.8 53.4 53.9 54.5 55.2 55.8 56.6 57.4 58.3 59.4 60.9 - - -
22 67% 77% 41.1 47.3 48.1 48.7 49.3 49.9 50.5 51.0 51.5 52.0 52.6 53.1 53.6 54.2 54.8 55.4 56.1 56.8 57.6 58.5 59.6 61.1 - -
23 68% 78% 41.1 47.2 48.0 48.6 49.2 49.8 50.3 50.8 51.3 51.8 52.3 52.8 53.4 53.9 54.5 55.0 55.6 56.3 57.0 57.8 58.7 59.8 61.3 -
24 70% 79% 41.0 47.1 47.9 48.5 49.1 49.6 50.2 50.7 51.1 51.6 52.1 52.6 53.1 53.6 54.1 54.7 55.3 55.9 56.5 57.2 58.0 58.9 60.0 61.4
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Table A.8: Model Outputs - X0 ∼ 40 +Gamma(9, 4/3), X1 ∼ Gamma(3, 1), β = 0.9

Scr. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0% 3% 52.7 - - - - - - - - - - - - - - - - - - - - - - -
2 3% 6% 52.2 53.2 - - - - - - - - - - - - - - - - - - - - - -
3 4% 8% 51.8 52.7 53.7 - - - - - - - - - - - - - - - - - - - - -
4 5% 10% 51.5 52.3 53.1 54.0 - - - - - - - - - - - - - - - - - - - -
5 6% 12% 51.3 52.0 52.7 53.5 54.3 - - - - - - - - - - - - - - - - - - -
6 7% 15% 51.0 51.7 52.4 53.1 53.8 54.6 - - - - - - - - - - - - - - - - - -
7 9% 16% 50.9 51.5 52.1 52.7 53.4 54.1 54.9 - - - - - - - - - - - - - - - - -
8 10% 18% 50.7 51.3 51.8 52.4 53.0 53.7 54.4 55.1 - - - - - - - - - - - - - - - -
9 11% 20% 50.5 51.1 51.6 52.2 52.7 53.3 53.9 54.6 55.3 - - - - - - - - - - - - - - -
10 12% 22% 50.4 50.9 51.4 52.0 52.5 53.0 53.6 54.2 54.8 55.5 - - - - - - - - - - - - - -
11 13% 23% 50.3 50.8 51.3 51.8 52.3 52.8 53.3 53.8 54.4 55.0 55.6 - - - - - - - - - - - - -
12 14% 25% 50.2 50.6 51.1 51.6 52.1 52.5 53.0 53.5 54.0 54.6 55.2 55.8 - - - - - - - - - - - -
13 15% 27% 50.1 50.5 51.0 51.4 51.9 52.3 52.8 53.2 53.7 54.2 54.7 55.3 56.0 - - - - - - - - - - -
14 16% 27% 41.7 50.1 50.5 51.0 51.4 51.9 52.3 52.8 53.2 53.7 54.2 54.7 55.3 56.0 - - - - - - - - - -
15 17% 28% 41.6 50.0 50.4 50.8 51.3 51.7 52.1 52.6 53.0 53.4 53.9 54.4 54.9 55.5 56.1 - - - - - - - - -
16 18% 29% 41.5 49.9 50.3 50.7 51.1 51.6 52.0 52.4 52.8 53.2 53.6 54.1 54.6 55.1 55.7 56.3 - - - - - - - -
17 19% 31% 41.4 49.8 50.2 50.6 51.0 51.4 51.8 52.2 52.6 53.0 53.4 53.8 54.3 54.7 55.2 55.8 56.4 - - - - - - -
18 20% 32% 41.4 49.7 50.1 50.5 50.9 51.3 51.7 52.0 52.4 52.8 53.2 53.6 54.0 54.4 54.9 55.4 55.9 56.5 - - - - - -
19 21% 33% 41.3 49.6 50.0 50.4 50.8 51.2 51.5 51.9 52.3 52.6 53.0 53.4 53.7 54.2 54.6 55.0 55.5 56.1 56.7 - - - - -
20 22% 35% 41.2 49.5 49.9 50.3 50.7 51.0 51.4 51.8 52.1 52.5 52.8 53.2 53.5 53.9 54.3 54.7 55.2 55.7 56.2 56.8 - - - -
21 23% 36% 41.2 49.4 49.8 50.2 50.6 50.9 51.3 51.6 52.0 52.3 52.6 53.0 53.3 53.7 54.1 54.5 54.9 55.3 55.8 56.3 56.9 - - -
22 24% 37% 41.1 49.4 49.8 50.1 50.5 50.8 51.2 51.5 51.8 52.2 52.5 52.8 53.2 53.5 53.9 54.2 54.6 55.0 55.5 55.9 56.5 57.0 - -
23 25% 38% 41.1 49.3 49.7 50.0 50.4 50.7 51.1 51.4 51.7 52.0 52.3 52.7 53.0 53.3 53.7 54.0 54.4 54.7 55.1 55.6 56.1 56.6 57.1 -
24 25% 39% 41.0 49.2 49.6 50.0 50.3 50.6 51.0 51.3 51.6 51.9 52.2 52.5 52.8 53.1 53.5 53.8 54.1 54.5 54.9 55.3 55.7 56.2 56.7 57.2
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Table A.9: Model Outputs - X0 ∼ 40 +Gamma(9, 4/3), X1 ∼ Exp(1/3), β = 0.2

Scr. Perf. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. QBI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 4% 19% 21% 53.2 - - - - - - - - - - - - - - - - - - - - - - -
2 23% 32% 33% 51.4 55.1 - - - - - - - - - - - - - - - - - - - - - -
3 28% 41% 43% 50.4 53.1 56.3 - - - - - - - - - - - - - - - - - - - - -
4 35% 47% 49% 49.7 51.9 54.2 57.2 - - - - - - - - - - - - - - - - - - - -
5 41% 53% 54% 49.2 51.1 53.0 55.1 58.0 - - - - - - - - - - - - - - - - - - -
6 46% 57% 59% 48.8 50.5 52.1 53.8 55.8 58.6 - - - - - - - - - - - - - - - - - -
7 51% 60% 62% 48.4 50.0 51.5 52.9 54.5 56.4 59.2 - - - - - - - - - - - - - - - - -
8 54% 63% 65% 48.1 49.6 51.0 52.2 53.6 55.1 57.0 59.6 - - - - - - - - - - - - - - - -
9 57% 66% 68% 47.9 49.3 50.5 51.7 52.9 54.2 55.6 57.4 60.1 - - - - - - - - - - - - - - -
10 60% 68% 70% 47.7 49.0 50.2 51.2 52.3 53.4 54.7 56.1 57.9 60.4 - - - - - - - - - - - - - -
11 62% 70% 72% 47.5 48.8 49.8 50.9 51.8 52.9 53.9 55.1 56.5 58.3 60.8 - - - - - - - - - - - - -
12 65% 71% 73% 47.3 48.5 49.6 50.5 51.4 52.4 53.3 54.4 55.5 56.9 58.6 61.1 - - - - - - - - - - - -
13 66% 73% 75% 47.2 48.3 49.3 50.2 51.1 51.9 52.8 53.8 54.8 55.9 57.2 58.9 61.4 - - - - - - - - - - -
14 68% 74% 76% 47.0 48.2 49.1 50.0 50.8 51.6 52.4 53.2 54.1 55.1 56.2 57.6 59.2 61.7 - - - - - - - - - -
15 70% 75% 77% 46.9 48.0 48.9 49.7 50.5 51.3 52.0 52.8 53.6 54.5 55.5 56.6 57.9 59.5 62.0 - - - - - - - - -
16 71% 76% 78% 46.8 47.9 48.7 49.5 50.3 51.0 51.7 52.4 53.2 54.0 54.8 55.8 56.9 58.1 59.8 62.2 - - - - - - - -
17 72% 77% 78% 41.4 46.8 47.9 48.7 49.5 50.3 51.0 51.7 52.4 53.2 54.0 54.8 55.8 56.9 58.1 59.8 62.2 - - - - - - -
18 74% 78% 79% 41.4 46.7 47.7 48.6 49.3 50.0 50.7 51.4 52.1 52.8 53.5 54.3 55.1 56.1 57.1 58.4 60.0 62.5 - - - - - -
19 75% 79% 80% 41.3 46.6 47.6 48.4 49.1 49.8 50.5 51.1 51.8 52.4 53.1 53.8 54.6 55.4 56.3 57.4 58.6 60.3 62.7 - - - - -
20 76% 80% 81% 41.2 46.5 47.5 48.3 49.0 49.6 50.3 50.9 51.5 52.1 52.8 53.4 54.1 54.9 55.7 56.6 57.6 58.9 60.5 62.9 - - - -
21 76% 81% 82% 41.2 46.4 47.4 48.1 48.8 49.5 50.1 50.7 51.3 51.8 52.4 53.1 53.7 54.4 55.1 55.9 56.8 57.9 59.1 60.7 63.1 - - -
22 77% 81% 82% 41.1 46.3 47.3 48.0 48.7 49.3 49.9 50.5 51.0 51.6 52.2 52.7 53.4 54.0 54.7 55.4 56.2 57.1 58.1 59.3 60.9 63.3 - -
23 78% 82% 83% 41.0 46.2 47.2 47.9 48.6 49.2 49.7 50.3 50.8 51.4 51.9 52.5 53.0 53.6 54.2 54.9 55.6 56.4 57.3 58.3 59.5 61.1 63.4 -
24 79% 82% 84% 41.0 46.1 47.1 47.8 48.4 49.0 49.6 50.1 50.6 51.1 51.7 52.2 52.7 53.3 53.9 54.5 55.1 55.8 56.6 57.5 58.5 59.7 61.3 63.6
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Table A.10: Model Outputs - X0 ∼ 40 +Gamma(3, 4), X1 ∼ Exp(1/3), β = 0.2

Scr. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 5% 14% 51.2 - - - - - - - - - - - - - - - - - - - - - - -
2 19% 25% 49.1 54.0 - - - - - - - - - - - - - - - - - - - - - -
3 27% 32% 47.9 51.5 56.0 - - - - - - - - - - - - - - - - - - - - -
4 34% 39% 47.1 50.1 53.3 57.5 - - - - - - - - - - - - - - - - - - - -
5 39% 44% 46.5 49.1 51.8 54.8 58.8 - - - - - - - - - - - - - - - - - - -
6 44% 48% 46.1 48.4 50.7 53.1 56.0 60.0 - - - - - - - - - - - - - - - - - -
7 48% 52% 45.7 47.8 49.8 51.9 54.2 57.0 60.9 - - - - - - - - - - - - - - - - -
8 51% 55% 45.4 47.4 49.2 51.0 53.0 55.3 58.0 61.8 - - - - - - - - - - - - - - - -
9 54% 57% 45.1 47.0 48.6 50.3 52.1 54.0 56.1 58.8 62.6 - - - - - - - - - - - - - - -
10 57% 60% 44.9 46.6 48.2 49.7 51.3 53.0 54.8 57.0 59.6 63.4 - - - - - - - - - - - - - -
11 59% 62% 44.7 46.3 47.8 49.2 50.6 52.2 53.8 55.6 57.7 60.3 64.0 - - - - - - - - - - - - -
12 61% 64% 44.5 46.1 47.5 48.8 50.1 51.5 52.9 54.5 56.3 58.4 61.0 64.7 - - - - - - - - - - - -
13 63% 65% 44.3 45.8 47.1 48.4 49.6 50.9 52.2 53.7 55.2 57.0 59.0 61.6 65.3 - - - - - - - - - - -
14 64% 67% 44.2 45.6 46.9 48.1 49.2 50.4 51.6 52.9 54.3 55.8 57.6 59.6 62.1 65.8 - - - - - - - - - -
15 66% 68% 44.1 45.4 46.6 47.8 48.9 50.0 51.1 52.3 53.6 54.9 56.4 58.1 60.2 62.7 66.3 - - - - - - - - -
16 67% 70% 43.9 45.3 46.4 47.5 48.5 49.6 50.7 51.8 52.9 54.2 55.5 57.0 58.7 60.7 63.2 66.8 - - - - - - - -
17 68% 71% 43.8 45.1 46.2 47.3 48.3 49.2 50.3 51.3 52.4 53.5 54.7 56.0 57.5 59.2 61.2 63.7 67.3 - - - - - - -
18 69% 72% 43.7 45.0 46.0 47.0 48.0 48.9 49.9 50.9 51.9 52.9 54.0 55.2 56.6 58.0 59.7 61.6 64.1 67.7 - - - - - -
19 70% 73% 43.6 44.9 45.9 46.8 47.8 48.7 49.6 50.5 51.4 52.4 53.5 54.6 55.7 57.0 58.5 60.1 62.1 64.6 68.1 - - - - -
20 71% 74% 43.6 44.7 45.7 46.6 47.5 48.4 49.3 50.1 51.0 52.0 52.9 54.0 55.0 56.2 57.5 58.9 60.6 62.5 65.0 68.6 - - - -
21 72% 75% 43.5 44.6 45.6 46.5 47.3 48.2 49.0 49.8 50.7 51.6 52.5 53.4 54.4 55.5 56.7 57.9 59.3 61.0 62.9 65.4 68.9 - - -
22 73% 76% 43.4 44.5 45.5 46.3 47.1 47.9 48.7 49.5 50.4 51.2 52.0 52.9 53.9 54.9 55.9 57.1 58.3 59.7 61.4 63.3 65.7 69.3 - -
23 74% 76% 43.3 44.4 45.3 46.2 47.0 47.7 48.5 49.3 50.1 50.9 51.7 52.5 53.4 54.3 55.3 56.3 57.5 58.7 60.1 61.7 63.7 66.1 69.7 -
24 74% 77% 43.3 44.3 45.2 46.0 46.8 47.6 48.3 49.0 49.8 50.5 51.3 52.1 52.9 53.8 54.7 55.7 56.7 57.9 59.1 60.5 62.1 64.0 66.5 70.0
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Table A.11: Model Outputs - X0 ∼ 40 + Exp(1/12), X1 ∼ Exp(1/3), β = 0.2

Scr. Perf. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. QBI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 4% 12% 13% 45.5 - - - - - - - - - - - - - - - - - - - - - - -
2 13% 20% 22% 44.0 49.1 - - - - - - - - - - - - - - - - - - - - - -
3 21% 27% 28% 43.3 46.9 51.9 - - - - - - - - - - - - - - - - - - - - -
4 28% 33% 34% 42.8 45.7 49.2 54.3 - - - - - - - - - - - - - - - - - - - -
5 34% 38% 39% 42.5 44.9 47.8 51.3 56.3 - - - - - - - - - - - - - - - - - - -
6 39% 42% 42% 42.2 44.3 46.7 49.6 53.2 58.2 - - - - - - - - - - - - - - - - - -
7 43% 45% 46% 42.0 43.9 46.0 48.4 51.3 54.9 59.9 - - - - - - - - - - - - - - - - -
8 46% 48% 49% 41.8 43.5 45.4 47.5 50.0 52.8 56.4 61.4 - - - - - - - - - - - - - - - -
9 49% 51% 51% 41.7 43.3 45.0 46.9 49.0 51.4 54.3 57.8 62.8 - - - - - - - - - - - - - - -
10 51% 53% 54% 41.6 43.0 44.6 46.3 48.2 50.3 52.7 55.6 59.2 64.2 - - - - - - - - - - - - - -
11 54% 55% 56% 41.5 42.8 44.3 45.8 47.5 49.4 51.5 53.9 56.8 60.4 65.4 - - - - - - - - - - - - -
12 56% 57% 58% 41.4 42.7 44.0 45.4 47.0 48.7 50.6 52.7 55.1 58.0 61.5 66.6 - - - - - - - - - - - -
13 57% 59% 59% 41.3 42.5 43.8 45.1 46.5 48.1 49.8 51.7 53.8 56.2 59.1 62.6 67.6 - - - - - - - - - - -
14 59% 60% 61% 41.3 42.4 43.5 44.8 46.1 47.6 49.1 50.8 52.7 54.8 57.2 60.1 63.7 68.7 - - - - - - - - - -
15 60% 62% 62% 41.2 42.3 43.4 44.5 45.8 47.1 48.6 50.1 51.8 53.7 55.8 58.2 61.1 64.7 69.7 - - - - - - - - -
16 61% 63% 64% 41.1 42.1 43.2 44.3 45.5 46.7 48.1 49.5 51.1 52.8 54.6 56.8 59.2 62.0 65.6 70.6 - - - - - - - -
17 63% 64% 65% 41.1 42.0 43.0 44.1 45.2 46.4 47.6 49.0 50.4 52.0 53.7 55.5 57.7 60.1 62.9 66.5 71.5 - - - - - - -
18 64% 65% 66% 41.1 42.0 42.9 43.9 45.0 46.1 47.2 48.5 49.8 51.3 52.8 54.5 56.4 58.5 60.9 63.8 67.4 72.4 - - - - - -
19 65% 66% 67% 41.0 41.9 42.8 43.7 44.7 45.8 46.9 48.1 49.3 50.7 52.1 53.6 55.4 57.2 59.3 61.8 64.6 68.2 73.2 - - - - -
20 65% 67% 68% 41.0 41.8 42.7 43.6 44.5 45.5 46.6 47.7 48.9 50.1 51.5 52.9 54.4 56.1 58.0 60.1 62.6 65.4 69.0 74.0 - - - -
21 66% 68% 69% 40.9 41.7 42.6 43.4 44.4 45.3 46.3 47.4 48.5 49.6 50.9 52.2 53.7 55.2 56.9 58.8 60.9 63.3 66.2 69.8 74.8 - - -
22 67% 69% 70% 40.9 41.7 42.5 43.3 44.2 45.1 46.0 47.0 48.1 49.2 50.4 51.6 53.0 54.4 56.0 57.7 59.5 61.7 64.1 66.9 70.5 75.5 - -
23 68% 70% 71% 40.9 41.6 42.4 43.2 44.0 44.9 45.8 46.8 47.8 48.8 49.9 51.1 52.3 53.7 55.1 56.7 58.4 60.3 62.4 64.8 67.7 71.2 76.2 -
24 68% 71% 72% 40.8 41.6 42.3 43.1 43.9 44.7 45.6 46.5 47.5 48.4 49.5 50.6 51.8 53.0 54.4 55.8 57.4 59.1 60.9 63.1 65.5 68.3 71.9 76.9
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Table A.12: Model Outputs - X0 ∼ 40 +Weibull(13.3770, 3.3035)(mean = 12, var = 16), X1 ∼ Exp(1/3), β = 0.2

Scr. Perf. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. QBI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 3% 17% 20% 54.3 - - - - - - - - - - - - - - - - - - - - - - -
2 21% 30% 32% 52.2 56.0 - - - - - - - - - - - - - - - - - - - - - -
3 28% 39% 41% 50.9 53.9 57.0 - - - - - - - - - - - - - - - - - - - - -
4 36% 46% 48% 50.0 52.5 54.9 57.8 - - - - - - - - - - - - - - - - - - - -
5 42% 51% 54% 49.3 51.6 53.6 55.7 58.3 - - - - - - - - - - - - - - - - - - -
6 47% 55% 58% 48.7 50.8 52.6 54.4 56.3 58.8 - - - - - - - - - - - - - - - - - -
7 51% 59% 61% 48.2 50.2 51.8 53.4 55.0 56.8 59.2 - - - - - - - - - - - - - - - - -
8 54% 62% 64% 47.8 49.7 51.2 52.6 54.0 55.5 57.2 59.5 - - - - - - - - - - - - - - - -
9 58% 65% 67% 47.5 49.3 50.7 52.0 53.2 54.5 55.9 57.6 59.8 - - - - - - - - - - - - - - -
10 60% 67% 69% 47.2 48.9 50.2 51.4 52.6 53.8 55.0 56.3 57.9 60.1 - - - - - - - - - - - - - -
11 63% 69% 71% 46.9 48.6 49.8 51.0 52.1 53.1 54.2 55.4 56.6 58.2 60.3 - - - - - - - - - - - - -
12 65% 70% 73% 46.7 48.3 49.5 50.6 51.6 52.6 53.6 54.6 55.7 56.9 58.4 60.6 - - - - - - - - - - - -
13 67% 72% 74% 46.5 48.0 49.2 50.2 51.2 52.1 53.0 54.0 55.0 56.0 57.2 58.7 60.8 - - - - - - - - - - -
14 69% 73% 76% 46.3 47.8 48.9 49.9 50.8 51.7 52.6 53.4 54.3 55.3 56.3 57.5 58.9 60.9 - - - - - - - - - -
15 70% 75% 77% 46.1 47.5 48.7 49.6 50.5 51.3 52.2 53.0 53.8 54.7 55.6 56.5 57.7 59.1 61.1 - - - - - - - - -
16 72% 76% 78% 46.0 47.3 48.4 49.4 50.2 51.0 51.8 52.6 53.3 54.1 54.9 55.8 56.8 57.9 59.3 61.3 - - - - - - - -
17 73% 77% 79% 45.8 47.2 48.2 49.1 49.9 50.7 51.5 52.2 52.9 53.7 54.4 55.2 56.1 57.0 58.1 59.4 61.4 - - - - - - -
18 74% 78% 80% 45.7 47.0 48.0 48.9 49.7 50.4 51.2 51.9 52.5 53.2 53.9 54.7 55.4 56.3 57.2 58.3 59.6 61.5 - - - - - -
19 75% 79% 81% 45.5 46.8 47.8 48.7 49.5 50.2 50.9 51.6 52.2 52.9 53.5 54.2 54.9 55.7 56.5 57.4 58.4 59.8 61.7 - - - - -
20 76% 79% 81% 45.4 46.7 47.7 48.5 49.2 50.0 50.6 51.3 51.9 52.5 53.2 53.8 54.5 55.1 55.9 56.7 57.6 58.6 59.9 61.8 - - - -
21 77% 80% 82% 45.3 46.5 47.5 48.3 49.1 49.7 50.4 51.0 51.6 52.2 52.8 53.4 54.1 54.7 55.4 56.1 56.8 57.7 58.7 60.0 61.9 - - -
22 78% 81% 83% 45.2 46.4 47.3 48.1 48.9 49.5 50.2 50.8 51.4 51.9 52.5 53.1 53.7 54.3 54.9 55.6 56.3 57.0 57.9 58.9 60.2 62.0 - -
23 79% 81% 83% 45.1 46.3 47.2 48.0 48.7 49.3 50.0 50.5 51.1 51.7 52.2 52.8 53.3 53.9 54.5 55.1 55.7 56.4 57.2 58.0 59.0 60.3 62.1 -
24 79% 82% 84% 45.0 46.2 47.1 47.8 48.5 49.2 49.8 50.3 50.9 51.4 52.0 52.5 53.0 53.6 54.1 54.7 55.3 55.9 56.6 57.3 58.2 59.1 60.4 62.2

81



Table A.13: Model Outputs - X0 ∼ 40 +Weibull(13.4908, 1.7915)(mean = 12, var = 48), X1 ∼ Exp(1/3), β = 0.2

Scr. Perf. Perf. Optimal Screening Policies
Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 5% 13% 51.8 - - - - - - - - - - - - - - - - - - - - - - -
2 18% 23% 49.3 54.7 - - - - - - - - - - - - - - - - - - - - - -
3 27% 31% 47.9 52.0 56.8 - - - - - - - - - - - - - - - - - - - - -
4 33% 37% 46.9 50.4 53.9 58.3 - - - - - - - - - - - - - - - - - - - -
5 39% 42% 46.2 49.2 52.2 55.4 59.6 - - - - - - - - - - - - - - - - - - -
6 44% 46% 45.7 48.4 50.9 53.6 56.6 60.7 - - - - - - - - - - - - - - - - - -
7 48% 50% 45.2 47.7 50.0 52.3 54.8 57.7 61.6 - - - - - - - - - - - - - - - - -
8 51% 53% 44.9 47.2 49.2 51.3 53.4 55.8 58.6 62.4 - - - - - - - - - - - - - - - -
9 54% 56% 44.6 46.7 48.6 50.5 52.4 54.4 56.7 59.4 63.2 - - - - - - - - - - - - - - -
10 57% 59% 44.3 46.3 48.1 49.8 51.5 53.3 55.3 57.5 60.2 63.9 - - - - - - - - - - - - - -
11 59% 61% 44.1 46.0 47.6 49.2 50.8 52.4 54.2 56.1 58.2 60.8 64.5 - - - - - - - - - - - - -
12 61% 63% 43.9 45.7 47.2 48.7 50.2 51.7 53.3 54.9 56.8 58.9 61.4 65.0 - - - - - - - - - - - -
13 63% 64% 43.7 45.4 46.9 48.3 49.7 51.1 52.5 54.0 55.6 57.4 59.5 62.0 65.6 - - - - - - - - - - -
14 64% 66% 43.5 45.2 46.6 47.9 49.2 50.5 51.8 53.2 54.7 56.3 58.0 60.0 62.5 66.0 - - - - - - - - - -
15 66% 68% 43.4 44.9 46.3 47.6 48.8 50.0 51.3 52.5 53.9 55.3 56.8 58.6 60.5 63.0 66.5 - - - - - - - - -
16 67% 69% 43.3 44.7 46.0 47.3 48.4 49.6 50.8 52.0 53.2 54.5 55.9 57.4 59.1 61.0 63.5 66.9 - - - - - - - -
17 68% 70% 43.1 44.6 45.8 47.0 48.1 49.2 50.3 51.4 52.6 53.8 55.0 56.4 57.9 59.5 61.5 63.9 67.3 - - - - - - -
18 69% 71% 43.0 44.4 45.6 46.7 47.8 48.9 49.9 51.0 52.1 53.2 54.3 55.6 56.9 58.4 60.0 61.9 64.3 67.7 - - - - - -
19 70% 72% 42.9 44.3 45.4 46.5 47.5 48.5 49.5 50.5 51.6 52.6 53.7 54.9 56.1 57.4 58.8 60.4 62.3 64.7 68.0 - - - - -
20 71% 73% 42.8 44.1 45.2 46.3 47.3 48.2 49.2 50.2 51.1 52.1 53.2 54.2 55.3 56.5 57.8 59.2 60.8 62.7 65.0 68.4 - - - -
21 72% 74% 42.8 44.0 45.1 46.1 47.0 48.0 48.9 49.8 50.7 51.7 52.7 53.7 54.7 55.8 57.0 58.2 59.6 61.2 63.1 65.4 68.7 - - -
22 73% 75% 42.7 43.9 44.9 45.9 46.8 47.7 48.6 49.5 50.4 51.3 52.2 53.1 54.1 55.1 56.2 57.4 58.6 60.0 61.6 63.4 65.7 69.0 - -
23 74% 76% 42.6 43.8 44.8 45.7 46.6 47.5 48.4 49.2 50.1 50.9 51.8 52.7 53.6 54.6 55.6 56.6 57.8 59.0 60.4 61.9 63.7 66.0 69.3 -
24 74% 77% 42.5 43.7 44.7 45.6 46.4 47.3 48.1 48.9 49.8 50.6 51.4 52.3 53.1 54.0 55.0 56.0 57.0 58.1 59.4 60.7 62.2 64.0 66.3 69.6
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Table A.14: Model Outputs - X0 ∼ 40 + Exp(1/12), X1 ∼ Gamma(3, 1), β = 0.2

Scr. Perf. Optimal Screening Policies
Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 15% 44.4 - - - - - - - - - - - - - - - - - - - - - - -
2 25% 43.5 47.6 - - - - - - - - - - - - - - - - - - - - - -
3 34% 43.1 46.2 50.3 - - - - - - - - - - - - - - - - - - - - -
4 41% 42.7 45.4 48.6 52.7 - - - - - - - - - - - - - - - - - - - -
5 46% 42.5 44.8 47.5 50.7 54.8 - - - - - - - - - - - - - - - - - - -
6 51% 42.3 44.4 46.8 49.4 52.6 56.7 - - - - - - - - - - - - - - - - - -
7 55% 42.1 44.1 46.2 48.5 51.2 54.4 58.5 - - - - - - - - - - - - - - - - -
8 59% 42.0 43.8 45.7 47.8 50.2 52.9 56.1 60.1 - - - - - - - - - - - - - - - -
9 62% 41.9 43.5 45.3 47.3 49.4 51.7 54.4 57.6 61.7 - - - - - - - - - - - - - - -
10 65% 41.8 43.3 45.0 46.8 48.7 50.8 53.2 55.9 59.1 63.1 - - - - - - - - - - - - - -
11 67% 41.7 43.2 44.7 46.4 48.2 50.1 52.2 54.6 57.3 60.4 64.5 - - - - - - - - - - - - -
12 69% 41.6 43.0 44.5 46.0 47.7 49.5 51.4 53.5 55.9 58.6 61.8 65.8 - - - - - - - - - - - -
13 71% 41.6 42.9 44.3 45.7 47.3 48.9 50.7 52.7 54.8 57.1 59.8 63.0 67.1 - - - - - - - - - - -
14 73% 41.5 42.8 44.1 45.5 46.9 48.5 50.1 51.9 53.9 56.0 58.3 61.0 64.2 68.3 - - - - - - - - - -
15 75% 41.5 42.6 43.9 45.2 46.6 48.1 49.6 51.3 53.1 55.0 57.1 59.5 62.2 65.4 69.4 - - - - - - - - -
16 76% 41.4 42.5 43.8 45.0 46.3 47.7 49.2 50.7 52.4 54.2 56.1 58.2 60.6 63.3 66.5 70.5 - - - - - - - -
17 77% 41.4 42.5 43.6 44.8 46.1 47.4 48.8 50.2 51.8 53.5 55.2 57.2 59.3 61.7 64.3 67.5 71.6 - - - - - - -
18 79% 41.3 42.4 43.5 44.6 45.8 47.1 48.4 49.8 51.3 52.8 54.5 56.3 58.2 60.3 62.7 65.4 68.6 72.6 - - - - - -
19 80% 41.3 42.3 43.4 44.5 45.6 46.8 48.1 49.4 50.8 52.3 53.8 55.5 57.3 59.2 61.3 63.7 66.4 69.6 73.6 - - - - -
20 81% 41.2 42.2 43.3 44.3 45.4 46.6 47.8 49.1 50.4 51.8 53.2 54.8 56.4 58.2 60.2 62.3 64.6 67.3 70.5 74.6 - - - -
21 82% 41.2 42.2 43.2 44.2 45.3 46.4 47.5 48.7 50.0 51.3 52.7 54.2 55.7 57.4 59.2 61.1 63.2 65.6 68.3 71.4 75.5 - - -
22 83% 41.2 42.1 43.1 44.1 45.1 46.2 47.3 48.4 49.6 50.9 52.2 53.6 55.1 56.6 58.3 60.1 62.0 64.1 66.5 69.2 72.4 76.4 - -
23 83% 41.1 42.0 43.0 43.9 44.9 46.0 47.0 48.2 49.3 50.5 51.8 53.1 54.5 56.0 57.5 59.2 61.0 62.9 65.0 67.4 70.1 73.2 77.3 -
24 84% 41.1 42.0 42.9 43.8 44.8 45.8 46.8 47.9 49.0 50.2 51.4 52.6 54.0 55.3 56.8 58.4 60.0 61.8 63.7 65.9 68.2 70.9 74.1 78.2
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Table A.15: Model Outputs - X0 ∼ 40 + Exp(1/12), X1 ∼ Gamma(1/3, 9), β = 0.2

Scr. Perf. Optimal Screening Policies
Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 10% 47.4 - - - - - - - - - - - - - - - - - - - - - - -
2 16% 44.9 51.6 - - - - - - - - - - - - - - - - - - - - - -
3 21% 43.8 48.1 54.8 - - - - - - - - - - - - - - - - - - - - -
4 25% 43.1 46.4 50.7 57.3 - - - - - - - - - - - - - - - - - - - -
5 28% 42.6 45.3 48.5 52.9 59.5 - - - - - - - - - - - - - - - - - - -
6 31% 42.3 44.5 47.2 50.4 54.8 61.4 - - - - - - - - - - - - - - - - - -
7 33% 42.0 43.9 46.2 48.8 52.1 56.4 63.1 - - - - - - - - - - - - - - - - -
8 35% 41.8 43.5 45.5 47.7 50.3 53.6 57.9 64.6 - - - - - - - - - - - - - - - -
9 37% 41.6 43.2 44.9 46.8 49.1 51.7 55.0 59.3 66.0 - - - - - - - - - - - - - - -
10 38% 41.5 42.9 44.4 46.1 48.1 50.3 53.0 56.2 60.6 67.2 - - - - - - - - - - - - - -
11 40% 41.4 42.7 44.1 45.6 47.3 49.2 51.5 54.1 57.4 61.7 68.4 - - - - - - - - - - - - -
12 41% 41.3 42.5 43.7 45.1 46.7 48.4 50.3 52.5 55.2 58.5 62.8 69.4 - - - - - - - - - - - -
13 42% 41.2 42.3 43.5 44.7 46.1 47.7 49.4 51.3 53.5 56.2 59.5 63.8 70.4 - - - - - - - - - - -
14 43% 41.1 42.1 43.2 44.4 45.7 47.1 48.6 50.3 52.3 54.5 57.1 60.4 64.7 71.4 - - - - - - - - - -
15 44% 41.1 42.0 43.0 44.1 45.3 46.6 48.0 49.5 51.2 53.1 55.4 58.0 61.3 65.6 72.3 - - - - - - - - -
16 45% 41.0 41.9 42.9 43.9 45.0 46.1 47.4 48.8 50.3 52.0 54.0 56.2 58.8 62.1 66.4 73.1 - - - - - - - -
17 46% 41.0 41.8 42.7 43.7 44.7 45.8 46.9 48.2 49.6 51.1 52.8 54.8 57.0 59.7 62.9 67.3 73.9 - - - - - - -
18 47% 40.9 41.7 42.6 43.5 44.4 45.4 46.5 47.7 49.0 50.4 51.9 53.6 55.5 57.8 60.4 63.7 68.0 74.7 - - - - - -
19 47% 40.9 41.6 42.4 43.3 44.2 45.1 46.1 47.2 48.4 49.7 51.1 52.6 54.3 56.3 58.5 61.1 64.4 68.8 75.4 - - - - -
20 48% 40.8 41.6 42.3 43.1 44.0 44.9 45.8 46.8 47.9 49.1 50.4 51.8 53.3 55.0 56.9 59.2 61.8 65.1 69.4 76.1 - - - -
21 49% 40.8 41.5 42.2 43.0 43.8 44.6 45.5 46.5 47.5 48.6 49.8 51.0 52.4 54.0 55.7 57.6 59.8 62.5 65.8 70.1 76.7 - - -
22 50% 40.8 41.4 42.1 42.8 43.6 44.4 45.3 46.2 47.1 48.1 49.2 50.4 51.7 53.1 54.6 56.3 58.2 60.5 63.1 66.4 70.7 77.4 - -
23 50% 40.7 41.4 42.0 42.7 43.5 44.2 45.0 45.9 46.8 47.7 48.7 49.8 51.0 52.3 53.7 55.2 56.9 58.8 61.1 63.7 67.0 71.3 78.0 -
24 51% 40.7 41.3 42.0 42.6 43.3 44.0 44.8 45.6 46.5 47.4 48.3 49.3 50.4 51.6 52.9 54.3 55.8 57.5 59.4 61.7 64.3 67.6 71.9 78.6
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Table A.16: Model Outputs - X0 ∼ 40 + Exp(1/12), X1 ∼ Lognormal(0.9548, 0.5364)(mean = 3, var = 3), β = 0.2

Scr. Perf. Optimal Screening Policies
Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 14% 44.2 - - - - - - - - - - - - - - - - - - - - - - -
2 25% 43.4 47.3 - - - - - - - - - - - - - - - - - - - - - -
3 34% 42.9 46.0 49.9 - - - - - - - - - - - - - - - - - - - - -
4 41% 42.6 45.2 48.3 52.2 - - - - - - - - - - - - - - - - - - - -
5 47% 42.4 44.7 47.3 50.4 54.3 - - - - - - - - - - - - - - - - - - -
6 52% 42.2 44.3 46.6 49.2 52.3 56.2 - - - - - - - - - - - - - - - - - -
7 56% 42.1 44.0 46.1 48.4 51.0 54.0 57.9 - - - - - - - - - - - - - - - - -
8 60% 42.0 43.7 45.7 47.7 50.0 52.6 55.7 59.6 - - - - - - - - - - - - - - - -
9 63% 41.9 43.5 45.3 47.2 49.3 51.6 54.2 57.3 61.2 - - - - - - - - - - - - - - -
10 66% 41.8 43.3 45.0 46.8 48.7 50.8 53.1 55.7 58.7 62.6 - - - - - - - - - - - - - -
11 68% 41.7 43.2 44.7 46.4 48.2 50.1 52.2 54.5 57.1 60.1 64.0 - - - - - - - - - - - - -
12 71% 41.7 43.0 44.5 46.1 47.7 49.5 51.4 53.5 55.8 58.4 61.5 65.4 - - - - - - - - - - - -
13 73% 41.6 42.9 44.3 45.8 47.4 49.0 50.8 52.7 54.8 57.1 59.7 62.7 66.6 - - - - - - - - - - -
14 75% 41.5 42.8 44.1 45.5 47.0 48.6 50.2 52.0 53.9 56.0 58.3 60.9 64.0 67.9 - - - - - - - - - -
15 76% 41.5 42.7 44.0 45.3 46.7 48.2 49.8 51.4 53.2 55.1 57.2 59.5 62.1 65.1 69.0 - - - - - - - - -
16 78% 41.5 42.6 43.8 45.1 46.5 47.9 49.3 50.9 52.5 54.3 56.2 58.3 60.6 63.2 66.3 70.2 - - - - - - - -
17 79% 41.4 42.5 43.7 44.9 46.2 47.5 48.9 50.4 52.0 53.6 55.4 57.3 59.4 61.7 64.3 67.4 71.3 - - - - - - -
18 80% 41.4 42.4 43.6 44.8 46.0 47.3 48.6 50.0 51.5 53.0 54.7 56.5 58.4 60.5 62.8 65.4 68.4 72.3 - - - - - -
19 81% 41.3 42.4 43.5 44.6 45.8 47.0 48.3 49.6 51.0 52.5 54.1 55.7 57.5 59.4 61.5 63.8 66.4 69.5 73.4 - - - - -
20 82% 41.3 42.3 43.4 44.5 45.6 46.8 48.0 49.3 50.6 52.0 53.5 55.1 56.7 58.5 60.4 62.5 64.8 67.4 70.4 74.4 - - - -
21 83% 41.3 42.2 43.3 44.3 45.4 46.6 47.8 49.0 50.3 51.6 53.0 54.5 56.0 57.7 59.5 61.4 63.5 65.8 68.4 71.4 75.3 - - -
22 84% 41.3 42.2 43.2 44.2 45.3 46.4 47.5 48.7 49.9 51.2 52.5 53.9 55.4 57.0 58.6 60.4 62.3 64.4 66.7 69.3 72.4 76.3 - -
23 85% 41.2 42.1 43.1 44.1 45.1 46.2 47.3 48.4 49.6 50.8 52.1 53.4 54.8 56.3 57.9 59.5 61.3 63.2 65.3 67.6 70.2 73.3 77.2 -
24 86% 41.2 42.1 43.0 44.0 45.0 46.0 47.1 48.2 49.3 50.5 51.7 53.0 54.3 55.7 57.2 58.8 60.4 62.2 64.1 66.2 68.5 71.1 74.2 78.1
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Table A.17: Model Outputs - X0 ∼ 40 + Exp(1/12), X1 ∼ Lognormal(0.7520, 0.8326)(mean = 3, var = 9), β = 0.2

Scr. Perf. Optimal Screening Policies
Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 13% 44.9 - - - - - - - - - - - - - - - - - - - - - - -
2 22% 43.6 48.0 - - - - - - - - - - - - - - - - - - - - - -
3 30% 42.9 46.1 50.6 - - - - - - - - - - - - - - - - - - - - -
4 36% 42.5 45.1 48.3 52.8 - - - - - - - - - - - - - - - - - - - -
5 41% 42.3 44.5 47.1 50.3 54.7 - - - - - - - - - - - - - - - - - - -
6 45% 42.1 44.0 46.2 48.8 52.0 56.5 - - - - - - - - - - - - - - - - - -
7 49% 41.9 43.7 45.6 47.8 50.4 53.6 58.1 - - - - - - - - - - - - - - - - -
8 52% 41.8 43.4 45.1 47.1 49.3 51.9 55.1 59.6 - - - - - - - - - - - - - - - -
9 55% 41.6 43.1 44.8 46.5 48.5 50.7 53.3 56.5 60.9 - - - - - - - - - - - - - - -
10 58% 41.5 42.9 44.4 46.1 47.8 49.8 52.0 54.6 57.8 62.2 - - - - - - - - - - - - - -
11 60% 41.5 42.8 44.2 45.7 47.3 49.1 51.0 53.3 55.8 59.0 63.5 - - - - - - - - - - - - -
12 63% 41.4 42.6 43.9 45.3 46.8 48.5 50.2 52.2 54.4 57.0 60.2 64.6 - - - - - - - - - - - -
13 65% 41.3 42.5 43.7 45.0 46.4 47.9 49.6 51.3 53.3 55.5 58.1 61.3 65.7 - - - - - - - - - - -
14 66% 41.3 42.4 43.6 44.8 46.1 47.5 49.0 50.6 52.4 54.4 56.6 59.2 62.4 66.8 - - - - - - - - - -
15 68% 41.2 42.3 43.4 44.6 45.8 47.1 48.5 50.0 51.6 53.4 55.4 57.6 60.2 63.4 67.8 - - - - - - - - -
16 70% 41.2 42.2 43.3 44.4 45.5 46.8 48.1 49.5 51.0 52.6 54.4 56.3 58.6 61.2 64.4 68.8 - - - - - - - -
17 71% 41.1 42.1 43.1 44.2 45.3 46.5 47.7 49.0 50.4 51.9 53.5 55.3 57.3 59.5 62.1 65.3 69.7 - - - - - - -
18 72% 41.1 42.0 43.0 44.0 45.1 46.2 47.4 48.6 49.9 51.3 52.8 54.4 56.2 58.2 60.4 63.0 66.2 70.6 - - - - - -
19 73% 41.1 42.0 42.9 43.9 44.9 46.0 47.1 48.3 49.5 50.8 52.2 53.7 55.3 57.1 59.1 61.3 63.9 67.1 71.5 - - - - -
20 75% 41.0 41.9 42.8 43.8 44.7 45.8 46.8 47.9 49.1 50.3 51.6 53.0 54.5 56.2 57.9 59.9 62.1 64.7 67.9 72.3 - - - -
21 76% 41.0 41.8 42.7 43.6 44.6 45.5 46.6 47.6 48.7 49.9 51.2 52.5 53.9 55.4 57.0 58.7 60.7 62.9 65.5 68.7 73.2 - - -
22 77% 41.0 41.8 42.6 43.5 44.4 45.4 46.3 47.4 48.4 49.5 50.7 51.9 53.3 54.7 56.1 57.8 59.5 61.5 63.7 66.3 69.5 73.9 - -
23 78% 41.0 41.7 42.6 43.4 44.3 45.2 46.1 47.1 48.1 49.2 50.3 51.5 52.7 54.0 55.4 56.9 58.5 60.3 62.3 64.5 67.1 70.3 74.7 -
24 78% 40.9 41.7 42.5 43.3 44.2 45.0 45.9 46.9 47.9 48.9 49.9 51.1 52.2 53.5 54.8 56.2 57.7 59.3 61.1 63.0 65.2 67.8 71.0 75.5
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Table A.18: Model Outputs - X0 ∼ 40 + Exp(1/12), X1 ∼ Lognormal(0.4055, 1.1774)(mean = 3, var = 27), β = 0.2

Scr. Perf. Optimal Screening Policies
Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 11% 45.6 - - - - - - - - - - - - - - - - - - - - - - -
2 18% 43.8 48.8 - - - - - - - - - - - - - - - - - - - - - -
3 24% 43.0 46.3 51.3 - - - - - - - - - - - - - - - - - - - - -
4 29% 42.5 45.1 48.5 53.5 - - - - - - - - - - - - - - - - - - - -
5 34% 42.1 44.3 46.9 50.3 55.3 - - - - - - - - - - - - - - - - - - -
6 37% 41.9 43.8 46.0 48.6 51.9 56.9 - - - - - - - - - - - - - - - - - -
7 41% 41.7 43.4 45.3 47.4 50.0 53.4 58.4 - - - - - - - - - - - - - - - - -
8 44% 41.6 43.1 44.7 46.6 48.8 51.4 54.7 59.8 - - - - - - - - - - - - - - - -
9 46% 41.5 42.8 44.3 46.0 47.8 50.0 52.6 56.0 61.0 - - - - - - - - - - - - - - -
10 48% 41.4 42.6 44.0 45.5 47.1 49.0 51.2 53.8 57.1 62.2 - - - - - - - - - - - - - -
11 51% 41.3 42.4 43.7 45.1 46.6 48.2 50.1 52.3 54.9 58.2 63.2 - - - - - - - - - - - - -
12 53% 41.2 42.3 43.5 44.7 46.1 47.6 49.2 51.1 53.3 55.9 59.2 64.3 - - - - - - - - - - - -
13 54% 41.1 42.2 43.3 44.4 45.7 47.0 48.5 50.2 52.1 54.2 56.8 60.2 65.2 - - - - - - - - - - -
14 56% 41.1 42.1 43.1 44.2 45.3 46.6 48.0 49.5 51.1 53.0 55.2 57.8 61.1 66.1 - - - - - - - - - -
15 58% 41.0 42.0 42.9 44.0 45.1 46.2 47.5 48.8 50.3 52.0 53.9 56.0 58.6 62.0 67.0 - - - - - - - - -
16 59% 41.0 41.9 42.8 43.8 44.8 45.9 47.1 48.3 49.7 51.2 52.8 54.7 56.9 59.5 62.8 67.8 - - - - - - - -
17 60% 41.0 41.8 42.7 43.6 44.6 45.6 46.7 47.8 49.1 50.5 52.0 53.6 55.5 57.7 60.3 63.6 68.6 - - - - - - -
18 62% 40.9 41.7 42.6 43.4 44.4 45.3 46.4 47.4 48.6 49.9 51.2 52.7 54.4 56.3 58.4 61.0 64.4 69.4 - - - - - -
19 63% 40.9 41.7 42.5 43.3 44.2 45.1 46.1 47.1 48.2 49.4 50.6 52.0 53.5 55.1 57.0 59.2 61.8 65.1 70.1 - - - - -
20 64% 40.8 41.6 42.4 43.2 44.0 44.9 45.8 46.8 47.8 48.9 50.1 51.3 52.7 54.2 55.8 57.7 59.9 62.5 65.8 70.9 - - - -
21 65% 40.8 41.5 42.3 43.0 43.9 44.7 45.6 46.5 47.5 48.5 49.6 50.7 52.0 53.4 54.9 56.5 58.4 60.6 63.2 66.5 71.5 - - -
22 66% 40.8 41.5 42.2 42.9 43.7 44.5 45.4 46.2 47.2 48.1 49.2 50.2 51.4 52.7 54.0 55.5 57.2 59.0 61.2 63.8 67.2 72.2 - -
23 67% 40.8 41.4 42.1 42.8 43.6 44.4 45.2 46.0 46.9 47.8 48.8 49.8 50.9 52.1 53.3 54.7 56.2 57.8 59.7 61.9 64.5 67.8 72.8 -
24 68% 40.7 41.4 42.1 42.7 43.5 44.2 45.0 45.8 46.6 47.5 48.4 49.4 50.4 51.5 52.7 53.9 55.3 56.8 58.4 60.3 62.5 65.1 68.5 73.5
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APPENDIX B. LIFE TABLE FOR FEMALES: UNITED STATES, 2008
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