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ABSTRACT 

 

Nonlinear electromechanical and polarization switching behaviors of 

piezoelectric materials and viscoelastic nature of polymers result in the overall nonlinear 

and hysteretic responses of active polymeric composites. Understanding the nonlinear 

behavior of the active polymeric composites is crucial in designing structures comprising 

of these active materials. This study presents three micromechanical models, i.e., fiber-, 

particle-, and hybrid-unit-cell models, to study the effective nonlinear and hysteretic 

electro-mechanical responses of 1-3, 0-3, and hybrid piezocomposites, respectively. The 

microstructures of the active composites are idealized with periodically distributed 

arrays of cubic representative unit cells. A unit cell is divided into several subcells. The 

fiber- and particle-unit-cell models consist of four and eight subcells, respectively. The 

hybrid-unit-cell model is derived based on the fiber-unit-cell model of 1-3 active 

composites consisting of fiber and matrix subcells, in which the matrix subcells are 

comprised of a particle-unit-cell model of 0-3 active composites. In order to obtain the 

overall nonlinear responses of the active composites linearized micromechanical 

relations are first used to provide trial solutions followed by iterative schemes in order to 

correct errors from linearizing the nonlinear responses. The micromechanical predictions 

are capable in predicting the overall nonlinear electromechanical, time-dependent, and 

polarization switching responses of active composites available in literature. Parametric 

studies are also performed to illustrate the effects of microstructural geometry and 

volume content of the piezoelectric inhomogeneities as well as loading history on the 
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overall nonlinear and hysteretic responses of active composites. Finally, a multi-scale 

analysis of a functionally graded piezoelectric bimorph actuator using the developed 

particle-unit-cell model is given as an example of practical applications. 
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1 CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW1 

 

 

In 1880, Curie brothers discovered that several natural materials, including 

quartz and Rochelle salt, exhibited an electromechanical coupling property. Since then, 

there have been vast developments of man-made materials that exhibit 

electromechanical coupling behavior. One of the most commonly used materials with 

electro-mechanical coupling is piezoelectric ceramics, such as lead zirconate titanate 

(PZT) and barium titanate (BaTiO3). Piezoceramics exhibit high electromechanical 

coupling behavior; as a result they are used as sensors and actuators in smart devices and 

intelligent structures.  

Due to their inherently brittle characteristics, piezoceramics are often dispersed 

in compliant/soft matrix such as polymers, which forms piezoelectric (active) 

composites. The use of piezoelectric composites enhances energy absorber capability in 

smart structures and creates more compliant devices. Several types of piezocomposites 

have been developed. For examples piezoelectric unidirectional fibers or particles 

embedded in a polymer matrix which forms 1-3 and 0-3 piezocomposites, respectively, 

1 Parts of this chapter are taken from: Lin, C.-H., and A. Muliana. 2013a. “Micromechanics Models for the 
Effective Nonlinear Electro-mechanical Responses of Piezoelectric Composites,” Acta Mech., 
224(7):1471-1492 and reprinted with permission of Springer Publishing, Inc. Copyright 2013 by Springer 
Publishing, Inc. and from: Lin, C.-H., and A. Muliana. 2013b. “Micromechanical Models for the Effective 
Time-dependent and Nonlinear Electromechanical Responses of Piezoelectric Composites,” J Intel. Mat. 
Syst. Str., doi:10.1177/1045389X13504477 and reprinted with permission of Sage Publications, Inc. 
Copyright 2013 by Sage Publications, Inc. 
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are widely used in many engineering applications. Swallow et al. (2008) developed a 

wearable energy-harvesting device by using piezoelectric fibers embedded in an epoxy 

matrix. Hori et al. (2001) blended piezoelectric and carbon black power into an epoxy 

resin to develop piezoelectric damping materials.  

Many 1-3 piezocomposites use polymer as their matrix medium. However, 

polymers have relatively low mechanical and electrical properties compared to those of 

piezoceramic fibers, such as PZT fibers; thus, limiting the potential applications of the 

piezocomposites. Significant mismatches in the electromechanical properties of the fiber 

and matrix could lead to high stress discontinuities at the interface between the fibers 

and matrix, which could cause debonding. Neat polymeric matrix is often modified by 

adding particulate fillers in order to improve the properties of the polymeric matrix, 

which forms a hybrid composite2 with fibers and particles embedded in polymeric 

matrix.  

1.1 Motivation 

Piezoelectric materials exhibit prominent nonlinear behaviors when they are 

subjected to high electric fields, which are often the case in actuator applications. The 

nonlinear behavior is also seen in the hysteretic polarization and butterfly strain 

responses when piezoelectric materials are subjected to a cyclic electric field input with 

high amplitude, in which the materials experience polarization switching. Polymers 

naturally exhibit viscoelastic behaviors (see Ferry, 1970) and the viscoelastic behavior is 

2 The hybrid composite defined in this study is a three-phase composite having both fibers and particles in 
a matrix in order to distinguish a two-phase composite which has either only fibers or only particles in a 
matrix, i.e., a 1-3 or 0-3 composite. 
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more pronounced when they are exposed to hostile environmental conditions, such as 

elevated temperatures and high moisture contents. As the overall performance of 

piezocomposites depend on the responses of all constituents, it is necessary to study the 

overall time-dependent and nonlinear behaviors of piezocomposites prior to designing 

smart devices made of these piezocomposites, which is currently limited. 

Micromechanics modeling has been used to determine effective properties and responses 

of the heterogeneous materials, including piezocomposites. Current works on 

micromechanical modeling of piezocomposites are primary focus on linear electro-

mechanical constitutive behavior. Thus, it is essential to formulate micromechanical 

models, which are capable of estimating the overall time-dependent and nonlinear 

behavior of the piezocomposites and active hybrid composites, which can support the 

design of smart devices made of piezocomposites. 

1.2 Literature Review 

This section discusses a state of art knowledge in the overall response of 

piezoceramics, piezocomposites, and active hybrid composites in terms of experimental 

observations, electro-mechanical constitutive models, and micromechanical modeling. 

1.2.1 Piezoceramics 

When polarized piezoceramics are subject to large electric fields as in the case of 

actuators, the electromechanical coupling responses are shown to be nonlinear, which 

had been experimentally observed by Crawley and Anderson (1990) and Park et al. 

(1998). Figure 1.1 depicts the experimental data (symbols), from Crawley and Anderson 

(1990), of in-plane strain response of a stress free polarized PZT-G1195 ceramic plate 
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subject to an electric field input along the poling direction. The maximum electric field 

applied is ~1MV/m, which was 85% of the coercive electric field of the PZT-G1195. 

Thus, under the maximum electric field of 1 MV/m, the PZT-G1195 does not experience 

depolarization and polarization switching. As illustrated in the hysteretic polarization 

and butterfly strain responses under a cyclic electric field input (Figure 1.2), polarization 

switching occurs when the electric field input is higher than the coercive electric field 

and the applied electric field is in the opposite direction to the current poling direction. 

When the sample has been polarized (point B) and on the polarized sample, an electric 

field is applied in the poling direction (dashed line) with a magnitude below the coercive 

field electric field, a nonlinear electro-mechanical coupling response is observed when a 

relatively large electric field is applied. In order to describe the nonlinear 

electromechanical coupling behavior, Tiersten (1993) proposed a nonlinear constitutive 

model of piezoelectrictricity by considering higher-order terms of the electric field. In 

contrast, a linear constitutive model of piezoelectrictricity, which is often used for 

polarized piezoceramics and had been standardized by IEEE (1987), cannot capture the 

nonlinear electro-mechanical response of the sample, as shown in Figure 1.1. It is 

necessary to consider the nonlinear constitutive model (solid line) in order to capture the 

electro-mechanical response of the piezoelectric materials and the linear constitutive 

model (dashed line) is useful for a relatively small electric field input. 
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Figure 1.1   Strain-electric field curve (ε11 vs. E3) for a stress free polarized PZT-
G1195. 

 

 

 

 

Figure 1.2   Examples of the a) polarization and 2) butterfly strain responses in 
ferroelectric materials due to a cyclic electric field.  The operating range of a 
polarized piezoelectric material is shown by a dashed line. 

 

 

The nonlinear behavior is also seen in the hysteretic polarization and butterfly 

strain responses when piezoceramics are subjected to a cyclic electric field input with 

high amplitude, in which the materials experience polarization switching. A polarized 
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piezoceramics can be depolarized by a high compressive stress applied in its poling axis. 

Unlike polarization switching induced by an electric field, the depolarized piezoceramics 

caused by a compressive stress cannot be repolarized by simply applying mechanical 

stresses. Extensive experimental and theoretical studies have been done on 

understanding nonlinear polarization switching responses in ferroelectric ceramics. 

Some of the prominent works in this area can be found in Cao and Evans (1993), Fang 

and Li (1999), Hwang et al. (1995), Kamlah (2001) and Landis (2004). The electrical 

and mechanical responses of piezoceramics are time-dependent (Fett and Thun 1998; 

Cao and Evans, 1993; Hall, 2001). Zhou and Kamlah (2005, 2006) have examined the 

creep responses in soft PZT under static electric fields and compressive stresses. The 

creep responses were significant at higher stress and at electric field near the coercive 

electric field. The hysteretic responses of piezoceramics strongly depend on the 

amplitude of electric fields, frequencies, existence of stresses, and ambient temperatures. 

Experimental studies have shown the degradation in the hysteretic electro-mechanical 

responses of several ferroelectric ceramics, both bulk and thin film structures, after 

several cycles of electric field inputs (Jiang et al., 1994; Dausch 1997; Wang et al., 1998; 

Zhang et al., 2001; Lou, 2009; Ma et al. 2011). The study showed a decrease in the 

saturated and remanent polarizations with degradation. Figure 1.3 depicts the 

experimental data (square and circle symbols) from Fang and Li (1999) of the hysteretic 

polarization and butterfly strain responses of a stress free PZT-51 subject to a cyclic 

electric field loading along the poling direction, which illustrates the time-dependent 

polarization switching responses. 
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Figure 1.3   a) Hysteretic polarization and b) hysteretic butterfly strain responses 
for a stress free PZT-51. 
 

 

            There have been several constitutive models formulated for the polarization 

switching responses. The first type of models is motivated by considering domain 
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polycrystalline piezoelectric material is determined by averaging the domain switching 

of the individual grains. Examples of domain switching constitutive models can be found 

in Hwang et al. (1995), Chen and Lynch (1998), Huber et al. (1999), and Lu et al. 

(1999). A recent review article from Huber (2005) gives an overview in terms of 

modeling of microscopic polarization switching mechanisms. The second type of models 

focuses on macroscopic behavior of piezoceramics through the development of 

phenomenological constitutive model. Two examples in this category are: Bassiouny et 

al. (1988) used thermodynamical theory to model polarization switching behavior in the 

form of plasticity evaluation for the plastic strain, residual polarization, and both 

mechanical and electric hardenings. Zhou and Chattopadhyay (2000, 2001) adopted 

elastic Gibbs free energy to incorporate saturation polarization, remnant polarization, 

and coercive electric field on polarization switching behavior. The above constitutive 

models, however, focused on rate-independent constitutive relations. In a recent work by 

Sohrabi and Muliana (2013), a three-dimensional phenomenological constitutive model 

accounted for both rate-dependent polarization and compressive stress effect for 

piezoceramics was proposed. It is seen in Figure 1.3 that the constitutive model (solid 

lines) proposed by Sohrabi and Muliana (2013) can capture the experimental data quite 

well. Excellent review articles by Kamlah (2001) and Landis (2004) discussed both two 

categories of constitutive modeling on the nonlinear electromechanical hysteretic 

responses of piezoceramics. 
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1.2.2 Piezocomposites 

Some experimental studies suggested that piezocomposites with polymeric 

matrix exhibit more desirable performance than monolithic piezoceramics. For instance, 

Smith (1986) and Safari (1994) reported that 1-3 piezocomposites have higher 

electromechanical coupling constant than that of conventional piezoceramic PZT. Bent 

and Hagood (1997) experimentally observed that 1-3 active composites, having PZT 

fibers, exhibit larger in-plane actuations than bulk PZTs. Alternatively, piezoceramics 

have been combined with conductive metals such as silver and platinum to form active 

composites. Hwang et al. (1997) and Zhang et al. (2006) experimentally observed that 0-

3 active composites formed by adding silver particles in a PZT matrix exhibit higher 

fracture strength, fracture toughness and dielectric constant. A similar enhancement can 

be achieved by using platinum particles as reinforcement (Li et al., 2001 and Takagi et 

al., 2003) as well. In 0-3 active composites having silver fillers in a BaTiO3 matrix also 

showed improvement in fracture strength as reported by Panteny et al. (2006). 

Performance of metal matrix composites with piezoceramics as reinforcements has also 

been studied. Experimental studies indicated that 0-3 metal matrix composites formed by 

adding BaTiO3 particles into copper (Asare et al., 2005) or bronze (Poquette et al., 2005) 

exhibited higher passive damping capability than pure metal. Metallic based structures 

generally have high stiffness and strength; however, stiff materials typically have limited 

capability to damp out the mechanical or acoustical vibrations. 

Micromechanical modeling of piezocomposites was started by Newnham’s 

(1978) connectivity theory in which the micromechanical relations were derived based 

9 

 



 

on arrangements of different constituents in the piezocomposites. In order to determine 

the overall performance of piezocomposites, several micromechanical models have been 

developed. The results of the micromechanical models are the predictions of the 

effective properties and responses of heterogeneous materials based on the properties of 

the constituents and microstructural morphologies. The micromechanical model is 

formulated based on the assumption that a heterogeneous body is considered as a 

statistically homogeneous medium and the overall field variables, e.g., stress and strain, 

of the heterogeneous body can be evaluated by a volume-average scheme over a 

representative volume element (RVE). Early works on modeling 0-3 and 1-3 

piezocomposites based on the connectivity theory can be found in Banno (1983) and 

Smith and Auld (1991), respectively. Numerous micromechanical models have been 

formulated to study the overall performance of piezocomposites. For predicting the 

effective linear electromechanical properties of piezocomposites, Nan and Jin (1993) and 

Nan (1994) proposed the effective-medium theory; Dunn and Taya (1993a) applied four 

micromechanical models, i.e., dilute, Mori-Tanaka (MT), self-consistent (SC) and 

differential models; Aboudi (1998) used generalized method of cells model (presented in 

Aboudi, 1991); and Odegard (2004) extended Dvorak and Srinivas’s (1999) model. Only 

limited micromechanical models consider the nonlinear and field-dependent responses of 

piezoceramics embedded in an elastic matrix in predicting the responses of 

piezocomposites (Tan and Tong, 2001 and Muliana and Lin, 2011). For predicting 

responses of the composites having piezoelectric inhomogeneities in a linear viscoelastic 

matrix, Li and Dunn (2001a) as well as Jiang and Batra (2001) used the correspondence 
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principle of linear viscoelasticity within the MT model in order to determine the 

effective complex electromechanical moduli for piezoelectric fiber-reinforced and 

laminated composites. Muliana and Li (2010) presented a simplified micromechanical 

model and representative microstructures generated using finite element (FE) to estimate 

the linear time-dependent responses of 1-3 piezocomposites. Arafa and Baz (2000) used 

FE method to study the complex properties of a piezocomposite with PZT rods 

embedded in a viscoelastic matrix. It should be emphasized that the constitutive relations 

that were employed by these authors are restricted to the modeling of polarized 

piezocomposites. 

Only limited micromechanical models are available for predicting the hysteretic 

polarization switching responses of active composites comprising of piezoceramics 

inclusions. Aboudi (2005) used high fidelity generalized method of cells 

micromechanical model together with the phenomenological constitutive model 

proposed by Zhou and Chattopadhyay (2001) to predict the effective polarization 

switching responses of 1-3 active composites. Muliana (2010) extend the 

phenomenological constitutive model in Zhou and Chattopadhyay (2000) to incorporate 

inelastic mechanical responses to model hysteretic behaviors of piezoceramics and 

further implemented the constitutive model in a simplified micromechanical model in 

order to estimate overall hysteretic responses of a 1-3 active composite whose epoxy 

matrix is consider as a viscoelastic medium. Jayendiran and Arockiarajan (2012, 2013) 

adopted the equivalent layered approach proposed by Kar-Gupta and Venkatesh (2007) 

and the domain switching constitutive model based on a switching criterion proposed by 
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Jayabal et al. (2009) to study the effective hysteresis of 1-3 active composites. It should 

be noted that the above micromechanics models merely considered rate-independent 

hysteretic constitutive relations for piezoelectric constituents. 

1.2.3 Hybrid composites 

There have been several experimental studies conducted on enhancing the 

mechanical properties of 1-3 composites by dispersing particulate fillers into the matrix. 

For examples, hybrid composites show significant improvements in the transverse 

strength (Gadkaree, 1992, and Tsai and Wu, 2007), the flexural strength (Hussain et al., 

1996, Wang et al., 1997, and Asi, 2009), the longitudinal compressive strength (Vlasveld 

et al., 2005, Zheng et al., 2005, Subramaniyan and Sun, 2006, Cho et al., 2007 and 

Uddin and Sun, 2008), and the bearing strength (Asi 2010). Hagood and Bent (1993) and 

Bent and Hagood (1997) have shown that improvement in the overall dielectric 

constants of a 1-3 piezocomposite could be achieved by adding PZT powder with a 

dispersing agent into the epoxy matrix. Bent and Hagood (1997) also showed that a 

matrix system incorporating both dielectric and conductive fillers reduces the magnitude 

of voltages required for poling the 1-3 piezocomposites. Bent et al. (1995) discussed that 

1-3 piezocomposites, which have relatively low transverse stiffness, are unable to bear 

large transverse loads without any additional substrates to enhance the structural 

stiffness. 

While extensive micromechanics studies have been done on understanding 

responses of 1-3 piezocomposites (discussed in Section 1.2.2), only limited 

micromechanical models are available for predicting the overall responses of hybrid 
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piezocomposites, i.e., active composites comprising of multiple types and shapes of 

inclusions/inhomogeneities. Aldraihem et al. (2007) used the correspondence principle 

in conjunction with the MT model to evaluate the effective loss factor of a hybrid 

piezocomposite having shunted piezoelectric particles embedded in a conductive particle 

reinforced matrix. This model was extended by Aldraihem (2011) to derive the effective 

loss factor for a hybrid piezocomposite with orientation-dependent piezoelectric 

inhomogeneities and conductive inhomogeneities dispersed in a viscoelastic polymer.  

1.3 Research Objective 

This study presents micromechanical models for analyzing responses of active 

composites, including nonlinear electromechanical, time-dependent, and polarization 

switching responses for 1-3, 0-3, and hybrid piezocomposites. The specific aims are: 

1) Develop fiber-, particle-, and hybrid- unit-cell (UC) micromechanical 

models for predicting effective responses of 1-3, 0-3, and hybrid 

piezocomposites, respectively. The proposed micromechanical models are 

used to predict the overall nonlinear electromechanical, time-dependent, and 

polarization switching responses of the studied piezocomposites. 

2) Reformulate the widely used micromechanical model in literature, Mori-

Tanaka (MT) model, to include nonlinear polarized piezoelectric and linear 

viscoelastic constitutive models. This is done in order to compare the UC 

predictions with MT estimations. 

3) Validate the proposed UC micromechanical models with available 

experimental data in literature, e.g., Furukawa et al. (1976), Chan and 
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Unsworth (1989), Zeng et al. (2002), Hussain et al. (1996), and Jayendiran 

and Arockiarajan (2013). 

4) Perform parametric study to examine the effects of microstructural 

geometry, i.e., unidirectional fiber and particle, and volume content of the 

piezoelectric inhomogeneities as well as various boundary conditions on the 

overall nonlinear and time-dependent responses of 1-3, 0-3, and hybrid 

piezocomposites by using the proposed UC micromechanical models. 

5) Use the UC micromechanical models analyze electro-mechanical response of 

functionally graded piezoelectric bending actuator. 

 

 

 

 

 

 

 

 

 

14 

 



 

2 CHAPTER II  

CONSTITUTIVE MODELS3  

 

 

Piezoceramics are polarized by applying high electric field, above the coercive 

electric field at elevated temperature (Lines and Glass, 1977) before they are used in 

sensing and actuating applications. The polarized piezoceramics show electromechanical 

coupling response, which is quantified by piezoelectric constants. When high electric 

field is prescribed to the polarized piezoceramics, which is often the case in actuator 

applications, they exhibit nonlinear electromechanical coupling response. In this study, 

the constitutive model proposed by Tiersten (1993) is adopted for modeling nonlinear 

responses of polarized piezoceramics subject to a large electric field but smaller than 

coercive electric field of the piezoceramics. Another type of nonlinear electromechanical 

coupling response is hysteretic polarization switching response. Polarization switching 

can occur when high amplitude of cyclic electric field above the coercive electric field of 

the materials is considered. The constitutive model proposed by Sohrabi and Muliana 

(2013) is chosen for modeling the hysteretic polarization switching of piezoceramics. A 

linear viscoelastic constitutive model is used for the polymer constituent. This chapter 

3 Parts of this chapter are taken from: Lin, C.-H., and A. Muliana. 2013a. “Micromechanics Models for the 
Effective Nonlinear Electro-mechanical Responses of Piezoelectric Composites,” Acta Mech., 
224(7):1471-1492 and reprinted with permission of Springer Publishing, Inc. Copyright 2013 by Springer 
Publishing, Inc. and from: Lin, C.-H., and A. Muliana. 2013b. “Micromechanical Models for the Effective 
Time-dependent and Nonlinear Electromechanical Responses of Piezoelectric Composites,” J Intel. Mat. 
Syst. Str., doi:10.1177/1045389X13504477 and reprinted with permission of Sage Publications, Inc. 
Copyright 2013 by Sage Publications, Inc. 
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briefly discusses the constitutive models used for the constituents in the active 

composites followed by numerical methods for solving the coupled nonlinear electro-

mechanical constitutive relations. 

2.1 Polarized Piezoceramic Model 

2.1.1 Constitutive model 

A nonlinear constitutive model proposed by Tiersten (1993) for polarized 

piezoceramics undergoing large electric fields and small strains is: 

                                                                                    1 ,
2ij ijkl kl kij k klij l ks d E f E Eε σ= + +                                                     (2.1) 

1 ,
2i ikl kl ij j ijk k jD d E E Eσ κ χ= + +                                      (2.2) 

where ijε , ijσ , iE and iD are the scalar components of strain, stress, electric field and 

electric displacement, respectively. The material properties are the elastic compliances 

ijkls determined at a constant electric field, the third- and fourth-order piezoelectric strain 

coefficients ijkd and ijklf , respectively, which are determined at constant stresses; and the 

second- and third-order dielectric coefficients ijκ and ijkχ calibrated at constant stresses. 

The higher-order term of the electric field is introduced in order to better capture the 

nonlinear response of the polarized PZTs due to large electric driving fields. Tiersten 

(1993) also discussed an alternative form of the constitutive model when strain and 

electric field are taken as the independent field variables: 

1 ,
2ij ijkl kl kij k klij l kc e E b E Eσ ε= − −                                       (2.3) 
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1 .
2i ikl kl ij j ijk j kD e E E Eε εε κ χ= + +                                       (2.4) 

where ijklc is the elastic stiffness at a constant reference electric field, ijke and ijklb are the 

third- and fourth-order piezoelectric stress coefficients respectively, and ij
εκ and ijk

εχ are 

the second- and third-order dielectric coefficients at a constant reference strain. The 

material properties given in Equations (2.3) and (2.4) are related to those in Equations 

(2.1) and (2.2) by 

     ( ) 1 ,−=s c                                                            (2.5) 

               ,ijk imn jkmnd e s=                                                    (2.6) 

,ij ij imn jmne dεκ κ= +                                                (2.7) 

              ,ijkl ijmn klmnf b s=                                                     (2.8) 

          .ijk ijk imn jkmne fεχ χ= +                                                (2.9) 

Boldface variables indicate first order tensors or higher, for example, the fourth order 

tensors s and c in Equation (2.5). 

2.1.2 Linearized constitutive model 

For convenience in analyzing the time-dependent and nonlinear 

electromechanical behavior, we present a linearized incremental form of the constitutive 

relations, i.e., Equations (2.1) and (2.2). The incremental independent field variables at 

current time t are chosen as: 

,t t t t−∆∆ = −σ σ σ                                                  (2.10) 

,t t t t−∆∆ = −E E E                                                 (2.11) 
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where superscript t t−∆ denotes the previous time and t∆ is the current incremental 

time. The linearized constitutive relation can be expressed in a single equation, which 

follows a conventional indicial notation with lower case subscripts range from 1 to 3 

while upper case subscripts range from 1 to 4: 

,t t t t t
iJ iJMn Mn iJO T −∆Ξ = ∆ +Ξ                                    (2.12) 

where      

, 1,2,3,

, 4,

t
ijt

iJ t
i

J

D J

ε =Ξ = 
=

                                       (2.13) 

   

, , 1, 2,3,

' , 1, 2,3; 4,

, 4; 1,2,3,

, , 4,

t
ijmn

t
nijt

iJMn t
imn
t
in

s J M

d J M
O

d J M
J Mκ

 =


= =
= 

= =


=









                              (2.14) 

                                                       
, 1, 2,3,

, 4.

t
mnt

Mn t
n

M
T

E M
σ∆ =∆ = 

∆ =
                                      (2.15) 

The components of t
iJMnO are represented by a 9 by 9 matrix. Vectors t

iJΞ and t
MnT∆ are 9 

by 1 column vectors and t t
iJ
−∆Ξ is the history variables of the dependent field variables 

t
iJΞ . A factor of two for the shear strains is accounted for in the vector t

iJΞ . This matrix 

formulation of the linearized constitutive relation will be used in the next chapter 

(Chapter III) for the micromechanical analysis. After some algebraic manipulations, the 

resulting components of t
iJMnO and t t

iJ
−∆Ξ  for constitutive model of polarized 

piezoceramics are summarized as: 

,t
ijmn ijmns s=                                                           (2.16) 
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1' ,
2

t t
nij nij nlij ld d f E= +                                          (2.17) 

,t
imn imnd d=                                                           (2.18) 

1 ,
2

t t
in in ink kEκ κ χ= +                                             (2.19) 

1 ,
2

t t t t t t t
ij ijkl kl kij klij l ks d f E Eε σ−∆ −∆ −∆ = + + 

 
           (2.20) 

1 .
2

t t t t t t t
i ikl kl ij ijk k jD d E Eσ κ χ−∆ −∆ −∆ = + + 

 
           (2.21) 

2.2 Hysteretic Polarization Switching for Piezoceramics 

2.2.1 Constitutive model 

A rate-dependent electromechanical constitutive model, incorporating 

polarization switching response, formulated by Sohrabi and Muliana (2013), is given as: 

( ) 4 2 ,t t t t t t t
ij ij ijkl kl nij nm mkl kl kij kt s g g g Pε ε σ κ σ≡ = + +                           (2.22) 

2 ,t t t t
i im mkl kl iD g Pκ σ= +                                                      (2.23) 

where t
ijkg is the scalar component of the third-order piezoelectric coefficient which is 

dependent on the current polarization 3
tP with the x3 direction chosen as the poling axis. 

The upper right superscript t  indicates the current time. The piezoelectric constant t
ijkg  is 

assumed as: 

3

13 ,

tPt
ct r

ijk ijk
r

Pg e g
P

−

=                                                (2.24) 
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where r
ijkg is the scalar component of the third-order piezoelectric coefficient measured at 

constant (remanent) polarization rP . It is noted that 1 .r r−=g κ d , where rd is the direct 

piezoelectric constant measured at remanent polarization. The scalar components of the 

polarization are 

1 11 1 ,t tP Eκ=                                                          (2.25) 

2 22 2.t tP Eκ=                                                          (2.26) 

3 3 3( , ) ( ),t tP R E t Q Eτ= +                                        (2.27) 

where 3( , )R E tτ  is the time-dependent reversible polarization at current time t  with 

(0, )R t =0 while 3( )tQ E is the residual (irreversible) polarization. The upper right 

superscript τ denotes the previous time variable. The reversible polarization is written 

as: 

0 3
3 30

3

( , ) ( , ) ,
tt dER R E t R E t d

E d

τ
τ

τ τ τ
τ

∂
= + −

∂∫                   (2.28) 

where  

0 0 0
3 0 3 1 3

1

( , ) ( ) ( ) 1 exp .tR E t R E R E
τ

  
= + − −     

             (2.29) 

Both 0 3( )R Eτ and 1 3( )R Eτ are function of 3Eτ . The characteristic time 1τ indicates the 

speed of polarization changes. The irreversible polarization is given as: 

3

30
3

.
tEt dQQ dE
dE

τ
τ

τ= ∫                                                (2.30) 

The rate of the residual polarization during polarization switching response is: 
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 ≤ < < − < ≤ >



= − ≤ < ≤ < ≤ ≥

    − − − ≤ < − ≤ < ≤ ≥  

 

 

                                                                                                                                     (2.31) 

where , , , nλ µ ω are the material parameters that are calibrated from experiments. A 

similar function with different material parameters can be used for modeling the initial 

polarization, as discussed in Muliana (2011). 

The compressive stresses along the poling axis could significantly affect the 

hysteretic polarization switching response. In this study, it is assumed that the coercive 

electric field varies with the compressive stresses along the x3 direction: 

0
33 33

0
33

( , ), 0,

, 0,

t t
c c

c t
c

E E
E

E
σ σ

σ

 <= 
≥

                                   (2.32) 

where 0
cE is the coercive electric field in absence of mechanical stresses. In order to 

incorporate the effect of compressive stress on the polarization switching responses, it is 

assumed that the compressive stress that is higher than the coercive stress limit affects 

the current polarization state 3
tP and the piezoelectric coefficient t

ijkg : 

                  
2 333

13 ,

tt

c

cPt
ct r

ijk ijk
r

Pg e e g
P

σ

σ

−−

=                2 330, if ,t
cc σ σ= > −              (2.33) 

where cσ is the coercive stress limit and 2C is a material parameter. 
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2.2.2 Linearized constitutive model 

A recursive time-integration algorithm presented in Taylor et al. (1970) is used to 

numerically evaluate the time integral forms of the constitutive models, i.e., Equation 

(2.28). After some algebraic manipulations, the resulting components of t
iJMnO and t t

iJ
−∆Ξ  

for constitutive model for modeling hysteretic polarization switching responses of 

piezoceramics are summarized as: 

4 ,t t t
ijmn ijmn kij kl lmns s g gκ= +                                                               (2.34) 

' 2 ,t t t
nij nij kld g K=                                                                              (2.35) 

2 ,t t
imn ij jmnd gκ=                                                                              (2.36) 

,t t
in inKκ =                                                                                      (2.37) 

( ) ( )4 2 ,t t t t t t t t t t
ij ijkl nij nm mkl kl kij k ks g g g P Fε κ σ−∆ −∆ −∆= + + +                 (2.38) 

2 ,t t t t t t t t
i im mkl kl i iD g P Fκ σ−∆ −∆ −∆= + +                                                (2.39) 

where 0 3( )R Eτ and 1 3( )R Eτ  in Equation (2.29) are considered as linear functions: 

0 3 0 3

1 3 1 3

( ) ,

( ) ,

R E E
R E E

τ τ

τ τ

κ

κ

=

=
                                                  (2.40) 

where 0κ  is referred to the dielectric constant of a macroscopically unpolarized 

ferroelectric ceramics corresponding to the second-order permeability tensor in a multi-

axial case while 1κ  is the time-dependent part of the dielectric constant. In Equations 

(2.35) and (2.37), t
ijK is: 
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0 1

, 1,
, 2,

, 3,
0, .

t
ij t

i j
i j

K
Q i j

i j

κ
κ

κ κ

= =
 = == 

+ + ∆ = =
 ≠

                                  (2.41) 

Using the rate of residual polarization in Equation (2.31), the incremental residual 

polarization at current time t is approximated by: 

3
3

.
t

t t
t

dQQ E
dE

∆ ≈ ∆                                                   (2.42) 

In Equations (2.38) and (2.39), t
ijF and t

iP are: 

1 3 3 1 3 3

1 3 1 3

0, 1, 2,

( ) ( )1 exp[ ] exp[ ] , 3,
2

t t t t t t t
i t t

t t t

i
F R E dE R E dEt t tq i

E dt E dtτ τ

−∆ −∆
−∆

−∆

=
=    ∂ ∂∆ ∆ ∆ − − − + − =   ∂ ∂   

                

                                                                                                                                     (2.43) 

,t t t t
i i iP P P−∆= + ∆                                                 (2.44) 

where the history variable related to the polarization is: 

1 3 3 1 3 3

1 3 1 3

( ) ( )exp[ ] exp[ ] ,
2

t t t t t t
t t t

t t t

R E dE R E dEt t tq q
E dt E dtτ τ

−∆ −∆
−∆

−∆

 ∂ ∂∆ ∆ ∆
= − + + − ∂ ∂ 

           (2.45) 

and the incremental polarization is determined by: 

.t t t t
i ij j iP K E F∆ = ∆ +                                             (2.46) 

2.3 Polymers 

2.3.1 Constitutive model 

For the inactive constituent, a constitutive model for isotropic viscoelastic solid 

is considered: 
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    ( ) ( )
0 0

1 2
1 ( ) ( ) ,

3
t tijt kk

ij ij

dS dD t d D t d
d d

τ τν σε ν τ τ δ τ τ
τ τ

−
= + − + −∫ ∫                     (2.47) 

    .i ij jD Eκ=                                                        (2.48) 

For simplicity, we assume that the corresponding linear elastic Poisson’s ratio v in to 

Equation (2.47) and dielectric constant ijκ in to Equation (2.48) are time-independent4. 

t
ijS and t

kkσ are the components of the deviatoric stress and volumetric stress tensors at 

current time t, respectively. ijδ is the Kronecker delta. ( )D t is the extensional (uniaxial) 

time-dependent compliance, which is expressed as: 

( )0
1

( ) 1 exp[ ] .
N

n n
n

D t D D tλ
=

= + − −∑                                  (2.49) 

Here 0D is the instantaneous (elastic) compliance and the transient compliance is 

expressed in terms of a series of exponential functions (i.e., Prony series), where N is 

the number of terms, nD is the nth coefficient of the time-dependent compliance and nλ

is the nth reciprocal of retardation time. The constitutive relation in Equation (12) 

reduces to linear elastic response in absence of the time-dependent variables. 

2.3.2 Linearized constitutive model 

Again, the recursive time-integration algorithm presented in Taylor et al. (1970) 

is used to numerically evaluate the time integral forms of the constitutive models, i.e., 

4 Limited studies from Schapery (1974) and Le Moal and Perreux (1994) on the epoxy materials used for 
composites show that the Poison’s effect is nearly constant. Several experimental studies suggest that the 
dielectric properties of polymers and piezoelectric materials are time-dependent, and the piezoelectric 
constants of several piezoceramics also show time-dependent behaviors. In this study we want to highlight 
the effect of the viscoelastic polymers on the overall electromechanical responses of piezocomposites; 
therefore we assumed the rest of the properties are time-independent for the polymers. 
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Equation (2.47). After some algebraic manipulations, the resulting components of t
iJMnO

and t t
iJ
−∆Ξ  for constitutive model of viscoelastic polymers are summarized as: 

1 1 2 ,
3 3

t
ijmn ij mn ik jl il jks B J J Jδ δ δ δ δ δ = − + − 

 

   

                                          (2.50) 

' 0,t
nijd =                                                                                                      (2.51) 

0,t
imnd =                                                                                                      (2.52) 

,t t
in inκ κ=                                                                                                     (2.53) 

( ) ( )12 ,
3

t t t t t t t t t t t
ij ij ij ij ij ij kk kkJS d JS d B Vε δ σ−∆ −∆ −∆ −∆ = − + − + + −  

  

                (2.54) 

.t t t t
i ij jD Eκ−∆ −∆=                                                                                          (2.55) 

 

In Equations (2.50), B


, J


, t
ijd  and t

kkV are: 

( ) 0
1 1

1 exp[ ]1 2 ,
N N

t n
n n

n n n

tB D D D
t
λν

λ= =

 − − ∆
= − + − ∆ 

∑ ∑


                              (2.56) 

( ) 0
1 1

1 exp[ ]1 ,
N N

t n
n n

n n n

tJ D D D
t
λν

λ= =

 − − ∆
= + + − ∆ 

∑ ∑


                                 (2.57) 

( ) ,
1

1 exp[ ]1 exp[ ] ,
N

t t t t tn
ij n n ij n ij

n n

td J t q S
t
λν λ

λ
−∆ −∆

=

 − − ∆
= + − ∆ − ∆ 

∑                 (2.58) 

( ) ,
1

1 exp[ ]1 2 exp[ ] ,
N

t t t t tn
kk n n kk n kk

n n

tV J t q
t
λν λ σ

λ
−∆ −∆

=

 − − ∆
= − − ∆ − ∆ 

∑               (2.59) 

 

where the history variables related to the deviatoric and volumetric strains are: 
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( ), ,
1 exp[ ]exp[ ] ,t t t t t tn

ij n n ij n ij ij
n

tq t q S S
t
λλ

λ
−∆ −∆ − − ∆

= − ∆ + − ∆ 
                        (2.60) 

( ), ,
1 exp[ ]exp[ ] .t t t t t tn

kk n n kk n kk kk
n

tq t q
t
λλ σ σ

λ
−∆ −∆ − − ∆

= − ∆ + − ∆ 
                      (2.61) 
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3 CHAPTER III  

MICROMECHANICAL MODELS FOR FIBER, PARTICLE, AND HYBRID 

PIEZOCOMPOSITES5 

 

 

This chapter presents simplified UC micromechanical models for studying 

nonlinear electromechanical, time-dependent, and polarization switching responses for 

1-3, 0-3, and hybrid piezocomposites followed by formulation of MT model in order to 

include nonlinear polarized piezoelectric and linear viscoelastic constitutive relations. 

3.1 Fiber- and Particle-unit-cell Models (An Incremental Formulation) 

Fiber- and particle-unit-cell models are formulated which result in a rough 

approximation of the effective properties and responses of 1-3 and 0-3 composites, 

respectively. The composite microstructures are idealized with periodically distributed 

arrays of inhomogeneities in a homogeneous matrix. Figure 3.1 illustrates idealized 

microstructures for the 1-3 and 0-3 composites. A unit cell (UC) is selected as a 

representative volume element (RVE) and each UC is divided into several subcells. The 

first subcell denotes the inhomogeneity constituent and the rest of the subcells indicate 

the homogeneous matrix phase. A fiber UC with a unidirectional square fiber consisting 

5 Parts of this chapter are taken from: Lin, C.-H., and A. Muliana. 2013a. “Micromechanics Models for the 
Effective Nonlinear Electro-mechanical Responses of Piezoelectric Composites,” Acta Mech., 
224(7):1471-1492 and reprinted with permission of Springer Publishing, Inc. Copyright 2013 by Springer 
Publishing, Inc. and from: Lin, C.-H., and A. Muliana. 2013b. “Micromechanical Models for the Effective 
Time-dependent and Nonlinear Electromechanical Responses of Piezoelectric Composites,” J Intel. Mat. 
Syst. Str., doi:10.1177/1045389X13504477 and reprinted with permission of Sage Publications, Inc. 
Copyright 2013 by Sage Publications, Inc. 
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of four subcells and a particle unit cell with a cubic particle consisting of eight subcells 

are used to approximate the responses of the 1-3 and 0-3 composites, respectively. The 

interfaces between all subcells are assumed perfectly bonded. 

 

 

Figure 3.1   Fiber- and particle-unit-cell models. 
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            The UC models are formulated based on simple micromechanical relations by 

satisfying equilibrium condition and displacement compatibility among all subcells. The 

time-integration algorithms for the rate-dependent ferroelectric ceramics, i.e., Equation 

(2.28), and viscoelastic matrix, i.e., Equation (2.47) are integrated to the UC models in 

order to obtain approximate solutions of the overall nonlinear and time-dependent 

responses of the 1-3 and 0-3 composites. 

The linearized effective field variables, denoted by an overbar, of the UCs at 

current time t are determined based on: 

( ) ( ),

1
,

n
t tc α α

α=

=∑Ξ Ξ                                                   (3.1) 

where the superscript α denotes the subcells’ number and n is the number of subcells 

(e.g. n=4 for a fiber UC and n=8 for a particle UC). The variable ( ),tαΞ is the average 

field variable within each subcell with a volume ( )V α . The UC volume V is given by 

    ( )

1
.

n

V V α

α=

=∑                                                       (3.2) 

A linearized constitutive relation for the composite at current time t is written as: 

,t t t t t−∆= ∆ +Ξ O T Ξ                                                (3.3) 

and also for the subcell ( )α  is: 

      ( ), ( ), ( ), ( ), .t t t t tα α α α −∆= ∆ +Ξ O T Ξ                                     (3.4) 

In order to relate the effective incremental independent field variable in the UC to the 

corresponding incremental field variable in its subcells, a concentration matrix ( ),tαB and 

a vector of history variables ( ),tαX at current time t are defined through the relation: 
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      ( ), ( ), ( ), .t t t tα α α∆ = ∆ +T B T X                                          (3.5) 

Substituting ( ),tα∆T from Equation (3.5) into (3.4) gives 

    ( ), ( ), ( ), ( ), ( ), ( ), .t t t t t t t tα α α α α α −∆= ∆ + +Ξ O B T O X Ξ                          (3.6) 

Substituting ( ),tαΞ from Equation (3.6) into (3.1) gives 

( )( ) ( ), ( ), ( ) ( ), ( ), ( ),

1 1
.

n n
t t t t t t t tc cα α α α α α α

α α

−∆

= =

= ∆ + +∑ ∑Ξ O B T O X Ξ                      (3.7) 

From Equations (3.7) and (3.3), the effective electro-mechanical properties and history 

variables of the UC are: 

         ( ) ( ), ( ),

1
.

n
t t tc α α α

α=

=∑O O B                                             (3.8) 

          ( )( ) ( ), ( ), ( ),

1
.

n
t t t t t tc α α α α

α

−∆ −∆

=

= +∑Ξ O X Ξ                                 (3.9) 

In order to evaluate the concentration matrices and history variables ( ),tαB , ( , ),tα βB and 

( ),tαX , ( , ),tα βX in the fiber- and particle-unit-cell models it is necessary to include the 

constitutive relations for the different constituents together with the linearized 

micromechanical relations from the fiber UC and the particle UC. The linearized 

micromechanical relations for the fiber and particle UCs are listed in Appendix A and 

B, respectively. Because of the nonlinear constitutive relations for the constituents, the 

linearized micromechanical relations generally violate the overall nonlinear responses, 

which results in the following residual vector:  

       { } { } [ ]{ } { },t t t t t
s = ∆ − ∆ + R P T Q T Y                               (3.10) 

where 
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                                              { } { }(1), (2), ( ),, , , ,t t t n t
s∆ = ∆ ∆ ∆T T T T

T
                               (3.11) 

and { }tY  includes the zero components resulting from stress and electric field 

equilibrium conditions through the subcells, and the differences in the history variables 

from imposing displacement compatibility and electric potential continuity at the 

interfaces between the adjacent subcells. t  P matrix is a function of the electric fields, 

material parameters and the volume fraction of each subcell at current time t and the 

[ ]Q matrix is a constant matrix from the micromechanical relations. A fixed-point 

iterative method is used to minimize the above residual vector at each time step. Once 

the residual vector has been minimized, the increment of the independent field variable 

in each subcell is given as: 

{ } { } { },t t t t
s s s ∆ = ∆ + T B T X                                            (3.12) 

where 

       [ ]1
,t t

s

−
   =   B P Q                                                   (3.13) 

       { } { }1
.t t t

s

−
 = −  X P Y                                               (3.14) 

t
s  B includes the elements of the concentration matrix ( ),tαB , i.e., 

(1), (2), ( ),, , , .t t t n t
s   =   B B B B

T
                                    (3.15) 

{ }t
sX consists of the history variables ( ),tαX , i.e., 

{ } { }(1), (2), ( ),, , , .t t t n t
s =X X X X

T
                                   (3.16) 
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Once ( ),tαB  and ( ),tαX have been determined, the effective electro-mechanical properties 

inside tO and the field variables in tΞ are evaluated via Equations (3.8), and (3.1), (3.6), 

respectively. It is noted that different incremental independent field variables, e.g., (∆ε ,

∆E ) can be chosen to derive the fiber- and particle-unit-cell models following a similar 

procedure. 

3.2 Hybrid-unit-cell Model (An Incremental Formulation) 

A hybrid-unit-cell model for obtaining the overall responses of hybrid 

composites whose constituents experience nonlinear electro-mechanical and viscoelastic 

behaviors is presented in this section. The microstructures of a hybrid composite are 

idealized with periodically distributed fibers of square cross section in a matrix medium 

and the microstructures of the matrix are idealized with periodically distributed cubic 

particles in a homogeneous viscoelastic matrix. Here, we consider a UC as the smallest 

representative microstructures and each UC is divided into several subcells. Figure 3.2 

illustrates an idealized UC for the RVE of the hybrid composites. At the upper scale, a 

hybrid-UC model consists of a fiber-UC model, comprising of four fiber and matrix 

subcells, and the lower scale is a particle-UC model, having eight particle and polymer 

subcells. The particle-UC model is implemented at each matrix subcell in the fiber-UC 

model. The first subcell of the fiber UC is the unidirectional square fiber constituent and 

the rest of the subcells represent the matrix, which is a homogenized composite of the 

particule UCs. The first subcell of the particule UC is the cubic particle constituent and 

the remaining subcells in the particule UC indicate the homogeneous viscoelastic matrix. 

The fiber and particle UCs lead to rather simple micromechanical relations by satisfying 
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equilibrium condition and displacement compatibility among all subcells. The time-

integration algorithm for the rate-dependent PZT (Equation (2.28)) and viscoelastic 

matrix (Equation (2.47)) is nested to the hybrid-unit-cell model in order to obtain 

approximate solutions of the overall nonlinear and time-dependent responses of the 

hybrid composites.  

 

 

Figure 3.2   Hybrid-unit-cell model 
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For the derivation of the hybrid-UC model, we start with the fiber UC. Using a 

volume-average scheme, the effective field variable, denoted by an overbar, of the fiber 

UC at current time t  is written as: 

                                                                
IV

( ) ( ),

I
.t tc α α

α=

=∑Ξ Ξ                                                 (3.17) 

The superscript ( )α denotes the subcell’s number of the fiber unit cell. The fiber volume 

fraction is defined as (I) (I)c V V= (i.e., volume fraction of the fibers with respect to the 

hybrid composite) and the fiber UC volume is given by IV ( )
I

V Vα α
α

=

=
=∑ . A linearized 

constitutive relation for the fibrous composite at current time t is written as: 

          ,t t t t t−∆= ∆ +Ξ O T Ξ                                                (3.18) 

and also for the subcell ( )α  is: 

   ( ), ( ), ( ), ( ), .t t t t tα α α α −∆= ∆ +Ξ O T Ξ                                      (3.19) 

In order to relate the effective incremental independent field variables in the fiber UC to 

the corresponding incremental field variables in its subcells, a concentration matrix 

( ),tαB and a vector of history variable ( ),tαX at current time t are defined through the 

following relation: 

     ( ), ( ), ( ), .t t t tα α α∆ = ∆ +T B T X                                          (3.20) 

Substituting ( ),tα∆T from Equation (3.20) into (3.19) gives 

    ( ), ( ), ( ), ( ), ( ), ( ), .t t t t t t t tα α α α α α −∆= ∆ + +Ξ O B T O X Ξ                        (3.21) 

Substituting ( ),tαΞ from Equation (3.21) into (3.17) gives 
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( )
IV IV

( ) ( ), ( ), ( ) ( ), ( ), ( ),

I I
.t t t t t t t tc cα α α α α α α

α α

−∆

= =

= ∆ + +∑ ∑Ξ O B T O X Ξ                    (3.22) 

From Equations (3.22) and (3.18), the effective electro-mechanical property and history 

variable of the fibrous UC are: 

      
IV

( ) ( ), ( ),

1
.t t tc α α α

α=

=∑O O B                                               (3.23) 

       ( )
IV

( ) ( ), ( ), ( ),

1
.t t t t t tc α α α α

α

−∆ −∆

=

= +∑Ξ O X Ξ                                  (3.24) 

The linearized constitutive model for the fiber subcell I is obtained directly from 

Equation (2.12). The matrix subcells II, III, and IV in the fiber unit cell consist of cubic 

fillers dispersed in the matrix. The electro-mechanical properties of these subcells are 

determined using the particle-unit-cell model, comprising of eight subcells (Figure 3.2). 

The average dependent field variables in the matrix subcells II, III, and IV are 

determined as:       

       
8

( ), ( , ) ( , ),

1
, II, III, IV.t tcα α β α β

β

α
=

= =∑Ξ Ξ                                (3.25) 

The superscript ( , )α β indicates the subcells’ numbers corresponding to the particle UC

( )β  and fiber UC ( )α . The particle volume fraction is defined as (II,1) (II,1) (II)c V V=

(volume fraction of the filler particles in the matrix) which should be the same as (III,1)c

and (IV,1)c . The corresponding particle UC volumes are given by 8( ) ( , )
1

V Vβα α β
β

=

=
=∑ with 

II, III, IVα = . The linearized constitutive relation for the particulate subcell ( , )α β at 

current time t is: 
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( , ), ( , ), ( , ), ( , ), , II, III, IV, 1,2,..,8.t t t t tα β α β α β α β α β−∆= ∆ + = =Ξ O T Ξ      (3.26) 

The concentration matrix ( , ),tα βB and the vector of history variable ( , ),tα βX at current time 

t are defined through the relation: 

( , ), ( , ), ( ), ( , ), , II, III, IV, 1,2,..,8,t t t tα β α β α α β α β∆ = ∆ + = =T B T X         (3.27) 

which relates the incremental independent average field variables of the matrix subcells 

II, III and IV to the corresponding incremental field variables of the particle and matrix 

subcells. Substituting Equation (3.27) into Equation (3.26) and using the volume-average 

scheme in Equation (3.25), the corresponding dependent field variables for the matrix 

subcells are:  

( )
8 8

( ), ( , ) ( , ), ( , ), ( ), ( , ) ( , ), ( , ), ( , ),

1 1
, II, III, IV.t t t t t t t tc cα α β α β α β α α β α β α β α β

β β

α−∆

= =

= ∆ + + =∑ ∑Ξ O B T O X Ξ     

                                                                                                                                     (3.28) 

Comparing Equation (3.28) to Equation (3.4) gives the overall electro-mechanical 

properties and history variables of the matrix subcells: 

8
( ), ( , ) ( , ), ( , ),

1
, II, III, IV.t t tcα α β α β α β

β

α
=

= =∑O O B                          (3.29) 

( )
8

( ), ( , ) ( , ), ( , ), ( , ),

1
, II, III, IV.t t t t t tcα α β α β α β α β

β

α−∆ −∆

=

= + =∑Ξ O X Ξ             (3.30) 

Finally, in order to evaluate the concentration matrices and history variables ( ),tαB , 

( , ),tα βB and ( ),tαX , ( , ),tα βX in the hybrid-UC model it is necessary to use the constitutive 

relations for all constituents together with the linearized micromechanical relations from 

the fiber unit cell (Appendix A) and the particle unit cell (Appendix B). Because of the 
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nonlinear constitutive relations for the constituents, the linearized micromechanical 

relations generally violate the overall nonlinear responses, which results in the following 

residual vector:  

      { } { } [ ]{ } { }
252 9252 252252 1 252 1 9 1 252 1

,t t t t t
s

××× × × ×

 = ∆ − ∆ + R P T Q T Y                                 (3.31) 

where 

{ } { }(I), (IV), (II,1), (II,8), (III,1), (III,8), (IV,1), (IV,8),, , , , , , , , , , , ,t t t t t t t t t
s∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆T T T T T T T T T   

T

                                                                                                                                     (3.32) 

and { }tY includes the zero entities due to stress and electric field equilibrium conditions 

in the subcells, and the differences in the history variables from the displacement 

compatibility and electric displacement continuity at the interfaces between the adjacent 

subcells. t  P matrix is a function of the electric fields, material parameters and the 

volume fraction of each subcell at current time t and the [ ]Q matrix is a constant matrix 

from the micromechanical relations. The dimension of each matrix is denoted on its 

bottom. A fixed-point iterative method is used to minimize the above residual vector at 

each time step. Once the residual vector has been minimized, the increment of the 

independent field variable in each subcell is given as: 

{ } { } { },t t t t
s s s ∆ = ∆ + T B T X                                            (3.33) 

where 

        [ ]1
,t t

s

−
   =   B P Q                                                  (3.34) 

     { } { }1
.t t t

s

−
 = −  X P Y                                                 (3.35) 

37 

 



 

t
s  B comprises the elements of the concentration matrices ( ),tαB and ( , ),tα βB , i.e., 

       (I), (IV), (II,1), (II,8), (III,1), (III,8), (IV,1), (IV,8),, , , , , , , , , , , .t t t t t t t t t
s   =   B B B B B B B B B   

T
              

                                                                                                                                     (3.36) 

{ }t
sX includes the history variables ( ),tαX and ( , ),tα βX , i.e., 

       { } { }(I), (IV), (II,1), (II,8), (III,1), (III,8), (IV,1), (IV,8),, , , , , , , , , , , .t t t t t t t t t
s =X X X X X X X X X   

T
             

                                                                                                                                     (3.37) 

Once ( ),tαB , ( , ),tα βB , ( ),tαX and ( , ),tα βX have been determined, the effective electro-

mechanical property tO and the field variable tΞ are evaluated via Equations (3.8), 

(3.29) and (3.1), (3.6), (3.29), (3.30), respectively. It is noted that different incremental 

independent field variables, e.g., (∆ε ,∆E ) can be chosen to derive the hybrid-UC model 

following a similar procedure. 

3.3 Mori-Tanaka Model with Correspondence Principle (A Total Formulation) 

A reformulation of Mori-Tanaka micromechanical model is done in order to 

estimate the overall responses of 1-3 and 0-3 polarized piezocomposites, whose 

piezoceramic inhomogeneities are modeled with higher order electromechanical 

constitutive model proposed by Tiersten (1993), while the polymeric matrix is assumed 

linear viscoelastic. There exists certain correspondence between the elastic and 

viscoelastic solutions of an initial-boundary value problem. Discussion and limitation on 

using the correspondence principle for linear viscoelastic problems can be found in 

Christensen (1982) and Rajagopal and Wineman (2008). Since the constitutive relation 

of the polymeric matrix is linear viscoelastic (i.e., Equation (2.47)) and the model for the 
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polarized piezoceramic inhomogeneities is field-dependent but time-independent, i.e., 

constitutive Equations (2.1), (2.2), (2.3), and (2.4), the correspondence principle is 

applicable through the use of the Laplace-Carson transform (see Laws and McLaughlin, 

1978) 

     
0

ˆ ( ) exp[ ] ( ) ,f s s st f t dt
∞

= −∫                                       (3.38) 

where the hat indicates the transformed function of the time-dependent function ( )f t and 

s is the transform variable. Equation (2.47) in a transformed domain is written as 

          ( ) ( )1 2ˆˆ ˆˆ ˆ1 ,
3ij ij ij kkDS D
ν

ε ν δ σ
−

= + +                                   (3.39) 

which is mathematically similar to the constitutive relation for a linear elastic isotropic 

material. Detailed discussions on the Laplace-Carson transform for viscoelastic 

problems for composite materials can be found in Li et al. (2006). Via the 

correspondence principle, the micromechanical models developed for the elastic 

problems can be expressed in the transformed domain for the corresponding viscoelastic 

problems. A total formulation in terms of linearized relations of the nonlinear polarized 

piezoelectric constitutive relations (Equations (2.1) and (2.2)) is chosen and written as: 

,iJ iJMn MnO TΞ =                                                    (3.40) 

where      

, 1, 2,3,

, 4,
ij

iJ
i

J

D J

ε =Ξ = 
=

                                       (3.41) 
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                             (3.42) 

                                                            
, 1, 2,3,

, 4.
mn

Mn
n

M
T

E M
σ == 

=
                                       (3.43) 

The components, ijmns , 'nijd , imnd , and inκ , in Equation (3.42) are:  

,ijmn ijmns s=                                                           (3.44) 

1' ,
2nij nij nlij ld d f E= +                                          (3.45) 

,imn imnd d=                                                           (3.46) 

1 .
2in in ink kEκ κ χ= +                                             (3.47) 

For a two-phase polarized piezocomposite, the volume-average field variables in 

transformed domain are written as 

              
1

0

ˆ ˆ ,r r
r

c
=

=∑T T                                                        (3.48) 

                                                                   
1

0

ˆ ˆ ,r r
r

c
=

=∑Ξ Ξ                                                      (3.49) 

where rc is volume fraction of the rth phase and the overbar denotes the volume average 

of a given term. r = 0 indicates the polymeric matrix and r = 1 represents the polarized 

piezoceramic inhomogeneity. In an average sense, the transformed constitutive relation 

for the polarized piezocomposite is expressed as 
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     ˆˆ ˆ ,=Ξ OT                                                           (3.50) 

and for the rth phase is 

                ˆˆ ˆ .r r r=Ξ O T                                                        (3.51) 

where the effective generalized compliance Ô will be determined in terms of a 

concentration tensor that relates the average field variables and field variables in each 

phase. Following Hill (1963), if the RVE in a composite can be defined, there is a unique 

dependence of the average field variables in the rth phase upon the overall field variables 

in the polarized piezocomposite. This dependence is defined using a transformed 

concentration tensor ˆ
rB : 

    ˆˆ ˆ .r r=T B T                                                         (3.52) 

Using Equations (3.48)-(3.52), the effective generalized compliance of the polarized 

piezocomposite in transformed domain is 

            
1

0

ˆ ˆ ˆ .r r r
r

c
=

=∑O O B                                                    (3.53) 

The transformed concentration tensor of the MT model is 

      
1

0 1 1
ˆ ˆ ˆ ,dil dil

r r c c
−

 = + B B I B                                           (3.54) 

where               

 ( ) 1
1

0 0
ˆ ˆ ˆ ˆˆ .dil

r r r

−
− = + − B I O O O                                     (3.55) 

Detailed formulations of the MT model can be found in Mori and Tanaka (1973), Weng 

(1984) and Benvensite (1987). In Equations (3.54) and (3.55) I is the combination of the 

41 

 



 

second- and fourth-order identity tensors, and ˆ
r is the transformed Eshelby’s tensor of 

the rth phase. Since the geometries of inhomogeneities considered here are unidirectional 

fibers with circular cross section or spherical particles and the corresponding elastic 

matrix is isotropic, Eshelby’s tensor will only depend on Poisson’s ratio of the 

corresponding viscoelastic matrix. Furthermore, due to the time-independent Poisson’s 

ratio for the polymeric matrix (see Equation (2.47)), the transformed Eshelby’s tensor is 

identical to the one for the elastic matrix, i.e., 

       ˆ .r r=                                                          (3.56) 

Equation (3.56) greatly simplifies the evaluation of the transformed concentration tensor 

ˆ
rB in Equation (3.54). Evaluation of Eshelby’s tensors for polarized piezocomposites 

with linear elastic matrix can be found in Dunn and Taya (1993b) in which the 

independent field variable pair ( ε , E ) were used to derive Eshelby’s tensors, while for 

the Equation (3.55) the independent field variable pair ( σ , E ) is chosen. A useful 

procedure to formulate Eshelby’s tensors from different independent field variable pair 

was provided by Li and Dunn (2001b). Due to the nonlinear responses of the polarized 

piezoelectric inhomogeneities, the linearization procedure provided in Equation (3.40) 

leads to an implicit problem: ˆ
rB depends on the linearized property ˆ

rO and the linearized 

property is a function of ˆ
rT , which also depends on ˆ

rB . This implicit problem can be 

expressed in a residual vector using Equation (3.52) and it should be defined at current 

time t : 
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   { } 0 01

1 1

ˆˆ ˆ
,

ˆˆ ˆ
t −

 − =  
 − 

T B T
R

T B T
                                                (3.57) 

where the operator 1− is the inversion of Laplace-Carson transform of a given 

transformed function ˆ ( )f s and defined as 

    1
ˆ1 ( )ˆ ( ) exp[ ] ,

2
i

i

f sf s st ds
i s

γ

γπ
+ ∞−

− ∞
  =  ∫                                   (3.58) 

In Equation (3.57), the error should be corrected at each instant of time t . A trial 

solution for the unknown rT together with a fixed-point iterative method is used to 

minimize the residual vector at each time step. Once the residual vector has been 

minimized, the transformed concentration tensor ˆ
rB , the fields ˆ

rT and ˆ
rΞ in each phase, 

the effective generalized compliance Ô and the effective field Ξ̂ for the piezocomposite 

can be determined from Equations (3.54), (3.52), (3.51), (3.53) and (3.49), respectively; 

and further, using the inverse Laplace-Carson transform to obtain the corresponding 

field variables at each time step. In Equation (3.58), the integration is solved by the 

Cauchy residue theorem. When the expression for ˆ ( )f s s  is rather complicated, it might 

not be possible to analytically evaluate the integral in Equation (3.58). A numerical 

method based on a special sequence acceleration of the Gaver functional, recently 

developed by Abate and Valkó (2004), is used in the current study in order to evaluate 

the Laplace-Carson inversion. It is noted that different independent field variables, e.g., (

ε , E ) can be chosen to reformulate MT model following a similar procedure. 
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4 CHAPTER IV  

NONLINEAR ELECTRO-MECHANICAL ANALYSES OF POLARIZED 1-3 

AND 0-3 PIEZOCOMPOSITES6  

 

 

This chapter presents the overall response of the fiber and particle-unit-cell 

models formulated in Chapter III. The overall electro-mechanical responses from the UC 

models are compared to experimental data available in literature followed by parametric 

studies in order to examine the effects of shapes and compositions of the constituents, 

and prescribed boundary conditions on the overall time-dependent and nonlinear 

electromechanical responses of polarized 1-3 and 0-3 piezocomposites. The constitutive 

relations in Equations (2.1), (2.2), (2.3), and (2.4) are used for the polarized 

piezoceramics while those in Equations (2.47) and (2.48) are considered for the inactive 

viscoelastic mediums. MT estimations are also presented for comparison purpose. 

4.1 Comparison with Experimental Data 

Most of experimental data for piezocomposites with polarized piezoelectric fiber 

or particle inhomogeneities embedded in a polymeric matrix consider mainly linear 

electromechanical responses. The fiber and particle-unit-cell models with nonlinear and 

6 Parts of this chapter are taken from: Lin, C.-H., and A. Muliana. 2013a. “Micromechanics Models for the 
Effective Nonlinear Electro-mechanical Responses of Piezoelectric Composites,” Acta Mech., 
224(7):1471-1492 and reprinted with permission of Springer Publishing, Inc. Copyright 2013 by Springer 
Publishing, Inc. and from: Lin, C.-H., and A. Muliana. 2013b. “Micromechanical Models for the Effective 
Time-dependent and Nonlinear Electromechanical Responses of Piezoelectric Composites,” J Intel. Mat. 
Syst. Str., doi:10.1177/1045389X13504477 and reprinted with permission of Sage Publications, Inc. 
Copyright 2013 by Sage Publications, Inc. 
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time-dependent responses should be capable in predicting the overall linear 

electromechanical properties of piezocomposites. Chan and Unsworth (1989) 

experimentally studied responses of the polarized 1-3 piezocomposite with continuous 

polarized PZT-7A fibers embedded in an Araldite D matrix. The properties of the 

constituents, which are reported by Dunn and Taya (1993a) and Chan and Unsworth 

(1989), are listed in Table 4.1. 

 

Table 4.1   Electro-mechanical material properties for the PZT-7A and Araldite D 
 

1111c
GPa 

1122c
GPa 

1133c
GPa 

3333c
GPa 

2323c
GPa 

311d
pm/V 

333d
pm/V 

113d
pm/V 

11

0

κ
κ

c 33

0

κ
κ

 

PZT-7A a 148 76.2 74.2 131 25.4 −60 150 362 840 460 

Araldite D b 8 4.4 4.4 8 1.8 0 0 0 4 4 

a Dunn and Taya (1993a). Transversely isotropic PZT-7A with longitudinal axis and 
poling direction along the 3x -axis. 
b Chan and Unsworth (1989). Elastic (instantaneous) isotropic properties. 
c 0κ  = 8.85×10−12 (F/m) denotes vacuum permittivity. 

 

            Chan and Unsworth (1989) discussed that the manufacturer’s data of the bulk 

electromechanical properties of the polarized PZT-7A vary significantly from different 

samples. For example, 333d  for polarized PZT-7A is 150 pm/V in the data sheet but the 

measured value is randomly between 163-167 pm/V. The piezoelectric strain coefficient 

333d  to 167 pm/V based on a measured value is used for the numerical prediction. The 
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numerical results from the UC and MT models together with SC model7 comparing with 

experimental data are shown in Figure 4.1. For the effective piezoelectric strain 

coefficient 333d  and the relative permittivity 33 0κ κ  shown in Figure 4.1a and Figure 

4.1b, respectively. The predictions from the micromechanics models are in good 

agreements with the experimental data over the range of volume fractions considered. 

For the coupling parameter pk  and compliance 1111 1122s s+  shown in Figure 4.1c and 

Figure 4.1d, respectively, the UC and MT models give nearly identical estimations but 

the predictions from the SC model slightly deviate from the ones obtained using the UC 

and MT models. These discrepancies are probably due to the large contrast in the 

properties of the inhomogeneity and matrix constituents. In such situation, the SC model 

overestimates the inhomogeneity interaction especially for higher inhomogeneity 

volume fractions.  

 

7 For the purpose of comparison, the predictions using the self-consistent (SC) model are presented only 
for linear piezoelectric constitutive relations. The transformed concentration tensor of the SC model is

( ) 1
1ˆ ˆ ˆˆˆ SC

r r r

−
−= + −  B I O O O . An overbar on the transformed Eshelby’s tensor indicates that its 

components are evaluated by using the effective transformed generalized compliance Ô  instead of the 
transformed generalized compliance of the matrix 0Ô .  
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Figure 4.1   Comparison of various micromechanical predictions to the 
experimental data (Chan and Unsworth, 1989) for the effective a) piezoelectric 
strain coefficient 333d , b) relative permittivity 33 0κ κ , c) coupling parameter 

0.5
33 3333 33 3333[(1 ) ]D

pk c cεκ κ= − , and d) compliance 1111 1122s s+  for the PZT-7A/Araldite 
D polarized 1-3 piezocomposite as a function of polarized PZT-7A fiber VF. D

ijklc is 
the elastic stiffness at a constant reference electric displacement. 
 
 
 

Figure 4.2 depicts the micromechanical predictions of the polarized 0-3 

piezocomposite, which was experimentally studied by Furukawa et al. (1976). The 

polarized 0-3 piezocomposite consists of spherical polarized PZT-5 particles embedded 

in an epoxy I medium. The properties of the constituents used for the numerical 
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prediction was reported by Dunn and Taya (1993a) and are listed in Table 4.2. The UC 

and MT predictions are nearly identical for the entire range of particle volume fractions 

and the MT estimation gives the closest agreement with the experimental data up to 

around 0.3 particle volume fraction. Again, the SC prediction significantly deviates from 

the UC and MT estimations at higher particle volume fractions. 

 

 

 

Figure 4.2   Comparison of various micromechanical predictions to the 
experimental data (Furukawa et al., 1976) for the effective piezoelectric strain 
coefficient 311d− for the PZT-5/epoxy I polarized 0-3 piezocomposite as a function of 
polarized PZT-5 particle VF. 
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Table 4.2   Electro-mechanical material properties for the PZT-5 and Epoxy I 
 

1111c
GPa 

1122c
GPa 

1133c
GPa 

3333c
GPa 

2323c
GPa 

311d
pm/V 

333d
pm/V 

113d
pm/V 

11

0

κ
κ

 33

0

κ
κ

 

PZT-5 a 121 75.4 75.2 111 21.1 −171 374 584 1700 1730 

Epoxy I b 8 4.4 4.4 8 1.8 0 0 0 4.2 4.2 

a Dunn and Taya (1993a). Transversely isotropic PZT-5 with poling direction along the
3x -axis. 

b Dunn and Taya (1993a). Elastic (instantaneous) isotropic properties. 
 

 

Another experiment was conducted by Zeng et al. (2002) to investigate the 

effective relative dielectric constant 33 0κ κ of the polarized 0-3 piezocomposite with 

spherical polarized PZTs (Navy type II) particles embedded in a P(VDF-TrFE) matrix. 

The properties of the composition, which were reported by Zeng et al. (2002) and by 

manufacturer’s data sheet for the polarized PZT (Navy type II) powder PKI502 supplied 

by Piezo Kinetics, are listed in Table 4.3. Figure 4.3 shows that the agreement of the UC 

and MT estimations and experimental findings is quite good. SC prediction deviates 

from the UC and MT estimations at higher particle volume fractions. In general, the 

effective properties of the composites obtained from the UC and MT models match very 

well and give good predictions of the experimental data. Since, the experimental data for 

polarized piezocomposites that show the time-dependent behaviors are not available to 

validate the overall nonlinear time-dependent electromechanical responses of polarized 

piezocomposites, to examine the effects of viscoelastic matrices on the overall nonlinear 
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electromechanical responses of polarized piezocomposites, we conduct parametric 

studies (Section 4.2). 

 

 

 

 

Table 4.3   Electro-mechanical material properties for the PZT (Navy Type II) and 
P(VDF-TrFE) 
 

1111c
GPa 

1122c
GPa 

1133c
GPa 

3333c
GPa 

2323c
GPa 

311d
pm/V 

333d
pm/V 

113d
pm/V 

11

0

κ
κ

 33

0

κ
κ

 

PZT (Navy 

type II) a 

98.2 44.1 44.1 98.2 27 −175 400 580 1800 1800 

P(VDF-

TrFE) b 

4.8 3.2 3.2 4.8 0.8 0 0 0 9.9 9.9 

a Manufacturer’s data sheet for powder PKI502 supplied by Piezo Kinetics. Transversely 
isotropic PZT (Navy type II) with poling direction along the 3x -axis. 
b Zeng et al. (2002). Elastic isotropic properties. 
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Figure 4.3   Comparison of various micromechanical predictions to the 
experimental data (Zeng et al., 2002) for the effective relative permittivity 33 0κ κ
for the PZT (Navy type II)/P(VDF-TrFE) polarized 0-3 piezocomposite as a 
function of polarized PZT (Navy type II) particle VF. 
4.2 Parametric Studies 

 

 

Since the experimental data for polarized piezocomposites that show nonlinear or 

time-dependent behavior are currently not available, to examine the effects of shapes and 

compositions of the inclusions, and prescribed boundary conditions on the overall time-

dependent and nonlinear electromechanical responses of polarized 1-3 and 0-3 

piezocomposites, parametric studies are conducted.  

As the illustration in Figure 1.1, polarized PZT-G1195 exhibits strong 

nonlinearity when subject to a high electric field stimulation. Thus, the following 

polarized PZT-G1195 is considered for the active inclusions in the 1-3 and 0-3 

piezocomposites. The properties of the polarized PZT-G1195 ceramic are obtained from 
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Crawley and Anderson’s (1990) experiment. The nonlinear response with 311d = 322d = 

−180 pm/V and 3311f = 3322f = −6×10−16 m2/V2 match the experimental data in Figure 1.1. 

The manufacturer’s specifications for the remaining properties of the polarized PZT-

G1195 (poling direction is along 3x -axis) are 1111c = 63, 3333c = 49 and 1313c = 22 GPa, 

333d = 360 and 113d = 540 pm/V, 11 0κ κ =1700 and 33 0κ κ =1700 which can be found in 

Anderson (1989) and in order to complete the material properties for the numerical 

simulations we further assume8 1122c = 34 and 1133c = 31 GPa, 3333f = 12×10−16 and 2223f =

1113f = 18×10−16 m2/V2, 111
εχ = 222

εχ = 333
εχ =0 F/V. 

4.2.1 Nonlinear responses of polarized 1-3 and 0-3 piezocomposites 

            Figure 4.4 shows the effective transverse strain 11ε and longitudinal strain 33ε due 

to an applied electric field 3E along the poling direction up to 1 MV/m for a stress free 

polarized 1-3 piezocomposite with polarized PZT-G1195 fiber VF = 0.5 in an Araldite D 

matrix. There are significant differences in the effective responses when the nonlinear 

8 The elastic constants at a constant reference electric field 1111c = 63, 3333c = 49 are determined by taking 

12v =0.332, 13v =0.423 and 31v =0.320, which are common for polarized PZT materials. The ratios of the 
fourth order to the third order piezoelectric strain coefficients are assumed to be the same for all other 
components (i.e., ( )3333 333 311 3311f d d f=  and ( )1113 113 311 3311f d d f= ). In order to determine the 
nonlinear parameters it is necessary to have experimental data available for each direction. With limited 
data available, we believe keeping the same ratios would be a reasonable assumption. Crawley and 
Anderson (1990) did not equally provide the nonlinear electric displacement responses of the polarized 
PZT-G1195 due to electric field inputs and also we did not find any comparable experimental data for the 
polarized PZT-G1195 in literatures, the third-order dielectric coefficient ijk

εχ measured at a constant 

reference strain is assumed zero in this study. Because ijkχ and ijk
εχ have the relation,

ijk ijk imn ikmne fεχ χ= +  (refer to Equation (2.9)), ijkχ is non-zero due to non-zero terms, imne and ikmnf , 
for the polarized PZT-G1195. 
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(solid lines) and linear (dotted lines) responses are considered especially for high electric 

field. For both the linear and nonlinear case the UC and MT predictions match very well.  

For a stress free polarized 0-3 piezocomposite with polarized PZT-G1195 

particle VF = 0.5 in an Araldite D matrix subject to an applied electric field 3E  up to 1 

MV/m, the effective actuation strains 11ε and 33ε are shown in Figure 4.5. The UC and 

MT models result in similar responses for both linear and nonlinear cases. This is due to 

the fact that in the 0-3 piezocomposite the elastic matrix dominates the overall responses 

of the 0-3 piezocomposite. In contrast to the 1-3 piezocomposite the nonlinear polarized 

piezoelectric fiber dominates the overall responses (Figure 4.4). 

 

 

 

Figure 4.4   Effective a) transverse strain 11ε and b) longitudinal strain 33ε responses 
for the stress free PZT-G1195/Araldite D polarized 1-3 piezocomposite with 
polarized PZT-G1195 fiber VF = 0.5 due to an applied electric field 3E along the 
poling direction. 
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Figure 4.5   Effective a) transverse strain 11ε and b) longitudinal strain 33ε responses 
for the stress free PZT-G1195/Araldite D polarized 0-3 piezocomposite with 
polarized PZT-G1195 particle VF = 0.5 due to an applied electric field 3E along the 
poling direction. 
 

 

The effective transverse strains 11ε from the UC and MT models at an electric 

field E3 = 1 MV/m applied to stress free polarized 1-3 and 0-3 piezocomposites are 

plotted as a function of polarized piezoelectric fiber and particle volume fractions, as 

shown in Figure 4.6. For the polarized 1-3 piezocomposite there are significant 

differences between the linear and nonlinear responses (see Figure 4.6a) even for low 

fiber volume fractions. When the polarized 1-3 piezocomposite are subjected to large 

electric fields, a small amount of polarized piezoelectric fibers can induce feasible 

changes in the overall responses of the polarized piezocomposites. For the polarized 0-3 
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electric field reaches the polarized piezoelectric particles as the elastic matrix with low 

dielectric constant dominates the response. However, when the dielectric constants of the 

matrix are relatively high, more pronounced electro-mechanical coupling responses are 

observed in the particle composites. For example  a conductive metal, i.e., silver, is 

considered as homogeneous matrix in 0-3 polarized piezocomposites. Dielectric 

constants of conductive metals, in general, are considered as infinite. For comparison 

and simulation purpose, we assume the silver matrix has relatively high dielectric 

constant, i.e., 89×10−9 F/m (i.e., ten thousand times of vacuum permittivity). The 

properties of the silver are referred to Davis (1998) and are listed in Table 4.4. The 

effective transverse strains 11ε from the UC and MT models at an electric field E3 = 1 

MV/m applied to stress free PZT-G1195/Silver polarized 0-3 piezocomposites are 

plotted as a function of polarized piezoelectric particle volume fractions, as shown in 

Figure 4.7. Significant differences in the responses are observed in the linear and 

nonlinear cases even for lower polarized piezoelectric particle volume fraction. The UC 

and MT models, in general, give close predictions of the effective electromechanical 

coupling response. The fiber- and particle-UC models presented in this study are shown 

capable of capturing the nonlinear electromechanical responses of active composites. 
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Figure 4.6   Effective strain 11ε responses for the stress free PZT-G1195/Araldite D 
polarized a) 1-3 and b) 0-3 piezocomposites at an applied electric field 3E  = 1 
MV/m along the poling direction as a function of polarized PZT-G1195 
inhomogeneity VF. 

 

 

 

Table 4.4   Mechanical and electrical properties of the silver (Davis, 1998) 
 Silver 

Young’s modulus, E (GPa) 74 

Poisson’s ratio, v  0.37 

Dielectric coefficienta, 11 22 33κ κ κ= =  (nF/m) 89 

a This dielectric coefficient which is ten thousand times of vacuum permittivity is 
assumed for comparison and simulation purpose because dielectric constants of 
conductive metals, in general, are considered as infinite. 
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Figure 4.7   Effective strain 11ε responses for the stress free PZT-G1195/Silver 
polarized 0-3 piezocomposites at an applied electric field 3E  = 1 MV/m along the 
poling direction as a function of polarized PZT-G1195 inhomogeneity VF. 
 

 

4.2.2 Time-dependent responses of polarized 1-3 and 0-3 piezocomposites 

Figure 4.8 shows the effective time-dependent strains9 for a PZT-G1195/934 

epoxy polarized 1-3 piezocomposite due to constant electric fields 3E =1 and 0.75 MV/m 

applied along the poling direction, which is along the longitudinal axis, i.e., 3x -axis, of 

the polarized piezoelectric fiber. The property of the viscoelastic 934 epoxy is listed in 

Table 4.5. The 1-3 piezocomposite has polarized PZT-G1195 fiber with VF = 0.5 and is 

unconstrained on its surfaces. It is seen that there are significant differences in the 

effective time-dependent strains between the nonlinear (solid lines) and linear (dotted 

lines) electromechanical constitutive relations. More pronounced nonlinear responses are 

9 The time-dependent effective strains are due to the viscoelastic matrix. The electric field-induced internal 
stresses to the piezoelectric inhomogeneities and viscoelastic matrix due maintaining compatibility 
conditions for the overall deformations.  
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shown when higher electric field ( 3E =1 MV/m) is applied, which is expected. For the 

longitudinal strains 33ε  in Figure 4.8a, the UC and MT predictions are almost on top of 

each other. This indicates that the effect of fiber geometries on the longitudinal strains is 

negligible, while for the transverse time-dependent strains 11ε  in Figure 4.8b, the 

mismatches between the UC and MT estimations could be associated to the fiber 

geometries. It is noted that the UC and MT predictions for the effective initial 

piezoelectric strain coefficients 311d  are slightly different while for the 333d  they are 

nearly same, as illustrated in Figure 4.9. For the polarized 1-3 piezocomposites, the 

estimations from various micromechanical models on the longitudinal material 

parameters (e.g., 333d , 33κ  and etc.) are, in general, closer than the transverse and shear 

properties (see Odegard, 2004).  

 

 
Table 4.5   Time-dependent compliance, instantaneous (elastic) compliance, 
Poisson’s ratio and dielectric coefficient for the viscoelastic 934 epoxy at 22⁰C (The 
coefficients of Prony series are determined from Yancey and Pindera, 1990) 
n nλ  (min−1) nD  (GPa−1) 
1        1     0.0150 

2      10−1     0.0050 

3      10−2     0.0120 

   

0D  = 0.2217 (GPa−1) 

v  = 0.311 

Dielectric coefficienta, 11 22 33κ κ κ= = = 0.06 (nF/m) 
a This dielectric coefficient which is common for polymer materials is assumed. 
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Figure 4.8   Effective longitudinal strain 33ε and transverse strain 11ε responses for 
the stress free PZT-G1195/934 epoxy 1-3 piezocomposite with VF = 0.5 due to 
applied electric fields 3E  = 1 MV/m and 3E  = 0.75 MV/m. 
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Figure 4.9   Effective initial piezoelectric strain coefficients a) 333d and b) 311d  for the 
PZT-G1195/934 epoxy polarized 1-3 piezocomposite as a function of polarized 
PZT- G1195 fiber VF 
 

 

The responses for a PZT-G1195/934 epoxy 0-3 piezocomposite with polarized 

PZT-G1195 particle VF = 0.5 subject to constant electric fields 3E =1 and 0.75 MV/m 

are shown in Figure 4.10. It is seen that the time-dependent strains predicted from the 

UC and MT models are very close both for the linear and nonlinear cases. The absolute 

value of the time-dependent strains 33ε and 11ε , of the polarized 0-3 piezocomposite 

(Figure 4.10) are much smaller than those of the polarized 1-3 piezocomposite (Figure 

4.8) under the same applied electric fields. This is due to the fact that in the polarized 0-3 

piezocomposite, the polymeric matrix, which has low dielectric constants, dominates the 

overall responses and as a result only a small fraction of the applied electric field reaches 
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reaches the polarized PZT-G1195 fibers and particles when subject to electric field 3E
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=1 MV/m. It is seen that the electric field in the particles are less than 0.03 MV/m 

(Figure 4.11b) while the one in the fiber is 1 MV/m (Figure 4.11a). It is also noted that 

the electric field is applied along the fiber axis ( 3E ) and the microstructural arrangement 

in the polarized 1-3 piezocomposite allows for conducting this electric field directly 

through the polarized piezoelectric fibers, while in the case of polarized 0-3 

piezocomposite, the non-conductive matrix limits the electric field in reaching the 

polarized piezoelectric particles. The differences in the strains 33ε and 11ε , between the 

linear and nonlinear cases are < 5 % for the polarized 0-3 piezocomposite (Figure 4.10), 

which is expected; while for the polarized 1-3 piezocomposite the differences in the 

nonlinear and linear responses are > 100 % (Figure 4.8). Moreover, the differences in the 

strains 33ε and 11ε between the UC and MT predictions for the polarized 0-3 

piezocomposite (Figure 4.10) are both visible. This might be due to the different 

assumption on the reinforcement geometry in UC (with cubic particle) and MT (with 

spherical particle) models. 
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Figure 4.10 Effective strain 33ε and 11ε responses for the stress free PZT-G1195/934 
epoxy polarized 0-3 piezocomposite with VF = 0.5 due to applied electric fields 3E  
= 1 MV/m and 3E  = 0.75 MV/m. 
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Figure 4.11 Average electric field 3E  in the PZT-G1195 inhomogeneity for the 
stress free PZT-G1195/934 epoxy polarized a) 1-3 and b) 0-3 piezocomposites with 
polarized PZT-G1195 inhomogeneity VF = 0.5 due to an applied electric field 3E = 
1 MV/m along the poling direction. 
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linear and nonlinear predictions are observed, as shown in Figure 4.12b, but some 

differences between the UC and MT predictions are shown as explained above. 

 

 

 

Figure 4.12 Effective stress 11σ responses for the fully constrained PZT-
G1195/FM73 polymer polarized a) 1-3 and b) 0-3 piezocomposite with polarized 
PZT-G1195 inhomogeneity VF = 0.5 under 3E = 1 MV/m. 
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Table 4.6   Time-dependent compliance, instantaneous (elastic) compliance, 
Poisson’s ratio and dielectric coefficient for the viscoelastic FM73 polymer at 
30~60⁰C (Muliana and Khan, 2008) 
n 

nλ  (sec−1) nD  (GPa−1) 

1        1     0.0210 

2      10−1     0.0216 

3      10−2     0.0118 

4      10−3     0.0159 

5      10−4     0.0216 

6      10−5     0.0200 

   

0D  = 0.369 (GPa−1) 

v  = 0.35 

Dielectric coefficienta, 11 22 33κ κ κ= = = 0.04 (nF/m) 

a This dielectric coefficient which is common for polymer materials is assumed. 

 

 

 

Now, the effect of frequency on the hysteretic electromechanical response is 

examined. The UC predictions of the cyclic electric loadings, 3E (t) = −0.5cos(2πft)+0.5 

MV/m with the frequencies f = 0.5, 1 and 10 Hz along the poling direction, on a fully 

constrained PZT-G1195/FM73 polymer polarized 1-3 piezocomposite with polarized 

PZT-G1195 fiber VF = 0.5 are shown in Figure 4.13. Only nonlinear constitutive 
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relations, i.e., Equations (2.3) and (2.4), are considered for the polarized piezoelectric 

PZT-G1195 fibers in the following discussion. For the frequency f = 0.5, the transverse 

stress, 11σ , (Figure 4.13b) shows more significant hysteresis than the longitudinal stress, 

33σ , (Figure 4.13a) does because the transverse response is dominated by the 

viscoelastic matrix. The same trends are also observed for the other frequencies f = 1 and 

10 Hz (Figure 4.13c, d and Figure 4.13e, f), respectively. Due to the viscoelastic matrix, 

the lower frequency (slower loading) shows the broader hysteretic loop (Figure 4.13b, d 

and f) since slower loading rates give enough time for the matrix to undergo more 

pronounced creep deformation (or stress relaxation), resulting in higher energy 

dissipation in one cycle. In this case, the maximum tensile transverse stress 11σ  (i.e., 11σ

amplitude) occurs when the periodic loading 3E = −0.5cos(2πft)+0.5  MV/m reaches 1 

MV/m in the first cycle. The maximum stress decreases with increasing number of 

cycles and reaches to a steady value. 
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Figure 4.13 UC responses of the effective stresses for the fully constrained PZT-
G1195/FM73 polymer polarized 1-3 piezocomposite with VF = 0.5 subjected to a 
cyclic electric loading 3E (t) = −0.5cos(2πft)+0.5  MV/m with various. Total time to 
complete the analyses is two seconds. 
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             Figure 4.14 depicts the 11σ  amplitude in the first cycle versus frequency. Lower 

frequency results in lower 11σ  amplitude. Thus, a relatively slow electric loading (i.e., 

lower frequency) gives sufficient time for the stress to experience relaxation behaviors. 

The stress amplitude (or maximum stress) as a function of number of cycles at different 

loading frequencies is shown in Figure 4.15. As the number of cycles increase (longer 

duration of loading), the stress amplitude decreases until it reaches a steady value. The 

higher fthe requency is the more cycle is needed to reach the steady state (i.e., fully 

relaxed stress state), which is expected. 

 

 

Figure 4.14 UC response on the effective stress σ11 amplitude in the first cycle vs. 
frequency for the fully constrained PZT-G1195/FM73 polymer 1-3 piezocomposite 
with VF = 0.5 subjected to a cyclic electric loading with various frequencies. 
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Figure 4.15 UC responses of the effective stress σ11 amplitude vs. number of cycles 
for a fully constrained PZT-G1195/FM73 polymer 1-3 piezocomposite with VF = 
0.5 subjected to a cyclic electric loading. (Logarithmic scale on the horizontal axis) 
 

 

We also study the influence of the piezoelectric volume fraction on the overall 

creep deformations of the polarized 1-3 and 0-3 piezocomposites undergoing high 

electric field inputs. Only nonlinear constitutive relations, i.e., Equations (2.1) and (2.2), 

are considered for the polarized piezoelectric inhomogeneities in the following 

discussion. Figure 4.16 depicts the effective time-dependent strains for the polarized 1-3 

piezocomposites with different polarized PZT-G1195 fiber volume fractions (i.e., VF = 

0.3~0.7) subject to a constant electric field 3E =1 MV/m. The responses from the UC 

and MT models are presented. More significant time-dependent strains are observed for 

composites with smaller polarized piezoelectric fiber volume fractions, which are 

expected because there is larger fraction of viscoelastic matrix as opposed to polarized 

piezoelectric fibers.  
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The time-dependent strains of the polarized 0-3 piezocomposites are illustrated in 

Figure 4.17, which show less significant time-dependent deformations. This is because 

only a small portion of applied electric fields reaches the polarized piezoelectric particles 

and consequently the polymeric matrix undergoes small mechanical stimuli. The effects 

of different reinforcement geometry are more visible at the VF = 0.1 than those at the 

VF=0.5 for the polarized 0-3 piezocomposites (Figure 4.17) or similarly those at the VF 

= 0.3 than those at the VF=0.7 for the polarized 1-3 piezocomposites (Figure 4.16b). The 

mismatches between the UC and MT predictions gradually change as VF changes which 

also depend on the response being studied.  

For the polarized 1-3 piezocomposites, Figure 4.18a shows the effective initial 

transverse strain and it is seen that the UC and MT predictions on the effective 

transverse strain (Figure 4.16b) get closer from VF=0.3 to 0.7. For the polarized 0-3 

piezocomposites, the effective initial transverse strain in Figure 4.18b shows that the UC 

and MT estimations are closer from VF=0.1 to 0.5. 
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Figure 4.16 Effective strain a) 33ε and b) 11ε responses for the stress free PZT-
G1195/934 epoxy 0-3 piezocomposite with various particle VF = 0.1, 0.2, 0.3, 0.4, 
and 0.5 due to an applied electric field 3E  = 1 MV/m along the poling direction. 
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Figure 4.17 Effective a) longitudinal strain 33ε and b) transverse strain 11ε responses 
for the stress free PZT-G1195/934 epoxy 1-3 piezocomposite with various VF = 0.3, 
0.4, 0.5, 0.6, and 0.7 due to an applied electric field 3E  = 1 MV/m along the poling 
direction. 
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Figure 4.18 Effective initial strain 11ε  responses for the stress free PZT-G1195/934 
epoxy a) 1-3 and b) 0-3 piezocomposite due to an applied electric field 3E = 1 MV/m 
along the poling direction as a function of PZT- G1195 inhomogeneity VF. 
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It is seen that the polymeric matrix dominates the overall responses of the 

polarized 0-3 piezocomposite and we further examine the responses of a polarized 0-3 

piezocomposite by reversing the particle and matrix constituents. The reversed-phase 

piezocomposite is formed by 934 epoxy particles embedded in a polarized PZT-G1195 

matrix. Figure 4.19 compares the predictions from the UC model on the effective initial 

(instantaneous) strain, 33ε , between the reversed-phase and original 0-3 

piezocomposites. The results for the reversed-phase 0-3 piezocomposite are only 

obtained from the UC model. The response for the reversed-phase 0-3 piezocomposite 

significantly depends on the volume fraction of the polarized PZT matrix while the 

response for the original 0-3 piezocomposite is almost invariant until 85% of the volume 

fraction of the polarized PZT particle reinforcements. A large portion of the applied 

electric field reaches the matrix in the polarized 0-3 piezocomposite. Thus, for the 

reversed-phase 0-3 piezocomposite a relatively large magnitude of strain, 33ε , is 

observed when the electric field is applied to the composites even for a small amount of 

the polarized PZT.  
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Figure 4.19 Effective initial strain 33ε vs. polarized PZT-G1195 VF for the stress 
free polarized 0-3 piezocomposites undergoing an electric field 3E =1 MV/m along 
the poling direction. The upper line indicates the prediction on the initial response 
for the reversed-phase piezocomposite having 934 epoxy particles in a polarized 
PZT-G1195 matrix while the lower lines denote the estimations on the initial 
responses for the original piezocomposite having polarized PZT-G1195 particles in 
a 934 epoxy matrix. For each representative unit cell, the black subcell represents 
the polarized PZT-G1195 constituent and the white the 934 epoxy. 
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5 CHAPTER V  

POLARIZATION SWITCHING RESPONSES OF 1-3 AND 0-3 

PIEZOCOMPOSITES 

 

 

This chapter uses the fiber- and particle-UC models presented in Chapter III to 

investigate the effective polarization switching responses of 1-3 and 0-3 

piezocomposites. Experimental validations are first provided and parametric studies are 

then performed to illustrate the effects of microstructural geometry and volume content 

of the piezoceramic inhomogeneities as well as loading history on the overall hysteretic 

responses of the 1-3 and 0-3 piezocomposites. The constitutive relations in Equations 

(2.22) and (2.23) are used for simulating the polarization switching response of 

piezoceramics while those in Equations (2.47) and (2.48) are applied to inactive 

viscoelastic constituent. 

5.1 Comparison with Experimental Data 

Jayendiran and Arockiarajan (2013) conducted experiments on studying the 

effective hysteretic polarization and butterfly strain responses of PZT-5A1/epoxy II 1-3 

piezocomposite with various PZT-5A1 fiber volume fractions under cyclic electric field 

with amplitude of 3 2E = ±  MV/m, along the poling direction (x3 direction). Since 

Jayendiran and Arockiarajan (2013) did not include the information regarding the 

number of cycles after which the data are collected, initial cycle or saturated state, and 

loading rate of the electric field for simplicity we shall assume that PZT-5A1 
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experiences time-independent polarization switching, in which 1 0κ = in Equation (2.40). 

The material properties of the PZT-5A1 are first calibrated from the experimental data of 

PZT-5A1 (100% fiber content) under a cyclic electric field, shown in Figure 5.1.  

 

 

Figure 5.1   a) Hysteretic polarization and b) butterfly strain responses for the 
stress free PZT-5A1 due to a cyclic electric field. 
 

 

            The remanent polarization rP =0.33 C/m2 is determined at zero electric field upon 

removal of the electric field input, shown in Figure 5.1a. The coercive electric field in 

absence of mechanical stresses 0
cE =1.19 MV/m is estimated when the polarization is 

zero (Figure Figure 5.1a), which also corresponds to the lowest strains as shown in 

Figure 2b. The material parameters 0κ , λ , n , µ , and ω are obtained by fitting the 3D

vs. 3E curve in Figure 5.1a and they are listed in Table 5.1.  
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Table 5.1   Material parameters for the time-dependent polarization of PZT-5A1 
  0

cE  

(MV/m) 

0 1κ κ  

(×10−9 F/m) 

  1τ  

(sec) 

       λ  

(×10−6 F/m) 

  n         µ  

(×10−6 F/m) 

 ω  

PZT-5A1 1.19 50               0    −      0.50   4        2.8   6 

 

 

            The parameter 0κ  is determined from the unloading path (removal of the electric 

field to zero value), the parameters λ  and n  are calibrated from the loading path when 

the electric field is less than the coercive limit, and the parameters µ  and ω are 

calibrated from the loading path when the electric field is larger than the coercive limit. 

In order to capture the butterfly strain response we need the piezoelectric coefficient t
ijkg

that the depends on the polarization state 3
tP , and the following function is assumed: 

3 ,
t

t r
ijk ijk

r

Pg g
P

α=                                                   (5.1) 

Here 1 .r r−=g κ d , where rd is the direct piezoelectric constant measured at remanent 

polarization. The parameters 333
rd , 311

rd , and 33
rκ are taken from the values reported by 

Jayendiran and Arockiarajan (2013) and 11
rκ =16.7×10−9 F/m is assumed10. The material 

parameter α  needs to be calibrated from experiment. We further calibrate α to 0.14 by 

10 This value is assumed since it is not reported in Jayendiran and Arockiarajan (2013). The 33
rκ

=16.4×10−9 F/m of the PZT-5A1 reported by Jayendiran and Arockiarajan (2013) is close to the  33
rκ

=15.3×10−9 F/m of PZT-5A obtained from the manufacture data sheet of Morgan Electro Ceramics. The 
ratio of 33

rκ to 11
rκ of the PZT-5A1 is assumed to be same as the one of the PZT-5A. 
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fitting 3ε vs. 3E curve shown in Figure 5.1b. The electro-mechanical coupling 

parameters are listed in Table 5.2.  

 

 

Table 5.2   Electro-mechanical coupling parameters for PZT-5A1 
  333 311

r rd d  

 (×10−12 m/V) 

 11 33
r rκ κ  

 (×10−9 F/m) 

   rP  

 (C/m2) 

α  

PZT-5A1   440       −185  16.7      16.4  0.330 0.14 

 

 

            It is seen in Figure 5.1b that the experimental strain for pure PZT-5A1in absence 

of mechanical stress is about 2000 µε  at the coercive electric field, while one would 

expect that in absence of external mechanical stresses and for stress-free boundary 

conditions, at the coercive electric field strains would generally be nearly zero since 

depolarization has occurred in the ferroelectric ceramics at the coercive electric field. 

The material parameters are calibrated after shifting 2000 µε higher. The elastic material 

parameters, i.e.,Young’s moduli 11E = 59.62, 33E = 48.97, shear moduli 12G =21.85, 31G

=21 GPa, and Poisson’s ratios 12v =0.364 and 31v =0.474 listed in Table 5.3 are 

determined by assuming a transversely isotropic PZT-5A1 from the linear elastic 

constants 3333c =116.8 and 1133c =87.1 GPa reported by Jayendiran and Arockiarajan 

(2013).  
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Table 5.3   Mechanical engineering constants for PZT-5A1 
  11 22E E=  

   (GPa) 

  33E  

(GPa) 

  12G  

(GPa) 

31 32G G=  

   (GPa) 

    12v   31 32v v=  

PZT-5A1  59.62 48.97 21.85    21.00   0.364    0.474 

 

 

            Figure 5.1 shows that the polarization switching model and the calibrated 

material parameters of the PZT-5A1 discussed above are able to capture the hysteretic 

polarization and butterfly strain responses.  

Jayendiran and Arockiarajan (2013) also reported the experimental results for the 

pure PZT-5A1 subject to both a cyclic electric field and a constant mechanical stress 

(i.e., 33σ = −15 MPa) shown in Figure 5.2 (circles). The existence of the compressive 

stresses influences the polarization response of materials. The coercive electric field 

under a constant compressive stress 15 MPa, cE =0.76 MV/m, is determined when the 

polarization is zero as shown in Figure 5.2a. From the experimental evidences the 

coercive electric fields vary with the compressive stresses. We assume the coercive 

electric fields linearly vary with the compressive stresses, which can be described by the 

following function: 

0
33 33

0
33

0.029 , 0,

, 0.

t t
c

c t
c

E
E

E

σ σ

σ

 − <= 
≥

                               (5.2) 

We further assume the coercive stress limit is 12 MPa. The material parameters above 

the coercive stress limit λ , n , µ , and ω  are obtained by fitting 3D vs. 3E curve shown 
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in Figure 5.2a and they are listed in Table 4. The parameter α =0.1 is calibrated from 

the butterfly curve in Figure3b after shifting the strain response 2500 με higher and 

listed in Table 5.4. All the calibrated material parameters from Table 5.1 to Table 5.4 are 

used for the PZT-5A1 fibers in the micromechanics model. 

 

 

Figure 5.2   a) Hysteretic polarization and b) butterfly strain responses for the 
PZT-5A1 due to a cyclic electric field and a constant compressive stress. 
 

 

Table 5.4   Material parameters above the coercive stress limit for PZT-5A1 
 

cσ  

(MPa) 

α         λ  

(×10−6 F/m) 

  n         µ  

(×10−6 F/m) 

 ω  

PZT-5A1 12 0.1      0.5   2        1.2   4 

 

 

In order to predict response of the composites, the epoxy II matrix is assumed as 

an elastic isotropic solid with elastic modulus 2.9 GPa, Poisson’s ratio 0.3 and dielectric 
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constant 0.040×10−9 F/m as reported by Jayendiran and Arockiarajan (2013) listed in 

Table 5.5.  

 

 
Table 5.5   Mechanical and electrical properties of the epoxy II (Jayendiran and 
Arockiarajan, 2013) 
 Epoxy II 

Young’s modulus, E (GPa) 2.9 

Poisson’s ratio, v  0.3 

Dielectric coefficient, 11 22 33κ κ κ= =  (nF/m) 0.04 

 

 

            The micromechanical predictions for a stress free PZT-5A1/epoxy II 1-3 active 

composite with PZT-5A1 fiber VF = 0.8 are shown in Figure 5.3. The predictions of the 

effective hysteretic polarization are in good agreements with experimental data (Figure 

5.3a) while the prediction of the effective butterfly strain response show significant 

mismatch with the experimental result (Figure 5.3b). We are not sure about the reason 

that the experimental measurements of the effective butterfly strain responses at the 

coercive electric field drifted upward above zero for the pure PZT-5A1 (Figure 5.1b) but 

shifted downward below zero for the 1-3 active composites (Figure 5.3b), which shows 

that the height of the butterfly strain response of the experimental measurements of the 

active composite (Figure 5.3b) is larger than the one of the pure PZT-5A1 (Figure 5.1b). 

One would also expect that the height of the hysteretic polarization (saturated 
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polarization) decreases as the volume content of the active fiber decreases (Figure 5.1b 

to Figure 5.3b) and similarly for the strain in the butterfly strain curves. However, the 

strains do not show certain trend with regards to the height of the butterfly strains 

(Figure 5.1b to Figure 5.3b). It is noted that other experimental data reported by Nelson 

(2003) on polarization switching of active fiber composites indicated that the saturated 

polarization and saturated strain values decrease with decreasing contents of PZT. 

According to Jayendiran and Arockiarajan (2013), the reason as to why the butterfly 

strain curves of the 1-3 active composites with VF = 0.8 (Figure 5.3b) have larger 

hysteretic response than the one of pure PZT (Figure 5.1b) is probably caused by the 

bias stress-induced ferroelectric switching which promotes in-plane to out-of-plane 90º 

polarization switching (Burcsu et al. 2004 and Shieh et al., 2007).  

 

 

 

Figure 5.3   Comparison of micromechanical predictions (solid and dashed lines) to 
experimental data (circles) of Jayendiran and Arockiarajan (2013) for the a) 
hysteretic polarization and b) butterfly strain responses for the stress free PZT-
5A1/epoxy II 1-3 active composite with PZT-5A1 fiber VF=0.8. 
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            Figure 5.4 depicts the average nonzero stresses and electric field in the PZT-5A1 

fiber of the active composite with PZT-5A1 fiber VF = 0.8, determined from the 

micromechanics model. 

 

 

Figure 5.4   Average nonzero stresses and electric field in the PZT-5A1 fiber for the 
stress free boundary condition of a PZT-5A1/epoxy II 1-3 active composite with 
PZT-5A1 fiber VF=0.8 subject to the cyclic electric loading. 
 

 

Jayendiran and Arockiarajan (2013) further examined the effects of compressive 

stresses on the overall nonlinear electro-mechanical hysteresis of 1-3 active composites. 

The effective responses are recorded by applying both constant compressive stresses, 

33σ = −15, −30 and −45 MPa, and a cyclic electric field with amplitude of 3 2E = ±  

MV/m along the poling direction on the PZT-5A1/epoxy II 1-3 composites with PZT-

5A1 fiber VF = 0.8. Figure 5.5 depicts the comparisons between the micromechanical 

predictions and experimental data. The agreements on the effective hysteretic 

polarization between the micromechanical predictions and experimental data are good 
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for each compressive stress (Figure 5.5a, c, e) while the estimations of the effective 

butterfly strain responses show some discrepancies with the experimental results in 

Figure 5.5b with a similar trend as in Figure 5.3b. The compressive stresses limit the 

amount of polarization to be generated from the electric field inputs; as a result smaller 

hysteretic polarization and butterfly strain curves are observed both in the 

micromechanical predictions and in the experimental data when higher compressive 

stress is applied. In order to compare the butterfly strains, we shift the initial values of 

the butterfly strains to the ones of the experimental data, shown in Figure 5.5b, d, and f. 

It is seen that the micromechanical predictions are able to qualitatively capture the 

heights of the butterfly strain curves of the experiment data. 

Jayendiran and Arockiarajan (2013) also investigated the effects of PZT-51 fiber 

VFs on the overall nonlinear electro-mechanical hysteresis of 1-3 active composites 

subject to both a cyclic electric field with amplitude of 3 2E = ±  MV/m along the poling 

direction and a constant compressive stress, 33σ = −15 MPa. The predictions of the 

effective hysteretic polarization are in good agreements with experimental results 

(Figure 5.6a, c and e) while the predictions of the effective butterfly strain responses 

show some mismatches with the experimental results (Figure 5.6b, d and f) as already 

discussed above. 
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Figure 5.5   Comparison of micromechanical predictions (solid and dashed lines) to 
experimental data (circles) of Jayendiran and Arockiarajan (2013) for the 
hysteretic polarization and butterfly strain responses for the PZT-5A1/epoxy II 1-3 
active composite with PZT-5A1 fiber VF = 0.8 subjected to both a cyclic electric 
field and various constant mechanical stresses. 
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Figure 5.6   Comparison of micromechanical predictions (solid and dashed lines) to 
experimental data (circles) of Jayendiran and Arockiarajan (2013) for the 
hysteretic polarization and butterfly strain responses for the PZT-5A1/epoxy II 1-3 
active composite with various PZT-5A1 fiber VFs subjected to both a cyclic electric 
field and a constant mechanical stress. 
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5.2 Parametric Studies 

Since experimental data on nonlinear and time-dependent electromechanical 

hysteresis of 0-3 active composites are not available we conduct parametric studies on 

investigating the effects of the constituent compositions and properties and loading 

histories on the overall performance of both 1-3 and 0-3 active composites. Effective 

polarization switching responses of 0-3 piezocomposites and a special emphasis on the 

effect of dielectric constants of the matrix of 0-3 piezocomposites will be discussed in 

Section 5.2.1. Section 5.2.2 discusses the effect of loading history on the overall time-

dependent polarization switching responses of 1-3 piezocomposites. 

5.2.1 Polarization switching responses of 0-3 piezocomposites 

We first examine the effect of constituent compositions for 0-3 active 

composites. For the purpose of comparison, we choose the 0-3 piezocomposites having 

the same properties of the constituents as the 1-3 piezocomposites discussed in the 

previous section, i.e., Section 5.1. The effective nonlinear electromechanical hysteretic 

responses for a stress free PZT-5A1/epoxy II 0-3 piezocomposites with various PZT-

5A1 particle VFs = 0.65 and 0.35 under both a cyclic electric field with amplitude of 

3 2E = ±  MV/m along the poling direction (x3 direction) and a constant compressive 

stress, 33σ = −15 MPa are shown in Figure 5.7. Insignificant hysteretic responses are 

observed. This is due to the fact that in the 0-3 piezocomposites, the polymeric matrix, 

which has low dielectric constant (non-conductive), dominates the overall responses and 

as a result the epoxy matrix is unable to pass significant amount of electric charges to the 

active piezoelectric particles, accordingly small amount of polarization is experienced by 
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the piezoelectric particles. Unlike the responses of the 1-3 piezocomposites with the 

longitudinal fiber axis in x3-direction, the piezoelectric fibers are directly subjected to the 

applied electric stimuli and consequently stronger hysteretic responses are observed. 

 

 

 

 

Figure 5.7   The effective polarization and strain responses for the stress free PZT-
5A1/epoxy II 0-3 active composite with matrix dielectric constant of 0.04×10−9 F/m 
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Bent and Hagood (1997) mentioned that improving the inactive matrix materials 

by incorporating conductive fillers could reduce the needed voltage for poling and 

operation of active composites. In order to examine the influence of the dielectric 

constant of the homogeneous matrix, a matrix with high dielectric constant, i.e., 

16.4×10−9 F/m, is considered while maintaining the same values for the remaining 

properties of the constituents. Figure 5.8 shows the effective nonlinear electro-

mechanical hysteretic responses for a stress free 0-3 active composite with VF = 0.35 

PZT-5A1 particles in the dielectric improved matrix under both a cyclic electric field 

with amplitude of 3 2E = ±  MV/m and a constant compressive stress, 33σ = −15 MPa. 

As expected more significant hysteretic responses are observed. 

 

 

 

Figure 5.8   Effective hysteretic polarization and butterfly strain responses for the 
stress free PZT-5A1/epoxy II 0-3 active composite with PZT-5A1 particle VF = 0.35 
with matrix dielectric constant of 16.4×10−9 F/m. The dielectric constant of the 
epoxy II matrix has been increased from 0.04×10−9 to 16.4×10−9 F/m. 
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We also present a parametric study by considering conductive metal, i.e., silver, 

as homogeneous matrix in 0-3 piezocomposites is also studied. The properties of the 

silver are referred to Davis (1998) and are listed in Table 4.4.The micromechanical 

predictions on effective hysteresis of a PZT-5A1/silver 0-3 active composite with PZT-

5A1 particle VF = 0.35 and 0.1 subjected to both a constant compressive stress, 33σ = 

−45 MPa, and a cyclic electric field with amplitude of 3 2E = ±  MV/m along the poling 

direction are shown in Figure 5.9. Even though the compressive stress can suppress the 

amount of polarization, the significant hysteretic responses are still observed. This 

confirms that high dielectric constant of the conductive matrix makes the electric 

charges easily pass through the conductive matrix and eventually large amount of 

electric fields reaches the PZT-5A1 particles. It is also seen that higher concentration of 

ferroelectric particles leads to stronger hysteretic responses, which is expected. 

 

  

Figure 5.9   Effective hysteretic polarization and butterfly strain responses for the 
PZT-5A1/silver 0-3 active composite with PZT-5A1 particle undergoing both a 
cyclic electric field and a constant mechanical stress 33σ = −45 MPa. 

 

-2 -1 0 1 2

-0.2

-0.1

0

0.1

0.2

0.3

E3 (MV/m)

D
3 (C

/m
2 )

a) Particle VF = 0.35
    σ33 = -45 MPa

using silver matrix whose
dielectric consatnt is 88.54x10-9 F/m

-2 -1 0 1 2
-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

E3 (MV/m)

ε 33
 (m

ic
ro

-s
tra

in
)

b) Particle VF = 0.35
    σ33 = -45 MPa

using silver matrix whose
dielectric consatnt is 88.54x10-9 F/m

91 

 



 

  

Figure 5.9 Continued. 

 

 

5.2.2 Time-dependent and polarization switching responses of 1-3 piezocomposites 

In order to examine the effect of loading history, i.e., various loading frequency 

and viscoelastic matrix, we consider a 1-3 active composite having rate-dependent PZT-

51 fibers in a time-dependent FM73 polymer. The material properties of the PZT-51 

inhomogeneities and the FM73 polymer are listed in from Table 5.6 to Table 5.9 and 

Table 4.611, respectively. The relation of the coercive electric field and the compressive 

stress is  
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                             (5.3) 

 

11 We only consider the first two terms of the series of exponential functions to the viscoelastic FM73 
polymer in discussions on Section 5.2.2. This simplification will not affect us to qualitatively understand 
the influence of the viscoelastic constituent to the overall responses of piezocomposites but it will 
dramatically reduce computational cost. 
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Table 5.6   Material parameters for the time-dependent polarization of PZT-51 
(Sohrabi and Muliana, 2013) 
  0

cE  

(MV/m) 

0 1κ κ  

(×10−9 F/m) 

  1τ  

(sec) 

       λ  

(×10−6 F/m) 

  n         µ  

(×10−6 F/m) 

ω  

PZT-51 0.67 70           225    1      0.35   3        1.6   4 

 

 

 

Table 5.7   Electro-mechanical coupling parameters for the time-dependent 
polarization of PZT-51 (Sohrabi and Muliana, 2013) 
  333 311

r rd d  

 (×10−12 m/V) 

 11 33
r rκ κ  

 (×10−9 F/m) 

   rP  

 (C/m2) 

1C  

PZT-51 1520       −570  38.0      42.0  0.194 0.19 

 

 

 

Table 5.8   Elastic constants for the time-dependent polarization of PZT-51 
(Sohrabi and Muliana, 2013) 
  11 22E E=  

   (GPa) 

  33E  

(GPa) 

  12G  

(GPa) 

31 32G G=  

   (GPa) 

    12v   

31 32v v=  

PZT-51  34.48 33.00 13.19    12.37   0.307    0.334 
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Table 5.9   Material parameters above the coercive stress limit for the time-
dependent polarization of PZT-51 (Sohrabi and Muliana, 2013) 
 

cσ  

(MPa) 

2C         λ  

(×10−6 F/m) 

  n         µ  

(×10−6 F/m) 

 ω  

PZT-51 25 0.3      0.40   3        1.1   4 

 

 

 

The effective hysteretic responses of a stress free PZT-51/FM73 polymer 1-3 

active composite with PZT-51 fiber VF = 0.5 subject to cyclic electric loadings 3E = 

1.2sin(2πft) along the poling axis with different frequencies f = 0.5, 1 and 10 Hz are 

shown inFigure 5.10. It is seen that lower frequency loading leads to larger hysteretic 

response since slower loading allows for the materials to experience more pronounced 

time-dependent response. In this analysis, PZT-51 fibers experiences time-dependent 

polarization response and the matrix exhibits viscoelastic deformation. For the higher 

frequency loading, smaller hysteretic responses are seen and saturated (steady-state) 

condition is reached after the first cycle, indicating negligible time-dependent response. 

In the high frequency loading case the hysteretic response is mainly due to the 

irreversible polarization during polarization switching.  
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Figure 5.10 Frequency effect on the effective dielectric hysteresis and butterfly 
strain responses for the stress free PZT-51/FM 73 polymer 1-3 piezocomposite with 
VF = 0.5 undergoing a cyclic sinusoidal electric field. Only the first three cycles are 
plotted.  
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butterfly strain responses against number of cycles. The initial drops in the effective 

amplitudes are due to time-dependent polarization effect in the PZT-51 fibers and then 

the amplitudes increase at later cycles because of the creep deformation effect in the 

FM73 polymer constituent. As the frequency increases, both the initial drops and 

subsequent creep-like responses are quite insignificant because of the short duration of 

loading. The different responses in the PZT-51 and FM73 polymer leads to complex 

hysteretic response of the active composites and several cycles are required to reach 

steady state. 

 

 

 

Figure 5.11 Effective amplitude of a) dielectric hysteresis and b) butterfly strain 
responses vs. number of cyclers for the stress free PZT-51/FM 73 polymer 1-3 
piezocomposite with PZT-51 fiber VF = 0.5 undergoing a cyclic sinusoidal electric 
input. (Logarithmic scale on the horizontal axis) 
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6 CHAPTER VI  

MICROMECHANICAL ANALYSES OF HYBRID PIEZOCOMPOSITES 

 

 

This chapter illustrates the performance of the hybrid-unit-cell model by 

comparing the UC estimations to experimental findings from available literatures 

following by parametric studies in order to examine the effects of different responses of 

the constituents, microstructural arrangements, and loading histories on the overall 

nonlinear and hysteretic electromechanical responses of hybrid piezocomposites. The 

constitutive relations in Equations (2.1), (2.2), (2.3), and (2.4) are used for polarized 

piezoceramics and those in Equations (2.22) and (2.23) are used for simulating the 

polarization switching response of piezoceramics while those in Equations (2.47) and 

(2.48) are applied to inactive viscoelastic mediums. 

6.1 Comparison with Experimental Data 

Available experimental data for hybrid composites were primarily focused on the 

overall mechanical properties. The presented nonlinear hybrid-unit-cell model should be 

capable of predicting the overall properties of the hybrid composites without 

electromechanical coupling effect. Hussain et al. (1996) reported the effective 

longitudinal Young’s modulus of a hybrid composite with unidirectional carbon fibers 

dispersed in an alumina/epoxy III matrix with the alumina particle VF = 0.1. Figure 6.1a 

depicts the comparisons of the longitudinal elastic moduli of the hybrid composite and a 

1-3 composite obtained from the hybrid unit-cell model and experimental data.  
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For the 1-3 composite, a hybrid unit-cell with zero percent particle volume 

content is considered. Adding particle to the polymeric matrix slightly improves the 

effective longitudinal moduli of the hybrid composite. Since Hussain et al. (1996) did 

not report the constituent properties, we calibrate the transverse and longitudinal moduli 

(E22 and E33) for the carbon fiber and the modulus (E) for the epoxy III by using the 

experimental data on the 1-3 composite with the carbon fiber VF = 0.41 shown in Figure 

6.1a. The constituent properties used in the simulation are listed in Figure 6.1. The 

experimental data for the effective transverse moduli shown in Figure 6.1b were 

obtained from Hussain et al. (2000). Using the carbon fiber VF = 0.4 with the alumina 

particle VF = 0.1 shown in Figure 6.1a we further calibrate the elastic modulus of the 

alumina, which is 416 GPa12. The calibrated material properties are then used to evaluate 

the effective longitudinal and transverse moduli of the hybrid composite with different 

fiber volume contents, as shown in Figure 6.1 (indicated by solid lines). The hybrid unit-

cell model can reasonably predict the effective elastic moduli of the hybrid and 1-3 

composites. It is seen that adding stiffer particles to the polymeric matrix can 

significantly enhance the transverse modulus. Hussain et al. (2000) did not report the 

experimental data for the transverse moduli of the hybrid composite. 

 

12 Munro’s (1997) experimental examination shown that the elastic modulus of the alumina is between 338 
and 416 GPa.     
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Figure 6.1   Comparison of the micromechanical predictions to the experimental 
data, a) Hussain et al. (1996) and b) Hussain et al. (2000), for the effective 
longitudinal elastic moduli for the carbon fiber/[alumina/epoxy III] hybrid (solid 
lines) and carbon fiber/epoxy III 1-3 (dotted lines) composites as a function of fiber 
volume fraction.  
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Table 6.1   Mechanical properties of the carbon fiber, epoxy III and alumina (The 
material properties are determined from Hussain et al., 1996 and 2000) 
 Carbon fiber  

Longitudinal Young’s modulus, 33E (GPa) 198  

Transverse Young’s modulus, 22E (GPa)   16  

Major Poisson’s ratio, 31v      0.20  

In-plane Poisson’s ratio, 12v      0.25  

Longitudinal shear modulus, 31G (GPa)   28  

 Epoxy III Alumina 

Young’s modulus, E (GPa) 3.4 416 

Poisson’s ratio, v  0.35 0.23 

 

 

Since the experimental data for hybrid piezocomposites are not available, we 

conduct parametric studies (Section 6.2) on investigating the effects of constituent 

compositions and loading histories on the overall performance of hybrid 

piezocomposites. 

6.2 Parametric Studies 

Effective nonlinear responses of polarized hybrid piezocomposites are discussed 

in Section 6.2.1 and following by effective time-dependent responses due to viscoelastic 

constituent (i.e., FM73 polymer) of polarized hybrid piezocomposites, which are 

examined in Section 6.2.2. Time-dependent and polarization switching responses of 
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piezocomposites are presented in Section 6.2.3. The material used for parametric studies 

are polarized PZT-G1195, Araldite D, FM73 polymer, and PZT-51, and their material 

parameters have been listed in the previous chapters.  

6.2.1 Nonlinear responses of polarized hybrid piezocomposites 

We examine the effect of constituent compositions on the overall nonlinear 

electromechanical responses of a polarized hybrid piezocomposite subjected to large 

electric fields (i.e., 1 MV/m) but lower than coercive electric field (i.e., the constitutive 

relations in Equations (2.1) and (2.2) are used for polarized PZT fibers and particles). 

The matrix of the hybrid piezocomposite is first considered as elastic solid such as 

Araldite D while the polarized PZT-G1195 is used for the inhomogeneities. The material 

properties of the Araldite D and polarized PZT-G1195 used for simulations have been 

listed in Table 4.1 and discussed in Section 4.2, respectively. 

Figure 6.2 shows the effective transverse stress 11σ and longitudinal stress 33σ

due to an applied electric field 3E along the poling direction, which is the longitudinal 

fiber direction (x3 axis) up to 1 MV/m for a fully constrained displacement of the PZT-

G1195/[ PZT-G1195/Araldite D] polarized hybrid piezocomposite with polarized PZT-

G1195 fiber VF = 0.4 and several polarized PZT-G1195 particle VFs = 0-0.5. The linear 

response for the piezocomposite with zero content of polarized PZT-G1195 fillers is also 

shown for comparison. Figure 6.2a shows that as the filler VF increases the effective 

transverse stress 11σ  is significantly enhanced while the effective longitudinal stress 33σ

is insensitive to the existence of polarized piezoelectric fillers even for higher particle 
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contents, as shown in Figure 6.2b. This is due to the fact that the transverse stress 11σ  is 

a matrix-dominated response and high stiffness of the polarized PZT-G1195 fillers 

increases the stiffness of the overall matrix. In contrast, the longitudinal stress 33σ  is a 

fiber-dominated response and insignificant improvements in the longitudinal properties 

are shown with adding polarized PZT-G1195 fillers. Thus, dispersing stiffer fillers into a 

softer matrix in a 1-3 piezocomposite will be useful for improving the blocked stress for 

the 3-1 operating mode.  

 

 

Figure 6.2   Effective a) transverse stress 11σ  and b) longitudinal stress 33σ  
responses for the fully constrained displacement of the PZT-G1195/[ PZT-
G1195/Araldite D] polarized hybrid piezocomposite with a  PZT-G1195 fiber VF = 
0.4 and various PZT-G1195 particle VFs under an applied electric field 3E  

 

 

We also consider a stress free boundary condition for a PZT-G1195/[ PZT-

G1195/Araldite D] polarized hybrid piezocomposite with polarized PZT-G1195 fiber VF 
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electric field 3E along the poling direction up to 1 MV/m. Figure 6.3 depicts the effective 

transverse strain 11ε and longitudinal strain 33ε . The absolute values of the effective 

strains 11ε and 33ε both decrease as the polarized PZT-G1195 fillers increase. This is 

because adding polarized PZT-G1195 particles in the matrix increases the stiffness of 

the matrix and leads to a stiffer polarized hybrid piezocomposite, which causes less 

actuation strains under the same electric field input. It is known that in piezoelectric 

materials larger blocked stresses are accompanied by smaller free strains, and vice versa. 

Adding stiffer fillers, i.e., PZTs, into a relatively soft matrix, i.e., polymer, in a 1-3 

piezocomposite is done to improve the transverse blocked stress. 

 

 

 

Figure 6.3   Effective a) transverse strain 11ε and b) longitudinal strain 33ε responses 
for the stress free PZT-G1195/[ PZT-G1195/Araldite D] polarized hybrid 
piezocomposite with a PZT-G1195 fiber VF = 0.4 and various PZT-G1195 particle 
VFs, under an applied electric field 3E . 
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6.2.2 Time-dependent responses of polarized hybrid piezocomposites 

In order to study the time-dependent responses due a viscoelastic constituent in a 

polarized hybrid piezocomposite, viscoelastic FM73 polymer is used for the polymer 

constituent. It should be noted that for the viscoelastic FM73 polymer, only the first two 

terms of the series of exponential functions are considered in this Section 6.2.2 in order 

to reduce computational cost. Fully constrained PZT-G1195/[PZT-G1195/FM73 

polymer] polarized hybrid piezocomposites with polarized PZT-G1195 fiber VF = 0.4 

and polarized PZT-G1195 particle filler VFs = 0 and 0.5 are subjected to a cyclic electric 

field, 3E (t) = −0.5cos(2πft)+0.5 MV/m along the poling direction with various 

frequencies f = 0.5, 1 and 10 Hz. The response of the effective transverse stress 11σ

amplitude (maximum stress) as a function of number of cycles at different loading 

frequencies is shown in Figure 6.4. As the number of cycles increase (longer duration of 

loading), the stress amplitude decreases until it reaches steady value, i.e., fully relaxed 

stress state. Higher frequency leads to more cycles needed to reach steady state, which is 

expected since slow input would give enough time for the viscoelastic polymers to 

experience stress relaxation. The polarized hybrid piezocomposite (Figure 6.4a) and the 

polarized 1-3 piezocomposite (Figure 6.4b) experience the same trends under cyclic 

loading with higher effective blocked stress 11σ  in the polarized hybrid piezocomposite.  
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Figure 6.4   Effective transverse stress 11σ amplitude vs. number of cycles for the 
fully constrained displacement of the PZT-G1195/[ PZT-G1195/FM73 polymer] 
hybrid piezocomposite with PZT-G1195 fiber VF = 0.4 and various polarized PZT-
G1195 particle VFs, a) 0.0 and b) 0.5, due to a cyclic electric field with various 
frequencies f = 0.5, 1 and 10 Hz along the poling direction.  
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viscoelastic FM73 polymer, only the first two terms of the series of exponential 

functions are considered in this section. 

Figure 6.5depicts steady state electric displacement and longitudinal strain 

responses of a stress free boundary condition for a PZT-51/[PZT-51/FM73 polymer] 

hybrid piezocomposite with PZT-51 fiber VF = 0.4 and PZT-51 particle VFs = 0.0, 0.2 

and 0.4, subject to a cyclic electric loading 3E = 1.2sin(2πft) MV/m along the 

longitudinal fiber direction (x3 direction) with the frequency f = 1 Hz. It is expected that 

the heights of the butterfly curves (Figure 6.5b, d, f) of the hybrid piezocomposite 

decrease as PZT-51 particles increase because PZT-51 fillers increase the overall 

stiffness of the matrix. In contrast, the polarization responses (Figure 6.5a, c, e) are only 

slightly influenced by the adding the active fillers since the response is dominated by the 

fibers. At the saturated (steady state) condition, the strains in the butterfly curves at the 

coercive electric field limit are slightly higher than zero, which are due to the time-

dependent PZT-51 and FM73 polymer materials. Even though the hybrid composites are 

under stress-free boundary conditions, the heterogeneity in the composites leads to 

existence of internal stresses when an electric field is applied. Several discontinuities in 

the hysteretic polarization and butterfly curves are observed in Figure 6.5g and h, 

respectively, when PZT-51 particle VF increases to 0.55. These discontinuities occur 

when the magnitude of compressive stress 33
tσ in the PZT-51 fiber exceeds the coercive 

stress limit ( cσ = 25 MPa for PZT-51) either from 33
t

cσ σ> − to 33
t

cσ σ≤ − or from 

33
t

cσ σ≤ − back to 33
t

cσ σ> − . When the compressive stress 33
tσ in the PZT-51 fiber is 

greater than the coercive stress limit, polarization switching occurs, whose effect is 
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incorporated in Equations (2.32) and (2.33). Changes in the material parameters, when a 

compressive stress is higher than the coercive stress limit, lead to discontinuities in the 

electromechanical responses. This issue has been discussed in Sohrabi and Muliana 

(2013). 

 

 

 

 

Figure 6.5   Effective a, c, e, g) electric displacement 3D and b, d, f, h) longitudinal 
strain 33ε responses for the stress free PZT-51/[PZT-51/FM73 polymer] hybrid 
piezocomposite with a PZT-51 fiber VF = 0.4 and various PZT-51 particle VFs due 
to a cyclic electric loading with frequency f = 1 Hz. 100 cycles are needed to reach 
steady state. 
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Figure 6.5 Continued. 
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of polarization to be generated from electric field inputs, as a result smaller hysteretic 

polarization and butterfly strain curves are observed when higher compressive stress is 

applied.  

 

 

 

Figure 6.6   Effective a, c, e) electric displacement 3D and b, d, f) longitudinal strain 

33ε responses for the PZT-51/[PZT-51/FM73 polymer] hybrid piezocomposite with 
PZT-51 fiber VF = 0.4 and PZT-51 particle VF = 0.2 subjected to both a cyclic 
electric loading with frequency f = 1 Hz and various constant mechanical stresses. 
Around 100 cycles are needed to reach steady state.  
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This study also presents the effect of frequencies on the overall hysteretic 

electromechanical responses of a hybrid piezocomposite. A stress free PZT-51/[PZT-

51/FM73 polymer] hybrid piezocomposite with PZT-51 fiber VF = 0.4 and PZT-51 

particle VF = 0.2 subjected to cyclic electric loadings 3E = 1.2 sin(2πft) along the fiber 

axis with different frequencies f = 0.5, 1 and 10 Hz is considered. Figure 6.7 depicts the 

responses of the polarization and longitudinal strain for the first six cycles. Lower 

frequency loading leads to larger hysteretic response since slower loading allows for the 

materials to experience more pronounced time-dependent response. In this analysis, PZT 

fibers and particles experiences creep-like polarization response while the matrix 

exhibits viscoelastic deformation. For the higher frequency loading, smaller hysteretic 

responses are seen and saturated (steady-state) condition is reached after a first few 

cycle, indicating negligible time-dependent response. In high frequency loading cases, 

the hysteretic response is mainly due to the irreversible polarization during polarization 

switching as discussed in Section 5.2.2.  
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Figure 6.7   Effective a, c, e) electric displacement 3D and b, d, f) longitudinal strain 

33ε responses for the stress free PZT-51/[PZT-51/FM73 polymer] hybrid 
piezocomposite with PZT-51 fiber VF = 0.4 and PZT-51 particle VF = 0.2 subjected 
to a cyclic electric loading with various frequencies f. The first six cycles are 
plotted.  

-1.5 -1 -0.5 0 0.5 1 1.5

-0.1

-0.05

0

0.05

0.1

E3 (MV/m)

D
3 (C

/m
2 )

a)   f = 0.5 (Hz)
Time elapsed = 12 (s)

-1.5 -1 -0.5 0 0.5 1 1.5
0

500

1000

1500

2000

2500

E3 (MV/m)

ε 33
 (m

ic
ro

st
ra

in
)

b)   f = 0.5 (Hz)
     Time elapsed = 12 (s)

-1.5 -1 -0.5 0 0.5 1 1.5

-0.1

-0.05

0

0.05

0.1

E3 (MV/m)

D
3 (C

/m
2 )

c)   f = 1.0 (Hz)
Time elapsed = 6 (s)

-1.5 -1 -0.5 0 0.5 1 1.5
0

500

1000

1500

2000

2500

E3 (MV/m)

ε 33
 (m

ic
ro

st
ra

in
)

d)   f = 1.0 (Hz)
     Time elapsed = 6 (s)

-1.5 -1 -0.5 0 0.5 1 1.5

-0.1

-0.05

0

0.05

0.1

E3 (MV/m)

D
3 (C

/m
2 )

e)   f = 10 (Hz)
Time elapsed = 0.6 (s)

-1.5 -1 -0.5 0 0.5 1 1.5
0

500

1000

1500

2000

2500

E3 (MV/m)

ε 33
 (m

ic
ro

st
ra

in
)

f)   f = 10 (Hz)
     Time elapsed = 0.6 (s)

111 

 



 

The evolution of the amplitude of the effective strain of the butterfly strain 

response at various cycles is studied. A PZT-51/[PZT-51/FM73 polymer] hybrid piezo-

composite with PZT-51 fiber VF = 0.4 and PZT-51 particle VF = 0.2 under a cyclic 

electric loading 3E (t) = 1.2 sin(2πft) MV/m with frequency f = 1 Hz is used in the 

analysis. Figure 6.8 depicts the normalized effective strain amplitude13 at various cycles. 

The initial drop in the normalized effective strain amplitude is due to time-dependent 

polarization effect in the PZT-51 fibers and then the strain amplitude increases at later 

cycles because of the creep deformation effect in the FM73 polymer.  

 

 

 

Figure 6.8   Normalized effective longitudinal strain 33ε amplitude vs. number of 
cyclers for the stress free PZT-51/[PZT-51/FM73 polymer] hybrid piezocomposite 
with PZT-51 fiber VF = 0.4 and PZT-51 particle VF = 0.2 due to a cyclic electric 
loading with frequency f = 1 Hz  
 

13 The normalized strain 33ε amplitude is normalized with respect to the maximum strain 33ε in the first 
cycle. 
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For further explanation, it is seen in Figure 6.9a that the strain amplitude in the 

PZT-51 constituent under cyclic electric field decreases before reaching steady state, 

while the strain amplitude in the FM73 polymer matrix constituent (Figure 6.9b) under 

cyclic stress input increases with increasing number of cycles. The different responses in 

the PZT-51 and FM73 polymer leads to complex hysteretic responses of the hybrid 

composites and higher number of cycles is required to reach steady state. 

 

 

 

Figure 6.9   Normalized strain amplitude vs. number of cyclers. a) Pure PZT-51 
subject to a cyclic electric loading with frequency f = 1 Hz. b) Pure FM73 polymer 
subject to a cyclic mechanical loading with frequency f = 1 Hz. 
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7 CHAPTER VII  

ANALYSES OF FUNCTIONALLY GRADED PIEZOELECTRIC BEAMS 

 

 

One type of the piezoelectric beams is a piezoelectric bimorph beam, which is 

formed by bonding two piezoelectric ceramic plates. An actuating mechanism is in the 

form of the lateral deflection of the bimorph beam, which results from one piezoelectric 

ceramic plate elongating due to a positive electric field while another one contracting 

from a negative electric field. Large bending displacements make the piezoelectric 

bimorph beam a good candidate in actuating applications. However, the large bending 

displacement achieved by large relative deformation (tension/compression) of the two 

piezoelectric ceramic plates, which is induced by large applied electric field leads to 

high stresses generated at the interface between the two piezoelectric ceramic plates. The 

high stresses at the interface can cause debonding of the two piezoelectric ceramic plates 

and eventually failure of the piezoelectric bimorph beam. Functionally graded material 

(FGM) appears one of the solutions to relieve the high stresses at the interface of 

piezoelectric ceramic plates by introducing gradual changes in the compositions of the 

piezoelectric ceramic plates, for example, Wu et al. (1996) and Takagi et al. (2003). Due 

to insignificant stress discontinuities at the interfaces in FGM, failures due to debonding 

or from high stresses developed in a conventional piezoelectric bimorph beam are 

avoided. 
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7.1 Formulation of Piezocomposite Beams 

The effective response of functionally graded piezoelectric beams is determined 

by using laminate plate theory. This section summaries the equations that govern the 

deformations of functionally graded piezoelectric beams, which are adopted from Ballas 

(2007) for modeling multilayer piezocomposite beams. We consider the problem of the 

beam bending in one plane only and assume that the beam deflection follows the Euler-

Bernoulli beam theory. Figure 7.1 depicts a functionally graded piezoelectric beam. In 

order to incorporate the electro-mechanical response, the unit-cell model of particulate 

composites is used to estimate the effective properties of each polarized piezocomposite 

lamina (macro level) and then the electric fields are applied to laminate plate theory to 

determine the curvature referring to the 1x -axis and the deflection with respect to 3x -

axis of the beam (structural level).  

 

 

 

 

 

 

 

 

 

 
Figure 7.1   Sketch of the functionally graded piezoelectric bender. 
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            Appling the conservation of linear and angular momenta along the 1x -axis and 

with respect to the 2x -axis, respectively, gives 

( ) ( )
11 1

1
,

n
k k

k
dA Nσ

=

=∑∫                                               (7.1) 

( ) ( )
11 3 2

1
,

n
k k

k
x dA Mσ

=

=∑∫                                         (7.2) 

where the superscript k indicates the kth lamina and n is the number of total lamina. ( )kA

is the area of cross section of the kth lamina with unit normal direction is in the 1x axis. 

1N and 2M are the resulting internal force along the neutral axis and moment with respect 

to the 2x -axis, respectively. Using a linearized constitutive equation, Equations (7.1) and 

(7.2) can be rewritten as 

        ( )( ) 0 ( ) ( )
11 11 3 1 11 1

1
,

n
k e k k

k
E x dA Nε κ ε

=

− + =∑∫                                 (7.3) 

        ( )( ) 0 ( ) ( )
11 11 3 1 11 3 2

1
,

n
k e k k

k
E x x dA Mε κ ε

=

− + =∑∫                            (7.4) 

where ( )
11

kE is elastic modulus along the 1x -direction of the kth lamina, 0
11ε is the elastic 

strain along the neutral axis (i.e., 1x -axis) of the beam, 1κ is the curvature referring to 

the 1x -axis of the beam, ( )
11

e kε  is the electric-induced strain of the kth lamina along the 

1x -direction due to an applied electric field ( )
3

kE in the kth lamina, which is evaluated 

via  

 ( ) ( ) ( )
11 311 3' ,e k k kd Eε =                                                    (7.5) 
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where ( )
311' kd  is linearized piezoelectric strain coefficient of the kth lamina. The unit-cell 

model is implemented in each lamina in order to determine the ( )
11

e kε . Due to the 

rectangular cross-section of the beam, the integrations in Equations (7.3) and (7.4) are 

written in a matrix form as 

0
1 111

1 2 2

,
e

e

N NA B
B D M M

ε
κ

 − −   =     −      
                                        (7.6) 

where  

( )( ) ( ) ( 1)
11 3 3

1
,

n
k k k

k
A b E x x −

=

= −∑                                               (7.7) 

( )2 2( ) ( ) ( 1)
11 3 3

1
,

2

n
k k k

k

bB E x x −

=

= −∑                                            (7.8) 

( )3 3( ) ( ) ( 1)
11 3 3

1
,

3

n
k k k

k

bD E x x −

=

= − −∑                                         (7.9) 

( )( ) ( ) ( ) ( 1)
1 11 11 3 3

1
,

n
e k e k k k

k
N b E x xε −

=

= −∑                                   (7.10) 

( )2 2( ) ( ) ( ) ( 1)
2 11 11 3 3

1
.

2

n
e k e k k k

k

bM E x xε −

=

= −∑                                (7.11) 

The upper right superscript e in Equations (7.10) and (7.11) indicates that the force 1
eN

and the moment 2
eM are due to the electromechanical coupling effect. The parameter b is 

the width of the beam. It should be noted that the internal force 1N is assumed to have 

been applied at the neutral axis. However, if this force is applied eccentrically, a 
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corresponding moment with respect to the 2x -axis must be added to compensate for the 

eccentricity. The curvature 1κ can be determined through 

10
1 111

1 2 2

.
e

e

N NA B
B D M M

ε
κ

−  −  −   =     −     
                                   (7.12) 

For a cantilever functionally graded piezocomposite beam, the maximum deflection 

determined by 

             21
max 2 pLκδ =                                                         (7.13) 

where pL is the length along the 1x -axis of the beam. The electric field in each lamina can 

be approximated by using a series combination of capacitors model, that is, the 

functionally graded piezoelectric beam is view as a circuit having a series combination 

of capacitors which represent the laminae together with a battery source which 

represents the total applied voltage across the laminae. Thus, the potential differences 

across the laminate and the kth lamina are written as: 

          ( )
1

1 ,
n

k
k

V Q
C=

= ∑                                                        (7.14) 

         ( )
( )

1 ,k
kV Q

C
=                                                         (7.15) 

where Q  is the charge which should be same in each lamina. ( )kC is the capacitance of 

the kth lamina and is given by 

         
( ) ( )

( ) 33
( ) ,

k k
k

k

AC
d

κ
=


                                                      (7.16) 
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where ( )
33

kκ is the second-order dielectric coefficients in the 3x -direction calibrated at 

constant stresses, which is determined from the unit-cell morel and ( )kd is thickness of 

the kth lamina. The electric field in the 3x -direction over the kth lamina is 

( )
( )
3 ( ) .

k
k

k

VE
d

=                                                          (7.17) 

Substituting ( )kV from Equation (7.15) into (7.17) gives 

( )
3 ( ) ( ) .k

k k

QE
d C

=                                                  (7.18) 

Substituting Equation (7.14) into (7.18) to eliminate Q gives 

      ( )
3

( ) ( )
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1

k
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d C
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∑
                                           (7.19) 

Substituting ( )kC from Equation (7.16) into (7.19) gives 
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3

( ) ( )
33 ( ) ( )

1 33
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k
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d
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                                             (7.20) 

If ( )kA is a constant for all lamina, Equation (7.20) can be further simplified to 

     ( )
3 ( )

( )
33 ( )

1 33

,k
kn

k
k

k

VE
dκ
κ=

=

∑



                                                   (7.21) 

where  

       ( ) ( ) ( 1)
3 3 .k k kd x x −= −                                                     (7.22) 
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Equation (7.21) is used to determine the average electric field in each lamina14. Due to 

the nonlinear polarized piezoelectric constitutive model, i.e., Equations (2.1) and (2.2) 

used for the piezoelectric phase, this formulation leads to an implicit problem: ( )
3

kE

depends on the ( )
33

kκ , and at the same time ( )
33

kκ depends on ( )
3

kE . This implicit problem is 

solved with a fixed-point method. The convergence is achieved when the norm of 

( ), ( ), 1
3 3

k n k nE E +− is smaller than a threshold value 10−6. 

7.2 Comparison with Experimental Data 

             Alexander and Brei (2005) developed two functionally graded piezoelectric 

beams. Each layer of the beam is constituted of 0-3 piezocomposites, which are made by 

mixing PZT-856 and barium titanate (BT) powder by powder metallurgy. Two opposing 

sides of the beam were electroded with 1500 Å of AuPd. The poling direction of each 

layer is toward the 3x -axis. Figure 7.2 depicts the 0-3 compositions of each ply and the 

dimension of each beam. The properties of the PZT-856 which are reported by 

Alexander and Brei (2005) and referred to manufacturer’s data sheet are listed in Table 

7.1. 

 

 

 

14 Through the concentration tensor (e.g., (3.52)) we can further determine the average electric fields of 
each phase (i.e., inhomogeneity or matrix) via each lamina. However, how much electric field reaching 
each grain from each constituent phase or further how much electric field reaching each dipole from each 
grain are out of scope of this study. The electric fields in the grain or dipole are usually classified as 
internal electric fields in contrast with external electric fields of the constituent phase or lamina. In this 
study, we neglect the complex internal electric fields and only focus on the average electric fields over 
each constituent phase or lamina so-called external electric fields. 
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Figure 7.2   Sketch of the functionally graded piezoelectric bender with a) two layers and 
b) five layers of piezocomposites. 
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Table 7.1   Electro-mechanical material properties of polarized PZT-856 
 PZT-856 

11
EY a (GPa) 58 

33
EY b (GPa) 45 

13
EG c (GPa) 12 

12
Ev  c  0.30 

31
Ev  c  0.33 

311d  a (pm/V) −260 

333d  a (pm/V) 620 

113d  b (pm/V) 710 

11 0κ κ  c, d 3800 

33 0κ κ  a 4100 

a  Alexander and Brei (2005). 
b Manufacturer’s data sheet from Giurgiutiu and Zagrai (2000). 
c  Assumed. 
d 0κ  = 8.85×10−12 (F/m) denotes vacuum permittivity. 

 

 

            The BT has high dielectric constant, which enhances the conductibility of the 0-3 

piezocomposites. Since Alexander and Brei (2005) did not report the mechanical 

properties of the BT, we further calibrate the properties from the experimental data of 

polarized 0-3 piezocomposites shown in Figure 7.3. Isotropic material symmetry and 

zero piezoelectric strain constant for BT are assumed due to the nature of non-polarized 
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barium titanate. Because no distinct phase for matrix was observed from the experiment, 

we choose BT as the matrix phase and PZT-856 as the particle phase (i.e., PZT-856/BT 

polarized 0-3 piezocomposite) to calibrate material properties. In Figure 7.3a, Young’s 

modulus in the 1x -direction, 55 GPa, and Poisson’s ratio, 0.35, of the BT matrix are 

calibrated by paralleling the trend line (dotted line) of the experimental data to particle-

unit-cell prediction (solid line). Similarly, relative dielectric constant of the BT matrix is 

calibrated to 50000 shown in Figure 7.3b. It should be noted that the manufacturer 

supplied material data sheet reports Young’s modulus in the 1x -direction of the PZT-856 

particles is 58 GPa but the measurements from Alexander and Brei (2005) show 56.2-

54.7 GPa. This discrepancy is observed in Figure 7.3a at PZT-856 particle VF=1. Figure 

7.3c depicts the comparison of micromechanical predictions to the experimental data for 

the effective piezoelectric strain constant. Again, discrepancy between the data from data 

sheet and the measurements is observed at PZT-856 particle VF=1. The calibrated 

results of the BT matrix are listed in Table 7.2. 
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Figure 7.3   Comparison of micromechanical predictions to the experimental data 
(Alexander and Brei, 2005) for the effective a) relative dielectric constants 33 0κ κ , 
b) Young’s modulus along the 1x -direction 11E , c) and piezoelectric strain constant 

311d  for the PZT-856/BT polarized 0-3 piezocomposite as a function of polarized 
PZT-856 particle VF. 
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Table 7.2   Material properties of non-polarized barium titanate (calibrated from 
experimental data of Alexander and Brei, 2005) 
 barium titanate 

Young’s modulus, Y  (GPa) 55 

Poisson’s ratio, v  0.35 

Relative dielectric constant 50000 

 

 

 

            Another combination of the polarized 0-3 piezocomposites is BT particles in a 

PZT-856 matrix (i.e., BT/PZT-856 polarized 0-3 piezocomposite). The material 

properties of the BT and PZT-856 phases used in the particle-unit-cell predictions use 

are listed in Table 7.1 and Table 7.2 which are calibrated in before. Comparisons 

between the experimental data and particle-unit-cell predictions on the effective 

properties of relative dielectric constants 33 0κ κ , Young’s modulus along the 1x -

direction 11E , and piezoelectric strain constant 311d  are shown in Figure 7.4. Although 

several discrepancies are observed, micromechanical estimations are able to qualitative 

capture the experimental measurements. 
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Figure 7.4   Comparison of micromechanical predictions to the experimental data 
(Alexander and Brei, 2005) for the effective a) relative dielectric constants 33 0κ κ , 
b) Young’s modulus along the 1x -direction 11E , c) and piezoelectric strain constant 

311d  for the BT/PZT-856 polarized 0-3 piezocomposite as a function of barium 
titanate particle VF. 
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            Figure 7.5 and Figure 7.6 depicts the comparisons between predictions and 

experimental measurements on the tip deflection. It is obvious that the predictions from 

the PZT-856 particles in the barium titanate matrix (solid lines) are in good correlations 

with experimental results. The predictions of the piezocomposite with barium titanate 

particles in the PZT-856 matrix (dashed lines) underestimate the tip deflection. The 

polarized piezoelectric constitutive model used here is linear in nature, and therefore the 

estimations do not capture the natural hysteresis of the deflections.  

 

 

 

Figure 7.5   Relationships between a total applied voltage and the tip deflection of 
the two-layer functionally graded piezoelectric bender. The solid (PZT-856/BT 0-3 
polarized piezocomposite) and dashed (BT/PZT-856 0-3 polarized piezocomposite) 
lines show the predictions from different compositions of the piezocomposite by 
particle-unit-cell model with laminate plate theory while solid circle symbols are 
experimental measurements from Alexander and Brei, 2005. 
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Figure 7.6   Relationships between a total applied voltage and the tip deflection of 
the five-layer functionally graded piezoelectric bender. The solid (PZT-856/BT 0-3 
polarized piezocomposite) and dashed (BT/PZT-856 0-3 polarized piezocomposite) 
lines show the predictions from different compositions of the piezocomposite by 
particle-unit-cell model with laminate plate theory while solid circle symbols are 
experimental measurements from Alexander and Brei, 2005. 
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configuration of functionally graded piezoelectric beam. The beam consists of seven 

polarized 0-3 piezocomposite layers with a center-symmetric composition profile, in 

which the compositions from the central layer to the surface layer are stepwise changed 

from VF=0.3 to 0 in an interval of VF=0.1 of the Pt particles. The central layer (i.e., 

-200 -100 0 100 200
-60

-40

-20

0

20

40

60

Applied voltage (V)

Ti
p 

de
fle

ct
io

n 
( µ

m
)

 

 PZT / BT 0-3 piezocomposite
BT / PZT 0-3 piezocomposite
Experiment (Alexander and Brei, 2005)

128 

 



 

VF=0.3 Pt particles) as an internal electrode is 200 μm thick, and other layers are 300 

μm thick. The poling direction of each layer is toward the 3x -axis. The beam is coated 

with silver paste on the outer surfaces, which are perpendicular to the 3x -axis. The 

coated silver surfaces are connected to the same electrode against the internal electrode 

in the central layer. This design makes the layers above and below the central layer 

experienced opposite electric field when a voltage supplied by a DC power generator is 

applied. Thus, the beam bends along 2x -axis due to opposite deformation (extension and 

contraction) along the 1x -axis of the Pt/PZT polarized 0-3 piezocomposite layers. 
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Figure 7.7   Sketch of the functionally graded piezoelectric bender. 
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Figure 7.7 Continued. 

 

 

 

            In the example of Figure 7.7, the zero electric field across the layer 4 is specified 

due to electrical conductivity resulting from the spatial connection of Pt particles in the 

PZT matrix when Pt particle volume fraction reaches 0.3, which was reported by Takagi 

et al. (2002). The material properties of the PZT matrix were given by Takagi et al. 

(2002) which are listed in Table 7.3 and the properties of the Pt particles are referred to 

Davis (1998) which are listed in Table 7.4. 
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Table 7.3   Electro-mechanical material properties for the PZT matrix (Takagi et 
al., 2002) 
 

1111c
GPa 

1122c
GPa 

1133c
GPa 

3333c
GPa 

2323c
GPa 

311e
C/m2 

333e
C/m2 

113e
C/m2 

11

0

κ
κ

 33

0

κ
κ

 

PZT matrix 146 95.4 94.3 128 21.1a −3.94 17.5 12.3a 1730a 1654 

a Refer to properties of the PZT-5A from Morgan Electro Ceramics, Inc. 
 

 

 

 

Table 7.4   Mechanical and electrical properties of the Pt particles (Davis, 1998) 
 Platinum 

Young’s modulus, E (GPa) 171 

Poisson’s ratio, v  0.39 

Dielectric coefficienta, 11 22 33κ κ κ= =  (nF/m) 89 

a This dielectric coefficient which is ten thousand times of vacuum permittivity is 
assumed for comparison and simulation purpose because dielectric constants of 
conductive metals, in general, are considered as infinite. 
 

  

 

Because this functionally graded piezoelectric beam has lower aspect ratio (i.e., 

6), shear deflection could significantly contribute to the total deflection (i.e., sum of 

shear and bending deflection). It might violate the assumption of Euler-Bernoulli beam 

theory, zero shear deflection. Thus, we examine the percentage of error prediction due to 
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the shear deflection before we analyze this functionally graded piezoelectric beam whose 

aspect ratio is 6. Now, for a homogeneous and isotropic cantilever beam of rectangular 

cross section b h×  (i.e., width ×height) with length l , loaded with an end load P  we 

have 

3

bending shear
3, ,

3 2
Pl Pl
EI AG

δ δ= = 15                                     (7.23) 

where E , G , A , and I are Young’s modulus, shear modulus, area of cross section, and 

area moment of inertia, respectively. We define the percentage of error prediction is 

shear

bending shear

100.Error δ
δ δ

= ×
+

                                           (7.24) 

Due to A bh= and 3 12I bh= , Equation (7.24) can be rewritten to 

( )2
3 100.

8 3
EError

G l h E
= ×

+
                                        (7.25) 

Thus, for beams of any high aspect ratio (i.e., /l h ), the percentage of error prediction is 

completely negligible. We consider two extreme cases, a cantilever beam made by PZT 

and another by Pt. The percentage of error prediction of the functionally graded 

piezoelectric beam should be between these two extreme cases. Figure 7.8 depicts the 

percentage of error prediction as a function of aspect ratio. For aspect ratio 6, the 

percentage of error predictions for PZT and Pt beams are under 4%. Hence, we believe 

that it is still feasible to use Euler-Bernoulli beam theory to analyze the functionally 

15 Derivation is referred to Den Hartog (1977) 
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graded piezoelectric beam which was experimentally examined by Takagi et al. (2002) 

shown in Figure 7.7. 

 

 

 

Figure 7.8   The percentage of error prediction vs. aspect ratio of the cantilever 
beam. 
 

 

 

             Figure 7.9 depicts the predictions and experimental observations (Takagi et al., 

2002) of the curvature of the functionally graded piezoelectric beam against the total 

applied voltage. The dashed line considers the PZT matrix with linear electro-

mechanical responses (i.e., omit the higher-order term in Equation (2.1)) while the solid 
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line considers nonlinear electro-mechanical responses of the PZT matrix. The nonlinear 

material parameters of the PZT matrix, 3311f = 3322f = −1.95×10−16, 3333f =4.5×10−16, 2223f

= 1113f = 8.0×10−16 m2/V, and 111χ = 222χ = 333χ =0 F/V, are calibrated by using the 

experimental data at the total applied voltage tV =500 V shown in Figure 7.9. It is 

expected that when the total applied voltage is low (i.e., low electric field to be 

generated), say tV =100 V, both linear and nonlinear estimations give good agreements to 

the experimental measurement. As total applied voltage increasing, the linear prediction 

(dashed line) diverges from the experimental data gradually while the nonlinear 

estimation (solid line) is able to simulate the experimental data for the whole range of 

the total applied voltage. It is noted that each Pt/PZT polarized 0-3 piezocomposite layer 

except conductor layer (i.e., central layer) experiences a magnitude of 0.57 MV/m of the 

electric field at tV =500V. The magnitude 0.57 MV/m of the electric field is high enough 

to induce significant nonlinear response of PZT ceramics, which had been discussed in 

Section 1.2.1. 
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Figure 7.9   Relationships between a total applied voltage and the curvature of the 
functionally graded piezoelectric bender. The solid (Nonlinear PZT) and dashed 
(Linear PZT) lines show the predictions from particle-unit-cell model with laminate 
plate theory while solid circle symbols are experimental measurements of 
curvatures at specific applied voltages from Takagi et al., 2002. 
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8 CHAPTER VIII  

CONCLUSIONS AND FUTURE RESEARCH 

 

 

Conclusions of this study and potential future research are summarized in this 

chapter. 

8.1 Conclusions 

             This study presents three micromechanical models, i.e., fiber-, particle-, and 

hybrid-unit-cell models, to study the effective electro-mechanical responses of 1-3, 0-3, 

and hybrid active composites, respectively. The constitutive models for each constituent 

in the active composites considered in this study are nonlinear polarized piezoelectric, 

time-dependent polarization switching, and linear viscoelastic constitutive models. 

Experimental data available in literature are first used to validate the micromechanical 

models, followed by parametric studies to examine the overall electro-mechanical 

responses of the active composites determined from the micromechanical models. In 

order to predict the effective nonlinear rate-dependent electromechanical responses, 

linearized micromechanical relations are first imposed in order to provide trial solutions 

at each instant of time. An iterative scheme, i.e., fixed-point method, is then added to 

minimize errors from linearizing the nonlinear electromechanical and time-dependent 

responses. For comparison purposes, Mori-Tanaka model is also reformulated to include 

the nonlinear polarized piezoelectric and linear viscoelastic constitutive models.  Several 

analyses on understanding the nonlinear electromechanical responses of the active 
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composites using the proposed micromechanical models have been performed. The 

results are summarized as follow: 

In Chapter IV, the effective responses of the polarized 1-3 active composites with 

nonlinear piezoelectric effect of the inhomogeneities are significantly different from the 

ones with linear polarized piezoelectric effects. This is due to the fact that the 

electromechanical responses in the polarized 1-3 active composites subject to an electric 

field input along the fiber direction are dominated by the fiber response. However, for 

the polarized 0-3 active composites with low conductivity of the matrix, the nonlinear 

responses are less pronounced since the overall responses are dominated by the matrix, 

which is modeled as linear elastic or viscoelastic, and only a small fraction of the applied 

electric field reaches the polarized piezoelectric particles. Reponses of the polarized 1-3 

active composites under cyclic electric field inputs at different frequencies have also 

been studied. Inputs with lower frequency (slower loading rates) allow for the materials 

to undergo more pronounced creep deformation (or stress relaxation), which in this case 

is shown by the larger hysteretic loop in one cycle, lower amplitude of the corresponding 

stress output and smaller number of cycles to reach steady state. For the polarized 1-3 

active composites the effective transverse responses are more sensitive to fiber cross 

section (circle vs. square) than the longitudinal responses while for the polarized 0-3 

active composites the geometry of the reinforcements (sphere vs. cube) has significant 

influences on the effective responses. It has also been observed that the UC and MT 

predictions of the overall properties and responses of the polarized active composites 

are, in general, close to each other, with some mismatches observed. The comparison 
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between an original particle-reinforced active composite and a reversed-phase active 

composite, which is formed by viscoelastic particles dispersed in a polarized 

piezoelectric matrix, confirms that the matrix dominates the overall responses of a 

polarized 0-3 active composite. 

In Chapter V, the effective hysteretic responses of the 1-3 active composites are 

significantly greater than those of the 0-3 active composites because the piezoelectric 

fibers dominate the overall longitudinal responses of the 1-3 active composites while the 

passive polymer matrix dominates the overall responses of the 0-3 active composites. 

The same phenomena are also observed in the polarized active composites, which had 

been discussed in Chapter IV. Higher concentrations of ferroelectric fibers cause 

stronger effective dielectric hysteresis and butterfly strain responses. The compressive 

stresses limit the amount of polarization to be generated from electric field inputs, as a 

result smaller hysteretic polarization and butterfly strain curves are observed in the 1-3 

active composites. Also, a lower frequency input allows the 1-3 active composites to 

undergo more pronounced time-dependent response, which in this case is shown by 

broader hysteretic responses. The hysteretic response indicates amount of energy being 

dissipated, which is converted into heat. It is noted that many applications of active 

materials would involve cyclic electromechanical loading, thus the hysteretic response 

could eventually lead to cyclic failures. For the 0-3 active composites, improving the 

dielectric constant of inactive matrix efficiently enhances overall responses when the 0-3 

active composites are subject to electric stimuli, which are often the case in actuator 

applications. 
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In Chapter VI, hybrid active composites are formed by adding ferroelectric fillers 

to the matrix, which significantly improves the blocked stress in the transverse fiber 

direction while insignificantly affects the overall electromechanical performance in the 

longitudinal fiber direction. This is because the matrix, whose properties change with 

adding the active fillers, dominates the transverse response. The free strains, however, 

significantly decrease in both transverse and longitudinal fiber directions as the amount 

of active fillers increases. This is due to the fact that adding stiffer active particles in a 

softer epoxy matrix results in a stiffer overall matrix. Thus, adding active fillers are 

useful for improving the blocked stress for active composites with 3-1 operating mode. 

Responses of the hybrid active composites under cyclic electric fields, with amplitude 

higher than the coercive electric field limit of the materials, and compressive stress 

loadings have been studied. Adding ferroelectric fillers slightly reduces the hysteretic 

polarization response, and significantly decreases the hysteretic strain response. As the 

matrix becomes stiffer, matrix would experience smaller deformations when an electric 

field input is applied, resulting in smaller residual stresses16 in both fibers and matrix. 

Although its effect is minimum, the residual stress would affect the overall hysteretic 

polarization in the composites. As also expected, compressive stresses applied along the 

direction of electric field reduce the polarization capability of the composites. We also 

investigated the effect of frequencies on the overall electromechanical responses of the 

hybrid active composites. A lower frequency input allows the hybrid composites to 

16 The residual stress is defined as internal stresses in the constituents of the composites in absence of 
external mechanical stimuli. In this study, the residual stresses arise due to the mismatches in the 
properties and responses of the constituents when the composites are subjected to electric field input. 
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undergo more pronounced time-dependent response, which in this case is shown by 

broader hysteretic responses. 

Finally, in Chapter VII, the developed particle-unit-cell model has been 

integrated to laminate plate theory, which forms a multi-scale model of a functionally 

graded piezoelectric bimorph actuator. The multi-scale model that considers the 

nonlinear polarized piezoelectric constitutive models is capable in capturing the bending 

deflection of the functionally graded actuator through applying electric voltages. In 

practical applications of actuators, it is desirable to utilize the greatest possible strain 

available in the actuators and it should be achieved by applying large electric fields, 

which lead to pronounced nonlinear responses. 

8.2 Future Research 

            Two possible further researches are suggested as follow: 

1) Multiscale modeling of active composite allows integrating micromechanical 

models with several types of elements within finite element (FE) analysis, 

which will be useful for analyzing more complex structures made of active 

composites. The multiscale analysis is very useful for designing smart 

devices (structures) having active composites. 

2) Constitutive modeling of multifunctional composite materials with coupled 

multiple physical responses, e.g., mechanical, electrical, thermal, magnetic, 

and optical, can be realized by integrating different constitutive models into 

the developed micromechanical models. This extension is very useful for 

studying different responses of numerous multifunctional composites.  
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APPENDIX A 

 

 

The micromechanical relations of the fiber-unit-cell model, shown in Figure 3.1, 

are formed by imposing the traction and electric flux continuity and displacement and 

potential compatibility conditions within all subcells and the perfect bonding condition 

at the subcells’ interfaces. The linearized micromechanical relations for piezocomposite 

comprising unidirectional fibers with poling direction aligned in the x3 direction are 

summarized as follows. The displacement compatibility conditions give: 

(1) (2)
(1) (2)
11 11 11(1) (2) (1) (2) ,V V

V V V V
ε ε ε+ =

+ +
                              (A.1) 

(3) (4)
(3) (4)
11 11 11(3) (4) (3) (4) ,V V

V V V V
ε ε ε+ =

+ +
                          (A.2) 

(1) (3)
(1) (3)
22 22 22(1) (3) (1) (3) ,V V

V V V V
ε ε ε+ =

+ +
                              (A.3) 

(2) (4)
(2) (4)
22 22 22(2) (4) (2) (4) ,V V

V V V V
ε ε ε+ =

+ +
                           (A.4) 

          (1)
33 33,ε ε=                                                  (A.5) 

          (2)
33 33,ε ε=                                                   (A.6) 

          (3)
33 33,ε ε=                                                   (A.7) 

          (4)
33 33,ε ε=                                                   (A.8) 
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(1) (3)

(1) (3)
23 23 23(1) (3) (1) (3) ,V V

V V V V
ε ε ε+ =

+ +
                             (A.9) 

           
(2) (4)

(2) (4)
23 23 23(2) (4) (2) (4) ,V V

V V V V
ε ε ε+ =

+ +
                           (A.10) 

(1) (2)
(1) (2)
13 13 13(1) (2) (1) (2) ,V V

V V V V
ε ε ε+ =

+ +
                            (A.11) 

(3) (4)
(3) (4)
13 13 13(3) (4) (3) (4) ,V V

V V V V
ε ε ε+ =

+ +
                          (A.12) 

        (1) (1) (2) (2) (3) (3) (4) (4)
12 12 12 12 12.V V V Vε ε ε ε ε+ + + =                       (A.13) 

The traction continuity conditions yield to: 

      (1) (2)
11 11 0,σ σ− =                                              (A.14) 

      (3) (4)
11 11 0,σ σ− =                                              (A.15) 

      (1) (3)
22 22 0,σ σ− =                                              (A.16) 

      (2) (4)
22 22 0,σ σ− =                                              (A.17) 

       (1) (3)
23 23 0,σ σ− =                                             (A.18) 

       (2) (4)
23 23 0,σ σ− =                                            (A.19) 

       (1) (2)
13 13 0,σ σ− =                                             (A.20) 

       (3) (4)
13 13 0,σ σ− =                                             (A.21) 

                                                           (1) (2)
12 12 0,σ σ− =                                            (A.22) 

       (1) (3)
12 12 0,σ σ− =                                             (A.23) 
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       (1) (4)
12 12 0.σ σ− =                                             (A.24) 

The micromechanical relations for the potential compatibility conditions are: 

              
(1) (2)

(1) (2)
1 1 1(1) (2) (1) (2) ,V VE E E

V V V V
+ =

+ +
                        (A.25) 

 
(3) (4)
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1 1 1(3) (4) (3) (4) ,V VE E E

V V V V
+ =

+ +
                        (A.26) 

  
(1) (3)

(1) (3)
2 2 2(1) (3) (1) (3) ,V VE E E

V V V V
+ =

+ +
                       (A.27) 

 
(2) (4)

(2) (4)
2 2 2(2) (4) (2) (4) ,V VE E E

V V V V
+ =

+ +
                        (A.28) 

 (1)
3 3,E E=                                              (A.29) 

 (2)
3 3,E E=                                              (A.30) 

 (3)
3 3,E E=                                              (A.31) 

 (4)
3 3.E E=                                              (A.32) 

The micromechanical relations for the electric flux continuity conditions are: 

         (1) (2)
1 1 0,D D− =                                           (A.33) 

         (3) (4)
1 1 0,D D− =                                           (A.34) 

         (1) (3)
2 2 0,D D− =                                           (A.35) 

         (2) (4)
2 2 0.D D− =                                           (A.36) 
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APPENDIX B 

 

 

 The micromechanical relations for the particle-unit-cell model, shown in Figure 

3.1, are formed with similar assumptions to those of the fiber-unit-cell model. The 

linearized micromechanical relations for a piezocomposite with the poling direction 

aligned in the x3 direction are summarized as follows. The micromechanical relations for 

the displacement compatibility conditions are: 
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(1) (2)
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+ +
                               (B.1) 

(3) (4)
(3) (4)
11 11 11(3) (4) (3) (4) ,V V

V V V V
ε ε ε+ =

+ +
                             (B.2) 

(5) (6)
(5) (6)
11 11 11(5) (6) (5) (6) ,V V

V V V V
ε ε ε+ =
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(7) (8)
(7) (8)
11 11 11(7) (8) (7) (8) ,V V

V V V V
ε ε ε+ =

+ +
                             (B.4) 

(1) (3)
(1) (3)
22 22 22(1) (3) (1) (3) ,V V

V V V V
ε ε ε+ =

+ +
                               (B.5) 
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The micromechanical relations for the traction continuity conditions are: 

      (1) (2)
11 11 0,σ σ− =                                              (B.19) 

      (3) (4)
11 11 0,σ σ− =                                              (B.20) 
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      (5) (6)
11 11 0,σ σ− =                                              (B.21) 

      (7) (8)
11 11 0,σ σ− =                                              (B.22) 

      (1) (3)
22 22 0,σ σ− =                                              (B.23) 

      (2) (4)
22 22 0,σ σ− =                                              (B.24) 

      (5) (7)
22 22 0,σ σ− =                                              (B.25) 

      (6) (8)
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      (1) (5)
33 33 0,σ σ− =                                              (B.27) 

      (2) (6)
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      (3) (7)
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      (4) (8)
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23 23 0,σ σ− =                                              (B.32) 

                                                         (1) (7)
23 23 0,σ σ− =                                               (B.33) 

      (2) (4)
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23 23 0,σ σ− =                                              (B.36) 

      (1) (2)
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155 

 



 

      (1) (5)
13 13 0,σ σ− =                                              (B.38) 

      (1) (6)
13 13 0,σ σ− =                                              (B.39) 

      (3) (4)
13 13 0,σ σ− =                                              (B.40) 

      (3) (7)
13 13 0,σ σ− =                                              (B.41) 

      (3) (8)
13 13 0,σ σ− =                                              (B.42) 

      (1) (2)
12 12 0,σ σ− =                                               (B.43) 

      (1) (3)
12 12 0,σ σ− =                                               (B.44) 

      (1) (4)
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      (5) (6)
12 12 0,σ σ− =                                              (B.46) 

      (5) (7)
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      (5) (8)
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The micromechanical relations for the potential compatibility conditions are: 

(1) (2)
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+ +
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The micromechanical relations for the electric flux continuity conditions are: 

      (1) (2)
1 1 0,D D− =                                              (B.61) 

      (3) (4)
1 1 0,D D− =                                              (B.62) 

      (5) (6)
1 1 0,D D− =                                             (B.63) 

      (7) (8)
1 1 0,D D− =                                             (B.64) 

      (1) (3)
2 2 0,D D− =                                             (B.65) 
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      (2) (4)
2 2 0,D D− =                                             (B.66) 

      (5) (7)
2 2 0,D D− =                                             (B.67) 

      (6) (8)
2 2 0,D D− =                                              (B.68) 

      (1) (5)
3 3 0,D D− =                                             (B.69) 

      (2) (6)
3 3 0,D D− =                                             (B.70) 

      (3) (7)
3 3 0,D D− =                                             (B.71) 

      (4) (8)
3 3 0.D D− =                                              (B.72) 
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