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ABSTRACT

Certain diseases comprise an initial asymptomatic period during which they
can be identified only by a screening test. In many such cases, early detection trans-
lates into benefits of more treatment options and potentially better prognosis. In this
dissertation, we consider the optimal policy to screen for a preclinical disease while
under limited budget. Our objective is to place any given number of screening epochs
over an individual’s lifetime, such that the probability of identifying the disease while
preclinical is maximized. We make mild assumptions about the sojourn times of the
individual in the healthy and preclinical states, and we consider the possibility of
fallible screening tests. We show that a unique optimal sequence of screening times
exist for our model, and that it can be quickly found by any greedy-search algorithm.
We further conduct numerical experimentations by which we identify sensitive model
inputs. We lastly apply our model to breast cancer screening using practical infor-

mation and we investigate additional characteristics of this model.
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1. INTRODUCTION

Certain chronic diseases are characterized by an initial phase with no outward
symptoms on the patients (a.k.a. “preclinical” period). Screening tests are available
to find a disease in its preclinical period. Once a preclinical disease is detected, ben-
efits could be reaped in terms of less aggressive treatment options and/or improved
prognosis. On the other hand, if the disease is left untreated and enters its symp-
tomatic (“clinical”) stage, then the treatment procedures may become much more
involved and chances of long term survival much reduced. Examples of diseases that
comprise such features include hypertension, diabetes, and a collection of cancers
such as breast, cervical, colorectal and prostate cancers.

Despite the general acceptance on benefits of screening, different professional
and governmental organizations are recommending different schedules for the public
to go on screening tests. In the case of breast cancer for example, the American Can-
cer Society recommends all women at ages 40 and over to go on both mammography
and clinical breast exam annually; the National Cancer Institute recommends only
mammography every one or two years beginning at age 40; and the U.S. Preventive
Services Task Force suggests mammography only for women between 50 to 75, and
only biennial exams. International debates over screening policies in terms of their
starting age and their frequency are ongoing.

It is clear that by scheduling many screenings over his/her life, one obtains
an improved potential of detecting a preclinical disease, yet one also incurs higher
cost. In the end, some of the capital spent on screening for one disease might have
been better utilized to treat/screen for other diseases. On the other hand, certain

screening exams are themselves risky, e.g. colonoscopy if not well performed may



cause perforation of the intestine, bleeding or incontinence, and mammography can
be harmful if the device is not calibrated at its right radiation level. Also complicating
the practice of screening are the side-effects associated with false-positive screening
results. Usually if a screening tests positive, more accurate (and oftentimes more
aggressive) follow-up procedures are required to confirm the case, e.g. biopsy for
breast cancer. As such, a falsely-produced positive result by screening will translate
into additional costs, medical risks, and negative emotions for the patient which are
in fact unnecessary.

In this dissertation, we study the optimal policy to screen for a preclinical
disease while considering cost. We use the term “screening policy” to mean a series
of time points at which an individual is supposed to go on screening exams even
if he/she seems healthy. Our goal is to develop a methodology that could be used
by the public health community to provide informed recommendations for disease
screening.

Our model aims to find the screening policy that detects the preclinical disease
with maximal probability, and we consider cost in terms of a screening budget, which
is defined as the maximum number of screenings allowed in a person’s lifetime. In
implementation, we may solve the model at a variety of budget levels and observe
the performance of the optimal screening policy at each one. This process may be
continued until the best trade-off is met between screening budget and the probability
of detection in the eyes of a decision maker.

We assume known information about the evolvement of the disease and about
the sensitivity of screening exams. In practice such information is not directly col-
lectable and needs to be estimated by rather sophisticated statistical procedures.
Specifically, we assume the population’s healthy sojourn time has a density that is

a log-concave function, and the preclinical sojourn time has a general density on



infinite support. We also model false-negative screening results by assuming a fixed
sensitivity for all screenings.

The main result is that the model consists of a unique optimal screening
policy, and that this policy can be quickly found by a greedy-search procedure due
to the nice structure of the objective function.

We then numerically conduct a variety of sensitivity analyses on the model
inputs. The results reveal that the variances of the distributions for both disease-
free and preclinical sojourn times play a key role in the performance of the optimal
solution.

We apply our model to the screening of breast cancer. With parameters
assumed to the best of our knowledge, we observe that the equal-interval screen-
ing policy performs rather closely to the optimum. Additionally, we examine the
expected number of screenings (for both disease-free and disease-affected popula-
tions) and the expected lead time (i.e. time gained in diagnosis due to screening for
the disease-affected population). We show with practical evidence that the disease-
free population actually receives many more screening examines compared with the
disease-affected population who is our target. We also show for our particular breast
cancer screening model that the screening policy which maximizes the probability of
screening detection also maximizes the expected lead time to clinical detection.

We want to also point out that our model can be applied to other settings in
which a system that comprises a non-self-announcing “incipient-failure” state and a
self-announcing “hard-failure” state is maintained. One example as such is the infras-
tructure maintenance problem, in which invisible degradations could have occurred
long before they become visible and dangerous.

This dissertation is organized as follows. In Section 2, we review the relevant

literature on preclinical disease screening. In Section 3, we lay down our formulation



for the optimal screening policy model. The analytical solution to the model will
be shown in Section 4. In Section 5, we present our sensitivity analysis results. In
Section 6, we show our numerical results as we apply our model to breast cancer
screening. Lastly, Section 7 will conclude our research and point out a few directions

for future research.



2. LITERATURE REVIEW

Model-based studies of asymptomatic disease screening date back to Zelen
and Feinleib (1969). In this pioneering study, the authors develop a statistical model
to estimate the mean lead time for a public screening program. The lead time is
defined to be the time gained in disease detection by screening than it normally
would due to symptoms.

Under considerably strong assumptions, e.g. a single and perfectly sensitive
screening conducted far from the time origin, and a constant prevalence level of pre-
clinical samples in the population over time (so-called “stable disease model”), the
authors derive a mean lead time estimator for the screen-detected population that
is based solely on moments of the population’s preclinical sojourn time distribution.
Zelen and Feinleib (1969) further estimate these moments by information on the clin-
ical incidence rates and preclinical prevalence level of the disease, which are collected
from practice.

The model of Zelen and Feinleib (1969) is applied to data from the Health
Insurance Plan for Greater New York (HIP) program, one of the earliest large-scale
screening trials conducted in the US for better treating breast cancer. The outputs
suggest that the preclinical sojourn time in this case is well-modeled by an exponen-
tial distribution.

Later, Albert et al. (1978a,b) and Louis et al. (1978) present a series of three
reports, in which they mathematically define a large collection of traditional epi-
demiologic terms that are relevant to a preclinical disease. These terms include mean
sojourn time, age-specific incidence rate, age-specific prevalence, lifetime attack rate

and a variety of cohort effects. The definitions are based on a disease progression



model that consists of three disease states, namely, disease-free, preclinical and clin-
ical states; and all quantities are expressed in terms of the joint-distribution of a
population’s age mix and its sojourn times in the various states. This disease pro-
gression model is so-called a “natural history model”, for the reason that it considers
only the progression of the disease undisturbed, without say, any early interventions
due to results of screening.

As in Zelen and Feinleib (1969), evaluation of screening programs forms the
goal of an early stream of studies of disease screening. Essential to this is knowledge
about the population’s experience while in the preclinical state, such as the sojourn
time distribution and the sensitivity of screening tests. As these quantities are not
directly observable from practice, estimation of them is the normally the first step
of a program evaluation model.

Walter and Day (1983) and Day and Walter (1984) then adopt the stable
disease model as proposed by Zelen and Feinleib (1969) and continue estimating the
lead time of a screening program. As a generalization, their model considers multiple
screenings and the possibility of false-negative screening results. In particular, the
sensitivity of the screening test is treated as an unknown constant which is also
to be estimated. In Walter and Day (1983), a few statistical distributions for the
preclinical sojourn time are considered, and while applied to the HIP data, the
exponential model again outperforms all others; thus in Day and Walter (1984),
estimates on test sensitivity and the exponential density parameter are applied to
derive the mean lead time. In doing this, each clinical incidence is assigned a zero
lead time value, and the mean is taken over the entire screened population. The
outcome is thus a program-wide mean lead time.

Relaxing the assumption of a stable disease, Lee and Zelen (1998) present the

first work that estimates the time-dependent rates for the population’s preclinical



incidences. By first recognizing the clinical incidence rates as convolution of the
preclinical state’s incidence rates and sojourn time density, and by assumed knowl-
edge of clinical incidence rates and preclinical sojourn time distribution, the authors
develop a de-convolution approach to infer preclinical incidence rates. As data of
incidence rates are normally generated by age groups in practice, the output of the
de-convolution procedure has the format of a step function.

With this update on the underlying disease progression model, Shen and
Zelen (1999) consider again the estimation of mean screening program lead time yet
with multiple screening modalities and possibly dependent test sensitivities among
them. The statistical model developed is rather intricate, with many parameters
to be estimated on test sensitivities and on the incidence rates and sojourn time
distribution for the preclinical state.

In Parmigiani and Skates (2001), a generalized disease progression model is
considered that allows for dependencies among the population’s sojourn times in the
disease-free, preclinical and clinical states, and that models the population’s deaths
due to other causes, i.e. competing risks, explicitly in each state. This model is first
proposed in Parmigiani (1993) in which the cost-effectiveness of various screening
strategies are compared. By assumed knowledge of clinical incidence rates, preclinical
sojourn time distribution, and overall competing death rates for the population, the
authors develop a de-convolution procedure to obtain preclinical incidence rates as
well as competing death rates for the population while being preclinical. The latter
rates are relevant to evaluating the over-diagnosis effects of a screening program.

Pinsky (2001) estimates preclinical incidence rates and sojourn time distribu-
tions, and tests sensitivity all at once while treating sensitivity as a linear function
of sojourn time in the preclinical state at the time of screening. The de-convolution

procedure consists also of a smoothing method to produce a continuous incidence



rate function.

Indeed, the lead time has been used by many studies as a performance measure
to evaluate screening programs. Though it reflects the potential for better disease
prognosis, for a total assessment of a screening program, one is more concerned with
the program’s benefit time. The benefit time is defined to be the additional time
of survival a person gets as a result of early disease detection and treatment, and it
should be measured relative to the situation in which the case is found and treated
as a clinical incidence. To evaluate a screening program by its benefit time, a long
follow-up period is required to generate the needed data. Ideally, data collection
should last until all samples in the population die out.

Kafadar and Prorok (1994) develop a statistical model to simultaneously es-
timate the average lead time and benefit time of a screening program. The study
adopts the stable disease model of Zelen and Feinleib (1969), and estimation is done
by relating the screened and control populations’ survival time distributions while
having average lead time and benefit time treated as unknown constants. For each
population, two distributions are considered that measure the survival times from
the start of screening program and start of case treatments respectively. Quite many
simplifications are made in Kafadar and Prorok (1994), such as perfect screening
sensitivity, no competing death risks, and the independence of the survival distribu-
tion with respect to sojourns times in the healthy and preclinical states. Due to the
lack of data from existing screening trials, the authors use simulation to evaluate the
quality of the estimators.

Based on the same model, Kafadar et al. (1998) examine the variances of the
two derived estimators. Later in Kafadar and Prorok (2003), various methods of
categorizing the screening trial data are studied with the goal of minimizing biasness

in estimation. Then in Kafadar and Prorok (2009), the effects of length-biased



sampling, i.e. the tendency of a screening to pick up samples with longer preclinical
sojourn times, towards final estimation is investigated.

In addition to all the statistical models developed that evaluate screening
programs, another type of model can be formulated that takes in the various char-
acteristics of the system, such as sojourn time distributions and test sensitivities,
as known inputs and generates an optimal schedule of screening. As we discussed,
such model inputs are often by themselves the products of those screening program
evaluation models, in which case the schedule of screening is treated as fixed and
known.

To this end of optimal screening policy models, Zelen (1993) presents a pi-
oneering model to place any given number of screening epochs over a population’s
lifetime, such that the probability of detecting the disease while preclinical is max-
imized. He adopts his earlier stable disease model, and solves the optimization
problem by considering the first-order conditions. The main result of this work is
the proof that the optimal solution has an equally-spaced structure if and only if the
test sensitivity is one.

Another significant stream of models are due to Parmigiani and Kamlet (1993)
and Parmigiani (1993, 1997). These models are all concerned with the overall cost-
effectiveness of a screening program and seek the best screening schedule for it.

In Parmigiani and Kamlet (1993), the general disease progression model with
competing death risks is first considered. Screening costs are assumed fixed for
each exam and are considered also for the populations that die in any state due to
competing risks. Treatment costs are treated alongside the Quality-Adjusted-Life-
Years (QALY) as functions depending on sojourn times in the healthy and preclinical
states. The model considers a baseline screening schedule and compares the marginal

expected cost against the marginal expected QALY for several proposed screening



schedules.

Parmigiani (1993) presents a general optimization model to minimize the
overall screening program cost. In the particular case of perfect screening, the author
derives conditions on the input cost functions such that the optimal screening policy
consists either of zero or of infinite number of screenings. In the latter situation,
additional conditions are found to ensure a recursive algorithm to find the optimum.
Indeed, this approach is reminiscent to a classical work in system reliability literature
due to Barlow et al. (1963). Based on first-order optimality conditions, a set of
equations are derived that can generate the screening schedule sequentially once the
first epoch is fixed. In implementation, if either this first screening time is fixed
before or after the optimum, particular faulty patterns will arise in the downstream
schedule calculated. As such, a binary-search algorithm is in place to find the optimal
schedule.

Then in Parmigiani (1997), the author takes a detour approach and approxi-
mates screening schedules by continuous intensity functions. The objective function
remains at minimizing total costs and is also approximated. The optimal solution is
searched from the space of intensity functions, and needs ultimately to be converted
back into a discrete screening schedule. Optimality conditions are studied for this
model.

Later, Lee and Zelen (1998) consider an alternative screening scheme based
on their non-stable disease model. Under this scheme, screening times are placed
in such a way that the prevalence of preclinical samples in the population is always
bounded by a pre-specified upper threshold level. The prevalence function, which
is unobservable, is derived based on assumed sojourn time distributions and test
sensitivity. Once the schedule is derived by the scheme policy, its performance is

measured by the overall probability of preclinical disease detection.
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Parmigiani et al. (2002) study the optimal placement of a single screening
time. Two objective functions are considered, which include the probability of screen-
ing detection and the expected life length for the disease-affected population. De-
pendent sojourn times are considered for the disease-free and preclinical states, and
fallible tests were treated whose specificity depends on the sojourn times. The first-
order conditions for optimality is derived. In a case study conducted on colorectal
cancer, the authors obtain optimal solution by arbitrarily plotting out the objective
function.

Ahern et al. (2011) consider two frameworks for an optimal screening policy.
First, the policy is restricted to be equally spaced, and the authors seek the optimal
number of planned screenings that minimizes the weighted cost between the number
of screenings and the probability of screening detection. A sufficient condition for
a unique optimum is derived, and the authors argue that the practical parameters
for breast cancer will easily satisfy this condition. Secondly, the authors consider
the optimal placement of any given number of screenings and prove the existence
of optimal solution for this framework. Throughout the work the authors treat
the disease-free duration with piece-wise linear densities, assuming an exponential
distribution for the preclinical time, and consider independent and fallible screening

tests.
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3. OPTIMAL SCREENING POLICY MODEL FORMULATION

We adopt the natural history model of Parmigiani et al. (2002) as the frame-
work for our decision making. As shown in Figure 3.1, we consider five states for
the disease under screening. These are the “healthy”, “preclinical” and “clinical”
states as well as two “dead” states which correspond, respectively, to cases due to
the disease and to competing risks. Transitions can occur as an individual progresses
from healthy to preclinical, from preclinical to clinical, and from clinical to dead as
a result of the disease; meanwhile, it is possible for one to die of other causes while

s/he is in any state up to clinical.

Dead - .
Other Causes

Figure 3.1: Disease Natural History Model

Dead from
Disease

Our optimal screening policy model aims at finding the screening schedule
that produces the maximal probability of preclinical disease detection. We model
budget in terms of the total number of screenings allowed in a person’s lifetime and
in practice this can be easily converted to a dollar value. In our model, we confine
our attention to samples that will develop clinical symptoms (before dying of a
competing risk) if not screened. We acknowledge that in practice screening costs are

also incurred for those who die without the disease and are thus actually irrelevant to
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the screening program. We will discuss such implications of program-wide screening
costs in our numerical analysis chapter.

Therefore, we assume that an individual will, with probability one, transit
over three states: healthy, preclinical, and clinical. Let random variables X, and X,
be the sojourn times, respectively, in the healthy and the preclinical states, and let f
and g be the p.d.f.’s for Xy and X;. Figure 3.2 shows the simple disease progression
model that we consider. Note that all individuals will eventually be “diagnosed”,

either by a screening, or due to clinical symptoms.

Xo - X, : :
Preclinical Diagnosis

Figure 3.2: Scope of Our Optimal Screening Policy Model

We make the following assumptions:

e fis a log-concave function over (a,b) for 0 < a < b < oo,
e ¢ is independent of f and is supported over (0, 00),

e all screenings are independent and have sensitivity .

The class of log-concave density functions include a broad range of models
such as all uniform, exponential and normal distributions as well as all Weibull
and Gamma densities with shape parameter greater than one. Many interesting
properties can be found in this class of functions (see Barlow et al. (1963)). In

particular, all log-concave densities have increasing failure rates.
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The other two assumptions are mild and can be found in many other studies
(e.g. Day and Walter (1984), Zelen (1993), Lee and Zelen (1998), Shen and Zelen
(1999), Ahern et al. (2011)).

Now, let D C R" :={(71,72, ..., 7Tn) | 0 < 71 < T3 < ... < T, < b} be the set of
all possible screening policies. Note that for each fixed policy, an individual will be
missed detection either if his/her preclinical period covers no screening epoch on the
schedule (see Figure 3.3); or, all the screening(s) performed during the preclinical pe-
riod fail to report the truth. All other scenarios correspond to the event of successful
detection. Figure 3.4 presents a few scenarios of possible successful detections. Note

a detection only happens if at least one of the screenings during X; was accurate.

X, X
. b
i — t t t —t>
Ty Ty T3 Ta1 T,
X
0 X : b
i t i t t —t>
Tl Tz 1.'3 Tnl Tn
X
0 e b Al
i t t t t =—>
Tl T2 T3 Tnl Trl

Figure 3.3: Examples of Missed Detections

We, therefore, derive our objective function as follows:

14
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i 1 } i i —t>
Ty Ty T3 T T,

0 e X b

¢ t t t t —t>
T] T2 T3 o Tnl Tn

Figure 3.4: Examples of Potential Successful Detections

Proposition 1 The objective function

P(r) = ({Preclinical Detection})
- 1- Z Zﬁj /+ G(rj1 — ) — G(ry — w)]f(u)du,

1=0 j=1

where 19 = 0 and 1,.1 = o0, B is the false-negative rate for screenings, and where
F/f and G/gare the distribution and density functions for the random sojourn times

Xo and Xy, respectively, of an individual in the healthy and preclinical states.

Proof:
We have
P(7) := Pr({Preclinical Detection}) = 1 — Pr({Missed Detection})
= 1- Z Z Pr (Xo € (7, Tit1), Xo + X1 € (75, Tj41), Missed Detection)
=0 j=i
Ti+1
= 1- ZZ/ Pr XO € (1, Tit1), Xo + Xi € (15, Tj11),
i=0 j=i Y Ti
Missed Detection | Xy = u)f(u)du
n..n Tit1
= 1—22/ P?”()(le(7']'—'Ll,\/0,7'j+1—U>7
i=0 j=i /7
Missed Detection | Xy = u)f(u)du
L
= 1-3 30| # (Gl —u) = Gl — )l (w)du
i=0 j=i Y Ti

15



[by independence and the number of screenings while in preclinical state]

Note the above expression is regardless of b.
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4. MODEL SOLUTION FOR PERFECT SCREENING CASE

We first consider the partial derivatives of the objective function.
Proposition 2 For each k € {1,2,--- ,n},

S P(r) =1 - ﬂ){fm) (1= 8) 3 677" Glriy =) + 57

_ Z_:ﬁk—i—l /.TZ'Jrl (. —u) f(u)du — /Tk g(Ti — u)f(u)du}

Proof:
For each k € {1,2,--- ,n} and 7 € D, it holds that:

0 0 [ [ —i—1
5P(r) == a—{ Z / A6 )~ Gl — ()
k—2 Tit1 )
+ Z / G )~ Gl )l

=30 [ G - 0 - Gl — wl ()

j=k—1"YTk—1

Tk+1

+Z/
ik

a k—2 . Tit1
_ a—m{u -2 / G, — u) f (u)du

K3

Bj*k[G(TjH —u) — G(1; — u)]f(u)du}

n—=k A T
ra-pY / G(7ry — u) f(u)du
j=0 Tk—1

n—k

1= p [ Gl - i

i=1 T

- (1= 6)5”"“}?@)}
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R‘
l\')

ﬁk i—1 /T“fl g(Tk — u)f(U)du

1§
o

ol

- (1= BTG (g — ) f ()

1

+ /Tk 9(m — u) f(u)du — 5"_kf(7k)}

Tk—1

=(1- 5){f(7k) [(1 - B) Z BTGy — ) + 5n_k}

Ti4+1

k—2
Sy i /
i=0 Ti

??‘

<.
Il

(e — u) f(u)du — /Tk g(m — u)f(u)du}

Tk—1

Our main result is the following.

Theorem 1 If screenings are perfectly sensitive (i.e. 3 = 0), then there exists a

unique optimal policy o = {01,029, ,0,}, which is characterized by the following
criterton:
( 01—00 f(o1—s)
(1) fo f(;—l) g(s)ds = G(oz —o1)
(2) foaiigiil %g(s)ds = G(oiy1—0y)
on—0n1 flon—s = 1 (ifo,<b)
(n) J = 2o g )
< 1 (ifo,=0).
\
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Proof:

If 5 =0, the partial derivative for each 7 is:

PP = S0 -~ [ gl = w

Tk—1

= f(m) [G(Tkﬂ —T) — /Tk_m_l M

i ) g(s)ds].

Now notice that for 7 over interval (74_1, Tk+1), G(Tp1+1 — Tk ) strictly decreases

from G(741 —Tk-1) to 0, and the term [ %g(s)ds strictly increases from 0

Tht1~Th—1 f(Thy1—5

0 ey )g(s)ds. The latter monotonicity holds because for any s € (0, b),

f(r—s)
f(r)

for 7,1 < T, < 7, < Tp41, We have:

[ s < [T I s

to

is non-decreasing in 7 if f is logconcave (see Barlow et al. (1963)). As a result,

) 7D
R (o8 R )
</ Fy o) +/ Fey o

:/OTk Thk—1 f(;%TZ)S)g<S)dS

Meanwhile, notice f(7) is positive and continuous over (7j_1, Tp11)-

Therefore, we know from the partials that for any chosen policy 7 € D, as we
vary each 73, the objective function will always turn from increasing to decreasing
over (Tg_1,Tr+1), with the only exception that it could possibly never decrease in
Tn. As such, the optimal solution must have at least n — 1 zero partials, hence our
criterion.

To show uniqueness, suppose two different solutions 7 and 1 both satisfy the

optimal criterion. Let ¢ = min{k : 7, # ¥} be the first element where the two
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solutions differ, and without loss of generality, assume 7; < ¢;. We have:

(

() fyT T g(s)ds = G —7)
(n—1)f; —fgf(;:)s)g(S)ds = G(rn—7p-1) and
oot Fo—s = 1 (ifr, <)
() Jor T A= g(s)ds
< 1 (ifr, =b),

(
iy fyT leg(s)ds = Gt — )
(n—1) " S (s)ds = Gl — dan)
/ n—W¥Pn—1 —S8 = 1 (lf wn < b)
(ny  Jor o L=y s)ds
< 1 (If ¢n:b)

\

Now, sequentially for each k € {i,--- ,n — 1}, it follows that:

(k) & Thsr — T = G_1</07k_m_1 %Q(S)da’)

< G‘%/jrwk_l ﬂ}p(k—ﬁg(swﬂ = Upp1 — i & (K),

which gives 71 — 7 < Yry1 — Y and T < Ypgr.

Therefore, we have 7, — 7,1 < ¥, — ¥,_1 and 7, < ,. But this is a

contradiction, as:

T ) [ S o
<n><:>1—/0 o —g(s)a </0 e —Tg(ays < 15 (n)

As a result, a unique solution satisfies the optimality criterion.
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In fact, for the general case where 8 > 0, note that:

2 pr) =1 - ﬁ){fm) (-5 §6f1G<rk+j ) + 5]
- ZB / 9(7 — u) f () du — / g(re — u>f<u>du}
~(1- B)f(m){ (-5 gﬁj—la(mj -7+ 87|
- %gwds} ~(1-p) Zﬁ [ o= wstan

where the expression in { } is strictly decreasing in 75, from a positive quantity near
Tk—1. However, to guarantee uniqueness of optimal solution, more assumptions are

required about densities f and ¢ in order to leverage the last term.

In the following contents in this chapter, unless otherwise specified we assume

that g = 0.

Now, notice that for any arbitrary 7, we may specify, the optimality criterion
nicely allows us to calculate {7, 73, - - - , 7, } sequentially through its first n — 1 equa-
tions. And finally, the last condition is used to check for optimality of the solution

generated. Consider the following algorithm.

Binary First Epoch Search Algorithm (BFESA)

Step 0: Let L =0. If b < 0o, let U = b; otherwise, let U be a number big enough to

contain oy, e.g. U =2F7'(). Let € be an arbitrary small number.

Step 1: Set 74 = %
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Step 2: Foreach k € {2,--- ,n}, calculate 7, = 73,_; +G~* ( Joee %g(s)ds).

Step 3: If [T QM g(s)ds > 1 for any k € {2,--- ,n}, or if 7, > b for any

frn 9
ke{2---,n—1}or 7, > b, orif [["7™ 1% (s)ds > 1+ ¢, then set
U = 11 and return to Step 1. Otherwise, if fOT" et fgc(”f;) g(s)ds < 1 —,

then set L. = 7y and return to Step 1.

Step 4: The algorithm stops and the screening policy {7y, 72, -+ ,7,} is reported.

We prove that the BFESA finds the optimal solution.

Theorem 2 The BFESA converges to the optimal solution.
Proof:

We first prove that either 7; is chosen to be too large or too small, there will
be one distinctive signal throughout calculating 75 through 7,, to report this.

Specifically, if 7, > o1, we have:

" flm—s)
f(Tl)

o flor—s)

i Flon) g(s)ds) =0y — 0.

Tz—T1=G_1< i g(s )ds>>G <

Note it is possible to have fo ! ffT(lT)s (s)ds > 1, or that 75 > b. In either case,
we obtain a signal that our chosen 7 is larger than o;.
If , < b, we get , — 7 > 09 — 01 and T, > 09, and we proceed to equation

(2). Now as each equation (k) is applied where k € {2,--- ,n — 1}, we have:

Tht1 — Tk = G_1</Om_ﬂ€_1 1 —s) 8)9(5)d3>

f(7k)
Ok —0k—1 _
> G_1</ f(ak—s)g(s)ds> = Oks1 — Ok,
0 flox)
under which it is possible that [/* ™ f(f(T) (s)ds > 1 or 741 > b, i.e. signals for
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71 > o1. If not, we get 7411 — T > Oky1 — 0 and T > Ok
Now assume we have sequentially applied equations (1) through (n — 1) to
find such {ry,---,7,} thatry, — 71 > 0 — 0p—1 and 7, > oy for all k € {2,--- | n}.

Assume also that 7,, < b. But from equation (n), we have:

which again indicates 7, to be too large.

On the other hand, if 71 < o1, then by applying equations (1) through (n—1)

we will obtain such {m,---,7,} that 7, — 7,1 < 0 — 0x—1 and 7, < oy for all
k€ {2,---,n}. But in this case, equation (n) will give:
Tt f(Tn - S) /Un—onl f(an - S)
L g(s)ds < —Zg(s)ds =1,
| Fr) S, Flow O

a signal that 7 < oy.
In each iteration, notice the BFESA collects a signal and responds accordingly
to cut off half of the search region for o;. It therefore converges to the optimal

solution.

We next devote some effort to study the structure of the optimal screening

policy. We have the following important result.

Theorem 3 For each 7 € (0,b), there exists a unique 7*(m1) = {75 (1), 73 (11),- -+ , 75 (1)}
that maximizes P(ty,-). Further, 7" behaves in such a way that each of its elements
Ty is strictly increasing and concave in T (with the only exception that T, could

remain constant once it reaches b).
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Proof:
For fixed 71 € (0,b) and each k € {2,--- ,n}, note the partial derivative of

P(1) with respect to 7 can be treated as follows:

0 TR f (T — 8)
a_TkP(T) =/f(7k) [G(Tk—i-l — Tk) —/0 Wg(s)ds}
_ f() e
1= P B G =m0 - [ o]
. T (7 — 5)
1= P )G - = [ A g(was],

where we define
f(s)

— b
= () or s € (71,b)

[ (s) =

to be the conditional p.d.f. for random variable X, given that it is greater than 7.

As the logarithm of f is concave, it is necessary that f™, which is f by a
scalar, is log-concave also. Therefore, we may view the n — 1 partials as a full set of
derivatives for the problem of n — 1 screenings, which has f™ as the p.d.f. for X
and is scaled by a positive constant. Thus, by Theorem 1 there is a unique policy
{m5 (1), 75(m), -+ , 75 (7))} to maximize P(T).

To show monotonicity and concavity of each 7 with respect to 7, we pick
0<mn <7 <b and let 7 = {m, 7, -+, 7} and 7" = {7{,75,--- , 7.} be the
policies to maximize P(7q,-) and P(7y,-) respectively. Also, let Ay, = 74,1 — 7 and
Ay =1 —7 foreach k€ {1,--- ,n—1}.

We want to show that: (a) A}, < Ay for each k € {1,---,n — 1}, and (b)
7. > 7 for each k € {2,--- ,n} (except for possibly 7,, = 7, = b). Notice if (a) holds,

then we will have 7/ — 7 = (7] + 35} A)) = (i + 32| Ay) = (1 —m1) + >0 (A —
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Aj) <7 —7 foreach k € {2,--- ,n}. As aresult, each 7} is increasing and concave
in 71, and the theorem is thus proven.

By the optimality criterion from Theorem 1, we have the following:

(

@) 7" tesds = Gl =)
() foTi_TH %Q(S)ds = G(rip1— 1)
= 1 (ifr, <)

< 1 (ifr,=0)

To—71 f(Th—s
@y [ g ds = Gl - 1)
Gy fr M dg(syds = G(rly, — )
0 f(-,-ll) g i+1 i

= 1 (if7, <b)

< 1 (if7, =0)

We shall prove our claims in the order of A} < Ay, 75 > 1, AL < Ay, -+,
Al <A,_q,and b > 71/ > 7,. Consider the following algorithmic arguments:

For claim (a): suppose we have proven up to some k € {1,---,n — 1} that
> 1 Vi € {1, k} and A} < A; V5 € {1,--- k- 1}. We want to show
A < Ay.

Assume the claim is NOT true, i.e. A} > Ag. Let i = k, then:

(*) By assumption, it holds that A} > A; and 77, > 7;11.
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If now i« = n — 1, we will have:

(n) 1= /o o %g(s)ds < /o " Mg(s)ds <1< (n),

which is a contradiction.

Otherwise, we have:

which is Al | > A;4.

Now let i := i+ 1, and go back to step (*). The same arguments will then go
through iteratively until ¢ reaches n — 1, at which point we get a contradiction and
conclude that A} < Ay.

For claim (b): suppose we have proven up to some k € {1,--- ,n — 1} that
7> 75 and AL < AjVj e {1, k}. We want to show 77, > 741 if k <n—1, or
that b>7 > 71, if k=n— 1.

Again assume the claim is NOT true, ie. 7, <7 ifk<n—-1lor7 <7,
if k=n—1. Let i = k, then:

(*) By assumption, it holds that A < A; and 7/, ; < 741.

If : =n — 1, then we have:

=N
S~
N—

which is a contradiction.
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Otherwise, we have:

which is A;Jrl < Ai+1-
Now let i := i+ 1, and go back to step (*). The same arguments will then go
through iteratively until ¢ reaches n — 1, at which point we get a contradiction and

conclude that 7, > 7511.

We have the following corollary.

Corollary 1 Given event {Xo > o1}, the policy {09,035, ,0,} is the optimal
solution to the (n — 1)-screening problem.

Proof: Clear from proof to Theorem 3.
[ |

Practically, Theorem 3 is helpful for people who enter the screening program
late. Indeed, provided a delayed first screening time, we now know that all the
subsequent screenings shall be postponed for better probability of detection. On the
other hand, Corollary 1 verifies that the optimal screening policy is self-consistent.

We have an additional result on the locations of the optimal screening epochs

with respect to the optimal policy from the previous budget level.
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Theorem 4 Let ¢ = {¢1, b9, -+ ,Pn_1} denote the optimal policy for the (n — 1)-
screening problem. Define also that ¢g = 0 and ¢,, = b. Then the optimal n-screening
policy o is such that all its n screening epochs lie in the intervals created by ¢, i.e.
or € (Pr—1,0k) fork e {l,--- ;n—1}, and ¢p_1 < 0y < G-
Proof:

To show o, > ¢y for each k € {1,--- ,n— 1} and o, > ¢,_1, we may treat
¢ as the policy to optimize an n-screening problem, given that the first screening

epoch is at time 0. Since o1 > ¢q, the inequalities follow by Theorem 3.

And to show o < ¢ for each k € {1,--- ,n — 1}, notice o is such that:
( 01-00 f(01-5)
(1 ;i oo 9(s)ds = G(oz— o)
(4) fom oi1 f(CE;Z)S)g( Yds = G(oi — 0y

= 1 (ifo, <b)

(n) J7m 7 —fScU(Z;)S) g(s)ds

< 1 (ifo,=0)

And ¢ is such that:

(1)’ focbl $o fgfdzim)S)g( )ds = G(p2— ¢1)
(2) Jo' o ff%f)g(s)ds = G(¢iv1 — &)

— 1 (if g1 <b)
1 (if gt =)

Prn—1—Pn— n_1—5
0= Y g

IN

Recall our proof to Theorem 1. If o7 > ¢4, then for each i € {1,--- ,n — 2},
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we have 0,11 — 0; > ¢;11 — ¢; and ;41 > ¢;41. Further, it holds that:

On—1—0n—2 _ Pn—1—Pn—2 .
Glo-ons) = [ =Sy = | =gty =1

therefore, necessarily o,, = co. But now, check that:

e (o, - s) e (g —s)
U}Llinoo i o) g(s)cls>/0 o) g(s)ds =1,

which is a contradiction by (n) in the optimality criterion. As a result, we have
o < qbl.
Consequently, again by applying the first n — 1 equations in the optimality

criterion, we obtain o; < ¢; for all ¢ € {1,--- ,n — 1}.
[ |

Next, we investigate some models with more specific assumptions. In the
class of logconcave densities, note that the uniform and the exponential models
respectively have a constant and a linear logarithm which are special cases of concave

functions. We have the following result for the case of uniform disease-free duration.

Proposition 3 If Xq ~ Unif(0,b) for some b > 0, then the optimal screening policy

is equally spaced, i.e., o = {2, 2 ... Lo b}, if and only if B = 0.

Proof:
When X ~ Unif(0,b) and 5 = 0, for each k € {1,2--- ,n}, we have:

G(oks1 — o)) = /Ook_gk1 %g(s)ds
= [ s =3

= G(G‘k — Uk—l)-
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Therefore o), — o)1 = % for all k € {1,2,--- ,n}.

b 26 . (n— 1)b

n' n? )

Conversely, if 8 > 0, assume that 7 = {2 ,b} is the optimal

policy. We have:

a(zlP( ) =(1-— 5){f(71) [(1 —B) Z@J’—lg(ﬂﬂ- —-7)+ ﬁn—1] B /OT1 g(m — u)f(u)du}

200~ Zﬁ” Gy =) + 5" = G(m)]
=¥[<l—ﬂ>§ﬂf @) gt o)
S e el e (ST o

which is a contradiction to the assumption that 7 is optimal.

Notice, however, that in the single-screening case where:

PO =01-)[f() = [ alr = uf(wa

:¥[1 _G(F)] >0 Vre(0b)

the optimal policy is to wait until time b to screen, regardless of 5.
We have yet another interesting result about the structure of optimal policy

for the case of exponential X, with perfect screenings.

30



Proposition 4 If Xy ~ Exp()\) for some X > 0, and 5 = 0, then the optimal policy
o is such that o1 — o0y > 0;— 01 Yi € {l,--- ,n—1}, i.e., the screening interval

gets wider as the person gets older.

Proof:
When Xy ~ Exp(\) and 8 = 0, for each k € {1,2--- ,n}, we have:

ot flow — s)

G — :/ ———2g(s)ds
(0k+1 Uk) o f(Uk) g( )
OL—0k—1 —/\(O'k—s)
:/ e g(s)ds

Ok—0k—1
/ g(s)ds

Okg—0k—1
/ [e™ > 1Vs > 0]

0

V

G(Uk — Of— 1)

We hereby highlight that in the literature, Barlow et al. (1963) and Yang
and Klutke (2000) have shown for various inspection problems with an exponential
system lifetime that the optimal schedules have equal intervals. However, with the
additional preclinical state in our model, and with our particular objective to capture
the disease while in that state, the structure of the optimal solution is different.

Lastly, on the sideline, we prove that all logconcave densities are bounded.

Proposition 5 If f is logconcave over (0,b), where b < oo, then it is bounded.
Proof:
Since f is continuous, it suffices to show lin% f(z) and lirrll7 f(z) are finite. We
d T—r

will prove for the end of x — b and the other side will follow in the same way.
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As logf is concave, (logf) decreases over (0,b). There are then two possibil-
ities:

One, there is some z* € (0,b) for which (logf) (x) <0 Vz € [z*,b). In this
case, logf decreases over [z*,b), and so does f = €l°9/. As f > 0, ilil})f(l’) must be
finite.

Otherwise, if :lciirll)(logf)’(m) >0, let 2* := 2. It then holds that (logf)'(z*) >

(logf) (x) Va € [x*,b), and so logf(z) < logf(z*)+ (x —x*)(logf) (z*) < logf(z*)+

b(logf)'(z*), which is a constant. As a result, f = €'/ is bounded over [2,b) and
lim f(x) is finite.
z—b

[
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5. SENSITIVITY ANALYSIS

In the previous chapter we have shown that a unique optimal solution exists
for our preclinical disease screening model once the screening sensitivity and the
distribution functions for the healthy and the preclinical durations are specified. In
this chapter, we investigate the effects of changing these model inputs on the optimal
screening policy and its performance.

We solve all our optimization instances by Matlab’s “constrained optimiza-
tion” (fmincon) routine. Indeed, the only constraints involved are those that ensure

the increasing order of screening epochs.
5.1 Effect of Screening Sensitivity

We have proven in Proposition 3 that if the healthy duration X, follows a uni-
form distribution and if screening sensitivity is one, then the optimal screening policy
is equally spaced. Our first investigation is then the effect of screening sensitivity on
a uniform X, model.

We assume X follows a uniform distribution with a range of 24 years. One
could interpret this with arbitrary starting and ending ages, e.g. from 40 to 64, or
from 50 to 74 years old. In all our numerical results to follow, we assume all X
densities start at age 40. On the other hand, we assume that the preclinical duration
X; has an exponential distribution with mean of 3 years. We consider the screening
budget to be from 1 to 24 times in a person’s lifetime. The 24-screening scenario
corresponds to holding an average of one screening per year over the support of Xj.

We consider four false-negative rates of screening (/-errors), namely, 0, 0.4,
0.8, and 0.99. The computation time for a typical case across all 24 budget levels is

about 10 seconds on a computer with Intel(R) Core(TM)2 Duo CPUs each running
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at 3.16GHz and with 4.00G RAM.
Figure 5.1 shows the performances of both optimal and equal-interval policies

across budget levels.

—+— =0 - Optimal Policies
—+— [ =04 - Optimal Policies
—+—— [ =04 - Equal-interval Policies
—#— [ =05 - Optimal Policies
——+—— [4 = 0.5 - Equal-interval Policies
—4— [ =099 - Optimal Policies :
—+— [4 =099 - Equal-interval Policies |--- s

=
o

=
-

=
om

o
m
T

Frobability of Screening Detection

Figure 5.1: Effect of -error on Policy Performances - Uniform X, Model

As expected, the performance of optimal screening policies decreases as -
error increases. Meanwhile, Figure 5.1 shows that even with 99% false-negative
screenings, there is no distinctive difference between optimal and equal-interval poli-
cies’ performances.

We then take a closer look at the change of optimal policy itself as we vary (3.
In Figure 5.2 we plot the optimal policies for the 12-screening scenario over various

levels of S-error.
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Figure 5.2: Effect of S-error on Optimal Policy Structure - Uniform X, Model

As shown, as [S-error increases, the screening epochs appear postponed in the
optimal policy.

We next investigate the effect of S-error for another model in which there
exists considerable difference between the optimal and equal-interval policies’ per-
formances. We assume that both Xy and X; follow gamma distributions, with respec-
tive means of 12 and 3 years, and respective variances of 16 and 3. We experiment
with three levels of g-error respectively at 0.2, 0.6, and 0.9. Figure 5.3 plots the

performances of both optimal and equal-interval policies across [-error levels.
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Figure 5.3: Effect of S-error on Policy Performances - Gamma X, Model

As depicted, by increasing S there is no significant change on the difference
between optimal and equal-interval policies’ performances. This result is consistent
with that of the uniform X, model.

We further plot the structure of optimal policies for the 12-screening case:
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Figure 5.4: Effect of S-error on Optimal Policy Structure - Gamma X, Model

As shown in Figure 5.4, as S-error increases the optimal screening epochs tend

to tighten up as opposed to getting postponed as in the uniform X, case.
5.2 Effect of Xy Distribution

We next consider two alternative log-concave models for X, namely, the
gamma model and the 2-parameter Weibull model each with shape parameter no
less than one. Since both models comprise two parameters, we may match their first
two moments to that of the uniform distribution we considered in the earlier section.

Table 5.1 summarizes the parameters of our double-moment-matching alter-
native models for X,. Their p.d.f.’s are plotted in Figure 5.5. Note that all three
density functions consist of a mean of 12 years and a variance of 48. We assume
that X; follows exponential distribution with mean of 3 years and that screening

sensitivity is 0.8 in this section.
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Table 5.1: Parameters for Double-Moment-Matching Models for X

Model Parameters
Uniform a=0,b=24
Gamma k=3,0=4

Weibull A =13.4908, k = 1.7915

012+ 4
— ¥ ~ Uniff 40 64
< 01} ¥, ~ Uniform(40 64) |
G —— ¥, ~ 40+Gamma(3 4)
= .
T noaf ——— X, ~ 40+Weibull(13.481,1.792) | |
=
w
=
I
O oos- i
=
ot
]
S 004p |
@
002t 4
] 1 1 1 | |
a0 45 a0 55 EO EG 70

Age

Figure 5.5: Plot of Double-Moment-Matching p.d.f.’s for X,

The performances of these models are shown in Figures 5.6 and 5.7. A typical

instance with gamma X, takes about 2 hours to solve, and with Weibull X 1.5 hours.
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Figure 5.7: Sensitivity Analysis - Double-Moment-Matching Weibull X
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As shown, for both gamma and Weibull X, models, the performances of
the optimal policies are slightly worse than in the uniform model. Also, not much
probability of screening-detection will be sacrificed even if we simply apply the equal-
interval policies. These results suggest that when the first two moments are fixed
for Xg, the exact density function would not impact the optimal policy performance
greatly.

We next investigate cases where only the mean of X is fixed. Specifically, for
each alternative model, we consider two additional values for its variance, namely,
16 and 144. Notice that in both gamma and Weibull families, the only density that
has mean of 12 and variance of 144 is the exponential distribution with rate 1/12,
which is the special case having shape parameter one in each family.

Table 5.2 summarizes the parameters of the three gamma densities we con-
sider. Their p.d.f.’s are plotted in Figure 5.8, and the performances of optimal policies

for the three models are shown in Figure 5.9.

Table 5.2: Parameters for Gamma Densities for X

Choice Parameters

Uniform k=9,0 =4/3 (Mean= 12, Var= 16)
Gamma k= 3,0 =4 (Mean= 12, Var= 48)
Weibull k£ = 1,0 = 12 (Mean= 12, Var= 144)
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Figure 5.9: Sensitivity Analysis - Variance of Gamma X
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Additionally, Table 5.3 summarizes the parameters of the three Weibull den-
sities we consider. The p.d.f.’s are plotted in Figure 5.10, and the performances of

optimal policies for the three models are shown in Figure 5.11.

Table 5.3: Parameters for Weibull Densities for X

Choice Parameters

1 A =13.3770, k = 3.3035 (Mean= 12, Var= 16)
2 A =13.4908, k = 1.7915 (Mean= 12, Var= 48)
3 A = 12.0000, k£ = 1.0000 (Mean= 12, Var= 144)
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Figure 5.10: Plot of Weibull p.d.f.’s for X
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As shown in Figures 5.9 and 5.11, the variance of X, does play a key role

We now consider alterative models for X;. We assume that X, follows an

We first consider gamma densities for X;. Again, we fix the first moment, at 3

The parameters considered for the gamma densities for X; are summarized

Budget

Figure 5.11: Sensitivity Analysis - Variance of Weibull X

both gamma and Weibull X, models.

5.3 Effect of Distribution of X

in this section.

of 3, 9, and 27. Notice the second choice is the exponential distribution.
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on the optimal policy’s performance. In the 24-screening scenario, the probability of

detection ranges from around 70% to 85% at optimality as variance decreases, for

exponential distribution with mean of 12 years and that screening sensitivity is 0.8

years, and we consider three versions of distribution that respectively have variances



in Table 5.4, and their corresponding p.d.f.’s are plotted in Figure 5.12.

Table 5.4: Parameters for Gamma Densities for X

Choice  Parameters
default a=1,0=3

1 a=3b=1
2 a=1/3,b=9
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Figure 5.12: Plot of Gamma p.d.f.’s for X,

The model outputs are presented in Figure 5.13. The computation time for

a typical instance up to 24 screenings is 1.5 hours.
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Figure 5.13: Sensitivity Analysis - Variance of Gamma X

As in the case of X, the performance of optimal policy is sensitive to the
variance of X;. At the 24-screening budget level, the probability of screen-detection
can reach as high as 0.85 when X; has variance 3, and as low as 0.40 when X;
has variance 27. From Figure 5.12, one would not reject the small variance gamma
density as a realistic representation for a disease. If this is the underlying truth, then
promising screening performance can be achieved at optimality.

We next consider a lognormal model for X;. The parameters considered are

summarized in Table 5.5, and the p.d.f.’s plotted in Figure 5.14.
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Table 5.5: Parameters for Lognormal Densities for X;

Choice Parameters
1 = 0.9548, 0 = 0.5364 (Mean= 3, Var= 3)

2 = 0.7520,0 = 0.8326 (Mean= 3, Var=9)
3 p = 0.4055,0 = 1.1774 (Mean= 3, Var= 27)
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Figure 5.14: Plot of Lognormal p.d.f.’s for X;

The optimal policy performances are shown in Figure 5.15. A typical case

takes about 1.5 hours to solve.
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Figure 5.15: Sensitivity Analysis - Variance of Lognormal X;

Similar results hold on the strong sensitivity of X;’s variance over the perfor-
mance of optimal policy. In addition, at all three variance levels, the optimal policy

from the lognormal X; model outperforms that of the gamma X; model.
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6. A CASE STUDY USING BREAST CANCER DATA

In this chapter, we present the results we obtain as we apply our model to
the screening for breast cancer.

The practice of breast cancer screening started as early as in the 1960s. Several
screening modalities are currently in place to detect initial stage of breast cancers,
including mammogram, clinical breast exam, breast self-exam, and in some cases,
ultrasound and magnetic resonance imaging (MRI). However, the very questions of
when the screening should start and how often it should be conducted have been
debated over the decades.

In the literature, it is often considered that the population progresses into
the preclinical breast cancer stage at a constant rate (see Zelen and Feinleib (1969),
Zelen (1993), Walter and Day (1983), Day and Walter (1984)). Such models are called
“stable disease models”, and they essentially assume that the healthy duration follows
a uniform distribution. Furthermore, based on stable disease models, statistical
works have been done that found the exponential model for X; to best represent
data collected from the actual screening trials (see Zelen and Feinleib (1969), Walter
and Day (1983)). Thus, we set up our case-study model by assuming uniform and
exponential distributions for the two random times.

We first set up our model by specifying its objective function and by extracting
parameters from the literature for the two density functions and the sensitivity of
screening exams. We then solve the model to optimality and consider its robustness.
We last investigate issues of average number of screenings and the expected lead time

under optimal policies.
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6.1 Model Setup

We first analytically specify the objective function for our case-study model.
This takes away unnecessarily numerical integrations in running the optimization

routine.

Proposition 6 If Xy, ~ Unif (0,b) for some b < oo and Xy ~ Exp(\) for A > 0,

then the objective function is

n—1 n
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TED Ab B] [6 e ’ ]
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We parameterize our model as follows. The uniform distribution of X is
assumed to have a range of 24 years. We take this number based on U.S. Preventive
Services Task Force’s recommendation that women should be screened between ages
50 and 75. We choose 24 years as the actual range as we can then easily refer to a
collection of periodic policies (e.g. yearly, biennial , 3-yearly and 4-yearly screenings)
which all divide the support exactly. We further assume that the risk of preclinical
breast cancer begins at age 40, according to American Cancer Society. As a result,
we treat random variable X with a uniform (40, 64) distribution.

The exponential distribution for X; is assumed to have mean length of 3
years, and the rate of S-error for screening exams is assumed to be 0.2. We take
these numbers off various works in the literature (see Walter and Day (1983), Shen
and Zelen (1999), Shen and Parmigiani (New York: Springer, 2006)), and from
surveying domain experts.

In Table 6.1, we summarize our choices of distributions and parameters in our

breast cancer screening model.
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In Figure 6.1 we plot the performance of optimal screening polices across
budget levels 3 through 8, which we consider practical. Recall our objective function
is the probability of detection by screening. Recall also that in Figure 5.2 we had

shown for a model with the same setup that the equal-interval policy performs almost

Table 6.1: Breast Cancer Screening Model Parameters

Input  Distribution/Parameter

r.v. Xo Unif(40, 64)
rv. X Exp(1/3)
[-error 0.2

6.2 Optimal Solution and Its Robustness

as greatly as optimal.

Frobability of Screening Detection
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Figure 6.1: Breast Cancer Model - Optimal Policy Performance
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As shown, with 12 screenings planed, at optimality about 65% preclinical
cases can be found by screening.

Next we investigate the robustness of the above result.

We first consider varying the range of X, and the mean duration of X;. To
this end, we show a simple yet insightful result for the special case in which screening
is perfectly sensitive. As we know that the optimal policy is equally spaced in this

case, we may derive a closed-form expression for the optimal objective value.

Proposition 7 If Xy, ~ Unif (0,0), X1 ~ Exp(\) and B = 0, then the optimal

objective value is P(a™) = %(1—6_%), which increases inmn and 1 /X, and decreases
in b.
Proof:
If 3 =0, then

n—1 (n)

(n) i (n)
P = 3 [ Fs)l1 - Glolt) — s)ds
i=0 Y%
n—1 i

1=0
n- L(i+1)
_ 1 e—brf‘(z—&—l)/ eAst
s 2 ()
1 n—1
BA( bA (4 bag
— 5 e (H)[en(ﬂ)—en]
=0
1 &5 i
- LY e
bA =
n _bx
= a(l — e n )
Now, let = 2, and consider P(o™) as P(z) = 2=¢—. Note as z — 0, both
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numerator 1 —e~* and denominator = tend to 0; but forallz > 0, (1—e™*) =e ¥ < 1

while 2’ = 1. We therefore have P(x) is a decreasing function for positive x.
|

The above result suggests that the longer the preclinical sojourn time is in
comparison to the disease-free time, the easier it will be for screenings to capture the
disease.

We next consider a few alternative configurations on the distributions of X
and X;. Specifically, we hold the means of the two random variables respectively
at 12 years and 3 years, and we consider Weibull and gamma models for X, with a
variance of 16 (original being 48), and also a gamma model for X; with a variance
of 3 (original being 9). We hold g at 0.2 throughout this investigation.

Additionally, for all alternative models, we consider Quantile-Based Inspec-
tion (QBI) policies as follows: at each budget level n, we schedule the screening
epochs at the 1/(n+ 1) through n/(n+ 1) quantiles of the X; distribution. The QBI
policies were initially considered in the context of replaceable system inspection by
Yang and Klutke (2000).

We compare the performances of optimal, QBI and EI policies for our four

alternative models and we present the results in Figures 6.2 through 6.5.
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As shown, in all four cases, the EI policies perform much worse than optimal.
We raise our concern about this observation as in practice most screening recom-
mendations are equally-spaced in nature. Although many studies assume a uniform
Xp, there has been rather limited empirical evidence to support this treatment. Our
results reveal that when the underlying preclinical incidence is not stable, the EI
policy can act far off the mark.

On the other hand, the QBI policies perform rather closely to optimal in all
four cases. We consider the reason for this as that the QBI in its nature exploits
the information about X distribution. In practice, QBI may serve as a good heuris-
tic to compute high-quality screening policies without running the time-consuming
optimization routines.

Furthermore, as we had seen from the previous chapter, when variance is not
so high for either X, or X;’s underlying distribution, the performance of optimal
policy can be much enhanced. In cases of both small variances on X, and X; (see
Figures 6.3 and 6.5), close to 90% probability of detection is achievable with only 12

screenings planned.
6.3 Additional Evaluations

We last study a few additional issues in our disease screening model and we

evaluate these numerically for our breast cancer screening case.
6.3.1 Fxpected Number of Screenings

First, we note that throughout our analysis, the “screening budget” is defined
as the “maximum number of screenings allowed” in a person’s lifetime. The actual
number of screenings for an individual is indeed a random variable which depends
not only on internal factors such as the disease-free and preclinical sojourn times,

but also external ones like screening sensitivity and the screening policy itself.
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We therefore first derive an expression for the expected number of screenings

for an individual in the disease-affected population.

Proposition 8 For screening policy 7 = {m, 7, ..., 7.}, and for a disease-affected
population that has f and g respectively as its disease-free and preclinical sojourn
time densities and [ as screening sensitivity, the average number of screenings per

person (denote this by “NP”) is

n

wom) =3 2i{ [ Gl stia-9 gi/p

i=1

T]Jrl

—w)) I f(w)du },

where 7,1 := 00.

Proof:

NP(1) = Zz - Pr <Number of Screenings = z)
i=1

Tj+1

= Z Z/ Pr(Number of Screenings =i | Xy = u) f(u)du

7'1+1
+/ Pr(Number of Screenings =i | Xy = u)f(u)du}

Tj+1
- Ej/' 1= G — )8~ (1 = B)f(w)du
[event happens when X; survives at least 7; — u amount of time, first

i — j — 1 screenings are all false-negative, and the (i — j)th screening

is successtul]

+ /Tn+1 G(Tit1 — u)f(u)du}

[event happens when X; does not survive till ;]

Ti+1

Z { G(Tip1 — u) f(u)du
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J=0

The above expression is derived by assigning the right probabilities to each
number of screenings while considering the two sojourn times and the §-errors. We
omit the details as these are similar to our derivation for the probability of screening
detection in Proposition 1.

In particular, under our basic breast cancer model assumptions, we have the

following.

Corollary 2 If X, ~ Unif(0,b) and X; ~ Exp()), then:

n—1
ND(T) = ;—){ Tig1 — [1 e (nﬂ_n)]
i=1
1 1—1
HLB S prtpeenen i)
7=0
+g{(b - Tn) + T Z /Bn_j_l[e—)\(Tn—Tj+1) o 6_)\(7—"—7—3')}}'
7=0
Proof
5 ! T1+1 i . Tj+1
ND Z [_){ / _ o ATip1— U)]du + (1 — 5) Zﬁz—g—l/ e_A(Ti_“)du}
=1 = .
n ’ Tj+1
+E{ ldu + (1 - )Zﬁn H/ B_A(T"_u)du}
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Next, we examine the expected number of screenings per person in a popula-
tion that never develops the disease in its lifetime. This measure reflects the impact
of a screening programme to people who are not benefitted yet who follow the same
recommendation to screen.

The following is clear.

Proposition 9 For screening policy 7 = {7y, T, ..., 7}, and for a disease-free pop-
ulation with lifetime distribution function H, the average number of screenings per

person (denote this by “N7) is:

NP(r) = JilH(rin) — H(7)],

i=1

where H(7,41) == 1.
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We then apply the above two definitions to data from breast cancer screening.
Specifically, for the disease-affected population, we assume the model with param-
eters in Table 6.1, and for the disease-free population, we take the 2008 American
females life table (National Vital Statistics System (2012)) for its lifetime distribu-
tion. In doing so, we assume that the proportion of disease-affected samples is rather
small in the overall population. We calculate the expected number of screenings for
both populations as the optimal policy is applied at each budget level. The results

are shown in Table 6.2 and plotted in Figure 6.6.

Table 6.2: Expected Number of Screenings under Optimal Policies

Budget Disease-affected Group Disease-free Group

1 0.1 0.9
2 1.6 1.8
3 2.1 2.8
4 2.6 3.7
) 3.1 4.7
6 3.6 5.6
7 4.0 6.6
8 4.5 7.5
9 5.0 8.5
10 9.5 9.4
11 5.9 10.3
12 6.4 11.3
13 6.9 12.2
14 7.4 13.2
15 7.9 14.1
16 8.4 15.1
17 8.8 16.0
18 9.3 16.9
19 9.8 17.9
20 10.3 18.8
21 10.8 19.8
22 11.3 20.7
23 11.8 21.7
24 12.2 22.6
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Figure 6.6: Expected Number of Screenings under Optimal Policies

As depicted, both populations appear to consist of a fairly linear relationship
between screening budget and the average number of screenings their individuals
will experience. For the disease-free population, screening budget is almost identical
to the actual number of screenings. This is because in reality not many women
will die between ages 40 and 64 (our assumed age range for the preclinical breast
cancer incidence) and as a result, almost every woman ends up going on all the
planned screening exams. As for the disease-affected population, the ratio between
expected number of screenings and screening budget is approximately 1 to 2. Recall
an individual may stop screening at any time due to occurrence of clinical symptoms
or due to screen-detection of the disease.

As a result, in evaluating the real benefits of a screening programme, one

needs not only to beware of the very big number of redundant screenings performed
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to people who are never to develop the disease, but also, to the “diluted” number
of screenings even for the relevant group, thanks to the drastic ratio between the

“nominal” screening budget and the “effective” number of screenings per person.
6.3.2 Expected Lead Time

Our last investigation is on the expected lead time of a screening policy for the
disease-affected population. Indeed, the expected lead time (denote this by “ELT")
has been used in numerous studies as performance measure of screening policies (e.g.
Zelen and Feinleib (1969), Walter and Day (1983), Parmigiani (1993), Shen and Zelen
(1999), Kafadar and Prorok (2009)). We first derive this quantity as follows.

Proposition 10 For screening policy 7 = {7, 7o, ..., 7}, and for a disease-affected
population with f and g respectively as disease-free and preclinical sojourn time

densities and [ as screening sensitivity, the expected lead time is:

ELT(r) = (1—-f) i: Z Z ghis1 /.Ti+1 /.T'Hl_u(u + s —7)9(s)f(u)dsdu.

i=0 j=i+1 k=i+1

Proof:
noloary

ELT(t) = ) / E[Lead Time | Xo = u]f(u)du
— /).

by

i=0 j=i+1"V i

= i > /Ti+1 /.Tiﬂ_u > (=) u+ s — m)g(s) f(u)dsdu

i=0 j=i+1"YTi k=i+1

= (1- B)i Z Z gh=i-1 /%Hl /.Tﬁl_u(ujts — 7%)9(8) f(u)dsdu.

i=0 j=i+1 k=i+1 TiTw

Ti+1

Tj+1—U
/ E[Lead Time | X = u, X1 = s]g(s) f(u)dsdu
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In particular, when X, is exponential and g = 0, we have the following result.

Proposition 11 If X; ~ Exzp()) and § = 0, then ELT(7) equals yP(7) and is
therefore also maximized by o .

Proof:

n—1 Tit1 00
ELT(T)= Z/ / (s +u—T7ip1)g(s)dsf(u)du
i= Ti+1—U

3

” - T —As
dsf (u)du
Ti+1—U
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/ A=) £ (1) du.

>/I>—‘
:s
Ho

>/I>—‘

1=

On the other hand,

N=1-% / " G — ) f(w)du
=0 v T

- / " = Gl — W)l f(u)d

0

—

-.
Il

1

Ti+1
/ e f () du
0T

S
|

1=

= X\ ELT(7).

The above result follows from the memoryless property of exponential distri-
bution. Indeed, knowing that the disease is captured by a screening, the lead time,

i.e. the remaining time in the preclinical state, is but a new exponential quantity.
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As lead time is 0 for cases that are missed by screening, the expected lead time is
simply the probability of detection times the mean of the exponential X;. The next

corollary follows.

Corollary 3 If Xy ~ Unif(0,b), X; ~ Exp(\), and § = 0, then the expected lead
_ba

time is maximized by the equally spaced policy o, and ELT () = 355(1 —e™ ).

Proof: Clear from Propositions 7 and 11.
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7. CONCLUSIONS

In this dissertation, we have studied the problem of how to schedule a se-
quence of screening times over a person’s lifetime in order to maximize the chance
of capturing a disease while preclinical. Our main result is the proof of uni-modality
of the objective function, by which any problem instance in practice is guaranteed
to be solved optimally with a greedy-search algorithm.

In our numerical experiments we have found that the variances of both the
disease-free and the preclinical sojourn times have large impacts on the performance
of the optimal screening policy. The application of our model to breast cancer screen-
ing further reveals that the equally spaced screenings policies can perform far from
optimal, when the preclinical incidence is non-uniform and when the two sojourn
time distributions have small variances. We further found with our breast cancer
screening model that the disease-free population in practice is screened many more
times than the disease-affected population. We argue that without convincing prac-
tical evidence about the underlying disease progression and screening sensitivity, we
should remain alert about the effectiveness of our current guidelines.

We consider several directions of future work valuable. First, from the mod-
elling’s perspective, it will be beneficial to relax the independence assumptions (be-
tween disease-free and preclinical sojourn times, and between screening sensitivity
and preclinical duration at the time of screening), in order to handle more general
cases. We note that such assumptions played a crucial role for our proofs, and we
expect more specific distributions and/or models to be assumed in order to attain
good analytical results.

Also, it may be interesting to model the disease development (e.g. tumor
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growth) in the preclinical state by some stochastic process models as opposed to a
simple sojourn time as in our approach. The challenge to this end is on the one hand
that the model will become much more intricate to handle, while on the other, there
has been rather limited data from practice to validate/parameterize such models.

Thirdly, other optimization criteria may as well be considered. In this work,
we have shown that maximizing the expected lead time is equivalent to maximizing
the probability of detection for our basic breast cancer model. However, this result is
not easily generalized to cases with different distributions for the two sojourn times.
Analytically, it will be more challenging to handle objective functions that comprise
higher orders of integration such as the expected lead time. Additional techniques
must be developed to tackle such harder problems.

Last but not least, in light of the drastic difference on the expected number
of screenings between the disease-free and the disease-affected populations, it will be
of great economic value to consider tailored screening policies for populations with
varying risk factors. Take breast cancer again for example, certain genetic markers
(e.g. BRACI, BRAC2) are known to distinguish women'’s risk profiles significantly.
The question remains on how we can effectively collect data to characterize the
various risk groups and how to communicate any tailored yet distinctive screening
policies to the public.

In short, despite the almost half-century history of quantitative research on
preclinical disease screening, many more significant and interesting results are yet to

be reaped.
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APPENDIX A. MODEL OUTPUTS

Table A.1: Model Outputs - Xy ~ Unif(40,64), X; ~ Fxp(1/3),8 =0

Ser. Perf. Optimal Screening Policies

Bud. Opt. Pol. 1 2 3 4 5 6 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 12% 640 - - - . . - - - B - - , , B B B i B , B , , B
2 25%  52.0 64.0 - - - - - . . - - - B B - B } ) B} B} _ B B _
3 35% 48.0 56.0 64.0 - - - - - - - - - - - - - - - - - - - - _
4 43%  46.0 52.0 580 640 - - - - - - . - - - . N B - B B , B} ) ,
5 50% ~ 44.8 49.6 544 592 640 - - - - - . . . - - - - - N . _ B } _
6 55% 44.0 48.0 52.0 56.0 60.0 64.0 - - - - - - - - - - - - - _ _ _ _ _
7 60% 434 46.9 50.3 53.7 57.1 60.6 64.0 - - - - - - B . B B , } ) , B B ,
8 63%  43.0 46.0 49.0 520 550 58.0 61.0 64.0 - - . . - - - B n - B ; _ } B} _
9 66%  42.7 453 480 50.7 53.3 56.0 587 61.3 640 - - . . - - B, - _ B B, - B } _
10 69% 424 44.8 472 49.6 52.0 544 56.8 59.2 61.6 64.0 - - - - - - . - : - - , - R
11 1% 422 444 465 487 509 53.1 553 575 59.6 61.8 64.0 - - - - - - - - - R _ - R
12 73%  42.0 44.0 46.0 480 50.0 52.0 54.0 56.0 58.0 60.0 62.0 64.0 - - - - . . - - - - _ R
13 5% 41.8 43.7 455 474 492 51.1 529 548 56.6 585 60.3 622 640 - - - - - - - - - - -
14 76% 417 434 451 469 486 50.3 520 53.7 554 57.1 589 60.6 623 640 - - - - - - _ B a _
15 78%  41.6 432 448 464 480 49.6 512 528 544 560 57.6 59.2 60.8 624 640 - - . . - _ N B _
16 79% 415 430 445 46.0 475 49.0 50.5 52.0 53.5 550 56.5 58.0 59.5 61.0 62.5 640 - - - - - - - -
17 80%  41.4 428 442 456 47.1 485 499 51.3 527 541 555 56.9 584 59.8 61.2 626 640 - - - - - . .
18 81%  41.3 427 44.0 453 46.7 480 493 50.7 520 533 547 56.0 57.3 587 60.0 61.3 627 640 - - - - - -
19 82% 41.3 425 438 451 46.3 47.6 488 50.1 514 52.6 539 552 564 57.7 589 60.2 615 62.7 64.0 - - - - -
20 82%  41.2 424 436 448 46.0 472 484 496 508 520 53.2 544 556 56.8 580 59.2 604 61.6 628 640 - - - -
21 83%  41.1 423 434 44.6 457 469 480 49.1 503 514 526 53.7 549 56.0 57.1 583 594 60.6 617 629 64.0 - - -
22 84% 41.1 422 433 444 455 46.5 47.6 487 498 50.9 52.0 53.1 542 553 56.4 575 585 59.6 60.7 61.8 629 640 - -
23 84%  41.0 421 43.1 442 452 46.3 47.3 483 494 504 51.5 525 53.6 54.6 55.7 56.7 57.7 588 59.8 60.9 61.9 63.0 64.0 -
24 85%  41.0 42.0 43.0 44.0 450 46.0 47.0 480 49.0 50.0 51.0 52.0 53.0 540 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0
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Table A.2: Model Outputs - Xo ~ Unif(40,64), X; ~ Exp(1/3),8 = 0.2

Scr.  Perf. Perf. Optimal Screening Policies

Bud. EIPol. Opt. Pol. 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 10% 10%  64.0 - - - - - - . - - - - - - R _ ; _ ; i j j R B
2 20% 20% 52.3 640 - - - - - : - - - - _ _ R _ _ _ _ _ _ _ R _
3 28% 28% 484 562 64.0 - - - - - - - - - - - _ _ _ _ _ _ _ _ _ _
4 35% 35% 46.5 52.3 58.2 64.0 - - - - - - - - - - - - - - - - _ _ _ _
5 1% 41% 453 50.0 54.7 59.4 64.0 - - - - - . - - - - , . , - , , i - ,
6 46% 46% 444 484 523 56.3 602 64.0 - - - - - - - - _ _ - _ _ - _ _ _ _
7 50% 50% 43.9 472 50.6 54.0 57.4 60.8 64.0 - - - - - - - - - - - - - - _ _ _
8 54% 54% 43.4 464 494 523 553 583 61.3 64.0 - - - - - - - R - R R - - B _ R
9 57% 57% 431 457 484 510 53.7 563 59.0 61.6 64.0 - - - - - - - - _ - - _ _ R _
10 60% 60% 42.8 452 476 499 523 54.7 57.1 59.5 61.9 64.0 - - - - - - - - - - - - - -
11 62% 62% 425 447 469 49.1 51.2 534 556 57.8 60.0 62.1 640 - - - - - - - - - - - - R
12 64% 65% 423 44.3 463 483 50.3 523 54.3 563 583 60.3 623 64.0 - - - - - - _ - R _ R _
13 66% 66% 422 44.0 459 47.7 496 514 533 551 57.0 58.8 60.6 62.5 64.0 - - - . B - - - _ R _
14 68% 68%  42.0 43.7 455 47.2 489 50.6 523 541 558 57.5 592 60.9 62.6 64.0 - - - - - - - . - -
15 70% 70% 419 435 451 46.7 483 499 515 53.1 547 56.3 580 59.6 61.2 628 64.0 - - - - - - - - -
16 71% 71%  41.8 433 44.8 46.3 47.8 493 50.8 52.3 538 553 56.9 584 59.9 61.4 629 64.0 - - - - - . . B,
17 2% 72% 417 431 44.5 459 474 488 502 51.6 53.0 54.5 559 57.3 587 60.1 61.6 63.0 64.0 - - - - - - -
18 73% 74%  41.6 429 443 456 47.0 483 49.7 51.0 523 53.7 550 56.4 57.7 59.0 60.4 61.7 63.1 64.0 - - - - - -
19 7% 75% 415 428 44.1 453 46.6 479 492 50.4 51.7 53.0 542 555 56.8 58.1 59.3 60.6 61.9 63.1 640 - - - - -
20 76% 76% 414 4277 439 451 46.3 475 487 499 51.1 523 535 548 56.0 57.2 584 59.6 60.8 62.0 63.2 64.0 - - - -
21 76% T7% 414 425 43.7 448 46.0 47.1 483 49.5 506 51.8 529 54.1 552 564 57.5 587 59.8 61.0 62.1 63.3 64.0 - - -
22 7% 7% 413 424 435 446 457 46.8 479 49.0 50.1 51.2 523 534 545 556 56.7 57.8 589 60.0 61.1 62.2 63.3 640 - -
23 8% 8% 41.3 423 434 444 455 46.5 476 48.6 49.7 50.8 51.8 529 539 550 56.0 57.1 581 59.2 60.2 61.3 62.3 634 64.0 -
24 79% 79% 412 422 432 442 453 463 473 483 493 50.3 51.3 523 53.3 544 554 564 574 584 594 604 61.4 624 63.5 64.0
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Table A.3: Model Outputs - Xo ~ Unif(40,64), X; ~ Exp(1/3),8 = 0.4

Ser.  Perf. Perf. Optimal Screening Policies

Bud. EIPol. Opt. Pol. 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 % % 64.0 - - - - - - , - - . - _ B, R B i j j i B B R B
2 15% 15%  52.8 640 - - - . - : - - - R _ _ R _ _ _ _ _ _ _ R _
3 21% 21%  49.0 56.5 64.0 - - - - . . - - - _ _ _ - _ _ _ _ _ _ _ _
4 27% 27%  47.1 52.8 585 640 - - - - - : . - . - R _ , . _ , _ _ R _
5 32% 32% 459 505 55.1 59.7 640 - - - - - - - - - R , , , , , , , R ,
6 36% 36% 450 489 52.8 56.6 60.5 64.0 - - - : . - - - _ - . _ _ _ _ _ _ _
7 40% 40% 444 478 51.1 544 57.8 611 64.0 - - . . - . - R - - _ B _ _ _ - _
8 44% 44% 44.0 46.9 49.8 52.8 55.7 58.6 61.6 64.0 - - - - - , - R - , - , , R R ,
9 4% 47% 43.6 46.2 488 515 54.1 56.7 59.3 61.9 64.0 - - - - - - - - _ - - _ _ _ _
10 49% 49% 433 457 48.0 50.4 528 551 57.5 59.9 622 640 - - B . - . - _ - - - _ - _
11 52% 52% 43.0 45.2 474 495 51.7 53.8 56.0 58.2 60.3 62.5 64.0 - - . - - - , R - , - - ,
12 54% 54% 428 44.8 46.8 488 50.8 528 54.8 56.7 58.7 60.7 62.7 64.0 - - - - - - - - _ R - _
13 56% 56%  42.6 44.5 46.3 482 50.0 51.8 53.7 555 574 59.2 61.1 629 640 - - - . . - - - _ - _
14 58% 58% 425 44.2 459 476 493 51.1 52.8 545 562 57.9 59.6 61.3 63.1 640 - - - - - - , , - ,
15 60% 60% 423 439 455 47.1 488 504 52.0 53.6 552 56.8 584 60.0 61.6 632 64.0 - - - - - - . - :
16 61% 61% 422 43.7 452 46.7 48.2 498 51.3 528 543 558 57.3 588 60.3 61.8 63.3 640 - - - - - . . .
17 63% 63% 421 435 449 464 478 492 50.6 52.1 53.5 549 56.3 57.7 59.2 60.6 620 634 64.0 - - - - - - :
18 64% 64%  42.0 43.3 44.7 46.0 474 487 50.1 514 528 B54.1 555 56.8 582 59.5 60.8 62.2 63.5 640 - - - - - :
19  65% 66% 419 43.2 44.5 457 47.0 483 49.6 50.8 521 53.4 547 56.0 57.2 585 59.8 61.1 624 636 64.0 - - - - -
20 66% 67%  41.8 43.0 44.3 455 46.7 479 49.1 50.3 51.6 528 540 552 564 57.6 588 60.1 61.3 625 63.7 640 - - - -
21 6% 68% 417 429 44.1 452 464 475 487 49.9 51.0 522 53.3 545 557 56.8 58.0 59.1 60.3 61.5 62.6 63.8 64.0 - - -
22 68% 69% 417 42.8 439 450 46.1 472 483 494 50.5 51.7 528 53.9 550 56.1 57.2 583 594 60.5 61.6 62.8 639 64.0 - -
23 69% 70%  41.6 427 43.7 448 459 469 48.0 49.0 50.1 51.2 522 53.3 544 554 56.5 57.5 586 59.7 60.7 61.8 629 639 640 -
24 0% T1% 415 42.6 43.6 446 456 46.6 47.7 487 49.7 50.7 51.7 52.8 53.8 548 558 56.8 57.9 589 59.9 60.9 619 63.0 64.0 64.0
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Table A.4: Model Outputs - Xo ~ Unif(40,64), X; ~ Exp(1/3),8 = 0.8

Ser.  Perf. Perf. Optimal Screening Policies

Bud. EIPol. Opt. Pol. 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 2% 2% 64.0 - - - - - B . - - - - _ , R _ ; B B i j j R B
2 5% 5% 544 640 - - - - - : - - - - _ - R _ i _ _ _ _ _ - _
3 % % 51.1 57.7 64.0 - - - - - - - - - - - _ _ _ _ _ _ _ _ _ _
4 9% 10% 494 544 594 640 - - - . - : - - _ - R _ , _ _ , _ _ R _
5 11% 12% 483 524 565 60.6 64.0 - - - - - - - , - R , , , , , , , R ,
6 13% 14% 474 509 544 579 614 64.0 - - - - - - - - _ _ - _ _ - _ _ _ _
7 15% 16% 46.8 49.9 529 559 59.0 62.0 64.0 - - - - - - - - - - - - - - - - _
8 17% 17% 46.3 49.0 51.7 544 57.1 59.8 625 64.0 - - - - - - - - - R R - R - _ -
9 19% 19% 459 484 50.8 532 55.6 580 60.5 629 640 - - - - - - - - _ - - _ _ R _
10 20% 21% 456 47.8 50.0 522 544 56.6 58.8 61.0 632 64.0 - - : . - - - _ - - _ _ R _
11 22% 22% 453 473 493 514 534 554 575 59.5 61.5 635 64.0 - - - - - - R - - R R - R
12 23% 24% 45.0 46.9 488 50.7 52.5 544 56.3 582 60.0 61.9 63.8 64.0 - - - - - - _ - R _ R _
13 25% 26% 44.8 46.5 483 50.0 51.8 53.5 553 5H57.0 588 60.5 623 64.0 64.0 - - - - - - - - - - _
14 26% 27%  44.6 46.2 47.8 495 51.1 52.7 543 56.0 57.6 59.2 60.9 625 64.0 640 - - - - - - - - - -
15 2% 28% 444 459 47.4 49.0 50.5 52.0 53.5 55.1 56.6 581 59.6 61.2 62.7 64.0 64.0 - - - - - - - - :
16 29% 30% 442 45.6 47.1 485 49.9 514 528 542 557 57.1 586 60.0 61.4 629 64.0 640 - - - - - . . B,
17 30% 31% 440 454 468 481 495 50.8 52.2 535 549 56.2 57.6 59.0 60.3 61.7 63.0 64.0 64.0 - - - - - - :
18 31% 32% 439 452 46.5 47.8 49.0 50.3 51.6 529 542 555 56.7 58.0 59.3 60.6 61.9 632 64.0 64.0 - - - - - -
19  32% 33%  43.8 45.0 462 474 486 499 51.1 523 53.5 54.8 56.0 57.2 584 59.6 60.9 621 63.3 640 64.0 - - - - -
20 33% 35% 43.6 44.8 46.0 47.1 483 49.5 50.6 51.8 53.0 54.1 553 564 576 588 59.9 61.1 623 634 64.0 64.0 - - - -
21 35% 36% 435 44.6 458 46.9 48.0 49.1 50.2 51.3 524 53.5 54.6 55.8 569 58.0 59.1 602 61.3 624 63.5 64.0 640 - - -
22 36% 37% 434 44.5 456 46.6 47.7 487 49.8 509 51.9 53.0 54.1 55.1 56.2 57.3 583 59.4 60.5 61.5 62.6 63.6 640 64.0 - -
23 37% 38% 43.3 44.3 454 46.4 474 484 494 50.5 51.5 525 53.5 54.6 556 56.6 57.6 58.6 59.7 60.7 61.7 62.7 63.7 64.0 64.0 -
24 38% 39% 432 442 452 46.2 47.2 481 49.1 50.1 51.1 52.1 53.0 54.0 55.0 56.0 57.0 57.9 589 59.9 60.9 61.9 62.9 63.8 64.0 64.0
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Table A.5: Model Outputs - X ~ Unif(40,64), X; ~ Exp(1/3),5 = 0.99

Ser.  Perf. Perf. Optimal Screening Policies

Bud. EIPol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 0% 0% 64.0 - - - - - - , - - . - B B, R j i j j i j B R B
2 0% 0% 520 64.0 - - - . , . - - - R _ - R _ - _ _ _ _ _ - _
3 0% 0% 55.2 56.5 64.0 - - - - . . : - - - _ _ - _ _ _ _ _ _ _ _
4 0% 0% 54.9 57.8 589 64.0 - - - - - - . R . - R _ , _ _ , _ _ R _
5 1% 1% 54.6 57.0 59.8 60.8 64.0 - - - - - - - - - R , - , , - , , - ,
6 1% 1% 54.2 564 587 61.3 62.3 64.0 - - . : . - - - _ - - _ _ _ _ _ _ _
7 1% 1% 53.3 55.0 56.9 59.1 59.1 61.6 640 - - - . - : - - _ - . ; B _ _ R _
8 1% 1% 53.1 54.8 56.5 582 604 604 625 64.0 - - . - - , - R . - - , R , R R
9 1% 1% 52.8 54.4 56.1 57.7 59.3 61.5 61.5 63.3 640 - - - - - - - - _ _ - _ _ _ _
10 1% 1% 52.5 54.0 55.5 56.9 584 59.9 614 623 640 64.0 - - - . - - - - - - _ R R _
11 1% 1% 52.3 53.7 55.1 56.5 57.9 59.3 60.8 624 629 64.0 64.0 - - . - : - , - - , - _ B
12 1% 1% 52.0 53.3 54.6 559 57.2 585 59.8 61.2 626 63.2 640 640 - - - - - - _ - R _ R _
13 1% 2% 51.8 53.0 542 554 56.7 57.9 59.1 60.3 61.5 629 638 640 64.0 - - - . . - - _ _ - _
14 2% 2% 51.6 52.7 539 550 56.1 57.3 584 59.6 60.8 62.2 624 635 640 64.0 - - - - , B, , , , ,
15 2% 2% 51.4 524 535 54.6 557 56.8 57.8 589 60.0 61.1 625 629 640 64.0 64.0 - . : - - - - R _
16 2% 2% 51.2 522 532 542 552 56.2 572 582 59.3 60.3 61.3 624 629 64.0 640 640 - - , - _ _ _ _
17 2% 2% 51.0 52.0 529 539 549 558 56.8 57.8 58.7 59.7 60.7 61.6 62.7 63.4 640 640 640 - - - - - - -
18 2% 2% 50.8 51.8 527 53.6 54.5 555 56.4 57.3 582 59.2 60.1 61.1 623 62.5 634 640 640 64.0 - - - - - :
19 2% 2% 50.7 51.6 524 53.3 542 551 56.0 56.8 57.7 58.6 59.5 60.4 61.2 62.1 63.0 638 640 64.0 640 - - - - -
20 2% 2% 50.5 51.4 522 53.1 53.9 548 556 56.5 57.3 582 59.0 59.8 60.9 62.0 62.1 629 63.7 64.0 64.0 640 - - - -
21 2% 3% 504 51.2 520 528 53.6 544 552 56.0 56.8 57.6 584 59.2 60.1 60.9 61.7 624 632 640 64.0 640 640 - - -
22 2% 3% 50.2 51.0 51.8 525 53.3 54.1 549 556 56.4 57.2 580 587 59.5 60.2 61.3 61.8 625 63.2 64.0 640 640 64.0 - -
23 3% 3% 50.1 50.9 51.6 524 53.1 53.9 546 554 56.1 56.9 57.6 584 59.1 59.9 60.6 614 623 62.7 63.5 640 640 640 64.0 -
24 3% 3% 50.0 50.8 51.5 522 529 53.7 544 551 558 56.6 57.3 580 58.7 59.5 60.2 61.1 61.9 62.2 62.8 63.5 640 64.0 64.0 64.0




Table A.6: Model Outputs - Xy ~ 40 + Gamma(9,4/3), X; ~ Gamma(3,1),5 = 0.2

GL

Scr.  Perf. Perf. Optimal Screening Policies

Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 2% 23% 52.7 - - - - - - - - - - - - - - - - - - - - - - -
2 25% 39% 51.1 54.6 - - - - - - - - - - - - - - - - - - - - _ _

3 29% 51% 50.2 529 559 - - - - - - - - - - - - - - - - - - - - -
4 39% 59% 49.5 51.8 541 56.9 -

5 47% 66% 49.0 51.1 53.0 55.1 57.8 - - - - - - - - - - - - - - - - - - -
6 54% 1% 48.6 50.5 522 53.9 559 585 @ -

7 60% 5% 48.2 50.0 51.5 53.1 54.7 56.6 59.2 - - - - - - - - - - - - - - - - -
8 65% 78% 479 49.6 51.0 524 538 554 573 598 -

9 69% 81% 477 492 50.6 51.8 53.1 545 56.0 57.8 60.3 - - - - - - - - - - - - - - -
10 73% 83% 474 489 50.2 514 526 538 551 56.6 584 608 @ - - - - - - - - - - - - - -
11 76% 85% 472 487 499 51.0 521 53.2 544 55.7 57.1 588 612 -
12 78% 87% 47.0 484 49.6 50.6 51.7 52.7 53.8 54.9 56.2 57.6 59.3 61.7 - - - - - - - - - - - -
13 80% 88% 46.9 482 49.3 50.3 51.3 523 53.2 543 554 56.6 580 59.7 62.1 -
14 82% 89% 46.7 48.0 49.1 50.0 51.0 51.9 52.8 53.8 54.8 558 57.0 584 60.1 624 -
15 84% 90% 46.6 47.8 48.8 49.8 50.7 51.5 524 533 542 552 56.3 574 588 60.5 628 -
16 85% 91% 46.5 47.7 48.7 49.5 504 51.2 52.0 529 53.7 546 55.6 56.7 57.8 59.2 60.8 63.1 -
17 87% 92% 46.3 475 485 493 50.1 50.9 51.7 525 53.3 542 55.0 56.0 57.0 582 59.5 61.1 634 -
18 88% 92% 414 46.3 475 485 493 50.1 509 51.7 525 53.3 542 550 56.0 57.0 582 59.5 61.1 634 - - - - - -
19 89% 93% 41.3 46.2 474 483 49.1 499 50.7 514 522 530 53.7 546 554 56.4 574 585 598 614 63.7 - - - - -
20 90% 93% 41.2 46.1 472 481 49.0 49.7 504 51.2 519 526 534 541 549 558 56.7 57.7 588 60.1 61.7 64.0 - - - -
21 90% 94% 41.2 46.0 47.1 48.0 488 49.5 50.2 509 51.6 523 53.0 53.7 545 553 56.1 57.0 58.0 59.1 604 62.0 643 - - -
22 91% 94% 41.1 459 470 479 486 49.3 50.0 50.7 51.4 52.0 52.7 534 541 548 55.6 56.4 57.3 583 594 60.7 623 64.5 - -
23 92% 95% 41.1 458 46.9 47.7 485 49.2 49.8 50.5 51.1 51.8 524 53.1 53.7 544 552 559 56.7 57.6 586 59.7 61.0 625 648 -
24 92% 95% 41.0 457 46.8 47.6 483 49.0 49.7 50.3 509 51.5 522 528 534 541 548 555 56.2 57.0 57.9 589 60.0 61.2 62.8 65.0




Table A.7: Model Outputs - Xy ~ 40 + Gamma(9,4/3), X; ~ Gamma(3,1),5 = 0.6

9L

Scr.  Perf. Perf. Optimal Screening Policies

Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1% 12% 52.7 - - - - - - - - - - - - - - - - - - - - - - -
2 12% 21% 51.5 54.1 - - - - - - - - - - - - - - - - - - - - _ _

3 15% 28% 50.8 52.8 55.0 - - - - - - - - - - - - - - - - - - - - -
4 20% 34% 50.3 52.0 53.7 55.7 - - - - - - - - - - - - - - - - - - - -
5 24% 40% 499 514 528 544 563 - - - - - - - - - - - - - - - - - - -
6 28% 44% 49.5 50.9 522 535 549 568 @ - - - - - - - - - - - - - - - - - -
7 32% 48% 49.3 50.6 51.7 529 54.1 555 572 -
8 36% 52% 49.0 50.2 51.3 524 534 54.6 559 576 - - - - - - - - - - - - - - - -
9 39% 55% 48.8 50.0 51.0 52.0 529 539 550 56.3 580 - - - - - - - - - - - - - - -
10 42% 58% 48.6 49.7 50.7 51.6 525 534 544 554 56.7 584 - - - - - - - - - - - - - -
11 45% 61% 48.4 495 504 51.3 521 53.0 53.8 548 55.8 57.0 587 - - - - - - - - - - - - -
12 48% 63% 48.3 49.3 50.2 51.0 51.8 52.6 53.4 54.2 55.1 56.1 574 59.0 -
13 50% 65% 48.1 49.1 50.0 50.7 51.5 522 53.0 538 54.6 555 56.5 57.7 59.3 - - - - - - - - - - -
14 53% 67% 48.0 49.0 498 50.5 51.2 519 52.6 534 54.1 549 558 56.8 57.9 595 -

15 55% 69% 479 488 49.6 50.3 51.0 51.7 523 53.0 53.7 544 552 56.1 57.1 582 598 -
16 57% 1% 478 487 494 50.1 50.8 514 521 52.7 534 540 548 555 56.4 573 585 60.0 -
17 59% 1% 414 478 487 494 50.1 50.8 514 521 52.7 534 54.0 548 555 56.4 57.3 585 60.0 - - - - - - -
18 61% 72% 41.3 476 485 493 499 50.6 51.2 51.8 524 53.0 53.7 543 55.0 558 56.6 57.6 58.7 60.2 - - - - - -
19 62% 74% 41.3 475 484 49.1 498 504 51.0 51.6 522 528 53.4 540 54.6 553 56.1 56.9 57.8 589 60.5 -
20 64% 5% 412 474 483 49.0 49.6 50.2 50.8 51.4 519 525 53.1 53.7 543 549 556 56.3 57.1 58.0 592 60.7 - - - -

21 66% 76% 41.2 473 482 489 495 50.1 50.6 51.2 51.7 523 528 534 539 545 552 558 56.6 574 583 594 609 - - -

22 67% 7% 41.1 473 481 487 493 499 50.5 51.0 51.5 52.0 52.6 53.1 53.6 542 54.8 554 56.1 56.8 57.6 585 59.6 61.1 - -

23 68% 78% 41.1 472 48.0 48.6 49.2 498 50.3 50.8 51.3 51.8 523 528 534 539 545 55.0 556 56.3 57.0 57.8 587 59.8 61.3 -

24 70% 79% 41.0 471 479 485 49.1 49.6 50.2 50.7 51.1 51.6 521 526 53.1 53.6 54.1 54.7 553 559 56.5 572 58.0 589 60.0 61.4




Table A.8: Model Outputs - Xy ~ 40 + Gamma(9,4/3), X; ~ Gamma(3,1), 8 = 0.9

L.

Scr.  Perf. Perf. Optimal Screening Policies
Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 0% 3% 52.7 - - - - - - - - - - - - - - - - - R - - - _ -
3% 6% 52.2 53.2 - - - - - - - - - - - - - - - - - - - - _ _
3 4% 8% 51.8 52.7 53.7 - - - - - - - - - - - - - - - - - R - - -
4 5% 10% 51.5 523 53.1 540 - - - - - - - - - - - - - - - - _ - _ -
5 6% 12% 51.3 52.0 52.7 53.5 54.3 - - - - - - - - - - - - - - - - - _ _
6 7% 15%  51.0 51.7 524 53.1 538 54.6 - - - - - - - - - - . _ - - _ - . _
7 9% 16% 50.9 51.5 52.1 527 534 541 549 - - - - - - - - - - - - - - - - _
8 10% 18%  50.7 51.3 51.8 524 53.0 53.7 544 551 - - - - - - - - - - - - , - R ,

9 11% 20% 50.5 51.1 51.6 522 52.7 53.3 53.9 54.6 553 -
10 12% 22% 50.4 509 51.4 52.0 525 53.0 53.6 54.2 548 555 -
11 13% 23% 50.3 50.8 51.3 51.8 523 528 53.3 53.8 544 550 556 - - - - - - - - - - - - -
12 14% 25% 50.2 50.6 51.1 51.6 52.1 525 53.0 53.5 54.0 54.6 552 -

13 15% 27% 50.1 50.5 51.0 51.4 519 523 528 532 53.7 54.2 54.7 553 56.0 -
14 16% 27% 41.7 50.1 50.5 51.0 51.4 519 523 528 53.2 53.7 542 547 553 56.0 -
15 17% 28% 41.6 50.0 50.4 50.8 51.3 51.7 52.1 526 53.0 534 539 544 549 555 56.1 -
16 18% 29% 41.5 499 503 50.7 51.1 51.6 52.0 524 528 532 53.6 54.1 54.6 55.1 55.7 56.3 -
17 19% 31% 414 498 50.2 50.6 51.0 514 51.8 522 52.6 53.0 53.4 538 543 547 552 558 564 - - - - - - -
18 20% 32% 414 49.7 50.1 50.5 509 51.3 51.7 52.0 524 528 53.2 53.6 54.0 544 549 554 559 565 -
19 21% 33% 41.3 49.6 50.0 504 50.8 51.2 51.5 51.9 523 526 53.0 534 53.7 542 54.6 550 555 56.1 56.7 -
20 22% 35% 41.2 495 499 50.3 50.7 51.0 51.4 51.8 521 525 528 532 53.5 539 543 54.7 552 557 562 56.8 -
21 23% 36% 412 494 498 50.2 50.6 50.9 51.3 51.6 520 523 52.6 53.0 53.3 53.7 541 545 549 553 558 56.3 56.9 - - -
22 24% 3% 41.1 494 498 50.1 50.5 50.8 51.2 51.5 51.8 522 525 528 53.2 535 53.9 542 54.6 55.0 555 559 56.5 57.0 - -
23 25% 38% 41.1 493 49.7 50.0 50.4 50.7 51.1 514 51.7 52.0 523 52.7 53.0 53.3 53.7 54.0 544 54.7 551 556 56.1 56.6 57.1 -
24 25% 39% 41.0 49.2 49.6 50.0 50.3 50.6 51.0 51.3 51.6 51.9 522 525 528 53.1 53.5 53.8 54.1 545 549 553 557 56.2 56.7 57.2
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Table A.9: Model Outputs - Xy ~ 40 + Gamma(9,4/3), X1 ~ Exp(1/3),5 = 0.2

Scr.  Perf. Perf. Perf. Optimal Screening Policies

Bud. EIPol. QBIPol. Opt. Pol. 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 4% 19% 21% 532 - - - - - - - - . . - - . - R _ ; R j i R j i
2 23% 32% 33% 514 551 - - - - . - - - . - - _ _ R _ _ - _ _ R _ _
3 28% 1% 43% 504 53.1 56.3 - - - - - . - - - - _ - - _ B R _ _ _ _ _
4 35% 47% 49% 497 519 542 572 - - - - . . . - - - _ R _ _ - _ , - _ ,
5 141% 53% 54% 492 51.1 53.0 55.1 580 - - - - . - , - , - R , , - , , - , ,
6 46% 57% 59% 488 50.5 52.1 53.8 55.8 586 - - - - - - - - - - _ _ R R _ _ - _
7 51% 60% 62% 484 50.0 51.5 529 545 564 59.2 - - - - . . . - - . - R _ - R _ i
8 54% 63% 65% 481 49.6 51.0 522 53.6 551 57.0 59.6 - - - : - - - - , , R - , - , ,
9 57% 66% 68% 479 493 505 51.7 529 542 55.6 574 60.1 - - - - - - - - - R _ - R _ _
10 60% 68% 70% 477 49.0 50.2 51.2 52.3 534 54.7 56.1 57.9 604 - . . . . - . - R _ - R _ i
11 62% 70% 72% 475 48.8 49.8 50.9 51.8 529 539 551 56.5 58.3 60.8 - - - - - - . - , - - R -
12 65% 1% 73% 473 485 49.6 505 51.4 524 533 544 555 56.9 586 61.1 - - - - - - - - - - R -
13 66% 73% 75% 472 483 493 502 51.1 51.9 528 53.8 548 559 57.2 589 614 - - - . . - _ - R _ _
14 68% 74% 76%  47.0 48.2 49.1 50.0 50.8 51.6 524 53.2 541 551 56.2 57.6 59.2 61.7 - - - - - - - - : -
15 70% 75% 7% 469 48.0 48.9 49.7 50.5 51.3 52.0 52.8 53.6 54.5 555 56.6 57.9 59.5 62.0 - - - - - - - - .
16 71% 76% 78%  46.8 47.9 487 495 50.3 51.0 51.7 524 532 54.0 54.8 55.8 56.9 581 59.8 622 - - - - - - . .
17 2% 7% 78% 414 46.8 47.9 487 495 50.3 51.0 51.7 524 532 54.0 548 558 56.9 581 59.8 622 - - - - - - -
18 74% 78% 9% 414 46.7 47.7 486 49.3 50.0 50.7 51.4 521 528 53.5 54.3 551 56.1 57.1 584 60.0 625 - - - - - -
19 7% 79% 80%  41.3 46.6 47.6 484 49.1 498 50.5 51.1 51.8 524 531 53.8 54.6 554 56.3 574 58.6 60.3 62.7 - - - - -
20 6% 80% 81%  41.2 46.5 475 483 49.0 49.6 50.3 50.9 51.5 521 52.8 534 541 549 557 56.6 57.6 589 60.5 62.9 - - - -
21 76% 81% 82% 412 46.4 474 481 488 495 50.1 50.7 51.3 51.8 524 53.1 53.7 544 551 559 56.8 57.9 59.1 60.7 63.1 - - -
22 7% 81% 82%  41.1 46.3 47.3 480 487 493 49.9 50.5 51.0 51.6 522 52.7 53.4 540 54.7 554 562 57.1 581 59.3 609 63.3 - -
23 78% 82% 83%  41.0 46.2 47.2 479 486 492 49.7 50.3 50.8 514 51.9 525 53.0 53.6 542 549 556 564 57.3 583 59.5 61.1 634 -
24 79% 82% 84%  41.0 46.1 47.1 478 484 49.0 49.6 50.1 50.6 51.1 51.7 522 527 53.3 53.9 545 55.1 558 56.6 57.5 585 59.7 61.3 63.6




Table A.10: Model Outputs - Xy ~ 40 + Gamma(3,4), X; ~ Exp(1/3),6 =0.2

6.

Scr.  Perf. Perf. Optimal Screening Policies

Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 5% 14% 512 - - . . - . - B B - B B - B B - B B - B B B B
2 19% 25% 49.1 54.0 - - - - - - - - - - - - - - - - - - - _ _

3 27% 32% 479 515 56.0 - - - - - - - - - - - - - - - - - - - - -
4 34% 39% 471 50.1 533 575 -

5 39% 44% 46.5 49.1 51.8 54.8 588 -
6 44% 48% 46.1 484 50.7 53.1 56.0 60.0 -
7 48% 52% 45.7 478 498 519 542 57.0 609 - - - - - - - - - - - - - - - - -
8 51% 55% 454 474 492 51.0 53.0 553 58.0 61.8 - - - - - - - - - - - - - - - -
9 54% 57% 45.1 47.0 48.6 50.3 52.1 54.0 56.1 588 62.6 - - - - - - - - - - - - - - -
10 57% 60% 449 46.6 482 49.7 51.3 53.0 548 57.0 59.6 634 - - - - - - - - - - - - - -
11 59% 62% 447 46.3 478 49.2 50.6 522 53.8 55.6 57.7 60.3 64.0 -
12 61% 64% 44.5 46.1 475 488 50.1 51.5 529 545 56.3 584 61.0 64.7 - - - - - - - - - - - -
13 63% 65% 44.3 458 471 484 49.6 50.9 522 53.7 552 57.0 59.0 61.6 653 - - - - - - - - - - -
14 64% 67% 442 456 469 481 49.2 504 51.6 529 54.3 558 57.6 59.6 62.1 658 -
15 66% 68% 44.1 454 46.6 47.8 489 50.0 51.1 523 53.6 549 56.4 581 60.2 62.7 66.3 - - - - - - - - -
16 67% 70% 439 453 46.4 475 485 496 50.7 51.8 529 542 555 57.0 587 60.7 632 66.8 - - - - - - - -
17 68% 1% 43.8 451 46.2 473 483 49.2 50.3 51.3 524 535 54.7 56.0 57.5 59.2 61.2 63.7 673 -

18 69% 72% 43.7 45.0 46.0 47.0 48.0 489 499 509 51.9 529 54.0 552 56.6 58.0 59.7 61.6 64.1 67.7 -
19 70% 73% 43.6 449 459 46.8 478 487 49.6 50.5 51.4 524 53.5 54.6 557 57.0 585 60.1 62.1 64.6 681 -
20 1% 4% 43.6 44.7 457 46.6 475 484 49.3 50.1 51.0 52.0 529 54.0 55.0 56.2 57.5 589 60.6 62.5 650 686 - - - -

21 72% 5% 43.5 44.6 456 46.5 473 482 49.0 498 50.7 51.6 52,5 534 544 555 56.7 579 593 61.0 629 654 689 - - -

22 73% 76% 43.4 445 455 46.3 471 479 487 495 504 51.2 52.0 529 539 549 559 571 583 59.7 614 63.3 657 69.3 - -

23 4% 76% 433 444 453 46.2 470 47.7 485 493 50.1 509 51.7 525 534 543 553 56.3 57.5 587 60.1 61.7 63.7 66.1 69.7 -

24 1% 7% 43.3 443 452 46.0 46.8 47.6 483 49.0 49.8 50.5 51.3 52.1 529 53.8 54.7 557 56.7 579 59.1 60.5 62.1 64.0 66.5 70.0




08

Table A.11: Model Outputs - Xo ~ 40 + Exzp(1/12), X; ~ Exp(1/3),5 = 0.2

Scr.  Perf. Perf. Perf. Optimal Screening Policies

Bud. EIPol. QBIPol. Opt. Pol. 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 4% 12% 13% 45.5 - - - - - - - - - - - - - - - - - - - - - _ _
2 13% 20% 22% 44.0 49.1 - - - - - - - . - - - _ _ R _ _ - R _ R _ _
3 21% 27% 28% 433 469 51.9 - - - - - - - - - - _ _ . R _ R _ _ _ _ _
4 28% 33% 34% 42.8 45.7 49.2 543 - - - - . . - - - - _ R _ _ - _ , - _ ,
5 34% 38% 39% 425 449 478 513 563 - - - - . - - - , - R - - - , R - , ,
6 39% 42% 42% 422 443 46.7 496 53.2 582 - - - - - - - - - - - - R _ - R _ _
7 43% 45% 46% 42.0 439 46.0 484 51.3 549 599 - - . : . - - - R _ - R _ _ - _ _
8 46% 48% 49% 41.8 43.5 454 475 50.0 52.8 56.4 614 - - - - - - , - - - - , - R , -
9 49% 51% 51% 41.7 433 450 46.9 49.0 514 54.3 578 62.8 - - - - - - - - - - _ - R _ _
10 51% 53% 54% 41.6 43.0 44.6 46.3 48.2 50.3 52.7 55.6 592 64.2 - - - : . - , - - - - R - -
11 54% 55% 56% 415 428 443 458 475 494 515 539 56.8 604 654 - - - - - - - - - - - R -
12 56% 57% 58% 41.4 427 44.0 454 47.0 487 50.6 52.7 551 580 61.5 66.6 - - - - - - - - - - - -
13 57% 59% 59% 41.3 425 43.8 451 46.5 481 498 51.7 538 56.2 59.1 62.6 67.6 - - - - - - - - - . .
14 59% 60% 61% 413 424 435 448 46.1 476 49.1 508 52.7 548 572 60.1 63.7 68.7 - - - - - - - - : .
15 60% 62% 62% 412 423 434 445 458 471 486 50.1 51.8 53.7 558 582 61.1 64.7 69.7 - - - - - - - - -
16 61% 63% 64% 41.1 421 432 443 455 46.7 481 49.5 51.1 528 546 56.8 59.2 62.0 65.6 70.6 - - - - - - . .
17 63% 64% 65% 411 42.0 43.0 441 452 464 47.6 490 504 52.0 53.7 555 57.7 60.1 62.9 665 715 - - - - - - -
18 64% 65% 66% 411 42.0 429 43.9 450 46.1 47.2 485 49.8 51.3 528 54.5 564 585 609 63.8 674 724 - - - - - -
19  65% 66% 67% 41.0 41.9 42.8 437 44.7 458 46.9 481 493 50.7 521 53.6 554 572 59.3 61.8 64.6 682 732 - - - - -
20 65% 67% 68% 41.0 41.8 427 43.6 445 455 46.6 477 489 50.1 51.5 529 544 56.1 58.0 60.1 62.6 654 69.0 74.0 - - - -
21 66% 68% 69% 40.9 41.7 426 434 444 453 46.3 474 485 49.6 509 522 53.7 552 56.9 588 60.9 63.3 66.2 69.8 748 - - -
22 6% 69% 70% 40.9 41.7 425 433 44.2 451 46.0 47.0 481 49.2 504 51.6 53.0 544 56.0 57.7 59.5 61.7 64.1 66.9 70.5 755 - -
23 68% 70% 1% 409 41.6 424 432 44.0 449 458 46.8 478 488 499 51.1 523 53.7 551 56.7 584 60.3 624 64.8 67.7 71.2 76.2 -
24 68% 1% 72% 40.8 41.6 423 43.1 439 447 456 465 475 484 495 50.6 51.8 53.0 54.4 558 574 59.1 60.9 63.1 655 683 719 76.9
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Table A.12: Model Outputs - Xy ~ 40 + Weibull(13.3770, 3.3035) (mean = 12, var = 16), X; ~ Exp(1/3), 5 = 0.2

Scr.  Perf. Perf. Perf. Optimal Screening Policies

Bud. EIPol. QBIPol. Opt. Pol. 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 3% 17% 20% 543 - - - - , . - - - . - . _ ; - j i R B , R i B
2 21% 30% 32% 522 56.0 - - - - . - - - . - - _ _ R _ _ - _ _ - _ _
3 28% 39% 41% 509 539 57.0 - - - - - . - - - - _ - - _ B R _ _ _ _ _
4 36% 46% 48%  50.0 525 549 57.8 - - - - . . . - - . _ R _ _ - ; , - _ ,
5 42% 51% 54% 493 51.6 53.6 55.7 583 - - - - . - - - , - R , , - , , - , ,
6 4% 55% 58% 48.7 50.8 52.6 544 56.3 588 - - - - - - - - - - _ _ R R _ _ - _
7 51% 59% 61% 482 50.2 51.8 534 55.0 56.8 59.2 - - - : - - - - R _ R R _ - - _ -
8 54% 62% 64% 478 49.7 51.2 526 54.0 555 57.2 59.5 - - - : - - - - , , R , , - , ,
9 58% 65% 67% 475 49.3 50.7 520 53.2 545 559 57.6 59.8 - - - - - - - - - R _ - R _ _
10 60% 67% 69% 472 489 502 514 52.6 538 55.0 56.3 57.9 60.1 - . . . . - . - R _ - R _ i
11 63% 69% 1% 46.9 48.6 49.8 51.0 52.1 531 54.2 554 56.6 582 60.3 - - - . - , - - R - R R ,
12 65% 70% 73% 46.7 483 495 50.6 51.6 52.6 53.6 54.6 557 56.9 584 60.6 - - - - - - - - - - R -
13 6% 72% 74% 465 48.0 49.2 502 51.2 52.1 53.0 54.0 55.0 56.0 57.2 587 60.8 - - - - - - - . - , .
14 69% 73% 76%  46.3 47.8 489 499 508 51.7 52.6 53.4 543 553 56.3 57.5 589 609 - - - - - - - - : .
15 70% 5% 7%  46.1 47.5 487 496 50.5 51.3 522 53.0 53.8 547 55.6 56.5 57.7 59.1 61.1 - - - - - - - . .
16 2% 76% 78%  46.0 47.3 484 494 50.2 51.0 51.8 52.6 53.3 54.1 549 558 56.8 57.9 59.3 61.3 - - - - - - . .
17 3% 7% 79% 458 47.2 482 49.1 499 50.7 51.5 522 529 53.7 544 552 56.1 57.0 58.1 594 614 - - - - - - .
18 74% 8% 80% 457 47.0 48.0 489 49.7 504 51.2 51.9 525 53.2 53.9 54.7 554 56.3 57.2 583 59.6 615 - - - - - -
19 7% 79% 81% 455 46.8 47.8 487 49.5 502 50.9 51.6 522 529 535 54.2 549 557 56.5 57.4 584 59.8 61.7 - - - - -
20 6% 79% 81% 454 46.7 47.7 485 492 50.0 50.6 51.3 51.9 525 53.2 53.8 545 551 559 56.7 57.6 586 59.9 61.8 - - - -
21 7% 80% 82% 453 46.5 475 483 49.1 49.7 504 51.0 51.6 522 52.8 534 541 547 554 56.1 56.8 57.7 58.7 60.0 619 - - -
22 78% 81% 83% 452 464 47.3 481 489 495 50.2 50.8 514 51.9 525 53.1 53.7 543 54.9 556 56.3 57.0 57.9 589 60.2 62.0 - -
23 79% 81% 83% 451 46.3 47.2 48.0 487 493 50.0 50.5 51.1 51.7 52.2 528 53.3 539 545 551 557 564 57.2 58.0 59.0 60.3 62.1 -
24 79% 82% 84% 450 46.2 47.1 478 485 49.2 49.8 50.3 50.9 51.4 52.0 525 53.0 53.6 54.1 54.7 553 559 56.6 57.3 582 59.1 60.4 62.2




Table A.13: Model Outputs - Xy ~ 40 + Weibull(13.4908,1.7915)(mean = 12, var = 48), Xy ~ Exp(1/3),5 = 0.2

¢8

Scr.  Perf. Perf. Optimal Screening Policies

Bud. EI Pol. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 5% 13% 51.8 - - - - - - - - - - - - - - - - - - - - - - -
2 18% 23% 49.3 54.7 - - - - - - - - - - - - - - R R - R R _ R

3 27% 31% 479 52.0 56.8 - - - - - - - - - - - - - - - - - - - - -
4 33% 37% 46.9 504 539 583 -

5 39% 42% 46.2 49.2 522 554 59.6 -
6 44% 46% 457 484 509 53.6 56.6 60.7 - - - - - - - - - - - - - - - - - -
7 48% 50% 45.2 477 50.0 523 54.8 57.7 616 - - - - - - - - - - - - - - - - -
8 51% 53% 449 472 492 513 534 558 586 624 - - - - - - - - - - - - - - - -
9 54% 56% 44.6 46.7 48.6 50.5 524 544 56.7 594 63.2 - - - - - - - - - - - - - - -
10 57% 59% 443 46.3 481 49.8 51.5 533 553 575 60.2 639 - - - - - - - - - - - - - -
11 59% 61% 44.1 46.0 476 49.2 50.8 524 542 56.1 582 60.8 645 - - - - - - - - - - - - -
12 61% 63% 43.9 457 472 487 50.2 51.7 53.3 549 56.8 589 61.4 650 @ -
13 63% 64% 437 454 469 483 49.7 51.1 525 54.0 55.6 574 59.5 620 656 - - - - - - - - - - -
14 64% 66% 43.5 452 46.6 479 49.2 50.5 51.8 53.2 54.7 56.3 58.0 60.0 625 66.0 -

15 66% 68% 434 449 46.3 476 488 50.0 51.3 525 539 553 56.8 58.6 60.5 63.0 66.5 -
16 67% 69% 43.3 44.7 46.0 473 484 496 50.8 52.0 53.2 545 559 574 59.1 61.0 635 669 -
17 68% 70% 43.1 446 458 47.0 481 49.2 50.3 514 52.6 53.8 55.0 56.4 57.9 59.5 61.5 639 673 -
18 69% 1% 43.0 444 456 46.7 478 489 499 51.0 52.1 532 543 556 56.9 584 60.0 619 643 67.7 - - - - - -
19 70% 2% 429 443 454 46.5 475 485 49.5 50.5 51.6 52.6 53.7 549 56.1 574 588 60.4 62.3 64.7 68.0 -

20 1% 73% 42.8 441 452 46.3 473 482 492 50.2 51.1 521 532 542 553 56.5 57.8 59.2 60.8 62.7 650 684 -
21 72% 4% 42.8 44.0 451 46.1 47.0 48.0 489 498 50.7 51.7 52.7 53.7 547 558 57.0 582 59.6 61.2 63.1 654 687 - - -

22 73% 5% 427 439 449 459 46.8 477 48.6 49.5 50.4 51.3 522 53.1 541 551 56.2 574 586 60.0 61.6 63.4 657 69.0 - -

23 4% 76% 42.6 43.8 44.8 457 46.6 475 484 492 50.1 509 51.8 52.7 53.6 54.6 55.6 56.6 57.8 59.0 60.4 61.9 63.7 66.0 69.3 -

24 1% 7% 42.5 43.7 447 456 46.4 473 481 489 49.8 50.6 51.4 523 53.1 54.0 55.0 56.0 57.0 581 594 60.7 622 64.0 66.3 69.6




€8

Table A.14: Model Outputs - Xy ~ 40 + Exp(1/12), X; ~ Gamma(3,1),5 = 0.2

Scr. Perf. Optimal Screening Policies

Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 15% 444 - - - - - - - - - - . - i , l i _ j i - l B _
2 25% 435 476 - - - . - - - - B - _ i _ _ _ R B _ R B _ _
3 34%  43.1 462 503 - - - - - . - - - _ - - B _ _ _ _ - _ _ _
4 41% 427 454 48.6 52.7 - - - - - B - - B - - - _ R _ _ - _ _ -
5 46% 425 44.8 475 50.7 54.8 - - : . - - - , - - - , R B} , R B , R
6 51% 423 444 468 494 526 56.7 - - - - - . - - - _ _ . _ - R _ _ -
7 55% 421 44.1 462 485 51.2 544 585 - - - - . - _ - _ _ . _ _ - _ B -
8 59% 42.0 43.8 45.7 478 50.2 529 56.1 60.1 - - - - - - - R - - - - _ R B _
9 62% 419 435 453 473 494 517 544 576 617 - - . - : . - - - . , R _ _ -
10 65% 41.8 43.3 45.0 46.8 487 50.8 53.2 559 59.1 63.1 - - - - - - - - - - - - - -
11 67% 41.7 432 447 464 482 50.1 522 54.6 57.3 604 645 - - - - - - - - - - R - -
12 69% 416 43.0 44.5 46.0 47.7 495 514 535 559 586 61.8 658 - - - - . - - - R _ _ R
13 1%  41.6 429 443 457 47.3 489 50.7 527 54.8 57.1 59.8 63.0 67.1 - - - - - - - R _ _ -
14 73% 415 428 44.1 455 46.9 485 50.1 519 539 56.0 58.3 61.0 642 683 - - - - - - - , - -
15 75% 415 426 439 452 46.6 48.1 49.6 51.3 53.1 55.0 57.1 595 622 654 694 - - - - - R _ _ -
16 76% 414 425 438 450 46.3 47.7 492 50.7 524 54.2 56.1 582 60.6 63.3 665 70.5 - - - - - - - -
17 Tt% 414 425 436 44.8 46.1 474 488 502 51.8 53.5 552 57.2 59.3 617 643 675 71.6 - - - - - . -
18 79% 413 424 435 446 458 471 484 498 51.3 528 545 56.3 582 60.3 627 654 68.6 726 - - - - - -
19 80%  41.3 423 434 445 456 46.8 48.1 494 50.8 523 53.8 555 57.3 592 61.3 63.7 664 69.6 73.6 - - - - -
20 81%  41.2 422 433 443 454 46.6 47.8 49.1 50.4 51.8 53.2 548 564 582 60.2 62.3 64.6 67.3 70.5 746 - - - -
21 82%  41.2 422 432 442 453 46.4 475 487 50.0 51.3 527 542 557 574 592 61.1 63.2 656 683 714 755 - - -
22 83%  41.2 421 43.1 44.1 451 46.2 473 484 49.6 50.9 522 53.6 55.1 56.6 583 60.1 62.0 64.1 66.5 69.2 724 764 - -
23 83% 41.1 42.0 43.0 439 449 46.0 470 482 493 50.5 51.8 53.1 54.5 56.0 57.5 59.2 61.0 629 650 674 70.1 732 77.3 -
24 84%  41.1 420 429 43.8 44.8 458 46.8 479 49.0 50.2 514 526 540 55.3 56.8 584 60.0 61.8 63.7 659 682 70.9 741 782
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Table A.15: Model Outputs - Xy ~ 40 + Exp(1/12), X; ~ Gamma(1/3,9), 5 = 0.2

Scr. Perf. Optimal Screening Policies

Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 10% 474 - - - - - - : . - - - - _ - _ B R B i R j _ R
2 16% 449 516 - - - - - - - - - . - _ - _ - R _ - - _ _ -
3 21% 438 481 54.8 - - - - - - - - - - - - - _ - _ _ R _ _ _
4 25% 43.1 46.4 50.7 573 - - - - - - - - - - - - - - - - _ - _ _
5 28%  42.6 453 485 529 59.5 - - - - - - . , , - - - R , , - , , -
6 31% 423 445 472 504 54.8 614 - - - - - - - - - - - . - _ R _ _ R
7 33% 42.0 439 46.2 488 521 56.4 63.1 - - - - - - - - - - - - - _ _ - _
8 35%  41.8 435 455 47.7 50.3 53.6 57.9 64.6 - - - . , , - - - R , , R , , R
9 37%  41.6 432 44.9 468 49.1 51.7 55.0 59.3 66.0 - - - - - - - - - _ _ R _ - R
10 38% 415 429 444 461 481 503 53.0 56.2 60.6 67.2 - - : . . : - - - _ R - - R
11 40% 414 427 441 456 473 492 515 54.1 574 61.7 684 - - - - - - - - - - R - -
12 41% 413 425 43.7 451 46.7 484 50.3 525 552 585 62.8 694 - - - - . - - - R _ _ R
13 42% 412 423 435 44.7 461 47.7 494 513 535 562 59.5 63.8 704 - - - - - - - - - . -
14 43% 411 421 432 444 457 471 486 50.3 523 545 57.1 604 64.7 714 - - - - - - R , , -
15 44% 411 42.0 430 44.1 453 46.6 48.0 495 51.2 53.1 554 58.0 61.3 65.6 723 - - - - - - - - -
16 45% 410 41.9 429 43.9 450 46.1 474 488 50.3 52.0 540 56.2 588 62.1 66.4 731 - - - - - - - -
17 46%  41.0 41.8 42.7 43.7 447 458 469 482 49.6 51.1 528 54.8 57.0 59.7 629 67.3 739 - - - - - - -
18 47% 409 41.7 426 435 44.4 454 46.5 477 49.0 504 519 53.6 555 57.8 60.4 63.7 68.0 747 - - - - - -
19 47% 409 41.6 424 43.3 442 451 46.1 472 484 49.7 511 52.6 543 56.3 585 61.1 64.4 688 754 - - - - -
20 48% 40.8 41.6 423 43.1 44.0 449 458 46.8 479 49.1 504 51.8 533 550 56.9 59.2 61.8 65.1 69.4 76.1 - - - -
21 49%  40.8 41.5 422 43.0 43.8 446 455 46.5 475 48.6 49.8 51.0 524 54.0 557 57.6 59.8 625 65.8 70.1 76.7 - - -
22 50%  40.8 41.4 42.1 428 43.6 44.4 453 46.2 471 481 492 504 51.7 531 54.6 56.3 582 60.5 63.1 66.4 70.7 774 - -
23 50% 40.7 414 42.0 427 43.5 442 450 459 46.8 47.7 487 498 51.0 523 53.7 552 56.9 588 61.1 63.7 67.0 71.3 780 -
24 51%  40.7 41.3 42.0 42.6 43.3 440 448 456 46.5 474 483 493 504 516 529 543 558 57.5 594 61.7 643 67.6 TL.9 78.6




Table A.16: Model Outputs - Xo ~ 40 + Exzp(1/12), X; ~ Lognormal(0.9548,0.5364)(mean = 3,var = 3), f = 0.2

a8

Scr. Perf. Optimal Screening Policies
Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 14% 4.2 - - - - - - - - - - - - - - - - - - - - - - -

25% 434 473 - - - - - - - - - - - - - - - - - - - - - -
3 34% 429 46.0 499 - - - - - - - - - - - - - - - - - - - - -
4 1% 42.6 452 483 522 -
5 47% 424 447 473 504 543 -
6 52% 422 443 46.6 49.2 523 56.2 -
7 56% 42.1 44.0 46.1 484 51.0 54.0 579 -
8 60% 42.0 43.7 457 477 50.0 52.6 55.7 59.6 - - - - - - - - - - - - - - - -
9 63% 419 435 453 472 493 516 542 573 61.2 -
10 66% 41.8 43.3 450 46.8 487 50.8 53.1 55.7 587 626 - - - - - - - - - - - - - -
11 68% 41.7 432 447 464 482 50.1 522 545 57.1 60.1 64.0 - - - - - - - - - - - - -
12 1% 417 43.0 445 46.1 477 495 514 535 558 584 61.5 654 @ -
13 73% 41.6 429 443 458 474 49.0 50.8 52.7 54.8 57.1 59.7 62.7 66.6 -
14 5% 41.5 428 441 455 470 486 50.2 52.0 539 56.0 583 609 64.0 679 -
15 76% 41.5 427 44.0 453 46.7 482 498 514 532 551 572 59.5 62.1 651 69.0 -
16 8% 415 42.6 438 451 46.5 479 493 50.9 525 543 56.2 583 60.6 63.2 663 70.2 - - - - - - - -
17 79% 41.4 425 437 449 462 475 489 504 52.0 536 554 573 594 617 643 674 713 -
18 80% 41.4 424 436 448 46.0 47.3 48.6 50.0 51.5 53.0 54.7 56.5 584 60.5 62.8 654 684 723 - - - - - -
19 81% 41.3 424 435 446 458 47.0 483 49.6 51.0 525 54.1 55.7 57.5 594 61.5 638 664 69.5 734 -
20 82% 41.3 423 434 445 456 46.8 48.0 49.3 50.6 52.0 53.5 55.1 56.7 585 604 625 648 674 704 744 - - - -
21 83% 41.3 422 433 443 454 46.6 478 49.0 50.3 51.6 53.0 545 56.0 57.7 59.5 614 63.5 658 684 714 753 -
22 84% 41.3 422 432 442 453 464 475 487 499 51.2 525 539 554 57.0 586 604 623 644 66.7 693 724 763 - -
23 85% 41.2 421 431 441 451 46.2 473 484 49.6 50.8 52.1 534 548 56.3 579 59.5 61.3 63.2 653 676 702 73.3 772
24 86% 41.2 421 43.0 44.0 450 46.0 47.1 48.2 493 50.5 51.7 53.0 54.3 557 57.2 588 604 622 641 66.2 685 T71.1 742 781




Table A.17: Model Outputs - Xo ~ 40 + Exzp(1/12), X; ~ Lognormal(0.7520,0.8326)(mean = 3,var =9), 5 = 0.2

98

Scr. Perf. Optimal Screening Policies
Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 13% 49 - - - - - - - - - - - - - - - - - - - - - - -

22% 43.6 480 - - - - - - - - - - - - - - - - - - - - - -
3 30% 429 46.1 506 -
4 36% 42.5 451 483 528 -
5 41% 42.3 445 471 50.3 bH47 - - - - - - - - - - - - - - - - - - -
6 45% 42.1 44.0 46.2 488 52.0 56.5 -
7 49% 419 437 456 478 504 53.6 581 - - - - - - - - - - - - - - - - -
8 52% 41.8 434 451 471 493 519 551 59.6 -
9 55% 41.6 43.1 44.8 46.5 485 50.7 53.3 56.5 60.9 -
10 58% 415 429 444 46.1 478 498 52.0 546 578 622 - - - - - - - - - - - - - -
11 60% 41.5 428 442 457 473 49.1 51.0 533 55.8 59.0 63.5 -
12 63% 41.4 42.6 439 453 46.8 485 50.2 522 544 57.0 60.2 646 @ - - - - - - - - - - - -
13 65% 41.3 425 437 450 464 479 49.6 51.3 53.3 555 581 613 657 - - - - - - - - - - -
14 66% 41.3 424 436 448 46.1 475 49.0 50.6 524 544 56.6 59.2 624 668 -
15 68% 41.2 423 434 446 458 47.1 485 50.0 51.6 534 554 576 60.2 634 67.8 -
16 70% 412 422 433 444 455 46.8 481 495 51.0 526 544 56.3 586 61.2 644 688 - - - - - - - -
17 1% 41.1 421 431 442 453 46.5 477 49.0 504 519 53.5 553 57.3 59.5 62.1 653 69.7 - - - - - - -
18 72% 41.1 42.0 43.0 44.0 451 46.2 474 48.6 499 51.3 528 544 56.2 582 604 63.0 662 70.6 -
19 73% 41.1 42.0 429 439 449 46.0 471 483 49.5 50.8 522 53.7 553 57.1 59.1 613 639 671 715 - - - - -
20 5% 41.0 419 428 438 44.7 458 46.8 479 49.1 50.3 51.6 53.0 545 56.2 57.9 59.9 62.1 64.7 679 723 -
21 76% 41.0 41.8 427 436 446 455 46.6 476 48.7 499 512 525 539 554 57.0 587 60.7 629 655 687 732 -
22 7% 41.0 41.8 426 43.5 444 454 463 474 484 495 50.7 519 53.3 547 56.1 57.8 59.5 61.5 63.7 66.3 69.5 739 - -
23 8% 41.0 41.7 426 434 443 452 46.1 471 481 49.2 50.3 51.5 52.7 54.0 554 56.9 585 60.3 623 64.5 67.1 70.3 747
24 78% 409 41.7 425 433 442 450 459 46.9 479 489 499 51.1 522 535 548 56.2 57.7 593 61.1 63.0 652 67.8 71O 75.5




Table A.18: Model Outputs - Xy ~ 40 + Exp(1/12), Xy ~ Lognormal(0.4055,1.1774)(mean = 3,var = 27), f = 0.2

L8

Scr. Perf. Optimal Screening Policies
Bud. Opt. Pol. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 11% 456 - - : - - : - - f - - - - - - - f B - f B - f

18% 43.8 488 - - - - - - - - - - - - - - - - - - - - - -
3 24% 43.0 46.3 51.3 - - - - - - - - - - - - - - - - - - - - -
4 29% 42.5 451 485 535 -
5 34% 42.1 443 469 50.3 553 - - - - - - - - - - - - - - - - - - -
6 37% 419 43.8 46.0 486 519 56.9 -
7 1% 41.7 434 453 474 50.0 534 584 - - - - - - - - - - - - - - - - -
8 44% 41.6 43.1 447 46.6 488 514 547 598 - - - - - - - - - - - - - - - -
9 46% 41.5 428 44.3 46.0 478 50.0 52.6 56.0 61.0 -
10 48% 414 426 440 455 471 49.0 51.2 538 571 622 - - - - - - - - - - - - - -
11 51% 41.3 424 437 451 46.6 482 50.1 523 549 582 632 - - - - - - - - - - - - -
12 53% 41.2 423 435 447 46.1 47.6 49.2 51.1 533 559 59.2 643 - - - - - - - - - - - -
13 54% 41.1 422 433 444 457 47.0 485 50.2 52.1 542 56.8 602 652 - - - - - - - - - - -
14 56% 41.1 421 431 442 453 46.6 48.0 49.5 51.1 53.0 552 578 61.1 66.1 -
15 58% 41.0 42.0 429 440 451 46.2 475 488 50.3 52.0 539 56.0 58.6 62.0 67.0 -
16 59% 41.0 419 428 43.8 44.8 459 471 483 49.7 51.2 528 54.7 56.9 59.5 628 67.8 - - - - - - - -
17 60% 41.0 41.8 427 43.6 44.6 456 46.7 478 49.1 50.5 52.0 53.6 55.5 5H7.7 60.3 63.6 686 -
18 62% 409 41.7 426 434 444 453 464 474 486 499 51.2 527 544 563 584 61.0 644 694 -
19 63% 409 41.7 425 433 442 451 46.1 471 482 494 50.6 52.0 53.5 551 57.0 59.2 61.8 651 70.1 - - - - -
20 64% 40.8 41.6 424 432 440 449 458 46.8 478 489 50.1 51.3 52.7 542 558 57.7 59.9 625 658 709 -
21 65% 40.8 41.5 423 43.0 439 447 456 46.5 475 485 49.6 50.7 52.0 534 549 56.5 584 606 632 66.5 715 -
22 66% 40.8 415 422 429 43.7 445 454 46.2 472 481 49.2 50.2 514 527 54.0 555 57.2 59.0 61.2 63.8 672 722 - -
23 67% 40.8 414 421 428 43.6 444 452 46.0 469 478 488 498 50.9 521 533 54.7 56.2 57.8 59.7 619 645 678 728 -
24 68% 40.7 414 421 427 435 442 45.0 458 46.6 475 484 494 504 51.5 52.7 539 553 56.8 584 60.3 625 65.1 68.5 73.5
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Table 2. Life table for males: United States, 2008

Spreadsheel varsion avatable from: fip:ip.cde gowbub/Heallfy StatislicaNCHSPublicationsWVERET_03Tale02 xs

See fooinole at end of table.

Totad
Prabability Murnbar Parson-yaars nurmber af
of dying Nurnbar dying Bived persor-years Expectation
batwaan Surviving 10 betwaean batwaan livad above of like
ages xand X+ 1 age x ages xand X+ 1 ages xand x + 1 age x al age x
g L d, L, T. 8
0.007185 100,000 T2 98,374 7.588,612 756
0.000504 55,280 50 98,255 7.460,238 751
0.000313 99,230 2 99,215 7,350,983 742
0.000248 94,199 25 98,167 7.261,768 7az
0000183 99,174 19 99,165 7.162 581 722
0000172 99,155 17 99,147 7,063 417 712
0.000156 99,138 15 88,131 6,564,270 0.2
0.000140 99,123 14 29,116 6,865,139 £9.3
0000118 9,108 12 98103 6,766,023 683
0000053 19,097 g 98,083 6,666,520 E7.3
0000074 99,088 7 98,084 6,567,827 B6.3
0.000080 19,081 ] 98,077 5,468,743 B5.3
0.000132 99,073 13 99,066 6,360,666 B4.3
0.000229 99,060 24 99,048 6,270,600 B33
0.000384 99,036 33 29,017 6,171,582 623
0.000535 98,998 53 9B.872 6,072,535 B1.3
0.000675 98,845 67 9B.812 5973563 60.4
0.000813 8478 &0 94,838 5874 651 50.4
0.000243 58.738 34 98,751 5775813 56.5
0.001081 90,704 107 98,651 5.677,062 575
0.001225 98598 12 98,537 5,578,411 566
0.001353 88477 134 88,410 5479874 556
0001447 88343 142 98,272 5391 464 54.7
0.001470 8,201 144 98,128 5283182 538
0001444 8,056 142 97,986 5,188,064 528
0.001403 97915 137 97,846 5,087,078 520
0001372 87T 134 97,710 4 580,232 51.0
0001352 97,643 132 a7 577 4891522 50.1
0.001353 ar.s1 132 g7 445 4,793,945 482
0.001371 97,379 134 97,313 4 696 499 482
0.001355 97246 136 97,178 4,588 187 473
0.001427 ar11a 138 97,040 4.502,009 464
0001481 96,971 142 96,300 4,404 969 454
0.001504 96,828 148 9E,757 4,308,068 44.5
0.001551 96,584 150 96,609 4,211,312 436
0.001611 96,534 158 96,456 4,114,703 428
0.00688 86,378 1683 96,287 4018247 41.7
0001782 95216 1 96,130 3,921,950 40.8
0.001855 BE.044 182 85,953 3825820 358
0002042 85,852 186 95,764 3728 868 388
0.002203 35,666 n 95,561 353,102 380
0.002388 35,455 228 95,342 3,538 542 <r |
0.002614 95,228 248 85,103 3,443,200 Je2
0.002881 34979 274 94,842 3,348,087 353
0.003178 94,705 3 94585 3253285 344
0.003478 34,404 328 94,240 3,158,701 338
0.003788 34076 358 93,888 3.064,460 326
0004132 93719 387 93526 2,970,563 37
0.004522 3332 422 83121 2,877,087 308
0004958 92910 451 92 680 2,783,918 300
0.005431 92,449 502 92,198 2,691,238 291
0005522 1.947 545 91,675 2,598,038 283
0.006423 91,403 547 91,109 2,507,362 274
0006525 30816 629 80,501 2.416,253 266
0.007435 50,187 &7 85,852 2,325,752 258
0.007983 B3.516 s 89,158 2235300 250
0008581 B2 A02 762 B8.421 2148741 242
0.008215 B3.040 Bz 87,634 2.068,321 234
0.009853 Erzag B&3 BE, 796 1,970,687 226
0.010628 B5364 918 85,906 1,883,891 218
0011414 E5.447 875 84,955 1,797 985 210
0.012274 84471 1,037 83,953 1,713,026 203
0013209 83435 1,102 82,884 1,629,073 195
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Totad

Brabability Nurnbear Person-yaars nuriber of

of dying Nurnbar dying lived Dersoneyears Expectabion
betwaan surviving 1o betweaan betwaan lived above of lite

ages xand X+ 1 age x apes xand X+ 1 apes xand ¥+ 1 age x al age x
% l d, L, T 8

0.014236 82,333 1172 81,747 1,546,189 188
0.015382 81,160 1.248 80,536 1,464,443 180
0016653 78,812 1,334 78,245 1,383,307 173
0.018184 78,578 1429 77,863 1,304,662 166
0.019753 77,148 1,527 76,385 1.226,799 158
0021473 75,622 1,624 T4.810 1.150,414 152
0.023251 73,998 1,720 73138 1.075,604 145
0025139 72,277 1,817 71,369 1,002,466 138
0027310 70,460 1,524 69,458 931,087 132
0.0289827 68,536 2,051 E7.51 851,569 126
0032676 56,485 2,188 65,352 794,088 118
0.035072 64,265 2,319 63,140 728,656 1.3
0.038506 61,380 2448 60,756 665,557 0.7
0043153 58,531 2 568 58,247 604,801 02
0.047308 56,962 2,685 56,615 546,554 1]
0052154 54 268 2830 52 852 450,340 a0
0057687 51,437 2.558 49,353 438,087 BS
0.063533 48,469 3,073 48,930 388134 BD
0.069684 45,380 3163 43,809 341,204 5
0076575 42227 3234 40,610 297,385 0
0084612 38,954 3299 37344 256,785 66
0093410 35,664 3344 34,027 219,441 B1
0103350 32,360 3384 30,678 185,414 ar
0115383 28,956 3,346 27,323 154,736 53
0127808 25,680 3,278 24,011 127 412 50
0141218 22372 3,159 20,782 103,401 48
0.155630 18,213 2,850 17,718 82,609 4.3
0171033 16,223 2,775 14,835 64,851 40
0187401 13,448 2520 12,188 50,056 ar
0204688 10,928 2237 5,809 37 868 35
0222629 B,591 1,947 7723 28,059 3z
0241737 6,754 1,633 5338 20,336 30
0261304 5122 1,338 4452 14,358 2B
0281406 3,783 1.065 3251 8,946 2B
10.301903 2,719 aH 2,308 B,685 25
0.322643 1,888 612 1,582 4,387 23
0.343465 1,286 442 1,065 2,785 22
1.000000 B44 Bad 1,730 1,730 20

SOURCE: COGMCHS, Natonal Vilal Stalisics System.
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