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ABSTRACT

As high-dimensional data arises from various fields in science and technology,

traditional multivariate methods need to be updated. Principal component analysis

and reduced rank regression are two of the most important multivariate statistical

techniques that have seen major changes in recent years. To improving the statistical

performance and achieve fast computational efficiency, recent approaches aim at reg-

ularizing both the row and column factors of the low-rank matrix approximation by

adopting the Lasso-type penalties. Thresholding is another powerful technique for

regularizing the row and column factors without solving an optimization problem.

This dissertation research covers two novel applications of the idea of thresholding:

the thresholding reduced rank multivariate regression and the generalized principal

component analysis/singular value decomposition (SVD). The following two para-

graphs give brief introductions to each of the two topics, respectively.

Uncovering a meaningful relationship between the responses and the predictors

is a fundamental goal in multivariate regression problems, which can be very chal-

lenging when data are high-dimensional. Dimension reduction and regularization

techniques are applied extensively to alleviate the curse of dimensionality. It is de-

sirable to estimate the regression coefficient matrix by low-rank matrices constructed

from its SVD. We reduce such regression problems to sparse SVD problems for cor-

related data matrices and generalize the fast iterative thresholding for sparse SVDs

algorithm to this situation. This generalization inherits the computational and sta-

tistical advantages of the original algorithm including its sparse initialization, novel

ways of estimating the thresholding levels and the thresholded subspace iterations.

It guarantees the orthogonality of the singular vectors and computes them simulta-
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neously and not sequentially as in the existing methods. We also place this algorithm

in an optimization framework by introducing a specific bi-convex objective function.

An iterative algorithm that minimizes the objective function, via closed form iter-

ates, is proposed and its convergence is established. This enables us to study the

large sample properties of the solution of the multivariate regression problem and

establishes consistency of the estimators as the sample size tends to infinity. The

methodology and the potential adverse impact of dependence on the earlier algo-

rithms are illustrated using simulation and real data.

The second part of this dissertation considers transposable data matrices where

both their rows and columns are correlated. Such datasets are routinely encountered

in fields such as econometrics, bio-informatics, chemometrics, network data and so

on. While methods to approximate the high-dimensional data matrices have been

extensively researched for uncorrelated and independent situations, they are much

less so for the transposable data matrices. A generalization of principal component

analysis and the related weighted least squares matrix decomposition with respect

to a transposable quadratic norm for such data matrices along with their regularized

counterparts have been proposed recently. We replace this optimization framework

by thresholding the factors in the decompositions and propose a fast iterative thresh-

olding for sparse generalized matrix decomposition algorithm to find sparse factors

of the data matrix and account for the two-way dependencies simultaneously. We

show that our algorithm is suitable for the reduced rank regression and canonical

correlation analysis for two-way dependent data, which is done by connecting them

with the generalized matrix decomposition. These connections enable us to improve

predictive accuracy in regression and to facilitate interpretation of our proposed al-

gorithm. The effectiveness of the method is tested and illustrated through simulation

and real data examples.
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1. INTRODUCTION

As high-dimensional data arises from various fields in science and technology,

traditional multivariate methods need to be updated. Dimension reduction is im-

portant in analyzing the high-dimensional data matrices, where low-rank matrix

approximation and regularization techniques are of great interest. Principal compo-

nent analysis (PCA) and reduced rank regression (RRR) are two of the most impor-

tant multivariate statistical techniques that have seen major changes in recent years.

In the modern approaches, particular attention is paid to improving the statistical

performance and achieving fast computational efficiency. Given these goals, recent

approaches aim at regularizing both the row and column factors of the low-rank ma-

trix approximation by adopting the Lasso-type penalties. Thresholding is another

powerful technique for regularizing the row and column factors without solving an

optimization problem. This dissertation research covers two novel applications of the

idea of thresholding: the thresholding reduced rank multivariate regression and the

generalized PCA/singular value decomposition (SVD).

High-dimensional data matrices usually have structural dependencies where both

the rows and columns are dependent. Ignoring these dependencies can lead to poor

statistical performances. In this section, we first introduce the transposable data

matrix with two-way dependencies and two real-data applications as the motivation

for this research. We next review the classical dimension reduction tools for the

low-rank matrix approximation in multivariate analysis: the singular value decom-

position and the principal component analysis in Sections 1.2 and 1.3. These two

approaches are central to the regularized low-rank matrix approximation methods.

After introducing the Lasso-type regularization in Section 1.4, the literature review

1



for various regularization methods in the low-rank model and in the multivariate

linear regressions are presented in Sections 1.5 and 1.6, respectively.

1.1 Transposable Data

Transposable data matrices are routinely encountered in fields such as economet-

rics, bio-informatics, chemometrics, network data, and so on. Such data matrices,

where rows and columns are both dependent, have drawn much attention in re-

cent statistical analyses. Recovering the true subspace or low-rank signal from the

transposable data through low-rank matrix approximation is crucial in the statistical

analysis.

For example, the macroeconomic data analyzed in Stock and Watson (2012) con-

sisting of 144 U.S. macroeconomic time series for a total of 195 quarterly observations

is a transposable dataset, because there are strong dependencies among feature vari-

ables (columns) and temporal dependencies among observations (rows). To make

accurate forecasting it is ideal to extract a parsimonious set of common factors from

the data matrix. This idea is important and useful especially for datasets where the

series are correlated and the number of observations are close to or less than the

number of variables.

Another important example is the functional MRI (fMRI) data (Lindquist, 2008;

Allen et al., 2013) that consists of measurements of brain images (columns) over time

(rows) and exhibits spatial and temporal dependencies. Each pixel in the fMRI brain

images corresponds to a measure of activation in the brain (Lazar, 2008). Finding

major brain activation patterns is a primary analysis goal in the fMRI studies. It

requires the algorithms to extract the important information from a mix of noise and

signal, or a low-rank matrix approximation is desired.

In Sections 1.2 and 1.3, we first review classical dimension reduction tools like
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the singular value decomposition and the principal component analysis, which are

the fundamental methods for the low-rank matrix approximation.

1.2 The Singular Value Decomposition

The singular value decomposition (SVD), a fundamental conceptual and com-

putational technique in linear algebra, has been used widely in the recent high-

dimensional data situations for dimension reduction, data visualization, data com-

pression, and information extraction by relying on its first few singular vectors (Golub

and Van Loan, 1996).

Let Y ∈ Rn×q be a matrix, its SVD is of the form:

Y = UDV ′ =

q∑
i=1

diuivi, (1.1)

where the columns of U = [u1, ...,uq] ∈ Rn×q and V = [v1, ...,vq] ∈ Rq×q are the

left and right singular vectors, respectively. The matrices U and V are orthonormal

with U ′U = Iq, V
′V = Iq and the matrix D ∈ Rq×q is a diagonal matrix with non-

negative entries, called the singular values of Y . According to the Eckart-Young

Theorem, for a given r, truncating the SVD gives the best rank-r approximation to

a matrix Y . Let ||Y ||F denote the Frobenius norm of the matrix Y where ||Y ||2F =∑n
i=1

∑q
j=1 y

2
ij = tr(Y ′Y ).

Theorem 1.2.1 (Eckart and Young, 1936) For any r, the matrix Y (r) =
∑r

i=1 diuivi

is the closest rank-r approximation to Y in the Frobenius norm,

Y (r) = arg min
rank(B)=r

||Y −B||2F ,

where di,ui,vi, i = 1, ..., r are the first r singular values and singular vectors of the

matrix Y .
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The Power method (Golub and Van Loan, 1996) is the most popular method for

computing the SVD of a matrix, where a pair of left and right singular vectors is

computed iteratively. For a matrix Y , it starts with an initial unit q-vector v(0) and

generates a sequence of unit vectors u(k) and v(k), k = 1, 2, ... through the following

two steps until convergence:

(1). Updating u: u(k) = Y v(k−1)/||Y v(k−1)||,

(2). Updating v: v(k) = Y ′u(k)/||Y ′u(k)||.

For u and v the unit vectors at convergence, the corresponding singular value is

given by d = u′Y v. Then, the first rank-1 layer duv′ is subtracted from Y and the

power method is applied to the residual matrix Y − duv′ to obtain the second pair

of singular vectors, and so on.

An alternative to the power method is the idea of orthogonal iteration, which

computes several leading left and right singular vectors ‘at once’ rather than a pair

at a time (Golub and Van Loan, 1996). The orthogonal iteration method gener-

alizes the power method from a vector to a subspace setup and achieves subspace

orthogonalization through the QR decomposition. The QR decomposition is a de-

composition of the matrix into an orthogonal matrix and a triangular matrix (Golub

and Van Loan, 1996). For a matrix Y ∈ Rn×q, the orthogonal iteration is a stan-

dard method for computing the subspaces spanned by its leading r singular vectors.

Of course, for r = 1 the method reduces to the power method. It starts with an

initial orthonormal matrix V (0) ∈ Rq×r and generates sequences of orthonormal ma-

trices U (k) ∈ Rp×r and V (k) ∈ Rq×r, k = 1, 2, ... through the four steps in Figure

1.1 until convergence. For U and V the orthonormal matrices at convergence, their

columns are the leading left and right singular vectors of Y , which are orthogonal by

construction using the QR decomposition.
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1. Multiplication: T
(k)
u = Y V (k−1),

2. QR decomposition: U (k)R
(k)
u = T

(k)
u ,

3. Multiplication: T
(k)
v = Y ′U (k−1),

4. QR decomposition: V (k)R
(k)
v = T

(k)
v .

Figure 1.1: The four key steps of the orthogonal iteration algorithm.

1.3 The Principal Component Analysis

The principal component analysis (PCA) is one of the most popular techniques

in multivariate analysis, which is closely related to the SVD (Golub and Van Loan,

1996).

For a q-vector y = (y1, ..., yq)
′, the PCA is to explain the population covariance

matrix Σ of y through r linear combinations of y. Let V = [v1, ...,vr] ∈ Rq×r,

then the linear combinations of y given by z1 = v′1y, ..., zr = v′ry are called the

principal components (PC) if the zi’s have the maximum variance and are uncorre-

lated with each other. More precisely, the PCA computes V by solving the following

optimization problems:

v1 = arg max
v

v′Σv subject to v′v = 1,

v2 = arg max
v

v′Σv subject to v′v = 1,v′v1 = 0,

...

vr = arg max
v

v′Σv subject to v′v = 1,v′vj = 0, for j = 1, 2, .., r − 1,

(1.2)

which leads to the orthogonal matrix V with V ′V = Ir. The vectors v1, ...,vr

are called the loadings of the PCs, where the vi is the ith eigenvector of Σ and

5



var(zi) = var(v′iy) = d2
i is its ith largest eigenvalue (Johnson and Wichern, 2007).

For the sample data, the PCA of the centered data matrix Y ∈ Rn×q finds the

eigen-decomposition of its sample covariance matrix S = 1
n
Y ′Y , an estimator of the

population covariance Σ. The PCA provides the dimension reduction by forming the

first r PCs of the original q variables, where the PCs are possibly easier to interpret

and visualize.

Since the SVD is usually used to solve the eigen decomposition problem, there is

a direct relation between them where the loading matrix V of the PCs can be found

by the SVD of Y = ŨD̃Ṽ ′ (Golub and Van Loan, 1996). More precisely,

Y ′Y = (ŨD̃Ṽ ′)′(ŨD̃Ṽ ′) = Ṽ D̃2Ṽ ′,

by using the orthogonality of the singular vectors Ũ and Ṽ . By (1.1), the columns

of Ṽ corresponding to the first r largest singular values are the eigenvectors of Y ′Y ,

which are the solutions for (1.2). Thus, the right singular vectors Ṽ of Y are the

same as the loading matrix of PCs of Y . This connection is crucial in introducing

the sparse PCA and SVD algorithms in Sections 1.5 and 1.6.

For transposable matrices, the generalized principal component analysis (GPCA),

first proposed by Escoufier (1977), is a natural generalization of the PCA. To high-

light the key idea of the GPCA, we give a heuristic account on how to compute

its loading matrix before introducing it more formally in Section 3.3.2. Given two

symmetric positive-definite matrices Ω and Σ, the GPCA finds the loading matrix

V = [v1, ...,vr] by maximizing the following criterion incorporating the matrices Ω
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and Σ:

v1 = arg max
v

v′ΣY ′ΩY Σv subject to v′Σv = 1,

v2 = arg max
v

v′ΣY ′ΩY Σv subject to v′Σv = 1,v′Σv1 = 0,

...

vr = arg max
v

v′ΣY ′ΩY Σv subject to v′Σv = 1,v′Σvj = 0, for j < r.

(1.3)

Different from the PCA, the loading matrix V of GPCA observes the generalized

orthogonality constraint V ′ΣV = Ir. The generalized principal components (GPC)

are given by Y Σv1, ..., Y Σvr. The matrices Ω and Σ are closely related to the depen-

dency structures of the transposable data discussed in details in the later sections.

Unfortunately, classical PCA and SVD encounter major problems in the high-

dimensional data situations. The sample eigenvectors and singular vectors of PCA

and SVD are not consistent estimators for their population counterparts (Johnstone

and Lu, 2009; Fan and Lv, 2010). In addition, when eigenvectors and singular vectors

of PCA and SVD have too many non-zero entries, they are hard to interpret and their

use in practice could lead to misleading conclusions. Methods imposing sparsity or

smoothness on the singular vectors and values have been shown to lead to consistency

in high-dimensional settings (Johnstone and Lu, 2009). When the irrelevant entries

in the eigenvectors and singular vectors are forced to zero, the statistical efficiency

of the model and its interpretability are improved.

We review the Lasso-type regularization for the linear regression models in Section

1.4. We then illustrate its usage in the low-rank matrix approximation and the

multivariate regression model in Sections 1.5 and 1.6, respectively.
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1.4 Lasso-Type Regularizations

In this subsection, we review the method of least-squares estimation of the re-

gression parameters with the Lasso-type (l1) penalties on the coefficients (Tibshirani,

1996).

Consider the linear model for the response y ∈ Rn×1 and covariate X ∈ Rn×p:

y = Xβ + e, (1.4)

where β ∈ Rp×1 is the coefficient vector and e is the noise. The ordinary least-squares

estimator of (1.4) β̂ = (X ′X)−1X ′y does not perform well for the high-dimensional

data situation when n ≤ p as shown in Hastie et al. (2009).

The least absolute shrinkage and selection operator (Lasso) is one of the most

popular approaches for selecting the most significant variables and estimating re-

gression coefficients simultaneously. It penalizes the least-squares regression using

the l1 penalty on the coefficients and finds the Lasso solution β̂ by minimizing the

objective function

1

2
||y −Xβ||2 + λ

p∑
j=1

|βj|, (1.5)

where λ denotes the tuning parameter controlling the sparsity of the coefficients.

Note that λ = 0 corresponds to the least-squares estimator.

A number of innovative approaches are available to compute the Lasso solution.

Two representative examples are the least angle regression (LARS) algorithm (Efron

et al., 2004) and the coordinate descent algorithm (Friedman et al., 2008). The LARS

algorithm starts with the variable which is most correlated with the response, and

computes the whole solution path of the Lasso as the tuning parameter λ changes.
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The coordinate descent algorithm solves (1.5) by minimizing over one βi at a time

while the other β’s are kept fixed and cycles through the parameters βi, i = 1, ..., p,

until convergence.

The Lasso regression is very popular, but has some drawbacks such as the bias

problem (Fan and Li, 2001). There are several alternative Lasso-type penalty func-

tions designed to fix these drawbacks. Zou (2006) proposed the adaptive Lasso with

the weighted l1 penalty leading to the objective function

1

2
||y −Xβ||2 + λ

p∑
j=1

wj|βj|,

where the weights are data-driven with wj = 1/|β̂j|γ, β̂j the ordinary least-squares

estimator and γ > 0. Zou and Hastie (2005) proposed the elastic net where the

penalty is a linear combination of the l1 and l2 penalties. Given nonnegative λ1 and

λ2, the objective function for elastic net is given by

(1 + λ2)||Y −Xβ||2 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

|βj|2,

which generalizes both the Lasso (λ2 = 0) and the ridge regression (λ1 = 0).

There are extensive research in this area where other penalized least-squares or

likelihood methods with various types of regularizations have been developed. A

representative but incomplete list of references is Fan and Li (2001), Yuan and Lin

(2007), Zhao and Yu (2007) and Meier et al. (2008).

1.5 The Low-Rank Matrix Model

In this subsection, we review the regularization methods in low-rank matrix ap-

proximation. To find low-rank signal from the data matrix Y ∈ Rn×q, the following
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setup (Yang et al., 2013; Allen et al., 2013) is considered

Y = B + E, (1.6)

where Y and B = UDV ′ denote the data and the signal matrices, D the singular

values, U and V the left and right factors, respectively.

The goal is to find a low-rank structure for the signal in the data matrix. If Y is

the spatial-temporal fMRI data set described in Section 1.1, the rows would represent

locations in the brain image and the columns point to the time effect. We present

an overview of various methods for regularizing and computing the sparse singular

vectors in U and V . There are two categories of algorithms: (i) the optimization-

based sequential algorithms and (ii) the subspace iteration algorithms.

1.5.1 The Sequential Algorithms

Various regularization methods for computing the singular vectors have been pro-

posed where the solutions are found sequentially through rank-one approximations.

More precisely, the first rank-1 approximation is computed by imposing penalties

on the vectors u and v. Then, the first computed layer duv′ is subtracted from Y

and the procedure is repeated on the residual matrix. The first pair u and v, of

U = [u1, ...,ur] and V = [v1, ...,vr], is found by minimizing the following objective

function:

1

2
||Y − duv′||2F + Pλ(u,v), (1.7)

with respect to the triplet (d,u,v), where λ is the tuning parameter and Pλ(u,v) is

a penalty function on u and v. Some penalty functions introduced in recent years

are listed below.
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1. The sparse PCA via regularized SVD algorithm in Shen and Huang (2008) and

the sparse SVD (SSVD) algorithm in Lee et al. (2010) use the additive penalty

function:

Pλ(u,v) = λu||u||1 + λv||v||1,

where λu and λv are the tuning parameters for the left and right singular

vectors, respectively. Using additive penalties with two penalty parameters

allows different levels of sparsity on u and v.

2. The penalized matrix decomposition (PMD) algorithm proposed by Witten

et al. (2009) relies on the following constraints/penalties:

||u||2 ≤ 1, ||v||2 ≤ 1, Pu(u) ≤ cu, Pv(v) ≤ cv,

where Pu(·), Pv(·) are the Lasso or fused Lasso penalty, cu and cv are the cor-

responding tuning parameters.

3. The sparse reduced rank regression algorithm (SRRR) in Chen et al. (2012a)

applies multiplicative penalty on the singular vectors:

Pλ(u,v) = λ

n∑
i=1

p∑
j=1

wij|duivj|,

where ui and vj are the ith and jth entries of the vectors u and v, respectively,

and wij’s are data-driven weights as in the adaptive Lasso.

4. The penalized SVDs approach in Huang et al. (2009) uses a more general form

of the multiplicative penalty function to regularize the singular vectors in the

context of two-way functional data.
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Unfortunately, the above regularization methods assume the entries of Y are

i.i.d and ignore the row and column dependencies present in the transposable data.

Ignoring the two-way dependencies in transposable data is known to lead to poor

statistical performance (Efron, 2009; Allen and Tibshirani, 2010; Allen et al., 2013).

1.5.2 The Sequential Algorithm For Transposable Data

In Section 1.5.1, the low-rank matrix approximation problem was solved by min-

imizing the Frobenius norm: ||Y − duv′||2F . This loss function treats errors with

equal weight and the covariances in the transposable data are ignored. To permit

unequal weights according to the dependence structure of the data, Allen et al. (2013)

proposed a generalized least-squares matrix decomposition (GMD) framework to di-

rectly accounts for the known covariance matrices Ω and Σ. Define the transposable

quadratic norm ((Ω,Σ)-norm) of a matrix A as ||A||2Ω,Σ = tr(A′ΩAΣ) to replace

the Frobenius norm in finding the best low-rank approximation by minimizing the

(Ω,Σ)-norm

||Y − duv′||2Ω,Σ , (1.8)

subject to the generalized orthogonality conditions

u′Ωu = v′Σv = 1. (1.9)

It turns out that for normally distributed data matrix defined next, the transposable

quadratic norm (1.8) is proportional to the log-likelihood of the transposable data

matrix Y ∈ Rn×q.

As a generalization of normal random vectors, a matrix-variate normal distribu-

12



tion (Gupta and Nagar, 1999) is defined and denoted by

Y ∼MNn,q(M,Ω−1,Σ−1), (1.10)

where Ω−1,Σ−1 denote the rows and columns covariance matrices and M denotes

the mean matrix of the data. The definition in (1.10) means that the vectorized Y

is distributed as

vec(Y ) ∼ Nnq(vec(M),Ω−1 ⊗ Σ−1),

with a separable covariance structure where ⊗ denotes the Kronecker product and

the vec operator forms a vector by stacking up the columns of a matrix.

It is easy to show that the log-likelihood function of Y can be written as:

l(Y |Ω−1,Σ−1) ∝ tr{(Y − duv′)′Ω(Y − duv′)Σ} = ||Y − duv′||2Ω,Σ,

where the right hand side is (1.8).

To find the sparse GMD factors, Allen et al. (2013) proposed to regularize (1.8)

using the Lasso penalty P (u,v) = λu|u|1 + λv|v|1 on u and v. However, their

algorithms are still sequential as in Shen and Huang (2008), Witten et al. (2009) and

Lee et al. (2010), which lack orthogonality of the columns of U and V when r > 1.

1.5.3 Subspace Iterations and FIT-SSVD

It is known that the sequential algorithms have expensive computation costs and

cannot guarantee the orthogonality of the regularized singular vectors (Yang et al.,

2013). Hence, a novel approach for low-rank approximation using the orthogonal

iteration in (1.6) was proposed by Yang et al. (2013). Their fast iterative thresh-
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olding for sparse SVDs (FIT-SSVD) algorithm computes the two subspaces spanned

by the leading left and right singular vectors simultaneously which guarantees the

orthogonality of the singular vectors. More precisely, the key ideas that distinguish

the FIT-SSVD method from the earlier sequential methods are listed below:

1. the use of orthogonal iteration to compute the subspaces spanned by the first

r singular vectors in U and V ,

2. the use of thresholding to replace the smaller entries of U and V by zeros, and

novel, inexpensive ways of estimating the threshold levels,

3. sparse initialization by deleting the rows and columns of the data matrix with

low signal.

Rather than solving the optimization problems in Section 1.5.1, the FIT-SSVD

algorithm is based on thresholding. It adopts a thresholding function, like the familiar

soft-thresholding

S(y, γ) = sgn(y)(|y| − γ)+,

the hard-thresholding

H(y, γ) = y1|y|>γ

or SCAD (Fan and Li, 2001), where γ is the threshold level. The threshold level

γ is selected to be
√

2 log n motivated by the asymptotic results from the Gaussian

sequence models (Johnstone, 2011) or using the idea of “m out of n” bootstrapping

the data. These novel ways of estimating the threshold level avoid choosing tuning

parameters by the computationally expensive cross-validation methods and hence
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lead to fast computational performance. A detailed introduction of the FIT-SSVD

is given in Section 2.2.1.

Selecting the threshold level in the FIT-SSVD algorithm relies heavily on the

independence of the entries of a data matrix. Generalizations of the FIT-SSVD to

account for the row-dependence are proposed in Section 2, where the correlations are

incorporated in selecting the threshold levels.

1.6 Multivariate Linear Regression

In this subsection, we review the reduced rank regression (RRR), its connection to

various multivariate methods and various ways to regularize the regression coefficient

matrix.

Given n observations on the q-vector of responses y and the p-vector of predictors

x, the multivariate linear regression model is

Y = XB + E, (1.11)

where Y = (y1, ...,yn)′ ∈ Rn×q, X = (x1, ...,xn)′ ∈ Rn×p and B ∈ Rp×q denote the

responses, covariates and regression coefficients matrices, and E the noise matrix

consists of iid normal random variables. Note that at least for a full-rank design

matrix, X can be removed from (1.11) by left multiplying both sides by (X ′X)−1X ′

leading to

Ỹ = (X ′X)−1X ′Y = (X ′X)−1X ′XB + (X ′X)−1X ′E.

It appears to be of the form (1.6), but with Y and E replaced by Ỹ = B̂OLS =

(X ′X)−1X ′Y and Ẽ = (X ′X)−1 X ′E. This situation with the Ẽ will be extensively

studied in this dissertation.
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The number of parameters in B can be quite large when both dimensions p and

q are large, and its regularization is advisable when either dimension exceeds the

sample size n. An early approach to regularization of B is the RRR (Anderson,

1951; Izenman, 1975) where one finds the least-squares estimate of B subject to the

rank constraint rank(B) = r, for a given integer r. Hence, the coefficient matrix

B = Θ1Θ2 can be written as a product of two lower dimensional matrices Θ1 ∈ Rq×r

and Θ2 ∈ Rr×p of rank r. Thus, the RRR reduces the potentially large number of

parameters in B from pq to r(p + q) which is linear in p and q. Let the matrices

X and Y be centered, given any positive-definite matrix W ∈ Rq×q, the solution Θ1

and Θ2 of the RRR problem is computed by minimizing a weighted sum-of-squares

criterion

tr{(Y −XΘ1Θ2)′W (Y −XΘ1Θ2)}, (1.12)

which is of the form of (Ω,Σ)-norm, see Figure 1.2. Then, the solution is given by

(Reinsel and Velu, 1998; Izenman, 2008)

Θ1 = Σ−1
XXΣXYW

1/2P = B̂OLSW
1/2P,

Θ2 = P ′W−1/2,

where P = [p1, ..., pr] ∈ Rq×r and pi is the eigenvector corresponding to the ith

largest eigenvalue of the matrix

W 1/2ΣY XΣ−1
XXΣXYW

1/2,
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where

ΣXX = Cov(X,X),ΣXY = Σ′Y X = Cov(X, Y ),ΣY Y = Cov(Y, Y ),

which are proportional to X ′X,X ′Y and Y ′Y , since X and Y are centered.

The RRR problem provides a very general framework subsuming various widely

used techniques in multivariate statistics, see Figure 1.2.

1. Setting W = I and Y = X, the (1.12) reduces to a PCA problem and have

solutions Θ1 = P and Θ2 = P ′, where P = V is the eigenvectors of ΣY Y as in

Section 1.3. Thus, the RRR solves the PCA problem for data Y .

2. In the canonical correlation analysis (CCA) (Hotelling, 1935, 1936), the goal is

to find vectors g and h such that the correlation corr(g′x, h′y) is maximized.

Let G = (g1, ..., gr) ∈ Rp×r and H = (h1, ..., hr) ∈ Rq×r, the CCA is to find

matrices G and H that minimize all the eigenvalues of (Y H−XG)′(Y H−XG).

It has been shown in Reinsel and Velu (1998) that by letting W = Σ−1
Y Y in

(1.12), the solutions of the CCA are G = Θ1 and H = Θ′2 as in the RRR.

3. The CCA setup can be reduced to the Fisher’s linear discriminant analysis

(Fisher, 1936) if the response is a vector of binary variables.

4. The CCA setup can also be reduced to the correspondence analysis (Hirschfeld,

1935) if both the responses and the predictors are binary variables as shown in

(Izenman, 2008).

There is a host of regression estimators that either regularize the weighted least-

squares estimators (WLS) or regularize the likelihood function. In the literature,

particular attention is paid to using the penalty on the singular values and singular
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Figure 1.2: A diagram of RRR-related methods.

vectors of the coefficient matrix. The rank-r approximation of the coefficient matrix

B is found using the SVD of B =
∑r

i=1 diuiv
′
i (Chen et al., 2012a). We show the

details of the connection between the solution of (1.12) and the SVD in Section 3.

Using the weighted Frobenius norm or the (Ω,Σ)-norm, the regularized RRR finds

the minimizer of

||(Y −XB)W 1/2||2F + Pλ(B) = ||Y −XB||2I,W + Pλ(B),

where W denotes a weight matrix and Pλ(B) is a penalty function on B or its SVD

factors U,D and V . When W = Σ−1
Y Y , where ΣY is the population covariance matrix
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of the response Y and Y ∼ N(XB,ΣY Y ), the above objective function is proportional

to the regularized log-likelihood function:

l(Y |ΣY Y ) ∝ tr{(Y −XB)′Σ−1
Y Y (Y −XB)} = ||Y −XB||2

I,Σ−1
Y Y
.

We list first those methods where penalties are imposed on the singular values of the

coefficient matrix:

1. Yuan et al. (2007) proposed a nuclear norm penalized (NNP) least-squares

estimator by setting

Pλ(B) = λ||B||∗ =
r∑
i=1

di,

where di(B) denotes the ith singular value of B. The NNP encourages sparse

singular values, hence it performs dimension reduction and coefficient estima-

tion at the same time. However, computing the estimates is very challenging

in practice due to the nuclear norm constraint. Cai et al. (2010), Toh and Yun

(2010) and Lu et al. (2012) have conducted extensive research to solve this

optimization problem.

2. Bunea et al. (2011) proposed the rank selection criterion (RSC) by setting

Pλ(B) = λ

r∑
i=1

I(di 6= 0),

where I(·) is an indicator function. It has low computational complexity com-

pared to the NNP and has the explicit solution B̂ = (X ′X)gX ′Y V D−1H(D)V ′,

where UDV ′ is the SVD of the predictor X(X ′X)gX ′Y , H(D) = diag{diI(di >

λ), i = 1, ..., r}. The RSC provides consistent estimators of the rank of the co-
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efficient matrix when both n and p go to infinite.

3. Dobrev and Schaumburg (2013) proposed the Tikhonov regularization of re-

duced rank regression (TRRR) by setting

Pλ(B) = λ||R(Θ1Θ′2)W 1/2||2F = λ||Θ1Θ′2||2R′R,W ,

subject to Θ′1ΣXXΘ1 = Ir. Here, B = Θ1Θ′2 and R is a pre-determined ma-

trix which may be chosen to differentially penalize certain directions in the

parameter space. Its solution can be obtained by solving a generalized eigen-

value problem |ΣXYWΣY X − ρ(ΣXX + λR′R)| = 0, where ρ is the generalized

eigenvalue.

4. Chen et al. (2012b) proposed the adaptive nuclear norm penalization (ANN)

by penalizing the mean (predictor) XB instead of B,

Pλ(B) = λ
r∑
i=1

widi(XB),

where di(XB) denotes the ith singular value of XB. It has the explicit so-

lution B̂ = (X ′X)gX ′Y V D−1Sλw(D)V ′, where UDV ′ is the SVD of the pre-

dictor X(X ′X)gX ′Y , Sλ(D) = diag{(di − λ)+, i = 1, ..., r}, where the soft-

thresholding operator acts on the singular values of the matrix XB. The ANN

method directly tackles the prediction matrix approximation and imposes the

sparsity on XB rather than B. The selection of the tuning parameters {λ,w}

in the ANN are data-driven.

These regularized RRR approaches penalize the singular values of the coefficient

matrix and encourage sparsity in the singular values and hence restricts the rank.
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In order to account for the possible sparsity of the singular vectors, we list two

representative methods below that enforce sparsity penalties on the singular vectors

of the coefficient matrix.

1. Chen et al. (2012a) proposed the sparse reduced rank regression by setting

Pλ(B) =
r∑

k=1

λk

p∑
i=1

q∑
j=1

wijk|dkuikvjk|,

where uik, vjk are entries of uk and vk and wijk’s are the data-driven weights

as used in the adaptive lasso. The iterative exclusive extraction algorithm is

proposed to estimate B with sparse SVD structure starting from some initial

consistent estimator ofB, e.g. the reduced rank least-squares estimator B̂OLS =∑r
l=1 d̂lûlv̂

′
l. They reduce the task of regularizing B into r parallel sparse unit

rank regressions by decomposing the response matrix Y into r layers Yl =

Y − X(B̂OLS − B̂OLS,l), where B̂OLS,l = d̂lûlv̂
′
l and l = 1, ..., r, and solve the

sparse regression of Yl’s on X with unit rank coefficient matrix.

2. Chen and Huang (2012) proposed a group lasso penalty of sparse reduced rank

regression by setting

Pλ(B) = λ

p∑
i=1

|Θi.,1|,

where B = Θ1Θ′2, Θi.,1 is the ith row of Θ1, subject to condition Θ′2Θ2 = Ir. It

uses the idea of group lasso in Yuan and Lin (2007) and the numerical solution

can be obtained through the subgradient or variational method.

Unfortunately, these regularization methods either simply assume the entries of

noise E are iid distributed or assume E consists of independent columns, where the
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dependencies among rows and columns as in the transposable data are ignored.

The rest of the dissertation is organized as follows. We present our proposed

novel regularization approach for the reduced-rank regression in Section 2, where

its optimization problem is extensively discussed. We then extend our approach to

the transposable data situation and incorporate the row and column dependencies

in Section 3. Analyses of a micro-array data and a macroeconomic data follow the

development of methodologies in each section. We conclude and discuss some future

research topics in Section 4, and present the proofs and additional simulations in the

Appendix.
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2. REDUCED RANK MULTIVARIATE REGRESSION: THRESHOLDING

AND OPTIMIZATION

Uncovering the meaningful relationship between the responses and the predic-

tors is a fundamental goal in multivariate regression problems, which can be very

challenging when data are high-dimensional. Dimension reduction and regularization

techniques are applied extensively to alleviate the curse of dimensionality. It is desir-

able to estimate the regression coefficient matrix by low-rank matrices constructed

from its SVD. In this section, we integrate the reduced-rank regression approach

with the regularization techniques and reduce such regression problems to sparse

SVD problems for correlated data matrices and generalize the FIT-SSVD algorithm

in Yang et al. (2013) to this situation. We also place Yang et al.’s algorithm in an

optimization framework by introducing a specific bi-convex objective function. This

enables us to study the large sample properties of the solution of the multivariate

regression problem and establish consistency of the estimators as the sample size

tends to infinity.

2.1 Background

There are very close and synergistic connections between the reduced rank mul-

tivariate regression (Anderson, 1951; Izenman, 1975) and the SVD of its coefficient

matrix (Reinsel and Velu, 1998; Yuan et al., 2007; Chen et al., 2012a). Consider the

multivariate linear regression model

Y = XB + E, (2.1)
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where Y,X and B denote the n × q, n × p and p × q matrices of the responses,

covariates and regression coefficients, and E the noise matrix which consists of iid

normal random variables.

To reduce the potentially large number of parameters in B, the reduced rank

regression (RRR) finds the least-square estimate of B subject to the rank constraint

rank(B) = r ≤ min(p, q). Its solution is known (Reinsel and Velu, 1998; Chen

et al., 2012a) to relate to the low-rank approximation property of the SVD of B =∑r
i=1 diuiv

′
i as discussed in Section 1.6. Note that the special case of p = n and

X = Ip leads to the model

Y = B + E, (2.2)

where the low-rank approximation of B has been studied as a free-standing low-rank

model in the recent literature of high-dimensional data analysis, see Section 1.5.

However, it has been noted (Johnstone and Lu, 2009) that for high-dimensional data

the classical SVD lacks good computational and statistical properties.

A regularized least-squares approach to the RRR proposed by Yuan et al. (2007)

penalizes the sum of the singular values of the coefficient matrix, it encourages spar-

sity in the singular values and hence restricts the rank of B. Unfortunately, this

approach and its variants (Bunea et al., 2011) do not take into account the possi-

ble sparsity of the singular vectors. Regularization of the singular vectors has been

proposed by Shen and Huang (2008, p.123), Witten et al. (2009), Lee et al. (2010)

and Allen et al. (2013) where the solution is found sequentially through rank-one ap-

proximations of the data matrix Y in (2.2). More generally, Chen et al. (2012a) have

introduced a regularized reduced rank regression method by considering a low-rank

approximation to the ordinary least square estimate (OLS) of the coefficient matrix
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in the multivariate regression (2.1) using an adaptive lasso penalty on the singular

vectors ul,vl, l = 1, · · · ,m. A notable drawback of this sequential approach is that

the orthogonality of the singular vectors cannot be guaranteed.

A common feature of these sequential algorithms is that they provide solutions of

certain penalized optimization problems. A novel non-optimization based iterative

approach for low-rank approximation of high dimensional data in (2.2) is the fast

iterative thresholding for sparse SVDs (FIT-SSVD) algorithm proposed by Yang

et al. (2013). Unlike Shen and Huang (2008), Witten et al. (2009) and Lee et al.

(2010) which compute singular vectors sequentially one at a time, the FIT-SSVD

algorithm computes the two subspaces spanned by the leading left and right singular

vectors using the idea of orthogonal iteration (Golub and Van Loan, 1996, Chapter

8) which guarantees the orthogonality of the singular vectors. More precisely, the key

ideas that distinguish the FIT-SSVD method from the earlier sequential methods are

the use of orthogonal iteration, thresholding and its novel sparse initialization, see

Section 1.5.3. The theory and simulation studies in Yang et al. (2013) confirm that

the FIT-SSVD algorithm is computationally much faster than the earlier sequential

algorithms.

Unlike the sequential algorithms, the FIT-SSVD algorithm is neither motivated

by nor based on solving optimization problems. In this section, our first contribution

is to place the FIT-SSVD algorithm in an optimization framework. We introduce a

suitable bi-convex objective function and an iterative algorithm to minimize it via

closed form iterates. This setup enables us to study the large sample properties of

the FIT-SSVD solution and establish consistency of the estimators as the sample size

n tends to infinity. Our second contribution is to reduce the more general regression

problem (2.1) to the low-rank model (2.2), recognize and deal with its correlated

error by generalizing the FIT-SSVD algorithm to the correlated data situation. We
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propose a fast iteratively thresholded sparse reduced rank regression (FIT-SRRR)

algorithm which addresses the lack of orthogonality of the singular vectors in Chen

et al. (2012a) and accounts for the correlation. The FIT-SRRR methodology allows

the use of covariates and guarantees that the SVD layers are orthogonal. It makes

effective use of the distribution of errors in finding the threshold levels and inherits all

the good computational and statistical properties of the FIT-SSVD algorithm. Our

simulation study and data analysis reveal the considerable gain when the dependence

in the data is accounted for.

The rest of the Section 2 is organized as follows. In Section 2.2, after briefly

reviewing the FIT-SSVD algorithm in Yang et al. (2013), we place it in an optimiza-

tion framework. We develop in Section 2.3 the FIT-SRRR algorithm for the sparse

reduced rank regression. We illustrate our methodology using simulations and real

data in Sections 2.4 and 2.5, respectively. Section 2.6 concludes this section.

2.2 Thresholding for Sparse SVDs

In this subsection, we briefly review the FIT-SSVD algorithm and place it in an

optimization setup by proposing a bi-convex objective function.

2.2.1 Overview

Recalling Section 1.2, the power method (Golub and Van Loan, 1996) is the

most basic tool for computing the singular vectors of a matrix. Given an initial

vector, it iteratively computes a pair of left and right singular vectors at a time. The

alternative technique of orthogonal iteration computes several left and right singular

vectors ‘at once’ and generalizes the power method from a vector to a subspace setup.

It achieves subspace orthogonalization through the QR decomposition. A key step

of the FIT-SSVD algorithm is based on the idea of orthogonal iteration.

In the low-rank model (2.2), given an initial matrix V (0) of the right singular vec-
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tors of B with r orthonormal columns, the FIT-SSVD algorithm at the kth iteration

applies multiplication to B and B′ by V (k−1) and U (k) followed by thresholding. Then,

the QR decomposition of the thresholded matrices gives the orthonormal matrices U

and V . It iterates according to the four steps in the Figure 2.1 until convergence.

1. Right-to-left Multiplication and Thresholding: U (k),thr = η(BV (k−1), γu),

2. Orthonormalization with QR Decomposition: U (k)R
(k)
u = U (k),thr,

3. Left-to-right Multiplication and Thresholding: V (k),thr = η(B′U (k), γv),

4. Orthonormalization with QR Decomposition: V (k)R
(k)
v = V (k),thr.

Figure 2.1: The four key steps of the FIT-SSVD algorithm.

In Figure 2.1, the function η(.) is a pre-selected threshold function, like the fa-

miliar soft-thresholding with η(y, γ) = S(y, γ) = sgn(y)(|y|−γ)+, hard-thresholding

η(y, γ) = H(y, γ) = y1|y|>γ or SCAD (Fan and Li, 2001), where γ is the threshold

level. We work with the soft-thresholding function in the theoretical development

here and discuss the other cases in the Appendix A.

Choosing the proper threshold level γ requires the knowledge of the distribution

of the noise E. In fact, selection of γ in Yang et al. (2013) relies heavily on the

assumption of independence of the entries of the noise matrix. When this assumption

is violated, we present a generalized FIT-SSVD algorithm in Section 2.3, which

incorporates the dependence in the data.

2.2.2 An Objective Function Framework

Although the FIT-SSVD algorithm for model (2.2) as developed in Yang et al.

(2013) is not optimizing-based, we introduce a suitable objective function in this
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subsection and place it in an optimization-based framework.

Consider minimizing the objective function,

Ψ(U,D, V ) = ||Y − UDV ′||2F + λu

p∑
i=1

r∑
k=1

|uikdk|+ λv

q∑
j=1

r∑
k=1

|vjkdk|, (2.3)

over (U,D, V ) subject to

U ′U = Ir, V
′V = Ir, (2.4)

where Y, U and V are p× q, p× r and q× r matrices, r ≤ m = min(p, q), and λu, λv

are the regularization parameters. Note that (2.3) as an optimization problem with

respect to matrices U,D, V is not bi-convex due to the two equality conditions on U

and V in (2.4). We reduce it to a bi-convex optimization problem, following Witten

et al. (2009) and Wittstock (1984, Definition 1.1) and finesse the equality conditions

(2.4) and replace them by

(U ′U − I) � 0, (V ′V − I) � 0, (2.5)

where A � 0 means that the matrix A is negative semi-definite. Now, it is evident

that for V fixed, (2.3) subject to (2.5) is convex in UD, and similarly it is convex

in V D for U fixed. Thus, the function Ψ(·) in (2.3) is bi-convex in UD and V D

subject to (2.5). It can be minimized (Gorski et al., 2007) by iteratively minimizing

the convex functions (2.6) and (2.7) below with respect to Ũ = UD and Ṽ = V D

28



while keeping the other fixed:

||Y − ŨV ′||2F + λu

p∑
i=1

r∑
k=1

|ũik|, (2.6)

||Y − UṼ ′||2F + λv

q∑
j=1

r∑
k=1

|ṽjk|. (2.7)

Fortunately, the minimizers of (2.6) and (2.7) have closed forms as component-

wise soft-thresholding operators acting on Y . Moreover, the minimizers Ũ (k) and

Ṽ (k) in the kth iteration of (2.3) have the same form as those in the kth updating

steps U (k),thr, V (k),thr in the FIT-SSVD algorithm for certain threhsolding levels, see

Figure 2.1. These observations are summarized in the following proposition and its

proof is given in the Appendix A.

Proposition 2.2.1 (a) Given the data matrix Y and model (2.2), the objective func-

tion Ψ(.) in (2.3) subject to conditions (2.5) is bi-convex and can be minimized by

alternatively minimizing (2.6)-(2.7) with respect to Ũ , Ṽ .

(b) The solution Ũ of (2.6) for V fixed is the component-wise soft-thresholding

of Y V , i.e. S(Y V, 1
2
λu) = [S(Y V )ij,

1
2
λu]i=1,...,n;j=1,...,r. Similarly, the solution Ṽ

of (2.7) for U fixed is S(Y ′U, 1
2
λv), where S(A, λ) for a matrix A denotes soft-

thresholding every entry of A with threshold level λ.

(c) The FIT-SSVD algorithm is equivalent to iteratively minimizing (2.6)-(2.7) for

fixed λu, λv, and then obtaining the orthonormal matrices U and V through the QR

decompositions of their solutions.

Proposition 2.2.1 shows that the FIT-SSVD algorithm provides the solution for

the estimator (U, V ) of (2.3) subject to (2.5) through iteratively solving for the

matrices U and V . Compared to the sequential algorithms in Lee et al. (2010),Witten

et al. (2009) and Chen et al. (2012a), it is a matrix-based algorithm. It solves
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for the matrices U and V directly as opposed to solving for their column vectors

sequentially. Specifically, if the threshold levels γu, γv in the FIT-SSVD algorithm

are set to be 1
2
λu,

1
2
λv as in (2.3), then the soft-thresholding estimators of the kth

iteration Ũ (k), Ṽ (k) in (2.6) and (2.7) are identical to the estimators U (k),thr, V (k),thr

in the FIT-SSVD (Figure 2.1, Step 1 and 3).

An advantage of placing the FIT-SSVD algorithm in the optimization-based

framework is that the asymptotic properties of its solution can be studied using the

techniques developed for the Lasso-type objective functions (Knight and Fu, 2000;

Zou, 2006; Chen et al., 2012a; Chen and Huang, 2012). We discuss the existence of a

local minimum of (2.3) and the selection consistency of its solutions in the Appendix

A.

2.3 The Generalized Thresholding for Sparse Reduced Rank Regression

In this subsection, we reduce the multivariate regression model (2.1) to a low-

rank model for a correlated data matrix, and then generalize the FIT-SSVD to

the correlated data situation. The transformed model (2.9) below is the bridge

connecting the regression problem to the low-rank model and the standard SVD

problems. Compared to the FIT-SSVD algorithm the key changes in the FIT-SRRR

are in selecting the threshold levels for correlated data and the separate updating of

U and V , which no longer is symmetric in U and V due to the dependence in the

rows of the data matrix.

The close connection between the FIT-SSVD and FIT-SRRR methodologies is

explained by noting that at least for a full-rank design matrix, X can be removed

from (2.1) by left multiplying both sides by (X ′X)−1X ′ leading to

(X ′X)−1X ′Y = (X ′X)−1X ′XB + (X ′X)−1X ′E. (2.8)
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It appears to be of the form (2.2), but with Y and E replaced by Ỹ = B̂ =

(X ′X)−1X ′Y the least-square estimate of B, and the transformed noise Ẽ = (X ′X)−1

X ′E. However, the model (2.8) is more general than (2.2), since with

Ỹ = B + Ẽ, (2.9)

the columns of Ẽ are iid Np(0, σ
2Σ) where Σ = (X ′X)−1 is known. Depending on

the rank of the design matrix X, the following three cases are of interest:

I: X is orthonormal and X ′X = I: Then, the proposed FIT-SRRR algorithm

reduces to the FIT-SSVD algorithm of Yang et al. (2013). The latter will be

used verbatim in computing the sparse SVD of the coefficient matrix B where

Ỹ = X ′Y is used as the data matrix in the algorithm.

II: X has full column rank: Then, the entries of transformed noise Ẽ in (2.9) are

no longer iid, but row-wise dependent, so that the FIT-SSVD algorithm is not

directly applicable, and it needs to be modified to account for the correlation.

III: X is less than full-rank: In this case, there is no unique least square estimator

of B in (2.8) because the Gram matrix X ′X is singular. Some alternative

estimators are the Moore-Penrose inverse (Bunea et al., 2011), and the ridge

estimator. Throughout the Section 2, following Chen et al. (2012a, p. 8), the

ridge estimator is used where a small positive constant ε = 10−4 is added to

the diagonal elements of the Gram matrix to make it invertible.

In the rest of this subsection, we describe the details of the FIT-SRRR algorithm,

especially in updating U (k), V (k) and choosing the corresponding threshold levels.
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1. Right-to-left Multiplication and Threshold U (k),thr = η(Ỹ V (k−1), γu), where γu
is selected by Algorithm 1,

2. Orthonormalization with QR Decomposition: U (k)R
(k)
u = U (k),thr,

3. Left-to-right Multiplication and Threshold V (k),thr = η(Ỹ ′U (k), γv), where γv is
selected by Algorithm 2,

4. Orthonormalization with QR Decomposition: V (k)R
(k)
v = V (k),thr.

Figure 2.2: The four key steps of the FIT-SRRR algorithm.

2.3.1 Threshold Levels and Updating the U (k), V (k)

The goal of thresholding is to retain the entries of Ỹ with high signal and replace

the others with zero. Due to row-dependence in the data matrix in (2.9), unlike the

FIT-SSVD, finding U (k), V (k) in Step 1 and 3 in Figure 2.2 are no longer symmetric,

although they both require thresholding. We highlight this difference using some

properties of matrix normal distributions (Gupta and Nagar, 1999). Recall that a

random matrix Y (m× n) is said to have a matrix normal distribution and denoted

as Y ∼MNm,n(M,Σ,Ω), where M is the mean matrix and Σ,Ω denote the row and

column covariance matrices. The following properties of linear transformations of

matrix normal distributions are needed in the sequel.

Proposition 2.3.1 (a) Let Y ∼ MNm,n(M,Σ,Ω) and a be a suitable vector, then

Y a ∼ Nm(Ma, (a′Ωa)Σ), and Y ′a ∼ Nn(M ′a, (a′Σa)Ω).

(b) If Ẽ ∼ MNp,q(0, σ
2Σ, Iq) as in (2.9), and u,v are suitable vectors of unit

norm, then the entries of Ẽv ∼ Np(0, σ
2Σ) are dependent, while those of Ẽ ′u ∼

Nq(0, σ
2(u′Σu)Iq) are independent.
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We discuss the details of selecting the threshold levels and the updating proce-

dures for U (k), V (k) through their lth column u
(k)
l ,v

(k)
l , l = 1 · · · , r. To update U (k),

let V (k−1) be the update of V at the (k− 1)st iteration and v
(k−1)
l be its lth column.

Right multiplying both sides of (2.9) by v
(k−1)
l and using the SVD of B leads to the

mean model,

Ỹ v
(k−1)
l = Bv

(k−1)
l + Ẽv

(k−1)
l . (2.10)

For the moment, let γul be a threshold level used in (2.10). Then, [Ỹ v
(k−1)
l ]thr, a

thresholded version of the response vector, would serve as an estimator of the mean

vector in (2.10). Repeating this procedure for all l = 1, · · · , r leads to the matrix

[Ỹ V (k−1)]thr, and the orthonormal matrix U (k) is obtained from its QR decomposition.

From Proposition 2.3.1(b), since the noise Ẽv
(k−1)
l in (2.10) is dependent with

covariance matrix Σ, the universal threshold level (Donoho and Johnstone, 1994)

used in Yang et al. (2013) is not applicable. Then, we need to modify the FIT-SSVD

to account for the dependence and heterogeniety in (2.10). Johnstone and Silverman

(1997) and Kovac and Silverman (2000) suggest more general thresholding methods

for correlated and heteroscedastic noise. In brief, their methods view the entries of

the noise vector Ẽv
(k−1)
l as independent heterogeneous random variables and ignore

the correlation structure.

Berkner and Wells (1998, 2001) and Delouille et al. (2004) generalize the above

thresholding methods by incorporating the correlations. More precisely, the threshold

level γujl for the jth entry of the vector Ỹ v
(k−1)
l is selected as

γujl = σ̂ujlγul, (2.11)
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where from Proposition 2.3.1(b), σ̂2
ujl = σ̂2σjj and σjj is the jth diagonal entry of Σ.

The γul, following Berkner and Wells (2001), is given by

γul =
√

2(1 + δ) log(p), (2.12)

where

δ = max
j 6=j′

(|corr({Ỹ v
(k−1)
l }j, {Ỹ v

(k−1)
l }j′)|),

is the maximum of the magnitudes of the correlations in Ỹ v
(k−1)
l . We adopt this

thresholding procedure for the correlated case in updating U (k), and summarize the

details in Algorithm 1.

Algorithm 1: Selection of the threshold level γul = gu(Ỹ , U
(k−1), V (k−1), σ̂).

Input:
1. Data matrix Ỹ , covariance matrix Σ for the rows of the noise matrix;

2. Previous estimators of the singular vectors U (k−1), V (k−1);
3. An estimate of σ̂.
Output:
Threshold level vectors γul for l = 1, ..., r.

1 σ̂2
ujl ← σ̂2σjj, where σjj is the jth diagonal entry of Σ;

2 γul ←
√

2(1 + δ) log(p) where δ = maxj 6=j′(|corr({Ỹ v
(k−1)
l }j, {Ỹ v

(k−1)
l }j′)|);

3 γujl ← σ̂ujlγul, j = 1, ..., p;
4 return γul = (γu1l, . . . , γupl)

′, l = 1, ..., r.

We update V (k) through its lth column v
(k)
l , l = 1, ..., r. Right multiplying the

transpose of both side of (2.9) by u
(k)
l , it follows that

Ỹ ′u
(k)
l = B′u

(k)
l + Ẽ ′u

(k)
l , (2.13)

34



where the entries of the vector Ẽ ′u
(k)
l are iid N(0, σ2u

(k)′

l Σu
(k)
l ), see Proposition

2.3.1(b). Since the noises in (2.13) are uncorrelated, a theoretically sensible (though

not actionable) threshold level for Ỹ ′u
(k)
l would be γvl = E{||(Ẽ ′u(k)

l )||∞} (Yang

et al., 2013, Section 2.4). We adjust their Algorithm 3 to obtain the threshold levels

γvl, l = 1, ..., r for the regression setup. Since the SVD of the matrix B is assumed

to be sparse, let Lu, Lv denote the index sets for U and V in which every element

in a row is zero, and Hu, Hv be the complimentary sets of Lu and Lv. Then, after a

reordering of the rows and columns of B (still denoted as B), it can be partitioned

as,

B = UDV ′ =

 BHuHv BHuLv

BLuHv BLuLv

 =

 BHuHv 0HuLv

0LuHv 0LuLv

 .
︸ ︷︷ ︸
p×|Hv |

︸ ︷︷ ︸
p×|Lv |

Using a compatible partitioning of X, (2.1) can be rewritten as,

Y =

 X11BHuHv 0

X21BHuHv 0

+ E, (2.14)

︸ ︷︷ ︸
n×|Hv |

︸︷︷︸
n×|Lv |

where X11, X21 are the corresponding submatrices of X. Note that in our setting,

the (2,1)-block or the submatrix X21BHuHv in (2.14) is not a zero matrix as in Yang

et al. (2013, Section 2.4) and the pure noise part is a n × |Lv| matrix. Following

Yang et al. (2013, Section 2.4), if the dimension of the pure noise is large enough,

say, n|Lv| > pq log(pq), we find the threshold level by using the rule of ”m out n”
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bootstrap (Bickel et al., 1997). Otherwise, we use the universal threshold level

γvl = σ̂vl
√

2 log(q), (2.15)

where σ̂2
vl = σ̂2u

(k)′

l Σu
(k)
l , for l ∈ {1, ..., r}. The details of choosing the threshold

level is presented in the Algorithm 2. Then, [Ỹ ′u
(k)
l ]thr, a thresholded version of the

response vector in (2.13), would serve as an estimator of the mean vector. Repeating

this procedure for all l = 1, · · · , r leads to the matrix estimator [Ỹ ′U (k)]thr, where

the orthonormal matrix V (k) is obtained from its QR decomposition.

Algorithm 2: Selection of the threshold level γvl = gv(Ỹ , U
(k), V (k−1), σ̂).

Input:
1. Data matrix Ỹ , covariance matrix Σ for the columns of the noise matrix;

2. Previous estimators of the singular vectors U (k), V (k−1);
3. Pre-specified number M of bootstraps;
4. An estimate of σ̂.
Output:
Threshold level γvl for l = 1, ..., r.

1 Subset selection: Lu = {i : u
(k)
i1 = ... = u

(k)
ir = 0},

Lv = {j : v
(k−1)
j1 = ... = v

(k−1)
jr = 0}, Hu = Lcu, Hv = Lcv;

2 if n|Lv| > pq log(pq) then
3 for t in 1, · · · ,M do
4 Sample pq entries from the pure noise part in (2.14) and reshape them

into a matrix Z ∈ Rq×p;

5 C = [C:1, . . . , C:r]← Z[Σ1/2U (k)]Hu ∈q×r;
6 Dt: ← (||C:1||∞, · · · , ||C:r||∞) ∈ R1×r ;
7 γvl ← median(D:l), l = 1, . . . , r;

8 else

9 γvl ← σ̂vl
√

2 log(q), where σ̂2
vl = σ̂2u

(k)′

l Σu
(k)
l ;

10 return γvl, l = 1, ..., r.
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2.3.2 Implementing the Algorithm

The FIT-SRRR algorithm is designed to inherit the statistical and computational

properties of the FIT-SSVD algorithm. Its main steps are described in Algorithm 3,

where the sub-algorithms for selecting the threshold levels for U and V are given in

Section 2.3.1.

The initial orthonormal matrices U (0) ∈ Rp×r and V (0) ∈ Rq×r are chosen as in

Yang et al. (2013) by first reducing the dimensionality of data matrix as in Johnstone

and Lu (2009) and then computing its ordinary SVD. We stop the FIT-SRRR Algo-

rithm after the kth iteration if the maximum distance between the successive iterates

is small, i.e. max{||PU(k) − PU(k−1)||22, ||PV (k−1) − PV (k−1)||22} is less than or equal to

a preselected ε = 10−8, where PA = AA′ is a projection matrix for an orthonormal

matrix A, and ||A||2 denotes the spectral norm of the matrix A.

2.4 Simulations

In this subsection, we use simulations to assess and compare the performance

of the FIT-SRRR with the existing methods, and report the results in next two

subsections. The first subsection compares the FIT-SRRR with the FIT-SSVD for

correlated data matrices in model (2.2). The second compares the FIT-SRRR in the

regression model (2.1) with the iterative exclusive extraction algorithm (IEEA) in

Chen et al. (2012a) described in Subsection 2.4.2.

Throughout, the rank of the true underlying matrix B is assumed to be known.

The parameters and setups are as the same as in the simulations in Yang et al.

(2013) and Chen et al. (2012a), i.e. we keep their setups for the threshold func-

tion, Huberization, bootstrap, cross-validation and initial values. In particular, for

the FIT-SRRR, the bootstrap parameter M = 100 in Algorithm 2, the thresh-

old function is the hard thresholding η(·) = H(·) in Algorithm 3, and σ̂ = 1.4826
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Algorithm 3: The FIT-SRRR Algorithm.

Input:
1. Data matrix Ỹ , covariance matrix Σ for the rows of the noise matrix;
2. Target rank r, and an estimate of σ̂;
3. Thresholding function η;
4. Algorithms gu and gv to calculate the threshold levels γu, γv;

5. Initial orthonormal matrices U (0) ∈ Rp×r, V (0) ∈ Rq×r.
Output:
Estimators Û = U (∞), V̂ = V (∞).

1 repeat

2 Obtain the matrix U (k),thr ← [u
(k),thr
1 , ...,u

(k),thr
r ], where

u
(k),thr
l = η(Ỹ v

(k−1)
l , γul) and γul = gu(Ỹ , U

(k), V (k−1), σ̂) for l = 1, · · · , r;
3 Orthonormalization with QR decomposition for U : U (k)R

(k)
u ← U (k),thr;

4 Obtain the matrix V (k),thr ← [v
(k),thr
1 , ...,v

(k),thr
r ] where

v
(k),thr
l = η(Ỹ ′u

(k)
l , γvl) and γvl = gv(Ỹ , U

(k), V (k−1), σ̂) for l = 1, · · · , r;
5 Orthonormalization with QR decomposition for V : V (k)R

(k)
v ← V (k),thr;

6 until Convergence;

7 return Estimators Û = U (∞), V̂ = V (∞).

MAD(as.vector(Ỹ )) is a multiple of the median absolute deviation (MAD) of the

data. The repetitions for each simulation are N = 1000 times.

2.4.1 The Low-Rank Model with Correlated Data

In this subsection, we consider the low-rank model (2.2) with correlated data.

Yang et al. (2013) have compared the FIT-SSVD algorithm with several sequential

sparse SVD methods, such as SSVD in Lee et al. (2010), PMD-SVD in Witten

et al. (2009), and found it to outperform them in terms of estimation accuracy and

computation cost. Hence, it suffices here to compare the FIT-SRRR with only the

FIT-SSVD algorithm.

The following three covariance structures for Σ = (σij) of the correlated noise in

model (2.2) are used to illustrate the effects of correlated error on the FIT-SSVD
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algorithm and the proposed FIT-SRRR algorithm which is designed to account for

the correlation.

1. Compound symmetry, CS.

σij =


σ2 if i = j,

σ2γ if i 6= j.

2. Auto Regression, AR(1).

σij = σ2ρ|i−j|, i, j ∈ {1, · · · , p},

3. Moving Average, MA(1).

σij =


σ2 if i = j,

σ2 θ
1+θ2

if |i− j| = 1,

where γ, ρ and θ are the parameters in CS, AR(1) and MA(1) structures, respec-

tively.

We generate data matrices according to model (2.2) with covariance structures

from the above list and set parameters γ, ρ and θ to the three levels: 0.1, 0.5, 0.9.

We choose σ2 so as to have four different levels of signal to noise ratio (SNR): 1, 0.5,

0.25 and 0.125, where the SNR is calculated following Chen et al. (2012a, Section 4)

and Yang et al. (2013).

For the unit rank B, following the example in Lee et al. (2010) and Chen et al.

(2012a), we let the signal B = duv′ be a 50× 100 matrix (p = 50 and q = 100), with
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d = 50 and

ũ = (10,−10, 8,−8, 5,−5, rep(3, 5), rep(−3, 5), rep(0, 34))′,

ṽ = (10, 9, 8, 7, 6, 5, 4, 3, rep(2, 17), rep(0, 75))′,

u =
ũ

||ũ||
,v =

ṽ

||ṽ||
,

where rep(m,n) denotes a vector of length n, whose entries are all equal to m.

For the rank-2 B, we set B =
∑2

l=1 dlulv
′
l where

ũ1 = (10,−10, 8,−8, 5,−5, rep(3, 4), rep(0, 40))′,

ũ2 = (rep(0, 40), rep(2, 5), rep(−2, 5))′,

ṽ1 = (10, 9, 8, 7, 6, 5, 4, 3, rep(2, 17), rep(0, 75))′,

ṽ2 = (rep(0, 80), 5, 4, 3, rep(2, 17))′,

d1 = 40, d2 = 30, ul =
ũl
||ũl||

,vl =
ṽl
||ṽl||

, l = 1, 2.

We measure the estimation accuracy of a method using the average mean-squared

error ratio from the 1000 simulation repetitions, i.e. MSEi = ||B − B̂i||2F , and the

average MSE-ratio is calculated by 1
1000

∑1000
i=1

MSEi,FIT−SSV D

MSEi,FIT−SRRR
, where a value greater

than 1 indicates better performance of our proposed method.

Table 2.1 summarizes the results for the three correlation structures, four levels

of SNRs and two ranks r = 1, 2. It is evident that for the CS structure, the FIT-

SRRR universally outperforms the FIT-SSVD. It enjoys a significantly lower level of

mean-square errors than its counterpart, especially when the correlation parameter

γ is large. It holds true for all levels of SNRs, and both ranks r = 1, 2. For instance,
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Rank SNR CS (γ) Ratio AR1 (ρ) Ratio MA1 (θ) Ratio
1.00 0.1 1.01 0.1 1.00 0.1 1.00

0.5 1.05 0.5 1.02 0.5 1.01
0.9 2.92 0.9 1.04 0.9 1.03

0.50 0.1 1.12 0.1 1.12 0.1 1.12
0.5 1.23 0.5 1.27 0.5 1.20

1 0.9 22.34 0.9 1.09 0.9 1.17
0.25 0.1 1.09 0.1 1.11 0.1 1.12

0.5 2.87 0.5 1.50 0.5 1.96
0.9 19.15 0.9 2.05 0.9 1.96

0.125 0.1 1.00 0.1 1.00 0.1 1.00
0.5 6.85 0.5 1.01 0.5 1.12
0.9 19.18 0.9 3.06 0.9 1.12

1.00 0.1 1.04 0.1 1.06 0.1 1.06
0.5 2.14 0.5 1.18 0.5 1.11
0.9 5.46 0.9 1.10 0.9 1.14

0.50 0.1 1.11 0.1 1.09 0.1 1.10
0.5 4.54 0.5 1.01 0.5 1.15

2 0.9 4.67 1.74 1.69 0.9 0.85
0.25 0.1 1.03 0.1 0.96 0.1 0.94

0.5 4.38 0.5 1.03 0.5 0.87
0.9 6.71 0.9 2.73 0.9 0.78

0.125 0.1 1.05 0.1 0.95 0.1 0.95
0.5 6.38 0.5 0.99 0.5 0.95
0.9 11.07 0.9 4.47 0.9 0.94

Table 2.1: Average MSE-ratios of FIT-SSVD to FIT-SRRR for various correlation
structures, SNRs and ranks.

the MSE-ratio in the CS situation reaches as high as 22. For the AR(1) structure,

the FIT-SRRR outperforms the FIT-SSVD in most situations, in other cases its

performance is very close to that of the FIT-SSVD. The situation for the MA(1)

structure is quite different in the sense that for higher-rank B and lower SNR the

FIT-SRRR underperforms FIT-SSVD. In terms of the strength of dependence in

these three covariance structures, the CS allows the strongest dependence, followed

by AR(1) and MA(1). Note that the parameter δ used in (2.12) does not fully
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characterize a correlation matrix. It only reflects the maximum of magnitudes of the

correlation coefficients. For example, θ = 0.5 in MA(1) and γ = 0.4 in CS, both

lead to a δ = 0.4. However, the nature of the correlations in the two situations are

very different.

We have also selected the threshold levels using the method in Johnstone and

Silverman (1997) and Kovac and Silverman (2000). This amounts to using (2.12)

with δ = 0. Our simulations results show that the FIT-SRRR outperformed the FIT-

SSVD in most of the MA(1) situations, but the performances for the CS structure

was not as strong as those reported in Table 2.1.

As a whole, in the presence of higher dependence and correlations, the FIT-SRRR

outperforms the FIT-SSVD, but the latter performs well when the correlation is light

and negligible. A better measure of dependence than (2.12) which incorporates the

whole correlation structure in determining the threshold level is expected to improve

the performance of the FIT-SRRR for correlated data.

2.4.2 Multivariate Reduced Rank Regression Model

In this subsection, we compare the FIT-SRRR with the IEEA algorithm by sim-

ulating data matrices using the regression model (2.1) where the rank of B is set to

be 3.

The iterative exclusive extraction algorithm (IEEA) proposed by Chen et al.

(2012a) estimates B with sparse SVD structure starting from some initial consistent

estimator of B, e.g. the reduced rank least square estimator B̂OLS =
∑r

l=1 d̂lûlv̂
′
l.

They reduce the task of regularizing B into r parallel sparse unit rank regressions by

decomposing the response matrix Y into r layers Yl = Y −X(B̂OLS − B̂OLS,l), where

B̂OLS,l = d̂lûlv̂
′
l and l = 1, ..., r, and solve the sparse regression of Yl’s on X with

unit rank coefficient matrix. Chen et al. (2012a) show that the IEEA outperforms

42



the ordinary least square (OLS), RRR and the nuclear norm penalized (NNP) least

square in Yuan et al. (2007) in terms of estimation and prediction accuracies. Hence

it suffices here to compare our FIT-SRRR only with the IEEA algorithm.

Two scenarios in terms of moderate (p, q < n) versus high model dimensions

(p, q > n) are considered (Chen et al., 2012a), i.e. the Models I and II below. (The

special case of the identity design matrix X has also been studied, and the results are

presented in the Appendix A.) The response matrix Y is generated from (2.1) using

the X and B described below. We construct the design matrix X by generating its

rows from an iid Np(0,Ω) distribution, where Ω is the covariance matrix of an AR(1)

process with the fixed parameter ρ = 0.5. Once the design matrix is generated, it

remains fixed in all the replications of the simulation. For the coefficient matrix

B =
∑r=3

l=1 dlulv
′
l, we consider two different configurations for the singular values

corresponding to the well-separated case D1 = diag(20, 15, 10) and the less well-

separated case D2 = diag(20, 18, 16) (Ma, 2011). The elements of E are generated

from iid N(0, σ2).

Model I: n = 50, p = q = 25, the design matrix X has full column rank, and

ũ1 = (unif(5, J), rep(0, 20))′,

ũ2 = (rep(0, 5), unif(5, J))′,

ũ3 = (rep(0, 10), runif(5, J))′,

ṽ1 = (rep(1, 5), rep(−1, 5), rep(0, 15))′,

ṽ2 = (rep(0, 12), rep(1, 5), rep(−1, 5), rep(0, 3))′,

ṽ3 = (rep(0, 6), ṽ1[7 : 8],−ṽ1[9 : 10], 1,−1,−ṽ2[13 : 14], ṽ2[15 : 16], rep(0, 9))′,

ul =
ũl
||ũl||

,vl =
ṽl
||ṽl||

, l = 1, 2, 3,
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where ṽl[a : b] denotes a vector whose entries are the corresponding entries of ṽl from

a to b, and unif(m, J) denotes a vector of length m whose entries are iid uniformly

distributed on the set of J = [−1,−.3] ∪ [.3, 1].

Model II: n = 50, p = q = 60, since n < p = q, the design matrix X is singular.

For ũl and ṽl we use the same setting in the Model I, except that we add 35 0’s to

each ul’s and vl’s to make them 60× 1 vectors.

As before σ2 is chosen to make the signal-to-noise ratio to be approximately

equal to 1, 0.5, 0.25 and 0.125. The performance is measured in terms of es-

timation accuracy using MSEi = ||B − B̂i||2F and prediction accuracy using the

PMSEi = ||XB − XB̂i||2F , i = 1, ..., 1000. We report the average error ratios,

i.e. the average MSE-ratio = 1
1000

∑1000
i=1

MSEi,IEEA

MSEi,FIT−SRRR
, the average PMSE-ratio =

1
1000

∑1000
i=1

PMSEi,IEEA

PMSEi,FIT−SRRR
, where a ratio greater than 1 indicates better performance

of our proposed method.

Singular values Model Ratio SNR
1 0.5 0.25 0.125

D1=(20,15,10) I MSE 1.35 1.35 1.41 1.39
PMSE 1.35 1.34 1.32 1.39

II MSE 2.11 2.10 2.08 1.37
PMSE 2.36 2.12 2.14 1.44

D2=(20,18,16) I MSE 2.74 2.52 2.66 2.71
PMSE 2.73 2.51 2.64 2.67

II MSE 2.04 2.20 2.22 1.28
PMSE 2.22 2.22 2.27 1.86

Table 2.2: Average ratios of estimation error (MSE) and prediction error (PMSE) of
the IEEA and FIT-SRRR methods.

Table 2.2 reports the simulation results of ratios of the estimation error (MSE)
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and prediction error (PMSE). As a whole, we see that the FIT-SRRR universally

outperforms the IEEA since every entry is greater than 1. It enjoys a lower level of

MSEs and PMSEs for all levels of SNRs, singular values D1 and D2 and both Models

I and II. To be specific, when the singular values are well-separated and the design

matrix is of full-rank (upper panel, Model I), the MSE-ratio and PMSE-ratio reach

as high as 1.41 and 1.39, respectively. For the lower panel, where the singular values

are not well-separated, the FIT-SRRR performs even better. The ratios are greater

than 2 in most situations. For instance, the MSE-ratio and PMSE-ratio reach as high

as 2.74 and 2.73, respectively. This good performance of the FIT-SRRR algorithm

in the lower panel is probably due to its capability to capture the whole subspace

of the singular vectors of the coefficient matrix instead of estimating one layer at a

time.

The FIT-SRRR algorithm inherits the fast computational properties of the FIT-

SSVD. The whole simulation exercise only took a few seconds. For example, it takes

about 0.06 system seconds on average for one run for the moderate dimension, well-

separated singular values, using our R program running on a Windows 7 desktop

with Intel Core i5 Duo CPU of a clock speed of 7.19 Gigahertz.

2.5 Example: Lung Cancer Data

The lung cancer data consists of expression levels of 12,625 genes, measured

from 56 subjects divided into 4 groups: one group of normal subjects (Normal) plus

patients with one of the three following types of lung cancer: pulmonary carcinoid

tumors (Carcinoid), colon metastases (Colon), and Small cell carcinoma (SmallCell).

Hence, the observed data matrix Y is 56×12, 625. A detailed description of the data

can be found in Bhattacharjee et al. (2001).

Since for each subject the cancer type information is available, it could be con-

45



sidered as a covariate in the multivariate regression model (2.1). Let X denote the

56× 4 orthonormal design matrix indicating the subjects cancer category:

X =



1√
20
120 0 0 0

0 1√
13
113 0 0

0 0 1√
17
117 0

0 0 0 1√
6
16


, (2.16)

where 120 is a vector of length 20, whose entries are all equal to 1. The length of the

vector reflects the sample size of each category.

This data set has been analyzed using the SSVD in Lee et al. (2010), the penalized

matrix decomposition (PMD) and the FIT-SSVD in Yang et al. (2013), and the IEEA

algorithm in Chen et al. (2012a). The SSVD algorithm in Lee et al. (2010) applies

penalized least square on rank-one matrix approximations with additive penalties on

singular vectors, and the PMD in Witten et al. (2009) is a low-rank SVD decom-

position with constraints on the singular vectors. Note that the PMD, SSVD and

FIT-SSVD directly work with the data matrix without using the covariate informa-

tion in (2.16), however, only the IEEA uses the covariate information. Unfortunately,

all these methods, with the exception of the FIT-SSVD, lack the orthogonality of

the singular vectors.

We apply the FIT-SRRR method using (2.16) as the design matrix and consider

the first three layers or use r = 3 as in Lee et al. (2010), Yang et al. (2013) and Chen

et al. (2012a), which allows comparison of the results of different methods.

Table 2.3 summarizes the sparsity of the first three singular vectors vi, i = 1, 2, 3,

for six different methods. Since the left singular vectors in U corresponds to subject

categories and is relatively stable, we only focus on the right singular vectors in V
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which corresponds to different genes. Not surprisingly, the singular vectors of the

standard SVD is dense with no zeros; the PMD solution is equally dense; the SSVD,

IEEA and FIT-SSVD give similar levels of sparsity in v1, while the FIT-SRRR

generates approximately about 25% more zeros in v1. As for v2, the FIT-SRRR

and IEEA give the highest level of sparsity, which is around 10% more than the

SSVD and FIT-SSVD. For v3, the solutions of the FIT-SRRR, IEEA and SSVD give

similar levels of sparsity, the number of zero entries are round 11000. However, the

FIT-SSVD only gives 7937 zero entries in v3. It should be noted that by applying

the FIT-SRRR, the number of genes zeroed out in each layer is huge, which means

the number of genes selected are much less than 12,625: there are 1348, 1636, and

1710 genes involved in the first three layers.

v1 v2 v3

SVD 0 0 0
PMD 0 0 0
SSVD 8666 9370 11297
IEEA 9118 10394 11536
FIT-SSVD 9173 8177 7937
FIT-SRRR 11277 10989 10915

Table 2.3: Number of zeros in the first three singular vectors in V for the lung cancer
data.

Heat maps of the first three estimated layers using the FIT-SRRR are plotted in

Figure 2.3. To better visualize the gene clustering, all entries of the plotted matrices

are divided by the maximum absolute value of the entries, so that the range of all

entries are between -1 and 1. The genes in Figure 2.3 are ordered from the smallest to

the largest. In each panel of Figure 2.3, around 7000 genes in the middle white area

(sparse entries) are excluded when plotting. The four blocks in each panel reveal the
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four groups of subjects. These from the top to the bottom are: SmallCell, Normal,

Colon and Carcinoid.

In Figure 2.3, we can see a clear checkerboard structure which indicates biclus-

tering and gene grouping. The first estimated layer suggests a significant contrast

between the Carcinoid group and the Normal group. The second estimated layer

shows a contrast between the Normal group and Colon group. The third estimated

layer zeros out the Normal, Carcinoid and Colon groups and singles out the SmallCell

group. Compared to the heat maps in Lee et al. (2010) and Yang et al. (2013), some

weaker contrasts are also zeroed out. The reason might be due to accounting for

the within-group effects using multivariate regression with the design matrix (2.16).

Note that the relevant results in Chen et al. (2012a) are similar to ours, however, we

have eliminated more than 2000 genes with more sparse structures especially in the

first two layers. Unlike the results in Chen et al. (2012a), the FIT-SRRR method

gives orthogonal sparse singular vectors of the first three layers.

2.6 Discussion and Future Research

We have placed the FIT-SSVD algorithm in an optimization framework by intro-

ducing a specific bi-convex objective function and presented the FIT-SRRR method

for low-rank approximation of the regression coefficient matrix. The latter gener-

alizes the FIT-SSVD algorithm in Yang et al. (2013) to the correlated data which

requires finding the threshold level in this new setup. The FIT-SRRR algorithm in-

herits the good properties of the FIT-SSVD and is more efficient than the FIT-SSVD

for correlated data situations as demonstrated through simulation experiments.

There are several potential directions for future research:

1. It should be noted that when selecting the threshold level in the FIT-SRRR

algorithm, the parameter δ used in (2.12) does not fully characterize a correlation
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Figure 2.3: Heat maps of the first three layers by FIT-SRRR of lung cancer data.

matrix. It only reflects the maximum of magnitudes of the correlation coefficients.

A method that uses the correlation matrix more effectively is the empirical Bayes

block shrinkage approach in Wang and Wood (2006, 2010). Assuming data y ∼

N(µ,Σ), this method estimates µ in y = µ+ e through incorporating Σ to select the

threshold level. It finds the posterior mean/median of the quadratic form y′Σ−1y as

the threshold level through a pre-determined non-central chi-square priors on µ. If y

is a vector with block-diagonal covariance structure, the shrinkage method partitions

y into m non-overlapping sub-blocks yi’s, where yi ∼ N(µi,Σi) for i = 1, ..,m. It

performs the thresholding on each block, allowing for different threshold levels for

each block. It is of interest to incorporate this idea in our setup with properly selected

priors on the means and block sizes to fully account for the correlation matrix, and

for transposable data matrices which are correlated both in the rows and the columns

(Allen et al., 2013). These generalizations of the FIT-SRRR remain open.
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2. The FIT-SRRR algorithm assumes that the rank of B is known which is

usually not the case in practice. Various methods of rank estimation are studied in

Yuan et al. (2007) and Owen and Perry (2009). Yang et al. (2013) used the bi-cross-

validation method in Owen and Perry (2009), while Chen et al. (2012a) assumed the

rank is known. Developing proper rank estimation methods for B in the regression

model (2.1) is of interest.
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3. GENERALIZED PRINCIPAL COMPONENT ANALYSIS AND SINGULAR

VALUE DECOMPOSITION

Transposable data are routinely encountered in fields such as econometrics, bio-

informatics, chemometrics, network data and so on. The macroeconomic data and

the fMRI data discussed in Section 1.2 are representative examples with strong de-

pendencies among feature variables (columns) and temporal dependencies among

observations (rows). The primary goal of many statistical analyses is to find the

signal from the observed data. In this section, a generalization of SVD and PCA

along with their regularized counterparts are considered for such data matrices. We

propose thresholding-based algorithms to find sparse matrix decompositions of the

transposable data matrix and to account for the two-way dependencies simultane-

ously.

3.1 Background

Recall the low-rank model in Section 1.5,

Y = UDV ′ + E, (3.1)

where Y and B = UDV ′ ∈ Rn×q denote the data and the signal matrices, D is

the diagonal matrix of the singular values of B, and U and V are the left and right

factors, respectively. The noise E is assumed as a matrix-variate normal distribution

(Gupta and Nagar, 1999):

E ∼MNn,q(0,Ω
−1,Σ−1), (3.2)

51



where Ω−1 ∈ Rn×n,Σ−1 ∈ Rq×q denote the rows and columns covariance matrices of

the data. Hence, Y is a transposable data matrix with both rows and columns are

dependent.

Most existing methods in the literature assume the entries of noise E in (3.1) are

i.i.d. random variables and do not take into consideration the row-column correla-

tions. They are focused on recovering B through regularizing its SVD B = UDV ′ =∑q
i=1 diuiv

′
i. Regularization methods on the singular vectors of B have been pro-

posed by Shen and Huang (2008), Witten et al. (2009) and Lee et al. (2010), where

the U and V are found sequentially through rank-one approximation of the data

matrix Y , see Section 1.5. However, it has been noted that ignoring the two-way

dependencies in transposable data can lead to poor statistical performances (Efron,

2009; Allen and Tibshirani, 2010, 2012; Allen et al., 2013).

To incorporate two-way dependencies in (3.1)-(3.2), Allen et al. (2013) proposed

the GMD which finds the best low-rank approximation of Y by minimizing the

(Ω,Σ)-norm of the errors:

||Y −B||2Ω,Σ = ||Y − UDV ′||2Ω,Σ = tr{(Y − UDV ′)′Ω(Y − UDV ′)Σ}, (3.3)

subject to the (generalized) orthogonality conditions:

U ′ΩU = Ir, V
′ΣV = Ir. (3.4)

The matrices U, V and the diagonal entries of D are referred to as the left and right

GMD factors and the GMD values. The matrices Ω and Σ are the inverse row and

column covariance matrices. They also can be interpreted as weighting matrices that

weight data Y based upon its heteroscedasticity among rows and columns.
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To solve (3.3)-(3.4), Allen et al. (2013) connects the mathematical solution of

the GMD problem to that of the SVD solution of the de-correlated or sphered data

matrix. Their computational GMD algorithm designed for massive datasets avoids

the computationally expensive idea of sphering and relies on an iterative weighted

power method. They also propose a framework for regularizing the GMD factors

using the l1 penalty to yield sparse U and V . However, their algorithms are still

sequential and lack orthogonality of the columns of U and V when rank is greater

than one.

Rather than computing the singular vectors sequentially one at a time as in

Allen et al. (2013), we propose a fast iterative thresholding algorithm which is a

generalization of the FIT-SSVD in Yang et al. (2013). Our fast iterative thresholding

for sparse generalized matrix decomposition (FIT-SGMD) algorithm is designed to

find a low-rank B for transposable data Y . Two major challenges in applying our

algorithm to the transposable data matrix are:

(i) the U and V are required to satisfy the generalized orthogonality conditions

(3.4),

(ii) selection of the threshold levels requires incorporating the row and column

dependencies of the data matrix.

The FIT-SGMD algorithm is applicable to the multivariate regression setup,

where the noise matrix E has dependencies as in (3.2) (Srivastava, 2009; Viroli,

2012). Recall that (Section 1.6), given n observations on the q-vector of responses y

and p-vector of predictors x, the multivariate linear regression model is written as

Y = XB + E, (3.5)
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where Y = (y1, ...,yn)′ ∈ Rn×q, X = (x1, ...,xn)′ ∈ Rn×p and B ∈ Rp×q denote

the responses, covariates, and regression coefficients matrices. When p and q are

large, the RRR is widely used and known to be related to several techniques of

multivariate analyses (Reinsel and Velu, 1998; Izenman, 2008), e.g. the principal

component analysis (PCA) and the canonical correlation analysis (CCA), see Figure

1.2. We make the FIT-SGMD algorithm suitable for the RRR and CCA problems

with two-way dependent data. This is done by connecting the RRR and CCA with

the GMD problem through selecting suitable matrices Ω and Σ. These connections

facilitate the interpretation of the estimates of the factors of B = UDV ′ in (3.5).

Conceptually, the role of U and V in the RRR is to first transform the predictors x

into a r-vector η = U ′x and next transform η into the q-vector DV ′η to approximate

the response y. In CCA, U and V are used to form linear combinations U ′x and V ′y

of predictors and responses with maximum correlation. When U and V are sparse,

some irrelevant variables in x and y will be eliminated from the linear combinations,

so that a sort of variable selection of predictors and responses is performed. In

addition, for a given r, selecting the first r important factors of x and y leads to a

sort of factor selection (Stock and Watson, 2012; Dobrev and Schaumburg, 2013).

Thus, as consequence of applying the FIT-SGMD to (3.5), the coefficient matrix B

is estimated from two-way dependent data situation by performing variable selection

and factor selection simultaneously.

The rest of this section is organized as follows. We develop the FIT-SGMD

approach to find the sparse GMD factors U and V for a transposable data matrix and

prove the convergence of our generalized orthogonal iteration algorithm in Section

3.2. In Section 3.3, we connect the RRR and the CCA to the GMD problem and solve

them using the FIT-SGMD algorithm. We illustrate the forecasting performance of

the FIT-SGMD algorithm in regression (3.5) using a macroeconomic dataset and
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simulations in Section 3.4. Additional simulations are employed to evaluate our

algorithm, followed by an analysis of an fMRI dataset in the Appendix B.

3.2 The Sparse Generalized Matrix Decomposition

We consider the model (3.1) with the noise matrix E as in (3.2) and known Ω,Σ.

We first generalize the orthogonal iteration algorithm to compute the GMD factors

U and V in (3.3)-(3.4). Then illustrate its ability to induce sparsity on U and V

through thresholding and propose a fast iterative thresholding algorithm for sparse

generalized matrix decomposition (FIT-SGMD).

3.2.1 The Generalized Orthogonal Iteration Algorithm

In this subsection, we compute the subspaces spanned by the GMD factors U

and V (Algorithm 4). The mathematical solution of the GMD problem (3.3)-(3.4)

is presented in Allen et al. (2013, Theorem 1) by sphering or de-correlating the data

matrix as described next.

Let Ω̃, Σ̃ be the square roots of the matrices Ω,Σ and Ω̃−1, Σ̃−1 be their left ma-

trix inverses. The solution U∗, V ∗ are computed based on the SVD of the sphered

data Ỹ = Ω̃Y Σ̃, and then multiplying the covariances back. To be specific, U∗ =

Ω̃−1Ũ , V ∗ = Σ̃−1Ṽ , where Ũ , Ṽ are the singular vectors of the SVD of the de-

correlated data matrix Ỹ . They also showed that the solutions are the same when

the positive-definiteness of Ω,Σ is relaxed to positive semi-definiteness.

Compared to Allen et al. (2013), where an iterative weighted power method is

proposed for computing the GMD factors sequentially, our generalization inherits

the advantages of the orthogonal iteration algorithm in computing the subspaces

simultaneously, avoiding sequential computation and guaranteeing the orthogonality

of the singular vectors. To incorporate the two-way dependencies in the data matrix,

modifications to the orthogonal iteration are made as follows: Step 2 of the Algorithm

55



4 is now to right multiply Y by ΣV (k−1) instead of V (k−1), while Step 4 is adjusted

to right multiply Y ′ by ΩU (k) instead of U (k). In Step 3 (or 5), the so-called ”Ω-QR

decomposition (or Σ-QR decomposition)” is applied instead of the conventional QR

decomposition to observe the conditions (3.4). The Ω-QR decomposition is discussed

in the Appendix B, where it could be regarded intuitively as replacing the Frobenius

norm by the Ω-norm for all the inner products in the Gram-Schmidt process for the

conventional QR decomposition (Golub and Van Loan, 1996).

Algorithm 4: Generalized Orthogonal Iteration Algorithm.

Input:
1. Data matrix Y , matrices Ω,Σ;

2. Initial matrix V (0) ∈ Rq×r.
1 repeat

2 Right-to-Left multiplication: Y
(k)
u ← Y ΣV (k−1);

3 Ω-QR decomposition: U (k)Ru ← Y
(k)
u ;

4 Left-to-Right multiplication: Y
(k)
v = Y ′ΩU (k);

5 Σ-QR decomposition: V (k)Rv ← Y
(k)
v ;

6 until Convergence;

7 return Û = U (∞), V̂ = V (∞).

Theorem 3.2.1 shows that the Algorithm 4 converges to the mathematical solution

given in Allen et al. (2013, Theorem 1), which is the global solution of the GMD

problem. Algorithm 4 avoids the computationally expensive idea of sphering data by

taking square roots and inverses of Ω,Σ, and it computes the subspaces generated by

U and V simultaneously rather than sequentially. Consequently, it guarantees that

the solutions U and V satisfy conditions (3.4) or the generalized orthogonality with

respect to Ω and Σ.
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Theorem 3.2.1 Let the mathematical solutions of the GMD factors be U∗ = Ω̃−1Ũ ,

V ∗ = Σ̃−1Ṽ , where Ũ , Ṽ are the singular vectors of the SVD of the sphered data

matrix Ỹ = Ω̃Y Σ̃, Ω̃, Σ̃ denote the square roots of Ω,Σ and Ω̃−1, Σ̃−1 denote their

left matrix inverses, respectively. Then, the U (∞) and V (∞) in Algorithm 4 are equal

to the GMD solutions U∗ and V ∗.

Proof We outline the key steps in proving the theorem and relegate the complete

version to the Appendix B. We show that the updates of U and V in the Algorithm

4 are equivalent to the updates of Ũ and Ṽ in the orthogonal iteration algorithm for

computing the SVD of Ỹ . When writing the updating steps of U and V in terms of

Ỹ , Ũ and Ṽ in Algorithm 4, we have:

UR1 = Ω̃−1ŨR1 = Y ΣV = Ω̃−1Ỹ Ṽ ,

V R2 = Σ̃−1Ṽ R2 = Y ′ΩU = Σ̃−1Ỹ ′Ũ ,

where R1, R2 are the corresponding R matrices for QR decompositions of Y ΣV and

Y ′ΩU . By the proof of convergence of orthogonal iteration algorithm in Golub and

Van Loan (1996, Chapter 8), the Algorithm 4 is equivalent to the orthogonal iteration

for Ỹ , which converges to the SVD of Ỹ .

3.2.2 Thresholding for Sparse GMD

In this subsection, we describe the FIT-SGMD (Algorithm 5) by first presenting

the overall procedures for updating U and V , then illustrating how to apply thresh-

olding techniques, and finally selecting the proper threshold levels. The FIT-SGMD

computes the sparse factors U and V in the model (3.1) subject to the conditions

(3.4). It is based on the Algorithm 4 and incorporates thresholding when updating

U and V . In this subsection, we assume that Ω and Σ are positive definite matrices.
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Algorithm 5: The FIT-SGMD algorithm.

Input:
1. Data matrix Y and matrices Ω,Σ;
2. Thresholding function η, γu, γv from the Algorithm 6 ;

3. Initial matrices U (0) ∈ Rn×r, V (0) ∈ Rq×r.
Output:
Estimators Û = U (∞), V̂ = V (∞).

1 repeat

2 Right-to-Left multiplication: Y
(k)
u ← Y ΣV (k−1) ;

3 Thresholding: (Yu)
(k),thr ← η(Y

(k)
u , γu);

4 Ω-QR decomposition: U (k)R
(k)
u ← (Yu)

(k),thr;

5 Left-to-Right multiplication: Y
(k)
v ← Y ′ΩU (k);

6 Thresholding: (Yv)
(k),thr ← η(Y

(k)
v , γv);

7 Σ-QR decomposition: V (k)R
(k)
v ← (Yv)

(k),thr;

8 until Convergence;

9 return Estimators Û = U (∞), V̂ = V (∞).

Since the procedures for updating U and V are symmetric, we describe the details

only for U and illustrate the details of thresholding and updating procedure through

its lth column ul, l = 1 · · · , r. The goal of thresholding is to retain the entries of Y

with high signal and replace the others with zero.

Let U (k−1), V (k−1) be the updates of U and V at (k− 1)st iteration, v
(k−1)
l be the

lth column of V (k−1), and let D(k) = diag(d
(k)
1 , ..., d

(k)
r ). Right multiplying both side

of (3.5) by Σv
(k−1)
l and using conditions (3.4), it follows that

Y
(k)
Left,l = Y Σv

(k−1)
l = BΣv

(k−1)
l + EΣv

(k−1)
l ≈ u

(k)
l d

(k)
l + EΣv

(k−1)
l . (3.6)

Let γul be a given threshold level in (3.6), then (YLeft,l)
(k),thr a thresholded version

of Y
(k)
Left,l serves as an estimator of the mean vector u

(k)
l d

(k)
l . Repeating the previous

procedure for l = 1, · · · , r, leads to (YLeft)
(k),thr.
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Next, we discuss how to obtain the optimal threshold level γul in (3.6). The fol-

lowing properties of linear transformations of matrix normal distributions are needed.

Proposition 3.2.1 (a) Let Y ∼MNm,n(M,Ω,Σ) and A be a suitable matrix, then

Y A ∼ Nm,n(MA,Ω, AΣA′), and AY ∼ Nm,n(AM,AΩA′,Σ).

(b) If E ∼ MNn,q(0,Ω
−1,Σ−1) as in (3.2), and u,v are suitable vectors satisfy-

ing u′Ωu = v′Σv = 1, then EΣv ∼ Nn,1(0,Ω−1, 1) = Nn(0,Ω−1) and E ′Ωu ∼

Nq(0,Σ
−1).

From Proposition 3.2.1(b) the noise vector EΣv
(k−1)
l in (3.6) is dependent with

covariance matrix Ω−1, and as a result the universal threshold level (Donoho and

Johnstone, 1994) used in Yang et al. (2013) is not applicable. We need to account

for the dependence and heterogeniety in (3.6). Johnstone and Silverman (1997);

Kovac and Silverman (2000) suggest more general thresholding methods which can

be used for correlated and heteroscedastic noise. In brief, their methods view the

entries of the vector EΣv
(k−1)
l as independent heterogeneous random variables and

ignore the correlation structure.

Berkner and Wells (1998, 2001); Delouille et al. (2004) generalize the universal

thresholding by incorporating the correlations. More precisely, the thresholding level

γujl for the jth entry of the vector Y Σv
(k−1)
l is selected as

γujl = σ̂ujlγul, (3.7)

where σ2
ujl is the variance of the (Y Σv

(k−1)
l )j entry and from Proposition 3.2.1(b),

σ̂2
ujl = σjj, where σjj is the jth diagonal entry of Ω−1. The value γul (Berkner and

Wells, 2001) is

γul =
√

2(1 + δ) log(n), (3.8)
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where

δ = max
j 6=j′

(|corr({Y Σv
(k−1)
l }j, {Y Σv

(k−1)
l }j′)|).

We adopt the same thresholding procedure for the correlated case in updating U (k),

and illustrate its details in Algorithm 6.

Algorithm 6: Selection of the threshold level γul = gu(Ỹ , U
(k−1), V (k−1), σ̂).

Input:
1. Data matrix Y and matrices Ω,Σ;

2. Previous estimators of the singular vectors U (k−1), V (k−1).
Output:
Threshold level vectors γul for l = 1, ..., r.

1 σ̂2
ujl ← σjj, where σjj is the jth diagonal entry of Σ;

2 γul ←
√

2(1 + δ) log(p) where δ = maxj 6=j′(|corr({Ỹ v
(k−1)
l }j, {Ỹ v

(k−1)
l }j′)|);

3 γujl ← σ̂ujlγul, j = 1, ..., n;
4 return γul = (γu1l, . . . , γupl)

′, l = 1, ..., r.

The FIT-SGMD is displayed in the Algorithm 5, where γu and γv are obtained

through the Algorithm 6. We use Algorithm 4 to find the initial matrices U (0), V (0)

and stop after the kth iteration if the maximum distance between the successive

iterates is small (Yang et al., 2013): i.e. max{||PU(k)−PU(k−1)||22, ||PV (k−1)−PV (k−1)||22}

is less than or equal to a preselected ε = 10−8. Here PA = AA′ is a projection for

a matrix A and ||A||2 denotes the spectral norm of the matrix A. The thresholding

function is the hard-thresholding η(y, γ) = H(y, γ) = y1{|y|>γ}, and the Ω,Σ are

assumed known as in the Algorithm 5.
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3.3 The FIT-SGMD for Supervised Learning

In this subsection, we apply the FIT-SGMD algorithm to the multivariate re-

gression problems by reducing the model (3.5) to (3.1) and demonstrating that the

FIT-SGMD is suitable for the RRR and CCA problems through connecting to the

GMD problem (3.3)- (3.4). Finally, we discuss the connection between the FIT-

SGMD and the generalized principal component analysis (GPCA) and propose an

algorithm to compute the sparse eigenvectors in the GPCA.

For a full-rank design matrix X, left multiplying both sides of (3.5) by (X ′X)−1X ′

leads to

Ỹ = B + Ẽ, (3.9)

where Ỹ = B̂ = (X ′X)−1X ′Y is the least-square estimate of B, and Ẽ = (X ′X)−1

X ′E ∼ MNp,q(0, TΩ−1T ′,Σ−1) with T = (X ′X)−1X ′. When X is less than full-

rank, some alternatives to the least-square estimators are the Moore-Penrose inverse

(Bunea et al., 2011) and the ridge estimator (Chen et al., 2012a). Throughout this

section, the Moore-Penrose inverse G of X ′X is used, where the transformed data

has noise Ẽ ∼ Np,q(0, TΩ−1T ′,Σ−1) with T = GX ′.

The matrices Ω and Σ are usually unknown and there is a wide range of choices

for them in various area of statistics. They could be chosen as the well-known time

series autoregressive (Shaman, 1969) and moving average processes (Galbraith and

Galbraith, 1974), spatial models like random fields (Rue and Held, 2005), or graphic

models like graphic Laplacian (Merris, 1994) and reverse distance structures, see

Allen et al. (2013). When Ω,Σ are unknown, it is very challenging to estimate

them and the GMD factors from the data at the same time. The transposable

regularized covariance model (TRCM) in Allen and Tibshirani (2010, 2012) allows
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us to estimate the Ω,Σ. Unfortunately, as Allen et al. (2013) point out, the TRCM is

computationally expensive, and can easily get stuck in one of its many local optima,

and is very sensitive to the choice of its initial starting values. Hence, estimating

these matrices is still an open problem. In the next Section 3.3.1, we show that

selecting Ω,Σ as the sample covariances of Y and X reveals the close connection

among the RRR, CCA and GMD.

3.3.1 Connections among RRR, CCA and GMD.

The regression model (3.5) is a general framework for many techniques of mul-

tivariate analysis. It is common to estimate B by minimizing a weighted sum-of-

squares as an objective function:

tr{(Y −BX)′W (Y −BX)} = ||Y −XB||I,W ,

where W is a positive-definite symmetric matrix of weights. It is known that (Reinsel

and Velu, 1998; Izenman, 2008) the RRR is closely related to the PCA, CCA, the

Fisher’s linear discriminant analysis (Fisher, 1936) and the correspondence analysis

(Hirschfeld, 1935), see Figure 1.2.

In this subsection, we show that the RRR and CCA can be reduced to the GMD

problem (3.3)-(3.4) using the transposable quadratic (Ω,Σ)-norm. Theorem 3.3.1

indicates that when the matrices Ω and Σ are replaced by the sample covariance

matrix of the predictors and inverse sample covariance matrix of the responses, the

RRR,CCA and GMD problem are closely related and have the same objective func-

tion. More precisely, the RRR and CCA problems are a GMD problem for the matrix

GX ′Y , and the solution triplet (Û , V̂ , D̂) for the three optimization problems below

is recognized as (Û , V̂ , D̂) = arg maxU,V,D tr{V DU ′X ′Y Σ} (see the Appendix B).
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Theorem 3.3.1 Let G be the Moore-Penrose generalized inverse of X ′X and GX ′Y

= UDV ′ with U and V satisfying the condition (3.4). Set Ω = SXX , Σ = S−1
Y Y , where

SXX , SY Y are the sample covariances of the predictors and the responses, respectively,

and Ṽ = ΣV D. Then, the following three optimization problems:

Regression : minU,D,V ||Y −XUDV ′||2I,Σ

CCA : minU,D,V ||Y Ṽ −XU ||2I,I

GMD : minU,D,V ||GX ′Y − UDV ′||2Ω,Σ

are identical with the same solution triplet (U, V,D). That is, if (Û , V̂ , D̂) solves

any problem, then it will also solve the remaining two problems. In fact, (Û , V̂ , D̂)

= arg maxU,D,V tr{V DU ′X ′Y Σ−D2/2}

The proof of Theorem 3.3.1 is given in the Appendix B. The theorem connects

the GMD with RRR and CCA, which enables us to interpret the U and V estimated

by the FIT-SGMD. Recall that the matrices U and V consist of the r columns

U = [u1, ...,ur] and V = [v1, ...,vr], where X and Y are the n × p and n × q

matrices of stacked n observations of the p-vector of predictors x and q-vector of

responses y. In RRR, the role of U and V is to first transform the predictors x

into a r-vector η through ηi = u′ix, then to transform η into a q-vector DV ′η to

approximate the responses y. In CCA, u′ix and (Σvi)
′y are the linear combinations

of predictors and responses for i = 1, ..., r, which have maximum correlation among

all possible linear combinations. Zero entries in ui,vi indicate that the corresponding

responses and predictors are eliminated from the newly formed linear combinations,

consequently variable selection of predictors and responses is performed. In other

words, sparse ui and vi indicate that the connections between the predictors and
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responses only involve a subset of predictors and responses. In addition, the rank r

in RRR and CCA is the rank of U and V , which determines the number of pathways

relating the responses to the predictors: it is the number of factors of the responses

and predictors in RRR and indicates the number of pairs of linear combinations of

responses and predictors in CCA. Hence, when applying the FIT-SGMD to (3.5) it

performs variable selection and factor selection simultaneously.

3.3.2 Generalized Principal Component Analysis

In this subsection, we first introduce the GPCA (see Section 1.3) for transposable

data in details, then show that the Algorithm 4 can be used to perform GPCA, and

finally adjust our FIT-SGMD algorithm to perform the sparse GPCA problem, where

sparse GPCs are found by thresholding.

As discussed in Section 1.3, for a q-vector variable y = (y1, ..., yq)
′, the PCA is to

explain the covariance matrix of y through the r PCs z1 = v′1y, ..., zr = v′ry. For a

centered data matrix Y ∈ Rn×q, the PCA finds the eigen-decomposition of its sample

covariance matrix S = 1
n
Y ′Y . More precisely, the PCA computes the loading matrix

of PCs V = (v1, ...,vr) by solving the following optimization problems:

v1 = arg max
v

v′Sv subject to v′v = 1,

v2 = arg max
v

v′Sv subject to v′v = 1,v′v1 = 0,

...

vr = arg max
v

v′Sv subject to v′v = 1,v′vj = 0, for j = 1, 2, .., r − 1,

which leads to orthogonal V :

V ′V = Ir.
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When the matrix Y is transposable, GPCA finds the loading matrix V = (v1, ...,vr)

by maximizing the sample variance after incorporating the two-way dependencies in

the data (Escoufier, 2006; Allen et al., 2013). To be specific, GPCA projects the data

into a space induced by the (Ω,Σ)-norm where all the inner products in calculation

of PCA is replaced by the (Ω,Σ)-norm. In GPCA,

v1 = arg max
v

v′ΣY ′ΩY Σv subject to v′Σv = 1,

v2 = arg max
v

v′ΣY ′ΩY Σv subject to v′Σv = 1,v′Σv1 = 0,

...

vr = arg max
v

v′ΣY ′ΩY Σv subject to v′Σv = 1,v′Σvj = 0, for j < r,

(3.10)

where the loading matrix V in GPCA satisfy the generalized orthogonality constraint

in the Σ-norm:

V ′ΣV = Ir, (3.11)

and the generalized principal components (GPC) are given by Y Σv1, ..., Y Σvr. Set

d2
i = v′iΣY

′ΩY Σvi, the proportion of variance explained by the ith GPC after taking

consideration of the matrices Ω,Σ is given by d2
i /||Y ||2Ω,Σ for i = 1, ..., r. While the

PCA uses linear projection to explain the variance, the GPCA uses (Ω,Σ)-norm

projection, which gives an alternative way of explaining the variance-covariance in

the data (Allen et al., 2013, Proposition 2 and Corollary 5).

Just as the SVD can be used to find the PCs as shown in Section 1, the Algorithm

4 can be used to find the GPCs. We can shown that the vi in (3.10) are given by

the ith right GMD factor vi in Algorithm 4. As using the Algorithm 1 for GMD

problem, this algorithm has the desirable computation properties especially for high-
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dimensional data, such as avoids the computationally expensive idea of sphering the

data and computation of the reverses and square roots of Ω,Σ. In addition, the

Algorithm 1 finds the subspace of GPC loading matrix V spanned by its leading

vectors and guarantees the (generalized) orthogonality of V , which is an important

feature of the sparse GPCA.

Considering the sparse PCA methodologies, where its goal is to find a set of sparse

PC loadings that explains most of the variance to enhance the model interpretation.

The sparse GPCA is a natural generalization of sparse PCA for transposable data

matrix. Ma (2013) proposed an iterative thresholding sparse PCA algorithm to

recover the sparse loading matrix of PCs, which is conceptually a predecessor of the

FIT-SSVD algorithm. Given a transposable data matrix Y , we generalize and adjust

the algorithms in Ma (2013) and in our FIT-SGMD and propose Algorithm 7 to solve

for the sparse loading matrix in the GPCA.

Algorithm 7: Algorithm for sparse GPCA.

Input:
1. Data matrix Y and matrices Ω,Σ;
2. Thresholding function η, threshold level γ;

3. Initial matrix V (0) ∈ Rq×r.
Output:
Estimator V̂ = V (∞).

1 T ← Y ′ΩY ;
2 repeat
3 Multiplication: T (k) ← TΣV (k−1) ;

4 Thresholding: T (k),thr ← η(T (k), γ);

5 Ω-QR decomposition: V (k)R(k) ← T (k),thr;

6 until Convergence;

7 return Estimator V̂ = V (∞).
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3.4 Macroeconomic Data Analysis and Simulations

In this subsection, we evaluate the forecasting performance of our FIT-SGMD

algorithm in regression model (3.5) using the macroeconomic dataset in Stock and

Watson (2012), a common benchmark for high-dimensional regression forecasting.

We next use simulation to further study some of the findings from the real data

analysis.

3.4.1 A Macroeconomic Dataset

The dataset consists of 144 U.S. macroeconomic time series for a total of 195 quar-

terly observations from 1960:II through 2008:IV. There are 35 high-level aggregate

series that are related by an identity to the remaining 109 lower-level disaggregate

series in the dataset. For example, the (aggregate) gross domestic product (GDP)

variable consists of the sum of GDP indices such as fixed investment, goods, services

and so on. The 35 aggregate macroeconomic variables are used as the responses y,

while the 109 disaggregated series x are used as the predictors. Rather than directly

studying the original series, Stock and Watson (2012, Supplement materials) describe

stationary-inducing transformations of the data, where all data series are transformed

by one or more of the following transformations: first- and second-order differences,

logarithm transformation or first- and second-order difference of the logarithm.

The predictors based on the principal component regression (PCR) are shown

in Stock and Watson (2012) and Dobrev and Schaumburg (2013) to have superior

performance in forecasting compared to many other regularization methods. They

use the first 5 principal components of x as factors in the PCR and the coefficients are

estimated through least-squares. Such a regression model is denoted as PCR-5, and

we use it as the benchmark to assess the performance of our FIT-SGMD algorithm.

We evaluate the forecast performance for the original and the transformed data,
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respectively, and perform out-of-sample one-step-ahead forecasts with rolling window

size 100 (quarterly observations), i.e. we estimate the model using the time segment

running from t − 99, t − 99 + 1, ..., t and forecast the variables at time t + 1, where

t = 100, ..., 194. The forecast accuracy is measured using the RMSE, defined as

RMSEj =
√∑

t(yjt − ŷjt)2, where ŷjt is the prediction and yjt is the observed value

for the variable j = 1, ..., 35 at time t = 101, .., 195. We use the RMSE ratios of

the FIT-SGMD to the PCR-5 benchmark. A ratio less than 1 indicates that our

alternative method has a better forecast accuracy, otherwise the PCR-5 is better.

The notation FIT-SGMD-r and PCR-r indicate selecting r layers or components.

The sample covariances of x,y are used as estimates of Ω and Σ in the FIT-SGMD.

3.4.1.1 Forecast results for the transformed data

We summarize the results in percentiles of relative RMSE ratios for various fore-

casting methods as in Stock and Watson (2012). To further highlight the perfor-

mances, we also report the empirical distribution of the RMSE ratios for chosen

intervals (< 0.9, (0.9, 0.97), (0.97, 1.03), (1.03, 1.1), > 1.1). Any downward or up-

ward deviations from 1, indicates better or worse forecasting accuracy relative to

the PCR-5 benchmark (Dobrev and Schaumburg, 2013). The empirical distribution

reveals any improvement for proposed methods compared to the PCR-5 if the left

tail of the distribution is heavier than the right tail and the median is less than

or equal to 1. More precisely, if the 50-,75- and 95-percentiles are less or equal to

1, and 5-, 25-percentiles are close to zero, it indicates that the compared method

is better than the PCR-5 benchmark in forecasting. In addition, if the probabil-

ities P (ratio > 1.1), P (1.03 < ratio < 1.1) are very small and the probabilities

P (ratio < .9), P (.09 < ratio < .97) are relatively large, it indicates that our method

is more accurate than the PCR-5 in terms of the RMSE.
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FIT-SGMD-r Percentiles Empirical Distrituion
r 5% 25% 50% 75% 95% <.9 .9-.97 .97-1.03 1.03-1.1 >1.1
1 0.67 0.96 1.04 1.21 1.45 0.09 0.29 0.11 0.17 0.34
2 0.53 0.94 1.00 1.09 1.28 0.14 0.29 0.14 0.17 0.26
3 0.51 0.95 1.03 1.13 1.29 0.14 0.14 0.23 0.17 0.31
4 0.44 0.97 1.05 1.23 1.38 0.14 0.11 0.17 0.20 0.37
5 0.44 1.00 1.08 1.19 1.39 0.14 0.06 0.14 0.26 0.40
6 0.44 0.97 1.04 1.10 1.15 0.20 0.03 0.29 0.23 0.26
7 0.45 0.98 1.05 1.08 1.18 0.20 0.06 0.29 0.20 0.26
8 0.47 0.91 1.03 1.16 1.49 0.26 0.06 0.20 0.14 0.26
9 0.32 0.41 1.01 1.09 1.25 0.40 0.06 0.09 0.26 0.20

Table 3.1: Distributions of ratios of RMSE to PCR-5 for the transformed data.

Table 3.1 summarizes the percentiles and empirical distributions of the 35 ratios

of RMSE of the FIT-SGMD to the PCR-5 benchmark and shows the results of the

FIT-SGMD algorithm for ranks r = 1, ..., 9 in the upper panel and the results of the

PCR with corresponding ranks in the lower panel. In complete agreement with the

main conclusions in Stock and Watson (2012) and Dobrev and Schaumburg (2013),

the PCR-5 is very competitive consistently across all the 35 series. We claim that a

possible reason as to why the FIT-SGMD does not outperform the PCR-5 is due to

the transformations of the original data. If the aggregate series are obtained from the

disaggregate series linearly, the log-transform, for example, would possibly sabotage

their original linear relationship. To examine this claim, in the next section we look

at the forecasting performance of our procedure applied to the original data without

any transformations aimed at reducing the data stationarity.

3.4.1.2 Forecast results for the original data

We perform rolling-window out-of-sample one-step-ahead and two-step-ahead

forecasts with rolling window size 100 quarterly observations using the original series.

Table 3.2 reports the one-step-ahead forecasts in the upper panel and the two-step-
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ahead forecasts in the lower panel. Results in the upper panel demonstrate that

the FIT-SGMD with r > 4 clearly outperform the PCR-5, since all their 50 per-

centiles are below 1, and the P (ratio > 1.1)’s are close to zeros. For instance, the

95-percentiles of the FIT-SGMD-8 is 0.82, and its empirical P (ratio > 0.9) = 0,

which means that all the RMSE ratios of the FIT-SGMD-8 to the PCR-5 are less

than 0.9. Throughout the results, the FIT-SGMD-8 has the best performance in all

the one-step-ahead forecasts where not only all the ratios are uniformly less than 0.9,

but also it achieves the lowest median ratio at 0.53.

The pattern in the lower panel of Table 3.2 for the two-step-ahead forecasts is

similar and consistent with the corresponding results in the one-step-ahead forecasts.

The FIT-SGMD with r > 4 all have less than one 50-percentiles and have relatively

low probabilities for large ratios. For instance, the 95-percentile of the FIT-SGMD-8

is only 0.96, and the probability P (ratio < .9) = 0.89.

In summary, the FIT-SGMD outperforms the PCR-5 when applied to the original

data. Thus, it is remarkable that the FIT-SGMD is capable of producing accurate

forecasts for the original and nonstationary data.

3.4.2 Simulations

It is remarkable that our analysis of the macroeconomic time series dataset in

Stock and Watson (2012) revealed that the FIT-SGMD outperforms the PCR-5 for

the original nonstationary data. Through, its performance was not as accurate as

the PCR-5 for the transformed stationary data. If this phenomenon can be shown

to hold widely, then it may obviate the need to transform the data to stationarity

which can be a huge advantage for the FIT-SGMD method over the PCR in high-

dimensional data situations. Deciding what transformations to use to reduce data

to stationarity is a difficult task even for univariate time series data.
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FIT-SGMD Percentiles Empirical Distrituion
r 5% 25% 50% 75% 95% <.9 .9-.97 .97-1.03 1.03-1.1 >1.1

One-step-ahead
3 0.44 0.70 0.96 1.28 1.76 0.40 0.11 0.03 0.09 0.37
4 0.49 0.62 0.85 1.07 1.50 0.54 0.00 0.17 0.06 0.23
5 0.51 0.64 0.78 0.95 1.38 0.68 0.09 0.06 0.03 0.14
6 0.56 0.68 0.77 0.98 1.16 0.71 0.03 0.03 0.11 0.11
7 0.50 0.56 0.62 0.78 0.92 0.83 0.11 0.03 0.03 0.00
8 0.38 0.45 0.53 0.73 0.82 1.00 0.00 0.00 0.00 0.00
9 0.42 0.51 0.64 0.84 0.94 0.86 0.11 0.00 0.03 0.00

Two-step-ahead
3 0.69 0.81 1.12 1.28 1.56 0.37 0.00 0.06 0.03 0.54
4 0.62 0.78 0.95 1.09 1.25 0.34 0.26 0.09 0.06 0.25
5 0.54 0.60 0.90 1.01 1.16 0.49 0.20 0.11 0.11 0.09
6 0.56 0.68 0.77 0.98 1.16 0.71 0.03 0.03 0.11 0.11
7 0.41 0.53 0.65 0.83 1.10 0.83 0.06 0.03 0.03 0.05
8 0.37 0.46 0.64 0.81 0.96 0.89 0.06 0.03 0.00 0.02
9 0.42 0.54 0.74 0.99 1.27 0.69 0.03 0.06 0.14 0.08

Table 3.2: Distributions of ratios of RMSE to PCR-5 for the original data.

In this subsection, to further understand the above phenomenon we rely on sim-

ulation to assess the forecast performance of both methods applied to the simulated

nonstationary series and the corresponding transformed stationary series. We divide

this section into two parts, (1) the data generating procedure and transformations

and (2) analysis of the simulation results.

3.4.2.1 Data generating procedure and transformations

The dimensions of the simulated data are n = 195, p = 90 and q = 35 as in Stock

and Watson (2012). We generate the matrix X with the following three different

nonstationary features:

• Case I: Random walk. Let Xj,t = Xj,t−1 +εjt, j = 1, ..., p and t = 1, ..., n, where

εjt is a N(0, 1) white noise.
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• Case II: AR(2) with unit roots plus drift. Let Xj,t = 1.03Xj,t−1 − 0.03Xj,t−2 +

εjt + cj (with roots 1 and 0.03), where cj is a constant for j = 1, ..., p. To be

specific, cj is the negative of the minimum value of the AR(2) series without

drift plus one. This guarantees that all entries generated are positive and

feasible for taking logarithm.

• Case III: AR(3) with unit roots plus seasonality. Let Xj,t = 1.2Xj,t−1 −

0.21Xj,t−2 + 0.01Xj,t−3 + εjt + cj + sin(π ∗ t/16) ∗ 5 (with roots 1,0.1,0.1),

where j = 1, ..., p and t = 1, ..., n.

After generating the data matrix X, the aggregate matrix Y is obtained by the

linear transformation Y = XB with the matrix B =
∑m

i=1 diuiv
′
i, where the first

five singular values are (177, 32, 30, 26, 22), while the others are less than 5. This

indicates that a reduced rank regression model with rank r = 5 is appropriate.

In order to choose proper transformations of the simulated data to mimic the

features of the macroeconomics data, we examine the original and transformed series

in Stock and Watson (2012), and note that there are four worthy characteristics of

the data:

(1) the original series are all positive or above zero, and many of them have large

ranges;

(2) the original series often have trends or seasonality;

(3) the transformed series have smaller ranges, often between -1 to 1;

(4) the transformed series are smooth and have small variance along the x-axis.

Note that when X is generated by a random walk (Case I), its first order difference is

a stationary white noise. For the other two cases, we consider the following different
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transformations: (1) first- and second-order differences, (2) first-order difference of

the logarithm. Compared with the characteristics of the real data, the first-order

difference of log transformation is the closest one to the transformation in Stock and

Watson (2012). Hence, we use it as the transformation for Cases II and III, and use

the first-order difference for Case I.

3.4.2.2 Simulation results

We produce rolling out-of-sample one-step-ahead forecasts with rolling window

size 100. The forecast accuracy is measured using the RMSE. The replications for

the simulation is 100 for each of the Cases I, II and III.

FIT-SGMD-r Percentiles Empirical Distrituion
5% 25% 50% 75% 95% <.9 .9-.97 .97-1.03 1.03-1.1 >1.1

Original Data
3 0.35 1.21 1.52 1.87 2.55 0.10 0.02 0.02 0.04 0.83
4 0.17 1.09 1.31 1.56 2.04 0.11 0.04 0.04 0.07 0.74
5 0.10 0.98 1.14 1.33 1.66 0.16 0.08 0.09 0.11 0.57
6 0.07 0.88 1.01 1.15 1.39 0.28 0.13 0.12 0.13 0.34
7 0.05 0.80 0.92 1.03 1.22 0.46 0.16 0.12 0.10 0.15
8 0.04 0.72 0.83 0.94 1.10 0.66 0.14 0.09 0.06 0.05
9 0.03 0.65 0.76 0.87 1.02 0.80 0.10 0.05 0.03 0.02

Transformed Data
3 0.02 0.99 1.02 1.04 1.09 0.09 0.09 0.46 0.34 0.03
4 0.02 0.95 0.99 1.02 1.07 0.14 0.23 0.43 0.19 0.02
5 0.02 0.90 0.96 1.00 1.05 0.23 0.32 0.33 0.11 0.01
6 0.02 0.86 0.93 0.98 1.04 0.37 0.33 0.23 0.06 0.00
7 0.02 0.83 0.90 0.95 1.02 0.50 0.31 0.15 0.03 0.00
8 0.02 0.79 0.87 0.93 1.00 0.63 0.25 0.10 0.02 0.00
9 0.02 0.76 0.84 0.90 0.98 0.73 0.20 0.06 0.01 0.00

Table 3.3: Case I: Distributions of ratios of RMSE to PCR-5 for the original and
transformed simulated data.

73



FIT-SGMD-r Percentiles Empirical Distrituion
5% 25% 50% 75% 95% <.9 .9-.97 .97-1.03 1.03-1.1 >1.1

Original Data
3 0.25 0.59 0.80 1.03 1.46 0.62 0.07 0.06 0.06 0.19
4 0.12 0.56 0.75 0.96 1.34 0.69 0.07 0.05 0.05 0.14
5 0.03 0.54 0.72 0.91 1.28 0.74 0.06 0.04 0.04 0.11
6 0.01 0.47 0.61 0.76 0.99 0.91 0.04 0.02 0.01 0.03
7 0.01 0.42 0.54 0.64 0.82 0.98 0.01 0.00 0.00 0.00
8 0.01 0.38 0.48 0.57 0.72 1.00 0.00 0.00 0.00 0.00
9 0.01 0.35 0.43 0.51 0.63 1.00 0.00 0.00 0.00 0.00

Transformed Data
3 1.50 1.70 1.85 2.01 2.27 0.00 0.00 0.00 0.00 1.00
4 1.51 1.71 1.86 2.02 2.28 0.00 0.00 0.00 0.00 1.00
5 1.52 1.72 1.87 2.03 2.29 0.00 0.00 0.00 0.00 1.00
6 1.53 1.72 1.88 2.04 2.30 0.00 0.00 0.00 0.00 1.00
7 1.55 1.73 1.89 2.06 2.32 0.00 0.00 0.00 0.00 1.00
8 1.55 1.74 1.90 2.07 2.33 0.00 0.00 0.00 0.00 1.00
9 1.56 1.75 1.91 2.08 2.34 0.00 0.00 0.00 0.00 1.00

Table 3.4: Case II: Distributions of ratios of RMSE to PCR-5 for the original and
transformed simulated data.

Tables 3.3-3.5 report percentiles and empirical distributions of ratios of RMSE

for our forecast method relative to the PCR-5 benchmark, for the Cases I, II and

III, respectively. The performances of the FIT-SGMD for the rank r = 3, ..., 9 are

compared to the PCR-5 for both the original data and the transformed data. The

pattern is similar to that of the results in Section 3.4.1, where the PCR-5 has superior

performance across all the 35 aggregate series. We find the same pattern for the

transformed data in Tables 3.4 and 3.5. However, the FIT-SGMD outperforms the

benchmark for the original data panels among all three cases in Tables 3.3-3.4. The

FIT-SGMD also outperforms the benchmark in the transformed panel in Table 3.3.

In Table 3.4 for example, from the distributions of ratios of RMSE of our forecast

method to the PCR-5, for the original data panel, it is evident that FIT-SGMD-6,7,8
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FIT-SGMD-r Percentiles Empirical Distrituion
5% 25% 50% 75% 95% <.9 .9-.97 .97-1.03 1.03-1.1 >1.1

Original Data
3 0.41 0.89 1.21 1.60 2.36 0.26 0.05 0.04 0.06 0.58
4 0.22 0.82 1.12 1.45 2.11 0.31 0.06 0.05 0.06 0.52
5 0.05 0.79 1.05 1.37 1.96 0.35 0.07 0.06 0.07 0.45
6 0.03 0.69 0.89 1.10 1.51 0.52 0.09 0.07 0.07 0.25
7 0.02 0.60 0.76 0.91 1.19 0.74 0.07 0.05 0.05 0.09
8 0.01 0.54 0.67 0.79 1.02 0.87 0.05 0.03 0.02 0.03
9 0.01 0.47 0.59 0.71 0.91 0.94 0.03 0.01 0.01 0.01

Transformed Data
3 1.50 1.74 1.90 2.07 2.36 0.00 0.00 0.00 0.00 1.00
4 1.51 1.75 1.91 2.08 2.37 0.00 0.00 0.00 0.00 1.00
5 1.51 1.75 1.92 2.09 2.38 0.00 0.00 0.00 0.00 1.00
6 1.52 1.76 1.93 2.09 2.39 0.00 0.00 0.00 0.00 1.00
7 1.52 1.76 1.93 2.10 2.41 0.00 0.00 0.00 0.00 1.00
8 1.53 1.77 1.94 2.11 2.42 0.00 0.00 0.00 0.00 1.00
9 1.53 1.77 1.94 2.12 2.43 0.00 0.00 0.00 0.00 1.00

Table 3.5: Case III: Distributions of ratios of RMSE to PCR-5 for the original and
transformed simulated data.

and 9 clearly outperform the PCR-5. They have a lower RMSE in forecasting than

the PCR-5, since all their 50-percentiles are below 1 and the P (ratio > 1.03) is very

close or equal to zero. Note that the FIT-SGMD are not as accurate as the PCR-5

for the transformed data since all the percentiles of the RMSE ratios are greater than

1.

Since the aggregate series are linear transformations of the disaggregate series in

the original data, we illustrate their relationships after transformation. Consider a

simple example where the original response y is linearly related to predictors x1, x2

as yt = b1xt,1 + b2xt,2. Let the first-order differences of y, x1 and x2 to be ∆y,

∆x1, and ∆x2. Then the linear relationship remains as ∆yt = b1∆xt,1 + b2∆xt,2, so

that the linear relationship between responses and predictors does not change after
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the first-order differencing. However, the log transformation sabotages the linear

relationship between X and Y , and causes the FIT-SGMD to fail in capturing the

linear relationship for transformed data. Hence, the reason for the FIT-SGMD not

outperforming the PCR-5 in the lower panels of Tables 3.4-3.5 is, perhaps, that the

log transformation and the ensuing nonlinearity.

3.5 Conclusion

We considered transposable data matrices where both the rows and columns are

correlated and solved the generalized matrix decomposition (GMD) problem by de-

veloping the FIT-SGMD algorithm to compute the sparse factors of the data matrix.

The algorithm generalizes the FIT-SSVD algorithm in Yang et al. (2013) by account-

ing for the two-way dependencies in the rows and columns of the transposable data

matrix. It can be used to compute the sparse components of RRR and CCA, and

to yield factor and variable selections simultaneously. In applications to forecasting

the macroeconomic time series data in Stock and Watson (2012), we find that the

FIT-SGMD algorithm outperforms the benchmark PCR-5 for the original nonsta-

tionary data, while the PCR-5 is better for the transformed stationary data. Our

simulation experiments confirm this curious phenomenon observed in the real data,

and suggest that the FIT-SGMD algorithm outperforms the PCR-5 for the original

nonstationary data when the response variables are linearly related to the predictors.

Thus, the use of the FIT-SGMD in these situations may obviate the need to follow

the traditional and subjective steps: (1) transforming a (high-dimensional) nonsta-

tionary data to (marginal) stationarity, (2) model-building and forecasting and (3)

back-transforming the forecasts to the original scale.
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4. CONCLUSIONS

This dissertation research consists of two novel applications of the idea of thresh-

olding: the thresholding reduced rank multivariate regression and the generalized

PCA/SVD. We have developed the methodologies, related theoretical results and

applied them in the areas of macro-arrary gene expression, macroeconomics and

brain image fMRI datasets. We showed that our proposed methods are flexible and

can be applied to a wide variety of statistical analysis, such as the low-rank model,

the reduced rank regression and the canonical correlation analysis.

The two thresholding methodologies have been developed in Sections 2-3. The

developments in Section 2 considered large multivariate linear regression models and

developed a method to estimate the regression coefficient matrix by low-rank matrices

constructed from its sparse SVD. We presented the FIT-SRRR method for low-rank

approximation of the regression coefficient matrix. It is a generalization of the FIT-

SSVD algorithm for the correlated data which requires finding the threshold level

in this new setup. The FIT-SRRR algorithm inherits the good properties of the

FIT-SSVD and is more efficient than the FIT-SSVD for correlated data situations

as demonstrated through simulation experiments. The developments in Section 3

considered the low-rank approximation of transposable data matrices where both

their rows and columns are correlated. Rather than using the weighted least squares

matrix decomposition with respect to a transposable quadratic norm as in Allen

et al. (2013), we replace their optimization framework by thresholding the GMD

factors and propose the FIT-SGMD algorithm while accounting for the two-way

dependencies. The FIT-SGMD algorithm guarantees the orthogonality of the GMD

factor, which is a desirable property.
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The related theoretical results for the methodologies are developed in Sections 2

and 3. In Section 2, we have placed the FIT-SSVD algorithm in Yang et al. (2013)

in an optimization framework by introducing a specific bi-convex objective function.

This enables us to study the large sample properties of the solution and establish

consistency of the estimators as the sample size tends to infinity. In Section 3, we have

shown that our FIT-SGMD algorithm is suitable for a general framework, where the

reduced rank regression and canonical correlation analysis are two important special

cases. These connections enable us to improve the predictive accuracy in regression

and to facilitate the interpretation of our proposed algorithm.

The computational results consist of the extensive simulation and real data ap-

plications. In Section 2, the simulation study of the FIT-SRRR algorithm produced

superior performance compared to the existing counterparts. Using the real data,

we showed the promise of applying this method in producing interpretable results,

and improving estimation and forecast accuracy. In Section 3, our analysis of using

the FIT-SGMD to the macroeconomic time series data in Stock and Watson (2012)

revealed that it outperforms the benchmark PCR-5 for the original nonstationary

data. Our simulation experiments confirm this curious phenomenon observed in the

real data and suggest that the FIT-SGMD algorithm outperformed the PCR-5 for

the original nonstationary data when the response variables are linearly related with

the predictors. Since it is a difficult task to decide what transformations to use to

reduce data to stationarity, even for univariate time series data, such findings are

desirable in high-dimensional data situations. Thus, using the FIT-SGMD in these

situations may obviate the following traditional subjective steps: (i) transforming a

(high-dimensional) nonstationary data to stationarity, (ii) model-building and fore-

casting and (iii) back-transforming the forecasts to the original scale.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR SECTION 2

A.1 Additional Objective Functions for Hard-thresholding and SCAD

In Section 2.2.2, we placed the FIT-SSVD algorithm with the soft-thresholding

function in an optimization problem. We briefly discuss here the corresponding

choices of objective functions when the hard-thresholding or the SCAD (Fan and Li,

2001) are used in the FIT-SSVD algorithm.

When the hard-thresholding function H(y, λ) = yI{|y|>λ} is used in the FIT-

SSVD, then its objective function ΨH(U,D, V ) has the form

ΨH(U,D, V ) = ||Y − UDV ′||2F + λ2
u

p∑
i=1

r∑
k=1

I{|uikdk|6=0} + λ2
v

q∑
j=1

r∑
k=1

I{|vjkdk|6=0}.(A.1)

For Ũ = UD, Ṽ = V D, it can be shown that the solution Ũ of (A.1) for V fixed is

found by component-wise hard-thresholding of Y V , i.e. H(Y V, λu) = [H((Y V )ij, λu)]

for i = 1, ..., p, j = 1, ..., r. Similarly, the solution Ṽ of (A.1) for U fixed isH(Y ′U, λv).

For the SCAD function, let hSCAD(y, λ) denote the SCAD operator

hSCAD(y, λ) =


sign(y)(|y| − λ)+ for |y| ≤ 2λ;

{(a− 1)y − sign(y)a}/(a− 2) for 2λ < |y| ≤ aλ;

y for |y| > aλ,

where a > 2 is another regularization parameter. The corresponding objective func-

86



tion has the form

ΨSCAD(U,D, V ) = ||Y − UDV ′||2F +

p∑
i=1

r∑
k=1

{2λu|uikdk|I{|uikdk|≤λu}

−(uikdk)
2 − 2auλu|uikdk|+ λ2

u

au − 1
I{λu<|uikdk|≤auλu}

+(au + 1)λ2
uI{|uikdk|>auλu}}

+

q∑
j=1

r∑
k=1

{2λv|vjkdk|I{|vjkdk|≤λv}

−(vjkdk)
2 − 2avλv|vjkdk|+ λ2

v

av − 1
I{λv<|vikdk|≤avλv}

+(av + 1)λ2
vI{|vikdk|>avλv}}

For Ũ = UD, Ṽ = V D, it can be shown that the solution Ũ for V fixed is found by

component-wise SCAD, i.e. hSCAD(Y V, λu) = [hSCAD((Y V )ij, λu)]i=1,...,p;j=1,...,r, and

the solution Ṽ for U fixed is hSCAD(Y ′U, λv).

A.2 Additional Simulations

In this subsection, we consider a special case of the multivariate reduced rank

regression in Section 2.4.2, where the design matrix X is the identity matrix, and

provide additional simulation results to further compare the FIT-SRRR with the

IEEA and SSVD algorithms.

Let B = duv′ in (1) have the same d,u,v as in Section 2.4.1 setup and the design

matrix X be a 50 × 50 identity matrix, then model (1) reduces into Y = B + E,

where the entries of E are samples from N(0, 1). This is also the same setup used in

Lee et al. (2010) and Chen et al. (2012a), where they found out both the IEEA and

SSVD methods significantly outperformed other existing methods, e.g. SVD, Plaid

in Lazzeroni and Owen (2002), RoBiC in Asgarian and Greiner (2007) and SPCA

in Shen and Huang (2008), in terms of misclassification rate and the mean-squared
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error (MSE). Hence, it suffices to only compare the FIT-SRRR with the IEEA and

SSVD.

The results summarized in Table A.1 show that in terms of the MSE, the FIT-

SRRR enjoys a lower level than those in the IEEA and SSVD. In terms of the

misclassification rates, the FIT-SRRR has extremely low misclassification rates in

the performance of both correctly identifying zero and non-zero entries. The overall

misclassification rate of the FIT-SRRR is 0.27%, which is only about one fourth of

the rates of its counterparts.

Corrected identified Total
Method MSE 0s(%) non-0s(%) Error %
FIT-SRRR 6.20 u 33.96(99.88) 16(100) 0.08

v 74.93(99.91) 24.70(98.8) 0.37
Overall 108.89(99.90) 40.7(99.27) 0.27

IEEA 6.65 u 33.90(99.7) 16(100) 0.21
v 73.69(98.25) 24.78(99.13) 1.53
Overall 107.58(98.70) 40.78(99.46) 1.09

SSVD 6.35 u 33.77(99.32) 16(100) 0.46
v 73.95(98.60) 24.73(98.93) 1.32
Overall 107.71(98.82) 40.73(99.35) 1.04

Table A.1: Comparison of FIT-SRRR method with SRRR and SSVD for unit rank
models.

A.3 Additional Heat Maps for the Lung Cancer Data

In this subsection, we perform the SSVD in Lee et al. (2010), the FIT-SSVD in

Yang et al. (2013) and the IEEA in Chen et al. (2012a) on the lung cancer data, and

plot their corresponding heat maps of the first three estimated layers as a supplemen-

tary for Section 2.5. The four blocks in each panel reveal the four groups of subjects.

These from top to the bottom are: SmallCell, Normal, Colon and Carcinoid.
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Figure A.1: Heat maps of the first three layers using SSVD of lung cancer data.

A.4 Proof of Proposition 2.2.1

(a) To show that (3) subject to (2.5) is biconvex in Ũ , Ṽ , we need to show that

(2.6) is convex in Ũ for V fixed and (2.7) is convex in Ṽ for U fixed subject to (2.5).

For (2.6), since the set of matrices U in (2.5) is convex (Wittstock, 1984), and both

||Y − ŨV ′||2F and the L1 norm of Ũ are convex functions, hence their sum is also

convex. The convexity of (2.7) is shown similarly.

Using the bi-convexity of Ψ(·) in (2.3), this objective function can be minimized

by iteratively minimizing the objective functions (2.6) and (2.7) (Gorski et al., 2007),

where it is known that the objective function decreases monotonically at each itera-

tion and the sequence generated by the iterative algorithm converges monotonically

to its partial minimum (Gorski et al., 2007, Section 4).

(b) Here we only prove that the solution Ṽ of (2.7) is found by component-

wise soft-thresholding of Y ′U . The the proof for Ũ in (2.6) is similar. For a fixed

orthonormal matrix U , let U⊥ be its complement so that the partitioned U = [U |U⊥]

is an orthogonal matrix. From the definition of the Frobenius norm ||A||2F = tr(A′A),
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Figure A.2: Heat maps of the first three layers by FIT-SSVD of lung cancer data.

it follows that

||Y − UṼ ′||2F = ||Y ′ − Ṽ U ′||2F = tr{(Y ′ − Ṽ U ′)′(Y ′ − Ṽ U ′)UU′}

= ||(Y ′ − Ṽ U ′)U||2F = ||(Y ′ − Ṽ U ′)[U |U⊥]||2F = ||Y ′U − Ṽ ||2F + ||Y ′U⊥||2F ,

where the last term ||Y ′U⊥||2F is free of Ṽ . Hence, minimizing (2.7) with respect to

Ṽ is equivalent to minimizing

||Y ′U − Ṽ ||2F + λv

r∑
l=1

q∑
i=1

|ṽil|

=
r∑
l=1

||Y ′ul − ṽl||2F + λv

r∑
l=1

|ṽl| =
r∑
l=1

q∑
i=1

(Y ′i ul − ṽil)2 + λv

r∑
l=1

q∑
i=1

|ṽil|,(A.2)

where Yi,ul, ṽl are the ith, lth columns of Y, U and Ṽ , respectively, and ṽil is the

(i, l)th entry of Ṽ . Expanding the right hand side of (A.2), it follows that

RHS =
r∑
l=1

q∑
i=1

(ṽ2
il − 2ṽilY

′
i ul + λv|ṽil|) +

r∑
l=1

q∑
i=1

u′lYiY
′
i ul.
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Figure A.3: Heat maps of the first three layers by IEEA of lung cancer data.

Thus, the minimizers ṽil’s for all i = 1, ..., q; l = 1, ..., r are given by the soft-

thresholding of Y ′i ul, i.e. S(Y ′i ul,
1
2
λv) = sgn(Y ′i ul)(|Y ′i ul| − 1

2
λv)+, hence, the solu-

tion of Ṽ is S(Y ′U, 1
2
λv). Similarly, the solution of Ũ in (2.6) is S(Y V, 1

2
λv).

(c) Recall that in the FIT-SSVD algorithm the kth updating step for the estima-

tors U (k),thr,V (k),thr of UD, V D are S(Y V (k−1), γu) and S(Y ′U (k), γv), where γu, γv

are the threshold levels. Fortunately from (b), Ũ (k), Ṽ (k) in the kth iteration of

(2.3) are of the forms S(Y V (k−1), 1
2
λv), S(Y ′U (k), 1

2
λv), respectively. Hence, with

γu = 1
2
λu, γv = 1

2
λv, the updates in the kth iteration in the FIT-SSVD algorithm

have the same forms as those in minimizing the objective function in (2.3).

A.5 Existence of Local Minimum and Selection Consistency

In this part, for the objective function (2.3) we discuss existence of a local mini-

mum and the selection consistency of the solutions. For simplicity, the singular value

matrix D of the SVD of B is absorbed into the singular vectors and let λu = {λuil}

and λv = {λvjl} for i = 1, ..., p; j = 1, ..., q; l = 1, ..., r. Then, the objective function
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(2.3) can be written as

Ψu,v(U, V ) = ||Y − UV ′||2F +

p∑
i=1

r∑
l=1

λuil|uil|+
q∑
j=1

r∑
l=1

λvjl|vjl|. (A.3)

A major difference between (A.3) and the objective function ||Y −XUV ′||2F+
∑r

l=1∑p
i=1

∑q
j=1wijl|uilvjl| in Chen et al. (2012a), is the additivity of the penalties on U

and V instead of being multiplicative. Imposing a multiplicative penalty directly on

B = UV ′ but not on its factors U and V leads to an identifiability problem since

the decomposition of B is not unique. A secondary difference is that (A.3) is for

the signal plus noise model where X is an identity matrix. Here, we state the main

theoretical results and outline the key steps of the proof. Fore more details see the

proof of Theorem 2.1 in Chen et al. (2012a).

Let the true B = U∗V ∗′, where U∗, V ∗ are p× r, q × r orthogonal matrices with

rank r ≤ min(p, q). Let Lu, Lv denote the index sets for U∗ and V ∗ in which every

element in a row is zero, Hu, Hv be the complimentary sets of Lu and Lv, and

|Hu|, |Hv| denote the cardinality of the sets Hu and Hv. The following conditions are

needed in the theoretical development.

1. The errors eij in E are iid with E(eij) = 0 and V ar(eij) = σ2.

2. Suppose λuil/
√
p → 0 for i ∈ Hu, λ

u
il/
√
p → ∞ for i ∈ Lu, and λvjl/

√
p → 0 for

j ∈ Hv, λ
v
jl/
√
p→∞ for j ∈ Lv, as p→∞.

Suppose B ∈ ∆(r) = ∪L∈Π∆
(r)
L as in Chen et al. (2012a), where ∆(r) denotes the

manifold structure of all p × q matrices with rank smaller than or equal to r, and

Π denotes the set of all size-r subsets of {1, ..., q}. Let ∆
(r)
L = {UV ′ : rank(U) =

rank(V ) = r, V11 = Ir}, where the upper-left block V11 of V is an identity matrix

after rearranging and partitioning V . Consider a ball centered at B with radius h is
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defined by

N(B, h) = {(Ǔ +
1
√
p
Ǎ)(V̌ +

1
√
p
B̌)′; ||Ǎ||F ≤ h, ||B̌||F ≤ h, B̌11 = 0}

= {(U∗ +
1
√
p
A)(V ∗ +

1
√
p
B)′;A = ǍQ−1,B = B̌Q,B11 = 0} ∈ ∆(r),

where Ǔ = U∗Q′, V̌ = V ∗Q−1, Q is an r× r invertible matrix. We have the following

theorems.

Theorem A.5.1 (existence of a local minimum) Given a data matrix Y , suppose

condition 1 are satisfied and λuil/
√
p → 0 for i ∈ Hu, λvjl/

√
p → 0 for j ∈ Hv, as

p → ∞. Then there exists a local minimizer (Û , V̂ ) of Ψu,v(U, V ) in (A.3) which is

√
p−consistent in estimating U∗, V ∗, i.e. ||Û (n)−U∗|| = OP (p−1/2) and ||V̂ (n)−V ∗|| =

OP (p−1/2).

Proof Following Chen et al. (2012a), we show that for any given ε > 0, there is a

large enough h such that

lim
n

inf Pr{ inf
||Ǎ||F =||B̌||F =h

Ψu,v(U
∗ +

1
√
p
A, V ∗ +

1
√
p
B) > Ψu,v(U

∗, V ∗)} > 1− ε.(A.4)

Hence, with probability converging to 1, there exists a local minimum B̂ = Û V̂ ′ inside

the ball N(B, h), and thus the corresponding Û , V̂ satisfying ||Û−U∗||F = OP (p−1/2)

and ||V̂ − V ∗||F = OP (p−1/2).

To show (A.4) holds, let Ψ̃(A,B) = Ψu,v(U
∗ + 1√

p
A, V ∗ + 1√

p
B) − Ψu,v(U

∗, V ∗),
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z = vec(U∗B′ + AV ∗′ + 1√
p
AB′), and denote Ã = U∗ + 1√

p
A, B̃ = V ∗ + 1√

p
B, then

Ψ̃(A,B)

= −2z′vec(
1
√
p
E) +

1

p
z′z +

r∑
l=1

{λu
p∑
i=1

(|u∗il +
1
√
p
ail| − |u∗il|)

= +λv

q∑
j=1

(|v∗jl +
1
√
p
bjl| − |v∗jl|)}.

Since
√
p(|u∗il+ 1√

p
ail|− |u∗il|)→ sgn(u∗il)ail and

√
p(|v∗jl+ 1√

p
bjl|− |v∗jl|)→ sgn(v∗jl)bjl,

then,

Ψ(A,B) ≥

− 2z̃′vec(
1
√
p
E) +

1

p
z̃′z̃ +

r∑
l=1

1
√
p
{λu

p∑
i=1

sgn(u∗il)ail + λv

q∑
j=1

sgn(v∗jl)bjl}
(A.5)

where z̃ = vec(U∗B′ + AV ∗′). From the definition of N(B, h), V ∗11 = Q, (V ∗Q−1)11

= Ir, and B11 = 0, we have (U∗B′ + AV ∗′)11 = (U∗B′)11 + (AV ∗′)11 = AQ′ = Ǎ.

Then it follows that z̃′z̃ dominates the other two terms z̃′vec( 1√
p
E) and

∑r
l=1

1√
p

{λu
∑p

i=1 sgn(u∗il)ail + λv
∑q

j=1 sgn(v∗jl)bjl} on the right side of (A.5).

Theorem A.5.2 (selection consistency) Suppose Conditions 1-2 are satisfied. Then

P (ûil = 0)→ 1 for i ∈ Lu, and P (v̂jl = 0)→ 1 for j ∈ Lv, as p→∞.

Proof Expanding (A.3), it follows that

Ψu,v(U, V ) =

p∑
i=1

q∑
j=1

(Yij −
r∑
l=1

uilvjl)
2 +

p∑
i=1

r∑
l=1

λuil|uil|+
q∑
j=1

r∑
l=1

λvjl|vjl|.

To show that P (ûil = 0) → 1 for i ∈ Lu, we need to show that P (ûil 6= 0) → 0

for i ∈ Lu. Suppose ûil 6= 0, by the KKT conditions, the first order condition for
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(A.3) with respect to ûil is

2
√
p

q∑
j=1

{(Yij −
r∑
l=1

ûilv̂jl)v̂jl} =
λuil√
p

ûil
|ûil|

. (A.6)

The left hand side of (A.6) equals

LHS =
2
√
p

q∑
j=1

{[(Yij −
r∑
l=1

u∗ilv
∗
jl) + (

r∑
l=1

u∗ilv
∗
jl −

r∑
l=1

ûilv̂jl)]v̂jl}

=
2
√
p

q∑
j=1

{eij +OP (
1
√
p

)}v̂jl = OP (1).

On the other hand, from Condition 2 the right hand side of (A.6) equals

RHS =
λuil√
p

ûil
|ûil|
→ ∞ as p→∞, for i ∈ Lu.

Therefore,

P (ûil 6= 0) ≤

P

(
2
√
p

q∑
j=1

{(Yij −
r∑
l=1

ûilv̂jl)v̂jl} =
λuil√
p

ûil
|ûil|

)
→ 0 as p→∞, for i ∈ Lu.

Similarly, we can show that P (v̂jl 6= 0)→ 0 as p→∞, for j ∈ Lv.
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR SECTION 3

B.1 Additional Simulations and the fMRI Data Analysis

In this subsections, we first use simulation to evaluate the performance of the

FIT-SGMD, and then apply it to an fMRI dataset in Allen et al. (2013). In our

study, we would like to compare our FIT-SGMD to the generalized penalized matrix

factorization (GPMF) in Allen et al. (2013), which is designed to recover sparse or

smooth GMD factors under conditions (3.4) by adding penalties on the (Ω,Σ)-norm

of U and V . Allen et al. (2013) have compared the GPMF with SVD, two-way

functional PCA (Huang et al., 2009) and sparse PCA (Shen and Huang, 2008), and

have found that the GPMF outperformed others. Hence, it suffices to just compare

our FIT-SGMD algorithms with the GPMF.

B.1.1 Simulations

We consider two scenarios, the first is a setup similar to Allen et al. (2013, Section

4.1), where the signal B consists of sparse U and smooth V (spatial and temporal

data). The second is concerned with the signal B where both U and V are sparse.

All datasets Y (n× q) are generated from:

Y = B + E = UDV ′ + Ω−1/2ZΣ−1/2 =
r∑
i=1

diuiv
′
i + Ω−1/2ZΣ−1/2, (B.1)

where the entries of Z = (Zij)’s are generated as iid N(0, σ2). We choose σ so as

to have different levels of signal to noise ratio (SNR) where the SNR is computed

following Allen et al. (2013, Section 4). We use the median absolute deviation (MAD)
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to estimate σ in the FIT-SGMD, σ̂ = 1.4826MAD(as.vector(Y )) following Yang

et al. (2013). Throughout this part, the rank r of the true underlying matrix B

is assumed to be known, the thresholding function in the FIT-SGMD is the hard

thresholding η(·) = H(·) and the number of replications for each simulation is N =

100 times.

The performances of the algorithms are measured by the root mean-squared error

(RMSE) of the 100 simulation replications, where for replication i, the RMSEi =

||B − B̂i||F , i = 1, ..., 100. We use the RMSE ratios of comparing algorithms relative

to the GPMF, i.e. RMSEFIT−SGMD

RMSEGPMF
and a value less than 1 indicates that our proposed

algorithm has better performance than the GPMF.

B.1.1.1 Spatio-Temporal Simulated Data

We investigate the performance of the FIT-SGMD algorithm to the GPMF. We

notice that in the early version of Allen et al. (2013, Section 2.4), they compared

their generalized power method to the GPMF and found that although the former

algorithm which is a mathematical algorithm does not enforce any sparse structure

on the factor U and V , it has comparable results to that of the GPMF in terms of the

estimating accuracy. Hence, in this subsection we also investigate the performance

of our Algorithm 4 and denoted it as the GMD algorithm.

We use slight modifications of the setup in Allen et al. (2013, Section 4.1). Let the

rank r = 2, D = diag(1, 0.5), and two spatial factors U = [u1|u2] ∈ R256×2 and two

temporal factors V = [v1|v2] ∈ R200×2. Specifically, the spatial factors are structured

from two 16 × 16 images each with three non-overlapping non-zero signal blocks as

displayed in the first column of Figure B.2. The vectors ui, i = 1, 2 are formed by

stacking up the columns of the corresponding 16 × 16 image. The temporal factors

are constructed as v1 = sin(10πx) and v2 = sin(2πx) for 200 equally spaced values
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x ∈ [0, 1] as shown in the first column of Figure B.3. Rather than forming Ω,Σ as

autoregressive covariance matrices as in Allen et al. (2013), we construct them to

directly satisfy the conditions (3.4), i.e. U ′ΩU = V ′ΣV = Ir. Due to the smoothness

feature of V , we adjust our FIT-SGMD algorithm by skipping the thresholding of V

(Step 6 in Algorithm 5). We first scale Ŷ by Y/σ̂ and then apply to it the GMD and

FIT-SGMD algorithm.

Panel I: FIT-SGMD Panel II: GMD
SNR Median Mean Median Mean
1 3.93E-01 7.00E-01 4.98E-01 6.14E-01
0.5 3.79E-01 5.15E-01 6.60E-01 7.22E-01
0.25 9.26E-02 1.80E-01 6.06E-01 7.78E-01
0.125 3.22E-02 5.61E-02 6.48E-01 8.48E-01

Table B.1: Median and mean summary for RMSE raitos. Panel I: Ratios of FIT-
SGMD relative to GPMF. Panel II: Ratios of GMD relative to GPMF.

Table B.1 summarizes the two ratios ( RMSEGMD

RMSEGPMF
, RMSEFIT−SGMD

RMSEGPMF
) of their mean

and median for four levels of SNRs, while Figure B.1 presents the distributions of

ratios using boxplots. Results demonstrate that the FIT-SGMD and GMD algorithm

outperform the GPMF. From the ratios in Table B.1 (Panel II) and Figure B.1 (b),

we see that the RMSE of GMD is about 50% lower than that of the GPMF for the

four levels of SNR. From the ratios in Table B.1 (Panel I) and Figure B.1 (a), we

see that our FIT-SGMD performs uniformly better than the GPMF, especially when

the SNR is low. This occurs when SNR=0.25 and 0.125, resulting in the medians

of ratios equal 0.093 and 0.032, respectively. In particular, we see that the boxplot

of SNR=0.125 in Figure B.1 (a) is centered at the median with a very low level of

dispersion, which indicates the RMSE of the FIT-SGMD is significantly lower than
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(a)

(b)

Figure B.1: Boxplots of RMSE ratios. (a): Ratios of FIT-SGMD to GPMF. (b):
Ratios of GMD to GPMF.

its counterpart. Among these three algorithms, the FIT-SGMD performs the best

in terms of the low level of RMSE. A closer look of the RMSE values of these three

algorithms (which is unreported here) reveals that all of them tend to have larger

RMSE values as the SNR becomes lower. However, this effect is more significant and

evident for the GPMF and GMD.

An example of these three methods’ feature recovering performance is shown in

Figures B.2-B.3, where the true and recovered Us and V s are plotted when SNR= 1.

The true spatial signals u1,u2 each consist of three non-overlapping non-zero blocks

on a 16× 16 grid, while the rest is zero. All three algorithms are able to recover the

blocks in u1,u2, but their abilities to reveal the zeros are different. The FIT-SGMD

outperforms the other two in terms of its ability to highlight the non-zero blocks
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Figure B.2: Results for spatial signal U = [u1,u2] from spatio-temporal simulation.

and force the rest to be zero. On the other hand, although the GPMF successfully

recovers the majority of the blocks, it does not reveal the sparse structures of the

two images. Its performance is similar to that of the GMD algorithm. Since the

GMD algorithm does not impose any sparsity penalties on U , it is not surprising

that almost all of the entries in its output are non-zeros. In Figure B.3, the three

algorithms perform equally well in recovering V , except the GPMF for v2 which is

overwhelmed by noise. Among them, the GMD has the smoothest outcomes.

B.1.1.2 Sparse U and V

In this subsection, model (3.1) with sparse U and V are considered. Since the

GMD algorithm is not designed to recover sparse signals, we only compare the per-

formances of the FIT-SGMD and GPMF. We set the rank r = 3, n = 200, q = 200
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Figure B.3: Results for temporal signal V = [v1,v2] from spatio-temporal simulation.

and D = diag(100, 70, 50). Let U = [u1|u2|u3], V = [v1|v2|v3]:

u1 = (1,−1,−1, 1, 1, rep(0, 20), rep(0, 175))′,

u2 = (rep(0, 5), 1,−1,−1, 1, 1, rep(0, 15), rep(0, 175))′,

u3 = (rep(0, 10), 1,−1,−1, 1, 1, rep(0, 10), rep(0, 175))′,

v1 = (1,−1,−1, 1, 1, 1, unif(4, J), rep(0, 15), rep(0, 175))′,

v2 = (rep(0, 12), unif(4, J), 1, 1,−1,−1, 1, 1, rep(0, 3), rep(0, 175))′,

v3 = (rep(0, 6),v1[7 : 8],−v1[9 : 10], 1,−1,−v2[13 : 14],

v2[15 : 16], rep(0, 9), rep(0, 175))′.

where vl[a : b] denotes a vector whose entries are the corresponding entries of vl from

a to b, and unif(m, J) denotes a vector of length m whose entries are iid uniformly

distributed on the set of J = [−1,−0.3] ∪ [0.3, 1]. We choose matrices Ω,Σ satisfy
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the generalized orthogonal condition U ′ΩU = V ′ΣV = I. As before the SNR is set

to be the four levels: 1, 0.5, 0.25 and 0.125.

SNR Median Mean
1 9.85E-01 8.86E-01
0.5 6.41E-01 6.42E-01
0.25 4.47E-01 4.97E-01
0.125 2.91E-01 2.56E-01

Table B.2: Median and mean summary for RMSE ratios of FIT-SGMD to GPMF.

Figure B.4: Boxplots of RMSE ratios of FIT-SGMD to GPMF.

Table B.2 summarizes the mean and median of the RMSE ratios of the FIT-

SGMD to the GPMF, and Figure B.4 presents their boxplots. The patterns in

Table B.2 and Figure B.4 are similar and consistent with the corresponding results

in Section B.1.1.1. As a whole, the FIT-SGMD universally outperforms the GPMF,

where the FIT-SGMD enjoys a lower RMSEs for all levels of SNRs. We notice that

the RMSE-ratio decreases as the SNR decreases, which indicates that the FIT-SGMD

is more accurate in estimating the signal in (3.1) especially when the SNR is low.
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In addition, the FIT-SGMD enjoys fast computational speed. The computation

costs for N = 100 replications are 0.2 system second for the FIT-SGMD and 23.2

system second for the GPMF (Intel(R) Core (TM) i7-3770 CPU @3.40GHz).

B.1.2 The ”StarPlus” fMRI Dataset

The StarPlus dataset in Mitchell et al. (2004) is a functional MRI dataset which

has the typical transposable structure. In this dataset, images of a brain in the spatial

domain are measured over time, where spatial dependence and temporal dependence

are often considered (Lindquist, 2008). Following Allen et al. (2013), we select the

data for subject number 04847, which consists of 4,698 voxels (64 × 64 × 8 images)

measured for 20 tasks over 54 - 55 time points leading to a total 1098 observations

and rearrange the data into a 4, 698× 1, 098 matrix. We use their choices of Ω,Σ as

the unweighted Laplacian structure for the row dependence and a kernel smoother

with a window size of ten time points for the column dependence.

Using the FIT-SGMD, the first three ui, i = 1, 2, 3 of the brain images are pre-

sented in Figure B.5 where each ui contains eight 64× 64 images. Allen et al. (2013)

has presented the first three ui’s by PCA, sparse PCA, GPCA, and found out that

the noise overwhelms the PCA and sparse PCA methods but not the GPCA. In

Figure B.5, sparse structures are presented where most of the noise is eliminated.

Hence, the FIT-SGMD is suitable for this two-way dependent fMRI data, which have

comparable results to those given in Allen et al. (2013).
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B.2 Proof of Theorem 3.2.1

We divide the proof of Theorem 3.2.1 into two stages. In the first stage, we show

that using Algorithm 4 for data matrix Y is equivalent to solving the SVD for the

sphered data matrix Ỹ = Ω̃Y Σ̃ using the orthogonal iteration. In stage 2, we show

that the orthogonal iteration for SVD has a general form of the orthogonal itera-

tion for eigen decomposition, where the output of the latter algorithm is proved to

converge to the mathematical solution in Golub and Van Loan (1996). Hence, out-

put from Algorithm 4 converges to the mathematical solution of the GMD problem:

U∗ = Ω̃−1Ũ , and V ∗ = Σ̃−1Ṽ .

Stage 1: Let Ỹ = ŨD̃Ṽ ′ be the SVD of Ỹ , Ω̃ and Σ̃ denote the square roots

of Ω,Σ and Ω̃−1, Σ̃−1 denote their left matrix inverses, respectively. Since Ũ = Ω̃U

and Ṽ = Σ̃V , once the updating steps of U and V in Algorithm 4 are written with

respect to Ỹ , Ũ and Ṽ , it follows that:

Steps 2-3: Y (k)
u = Y ΣV (k−1) = (Ω̃−1Ỹ Σ̃−1)Σ(Σ̃−1Ṽ (k−1)) = Ω̃−1Ỹ Ṽ (k−1)

= U (k)R(k)
u = Ω̃−1Ũ (k)R(k)

u

Steps 4-5: Y (k)
v = Y ′ΩU (k) = (Σ̃−1Ỹ ′Ω̃−1)Ω(Ω̃−1Ũ (k)) = Σ̃−1Ỹ ′Ũ (k)

= V (k)R(k)
v = Σ̃−1Ṽ (k)R(k)

v .

Hence, Ω̃−1 and Σ̃−1 are canceled from both sides of equations and it follows

Ũ (k)R(k)
u = Ỹ Ṽ (k−1),

Ṽ (k)R(k)
v = Ỹ ′Ũ (k).
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From Section 1.2, the above are the two key steps of the orthogonal iteration for

matrix Ỹ . Hence, Algorithm 4 is equivalent to solving the SVD of Ỹ using the

orthogonal iteration.

Stage 2: Suppose B = UDV , we show that this SVD can be converted into an

eigenvalue problem of a larger matrix H

H =

 0 B′

B 0

 .
Define

Q =

 V V

U −U

 ,
then it is clear that Q is orthogonal and satisfies HQ = QD, i.e.

 0 B′

B 0


 V V

U −U

 =

 V V

U −U


 D 0

0 −D

 ,
namely, its columns are the eigenvectors of H. Expanding the above matrix equation

leads to

B′U = V D,BV = UD,

which are the key step of the orthogonal iteration algorithm. Hence, finding the eigen

decomposition of matrix H is equivalent to finding the SVD of matrix B using the

orthogonal iteration. Golub and Van Loan (1996, Theorems 7.3.1 and 8.2.2) shows

that the orthogonal iteration for eigen decomposition converges to its mathematical
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solution. Thus, the orthogonal iteration for the SVD also converges to the mathe-

matical solution of the SVD. Combining the above two stages, the convergence of

Algorithm 4 is proved.

B.3 Proof of Theorem 3.3.1

Proof We prove the theorem by expanding the (Ω,Σ)-norms, rearranging terms and

showing that their right-hand side are identical.

Regression: ||Y −XUDV ′||2I,Σ

= tr{(Y −XUDV ′)′(Y −XUDV ′)Σ}

= tr(Y ′Y Σ)− tr(Y ′XUDV ′Σ)− tr(ΣV DU ′X ′Y )

+tr(ΣV DU ′X ′XUDV ′)

= tr(Im)− 2tr(V DU ′X ′Y Σ) + tr(D2).

GMD: ||GX ′Y − UDV ′||2Ω,Σ

= tr(Y ′XGΩGX ′Y Σ)− tr(Y ′XGΩUDV ′Σ)

−tr(ΣV DU ′ΩGX ′Y ) + tr(ΣV DU ′ΩUDV ′).

Since G is the Moore-Penrose generalized inverse of Ω = X ′X, we have GΩG = G,

(GΩ)′ = ΩG and (ΩG)′ = GΩ. Then it follows,

||GX ′Y − UDV ′||2Ω,Σ

= tr(Y ′XGΩGX ′Y Σ)− 2tr(ΣV DU ′ΩGX ′Y ) + tr(ΣV DU ′ΩUDV ′)

= tr(Y ′XGΩGX ′Y Σ)− 2tr(V DU ′X ′Y Σ) + tr(D2).
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It should be noted that if X has full column rank, replacing G by (X ′X)−1 in (II)

returns the same right hand side.

CCA: ||Y Ṽ −XU ||2I,I

= tr(U ′X ′XU)− 2tr(U ′X ′Y Ṽ ) + tr(Ṽ ′Y ′Y Ṽ )

= tr(Im)− 2tr(U ′X ′Y ΣV D) + tr(DV ′ΣY ′Y ΣV D)

= tr(Im)− 2tr(V DU ′X ′Y Σ) + tr(D2),

given Ṽ = ΣV D.

Thus, the solution triplet (Û , V̂ , D̂) for the three optimization problems is rec-

ognized as (Û , V̂ , D̂) = arg maxU,V,D tr{V DU ′X ′Y Σ −D2/2}. That is, if (Û , V̂ , D̂)

solves any problem, then it will also solve the remaining two problems.

B.4 The Ω-QR Decomposition

In this section, we introduce the so-called Ω-QR decomposition which is utilized

in the generalized orthogonal iteration in Section 3.2.1. Intuitively, the Ω-QR decom-

position uses the Ω-norm in place of the Frobenius norm for all the inner products

in the original Gram-Schmidt process.

Given a positive definite matrix Ω, the Ω-QR decomposition of a matrix A is a

decomposition of A into a general orthogonal matrix Q and a triangular matrix R,

i.e. it finds the decomposition of A as

A = QR,

where Q′ΩQ = I and R is an upper triangular matrix. Next, we introduce the

generalized Gram-Schmidt process, which incorporates the matrix Ω and observes
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the condition Q′ΩQ = I.

Define ||u||2Ω = u′Ωu, projΩ,qa = q′Ωa
q′Ωq

q, A = [a1, ..., an], then,

u1 = a1, q1 = u1/||u1||Ω;

u2 = a2 − projΩ,q1a2, q2 = u2/||u2||Ω;

u3 = a3 − projΩ,q1a3 − projΩ,q2a3, q3 = u3/||u3||Ω;

...

un = an − projΩ,q1an − · · · − projΩ,qn−1
an, qn = un/||un||Ω.

Hence, the solution of the Ω-QR decomposition is Q = [q1, · · · , qn]. (It is trivial to

prove that q′iΩqi = 1 and q′iΩqj = 0 if i 6= j, i.e. Q′ΩQ = I. )
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Figure B.5: Eight slides of the brain images for the first three GMD factors of the
Starplus data for FIT-SGMD. u1: (a)-(b), u2: (c)-(d); u3: (e)-(f).
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