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ABSTRACT 

 

Diatoms exude large amounts of exopolymers (EPS), which are predominantly 

composed of carbohydrates. EPS may coagulate into transparent exopolymer particles 

(TEP). Sticky TEP affects the formation of aggregates and marine snow, and 

consequently, the efficiency of the biological carbon pump. The objective of this 

research was to determine how different factors affect carbohydrate production and the 

formation of TEP by diatoms, and their role in aggregation. Diatoms were grown in 

laboratory cultures to test the hypothesis that stress increases the cell membrane 

permeability and subsequently enhances TEP formation. In addition, an experiment was 

conducted to compare the effect of oxidative stress on both a diatom (Thalassiosira 

weissflogii) and a cyanobacterium (Synechococcus elongates). 

For some diatoms (Thalassiosira weissflogii and Skeletonema marinoi) and the 

cyanobacterium Synechococcus elongatus, TEP formation was associated with 

permeable cells. Greater TEP production was observed in cultures under stress 

conditions (higher temperature, nutrient limitation, and oxidative stress), and more 

dissolved extracellular carbohydrate was released by dying cells. In the contrast, TEP 

formation by Cylindrotheca closterium was associated with healthy cells. More 

dissolved extracellular carbohydrate produced by healthy cells, rather than permeable 

cells. Therefore, my results indicate that carbohydrate production is important for TEP 

formation. Stress causes cell leakage, but TEP formation is a complex process. Cell 

leakage does not always result in the release of dissolved extracellular carbohydrate and 
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enhanced TEP production. In addition, this study investigated the relationship between 

TEP and aggregate formation. Higher temperature increased TEP production, which was 

associated with greater aggregation in cultures of S. marinoi, but not in T. weissflogii. 

Therefore, enhanced TEP production by diatoms does not always affect aggregate 

formation. This research indicates that environmental factors affect carbohydrate and 

TEP production by diatoms, and consequently influences aggregate formation. These 

influences have a profound impact on biogeochemical cycling of carbon. 
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NOMENCLATURE 

 

ANOVA Analysis of variance 

ASW Artificial sea water 

C. closterium Cylindrotheca closterium 

Chlorophyll a  Chl. a 

CSP Coomassie Staining Particles 

DEC Dissolved extracellular carbohydrate 

DOC Dissolved organic carbon 

DOM Dissolved organic matter  

EPS Extracellular polymeric substances 

LISST laser in situ scattering and transmissometry 

PCD Programmed cell death 

POC Particular organic carbon 

POM Particular organic matter 

PSD Particular size distribution 

S. elongatus  Synechococcus elongatus 

S. marinoi Skeletonema marinoi 

TCHO Total carbohydrate 

TEP Transparent exopolymer particle  

T. weissflogii Thalassiosira weissflogii  

UHP Ultra high purity 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Role of diatoms in primary production and carbon cycling  

 

Phytoplankton are important primary producers and are responsible for almost 

50 % of global annual primary productivity (40 ~ 45Pg C yr-1) (Field et al. 1998, 

Falkowski et al. 1998). Dissolved organic carbon (DOC) and particulate organic carbon 

(POC) produced by phytoplankton make a significant contribution to the global carbon 

cycle. Organic matter sinks into the ocean interior, where it is aggregated or respired 

(Passow 2012). Hansell et al. (2009) estimated that the oceans contain 662 Pg C (1 Pg = 

1 gigaton = 1015 g) as DOC, which is close to the CO2 content contained in the 

atmosphere. The atmosphere contained an estimated 784 Pg C in 2000 (Thornton 2012). 

Thus, marine DOC production plays an important role in affecting global carbon cycling 

through acting as a major reservoir of carbon. Phytoplankton in the ocean have a small 

total biomass, estimated to be between 0.25 and 0.65 Pg C, accounting for < 1% of 

global primary production (Falkowski and Raven 2007). However, phytoplankton has 

high primary productivity, and the biomass of phytoplankton can be replaced every 2 to 

6 days (Falkowski and Raven 2007). Because of their high productivity, significant 

amounts of particulate organic matter (POM) and dissolved organic matter (DOM) are 

contributed by phytoplankton to the global carbon cycle. 
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Diatoms are a major group of phytoplankton and are widely distributed in the 

ocean, sometimes forming fast-growing blooms. Large numbers of aggregates frequently 

form when seasonal diatoms blooms terminate, which strongly affects the particle flux of 

carbon from the surface of the ocean to deep sea (Honjo 1982, Alldredge and Gotschalk 

1988, Thornton 2002). More importantly, diatoms excrete large amounts of exopolymers 

(EPS) (Staats et al. 2000, Smith and Underwood 1998), which can coagulate into 

transparent exopolymer particles (TEP) (Passow 2002a). TEP are sticky gel-like 

particles, which promote aggregate formation by adhering cells and other POC together 

into marine snow aggregates (Passow 2002b, Thornton 2002, Verdugo et al. 2004). 

Aggregations of diatoms and their subsequent sinking as marine snow influence the 

biological carbon pump, which exports a rapid flux of POM from the surface to the 

ocean interior (Billett et al. 1983, Passow 1995, 2002c). In addition, some metals could 

accumulate in biopolymers and be transported to higher trophic levels, influencing 

oceanic biogeochemical cycle (Huang & Santschi 2001). Hence, understanding the 

amount of the extracellular products released by diatoms would be of great value for 

better understanding microbial food webs and carbon cycling in global biogeochemistry. 

 

1.2 Introduction to EPS production by diatoms 

 

An important contribution to the biological carbon pump is production of EPS by 

diatoms. EPS in the ocean are formed of DOC and colloidal precursors that are excreted 

by the cell external to the plasmalemma (Hoagland et al. 1993). DOC is an essential 
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substrate for microorganisms; refractory biopolymers contribute a source of DOC and 

might play an important role in the carbon cycle (Verdugo and Santschi 2010). Some 

EPS exuded by diatoms are rich in acid polysaccharides and proteoglycans (Hoagland et 

al. 1993, Underwood et al. 2003, Borchard and Engel 2012). Polysaccharides are a major 

component of the high-molecular weight DOM in the surface ocean (Benner et al. 1992). 

The production and composition of EPS vary in different species and environmental 

conditions (Hoalang et al 1993, Underwood et al. 1995; Smith and Underwood 1998; 

Khandeparker and Bhosle 2001, Abdullahi et al. 2006, Ding et al. 2009). From studies of 

microalgae, diatoms exude significant portion of carbohydrate as EPS under nutrient 

stress (Staats et al. 2000, Passow 2002a). Under nutrient limitation, carbon is often fixed 

in excess of requirements and cells release fixed carbon into the surrounding medium as 

extracellular carbohydrates (Myklestad and Haug 1972, Fogg et al. 1983, Staats et al. 

2000). These polymers have many different functions for the cells including: motility, 

mediation of extracellular exchange, a photosynthetic overflow, and desiccation 

resistance (Hoagland et al. 1993). EPS plays a significant role in many ecosystems, in 

the bio-stabilization of sediments (Underwood et al. 2003), as a carbon source for 

heterotrophic species (Decho 1990), and in stimulatory or inhibitory interactions 

between diatoms and bacteria (Hoagland et al. 1993). EPS includes TEP and Coomassie 

Staining Particles (CSP), which will be introduced in detail below. 

Alldredge et al. (1993) first time described TEP as transparent gel particles, 

which are formed from acid polysaccharides. TEP are a type of particulate EPS, which 

can be retained on a filter with a pore size of 0.4 µm (Alldredge et al. 1993). They are 
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individual particles rather than cell coatings (Passow and Alldredge 1994). TEP was 

largely ignored for a long time because its transparency meant that TEP could not be 

seen by light microscopy. Since the development of techniques for the visualization of 

TEP by staining it using Alcian Blue (Alldredge et al. 1993), high concentrations of TEP 

and their significant role in the biogeochemical cycling of elements were revealed 

(Engel and Passow 2001, Ramaiah et al. 2001, Passow 2002c). Many observations have 

recorded high concentration of TEP (> 106 L-1) in situ during phytoplankton blooms 

(Alldredge et al. 1993, Kiørboe and Hansen 1993, Kiørboe et al. 1998). The size of TEP 

ranges from 1 to 100 μm or more in diameter (Passow and Alldredge 1994). TEP are 

formed from colloidal TEP precursors, which consist of fibrils 1 to 3 nanometers long 

and belong to the dissolved pool (Passow 2002b). These TEP precursors form submicron 

gels abiotically by spontaneous assembly (Chin et al. 1998), bubble adsorption (Zhou et 

al. 1998, Mari 1999), or shear coagulation (Engel and Passow 2001, Passow 2002c). 

Considerable amounts of TEP may also be formed biotically by fibrils exuded by algae 

and cyanobacteria (Grossart et al. 1997, Berman et al. 2007). Eventually, these 

submicron particles coagulate to form TEP, which are large particles and belong to the 

particulate carbon pool. Thus, TEP become a bridge linking the DOM and POM pools 

(Verdugo et al. 2004).  

Another type of particulate EPS is of proteinaceous origin and was found by 

Long and Azam (1996). These protein particles can be stained by Coomassie Brilliant 

Blue, and as such are named Coomassie Staining Particles (CSP). CSP can be produced 

by algae and bacteria from DOM precursors (Long and Azam 1996). CSP are sticky 
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organic particles which could affect the adhesive properties of bacteria and have 

important role in the ecology of pelagic bacteria (Long and Azam 1996). These particles 

can be present in high concentrations in seawater during phytoplankton blooms (Long 

and Azam 1996). Concentrations of CSP were reported on the order of 106 to 108 L-1 in 

coastal water (Long and Azam 1996).  

The chemical compositions of TEP and CSP are different, and are polysaccharide 

and protein-rich, respectively. The sedimentation of TEP may represent selective 

enrichment of carbon into deep water, whereas sedimentation of CSP may constitute a 

selective contribution to fluxes to the deep sea not only of carbon but also of nitrogen. 

 

1.3 Ecological role of TEP 

 

1.3.1 Role of TEP in food web 

 

TEP and TEP precursors are food for heterotrophs and grazers (Tranvik 1993, 

Shimeta 1993, Kepkay 2000). Some studies have indicated that feeding on diatom cells 

by copepods was reduced in the presence of high molecular weight (HMW) exudates in 

the environment (Malej and Harris 1993), so TEP as HMW exudates may also inhabit 

the grazing of diatoms. Consumption of TEP microaggregates by macro or 

megazooplankton may shortcut the traditional food web and efficiently the transport of 

energy to higher trophic levels (Passow 2002a). It is not clear whether TEP can be 

utilized by bacteria (Stoderegger and Herndl 1998, Aluwihare and Repeta 1999, Ogawa 
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et al. 2001). Some experiments have proposed that decomposition of TEP by bacteria is 

an important way of decreasing the pool of TEP (Stoderegger and Herndl 1998, Ogawa 

et al. 2001). TEP is degraded by bacteria into DOM and is recycled in the upper ocean 

(Kepkay 2000). However, this finding has been challenged. Analysis of TEP 

composition suggests that TEP are rich in fucose, which increases the resistance of TEP 

to bacteria degradation (Zhou et al. 1998). Thus, this topic requires further investigation. 

 

1.3.2 TEP influence biological carbon pump efficiency 

 

The biological carbon pump is a biologically-mediated process that transports 

particulate and dissolved organic matter from the euphotic zone into the deep ocean 

(Passow 2012). The efficiency of the biological pump is affected by nutrient availability 

for phytoplankton in the euphotic zone and the exportation rate of organic matter 

(Christina et al. 2007, Passow 2012). TEP precursors are dissolved organic matter 

(DOM). TEP coagulation supplies a pathway for sequestration of originally dissolved 

organic carbon to the deep ocean (Mari 1999). High fluxes of POM co-occurred with a 

disappearance of TEP at the end of phytoplankton bloom in California coastal surface 

water (Logan et al. 1995), suggesting TEP concentration has close relation with high 

sedimentation rates. Thus, TEP strongly influences the efficiency of the biological 

carbon pump by significantly affecting aggregate formation and increasing the rapid 

sedimentation of POM. 
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1.3.3 Ecological stoichiometry of TEP 

 

Redfield stoichiometry indicates that ratio of C: N: P in the organic matter is 

approximately 106: 16: 1 (Redfield et al. 1963). Studies of stoichiometry indicate that 

the Redfield ratio is an average; there is flexibility in ratios and different taxa have C: N 

ratios that are slightly different from Redfield stoichiometry (Quigg et al. 2003). 

Variations between taxa and with physiological status may lead to different 

compositions of exudates and therefore variation in the C: N ratio of TEP (Engel and 

Passow 2001). As TEP are carbon rich particles, their C: N ratio should differ from 

Redfield stoichiometry. Studies of the stoichiometry of TEP show that the C: N ratio of 

TEP differs with species, growth condition, and composition of the TEP (Mari 1999). 

The C: N ratio of TEP collected from the Baltic Sea was higher than the Redfield ratio, 

with a ratio of 26: 1 (Engel and Passow 2001). Thus, sedimentation of TEP may 

selectively export carbon into the ocean interior (Engel and Passow 2001). However, it 

isn‟t known how much carbon may be contributed by TEP to the carbon flux. Thus, 

understanding the carbon and nitrogen content of TEP and its relation to subsequent 

POM sedimentation is important for knowing the fate of carbon in the global carbon 

cycle. 
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1.4 Aggregation 

 

Diatom aggregation occurs when cells collide and stick together (Jackson et al. 

1995). According to coagulation theory, particle numbers and size, collision mechanisms, 

and coagulation efficiency (or stickiness, α) all control aggregation rate (Jackson 1990, 

Engel 2000). Stickiness is the probability that the particles stick together once they 

collide. In diatom aggregation observations, variation in stickiness has been recorded 

during blooms in the field (Dam and Drapeau 1995, Kiørboe et al. 1998, Engel 2000). 

Phytoplankton blooms are frequently terminated by aggregation (Alldredge and 

Gotchalk 1988). Several observations of diatom aggregates in situ are documented. For 

example, Kranck and Milligan (1988) reported diatom aggregation in the Bedford Basin. 

Riebesell (1991) found that diatom aggregates occurred in the North Sea. The sinking of 

diatom aggregates and marine snow leads to the removal of primary production from the 

euphotic zone to depth. The downward flux of energy and nutrients serves as an 

important food source for bacteria and zooplankton (Decho 1990). Because larger 

particles sink faster than the smaller ones, aggregation accelerates the speed of sinking 

flux. The sinking of marine snow aggregates affects the rapid vertical fluxes of POM, at 

rates up to 100 m day-1 (Billett et al. 1983, Smetacek 1985). In addition, diatom 

aggregate serve as microhabitats for heterotrophic organisms in which diffusion and 

advection of flow are strongly reduced (Alldredge and Sliver 1988, Alldredge and 

Gotschalk 1988, Grossart and Simon 1993, Azam and Long 2001). Bacterial 
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productivity associated with aggregates is greater than that of free living bacteria in the 

water column (Smith et al. 1992, Grossart and Simon 1998). 

Many observations of aggregation in situ have confirmed that the presence of 

TEP enhances aggregation. TEP is very sticky, almost 2 to 4 orders of magnitude more 

sticky than phytoplankton cells (Mari & Adrian 1998, Engel 2000, Passow 2002c). More 

aggregates are formed from adhesion cells and particles by TEP than by cells sticking 

directly to one another (Kiørboe et al. 1993, Logan et al. 1994, Passow & Alldredge 

1994, Jackson et al. 1998). In situ, peak values of TEP were observed during the decline 

of diatom blooms (Logan 1995, Passow and Alldredge 1995). TEP abundance is similar 

to the range of phytoplankton concentrations in situ. Thus, TEP facilitates the formation 

of aggregates and marine snow. However, there are few studies that have examined 

environmental factors, such as temperature or nutrient availability, on the aggregation of 

diatoms. Thus, understanding the aggregation mechanisms of diatoms and their response 

to environmental change is very important. 

 

1.5 Carbohydrate metabolism in diatoms 

 

Carbohydrates have an important role in the metabolism of diatoms. They serve 

as storage components and structural supports in organisms (Aspinall 1970, 1983). In 

phytoplankton, carbohydrates account for approximately 40 % of cell biomass (Parsons 

et al. 1984). The keystone of carbohydrates is the simple sugar. Carbohydrates can be 

divided into monosaccharide, oligosaccharide and polysaccharide. Monosaccharide is 
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composed of simple sugars; oligosaccharide is made of a few monosaccharides, and 

polysaccharides are polymers of a chain of many mono and disaccharides. There are 

different fractions of carbohydrates associated with different carbon pools in microalgae 

cultures, including total carbohydrates, the extracellular carbon pool, and the 

intracellular carbon pool (Underwood et al. 1995, Smith and Underwood 1998). Total 

carbohydrate is the total amount of carbohydrate in a volume of culture and includes 

both the particulate (e.g. cells) and dissolved components of the carbohydrate. 

Carbohydrates inside of diatom cells include cell wall-associated carbohydrate, storage-

associated carbohydrate, and residual carbohydrate. Storage carbohydrate is a molecular 

reserve of energy for the metabolism of the organism, such as glucan. Cell wall 

carbohydrate is carbohydrate in the form of the cell wall. Carbohydrates outside of 

diatom cells include colloidal carbohydrate and EPS fractions. Colloidal carbohydrate is 

the pool of dissolved extracellular carbohydrate in the culture medium. EPS is the high 

molecular weight component of the colloidal carbohydrate. EPS are rich in acid 

polysaccharides, which is an important component of organic matter in the form of 

marine snow (Alldredge et al. 1993). Chemical composition analysis of EPS indicates 

that it contains of seven carbohydrate components: glucose, uronic acid, galactose, 

rhamnose, fucose, xylose and mannose (Underwood et al. 2004, Abdullahi et al. 2006). 

Different growth conditions can produce EPS with different components. For example, 

EPS generated from nutrient-deplete cultures showed more uronic acid than from 

nutrient-replete cultures (Underwood et al. 2004). Some studies on carbohydrate 

composition of EPS have indicated that carbohydrate components can be allocated 
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between inside and outside cell carbon pools under different environment conditions 

(Underwood et al. 2004, Bellinger et al. 2005). 

 

1.6 Oxidative stress effect on phytoplankton 

 

The process of respiration and photosynthesis can cause oxidative stress (Apel 

and Hirt, 2004). Oxidative stress is a physiological status where oxidant production 

exceeds the antioxidant defense mechanisms in cells (Latifi et al. 2009). Under oxidative 

stress, many organisms release reactive oxygen species (ROS), including superoxide 

anion (O2
-); hydrogen peroxide (H2O2); singlet oxygen (1 O2) and hydroxylradical (HO.) 

(Apel and Hirt, 2004). ROS is toxic to most cyanobacteria and microalgae (Kay 1982, 

Apel and Hirt 2004) and can trigger them to release caspase-like enzymes and cause 

programmed cell death (PCD) (Bouchard and Purdie 2011). Berman-Frank et al. (2007) 

reported a positive coupling between PCD and TEP production in cyanobacteria grown 

under oxidative stress. This study provided insight into oxidative stress induced cell 

death and the subsequent influence on TEP production, which may have important 

implications for the carbon cycle. 

 

1.7 Outline of thesis 

 

TEP affects the formation of aggregates and marine snow and consequently 

influences the biological carbon pump and global carbon cycle. Therefore, 
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understanding the production and formation of TEP by diatoms is necessary for the 

study of the carbon cycle in global biogeochemistry. However, there are still many 

unanswered questions about TEP production by diatoms. The objective of my proposed 

research is to determine the factors affecting carbohydrate production and the 

formation of TEP by diatoms and their role in aggregation. 

This research addresses potential feedbacks between environmental factors in the 

surface oceans and diatom physiology. The value of this research is that it contributes to 

our understanding of the dynamics of TEP production by diatoms and it improves our 

understanding of the fate of primary production and carbon cycling in the ocean. Four 

studies were designed to investigate different factors which could influence TEP 

production and aggregate formation by diatoms. Specific aims and hypotheses of these 

studies are detailed below. 

Specific aim: 

Aim 1: Investigate effect of temperature on TEP production  

Aim 1 proposes to understand exopolymer production by diatoms and the 

aggregation of diatoms in response to temperature change. In my lab experiment, 

Thalassiosira weissflogii and Skeletonema marinoi were grown in semi-continuous 

cultures at a sequence of different temperatures. The experiments were designed to test 

the following hypotheses:  

H1: Diatoms produced more EPS with increasing temperature.  

Previous experiments have shown that increased temperature affects DOC 

release (Zlotnik and Dubinsky 1989) and the proportion of carbon excreted as TEP by 
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diatoms (Claquin et al. 2008). EPS is a fraction of DOC, which may be enhanced when 

temperature increases. If diatoms release more EPS with rising temperature, then this 

may result in greater TEP production. 

H2: As temperature increase, greater amounts of intracellular carbohydrate 

were exported out of cell. 

EPS are a component of extracellular carbohydrate. The increase of EPS and 

TEP may be related to increasing extracellular and decreasing intracellular carbohydrate 

fractions. The allocation of carbon into carbohydrate fractions may change with 

temperature. 

H3: Aggregation of diatoms increased with increasing temperature. 

 If EPS production elevated with increasing temperature, this may facilitate 

increased aggregation of diatoms in cultures grown at higher temperatures. 

H4: The permeability of cells increased with increasing temperature. 

At high temperature, cultures should be more stressed. Thus, cell membranes 

may become more permeable with increasing temperature. 

Aim 2: Investigate the effect of growth rate on TEP production. 

I propose to investigate how growth rate affects the productivity of TEP by 

diatoms and its subsequent influence on diatom aggregation. The growth rate of 

microalgae is a physiological factor that could influence biomass, cell quota, and cell 

size (Droop 1983, Martens et al. 1993). Cells in different phases of growth have different 

properties related to morphology, metabolic production, photosynthesis and respiration 

rate, and shear sensitivity (Fogg and Thake 1987, Martens et al. 1993). However, how 
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growth rate affects the production of TEP by diatoms and its subsequent influence on 

diatom aggregation is not clear. In this experiment, diatom Thalassiosira weissflogii was 

grown at a series of growth rates under nitrogen limitation to determine the effects of 

growth rate on TEP production and aggregate formation by T. weissflogii. This 

experiment was designed to test the following hypotheses:  

H1: Diatoms produced more TEP with decreasing growth rate. 

Slow-growing cells would be severely nitrogen-limited, so they would produce 

more extracellular products, including TEP and TEP precursors. 

 H2: Diatom aggregation increased with decreasing growth rate. 

 Diatoms exuded more TEP or TEP precursors at relatively low growth rate, 

thereby increasing the stickiness of the cultures and resulting in increased aggregate 

formation. 

H3: The proportion of the population with compromised cell membranes 

increased with decreasing growth rate. 

At a slow growth rate, cultures are more nutrient-limited and therefore stressed. 

Therefore, more TEP and TEP precursors may leak at this lower growth rate. 

 Aim 3: Investigate the effect of growth and death on TEP production. 

I propose to investigate how TEP production and formation are influenced by the 

growth and death of diatoms. Previous studies have shown that TEP production and 

composition were different in cultures grown at different growth phases (Fukao et al. 

2010). In my lab experiment, three diatom species, Thalassiosira weissflogii, 

Skeletonema marinoi and Cylindrotheca closterium, were grown in batch culture to 
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determine TEP production and formation during different phases of growth and cell 

death. The experiment was designed to test the following hypotheses:  

H1: EPS production increased through the growth and death phases. 

 In the death phase, cells were more stressed and could exude more EPS 

production to the external environment than those cells in growth phase. As TEP are a 

form of EPS, their production might increase at the same time. 

H2: The allocation of carbon into different carbohydrate pools within the cell 

changes during different phases of growth and death of the diatoms. 

EPS are a part of extracellular carbohydrate. The change of EPS concentration 

during different phases of growth and death might result in a change in the proportions 

of extracellular and intracellular carbohydrate. In addition, the allocation of different 

fractions of carbohydrate inside the cells, including storage carbohydrate, cell wall 

carbohydrate, and residual carbohydrate, all might change at different growth phases. 

H3: The proportion of the population with compromised cell membranes 

increased in the death phase. 

In the death phase, cultures are dying and cell membranes lose membrane 

integrity. Therefore the cells might leak more TEP and TEP precursors. 

Aim 4: Determine the effect of oxidative stress on cell death mechanism and 

TEP production. 

Aim 4 proposes to investigate how TEP production and formation are influenced 

by oxidative stress. In a study of oxidative stress effects on TEP production by 

cyanobacteria, results showed that cell permeability increased and photosynthesis 
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efficiency increased under oxidative stress (Bouchard and Purdie 2011). In addition, 

Berman-Frank et al. (2007) indicated a positive coupling between PCD and TEP 

production in cyanobacteria grown under oxidative stress. However, no study has proven 

that oxidative stress enhances TEP production by diatoms. Thus, I conducted a lab 

experiment using the diatom Thalassiosira weissflogii and the cyanobacterium 

Synechococcus elongatus, which were grown in batch culture with oxidative stress, to 

test hypotheses below. 

H1: Caspase activity increased in cultures under oxidative stress. 

Many studies have indicated that organisms release caspase and activate 

programmed cell death (PCD) in response to oxidative stress (Berman-Frank et al. 2007, 

Qian et al. 2010, Bouchard and Purdie 2011). Caspase is used as an indicator of PCD. 

Thus, caspase activity would increase when diatom and cyanobacteria are exposed to 

oxidative stress. 

H2: Mortality increased as cultures were grown in oxidative stress. 

Oxidative stress triggers cell death. Therefore, a greater proportion of permeable 

cells would exist in cultures under oxidative stress. 

H3: Cell abundance decreased as oxidative stress increased. 

If oxidative stress causes higher mortality in the cultures, cell abundance would 

decrease at the same time. 

H4: Photosynthetic efficiency declined in cultures grown under oxidative stress. 
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Photosynthetic efficiency is an indication of physiological status. If more 

unhealthy cells are present in cultures under oxidative stress, photosynthetic efficiency 

would decline. 

H5: More TEP production occurred in cultures exposed to oxidative stress. 

Increasing cell degradation under oxidative stress would release more TEP 

precursors, such as DOM, into the external environment. Thus, TEP production would 

be enhanced by oxidative stress. 
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CHAPTER II 

METHODS AND DATA ANALYSIS 

 

2.1 Experiments 

 

2.1.1 Cultures for experiments 

 

Diatom and cyanobacteria species used in experiments were obtained from the 

National Center for Culture of Marine Algae and Microbiota (NCMA). Diatom species 

were Thalassiosira weissflogii (strain CCMP 1051), Skeletonema marinoi (CCMP 2092) 

and Cylindrotheca closterium (strain CCMP 339). The cyanobacterium was 

Synechococcus elongatus _cf (strain CCMP 1379). T. weissflogii is a dominant 

planktonic species in euryhaline, warm water in the North Pacific. The optimal growth 

temperature range for T. weissflogii is between 11 °C to 16 °C. S. marinoi is another 

dominant planktonic species in the North Atlantic. The optimal growth temperature 

range for S. marinoi is between 11 to 16 °C. C. closterium is a benthic species in the 

North Atlantic. The optimal growth temperature range for C. closterium is between 22 to 

26 °C (information from NCMA website). S. elongatus is a dominant green strain of 

cyanobacterium in the South Pacific. The optimal growth temperature range for S. 

elongatus is between 18 to 26 °C. Because these species are widespread in the ocean, 

these species are used as lab model species in many microalgae studies (Crocker and 

Passow 1995, Smith and Underwood 1998, Claquin et al. 2008, Fukao et al. 2009). 
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Many previous studies have demonstrated that these three species have different shapes 

and different aggregation properties. Thalassiosira weissflogii is a centric solitary cell 

and are relatively not sticky. Their aggregation is facilitated by TEP adhering to cells to 

become TEP-cell aggregates (Crocker and Passow 1995). Skeletonema marinoi is a 

centric, chain-forming cell. They are sticky and can adhere to one another to form of 

cell-cell aggregates (Kiørboe and Hansen 1993, Crocker and Passow 1995). 

Cylindrotheca closterium is a lanceolate cell with two thin ends. They are sticky cells as 

well and can form cell-cell aggregates (Passow& Alldredge 1994, Smith and Underwood 

et al. 1998). Synechococcus elongatus are sticky cells and always form cell-cell 

aggregates. Because of the specific aggregation patterns and wide temperature range of 

these species, they were selected as lab models species to test how factors affect EPS 

production and aggregation. 

 

2.1.2 Medium for culturing species 

 

2.1.2.1 Artificial seawater media 

 

The formulation of artificial seawater media was based on the ion concentrations 

found in natural seawater. The salt base of artificial seawater (ASW) followed the recipe 

in Table 2 (Berges et al. 2001). All salts used in the preparation of ASW conformed to 

ACS specifications. Anhydrous salts were first dissolved in ultra pure water (UHP) in 20 

liter acid-cleaned polypropylene bottles (VWR Science). After anhydrous salts were 
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mixed well by stir bar on a stir plate for one day, hydrated salts were added into the 

bottle and allowed to dissolve in 20 liters UHP water. The pH value of ASW was 

adjusted to 8.1 before autoclaving and use of the media. 

 

2.1.2.2 Nutrients media 

 

I used L1 nutrient medium (Guillard and Hargraves 1993) for subculturing the 

cultures on arrival in the laboratory. As cultures biomass intense, subculturing of the 

cells were grown in adapted nutrients media with NaNO3 concentration of 8.82 ×10-4M, 

NaH2PO4•H2O concentration of 3.62 ×10-5 M and Na2SiO3•9H2O concentration of 1.06 

×10-4 M. Trace metals and Vitamins concentration, which was following the recipe in 

Table 2 (Guillard and Hargraves 1993). In different experiments, trace metals and 

Vitamins concentration in the cultures were kept constant in all cultures, which were 

following the recipe in Table 2 (Guillard and Hargraves 1993). However, concentration 

of nitrogen, phosphate and silicate were manipulated relate to each experiment. The 

detail concentrations of them see text. 
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Table 1. Salt base of artificial seawater (ASW) (Berges et al. 2001). 
 

Salt base for ASW 
Anhydrous salts Final Conc. 

NaCl 363 mM 
Na2SO4 25.0 mM 

KCl 8.04 mM 
NaHCO3 2.07 mM 

KBr 725 µM 
NaF 323 µM 

Hydrated salts 
 MgCl2•6H2O 41.2 mM 

CaCl2•2H2O 9.14 mM 
SrCl2•6H2O 82 µM 

 

 

2.1.3 Batch culture and semi-continuous culture 

 

2.1.3.1 Batch culture 

 

Batch culture is a closed culture system. Microorganisms are grown in medium 

with a certain amount of nutrients, which is only enough to support the growth of 

organisms to arrive at a given population. In batch cultures, organisms proceed through 

lag phase, exponential phase, stationary phases, and death phase. In lag phase, cell 

growth is very slow. In the exponential phase, cell abundance logarithmically increases. 

When the cell population arrives at a certain density, a stationary phase follows where 

cultures maintain a constant number of cells and stop growth. Finally, the remaining 
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nutrients are not enough to support the growth of organisms, and cultures shift into death 

phase. The growth rate of the organisms can be controlled in batch culture. 

 

 

Table 2. Nutrient medium for batch culture. Chemical composition and concentrations 
adapted from (Guillard and Hargraves 1993). 
 

Nutrient, trace metals, vitamins for adapted nutrients 
medium  

Major nutrient I-nitrate Final Conc. 
NaNO3 see text 

Major nutrient II-phosphate 
 

 
NaH2PO4•H2O 

 
see text 

Major nutrient III-silicate 
 

 
Na2SiO3•9H2O 

 
see text 

Metals stock I-iron 
 

 
Na2EDTA•2H2O 

 
6.56 µM 

FeCl3•6H2O 6.56 µM 
Metals stock II-trace metals 

 ZnSO4•7H2O 254 nM 
CoSO4•7H2O 5.69 nM 

 
MnSO4•4H2O 

 
2.42 µM 

Na2MoO4•2H2O 6.1 nM 
Na2SeO3 1 nM 

NiCl2•6H2O 6.3 nM 

 
Na2EDTA•2H2O 

 
8.29 µM 

Vitamin 
 

 
Thiamine-HCl 

 
297 nM 

Biotin 4.09 nM 
B12 1.47 nM 
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On arrival of the cultures from NCMA, 5 ml of culture from each 15 ml tube was 

immediately subcultured into three 50 ml autoclaved culture tubes, each of which was 

filled with 20 ml of autoclaved artificial sea water (ASW) salt base according to Berges 

et al. (2001) (Table 1). L1 nutrients (Guillard and Hargraves 1993) were added to 

cultures, which is consistent with nutrient supplements for growing species from NCMA. 

Cultures were grown at 20 °C in an incubator (Precision Company) with a day/night cycle of 

14h: 10 h, and with a photon flux density of 42 μmol m-2
 s-1 to keep stock cultures. 

Afterward, all subsequent subcultures were grown in autoclaved ASW salt base medium 

(Table 1) in sterile bottles or tubes (Berges et al. 2001). Adapted nutrient media 

(Guillard and Hargraves 1993) were filtered through 0.2 µm pore sized syringe filters 

(Nalgene, Thermo Scientific) to remove bacteria and were added into cultures. Trace 

metals and vitamins concentrations were kept constant in all cultures. However, nitrogen, 

phosphate and silicate concentrations were manipulated for each experiment. 

The maximum specific growth rate of each taxon under the same growth 

conditions in the experiment was measured in batch culture based on the Equation 1: 

μmax = ln (N2-N1) / (t2-t1)                              (Equation 1) 

Where N is cell abundance and t is the culture time. The maximum growth rate of 

each species was used to determine the maximum dilution rate, which could be used in 

the semi-continuous cultures. 
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2.1.3.2 Continuous culture 

 

Continuous cultures differ from batch culture in that they are continuously 

supplemented with fresh nutrients to support growth of the microorganisms and remove 

an equal volume of culture simultaneously. Chemostat is an apparatus which is used for 

continuous cultivation of microorganisms through automatically adding fresh medium at 

a given rate and removing culture liquid at the same rate. The volume of cultures in 

continuous culture is constant. The input nutrient rate controls the cell growth rate. 

When continuous cultures arrive at a steady state, cell abundance is constant, and the 

growth rate can be controlled by dilution rate under limitation, which can be useful for 

studying the physiology or EPS production of microorganisms (Fogg and Thake 1987). 

Continuous cultures allow organisms to be grown in constant physiological status. 

Because a pretest of Chemostat did not work to keep cultures bacteria-free, we selected 

semi-continuous culture for my nitrogen limitation experiment. Semi-continuous 

cultures were grown in closed bottles diluted with culture medium once to supply fresh 

nutrients and to remove the same volume of culture. 

In the semi-continuous culturing, cultures were maintained on stirrer plates and 

mixed by stirrer bars at 120 revolutions min-1. When cultures were grown at a new 

condition, samples were taken for five days from each replicate culture to calculate 

average cell abundance. A culture was defined to be in steady state when the cell 

abundance deviated by less than 10 % of the mean cell abundance taken over the 

previous 5 consecutive days. At steady state biomass is constant, and the growth rate (µ) 
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equals to the dilution rate (D) based on Equation 2 (James 1961); therefore, dilution rate 

determines growth rate. 

    
  

                                               

Where X is cell abundance; t is time; µ is growth rate of the culture and D is 

dilution rate. Four replicate cultures were grown in 2000 ml or 1000 ml borosilicate 

medium bottles (VWR Scientific). Cultures were grown in autoclaved ASW salt base 

(Berges et al. 2001). In order to obtain nitrogen limitation in the cultures, adapted 

macronutrient concentrations were modified from the original recipe (Guillard and 

Hargraves 1993) with different N concentrations added to each species cultures to 

induce nitrogen limitation and still keep the cultures alive. Macronutrients with nitrogen 

added to a final concentration of 60 µM or 100 µM of NaNO3, with100 µM of 

NaH2PO4•H2O and 100 µM of Na2SiO3•9H2O, in order to affect nitrogen limitation in 

the cultures. Cultures in the bottles were located in a glass water bath filled with water. 

The temperature of the cultures was controlled through manipulating water in a glass 

water bath by a thermocirculator (VWR model 1196D). Light was provided by four 

fluorescent tubes (40 watt 122 cm Daylight Deluxe, Philips) that were placed on either 

side of the water bath in pairs. The light cycle was 14 h light: 10 h dark, providing a 

photon flux density of 150 μmol m-2 s-1 on the surface of the culture containers. The 

semi-continuous cultures were diluted at same time every day to control the specific 

growth rate of the cultures. For example, to get a steady-state growth rate of 0.5 day-1, 

50 % of the culture volume (500 ml) was removed from the culture and replaced with 

500 ml of fresh medium to maintain a constant total culture volume. Dilutions were 
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made with sterile medium using sterile technique in a clean hood. Artificial seawater 

was sterilized by autoclaving after pre-filtration through 0.2 µm pore sized syringe filters. 

Nutrient stock solutions were also filtered through 0.2 µm pore sized syringe filters 

(Nalgene, Thermo Scientific). Cell concentrations in the cultures were determined each 

day and samples were only taken from the cultures when it was established that they 

were in steady-state. All samples were taken at the time of daily dilution from the 

volume of culture that was discarded each day. Consequently, all samples were taken 

from the cultures at the end of the 24 hour period between dilutions. 

 

2.1.4 Preparation of axenic cultures 

 

To prepare axenic cultures for semi-continuous growth, we followed the 

McCracken method (McCracken 1989) by the addition of antibiotics to the batch 

cultures to kill bacteria. One ml of culture and Penicillin G (final concentration 400 μg 

ml-1), Ampicillin (200 μg ml-1), Streptomycin (200 μg ml-1) and Neocillin (200 μg ml-1) 

were added to 40 ml of autoclaved artificial seawater supplemented with L1 nutrients in 

culture tubes. After cultures were grown in the antibiotic treatments for 5 days, cultures 

were washed using the following steps. First, cells were pelleted by centrifugation in 50 

ml sterile centrifuge tubes at 1000 × g (10 min, 20 °C). Second, the supernatant was 

removed and the cells were resuspended in 40 ml of autoclaved artificial seawater. Then, 

antibiotics were added to the cultures once more and the cultures were washed again 

after a further 5 days exposure to antibiotics. One ml of cell pellet was transferred to 1 



 

27 

 

liter autoclaved artificial seawater supplemented with macronutrients according to 

Guillard and Hargraves (1993). When the biomass of cultures arrived at a high 

concentration (105 cells ml-1), cultures were checked to determine if axenic through 

staining bacteria with DAPI and microscopically checking bacteria concentration in 

cultures. Axenic cultures were used to test hypotheses in experiments. 

 

2.2 Materials and methods 

 

2.2.1 Cell counts and cell size 

 

Samples (1 ml) were transferred to a small glass vial and a drop of Lugol‟s iodine 

was added to fix the cells. For diatom cells, 400 cells were counted by light microscopy 

at 10 × magnification using a hemacytometer (Fuchs-Rosenthal ruling, Hauser Scientific) 

(Guillard and Sieracki 2005). Because Synechococcus cells are small and form 

aggregates in the cultures, cells were counted by light microscopy at 100 × 

magnification and a pipettor was used to break up aggregates into individual cells before 

cell counting. Samples were flushed in and out of a 1 ml pipette tip 20 times to ensure 

that the aggregates were broken apart. In addition, cell turbidity in the cultures was 

measured (absorbance at 750 nm) to indirectly indicate changes in cell abundance. Cells 

collected from each treatment were observed using light microscopy at 100 × 

magnification. 
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After samples were taken, the lengths and widths of 25 individual diatom cells 

from an unpreserved sample from each replicate culture were measured by a microscope 

(Axioplan 2, Carl Zeiss MicroImaging) under 400 × magnification (Menden- Duer & 

Lessard 2000). These dimensions were used to calculate cell volume based on the 

assumption that T. weissflogii and S. marinoi are cylinder shaped and C. closterium are 

shaped as two cones adhered together. Cyanobacterium was not measured cell size in my 

research. 

 

2.2.2 Bacteria abundance 

 

Bacteria in the cultures were stained with 4'6-diamidino- 2-phenylindole 

dihydrochloride (DAPI). Samples of 5.0 ml of culture were placed into 15 ml sterile 

centrifuge tubes and 100 µl  of formalin was added to fix samples. Sub-samples (1.0 ml) 

of the preserved culture were placed into 1.5 ml sterile microcentrifuge tubes and 50 µl 

of working DAPI stock solution (5 µg ml-1) was added to the samples for one hour in the 

dark at 4 ºC. The stained sample (0.5 ml) was diluted with 1.5 ml of sterile (0.2 µm 

filtered and autoclaved) artificial seawater and mixture was filtered onto a 0.2 µm pore-

size black polycarbonate filter (Whatman), which was rinsed twice with 1 ml aliquots of 

sterile artificial seawater. Filters were mounted on glass slides using immersion oil and 

stored in the dark at -20 °C. Bacteria (400 cells) were counted using a fluorescence 

microscope (Axioplan 2, Carl Zeiss MicroImaging) according to Porter and Feig (1980). 
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2.2.3 Chlorophyll a analysis 

 

Five ml from each replicate culture was filtered onto 25 mm GF/C filters. 

Chlorophyll a was extracted from the filters in 15 ml sterile polypropylene centrifuge 

tubes (VWR Scientific) containing 5 ml of cold (4 ºC) 90 % acetone. A pretest proved 

that acetone did not dissolve these tubes. Cells were broken on the filters using a 

sonicator (Qsonica, 125 Watts, 20 kHz) for 10 minutes with the amplitude at 40 % in 5 

second pulses with 5 second pauses between pulses to prevent heat buildup. The tubes 

were kept on ice during sonication. After sonication, the filters were extracted in the 

dark overnight at 4 °C. The extractions were centrifuged at 1000 g at 4 °C for 20 minutes, 

and the chlorophyll a concentration in the supernatant was measured using a Turner 

Designs 700 fluorometer (Arar & Collins 1997), which had been calibrated using 

chlorophyll a standards (Sigma company). 

 

2.2.4 Bioassay experiment 

 

A bioassay experiment was used to check that nitrogen was the source of nutrient 

limitation in the semi-continuous cultures several times during the growth rate and 

temperature experiments. At each temperature or growth rate, 40 ml samples were taken 

from each replicate culture and placed in a sterile polystyrene tissue culture flask 

(Corning). The following nutrient additions were made: no additions (control), nitrate 

addition (at twice the initial concentration in the semi-continuous cultures), and a 
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treatment to which all nutrients were added at the same concentration as in the semi-

continuous cultures with the exception of nitrate, which was not added. After 48 hours, 

the abundance of diatoms in each treatment was determined by cell counts. It was 

hypothesized that if the cultures were nitrogen limited, then the addition of nitrate would 

stimulate the growth of the cultures more than in the controls or in the cultures to which 

all nutrients were added with the exception of nitrate. 

 

2.2.5 Transparent exopolymer particle (TEP) staining and analysis 

 

TEP were stained using a modification of the method from Alldredge & Logan 

(1993) and Passow et al. (1994, 1995a) and the microscope analysis of TEP proceeded 

according to Logan et al. (1994). One ml sample of each replicate was diluted with 1 ml 

of 0.2 µm filtered artificial seawater and then filtered onto a 0.4 µm pore size 

polycarbonate filter (Whatman) under low pressure (< 150 mm of Hg). Samples were 

diluted to 2 ml to produce a random distribution of particles on the filters (Hobbie et al. 

1977). TEP particles on the membrane were stained with 1 ml of Alcian Blue (0.02 % in 

0.06 % acetic acid at pH 2.5). After filtration, the membrane was washed with twice with 

1 ml of 0.2 µm filtered UHP water (ultra pure water) and mounted on a Cytoclear slide 

(GE Water & Process Technologies) using immersion oil. These slides enable TEP to be 

observed on top of the filters using a light microscope with illumination from below the 

slide. Ten images of TEP on each slide were taken using a microscope (Axioplan 2, Carl 

Zeiss MicroImaging) at 100 × magnification. The TEP concentration and area were 
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analyzed from light micrographs using either Axio Vision 4.8 software (Carl Zeiss 

MicroImaging) or, later in the project, a method using Image J software (National 

Institutes of Health) (Engel 2009). Image analysis of TEP using Axio vision 4.8 required 

each TEP particle to be manually drawn around to determine TEP size and TEP 

abundance. Image analysis using Image J method followed the method of Engel (2009). 

Ten images of TEP were taken using a microscope as described above and color JPEG 

images were edited in Image J. If there were any non-blue particles (such as cells) in the 

images, they were removed using the dropper icon in Image J to select background color 

and then using „pencil‟ or „brush‟ tool in Image J to paint over these cells. Only blue 

particles were left in the images for subsequent image analysis. The images were split 

into the three color channels (red, blue and green) that form the color image and analysis 

was done only on the red channel, where the contrast between background and blue gel 

particles was most clear. The 256 step grayscale threshold was adjusted to determine 

which pixels were to be included in the analysis and which pixels were too pale to be 

included. Pale pixels below the threshold were defined as „background‟. Any pixels as 

darker than the threshold (above the threshold) were included in the analysis. Using the 

drop down menu, „triangle‟ was selected as the thresholding method, using a method 

originally developed by Zack et al. (1977). Thresholded images were compared with 

original images to check if the triangle method showed the exact area of the gel particles, 

and then the scale was set in „set scale‟ in the „ANALYZE‟ drop down menu. For an 

image taken at 100 × magnification, the length of one pixel was equivalent to 0.642 μm, 

with an aspect ratio of 1 as the pixels were square. A minimum cut-off size was set in 
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„analyze particles‟ in the „ANALYZE‟ drop- down menu. The minimum cut-off size is 

the size below which particles will not be count. We determined 30 µm2 as the minimum 

size because of significant differences in total particle numbers or total area of particles 

when setting smaller number as minimum size. The image analysis produced a set of 

data that included total number of particles, total area, and mean individual particle area. 

TEP concentration and area in the cultures were calculated using these data. 

 

2.2.6 Coomassie staining particles (CSP) staining and analysis 

 

Coomassie staining particles (CSP) were stained by Coomassie Brilliant Blue (a 

protein stain) according to Long and Azam (1996) and were observed using a light 

microscope (Axioplan 2, Carl Zeiss MicroImaging). Ten pictures of CSP images from 

cultures grown at every treatment were taken under 100 × magnification and then CSP 

concentration and CSP size were analyzed using the Image J analysis method described 

above. 

 

2.2.7 Aggregation 

 

The particle size distribution (PSD) and volume concentration of particles in the 

cultures was measured using laser scattering following the method of Rzadkowolski and 

Thornton (2012). The Laser in situ scattering and transmissometry instrument (LISST- 

100X, Type C; Sequoia Scientific, Bellevue, WA, USA) was used to measure the 
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volume concentration of particles in 32 logarithmically placed size bins over the size 

range 2.5 to 500 µm. In each size bin, the largest particle diameter was 1.18 × the 

smallest diameter (LISST-100X User‟s Manual, Sequoia Scientific). Particle size was 

not referred to an absolute size, rather the median size in a size range (Rzadkowolski and 

Thornton 2012). 

Samples of culture (approximately 150 ml) were added to the LISST chamber. 

Particles in the light path attenuated and diffracted the laser light and the scattered light 

struck a detector. The detector included 32 concentric rings which indicated a series of 

size ranges from small to large. The sizes of particles were determine based on which 

rings the diffracted light hit. The PSD and volume concentration of particles in the 

samples were estimated by LISST SOP software (Sequoia Scientific, Bellevue, WA, 

USA). PSDs were blank corrected by subtracting the PSD of 0.2 µm filtered artificial 

seawater. 

 

2.2.8 C: N ratio of particulate matter 

 

Samples of culture (30 ml) were filtered through pre-combusted (500 °C, 4 h) 

GF/F filters (Whatman), which were stored frozen (-20 ºC) until analysis. Prior to 

elemental analysis, the filters were acidified with HCl (12 M) vapor in a desiccator 

overnight to remove inorganic carbon. Analysis for particulate C: N ratio was carried out 

in the Stable Isotope Geosciences Facility (Texas A&M University) using a Carlo Erba 
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NA1500 Elemental Analyzer for analysis (Verardo et al. 1990). Standards were 

Acetanilide, Methionine, USGS 24, USGS 40, USGS 41 (Verardo et al. 1990). 

 

2.2.9 Cell permeability 

 

SYTOX Green (Invitrogen S7020) is a plasma membrane impermeable nucleic 

acid stain that is used to test the permeability of cells (Veldhuis et al. 2001, Franklin et al. 

2012). In cells with a compromised plasma membrane, the nucleus inside the cells 

becomes stained with SYTOX Green and fluoresces with an emission peak of 523 nm 

when excited by a 450 to 490 nm source. 

Culture samples were stained by SYTOX Green method, which is adapted from 

(Veldhuis et al. 2001). One ml of culture was stained with 40 µl of working SYTOX 

Green stock solution (50 μM solution) for one hour in the dark (Franklin et al. 2012). 

Stained sample (0.5 ml) was mixed with 1.5 ml of filtered (0.2 µm) artificial seawater 

and was filtered onto a 0.4 µm polycarbonate filter. Filters were rinsed twice using 

artificial seawater and mounted on glass slides using immersion oil. Slides were stored 

in the dark at -20 °C. The proportion of SYTOX Green labeled cells was counted by 

examining 400 cells from each slide at 400 × magnification using a fluorescence 

microscope (Axioplan 2, Carl Zeiss MicroImaging). 
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2.2.10 Carbohydrate measurement 

 

Different fractions of carbohydrate isolated from the diatom cultures were 

determined using two spectrophotometric methods, TPTZ (2, 4, 6-tripyridyl-s-triazine) 

and PSA (Phenol sulphuric acid) method. Many samples from open oceans were 

measured by TPTZ method and many studies on lab cultures were measured with the 

PSA method. In here, hydrolysis efficiency, precision of method, factor effects 

measurements of two methods were investigated. These investigations of the two 

methods help to understand their advantages and disadvantages and therefore better 

utilize these methods in real measurements. 

 

2.2.10.1 Phenol-sulfuric acid (PSA) method 

 

The PSA method is based on the hydrolysis of sugars in concentrated H2SO4 

(11.2 M), and yields monomers, such as furfurals and hydroxyfurfurals, with reducing 

groups, which react with phenol and give an orange yellow color that is proportional to 

the concentration of carbohydrate (Dubois et al. 1956, Liu et al. 1973). Little is yet 

known about the nature of the color product in this reaction. 

The procedure of PSA method was as follows: 

Sample (0.8 ml) was pipetted into a 20 ml glass boiling tube, and 0.4 ml phenol 

was added to the sample. Samples were mixed well and 2 ml concentrated sulfuric acid 

were added into samples rapidly using a dispenser bottle. Tubes were shaken gently and 
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placed in the dark at room temperature for 30 minutes to enable the reaction to complete 

and enable the tubes to cool. Absorbance was measured at 485 nm in a 10 mm 

Polystyrene cuvette (VWR Science). The concentration of carbohydrate was expressed 

as D-glucose equivalents. 

Standard curves  

A typical standard curve of the PSA method is shown in Figure 1. Triplicate data 

points are on top of one another in this Figure. The PSA method measures the 

concentration of carbohydrate, in a range of 0 to 50 µg glucose ml-1 (r2 = 0.9996). The 

precision of the PSA method in absorbance of 66.7µM C (n = 4) was about 5.7 %, and 

the detection limit was calculated as three times the standard deviation of absorbance of 

the blank at 2.67 µM C. 

Hydrolysis efficiency 

For the PSA method, carbohydrate was hydrolyzed in 11.3 M H2SO4. The 

recovery of carbohydrate was in the range 70 ~ 100 % (Dubois 1956, Liu et al. 1973, 

Burney & Sieburth 1977, Underwood et al. 1995). 
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Figure 1. Standard curve for D-glucose measured using the Phenol sulfuric acid (PSA) 
method (n = 3). The absorbance was measured at 485 nm. n = 3, r2 = 0.9996. Black 
cycles represent absorbance measured in PSA method. 
 

 

Salt interference 

 The regression lines of absorbance of D-glucose standard measured by PSA in 

ultrapure water (UHP) and artificial seawater (ASW) were showed in Figure 2. Data 

points are on top of one another in the figure. The slope of the calibration curves in salt 

water was similar to slope in no salt water. The calibration curve in no salt water is y = 

0.0131x + 0.0051(R² = 0.9996). The calibration curve in salt water is y = 0.014x + 
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0.0038 (R² = 0.9992). This result indicated that effect of salt (salinity ≈ 35) on 

absorbance was low. 

 

 

 

Figure 2. Standard curve of D- glucose in ultra pure water (UHP) and artificial sea water 
(ASW) measured by PSA method. Solid cycles represent glucose standard in UHP water. 
Open cycles represent glucose standard in HAR water (n = 4). 
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Carbohydrate fractions were determined by PSA method 

There are different fractions of carbohydrates in microalgae cultures, including 

total carbohydrate, colloidal and EPS, carbohydrate associated with storage and 

carbohydrate associated with cell wall (refer to 1.5). The concentrations of different 

fraction of carbohydrate were extracted followed the method by Underwood 

(Underwood et al. 1995, 2004) and were measured using the phenol-sulfuric acid (PSA) 

method (Dubois et al. 1956). 

Total carbohydrate. Total carbohydrate is the total amount of carbohydrate in a 

volume of culture and includes both the particulate (e.g. cells) and dissolved components 

of the carbohydrate. Total carbohydrate concentrations were determined in unfiltered 

liquid samples from the cultures using the PSA method (Dubois et al. 1956) calibrated 

with D-glucose. A 1 ml sample from each replicate was stored in an autoclaved 1.5 ml 

microcentrifuge tube, and the samples were kept frozen (-20 ºC) until analysis. Phenol 

(0.4 ml) was mixed with 0.8 ml of sample in a glass boiling tube. Concentrated sulfuric 

acid (2 ml) was added rapidly with a dispensing bottle. Tubes were shaken gently and 

left to react for 30 minutes. The concentration of total carbohydrate was analyzed 

spectrophotometrically and was expressed as glucose equivalents. 

Colloidal carbohydrate. Colloidal carbohydrate is the pool of dissolved 

extracellular carbohydrate in the culture medium. Colloidal carbohydrate can be 

obtained by centrifugation of culture medium to remove the particulate carbohydrate and 

the supernatant contains the colloidal (Underwood et al. 1995). After centrifuging 50 ml 

of the culture at 5000 g (30 minutes, 4 °C), 1 ml of supernatant was placed in a sterile 
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1.5 ml microcentrifuge tube and stored frozen (-20 ºC) until analysis. Colloidal 

carbohydrate concentration was determined by analyzing 0.8 ml of the sample using the 

PSA method (Dubois et al. 1956). 

EPS. EPS is the high molecular weight component of the colloidal, which can be 

separated from low molecular weight carbohydrate in the colloidal by precipitation using 

cold alcohol. After centrifuging, as described above, 15 ml of supernatant was placed in 

35 ml of cold (-20 ºC) reagent alcohol in a 50 ml sterile centrifuge tube to precipitate the 

EPS overnight (Underwood et al. 2004). The EPS precipitate was separated by 

centrifugation at 4500 g for 20 minutes. After removing the alcohol, the precipitate was 

dried in an oven (5 min, 60 °C). The precipitate was resuspended in 1 ml of 0.2 µm 

filtered UHP water and stored frozen (-20 ºC) in a 1.5 ml sterile microcentrifuge tube. 

EPS carbohydrate was measured by analyzing 0.8 ml of sample using the PSA method 

(Dubois et al. 1956). 

Intracellular carbohydrate. Intracellular carbohydrate includes carbohydrate 

associated with storage and carbohydrate associated with the cell wall. Intracellular 

carbohydrate is the carbohydrate in the cells and can be extracted by centrifugation of 

the cell pellet down to separate the cells from the colloidal carbohydrate. The cell pellets 

were used for analyzing intracellular storage carbohydrates by hot water (HW) 

extraction (Underwood et al. 2004). First, the rest of the supernatant in the centrifuge 

tube was removed, leaving only the cell pellet in the bottom of centrifuge tube. The cell 

pellets were washed by resuspension in 4 ml of 70 % alcohol. After being centrifuged at 

4500 g for 20 minutes, the supernatant was discarded, and 4 ml of 70 % alcohol was 
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added again to wash the cell pellets. Pigment and fat were removed from the pellets. 

Afterward, 4 ml of 0.2 µm filtered UHP water was added and cell pellets were incubated 

at 95 ºC for 1 hour. After being centrifuged at 4500 g for 20 minutes, 1 ml of supernatant 

was placed in a sterile 1.5 ml microcentrifuge tube and frozen (-20 ºC). The 

concentration of HW carbohydrate was determined by analyzing 0.8 ml of HW 

extraction by the PSA method (Dubois et al. 1956). 

Cell wall associated carbohydrate. Cell wall associated carbohydrate is 

carbohydrate in the form of the cell wall and can be obtained by hot bicarbonate (HB) 

extraction. After HW extraction, the rest of supernatant was discarded. The pellet was 

extracted with 4 ml of 0.5 M NaHCO3 at 95 ºC for 1 hour. The mixture was centrifuged 

at 4500 g for 20 minutes. The supernatant contained the hot bicarbonate (HB) extract, 

which is composed of carbohydrates associated with the cell wall (Smith and 

Underwood 1998). One ml of supernatant (HB extract) was stored in a sterile 1.5 ml 

microcentrifuge tube and frozen (-20 ºC). The concentration of HB carbohydrate was 

determined by analyzing 0.8 ml of the HB extraction by the PSA method (Dubois et al. 

1956). The rest of the supernatant of the HB extraction was discarded. The remaining 

carbohydrate in the pellet after HB extraction was defined as residual carbohydrate. The 

pellet was resuspended in 1 ml of 0.2 µm filtered UHP water and was stored in a sterile 

1.5 ml microcentrifuge tube and frozen (-20 ºC). The concentration of residual 

carbohydrate was determined by analyzing 0.8 ml of residual carbohydrate using the 

PSA method (Dubois et al. 1956). 

 



 

42 

 

2.2.10.2 TPTZ (2, 4, 6-tripyridyl-s-triazine) method 

 

The 2, 4, 6-tripyridyl-s-triazine (TPTZ) method is based on an oxidation reaction 

between monosaccharide and ferricyanide which causes ferricyanide reduction and gives 

a violet color of the Fe (TPTZ)2
2+ that is proportional to the concentration of 

carbohydrate (Myklestad et al. 1997). Monosaccharide concentration was measured 

directly by the TPTZ method calibrated with D-glucose. For polysaccharides, sugars 

were hydrolyzed by HCl and yielded monomers that were measured by the TPTZ 

method. In polysaccharide analysis, 4 ml of cultures and 0.4 ml 1 M HCl were added 

together into 10 ml glass ampoule (VWR Trace Clean). The sealed ampoules were 

placed in an oven at 85 °C for 24 hours to hydrolyze the polysaccharide. After 

hydrolysis, the samples were neutralized with 1 M NaOH. The samples were analyzed 

using the same procedure as the monosaccharide analysis. The concentration of 

polysaccharide was calculated by subtracting the monosaccharide content. 

Standard curve 

Figure 3 shows TPTZ standard curve. Carbohydrate concentration measured 

using TPTZ method is not linear at higher concentrations (≥ 20 µg C ml-1, glucose as 

equivalents). Thus, TPTZ method was suitable for measuring relatively low 

concentrations of carbohydrate. The calibration curve of D-glucose measured by TPTZ 

method was in the range of 0 to15 µg C ml-1(glucose as equivalents) is y = 0.0804x + 

0.2082 (r2 = 0.992). The precision of the TPTZ method was 1.3 % at a concentration of 

66.67µM C as in D-glucose equivalents (n = 3) with a detection limit of 3.22 µM C. 
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Figure 3. Standard curve for D-glucose measured using the 2, 4, 6-tripyridyl-s-triazine 
(TPTZ) method. (A) D-glucose in the range of 0 to 100 µg C ml-1  were measured by Fe 
(TPTZ)2

2+ as absorbance at 595 nm (B) calibration curve of D-glucose in the range of 0 
to15 µg C ml-1 were measured by Fe (TPTZ)2

2+ as absorbance at 595 nm. Solid lines 
represent regression lines of absorbance of the D-glucose standard. (r2 = 0.992). Three 
replicate samples were measured at each glucose concentration. 
 

 

Salt interference 

The effect of salt on the TPTZ assay was determined by comparing 

measurements of D-glucose concentrations in standards (n = 3) dissolved in UHP water 

and artificial seawater (Figure 4). The regression equation in UHP water is y = 0.0807x 

+ 0.254 (R² = 0.991), and the regression equation in artificial seawater is y = 0.0804x + 

0.2082 (R² = 0.992). The slope of the calibration curve in artificial seawater (ASW) was 

similar to slope of the calibration curve for standards dissolved in UHP water. Thus, the 

effect of salt on absorbance was low.  
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Figure 4. Standard curve of D-glucose in ultra pure water (UHP) and artificial seawater 
(ASW) measured by TPTZ method (n = 3). Solid cycles represent glucose standard in 
UHP water. Open cycles represent glucose standard in HAR water. 
 

 

Hydrolysis efficiency 

Polysaccharides must be hydrolyzed by HCl to become monosaccharides to be 

measured by TPTZ method. Thus, an appropriate operation procedure was determined to 

find the highest hydrolysis efficiency possible for this experiment. We selected starch as 

the model polysaccharide because it is a common storage polymer and constructed of a 

chain of glucose. To test the hydrolysis efficiency of polysaccharide by 1M HCl, four 
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replicates of 4 ml of starch (Sigma company) 10 µg ml-1 were hydrolyzed by 0.4 ml 1M 

HCl in sealed 10 ml ampoules for different time periods (0, 2, 4, 8, 24, 48 hours) and at 

different temperatures (75, 85, 90 and 100 °C). Ampoules including samples were 

weighed before and after hydrolysis in the oven to measure the loss of the samples. 

Results indicated that hydrolysis efficiency increased with temperature (results not 

shown in here). However, sealed ampoules (10 ml) exploded at temperatures higher than 

90 °C. Hydrolysis efficiency increased with time. The results showed that hydrolysis 

efficiency at 85 °C increased with time. The recoveries of polysaccharide increased from 

1.34 % ± 0.47 % at time 0 up to the 76.7 % ± 1.69 % at 24 hours. After 24 hours, 

recovery decreased to 56.23 % ± 6.85 % at 48 hours (Figure 5). Thus, the maximum 

hydrolysis efficiency was at 85 °C for 24 hours with recovery of about 78 %. 

Degradation of monosaccharides during hydrolysis 

Carbohydrates may be composed of both mono- and polysaccharides. We wanted 

to check whether hydrolysis processes cause monosaccharides to significantly 

decompose. Four replicates of 4 ml monosaccharide (D-glucose) with a concentration of 

10 µg ml-1 were hydrolyzed in 0.4 ml 1M HCl in sealed 10 ml ampoules. The sealed 

ampoules were placed in an oven at 85 °C for hydrolysis for different lengths of time. 

The results showed that recoveries of glucose decreased with hydrolysis time, indicating 

that longer hydrolysis (more than 24 hours) cause monosaccharides to decompose 

(Figure 6). When three replicates of 4 ml monosaccharide (D-glucose) 10 µg ml-1 were 

hydrolyzed with 0.4 ml 1M HCl and 0.4 ml UHP water as a control at high temperature, 

the recovery of D-glucose decreased with time both in the acid treatment and the 
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controls (Figure 5). These results indicate that high temperature was the main factor 

resulting in the decomposition of the monosaccharides. 

 

 

 

Figure 5. The change of hydrolysis efficiency of starch with time. The solid triangles 
represent recoveries of starch with hydrolysis time (n = 4). 
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Figure 6. Glucose decomposed with time in 1M HCl acid treatment and a UHP water 
control (n = 3) A) Glucose decomposed with time in 1M HCl. The solid cycles represent 
recoveries of glucose with hydrolysis time (n = 4). B) Glucose decomposed with time in 
1M HCl and in UHP control. The black rectangles represent glucose in 1M HCl acid 
treatment (n = 3). Red rectangles represent glucose in controls (n = 3). 
 

 

2.3 Statistical analysis 

 

Data were analyzed using SigmaPlot 10.0 and SYSTAT 11 (Systat software). 

One way analysis of variance (ANOVA) was conducted on all data except cell volume 

data and TEP data. The data were checked to ensure that they met the assumptions of 

normality and equality of variance. If data did not meet assumptions, data were log (x + 

1) transformed before analysis or a non-parametric ANOVA was carried out on ranks 

(Kruskal-Wallis ANOVA).  Correlation analysis was conducted using the Pearson 

product moment correlation. 
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CHAPTER III 

EFFECT OF TEMPERATURE ON TEP PRODUCTION 

 

3.1 Introduction 

 

Diatoms in the ocean have important ecological role, not only because of their 

high productivity, but also because they can excrete large amounts of extracellular 

polymeric substances (EPS) (Hoagland et al. 1993, Thornton 2002, Underwood and 

Paterson 2003). EPS constitute 10 % of carbon in the oceanic DOC pool (Chin et al. 

1998, Verdugo 2004). Most EPS are acid polysaccharides, which can coagulate into 

transparent exopolymer particles (TEP) (Passow 2002c). TEP are sticky gel-like 

particles (Alldredge et al. 1993, Engel 2000, Passow 2002a), which affect the formation 

of aggregates, as they collide with diatoms and other particulate organic carbon (POC) to 

form larger particles that sink rapidly in the water column (Kiørboe et al.1998, Thornton 

2002, Verdugo et al. 2004). Aggregates of diatoms sink as marine snow, exporting a 

rapid flux of particulate organic matter from the surface to the ocean interior (Billett et al. 

1983, Passow 1995, 2002b). This process strongly affects the biological carbon pump 

and biogeochemical cycling of carbon in the ocean (Jackson and Burd 1998, Thornton 

and Thake 1998, Passow 2002a, 2012).   

Since the industrial revolution, the Earth‟s temperature has increased faster than 

any other time in the past 420,000 years (IPCC 2013). Global warming leads to a rising 

temperature in the surface ocean. Models project a warming of ocean surface 
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temperature by 1 to 1.5 °C by the end of the 21st century (IPCC 2013). Increasing water 

temperature of the surface ocean affects planktonic community structure (Sarmento et al. 

2010, Lassen et al. 2010, Lewandowska and Sommer 2010). As Kirby et al. (2007) noted, 

warming the ocean affects the early onset of spring phytoplankton blooms. Increasing 

temperature in the North Sea has changed plankton community composition and 

seasonality (Kirby et al. 2007). Metabolic processes, such as phytoplankton growth and 

microbial respiration, generally increase with elevated temperatures (Sarmento et al. 

2010). Zlotnik and Dubinsk (1989) reported that increased temperature triggers of DOC 

excretion by phytoplankton. Thornton and Thake (1998) reported that more aggregates 

of Skeletonema costatum formed in laboratory cultures grown at higher temperature. In 

the open ocean, where nutrient supply generally limits growth, temperature is a factor 

that influences the growth of organisms and may influence EPS and TEP production by 

phytoplankton (Wolfstein and Stal 2002, Engel et al. 2011). Laboratory studies indicated 

that temperature can affect cellular metabolic imbalances and lead to increased excretion 

of primary photosynthetic products (Claquin et al. 2008). The aim of this experiment 

was to test the hypothesis that temperature increases induce increased TEP production 

and aggregation in diatoms. 

 

3.2 Experimental approach 

 

The temperature experiment was designed to determine the effect of temperature 

on the release of TEP and aggregation by diatoms. Four replicate cultures of 
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Thalassiosira weissflogii and Skeletonema marinoi (500 ml) were grown in semi-

continuous cultures (refer to 2.1.3.2) with autoclaved artificial seawater (refer to 2.1.2.1) 

at three temperature treatments (20, 24 and 28 °C). The initial temperature was the 

natural temperature in the ocean where species were grown. In order to obtain nitrogen 

limitation in the cultures, macronutrient concentrations were modified from the original 

recipe (Table 2 in 2.1.2.2). Different N concentrations were added to each species‟ 

cultures to induce nitrogen limitation and still keep cultures alive. Macronutrients with a 

final concentration of 60 µM of NaNO3, 100 µM of NaH2PO4•H2O, and 100 µM of 

Na2SiO3•9H2O were added to the cultures of T. weissflogii, whereas macronutrient with 

a final concentration of 100 µM of NaNO3 and 100 µM of NaH2PO4•H2O and 100 µM  

of Na2SiO3•9H2O were added to the cultures of S. marinoi. Cultures in bottles were 

placed in a glass water bath filled with water. The temperature of cultures was controlled 

through the manipulation of water in glass water bath by a thermocirculator (VWR 

model 1196D). A photon flux density of 150 μmol m-2 s-1 on the surface of cultures with 

a 14 h light: 10 h dark cycle was provided for the cultures. The maximum growth rate is 

1.10 day-1 in T. weissflogii and 0.93 day-1 in S. marinoi in batch culture with modified 

nutrients (refer to Table 2 in 2.1.2.2) under same light conditions. Considering that 

cultures needed to be kept alive under temperature stress and nitrogen limitation during 

the whole experiment, T. weissflogii were grown with growth rate of 0.7 day -1 (~ 70 % 

of maximum growth rate); S. marinoi were grown with growth rate of 0.65 day -1 (70 % 

of maximum growth ) at 10:00 am in each day of experiment. Cell concentrations in the 

cultures were determined every day (refer to 2.2.1) and other samples were taken from 
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the cultures only when it was established that they were in steady state. All samples were 

taken at the time of daily dilution from the volume of culture that was discarded each 

day. After arriving at steady state, cultures were left to acclimate to the new temperature 

for at least four generations before sampling. Cultures were sampled three times at each 

temperature and were maintained for more than 3 days between sampling times. Samples 

were used to measure cell concentration (refer to 2.2.1); chlorophyll a concentration 

(refer to 2.2.3); EPS concentrations (refer to 2. 2.10.1); TEP (refer to 2.2.5) and CSP 

(refer to 2.2.6) concentration and size by Image J method (referred to 2.2.5); C: N ratio 

in the particulate (refer to 2.2.2.8); the allocation of carbon into different carbohydrate 

pools (refer to 2.2.10); aggregation of diatoms (according to 2.2.7); and cell permeability 

(according to 2.2.9). In addition, a bacteria check (2.2.2) and bioassay (2.2.4) were 

conducted in the cultures to prove that cultures were grown with low bacteria 

concentration and that the whole experiment was proceeding correctly under nitrogen 

limitation. 

 

3.3 Results 

 

3.3.1 Cell concentration 

 

Cultures arrived at steady states after four or more generations during the 

acclimation period. Cell concentrations in the steady states were less than 10 % of 

deviation of average cell abundance. Cell concentrations in the steady state cultures were 
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not significantly different in the cultures of T. weissflogii grown at different temperatures, 

with average cell abundance of 6.67 × 104 ± 0.36 × 104 cells ml-1 (mean ± SD) (Figure 7). 

However, there was a significant negative correlation between cells concentration and 

temperature (r = -0.973, p < 0.05, n = 36) in the cultures of S. marinoi, decreasing from 

1.82 × 105 ± 0.08 × 105 cells ml-1 (mean ± SD) at 20 °C to 0.70 × 105 ± 0.04 × 105 cells 

ml-1 (mean ± SD) at 28 °C (Figure 7). Therefore, temperature caused a decrease of cell 

abundance in the cultures of S. marinoi, but not in the cultures of T. weissflogii. 

 

 

 

Figure 7. Cell abundances with time of Thalassiosira weissflogii and Skeletonema 

marinoi grown in semi-continuous cultures at 20 °C, 24 °C, and 28 °C. Black circles (●) 
represent mean cell abundances. Red circles (●) represent mean cell abundances on 
sample days. Error bars ± SD (n = 4 replicate cultures). 
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3.3.2 Chlorophyll a  

 

The chlorophyll a concentration was determined at each temperature (Figure 8). 

There was no relationship between chlorophyll a content and temperature in T. 

weissflogii. Chl. a concentration decreased as temperature increased from 20 to 24 °C 

and then increased to concentration of 74.67 ± 6.62 µg L-1at higher temperature of 28 °C 

(Figure 8). Unlike T. weissflogii, there was a negative relationship between chlorophyll a 

concentration and temperature (r = -0.883, p < 0.05, n = 36) in the cultures of S. marinoi 

(Figure 8). Their chl. a concentrations decreased at 20 °C to 13.77 ± 1.37 µg l-1 (mean ± 

SD) at 28 °C. Chlorophyll a concentrations were significantly different at different 

temperatures in both species (T. weissflogii: F2, 35 = 34.085, p < 0.05; S. marinoi: F2, 35 = 

214.473, p < 0.05).  

Chlorophyll a content per cell presented the same trend of chlorophyll a 

concentrations with temperature in two species. The greatest chlorophyll a per cell in the 

cultures of T. weissflogii was 1.06 ± 0.11 pg cell-1 (mean ± SD), which was ten times 

higher than that in the S. marinoi cultures. The maximum chlorophyll a per cell was only 

0.19 ± 0.02 (mean ± SD) pg cell-1 in the cultures of S. marinoi. 
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Figure 8. Chlorophyll a concentration and chlorophyll a content per cell in semi-
continuous cultures of Thalassiosira weissflogii and Skeletonema marinoi grown at 20, 
24, and 28 °C. A.C) Chl. a concentration. B.D) Chl. a concentration per cell. Black 
circles (●) represent the chl. a concentrations (n = 12). Green triangles (▲) represent chl. 
a per cell (n = 12). Solid lines represent the mean value of chl. a content in cultures at 20, 
24 and 28 °C (n = 36). 
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3.3.3 Carbohydrates 

 

3.3.3.1 Carbohydrate allocation 

 

In the cultures of T. weissflogii, total carbohydrate concentration per cell had a 

positive correlation with temperature, increasing from 0.31 ± 0.05 (mean ± SD) ng cell-1 

at 20 °C to 0.45 ± 0.08 (mean ± SD) ng cell-1 at 28 °C (Figure 9 A). There was a 

significant difference in total carbohydrate per cell at different temperatures (F2, 35 = 

41.399, p < 0.05). However, there was no relationship between dissolved extracellular 

carbohydrate concentrations per cell or cell associated carbohydrate concentration per 

cell and temperature.  

In cultures of S. marinoi, there were significant positive correlations between 

total carbohydrate per cell (r = 0.391, p < 0.01, n = 36), dissolved extracellular 

carbohydrate per cell (r = 0.336, p < 0.01, n = 36), cell-associated carbohydrate per cell 

(r = 0.792, p < 0.01, n = 36) and temperature (Figure 9 B). There was a significant 

difference in cell-associated carbohydrate at different temperatures in the cultures of S. 

marinoi (F2, 35 = 28.366, p < 0.05). The increase of total carbohydrate was associated 

with more extracellular carbohydrate and more carbohydrate stored in the cells. 
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Figure 9. Carbohydrate allocation in semi-continuous cultures grown at 20 °C, 24 °C 
and 28 °C. Error bars show mean + SE (n = 12). A) In the cultures of Thalassiosira 

weissflogii. B) In the cultures of Skeletonema marinoi. Green bars represent total 
carbohydrate concentration per cell. Purple bars represent dissolved extracellular 
carbohydrate per cell. Grey bars represents associated with cell carbohydrate per cell. 
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The relationship between extracellular and cell-associated carbohydrate pools in 

cultures at different temperatures is shown in three pie charts (Figure 10). The cell 

associated carbohydrate included carbohydrate associated with storage, carbohydrate 

associated with the cell wall and residual carbohydrates. The dissolved extracellular 

carbohydrate is carbohydrate exported from or lost from the cells. For the cultures of T. 

weissflogii, the proportion of cell-associated carbohydrate to total carbohydrate 

increased with a decrease in the proportion of dissolved extracellular carbohydrate as 

temperature was elevated to 24 °C (Figure 10 A). When temperature continued to 

increase, there was an opposite trend in carbohydrate allocation into different pools 

within cells. Unlike to T. weissflogii, there was no significant statistical difference (P > 

0.05) in proportions of cell-associated carbohydrate and extracellular carbohydrate in 

total carbohydrate with temperature in the cultures of S. marinoi (Figure 10 B). 
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Figure 10. Relationship between two carbohydrate pools (cell associated carbohydrate 
and extracellular carbohydrate) in cultures grown at 20 °C, 24 °C and 28 °C. A) In the 
cultures of Thalassiosira weissflogii. B) In the cultures of Skeletonema marinoi. Black 
color represents the proportion of dissolved extracellular carbohydrate per cell out of 
total carbohydrate per cell. Red color represents proportional of cell-associated 
carbohydrate per cell out of total carbohydrate per cell. 
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3.3.3.2 EPS 

 

EPS concentration was greater in the higher temperature cultures of T. weissflogii. 

As temperature increased from 20 to 28 °C, the abundance of EPS increased from a 

mean concentration of 3.2 to 6.7 µg ml-1 (Figure 11). When normalized to cells, EPS per 

cell was positively correlated with temperature (r = 0.828, p < 0.05, n = 36). There were 

significant differences in EPS concentration (F2, 35 = 58.259, p < 0.05) and EPS per cell 

(F2, 35 = 43.024, p < 0.05) at different temperatures. Thus, hypothesis of EPS 

concentration increasing with temperature was accepted in the cultures of T. weissflogii.  

On the contrary, there was a negative relationship between EPS concentration 

and temperature (r = -0.565, p < 0.05, n = 36) in the cultures of S. marinoi. EPS 

concentration decreased from mean concentration of 0.9 µg ml-1 at 20 °C to 0.6 µg ml-1 

at 28 °C (Figure 11). However, EPS per cell was greater at the higher temperature 

because lower cell abundance was lower at higher temperature. 
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Figure 11. EPS concentration and EPS concentration per cell in semi-continuous 
cultures of Thalassiosira weissflogii and Skeletonema marinoi when they grown at 20, 
24, and 28 °C. A.C) EPS concentration. B.D) EPS concentration per cell. Black circles 
(●) represent EPS concentration (n = 12). Red triangles (▲) represent EPS per cell (n = 
12). Solid lines represent the mean value of EPS content (n = 36). 
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3.3.4 TEP formation 

 

TEP concentration and TEP area were analyzed in Image J. The production of 

TEP responded to increasing temperature differently in two species. The images of TEP 

associated with the two species are shown below (Figure 12). 

 

 

 

Figure 12. Image of TEP in semi-continuous cultures of Thalassiosira weissflogii (A) 
and Skeletonema marinoi (B). TEP were stained by Alcian Blue and shown as blue 
particles. 
 

 

Several measures of TEP dynamics are shown in Figure 13. There was an 

increase of TEP abundance in the cultures of T. weissflogii as temperature increased 

(Figure 13 A). On the contrary, TEP abundance in the cultures of S. marinoi decreased 

with rising temperature (Figure 13 A). There were significant differences between TEP 

abundance and temperature in both cultures (T. weissflogii: F2, 35 = 19.482, p < 0.05; S. 

marinoi: F2, 35 = 19.482, p < 0.05). The mean size of individual TEP did not significantly 

A B 
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change with temperature in the cultures of T. weissflogii, whereas TEP size became 

larger in higher temperature cultures of S. marinoi (Figure 13 B). Because TEP particles 

with different sizes occurred in the cultures, TEP production was determined by total 

TEP area (TEP concentration × mean TEP size). The total area of TEP in the cultures of 

T. weissflogii was larger at higher temperature (Figure 13 C). However, in cultures of S. 

marinoi, total area of TEP did not have any correlation with temperature (Figure 13 C). 

When total TEP area was normalized to cell numbers, total TEP area per cell increased 

with temperature in both cultures (T. weissflogii: r = 0.683, p < 0.01, n = 36; S. marinoi: 

r = 0.530, p < 0.01, n = 36), (Figure 13 D) indicating more TEP production occurred 

cultures growing at higher temperatures. 
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Figure 13.The relationship between TEP content with temperature in semi-continuous 
cultures of Thalassiosira weissflogii and Skeletonema marinoi under nitrogen limitation. 
Error bars show mean ± SD (n = 120). A) TEP concentration. B) Mean TEP size. C) 
Total TEP area. D) Total TEP area per cell. Black circles (●) represent TEP content in 
the cultures of T. weissflogii. Red circles (●) represent TEP content in the cultures of S. 

marinoi. 
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3.3.5 CSP formation 

 

CSP concentration and particle size at different temperatures were determined 

from both diatom species by image analysis using Image J. Typical images of CSP in 

two species are shown in the images below (Figure 14). 

 

 

 

Figure 14. Image of CSP in semi-continuous cultures of Thalassiosira weissflogii 

(image A) and Skeletonema marinoi (image B). CSP were stained by Coomassie 
Brilliant Blue and show as blue particles. 
 

 

The variation of CSP concentrations in the cultures of S. marinoi and T. 

weissflogii was showed in Figure 15. There was no significant correlation between CSP 

abundance and temperature in both cultures (Figure 15 A). The mean size of each CSP 

particle and total area of CSP in the cultures of T. weissflogii also had no correlation 

with temperature (Figures 15 B & C). However, the mean size of each CSP particle had 

a positive correlation with temperature in the cultures of S. marinoi (r = 0.374, p < 0.05, 

A B 
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n = 36) (Figure 15 B). The greatest total area concentration of CSP associated with T. 

weissflogii occurred at a temperature of 24 °C, and the greatest in S. marinoi occurred at 

20 °C (Figure 15 C). When total CSP area was normalized to cell abundance, there was 

no correlation between total CSP area per cell and temperature in both species (Figure 

15 D). 

 

 

 

Figure 15. The relationship between CSP content with temperature in semi-continuous 
cultures of Thalassiosira weissflogii and Skeletonema marinoi under nitrogen limitation. 
Bars show mean ± SD (n = 120). A) CSP concentration. B) Mean CSP size. C) Total 
CSP area. D) CSP concentration per cell. Black circles (●) represent CSP content in the 
cultures of T. weissflogii. Red circles (●) represent CSP content in the cultures of S. 

marinoi. 
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3.3.6 Particle size distribution and aggregation 

 

Particle size distributions (PSD) for two species grown at different temperatures 

are shown below (Figure 16). All particles with an ESD ≥ 63 µm, which was bigger than 

individual cell size were designated as aggregates. The ratio of volume concentration of 

aggregates to the volume concentration of unaggregated cells in the cultures of T. 

weissflogii decreased with elevated temperature, from 2.36 at 20 °C to 1.59 at 28 °C 

(Figure 16), indicating aggregation was greater at lower temperatures. In the contrast, the 

ratio of total volume of aggregates to total volume of unaggregated particles in the 

cultures of S. marinoi increased with temperature, from 1.37 at 20 °C to 3.91 at 28 °C 

(mean ± SD) (Figure 16). Thus, aggregation increased with rising temperature in the 

cultures of S. marinoi and decreased with temperature in cultures of T. weissflogii. There 

were significant differences in the ratio of aggregate to un-aggregate at different 

temperatures (T. weissflogii: F2, 35 = 4.377, p < 0.05; S. marinoi: F2, 35 = 27.689, p < 

0.05). 
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Figure 16. Particles size distributions (PSD) and ratio of aggregated to unaggregated 
culture in semi-continuous cultures grown at 20, 24 and 28 °C. Bars represent volume 
concentration in each size bin in the cultures grown at different temperatures. Bar shows 
mean + SD (n = 1200). Solid circles represent ratio of aggregates to unaggregated 
volume in cultures at different temperatures. Dash lines represent the mean value of total 
volume concentration. Solid lines represent the mean value of the ratio. 
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3.3.7 Cell permeability 

 

The permeable cells of T. weissflogii and S. marinoi are shown in the images 

below (Figure 17). There were positive relationships between proportion of SYTOX 

Green labeled cells and temperatures in both species (T. weissflogii: r = 0.636, p < 0.05, 

n = 36; S. marinoi: r = 0.827, p < 0.05, n = 36) (Figure 18), indicating cells grown at 

higher temperature were more permeable. The proportion of SYTOX Green labeled cells 

increased from 2.6 % (mean) at 20 °C to 4.1 % (mean) at 28 °C in the cultures of T. 

weissflogii and elevated from 2.6 % at 20 °C to 5.5 % at 28 °C in the cultures of S. 

marinoi. There were significant differences in SYTOX Green stained cell numbers at 

different temperatures in both cultures (T. weissflogii: F2, 35 = 11.49, p < 0.001; S. 

marinoi: F2, 35 = 46.733, p < 0.001). Hence, the hypothesis of a greater proportion of the 

population with compromised cell membranes at higher temperatures was accepted for 

both species. 
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Figure 17. Images of permeable Thalassiosira weissflogii and Skeletonema marinoi 
cells. Damaged cells fluoresce green and chlorophyll a fluorescence is shown in red.  
A) T. weissflogii. B) S. marinoi. 
 

 

 

Figure 18. Relationship between proportions of SYTOX Green stained cell in 400 cells 
in the different cultures and temperatures. n = 12. A) In the cultures of Thalassiosira 

weissflogii. B) In the cultures of Skeletonema marinoi. 
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3.3.8 Bacteria 

 

There was no significant correlation between bacteria concentration and 

temperature. Initial bacteria concentrations in the cultures were very low (less than 1.0 

×104 cells ml-1) and increased over time. Bacteria concentration was greatest in the 

cultures of S. marinoi grown at 24 °C, with a concentration of 1.52 × 105 ± 1.64 × 105 

cells ml-1 (mean ± SD) The greatest concentration of bacteria in the cultures of T. 

weissflogii occurred at 28 °C, with a concentration of 1.85 × 105 ± 2.01 × 105 cells ml-1 

(mean ± SD). 

 

3.4 Discussion 

 

3.4.1 Temperature affects cell growth  

 

Cell growth was followed in the cultures of T. weissflogii and S. marinoi when 

they were grown at temperatures between 20 and 28 °C. Our results showed that cell 

abundances in the cultures of T. weissflogii were consistent irrespective of temperature 

(Figure 7). The chlorophyll a concentration per cell also showed no significant 

difference in the cultures of T. weissflogii grown at different temperatures (Figure 8), 

indicating that the thermal range between 20 °C and 28 °C did not affect growth of T. 

weissflogii. Unlike the T. weissflogii, a decrease in cell abundance of S. marinoi with 

rising temperature was observed (Figure 7). The cell concentration of S. marinoi at the 
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higher temperature of 28 °C was one of third of that at the lower temperature of 20 °C. 

In addition, lower chlorophyll a concentration per cell occurred at higher temperature in 

the cultures of S. marinoi (Figure 8). Thus, these two organisms could have different 

widths of thermal tolerance and/or different temperature ranges. In the field, T. 

weissflogii is distributed worldwide in the oceans and contributes to spring blooms in 

coastal surface water with temperatures between 3 and 24 °C; for example, in the 

Atlantic Ocean, Pacific Ocean, Hawaiian seas and Indonesian seas during spring and 

autumn at temperatures of 15 to 24 °C (Armbrust and Galindo 2001, Sorhannus et al. 

2010). Compared to T. weissflogii, many observations of blooms in situ have confirmed 

that the S. marinoi dominates in coastal waters with a cooler temperature range between 

2 and17 °C . For instance, a S. marinoi bloom occurred in the surface of the Baltic Sea 

where the temperature was around 4 °C (Kaeriyama et al. 2011). Barofsky et al. (2010) 

reported a S. marinoi bloom in the Raunefjord, Western Norway, at temperatures of 7 to 

8 °C. In the North Atlantic, S. marinoi is most abundant during the spring bloom with a 

temperature of 2 to7 °C (Sarno et al. 2005). Kent et al. (1995) reported that mix blooms 

of Thalassiosira spp. and Skeletonema spp. occurred in the coastal ocean in the British 

Columbia, Canada, indicating these two diatoms have overlapping distributions. From 

these observations, I propose that the range of thermal tolerance for T. weissflogii is 

wider than S. marinoi, indicating that T. weissflogii may have an advantage in competing 

with S. marinoi as ocean surface temperature increases in next several decades. 

In addition, the climate change will also influence the physiology of cells, such 

as inorganic carbon concentration mechanisms (CCMs). CCMs increase the supply of 
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CO2 to RUBISCO in most photosynthetic organisms, including cyanobacteria, algae, 

aquatic plants and C4 plants (Raven et al. 2008). CCMs in cyanobacteria and algae 

catalyze movement of CO2, HCO3 and/or H+ across membranes, and directly associated 

with biochemistry of cell growth. CCMs increase CO2 concentration and the rate of C 

assimilation in Rubisco (Badger et al. 2002; Price et al. 2007). The atomospheric CO2 

concentration has important influence in evolution of CCMs. Some data suggested that 

CCM have been influenced by the glacial–interglacial cycles of atmospheric CO2 (Raven 

et al. 2008). Increasing CO2 in the atmosphere will result in more CO2 dissolving in the 

ocean. This will not only decrease the pH of the ocean (ocean acidification), but it will 

also change the equilibrium of the different components of the DIC system. The relative 

concentration of dissolved CO2 will increase. These environmental changes have 

significant effects on CCMs expression in algae and aquatic plants (Giordano et al. 2005, 

Raven et al. 2005, Raven 2010). Results from laboratory experiments suggested that a 

decreased affinity for inorganic carbon from cells grown at higher inorganic carbon 

concentrations (Giordano et al. 2005, Falkowski and Raven 2007, Raven 2010). Raven 

et al. (2005, 2010) suggested that climate change may alter the phytoplankton 

community structure associated with species with or without CCMs. In addition, almost 

all cyanobacteria have CCMs and prefer grow in warmer water (Paerl and Huisman 

2008). So, global warming may lead to a greater prevalence of cyanobacteria. Decreased 

combined nitrogen supply (Giordano et al. 2003) and iron availability (Young and 

Beardall 2005) generally increases CO2 affinity, which has varying effects on the 

different organisms. Thus, climate change will have implications for the kinetics of C 
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fixation by Rubisco and therefore the competitive ability and productivity of different 

phytoplankton groups. 

 

3.4.2 Temperature affects TEP production 

 

Many studies have indicated that temperature is an important factor that 

influences photosynthesis in microalgae and could also indirectly influence TEP 

production. The effect of temperature on TEP production might be associated with 

carbohydrate allocation. Wolfstein and Stal (2002) found that temperature affected 

cellular metabolic imbalances, leading to increased excretion of primary photosynthetic 

products. My results indicated that elevated temperature caused more EPS production by 

the two species (Figure 11), which is consistent with Zotnik and Dubinsy (1989), who 

found that more dissolved primary production, was excreted at higher temperatures. EPS 

is a fraction of that dissolved primary production that would likewise increase with 

temperature. As a subgroup of EPS, TEP production per cell fitted the temperature 

model of EPS in two species (Figure 13). In the studies of relationship between TEP 

production and temperature in microalgae, Fukao et al. (2012) indicated that TEP 

production decreased with increasing temperature in the diatoms Coscinodiscus granii. 

Nevertheless, Claquin et al. (2008) showed an increase of TEP production as 

temperature increased to an optimal temperature for the diatoms of Thalassiosira 

pseudonana, Skeletonema marinoi, and Pseudo-nitzschia fraudulenta. Our results here 

are in agreement with the observations of Claquin et al. (2008). My results might be the 
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result of elevated enzyme activity at higher temperatures, which is related to TEP 

production mechanisms (Claquin et al. 2008). Bhaskar and Bhosle (2005) proposed that 

TEP precursors could be attributed to cell exudation or cell lysis. My results showed that 

cell permeability increased with temperature (Figure 18). However, more permeable 

cells did not directly lead to more dissolved carbohydrate outside the cells because 

dissolved extracellular carbohydrate did not increase with temperature. Thus, whether 

cell permeability contributed to TEP precursors needs to be verified in future.  

Composition of carbohydrates varied in the different carbohydrate fractions 

associated with the cell wall, cell storage, and extracellular carbohydrates. For example, 

carbohydrate associated with storage is rich in glucan, whereas cellulose is a major 

component of carbohydrate associated with the cell wall. The variation of carbohydrate 

allocation in the cells at different temperatures may be associated with different 

quantities or compositions of cell surface carbohydrates. In addition, the different 

compositions may be attributed to diverse chemical and /or physical properties. Thus, 

TEP with different compositions might have different characteristics, such as variable 

stickiness. Some studies have reported that different compositions of organic matter and 

different types of EPS were formed at different growing conditions (Underwood et al. 

2004, Engel et al. 2011). Therefore, further studies are necessary to investigate TEP and 

EPS compositions related to distinct characteristics of TEP, such as stickiness and 

structure. 
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3.4.3 Temperature affects aggregation 

 

My results indicated that aggregation in S. marinoi was enhanced with elevated 

temperature, whereas aggregation in T. weissflogii decreased at lower temperature 

(Figure 16). In the study of the effect of temperature on aggregation, Thornton and 

Thake (1998) found a positive correlation between aggregate concentration and 

temperature in the cultures of Skeletonema costatum, which was consistent with what I 

found in the cultures of S. marinoi. The difference in aggregate formation with elevated 

temperature between the two species is probably due to their distinct stickiness. Previous 

experiments suggested that cells have different aggregation patterns based on their 

stickiness. Cell - TEP aggregation occurred in the cells that have low stickiness, and cell 

– cell aggregates formed when cells were very sticky (Kiørboe and Hansen 1993, 

Crocker and Passow 1995). Several studies have shown that T. weissflogii are not sticky 

and aggregation must be facilitated by TEP in the form of cell-TEP aggregate TEP 

(Kiørboe and Hansen 1993, Crocker and Passow 1995). However, Skeletonema costatum 

are sticky cells, and their aggregation proceeds because of their high stickiness (Kiørboe 

and Hansen 1993). In diatom aggregation observations, variation in stickiness has been 

recorded (Kiørboe et al. 1998). Many studies have shown that stickiness of cells can 

vary with temperature (Kiørboe and Hansen 1993, Thornton and Thake 1998). Thus, I 

propose that the S. marinoi cells became stickier and produced more aggregation at high 

temperature, whereas T. weissflogii had lower stickiness and produced less aggregation 

at higher temperature. Aggregation is a source of marine snow; therefore, the response of 



 

76 

 

aggregation formation to temperature also influences the vertical flux of carbon in the 

ocean. Sticky cells, such as S. costatum, will tend to aggregate during blooms and result 

in a fast-sinking flux of organic carbon. On the contrary, if the cells have low stickiness, 

such as T. weissflogii, they will remain in surface waters for a long time during the 

bloom. Many observations of aggregates of S. costatum in the coastal ocean and their 

subsequent sedimentation have been documented (Crocker 1993). The sinking of diatom 

aggregates and marine snow plays a critical role in the rapid transfer of primary 

production from the euphotic zone to depth. EPS production and aggregation have a 

significant impact on the biogeochemistry of organic matter and the ecology of marine 

snow. However, there have been few studies of the effect of temperature on EPS 

production and the attendant effect on marine biogeochemistry. Hence, the effect of 

temperature on the stickiness of different species and their distinct aggregation 

mechanisms are a potential avenue for further investigation. 

 

3.5 Conclusions 

 

 In conclusion, I showed that temperature affects TEP production and 

aggregation in the diatom species T. weissflogii and S. marinoi. However, the response 

to temperature change by different species was not same. As temperature increased, cell 

abundance decreased in the cultures of S. marinoi but not in the cultures of T. weissflogii, 

indicating that these two organisms could have different widths of thermal tolerance 

and/or different temperature ranges. My results suggest that TEP production can be 
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enhanced at higher temperature, which was associated with more EPS production and 

greater permeability in the cultures. However, there was not sufficient evidence to 

demonstrate the relationship between TEP formation and cell lysis. It remains unclear if 

TEP precursors were created by leakage from permeable cells or exudation by cells. 

Such a question would be an interesting topic for future study. In my results, increase in 

temperature did not enhance aggregation in both species. More aggregates of S. marinoi 

occurred in higher temperature cultures, indicating S. marinoi cells become stickier at 

higher temperatures. On the contrary, fewer aggregates occurred in the cultures of T. 

weissflogii at higher temperatures even though TEP production was enhanced. This 

indicates that temperature may affect TEP composition and consequently influence their 

chemical or physical properties and aggregate formation. TEP production and aggregate 

formation have important role in the transport of carbon in the ocean. Therefore, 

accumulation of S. marinoi in the form of marine snow in response to elevated 

temperatures will enhance the transportation of carbon to the deep ocean. 
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CHAPTER IV 

EFFECT OF GROWTH RATE ON TEP PRODUCTION BY DIATOMS 

 

4.1 Introduction 

 

Growth rate of microalgae is a physiological factor on the growth mechanisms of 

cells, such as changes of biomass, cell quota and cell size with time (Droop 1983, 

Martens et al. 1993). In the study of cell quota conducted in chemostat experiment, 

Droop found that there is a relationship between growth rate and cell quota under 

Vitamin B12 limitation (Droop 1970). Cell quota is quantity of uptake substrate for 

producing a given biomass. Thus, the biomass of cells directly affect by the factor of 

growth rate. Growth rate is a distinguish expression of a species in adapting to the 

environmental conditions that it are experienced (Conway et al. 1977, Fogg and Thake 

1987). Organisms have specific responds in the growth to present the experimental 

change imposed on it, such as nutrients limitation (Conway et al. 1977). Cells perform a 

physiological adaption strategy of nutrients uptake system during nutrient limited growth, 

such as increase nutrient uptake rate (Droop 1983) and carbon fixation rate (Lancelot & 

Mathot 1985). Cells in different phases of growth have different properties related to 

morphology, metabolic production, photosynthesis and respiration rate, and shear 

sensitivity (Fogg and Thake 1987, Martens et al. 1993). However, how growth rate 

affects the production of TEP by diatoms and its subsequent influence on diatom 

aggregation is not clear. During this work, we grew T. weissflogii at a range of growth 
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rates under nitrogen limitation to determine the effects of growth rate on TEP production 

and aggregate formation by T. weissflogii. 

 

4.2 Experimental approach 

 

The growth rate experiment was designed to determine how growth rate affects 

TEP production and aggregation by a diatom (Aim 2). Four replicate cultures (1 liter) of 

Thalassiosira weissflogii were grown in semi-continuous cultures (refer to 2.1.3.2) at a 

series of dilution rates (0.3, 0.5, 0.7, and 0.9 day-1), below the maximum specific growth 

rate of 1.1 day-1, that was measured in nutrient replete batch culture under the same 

conditions of light and temperature. In order to obtain nitrogen limitation in the cultures, 

macronutrient concentrations were modified from the original recipe (Table 2 in 2.1.2.2). 

Macronutrients (N, P, and Si) were added to a final concentration of 60 µM of NaNO3, 

100 µM of NaH2PO4•H2O, and 100 µM of Na2SiO3•9H2O. Cultures in 2 liter bottles 

were located in a glass water bath which filled of water. The temperature of cultures was 

controlled through manipulation water in glass water bath by a thermocirculator (VWR 

model 1196D). Cultures were grown in a glass water bath at 20 °C with a photon flux 

density of 150 μmol m-2 s-1 on the surface of the culture bottles. The light cycle was 14 h 

light: 10 h dark. Cultures were diluted at 10:00 am in everyday of experiment. 

 Cell concentrations in the cultures were determined every day (refer to 2.2.1) 

and other samples were only taken from the cultures when it was established that they 

were in steady state (i.e. dilution rate = growth rate). After arriving at steady state, 
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cultures were left to acclimate to the new growth rate at least for four generations before 

sampling. Cultures were sampled to test hypotheses at each dilution rate. Cultures were 

sampled three times at each growth rate and maintained cultures for 3 days between 

sampling. 

Sample were used to measure cell count and cell size (2.2.1); chlorophyll a 

concentration (2.2.3); TEP concentrations and area by Axio Vision 4.8 software (refer to 

2.2.5); carbohydrate allocation (refer to 2.2.10); aggregation (refer to 2.2.7); the 

proportion of permeable cells in total cell abundance (refer to 2.2.9). In addition, bacteria 

check (2.2.2) and bioassay (2.2.4) were conducted in the cultures grown at different 

growth rate to prove that cultures are grown with low bacteria concentration and whole 

experiment is working under nitrogen limit. 

 

4.3 Results 

 

4.3.1 Diatom abundance and biomass 

 

Figure 19 shows changes in the concentration of Thalassiosira weissflogii cells 

over the 123 days of the experiment. Steady state cell concentrations were greatest in 

cultures growing at low dilution rates (Table 3). At steady state, cell concentration had a 

significant negative correlation with dilution rate (r = -0.980, p < 0.001, n = 60), 

decreasing from a mean cell concentration of 1.4 × 105 cells ml-1, at a dilution rate of 0.3 

day-1, to 2.5 × 103 cells ml-1 at 0.9 day-1 (Table 3). There was a significant difference (F4, 
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59 = 818.6, p < 0.001) between steady state cell concentrations in cultures grown at 

different dilution rates. Increasing the dilution rate resulted in a rapid decline in cell 

concentration over the next 2 to 3 days (Figure 19). Conversely, decreasing the dilution 

rate from 0.9 to 0.3 day -1 resulted in a rapid increase in cell concentration over the next 

4 days (Figure 19). During steady- state, mean cell division rates were 0.43, 0.72, 1.01, 

and 1.30 divisions day-1 at dilution rates of 0.3, 0.5, 0.7, and 0.9 day-1, respectively. 

 

 

 

Figure 19. Cell concentration of Thalassiosira weissflogii with time in semi-continuous 
cultures grown in a sequence of dilution rates (0.3, 0.5, 0.7, 0.9, and 0.3 day -1) under 
nitrogen limitation. Filled circles (●) show the mean ± SD (n = 4). Black triangles (▲) 
indicate days on which a full set of samples were taken. 
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Chlorophyll a is commonly used as a proxy for biomass in field and culture 

studies (Thornton 2012). Chl. a concentration in the cultures decreased as dilution rate 

increased, following the same pattern as cell abundance (Table 3) (Figure 20). A 

Kruskall-Wallis ANOVA showed that there were significant differences in chl. a 

concentrations between the different dilution rates (H = 44.578, p < 0.001). There was a 

negative correlation between chl. a concentration and dilution rate (r = -0.847, p < 0.001, 

n = 60) and a positive correlation between chl. a concentration and cell abundance (r = 

0.855, p < 0.001, n = 60). 

 

 

 

Figure 20. Chlorophyll a content of Thalassiosira weissflogii. Steady-state chlorophyll a 
concentrations per cell per cell (black bars) and per cell volume (grey bars) in semi-
continuous cultures grown at different dilution rates. Bars show mean + SD (n = 12). 
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Cell volume of the diatoms also changed with changes in the steady-state growth 

rate (Figure 21). Cell volume was twice as large in the cultures grown at higher dilution 

rates (0.7 day-1 and 0.9 day-1 ) compared with lower dilution rates (0.3 day-1 and 0.5 day-

1) (Figure 21). There was a significant difference in cell volume (F4, 59 = 53.880, p < 

0.001) at the different dilution rates and a positive correlation between dilution rate and 

cell volume (r = 0.683, p < 0.05, n = 60). Therefore, as the dilution rate of the cultures 

increased, there was an increase in steady-state mean cell volume and a decrease in cell 

concentration. 

As cell volume changed with dilution rate, the total cell volume concentration in 

the cultures may have been a better indicator of biomass that cell concentration. Two 

methods were used to estimate the volume concentration of diatoms in the cultures over 

time. Firstly, data obtained using the light microscope was used to calculate the volume 

concentration of diatoms (cell abundance × mean cell volume) per volume of culture 

(Table 3). Secondly, laser in situ scattering and transmissometry (LISST) was used to 

measure the volume concentration of particles in the cultures (Table 3). Using the LISST, 

the mean (± SD) volume concentrations of particles at a dilution rate of 0.3 day-1 were 

242 ± 42  l l-1 (0.3A) and 319 ± 48  l l-1 (0.3B), compared with 95 ± 41  l l-1 at a 

dilution rate of 0.9 day-1 (Figure 21). Estimates of volume concentration derived from 

direct observations with the light microscope were 3.5 ± 1.3 (mean ± SD) times lower 

than the volume concentrations derived from the LISST. However, the pattern in volume 

concentrations was in general agreement and there was a positive correlation between 

the volume concentrations produced by the two methods (r = 0.717, p < 0.001, n = 60). 
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Moreover, volume concentration in the cultures followed the same general pattern as cell 

abundance and chl. a concentrations with dilution rate. There were significant 

differences in volume concentrations with dilution rate derived from both the 

microscope observations (F4, 59 = 80.823, p < 0.001) and the LISST measurements (F4, 59 

= 57.364, p < 0.001). 

 

 

 
Figure 21. Cell volume of Thalassiosira weissflogii grown at different dilution rates. 
Bars show mean + SD (n = 300). 
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Total carbohydrate includes both the carbohydrate associated with particulate 

matter in the cultures (i.e. cells) and extracellular dissolved carbohydrate. There was a 

significant difference in total carbohydrate concentration at steady state as the different 

dilution rates (H = 45.281, p < 0.001, n = 60). Mean total carbohydrate concentrations 

were greater in cultures growing at low dilution rates compared with cultures growing at 

high dilution rates (Table 3). Total carbohydrate concentration followed the same pattern 

as cell abundance and chl. a concentration (Table 3); for example, there was a significant 

positive correlation between cell abundance and carbohydrate concentration (r = 0.795, 

p < 0.001, n = 60). 

Steady state conditions were determined based on counts of diatom cell 

concentrations in the cultures. During steady state, there should not be any significant 

change in diatom concentration over time. While there were significant differences in 

diatom concentration between different dilution rates, there was no significant difference 

in cell concentration between sampling days during steady-state (Table 4). There was no 

significant difference in steady state chl. a concentrations, with the exception of during 

the steady state period diluted at 0.7 day-1 (Table 4). Total carbohydrate showed 

significant differences between days during steady state at 0.5 and 0.9 day-1. However, 

total carbohydrate was composed of both cell associated and extracellular carbohydrate 

and therefore may not be as useful as a proxy for biomass as diatom cell and chl. a 

concentrations. 

 

 



 

86 

 

Table 3. Abundance and measures of biomass for Thalassiosira weissflogii grown in nitrate-limited steady-state cultures 
grown at a range of dilution rates. Values are mean ± SD (n = 4 replicate cultures). 
 

Dilution rate 
 (day-1) 

0.3A 0.5 0.7 0.9  0.3B 

C: N ratio 
(mol: mol) 

12.40 ± 1.39 11.06 ± 1.38  12.05 ± 2.31 13.17 ± 2.28  12.03 ± 1.28 

Diatom concentration 
(cells mL-1) (x 103) 

135 ± 8  99 ± 7  60 ± 4 25 ± 3 121 ± 9 

Chl. a 
(µg L-1) 

109 ± 11 90 ± 4  80 ± 18 20 ± 4 91 ± 4 

Total carbohydrate 
(mg L-1)  

10.50 ± 2.14 6.19 ± 1.11 6.13 ± 1.60 3.26 ± 0.53 8.78 ± 1.63 

Diatom volume (microscope) 
(µL L-1) 

65 ±10 45 ± 7  69 ± 10  23 ± 4  76 ± 10 

Diatom volume (LISST) 
(µL L-1)  

242 ± 42 122 ± 27 167 ± 47 95 ± 41 319 ± 48 
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Table 4. Results from ANOVA to determine whether there were significant changes in indicators of biomass between 
sampling days during the five steady state periods grown at different dilution rates. For each analysis, four replicates cultures 
were sampled on three different days (n = 9). N.S. means there was no significant difference between the mean measure of 
biomass on different sampling days. 
 

Dilution rate 
(day-1) 

Diatom concentration 
(cells mL-1) 

Chl. a 
(µg L-1) 

Total carbohydrate 
(mg L-1) 

0.3A N.S. N.S. N.S. 
0.5 N.S. N.S. p < 0.05 
0.7 N.S. p < 0.01 N.S. 
0.9 N.S. N.S. p < 0.05 

0.3B N.S. N.S. N.S. 
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4.3.2 Evidence for nitrogen limitation 

 

The addition of nitrogen (as nitrate) to samples of culture from all dilution rates 

resulted in an approximate doubling of cell abundance over 48 hours compared with the 

control bioassay to which no nutrient additions were made (Table 5). Moreover, the 

addition of all nutrients except nitrogen (i.e. silicate, phosphate, vitamins and trace 

metals) resulted in no increase in cell abundance. These results indicate that nitrogen 

supply limited growth in the semi-continuous cultures. This conclusion is supported by 

the C: N ratio of particulate matter from the cultures. If the cultures were nutrient replete, 

then the C: N ratio would be expected to approximate to the Redfield ratio of 6.6. The 

mean observed C: N ratio of the POM in the cultures was 12.38 ± 0.98 (mean ± SD, n = 

60), with no significant difference between steady-state cultures growing at different 

growth rates (Table 3). A C: N ratio of almost twice Redfield indicates that the carbon 

was in excess compared to nitrogen and the cultures were nitrogen limited. 
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Table 5. Cell concentrations after 48 hours in bioassays to determine the source of 
nutrient limitation in steady-state semi-continuous cultures of Thalassiosira weissflogii. 
Treatments were control (no additions), + nitrate (120 µM added), and – nitrate (all 
nutrient added except nitrate. Numbers in the table are means ± SD (n = 4 replicate 
cultures). 
 

Dilution rate 
(day-1) Cell concentration (×104 cells ml -1) 

 + Nitrate Control - Nitrate 
0.3A 22.60 ± 1.25 11.24 ± 1.13 12.65 ± 0.56 
0.5 19.56 ± 3.14 11.52 ± 0.72 11.55 ± 0.64 
0.7 11.43 ± 1.65 7.22 ± 0.75 7.05 ± 0.52 
0.9 5.24 ± 1.43 2.94 ± 0.72 2.34 ± 0.39 

0.3B 21.09 ± 1.48 12.65 ± 0.85 12.50 ± 0.44 
 

 

4.3.3 TEP 

 

Several measures of TEP dynamics are shown in Figure 22. Differences between 

TEP abundances at the different steady state dilution rates were significant (H = 54.444, 

p < 0.001, n = 60). TEP abundance in the cultures were generally greater than cell 

abundances (Figure 22 A), with a maximum mean TEP abundance at a dilution rate of 

0.3 day-1 of 473,000 ± 23,000 (± SD) particles ml-1 (0.3A) and the lowest mean 

concentration of 163,000 ± 5,000 particles ml-1 at a dilution rate of 0.9 day-1. There was 

a decrease in TEP abundance as the dilution rate of the cultures was increased (Figure 22 

A). When the dilution rate was stepped down from 0.9 to 0.3 day-1 (0.3B), there was an 

increase in steady state TEP abundance (Figure 22 A). There was a significant difference 

in TEP abundances between 0.3A and 0.3B (Tukey test, p < 0.05). The size of the TEP 

particles also changed with dilution rate (F4, 59 = 108.452, p < 0.001, n = 60); individual 



 

90 

 

TEP particles were generally larger in surface area at higher dilution rates (0.7 and 0.9 

day-1). There was no significant difference in the size of the TEP particles during the two 

steady state periods with a dilution rate 0.3 day-1 (0.3A and 0.3B). 

TEP concentration (i.e. total TEP area) was a better measure of the amount of 

TEP in the cultures (Figure 22 C) as it accounted for the variability in both the area of 

individual particles and their abundance. There were significant differences in TEP 

concentration at the different dilution rates (F4, 59 = 13.095, p < 0.001, n = 60), but there 

was no obvious pattern. There were significant differences in TEP concentration 

between the two steady state periods of dilution at 0.3 day -1 (p < 0.05). TEP production 

rate at steady state (Figure 22 D) correlated with dilution rate (r = 0.922, p < 0.001, n = 

60) and there was a significant difference in TEP production rates with dilution (F4, 59 = 

174.888, p < 0.001, n = 60). Post hoc comparisons showed that there was no difference 

in TEP production rate between the two highest dilution rates (0.7 and 0.9 day-1) and the 

two periods of dilution at 0.3 day-1 (0.3A and 0.3B). These data show that TEP 

production rates were greater in faster growing cultures of nitrogen-limited T. weissflogii. 
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Figure 22. TEP dynamics in steady-state semi-continuous cultures of Thalassiosira 

weissflogii. Bars show mean (+ SD; n = 100) TEP abundance (A), Individual TEP size 
(B), TEP concentration (C), and TEP production rate (D). 
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4.3.4 Aggregation 

 

In addition to estimates of biomass in the cultures based on volume concentration, 

the LISST was also used to determine the degree of aggregation in the cultures. A 

particle significantly larger than a single T. weissflogii cells implies aggregation. Based 

on visual examination of PSDs measured using the LISST, we assigned volume 

concentration with an ESD ≥ 63 µm as aggregated and volume concentration in the size 

bins containing an ESD < 63 µm as unaggregated. A spherical particle with a diameter 

of 63 µm would have a volume of 98,183 µm3, which is considerably larger than the 

greatest mean steady state cell volume of 1,146 ± 128 µm3 (0.7 day-1), therefore we can 

be confident that particles ≥ 63 µm were aggregates. The degree of aggregation in the 

cultures was determined from the ratio of volume concentration ≥ 63 µm ESD to volume 

concentration < 63 µm ESD (Figure 23). There was a significant difference in the 

aggregation at different dilution rates dilution (F4, 59 = 79.849, p < 0.001, n = 60). 

Aggregation was positively correlated to dilution rate during steady state (r = 0.840, p < 

0.001, n = 60), indicating that the faster growing cultures were more aggregated. 

Aggregation was negatively correlated with the total area of TEP in the cultures (r = -

0.303, p < 0.05, n = 60), therefore the aggregate measurement was not simply a 

measurement of TEP abundances in the cultures. However, TEP production rate was 

positively correlated to aggregation (r = 0.723, p < 0.001, n = 60). 
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Figure 23. Ratio of aggregated volume to unaggregated particulate volume in the 
cultures of T. weissflogii grown in nitrate limited semi-continuous cultures at different 
dilution rates. Bars show mean (± SD) ratio at different dilution rate (n = 400). 
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4.3.5 Cell membrane integrity 

 

SYTOX Green labeling of cells was used to determine whether the cell 

membranes were intact or compromised at steady state with different dilution rates 

(Figure 24). The proportion of cells with compromised cell membranes was consistently 

< 5 %. There was a significant difference (F4, 59 = 142.408, p < 0.001, n = 60) in the 

proportion of the population that had compromised cell membranes at the different 

dilution rates. However, there was no significant difference between the cultures grown 

in the two different periods of 0.3 day -1 (0.3A and 0.3B). The proportion of cells with 

compromised cell membranes was inversely correlated to growth rate at steady state (r = 

-0.927, p < 0.001, n = 60). 
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Figure 24. The proportion of SYTOX Green stained cells in cultures grown at different 
dilution rate. Bars show mean + SD (n = 12). 
 

 

4.3.6 Bacteria abundance and biomass 

 

Bacteria concentrations were generally low and did not increase to above 106 

ml-1 until the last period of growth at a dilution rate of 0.3 day-1 (0.3B). Prior to this 

period, the mean bacteria concentration was 4.78 × 105 ± 2.90 × 105 ml-1). The bacteria 

concentration in the cultures was negatively correlated with dilution rate (r = -0.661, p < 

0.001, n = 60) and therefore positively correlated with the concentration of diatoms in 
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the cultures (r = 0.577, p < 0.001, n = 60). There was a significant difference in the 

bacteria concentration at the different dilution rates (H = 44.285, p < 0.001, n = 60) and 

there was a significant difference in the bacteria concentration during the two periods of 

growth at 0.3 day-1. Although both diatom and bacteria concentrations decreased with 

dilution rate, there was still a significant difference (H = 38.018, p < 0.001, n = 60) 

between the ratio of bacteria to diatoms at the different dilution rates (Table 6). The 

mean number of bacteria per diatom cell was 7.8 ± 5.0 (± SD) over the course of the 

whole experiment. Bacteria per diatom cell were significantly different at the two 

dilution periods of 0.3 day-1, increasing from 4.7 ± 2.3 (0.3A) to 15.1 ± 5.0 (0.3B). 

Estimates of the carbon content of the diatom and bacterial populations (Table 6) 

were used to determine how much of the total cell carbon was associated with bacteria. 

The amount of carbon associated with bacteria was greatest at the end of the experiment 

during the 0.3B period. The cell carbon associated with bacteria during 0.3B varied from 

0.36 ± 0.13 % (mean ± SD) to 4.10 ± 1.47 % using values for bacterial carbon of 12.4 

and 149 fg cell-1, respectively. Lowest estimates of bacterial carbon occurred at a 

dilution rate of 0.9 day-1, varying from 0.06 ± 0.03 % to 0.71 ± 0.30 % (mean ± SD). 

Mean estimates of the amount of carbon associated with bacterial cells was always < 

5 %. The greatest estimate of the amount of cell carbon associated with bacteria from 

any culture on any day was 6.01 % from one of the 0.3B cultures on the last day of 

sampling. 
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Table 6. Bacteria abundance and estimates of bacterial biomass in Thalassiosira weissflogii cultures grown in nitrate-limited 
semi-continuous culture at a range of dilution rates. Values are means ± standard deviation (n = 4 replicate cultures). The 
amount of carbon associated with bacteria was estimated using 3 values of the carbon content for bacteria from the literature: a 
12.4 fg C per bacterium, b 30.2 fg C per bacterium, and c 149 fg C per bacterium. Values are means ± SD (n = 4 replicate 
cultures). 
 

Dilution rate 
(day-1) 

Bacteria 
(cells mL-1) (x 106) 

Bacteria per 
diatom 

Diatom C 
(ng mL-1)  

Bacteria Ca
 

(ng mL-1) 
Bacteria Cb 

(ng mL-1) 
Bacteria Cc 

(ng mL-1) 
0.3A 0.626 ± 0.285 4.7 ± 2.3 5814 ± 726 8 ± 4 19 ± 9 93 ± 42 
0.5 0.695 ± 0.133 7.0 ± 1.4 4065 ± 527 9 ± 2 21 ± 4 104 ± 20 
0.7 0.502 ± 0.153 8.4 ± 2.9 5270 ± 634 6 ± 2 15 ± 5 75 ± 23 
0.9 0.086 ± 0.036 3.5 ± 1.5 1839 ± 226 1 ± 0 3 ± 1 13 ± 5 
0.3B 1.827 ± 0.619 15.1 ± 5.0  6456 ± 720 23 ±8 55 ± 19 272 ± 92 
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4.4 Discussion 

 

Figure 19 shows that the diatom cell concentration remained relatively constant 

at each dilution rate, after an initial transition period. As diatom concentration did not 

change in the cultures over time (Table 4), the dilution rate must have been equal to the 

growth rate and therefore the cultures reached a steady-state at each dilution rate (Fogg 

and Thake 1987). Unlike continuous cultures, fresh medium was not added constantly, 

but rather in a pulse once a day. Figure 19 is somewhat misleading as it gives the 

impression that biomass was constant throughout each steady-state period. In reality, the 

diatom concentration would have followed a pattern over the course of the day, with the 

minimum occurring immediately after dilution and the maximum occurring at the time 

of sampling. As the cultures were sampled at the same time every day, this gives the 

impression of constant diatom cell concentration. Therefore, it is more accurate to 

describe the cultures as being in a quasi-steady-state; with the mean growth rate 

equivalent to the dilution rate and the same pattern of change in growth and biomass 

occurring each day. 

While the concentration of nitrate added to the cultures was constant (60 µM), 

the rate of nitrate supply was not as the total amount of nitrate added depended on 

volume as well as concentration. The daily additions of nitrogen to the cultures were 18, 

30, 42, and 54 µmol at the dilution rates of 0.3, 0.5, 0.7 and 0.9 day-1, respectively. 

While the addition of nitrate at 0.9 day-1 was three times that at a dilution rate of 0.3 day-

1, the steady-state diatom concentration was significantly lower. In a chemostat system at 
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steady state, the biomass is determined by the concentration of limiting nutrient and 

dilution rate determines the growth rate (Fogg and Thake 1987). We expected the diatom 

cell concentration in the semi-continuous cultures to remain relatively constant as there 

was no change in nitrate concentration when the dilution rate was changed. Our results 

indicate that either nitrogen was not the limiting nutrient in the cultures or that there was 

a significant difference in the physiology of T. weissflogii growing at different rates. To 

ensure nitrogen limitation, nitrogen was supplied at relatively low concentrations 

compared with phosphorus and silicon. The Redfield ratio for C: N: P in particulate 

organic matter in the ocean is 106: 16: 1 (Redfield et al.1963). Deviations from these 

proportions are often used as an indicator of nutrient limitation (Geider and La Roche 

2002). The N and P additions to the culture were made at the ratio of 0.6: 1, compared 

with Redfield stoichiometry of 16:1. However, the Redfield ratio represents a mean 

value for marine phytoplankton; there are significant differences in C: N, C: P and N:P 

requirements by different phyla of phytoplankton (Quigg et al. 2003). Leonardos and 

Geider (2004) compiled data from the literature on nutrient replete stoichiometry in 

diatoms and found that the mean C: N ratio approximated to Redfield stoichiometry (6.6) 

with a value of 6.9 and a range of 5.1 to 9.0. Quigg et al. (2003) found that the C:N ratio 

of exponentially growing nutrient replete Thalassiosira weissflogii (CCMP 1336) 

approximated to Redfield proportions, with a mean value of 6.3. The mean C:N ratio of 

our cultures was approximately twice this value (12.38 ± 0.98 (mean ± SD, n = 60)). 

Similarly, Goldman et al. (1979) grew Thalassiosira psuedonana (3H) with a limiting 

supply of ammonium and found that the C: N ratio was 12.6 (mol: mol). The C:N ratio 
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of the POM in our cultures supports the conclusion that they were nitrogen limited and 

this was confirmed by the bioassay experiments. 

POC would have been the definitive measure of biomass in the diatom cultures. 

Unfortunately, there may have been a loss of material from the filters during preparation 

of the samples for elemental analysis. This potential source of error precluded measuring 

the POC concentration of the cultures and cell quotas of carbon or nitrogen, as was our 

original intention. However, we are confident that this potential loss did not affect the 

determination of the C: N ratio of the particulate organic matter in the culture. Measures 

of biomass (diatom cell concentration, chl. a concentration, and total carbohydrate 

concentration) indicate that there was a biomass decrease with increasing diatom growth 

rate. T. weissflogii may be less efficient at utilizing the available nitrate at higher growth 

rates. This hypothesis is supported by the constant steady-state C: N ratios of the cultures, 

despite more nitrogen per diatom being available at high dilution rates. The nitrogen 

supply per diatom during steady state with a dilution rate of 0.3 day-1 (0.3A) was 133 

compared with 2,160 pmol N cell-1 (estimated based on the mean steady-state cell 

concentration at each dilution). 

Cell size, in addition to diatom cell concentration, determined the biomass in the 

cultures. While there was a lower diatom cell concentration in fast growing cultures (0.7 

and 0.9 day-1), the cells were significantly larger than in cultures growing at 0.3 and 0.5 

day-1. Therefore, biomass volume may be a better proxy for diatom biomass than cell 

concentration. Measurements of biomass volume made by light microscopy and using 

the LISST followed the same pattern, but they did not have the same values. The volume 
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of diatoms based on LISST volume concentration measurements were consistently 

higher than those made by light microscopy. Using light microscopy, cell volume of 

individuals can be determined relatively precisely as the length and width of the cells 

can be measured and the shape of the cell is confers to a cylinder. However, the LISST 

method does not measure the size and shape of individual cells, but rather the volume 

concentration of the whole population of particles that scatter light onto a series of 32 

detectors equivalent to 32 size bins (Agrawal and Pottsmith 2000). Moreover, the 

volume concentration is determined based on the assumption that the particles are 

spheres (Agrawal and Pottsmith 2000). Rzadkowolski and Thornton (2012) found that 

large peaks on the particle size distributions from diatom monocultures corresponded to 

the length and widths of the cells. In the case of Thalassiosira weissflogii, volume 

concentrations based on the equivalent spherical diameters of the length and width of the 

diatom would over and underestimate the biomass of diatoms, respectively. Much of the 

biomass in the cultures was in the form of aggregates, which may lead to an 

overestimation of biomass by volume as aggregates tend to be porous (Ploug et al. 2008), 

which will not be detected by the LISST. Finally, LISST measurements may have 

included a volume of particles that were not diatoms. There were high concentrations of 

TEP in the cultures and it is possible that these particles may have contributed to the 

measured volume concentrations. However, our attempts to measure TEP with the 

LISST have been unsuccessful as the LISST has not been able to „see‟ these particles. 

LISST instruments have been used to measure the concentration of purple sulfur bacteria 

in a lake (Serra et al. 2001) and therefore it is possible that bacteria may have 
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contributed to the detected volume concentration. The minimum size of particles 

detected by the Type C LISST used in this study is 2.5 µm, compared with 1.2 µm for 

the instrument used by Serra et al. (2001). Therefore, it is unlikely that bacteria directly 

contributed to the volume concentration measured; however, light scattering by objects 

smaller and larger than the sizes measured by the LISST does cause errors in the volume 

concentrations measured in the smallest and largest size bins (Agrawal and Pottsmith 

2000). 

Most diatom reproduction is by mitotic cell division, with each generation being 

smaller than the previous as the when the diatom divides into two, one parent valves 

goes to each daughter cell and the new valve forms inside the old valve, resulting in one 

cell that is smaller than the parent cell and one cell that is the same size (Armbrust and 

Chisholm 1992). Cell shrinkage with each generation is obviously unsustainable, 

therefore sexual reproduction or asexual cell enlargement is used to restore cell size in 

response to a threshold cell size and/or environmental cues (Armbrust and Chisholm 

1992). Armbrust and Chishom (1992) found that the timing of enlargement depended on 

isolate in T. weissflogii, with a range of 120 to 270 generations. We found that cell 

volume in T. weissflogii increased with increasing growth rate at steady state. Similarly, 

Costello and Chisholm (1981) found that vegetative cell volume increased from 800 to 

2800 µm3, with a concomitant increase in growth rate from 1.6 to 3.4 doublings per day 

in batch cultures of T. weissflogii grown in f/2 medium. Increased cell volume and 

growth rate occurred after auxospore formation, though the triggering environmental 

conditions were not clear. Our cells were much smaller than those observed by Costello 
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and Chisholm (1981); this may reflect phenotypic differences between strains and the 

difference in growth conditions as our cultures were always growing under nutrient 

limitation. However, the smallest mean cell size observed in our work was still greater 

than the minimum modal cell volume of 278 µm3 observed by Armbrust and Chisholm 

(1992). Indeed, Armbrust and Chisholm (1992) observed different patterns of cell size 

change between different isolates of T. weissflogii, and differences in the maximum cell 

volume of different isolates. Our work differs from Costello & Chisholm (1981) and 

Armbrust & Chisholm (1992) as we were controlling the growth rate, rather than 

measuring growth rate under nutrient replete conditions. It may be that the larger cell 

volume we observed in faster growing cultures simply reflects the proportion of cells 

undergoing mitotic cell division at the time of sampling. This is supported by the 

elongated shape of many of the cells at high growth rates and the low proportion of 

dying cells at high growth rates, as indicated by SYTOX Green staining. We did not 

observe any evidence of sexual reproduction, though this does not mean that it was not 

occurring in our cultures. 

Recent research has shown that bacteria may play a significant role in 

determining the stickiness and aggregation of diatom cultures (Gärdes et al. 2011, 2012) 

and therefore the presence of bacteria and their interactions with the diatom cannot be 

ignored. We estimated the amount of organic carbon associated with the bacteria based 

on values of carbon per bacterium from the literature. The literature values varied over 

an order of magnitude, depending on growth conditions (Fukuda et al. 1998, Vrede et al. 

2002). Actual mean carbon content of the bacteria was probably somewhere between the 
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extremes of 12.4 (oceanic conditions) and 149 fg C bacterium-1 (nutrient replete 

conditions). Of the three values used to estimate bacteria carbon, the estimate based on 

data from coastal waters (30.2 fg C bacterium-1) was probably the most representative of 

the nitrogen limited conditions in the semi-continuous cultures. Even using the highest 

value of 149 fg C bacterium-1, the proportion of microbial carbon that was associated 

with the bacteria was < 5 %, indicating that the bacteria were not a significant biomass 

in the cultures. Bacterial concentrations were less steady than those of the diatom. For 

example, while diatom cell concentrations were in steady state during 0.3B, the bacteria 

concentration increased. On average, there were 3 times more bacteria in 0.3B compared 

with 0.3A and therefore any significant difference between these two periods could be 

used to determine whether bacteria had a significant effect on the growth of the diatom. 

There were fewer diatoms at steady state during 0.3B compared with 0.3A (Table 3). 

This difference was significant, but relatively small compared to the differences in 

diatom concentrations between dilution rates. Competition for nitrogen between the 

bacteria and diatoms may have contributed to this difference due to the high 

concentrations of bacteria during 0.3B compared with 0.3A. However, other factors such 

as sexual reproduction of the diatom and selection (of both diatom and bacteria) over 

many generations may have also contributed to this difference (Armbrust and Chisholm 

1992, Collins and Bell 2004). 

Gärdes et al. (2011) showed that bacteria are important in the aggregation of 

Thalassiosira weissflogii; aggregation did not occur in axenic cultures of the diatom, 

whereas bacteria attached to Thalassiosira weissflogii cells enhanced aggregation. 
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Gärdes et al. (2010) isolated the bacterium Marinobacter adhaerens from marine 

particles and subsequently grew it with the diatom Thalassiosira weissflogii in a model 

system (Gärdes et al. 2012). Interaction between the diatom and the bacterium depended 

on the nutrient status of the culture. When grown under „balanced‟ conditions (N:P of 

16:1), the bacterium enhanced exudation and TEP formation in batch cultures compared 

with axenic controls. However, M. adhaerens did not enhance TEP production when the 

cultures were grown under conditions that affected nutrient limitation. We do not know 

which bacteria were in our cultures; however, it may be that TEP formation and 

aggregation was not affected by the presence of bacteria in the cultures as they were 

nutrient limited. Furthermore, there was no difference in TEP abundance and proportion 

of aggregated biomass between the cultures during the two growth periods at 0.3 day-1, 

despite the fact that the bacteria concentration during 0.3B was three times that during 

0.3A. 

In situ and in mesocosm experiments with natural populations, TEP formation is 

often associated with nutrient limitation and the termination of diatom blooms (Passow 

et al. 1994, Engel 2000, Engel et al. 2002). In general, stresses such as nutrient limitation 

are associated with extracellular release of DOM by phytoplankton (see Thornton 

(accepted in 2013) for a review). We hypothesized that there would be more TEP in the 

cultures diluted at the lowest rate as these were the slowest growing and the most 

nitrogen limited. Relatively old and nutrient stressed cells were predicted to be the most 

„leaky‟ and therefore the greatest producers of TEP precursors, leading to high 

concentrations of TEP at low dilution rates and high TEP production rates. Our data 
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showed that T. weissflogii were more permeable at low dilution rates as a greater 

proportion of cells showed SYTOX staining. Furthermore, there were more cells in the 

cultures at low dilution rates, which meant that the absolute concentration of leaky cells 

at low dilution rates was relatively high. However, large numbers of leaky cells did not 

result in greater amounts of TEP in the slow growing cultures. This suggests that most of 

the TEP production was associated with healthy cells, rather than dying cells and cell 

lysis. TEP concentrations (by area) were relatively constant in all cultures during steady 

state; however, when dilution rate was accounted for, TEP production rate was greatest 

at the highest dilution rate, further evidence that the production of TEP and/or TEP 

precursors was associated with relatively healthy and rapidly growing cells. 

The proportion of biomass in the cultures that was in the form of aggregates 

increased with increasing dilution rate. This indicates that the faster growing cultures 

were stickier than the slower growing cultures. Coagulation efficiency (α), is the 

probability that two particles stick together on collision (Jackson 1990, Engel 2000), 

with a range of values from 0 (i.e. there is no adhesion between particles on collision) to 

1 (all collisions between particles result in adhesion). Diatom coagulation efficiency is 

variable; for example, Kiørboe et al. (1998) measured α in the range of 0.1 to 0.4 during 

a bloom of Chaetoceros spp. in the Benguela upwelling. Aggregation is not only 

dependent on the stickiness of particles‟ surfaces, but also their collision rate. Collision 

rate was determined by the mixing regime within the culture system, the cell 

concentration, and cell size. The mixing regime in the cultures was constant, so it should 

not have affected differences in aggregation between cultures. We hypothesized that cell 
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size and concentration would remain constant in the cultures and therefore any change in 

aggregation could be directly related to stickiness. However, both cell volume and cell 

concentration changed. The most dramatic changes were between the cell concentrations 

at the different dilution rates; there were 5 times more cells at 0.3 day-1 compared with 

0.9 day-1. Enhanced aggregation at 0.9 day-1, despite a lower concentration of cells and 

therefore lower collision rates, indicates that the cells growing at 0.9 day-1 were much 

stickier than those growing at 0.3 or 0.5 day-1. TEP are also a major factor contributing 

to aggregation (Engel 2000, Passow 2002b). TEP numbers at high dilution rates were 

approximately half those at low dilution rate, but the TEP particles at high dilution rate 

were larger. As there was no significant increase in TEP area with increasing dilution 

rate, the increased aggregation in the fast growing cultures was most likely caused by 

increased stickiness of faster growing cells or an increase in the stickiness of the TEP, or 

both. This hypothesis requires that the chemical structure of the cell coating or TEP was 

different at different growth rates. It would be interesting to determine what properties of 

the cell surfaces and TEP changed and whether these could be related to the generation 

time of the cells. FITC labeled lectins are an example of a tool that could be used to 

image different carbohydrate moieties on the surfaces of the diatoms (Bӧckelmann et al. 

2002, Elloway et al. 2004, Wigglesworth-Cooksey and Cooksey 2005). 

The physiology of cell death in phytoplankton has been overlooked until 

relatively recently, but it is apparent that phytoplankton may undergo a process 

analogous to programmed cell death in metazoans (Bidle and Falkowski 2004, Franklin 

et al. 2006). Cell death is a process and it is often hard to define cells as clearly dead or 
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alive (Franklin et al. 2006, 2012). Veldhuis et al. (2001) developed SYTOX Green as an 

indicator of cell death and hypothesized that death is a significant source of DOM 

production as cells in the early stages of death have both leaky plasma membranes and 

the ability to photosynthesize. An extension of this hypothesis is that the production of 

TEP precursors and/or TEP itself is dominated by the relatively few dying cells in the 

population. Indirect evidence supporting this hypothesis is the accumulation of TEP in 

situations where one would expect large numbers of dying cells, such as old cultures in 

the laboratory and during the termination of blooms in situ. However, our data indicates 

that neither the proportion nor number of diatoms with leaky plasma membranes was the 

most significant determinant of TEP concentrations in the cultures. 

 

4.5 Conclusions 

 

Aggregation into larger particles is important in carbon cycling as it affects the 

vertical flux of carbon through the water column and the efficiency of the biological 

carbon pump. Our experiment revealed that growth rate affected TEP formation and 

aggregation in cultures of Thalassiosira weissflogii, when they grown in nitrogen-

limited conditions. All measurements in this study tell us that most of the TEP 

production was associated with fast growing cells (healthy cells), rather than stressful 

cells and cell lysis. As growth rate increased, steady-state cell abundances decreased and 

cell volume became larger than in slow growing cultures, indicating biomass volume 

may be a better proxy for reveal diatom biomass. In addition, measurement of particle 
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size distribution (PSD) and volume concentration of particles illustrated greater 

aggregation formed in cultures grown at higher growth rate. Analysis both in size and 

abundance of TEP with growth rate indicated a more complete description of TEP 

formation process affected by growth rate that can be implicated in investigation of 

mechanism of TEP production and aggregation formation in the laboratory or in situ. 
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CHAPTER V 

EFFECT OF GROWTH AND DEATH ON TEP PRODUCTION BY DIATOMS 

 

5.1 Introduction 

 

The growth of microorganisms changes in batch cultures go through a series of 

phases over time, including lag phase, exponential phase, stationary phase, and death 

phase. As cultures grow in a new environment, cells need adjust to the environment 

(Canfield et al. 2005). In the lag phase, there is no fast reproduction, and cell population 

is constant. Following the lag phase is exponential phase, which is a period of 

logarithmic cell number increase in the cultures (Canfield et al. 2005). However, nutrient 

in the environment has a given amount and it is consumed by cells for growth. When 

nutrients become limit, growth of culture shifts from exponential to stationary phase 

(Canfield et al. 2005). During stationary phases, cultures contain constants cell number 

because that cell division rate equals to the rate of cell death. When nutrients in the 

environment run out and limit growth of cultures, cultures shift into death phase where 

rate of cell death exceeds rate of cell growth (Canfield et al. 2005). 

Diatoms are important oceanic primary producers because of their high 

productivity (Thornton 2012). They are widespread in global oceans and form blooms 

through rapid growth. Marine snow formation often associated with termination of 

diatoms, and support as food source for grazers transport organic matter from surface 

waters to deeper water (Thornton 2002). In addition, Diatoms exude a lot of DOC, in the 
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form of EPS (Stal 2003). The EPS produced and released from the cell surface may be 

TEP precursors, which contribute to TEP formation. TEP are sticky particles that 

promote aggregate formation by acting as glue (Logan et al. 1995, Passow 2002b). 

Several studies on TEP revealed that TEP amount were distinct during microalgae 

growth and death. Fukao et al. (2010) found that the production of TEP varied during 

different phases of growth by different diatoms. TEP production by Chaetoceros granii 

was enhanced during growth phase. On the other hand, those of Eucampia zodiacus, 

Rhizosolenia setigera and Skeletonema costatum were low in growth phase and mostly 

generated during late senescence. In the exponential growth phase, cells reproduced fast 

and live cells produced lots of EPS. In contrast, there were more dead cells in the 

stationary phase that accumulated during exponential phase. However, no studies 

monitor the allocation of resources with growth to determine the kinetics of TEP 

production. Hence, it is important to investigate how growth conditions influence the 

production of TEP in diatoms. For example, allocation of resources into carbohydrate 

may vary with TEP production rate during different phases of growth. Thus, the purpose 

of this experiment was to understand how the growth and death affect TEP formation 

and carbohydrate allocation by diatoms.  

 

5.2 Experimental approach 

 

Following the procedure described in the section of 2.1.2, three replicate cultures 

(refer to 2.1.3.1) of Thalassiosira weissflogii, Skeletonema marinoi and Cylindrotheca 
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closterium were grown in 500 ml of 0.2 µm filtered sterile artificial sea water (refer to 

2.1.2.1). Macronutrient concentrations were modified from the original recipe (Table 2) 

(refer to 2.1.2.2), with final concentrations of 100 µM of NaNO3, 200 µM of 

NaH2PO4•H2O, and 200 µM of Na2SiO3•9H2O in the cultures. Cultures were grown in 

batch cultures in a 20°C incubator (Precision Company) with a day/night cycle of 14h: 

10 h, and with a photon flux density of 42 µmol m-2 s-1. The growth of cultures was 

followed indirectly using cell turbidity (absorbance at 750 nm) every day and directly by 

counting cell abundances (refer to 2.2.1) on selected days during the different phases of 

growth. When cells arrived at exponential, stationary, death growth phase, and death 

phase, cultures were sampled at least once to determine allocation of carbon in the 

cultures. Samples were used to measure chlorophyll a concentration (2.2.3) and cell size 

(2.2.1), EPS concentration (refer to 2.2.10); TEP (refer to 2.2.5) and CSP (refer to 2.2.6) 

concentration and size using Image J method; the allocation of resources into different 

carbohydrate pools (refer to 2.2.10); the proportion of the population with compromised 

cell membranes (refer to 2.2.9) and bacteria check (refer to 2.2.2). 

 

5.3 Results 

 

5.3.1 Cell concentrations and cell volumes 

 

The growth of three species was followed using cell turbidity and cell counts. 

Because cell abundance and cell turbidity had a good correlation (r > 0.75) in each 
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species, we determined the growth phase of the cultures based on turbidity. The growth 

curves of the three species followed the same model, cell abundance increased in the 

growth phase and decreased during death phase and arrived to low total cell number in 

the death phase (Figure 25). I counted total cell numbers including, live and dead cells.  

Cells volume in the cultures of T. weissflogii increased with increasing cell 

abundance in the exponential growth phase, from average size of 325 µm3 to 570 µm3 

(Figure 26). The cell volume in the exponential phase was half of those in other phases. 

In contrast, there was negative correlation between cell volumes and culture time in the 

cultures of S. marinoi (r = -0.584; P < 0.005; n = 24) and C. closterium (r = -0.436; P < 

0.005; n = 24) (Figure 26). There was a significant difference in the cell volumes during 

the different growth phases (T. weissflogii: F8, 26 = 7.842, p < 0.001; S. marinoi: F7, 23 = 

3.891, p < 0.001 and C. closterium: F7, 23 = 13.506, p < 0.001). 
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Figure 25. Growth of Thalassiosira weissflogii, Skeletonema marinoi and Cylindrotheca closterium in batch culture. A) T. 

weissflogii B) S. marinoi C) C. closterium. Black solid circles (●) represent spectrophotometer absorbance of the cultures. 
Yellow rectangles (■) indicate cell concentrations. Red circles (●) represent cell absorbance of cultures on sampling days. I: 
exponential growth phase. II: stationary phase. III: death phase. IV: dead. Bars show mean ± SD (n = 3). 
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Figure 26. Cell concentration and cell volume with culture time in the cultures of Thalassiosira weissflogii, Skeletonema 

marinoi and Cylindrotheca closterium. A) T. weissflogii. B) S. marinoi. C). C. closterium. The axes of graphs are not shown on 
the same scales. Black circles (●) represent cell concentrations, bars show mean ± SD (n = 3). Red rectangles (■) represent cell 
volumes, bars show mean ± SD (n = 300). Green areas represent exponential growth phase. White areas represent stationary 
growth phase; yellow areas represent decline growth phase and pink areas represent death phase. I: exponential growth phase. 
II: stationary phase. III: death phase. IV: dead. 
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5.3.2 Chlorophyll a  

 

The chlorophyll a concentration in the cultures of T. weissflogii followed the 

same pattern as cell abundance with culture time, which increased in the exponential 

growth phase and then decreased in the phase of death (Figure 27). The chlorophyll a 

concentration in the cultures of S. marinoi increased very quickly and declined slowly 

over a long period of time (Figure 27). The chlorophyll a concentration in the cultures of 

C. closterium decreased from growth to death phase, from 291.73 ± 82.02 µg l-1 to 13.60 

± 1.41 µg l-1 (Figure 27). There were significant differences in the chlorophyll a 

concentration in different growth phases in the cultures of T. weissflogii (F8, 26 = 3.581, p 

< 0.001) and in C. closterium (F7, 23 = 56.203, p < 0.001), but not in S. marinoi. 
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Figure 27. Chlorophyll a production in the cultures of Thalassiosira weissflogii, 
Skeletonema marinoi and Cylindrotheca closterium with culture time. Black circles (●) 
represent chl. a concentration. I: exponential phase. II: stationary phase. III: death phase. 
IV: dead. Bars show mean ± SD (n = 3). 
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5.3.3 Carbohydrate fractions were measured by PSA method 

 

Different fractions of carbohydrate, including total carbohydrate, dissolved 

extracellular carbohydrate, EPS, storage associated carbohydrate (HW extraction), cell 

wall associated carbohydrate (HB extraction) and residual carbohydrate, were measured 

using the PSA method. Results of total carbohydrate concentration, HW carbohydrate 

concentration, HB carbohydrate concentration with culture time are shown in the 

appendix. In this section, I show results of EPS and carbohydrate allocation in three 

cultures at different growth phases. 

 

5.3.3.1 EPS concentration 

 

The EPS concentration in three diatom cultures all increased with increasing cell 

abundances during exponential growth phase and continued to increase during the phase 

of death, although cell numbers decreased at that time (Figure 28). The EPS 

concentration per cell was greatest in the death phase in three cultures. The EPS 

concentration per volume slightly increased during death phase in the cultures of T. 

weissflogii, and rapidly increased in the cultures of S. marinoi and C. closterium during 

the death phase (Figure 28). 
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Figure 28. EPS content in cultures of Thalassiosira weissflogii, Skeletonema marinoi 
and Cylindrotheca closterium with time. A) Total carbohydrate and EPS concentration. 
B) EPS content per cell and per cell volume. Black circles (●) represent total 
carbohydrate concentration. Red circles (●) represent EPS concentration. Blue rectangles 
(■) represent EPS concentration per cell. Yellow rectangles (■) represent EPS 
concentration per volume. I: exponential growth phase. II: stationary phase. III: death 
phase. IV: dead. Bars show Mean ± SD (n = 3). 
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5.3.3.2 Carbohydrate allocation 

 

In this experiment, carbohydrate concentrations of different fractions were 

measured to determine carbohydrate allocation with growth (Table 7). The carbohydrate 

fractions associated with different carbon pools were normalized to chlorophyll a 

concentration as cell abundance changed significantly during different growth phases. In 

addition, the proportions of different carbohydrate fractions in the total carbohydrate at 

different growth phases are shown in Figures 29~31. 

In the cultures of T. weissflogii, total carbohydrate concentration was not 

significantly difference in different growth phases (Figure 29). However, total 

carbohydrate content per chlorophyll a increased over time (Table 7). There was a 

significant difference in total carbohydrate per chlorophyll a concentration in different 

growth phases (F3,11 = 25.309, p < 0.001, n = 12). The proportion of dissolved 

extracellular carbohydrate to total carbohydrate increased during death phase (Figure 29). 

On the contrary, the proportion of cell pellet carbohydrate (storage + cell wall + residual) 

declined during death phase (Figure 29). When carbohydrate was normalized to 

chlorophyll a, dissolved extracellular carbohydrate and cellular carbohydrate were 

significantly different during different growth phases (F3,11 = 100.265, p < 0.001, n = 12; 

F3,11 = 6.496, p < 0.001, n = 12). In the cell pellet, there was a significant negative 

correlation between carbohydrate associated with storage per chlorophyll a and culture 

time (r = -0.437, p < 0.001, n = 12), and a positive correlation between non-storage 

carbohydrate per chlorophyll a and culture time (r = 0.929, p < 0.001, n = 12). The 
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production of different carbohydrate fractions with growth suggested that the proportion 

of total carbohydrate in the form of extracellular carbohydrate, rather than intracellular 

storage carbohydrate, as the cells transitioned from growth to death. 

In the cultures of S. marinoi, total carbohydrate concentration markedly 

increased in the death phase (Table 7; Figure 30). As total carbohydrate increased from 

growth to the death phase, the dissolved extracellular carbohydrate and cell pellet 

carbohydrate increased as well (Figure 30). However, in the intracellular carbon pool, 

carbohydrate associated with storage decreased as cells transitioned from growth to 

death (Figure 30). There were significant differences in total carbohydrate and cell pellet 

carbohydrate in different growth phases (F3,11 = 5.765, p < 0.001, n = 12; F3,11 = 6.919, p 

< 0.001, n = 12). When different carbohydrate fractions were normalized to chlorophyll 

a, maximum values were in dead cultures because of dead cells with very low Chl. a 

concentration (Table 7).  

In cultures of C. closterium, the greatest total carbohydrate occurred in the death 

phase (Figure 31). There was a significant difference in total carbohydrate concentration 

in different growth phases (F3,11 = 20.065, p < 0.001, n = 12). C. closterium produced 

more dissolved extracellular carbohydrate in the exponential growth phase than in other 

phases (Table 7. Figure 31). When cultures shifted from growth to death, cell pellet 

carbohydrate increased, especially in the cell non storage carbohydrate (cell wall + 

residual) (Figure 31). There were significant differences in dissolved carbohydrate and 

cell pellet carbohydrate in different growth phases (F3,11 = 1.427, p < 0.001, n = 12; F3,11 

= 74.706, p < 0.001, n = 12). 
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Table 7. Different fractions of carbohydrate in batch cultures of Thalassiosira weissflogii, Skeletonema marinoi and 

Cylindrotheca closterium during different growth phases. Values are mean ± SD (n = 3 replicate cultures). 
 

  Thalassiosira weissflogii  
Growth phases Total carbohydrate  

(μg × ng chla-1) 
Cell pellet carbohydrate 
(μg × ng chla-1) 

Dissolved extracellular carbohydrate  
(μg × ng chla-1) 

Exponential  0.17 ± 0.03 0.20 ± 0.01 0.06 ± 0.002 
Stationary 0.55 ± 0.07 0.38 ± 0.06 0.14 ± 0.012 
Death 0.49 ± 0.10 0.37 ± 0.08 0.25 ± 0.045 
Dead 1.05 ± 0.22 0.47 ± 0.11 0.67 ± 0.095 

  Skeletonema marinoi  

 
Total carbohydrate  
(μg × ng chla-1) 

Cell pellet carbohydrate 
(μg × ng chla-1) 

Dissolved extracellular carbohydrate 
(μg × ng chla-1) 

Exponential  0.015 ± 0.002 0.004 ± 0.001 0.0002 ± 0.0001 
Stationary 0.040 ± 0.009 0.044 ± 0.010 0.0063 ± 0.0025 
Death 0.048 ± 0.012 0.029 ± 0.009 0.0004 ± 0.0034 
Dead 57.516 ± 84.337 16.234 ± 23.687 22.767 ± 34.027 

  Cylindrotheca closterium  

 
Total carbohydrate  
(μg × ng chla-1) 

Cell pellet carbohydrate 
(μg × ng chla-1) 

Dissolved extracellular carbohydrate  
(μg × ng chla-1) 

Exponential  0.44 ± 0.16 0.07 ± 0.04 0.23 ± 0.16 
Stationary 1.93 ± 0.60 1.08 ± 0.09 1.30 ± 0.46 
Death 1.30 ± 0.31 0.72 ± 0.13 1.27 ± 0.52 
Dead 0.62 ± 0.27 0.38 ± 0.05 0.91 ± 0.19 
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Figure 29. Proportion and concentration of different carbohydrate fractions in diatom species Thalassiosira weissflogii in 
exponential, stationary, death phase and dead. The black areas represent dissolved extracellular carbohydrate in the cultures; 
red areas represent storage associated carbohydrate. Green areas represent cell wall associated carbohydrate and yellow areas 
represent residual carbohydrate. The sum of red, green and yellow areas represent intracellular carbohydrate. The total area 
represents total carbohydrate. Numbers in each fraction represent specific carbohydrate concentration (pg cell-1), and 
proportion in each fractions represent proportion of specific carbohydrate fraction in total carbohydrate. 

 

  



 

124 

 

 

Figure 30. Proportion and concentration of different carbohydrate fractions in diatom species Skeletonema marinoi in 
exponential, stationary, death phase and dead. The black areas represent dissolved extracellular carbohydrate in the cultures; 
red areas represent storage associated carbohydrate. Green areas represent cell wall associated carbohydrate and yellow areas 
represent residual carbohydrate. The sum of red, green and yellow areas represent intracellular carbohydrate. The total area 
represents total carbohydrate. Numbers in each fraction represent specific carbohydrate concentration (pg cell-1), and 
proportion in each fractions represent proportion of specific carbohydrate fraction in total carbohydrate. 
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Figure 31. Proportion and concentration of different carbohydrate fractions in diatom species Cylindrotheca closterium in 
exponential, stationary, death phase and dead. The black areas represent dissolved extracellular carbohydrate in the cultures; 
red areas represent storage associated carbohydrate. Green areas represent cell wall associated carbohydrate and yellow areas 
represent residual carbohydrate. The sum of red, green and yellow areas represent intracellular carbohydrate. The total area 
represents total carbohydrate. Numbers in each fraction represent specific carbohydrate concentration (pg cell-1), and 
proportion in each fractions represent proportion of specific carbohydrate fraction in total carbohydrate. 
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5.3.4 Carbohydrate fractions were measured by TPTZ method 

 

Monosaccharide and polysaccharide concentrations in the intracellular and 

extracellular pools were determined using the TPTZ method. In three cultures, 

intracellular carbohydrate was higher than extracellular carbohydrate. The intracellular 

monosaccharide and polysaccharide showed a rapid increase from growth to stationary 

phase and a decrease during death phase (Figure 32). However, extracellular 

carbohydrate didn‟t decrease, and extracellular polysaccharide even slightly increased in 

the death phase. Thus, a decrease of intracellular monosaccharide and polysaccharide 

was correlated with more extracellular polysaccharide as cultures transitioned from the 

growth to the death phase. 

 

5.3.5 Comparison for PSA and TPTZ methods in carbohydrate fractions analysis 

on phytoplankton 

 

Carbohydrate fractions collected from three different diatom species, T. 

weissflogii, S. marinoi and C. closterium, in different growth phases were measured by 

PSA and TPTZ methods and the results obtained by the two methods were compared. 

Carbohydrate fractions included total carbohydrate, extracellular dissolved carbohydrate, 

and intracellular carbohydrate. 
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Figure 32. Changes in monosaccharide and polysaccharide concentrations in culture 
medium in extracellular and intracellular pools in cultures of T. weissflogii, S. marinoi 

and C. closterium in different growth phases.  
extracellular monosaccharide (●); intracellular monosaccharide concentration(○); 
extracellular polysaccharide (■); intracellular polysaccharide (□). I: exponential growth 
phase. II: stationary phase. III: death phase. IV: dead. Bars show Mean ± SD (n = 3). 
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5.3.5.1 Total carbohydrate 

 

Total carbohydrate concentration (TCHO) was determined by summing the 

extracellular and intracellular carbohydrate measured by the TPTZ method. TCHO 

carbohydrate was determined directly using the PSA method. Comparing TCHO 

measured by the PSA and TPTZ method, the PSA method showed higher TCHO than 

TPTZ (Figure 33). The relationships between the two methods are shown in regression 

lines. In cultures of T. weissflogii, TPTZ and PSA methods all showed an increase of 

TCHO from exponential to stationary phase and a decrease during death phase (Figure 

33). There was a positive correlation between total carbohydrate measured by TPTZ and 

PSA (r = 0.887; n = 27; p < 0.05) (Figure 34). However, measuring of TCHO by TPTZ 

method did not show a good agreement with PSA in cultures of S. marinoi and C. 

closterium (Figure 34). There was not a significant correlation between TCHO measured 

by PSA and by TPTZ in S. marinoi (r = 0.206; n=12; p < 0.05) and in C. closterium (r = 

-0.115; p > 0.05). 

 

5.3.5.2 Dissolved extracellular carbohydrate 

 

Dissolved extracellular carbohydrate (DEC) was directly measured by PSA 

method and TPTZ method. PSA method showed higher concentration of DEC than did 

TPTZ in cultures of T. weissflogii and C. closterium, but lower results than TPTZ in S. 

marinoi (Figure 33).There was significant positive correlation between DEC measured 



 

129 

 

by TPTZ and by PSA in cultures of T. weissflogii with r = 0.528; n = 27; p < 0.05; and in 

S. marinoi with r = 0.784; n = 12; p < 0.05 (Figure 34). However, there was not a 

significant correlation between DEC measured by TPTZ and by PSA in cultures of C. 

closterium (r = 0.06; n = 12; p > 0.05) (Figure 34). 

 

5.3.5.3 Cellular carbohydrate 

 

Cellular carbohydrate was measured by PSA method through the sum of storage 

associated carbohydrate (HW extraction), cell wall associated carbohydrate (HB) and 

residual carbohydrate fractions. Cellular carbohydrate was determined by the TPTZ 

method through measuring carbohydrate concentrations in the intracellular carbon pool. 

The amount of cellular carbohydrate detected by PSA method was higher than cellular 

carbohydrate obtained using TPTZ method (Figure 33). There was significant positive 

correlation with cellular carbohydrate measured by TPTZ and PSA in cultures of T. 

weissflogii (r = 0.871; n = 27; p < 0.05) (Figure 34); However, there were not significant 

correlations between cellular carbohydrate measured by TPTZ and by PSA in cultures of 

S. marinoi (r = 0.504; n = 12; p > 0.05) and in C. closterium (r = 0.382; n = 12; p > 0.05) 

(Figure 34). 
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Figure 33. Comparison of different fractions of carbohydrate measured by the PSA and 
TPTZ methods in cultures of Thalassiosira weissflogii, Skeletonema marinoi and 

Cylindrotheca closterium. Total carbohydrates were measured by PSA (green rectangles 
(■)) and TPTZ methods (black circles (●). Data points show mean ± SD (n=3). 
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Figure 34. Comparison of PSA and TPTZ method for determining different fractions of 
carbohydrate in diatom cultures of Thalassiosira weissflogii (●), Skeletonema marinoi 

(■), and Cylindrotheca closterium (▼). Solid lines represent regression line between the 
PSA and TPTZ methods. 
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5.3.6 TEP formation 

 

Total TEP area per ml was used to indicate TEP production. In the cultures of T. 

weissflogii, TEP abundance and total area of TEP increased during stationary phase to 

death phase, although cell numbers had a rapid decline during that phase (Figure 35). As 

cells died, TEP abundance declined in the cultures. Therefore, TEP was mainly formed 

during stationary to death phase. The particle size distributions indicated that TEP 

particle size was shifted from smaller size (0 to 40 µm2) in the exponential phase to 

larger size (40 to100 µm2) in the stationary phase, and then reduced back to smaller size 

in the death stage (Figure 35). 

In the cultures of S. marinoi, TEP abundance remained constant in all phases 

(Figure 35). However, TEP total area increased with decreasing cell abundance from 

stationary to death phase, from 1.51 ± 0.81×102 mm2 ml-1 (mean ± SD) to 17.96 ± 

10.65×102 mm2 ml-1 (mean ± SD). There were more large TEP particles in the stationary 

phase than in the other phases (Figure 35). Therefore, TEP formation was greatest in 

stationary to death phase. 

Unlike to T. weissflogii and S. marinoi, total TEP area dramatically increased 

during the exponential growth phase in cultures of C. closterium, from 4.41 ± 0.85×102 

mm2 ml-1 to 7.60 ± 0.19 ×102 mm2 ml-1. The TEP abundance was greatest in the death 

phase with an abundance of 2.61 ± 0.81×105 ml-1. There were more TEP particles with 

bigger size in the stationary phase than in other phases. Thus, TEP production was 

enhanced during the growth phase in C. closterium cultures (Figure 35). 
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Figure 35. TEP concentrations and abundance in exponential, stationary, death phase 
and dead cultures of Thalassiosira weissflogii, Skeletonema marinoi and Cylindrotheca 

closterium. A,D,G) TEP abundance and TEP total area. B,E,H) TEP total area and cell 
abundance with culture time. C,F,I) TEP size distribution in different growth phases.  
In graphs A, D, G, green bars represent mean TEP abundance. Yellow bars represent 
mean total TEP area.  
In graphs B. E. H., black circles (●) represent mean cell abundances. Red circles (●) 
represent mean TEP total area.  
In graphs C. F. I., Crosses (×) represent TEP size distribution in the exponential phase. 
Red circles (●) represent TEP size distribution in the stationary phase. Rectangles (■) 
represent TEP size distribution in the death phase. Triangles (▼) represent TEP size 
distribution in dead cells.  
I: exponential growth phase. II: stationary phase. III: declining growth phase. IV: death 
phase. Error bars show ± SD (n = 3). 
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5.3.7 CSP formation 

 

In the cultures of T. weissflogii and S. marinoi, CSP production enhanced during 

the stationary and death phases, because total CSP area and CSP abundance elevated 

during those phases (Figure 36). When cells became dead, CSP abundance reduced in 

these two cultures. Thus, CSP was mostly formed in the stationary to death phase in 

these two diatom cultures. However, in the cultures of C. closterium, the total area of 

CSP markedly increased over time, even cell abundance decreased in the death phase. 

Therefore, the CSP was mainly produced in the exponential to declining growth phase in 

cultures of C. closterium. Moreover, most CSP particles in cultures of T. weissflogii 

significantly shifted to a larger size (20 ~500 µm2) in the stationary phase. In the cultures 

of S. marinoi and C. closterium, CSP particles slightly increased in size to 100 ~ 500 

µm2 in the stationary phase in the cultures of (Figure 36). 
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Figure 36. The CSP productions in cultures of Thalassiosira weissflogii, Skeletonema 

marinoi and Cylindrotheca closterium during exponential, stationary, death phases and 
dead. A.D.G) CSP abundance and CSP area. B.E.H) Total CSP area and cell abundance 
with culture time. C.F.I) CSP size distribution in different phases.  
In graphs A.D.G, green bars represent CSP abundance. Purple bars represent total CSP 
area.  
In graphs B.E.H, black circles (●) represent cell abundances. Red circles (●) represent 
total CSP area.  
In graphs C.F.I, crosses (×) represent size in exponential phase. Red circles (●) represent 
size in the stationary phase. Rectangles (■) represent size in the death phase. Triangles 
(▼) represent size when cells dead.  
I: exponential growth phase. II: stationary phase. III: death phase. IV: dead. Deviation 
bars show Mean ± SD (n = 3). 
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5.3.8 Cell permeability 

 

In all three diatom cultures, there was a significant increase in the fraction of 

SYTOX Green labeled cells from death phase to dead (Figure 37). The greatest 

proportion of SYTOX Green labeled cells occurred when cells were dead; 65.4 ± 5.2 % 

in the cultures of T. weissflogii, 88.5 ± 2.8 % in the cultures of S. marinoi, and 92.4 ± 

4.3 % in the cultures of C. closterium. 

 

 

 

Figure 37. Proportion of SYTOX Green labeled cells in total 400 cells in the cultures of 
Thalassiosira weissflogii, Skeletonema marinoi and Cylindrotheca closterium during 
different phases. Deviation bars show Mean ± SD (n = 12). Solid circles (●) represent T. 

weissflogii cells. Red rectangles (■) represent S. marinoi cells and blue triangles (▼) 
represent C. closterium cells. 
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To clarify the contribution of nucleic acids to TEP formation, TEP was stained 

by SYTOX Green and Alcian Blue at the same time. SYTOX Green is a nucleic acid dye, 

which can indicate extracellular DNA and RNA. Alcian Blue is an acidic polysaccharide 

dye, which is used to stain TEP. Our results revealed that some parts of TEP also stained 

with SYTOX Green, indicating that extracellular nucleic acids are associated with TEP 

(Figure 38). 

 

 

 

Figure 38. Images of TEP stained by SYTOX Green and Alcian Blue in cultures of 
Thalassiosira weissflogii. Nucleic acid was stained by SYTOX Green and fluoresce 
green. TEP were stained by Alcian Blue and show blue under brightfield light. 
Chlorophyll a fluorescence is shown in red.  
A) Stacked images captured using a GFP filter (showing SYTOX Green fluorescence), 

and DAPI filter (show chl. a fluorescence)  
B) Stacked image combining a photo taken with the GFP fluorescence filter (showing 

SYTOX Green fluorescence) and a brightfield image of TEP. 
C) Brightfield (showing TEP). 
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5.3.9 Bacteria 

 

Bacteria concentrations were very low at the beginning time of cultures (T. 

weissflogii: 5972 cells ml-1; S. marinoi: 6098 cells ml-1; C. closterium: 7086 cells ml-1). 

However, bacteria concentration was high in the death phase after 50 days of culturing 

(T. weissflogii: 2.08 × 105; 
S. marinoi: 6.30 × 105; C. closterium: 5.78 × 105). The 

bacteria concentration in the cultures was positively correlated with culture times (T. 

weissflogii: r = 0.961, p < 0.001, n = 12; S. marinoi: r = 0.969, p < 0.001, n = 12; C. 

closterium: r = 0.984, p < 0.001, n = 12). There was a significant difference in the 

bacteria concentration at the different culture date (T. weissflogii: F3,11 = 114.143, p < 

0.001, n = 12; S. marinoi: F3,11 = 722.142, p < 0.001, n = 12; C. closterium: F3,11 = 

409.201, p < 0.001, n = 12). 

 

5.4 Discussion 

 

5.4.1 Growth and death phases affect TEP production 

 

Our results showed that TEP production depended on growth phase and was 

species-specific in different diatoms. In batch cultures, nutrient availability is the main 

factor limiting the growth of cultures. Nutrients in batch culture shifted from replete to 

limit as cultures transitioned from growth to death phase (Canfield et al. 2005). Nutrient 

stress influences the metabolic pathways of cells and how they store carbohydrate 
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(Miller et al. 1988). Many studies indicate that diatoms exude more TEP under nutrient 

stress because of metabolic imbalance (Passow et al. 1994, Engel 2000). Under nutrient 

limitation, carbon is often fixed in excess of requirements and cells release fixed carbon 

into the surrounding medium as extracellular carbohydrates (Myklestad and Haug 1972, 

Fogg et al. 1983, Staats et al. 2000). In my experiment, TEP production changed 

significantly in three diatom species from growth to death, indicating cells‟ metabolism 

varied during different phases of growth. I found a rapid increasing of TEP 

concentration in the cultures of Thalassiosira weissflogii and Skeletonema marinoi 

during stationary to death growth phases, as nutrients limit growth. Thus, TEP 

production was enhanced by nutrient stress during stationary to death phases in these 

two diatom species. On the other hand, most of the TEP produced by Cylindrotheca 

closterium was produced during exponential growth phase, when nutrients were replete 

in the culture medium. This indicated that the production of TEP was associated with 

rapidly growing cells in C. closterium. My results are consistent with observations by 

others. Engel (2000) and Fukao et al. (2010) found that high concentrations of TEP 

production were generated by Skeletonema costatum during stationary to death phases. 

Underwood et al. (2004) suggested that more exopolymers (EPS) were produced by 

benthic diatoms (Cylindrotheca spp.) during growth phase. Why TEP should be formed 

during different growth phases by different species? It can be explained by life history 

and TEP functions in species. Thalassiosira weissflogii and Skeletonema marinoi are 

coastal diatoms. TEP synthesis could be a mechanism to protect these diatoms from 

bacteria or viral attack and assist in cell flow in the oceans (Passow et al. 2003). 
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However, Cylindrotheca closterium is a benthic diatom (Smith and Underwood 1998; 

Staats et al. 2000). The exudation of exopolymers helps them to attach and move on 

sediments, which gives them advantage in adapting to changing environmental 

conditions of the shallow benthic environment (Underwood and Paterson 2003). 

Analysis of allocation of carbon and TEP production during different phases of 

growth and death suggested that TEP production was associated with carbon allocation. 

In the cultures of T. weissflogii and S. marinoi, the most TEP production occurred during 

stationary to death phases and that TEP may be transformed from stored carbohydrate. 

However, an opposite pattern of TEP production associated with carbon allocation 

showed in the cultures of C. closterium. High concentration of TEP production was 

associated with enhanced exudation of dissolved extracellular carbohydrate by C. 

closterium during growth phase. My results were supported by Smith and Underwood 

(1998), who tracked process of carbon allocation using 14C as tracer. They revealed that 

intracellular storage glucan can be reallocated into EPS during the growth phase in 

Cylindrotheca closterium (Smith and Underwood 1998). Similarly, Wetz and Wheeler 

(2007) grew planktonic and benthic diatom in batch culture and found that Chaetoceros 

decipiens (a planktontic species) released more DOC during death phases, but DOC 

release rate in the cultures of Cylindrotheca closterium (benthic species) decreased to 0 

in the death phase.  

TEP precursors (DOM) could be contributed actively by cell exudation or 

passively by cell lyses (Bhaskar and Bhosle 2005). In the exponential growth phase, 

healthy cells exuded lots of EPS, which can be used in form of TEP. In contrast, cells 
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lost vitality and there were more dead cells with low integrity during stationary to death 

phase, which was predicted to more easily leak intracellular DOC and TEP precursors to 

the outside and subsequently in the form of TEP. Thus, there might be exist two 

mechanisms of TEP formation. One way is abiotic formation of TEP from leakage DOC 

and TEP precursors from permeable cells, such as formation of TEP by T. weissflogii 

and S. marinoi during death phase. The other way is biotic formation by exudation of 

DOC from healthy cells, such as generation of TEP by C. closterium during exponential 

growth phase. Fukao et al. (2010) indicated that increased TEP production during death 

phase by Rhizosolenia setigera and Skeletonema sp. maybe caused by dissolved 

polysaccharides released from dying cells. However, the TEP formation pathway is still 

not clearly understood and I cannot prove the relationship between cell lyses and TEP 

formation in this study. I knew that some parts of TEP also can be stained with SYTOX 

Green, indicating that nucleic acids exported by lyses cells are associated with TEP. 

TEP are sticky particles which stimulate aggregate formation. If species 

generated TEP during exponential growth phase of cells, aggregation would occur 

during blooms of cells. For example, many aggregations were recorded during the bloom 

of Cylindrotheca closterium, which produced TEP during growth phase (Staats et al. 

2003). On the other hand, species that tend to form TEP during decline phase would 

onset aggregation during termination of bloom. Several records pointed out aggregation 

occurrences after Skeletonema costatum blooms, because S. costatum generated TEP 

during death phases (Kiørboe and Hansen 1993, Engel 2000). Focus on time scale of 

TEP formation and aggregation will be important in study of carbon flux exported to 
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ocean interior. Hence, the effects of growth and death phases on TEP formation in 

different species are interesting for further investigation. 

 

5.4.2 DOM release by phytoplankton cells 

 

Phytoplankton can release lots of DOM, which consists of a wide range of 

organic molecules, including carbohydrates, nitrogen compounds, and lipids (Lancelot & 

Mathot 1985). There are many processes that affect the release of DOM from inside of 

phytoplankton to the outside environment, which include physical process (sloppy 

feeding by predators, and viral attraction) (Møller 2007, Franklin et al. 2006), and 

physiological process (release from phytoplankton cells) (Veldhuis et al. 2001, Berman- 

Frank et al. 2007, Claquin et al. 2008). Anderson and Williams (1998) divided the 

physiological loss of DOM from phytoplankton into two processes: the exudation of 

excess carbon from cells in response to changing environmental factors, and the loss of 

DOM by leakage from cells. Research has demonstrated that that healthy phytoplankton 

cells can exude a significant amount of DOM in response to changing environmental 

factors (Myklestad & Haug 1972, Myklestad 1974). Under nitrogen limitation, more 

DOM is exuded by diatoms in form of EPS (Staats et al. 2000, Passow 2002a, Wetz and 

Wheeler 2007). Recently, there have been several studies on the relationship between 

phytoplankton cell integrity and the release of DOM. Permeable cells were more „leaky‟ 

and easily released intracellular DOM to the outside (Franklin et al. 2006). Franklin et al. 

(2006) demonstrated that cell death results in increased permeability of the cell 
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membrane. My result is consistent with Franklin‟s observation. In my batch culture 

experiment, cells in the death phase were aged and nutrient stressed. SYTOX green 

results indicated that these dying and dead cells were more permeable. However, there 

was no evidence to prove that whether cell leakage contributed to TEP precursors. TEP 

formation is a complex pathway that might link to both exudation by healthy cells and 

leakage by permeable dying cells. The mechanism of TEP formation needs further 

investigation. Furthermore, TEP formed by DOM associated with different release 

processes may be of different compositions. Some studies illustrated that permeable cell 

membranes more easily leak small molecular compounds (amino acids, 

monosaccharides) than big chemical compounds (Myklestad 2000). In contrast, healthy 

cells preferentially exude big molecular compounds, such as polysaccharides (Myklestad 

2000). Therefore, different pathways of DOM release may lead to different compositions 

of TEP and subsequently to diverse chemical and/or physical properties. Unfortunately, I 

did not measure composition of TEP during different growth phases. Other studies 

suggested that composition of EPS was distinct during different growth phases among 

species, which resulted in variable EPS types (Bellinger et al. 2005, Abdullahi et al. 

2006). As a subgroup of EPS, TEP production probably has different types with 

different structures and characteristics formed by different mechanisms. Therefore, it is 

important to investigate carbohydrate composition of TEP associated with TEP 

formation mechanisms among diatom species. 
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5.4.3 Comparison of the PSA and TPTZ methods for the analysis of carbohydrates 

from phytoplankton 

 

TPTZ and PSA methods were two popular methods in analysis of carbohydrate. 

They have been used in many carbohydrate analyses of natural samples (Underwood et 

al. 1995, Witter and Luther 2002; Panagiotopoulos and Sempéré 2005). In a comparison 

of these two methods, PSA method had a better regression coefficient in measurement of 

higher concentration of carbohydrate (20 µg C ml-1 ~100 µg C ml-1) than TPTZ method. 

Carbohydrate concentration measured using TPTZ method is not linear at higher 

concentrations (≥ 20 µg C ml-1). Thus, the PSA method is better for measuring high 

concentration carbohydrate samples, such as batch culture samples, than the TPTZ 

method. In this experiment, I revealed that hydrolysis efficiency had a strong 

relationship with acid types and hydrolysis time (Figure 2 & 4). The hydrolysis 

efficiency of two methods all increased with time until to a maximum and then 

decreased with longer hydrolysis time (Figure 2 & 4; Dubois 1956, Liu et al. 1973). The 

maximal hydrolysis efficiency was higher in the PSA method (80~100 % for 30 minutes 

hydrolysis) than in the TPTZ method (78 % from 24 hours hydrolysis). This may be 

because the PSA method used sulphuric acid, and the TPTZ method used hydrochloric 

acid for hydrolysis. Many studies state that sulphuric acid is much more effective in the 

hydrolysis of polysaccharides, especially high molecular weight compounds, than 

hydrochloric acid (Pakulski and Benner 1992, Borch and Kirchman 1997). However, 

using sulphuric acid to hydrolyse polysaccharide in the TPTZ method always causes the 
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explosion of sealed samples, so hydrochloric acid was selected to hydrolysis samples in 

the TPTZ method. Moreover, results in this study demonstrated that monosaccharides 

decomposed during the hydrolysis procedure at high temperature (Figure 5). 

Decomposition of monosaccharides during hydrolysis would lead to an underestimate of 

the size of the carbohydrate pool and the amount of carbon associated with it. Many 

studies showed consistent results, which indicates that acid hydrolysis may destroy some 

monosaccharides, such as fructose and ribose (Mopper 1977, Borch and Kirchman 1997).  

In my measurements, salinity did not interfere with the PSA and TPTZ 

measurements (Figure 3 & 6). However, previous studies indicated that high salinity 

could influence carbohydrate analysis by the PSA method and not affect the TPTZ 

method (Huang & Santschi 2001). Thus, PSA method was suggested for use in 

measuring carbohydrate in low salinity samples, such as river and sediment (Liu et al. 

1973, Underwood et al. 1995), and TPTZ method was used in measuring carbohydrate in 

seawater samples (Myklestad et al. 1997). 

In this experiment, carbohydrate fractions collected from three diatom species, T. 

weissflogii, S. marinoi and C. closterium during growth and death phases, were 

measured by the PSA and TPTZ methods, respectively. The amount of carbohydrate 

(total carbohydrate, extracellular dissolved carbohydrate and cellular carbohydrate) 

measured by the PSA method were always higher than those obtained by the TPTZ 

method. Results from the two methods were consistent in cultures of T. weissflogii, but 

not in cultures of S. marinoi and C. closterium (Figure 31 & 32). Several factors 

contributed to these discrepancies. Firstly, hydrolysis by sulphuric acid (used in PSA) is 
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much more effective than hydrochloric acid (used in TPTZ) in the analysis of some 

polysaccharides (Pakulski and Benner 1992, Hanisch et al. 1996). Hanisch et al. (1996) 

found similar results. They recovered a higher concentration of total carbohydrate and 

extracellular dissolved carbohydrate after hydrolysis by H2SO4 using the PSA method 

compared with hydrolysis by hydrochloric acid using the TPTZ method. In addition, the 

TPTZ reagent may break some chemical structures and lead to different results than the 

PSA method (Witter & Luther 2002). Also, strong acids decompose monosaccharide, 

but HCl and H2SO4 used in two methods may destroy different monosaccharide 

compositions. In our experiment, D- glucose decomposed during hydrolysis by hot 

hydrochloric acid during the TPTZ method. Maybe some kinds of monosaccharides are 

easily decomposed during the PSA method. Decomposition of different monosaccharide 

by two methods could result in different concentrations of the different carbohydrate 

fractions measured by the two methods (Panagiotopoulos and Sempéré 2005). In my 

experiment, the slope of regression line between TPTZ and PSA method is different in 

different species. This may be related to the different composition and concentrations of 

carbohydrates produced by diatoms, which are highly species–specific (Myklestad 1995, 

Panagiotopoulos and Sempéré 2005). From the results observed above, I propose that 

PSA method is more sensitive and suitable in determining carbohydrate fractions in 

phytoplankton cultures than the TPTZ method. 
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5.5 Conclusions 

 

In this experiment, analysis of different carbohydrate fractions indicated 

carbohydrate allocation as cultures from growth to death change. TEP production is 

strongly associated with carbohydrate allocation. Measurements in different species did 

not show the same relationship between TEP formation and cell growth. My results 

showed that benthic diatom species, such as Cylindrotheca closterium released most 

DOM and produced TEP during growth phases, indicating benthic diatom TEP was 

produced by healthy cells. In contrast, coastal diatom species, Thalassiosira weissflogii 

and Skeletonema marinoi produced the most TEP during stationary to death growth 

phases, indicating the most of the TEP was produced by dying and aged cells in 

planktonic diatoms. The different life styles between coastal and benthic species 

influence their TEP production pathway. From this study, I still do not know whether 

permeable cells can leak more DOM from inside of the cell in the form of TEP. In this 

experiment, I compared PSA and TPTZ methods for analysis of carbohydrates in 

different cultures, because they always have been used in carbohydrate analyses of lab or 

field samples. From my results, PSA method showed higher hydrolysis efficiency and is 

the better one for analyzing high carbohydrate concentration samples, such as lab culture 

samples and sediment samples. Compared to PSA method, TPTZ method is the better 

one to determine carbohydrate concentration in monosaccharides and polysaccharides 

but it is only suitable in the analysis of low carbohydrate concentrations. Thus, I 
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suggested that using TPTZ method in low carbohydrate measurements, such as POM 

and DOM in situ samples. 
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CHAPTER VI 

EFFECT OF OXIDATIVE STRESS ON CELL DEATH AND TEP 

PRODUCTION BY DIATOMS AND CYANOBACTERIUM 

 

6.1 Introduction 

 

Diatoms and cyanobacteria are important primary producers in the oceans and 

have high primary productivity. Diatom and cyanobacteria can excrete large amounts of 

exopolymers (EPS) (Engel 2000, Wetz and Wheeler 2007, Pereira et al. 2011), which 

can coagulate into transparent exopolymer particles (TEP) (Passow 2002a). Due to the 

stickiness of TEP, they can coagulate with cells to promote aggregates and marine snow 

formation (Passow 2002a, Thornton 2002, Verdugo et al. 2004). The sinking of marine 

snow transports biological carbon from surface ocean to its interior (Passow and Carlson 

2012). Therefore, TEP formation plays an important role in carbon cycling (Passow and 

Alldredge 1994). It is documented that TEP is accumulated during the termination of 

phytoplankton blooms (Passow and Alldredge 1994, Engel 2002). However, there are 

few studies that relate TEP production and demise of blooms. 

Recently, several studies on phytoplankton have shown that autocatalytic cell 

death occurs in prokaryotic and eukaryotic unicellular phytoplankton (Berges et al.2001, 

Berman–Frank et al. 2004, Franklin and Berges 2004), and autocatalytic cell death may 

induce bloom termination in the ocean (Berman-Frank et al. 2004). Autocatalytic cell 

death is analogous to programmed cell death (PCD). PCD is “cell suicide,” which lead to 
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cell lyses and a distinctive morphology (apoptosis) of the cell (Franklin and Berges 

2004). A specific class of proteases, caspases, has an important role in the initiation and 

activation of PCD through cleavage of the caspase specific substrates. Thus, caspase is 

used as a cellular indicator of PCD (Berge et al.2001, Frankin and Berges 2004, Berman- 

Frank et al. 2007). Many studies have proposed that PCD can be triggered by 

environmental factors, such as nutrient limitation (Berge et al.2001, Berman –Frank et al. 

2004, Bidle and Bender 2008), oxidative stress (Qian et al. 2010, Bouchard and Purdie 

2011), and high light levels (Bouchard and Purdie 2011). 

The process of respiration and photosynthesis by photosynthetic organisms could 

cause oxidative stress (Apel and Hirt 2004). Oxidative stress is a physiological status 

when oxidant production exceeds the antioxidant defensive mechanisms in the cells 

(Latifi et al. 2009). During oxidative stress, reactive oxygen species (ROS) are produced 

that result in damage to the cells (Apel and Hirt 2004). Hydrogen peroxide is one such 

ROS, and is toxic to cyanobacteria and eukaryotic microalgae (Kay 1982), causing them 

to express caspase and activate PCD (Bouchard and Purdie 2001). 

 Berman- Frank et al. (2007) found a positive coupling between PCD and TEP 

production in cyanobacteria grown under oxidative stress. However, the role that PCD 

and the resulting cell membrane leakiness play in TEP production is largely unknown. 

For example, there has been no work on the role of PCD in TEP production by diatoms. 

The aim of this study was to investigate PCD in the diatom Thalassiosira weissflogii and 

the cyanobacterium Synechococcus elongatus in response to oxidative stress and 

compare the effect of oxidative stress on TEP production in the two different species. 
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My hypothesis was that PCD results in enhanced cell membrane permeability and 

subsequently enhanced TEP production. 

 

6.2 Experimental approach 

 

6.2.1 Culture condition 

 

A diatom (Thalassiosira weissflogii) and a cyanobacterium (Synechococcus 

elongatus_cf) were obtained from the National Center for Culture of Marine Algae and 

Microbiota (NCMA). Three replicate cultures (refer to 2.1.3.1) were grown in 2000 ml 

of 0.2 µm filtered sterile artificial sea water (refer to 2.1.2.1). Macronutrient 

concentrations were modified from the original recipe (Table 2, refer to 2.1.2.2), with 

final concentrations of 400µM of NaNO3, 25 µM of NaH2PO4•H2O, and 400µM of 

Na2SiO3•9H2O in the cultures. Batch cultures were grown in a 20°C incubator (Precision 

Company) with a day/night cycle of 14 h: 10 h, and a photon flux density of 42 µmol m -

2 s -1. 

When cultures were grown to the exponential phase (at least 7 × 104 cells ml-1 in 

T. weissflogii and 2 × 106 cells ml-1 in S. elongatus), each stock culture was transported 

to three replicate bottles, which were exposed to oxidative stress by the addition of 

hydrogen peroxide at three concentrations: control (0 µM H2O2 final concentration), low 

(10 µM H2O2) and high (100 µM H2O2). Each treatment had three replicates. Each 
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treatment was sampled over four days (Day 0, Day 1, Day 2 and Day 3). Day 0 sample 

was collected at the time of H2O2 addition into the cultures. 

 

6.2.2 Measures of phytoplankton abundance and biomass 

 

 Cell counts in T. weissflogii cultures were performed using the method of 

Guillard and Sieracki (2005) (refer to 2.2.1). T. weissflogii cell counts were made by 

light microscopy at 10 × magnification. Because Synechococcus cells are small and form 

aggregates in the cultures, cells were counted by light microscopy at 100 × 

magnification and a pipettor was used to break up aggregates into individual cells before 

cell counting. Samples were flushed in and out of a 1 ml pipette tip 20 times to ensure 

that the aggregates were broken apart. In addition, cell turbidity in the cultures was 

measured (absorbance at 750 nm) to indirectly indicate changes in cell abundance. Cells 

collected from each treatment were observed using light microscopy at 100 × 

magnification. Chlorophyll a concentrations in the cultures was determined by 

fluorescence (refer to 3.3.2). 

 

6.2.3 Photosynthetic efficiency 

 

The photosynthetic efficiency was indicated by photochemical quantum yield of 

PSII fluorescence (Ø PS II). In this study I did not use dark-adapted samples to determine 

the maximum photochemical quantum yield of PSII. Diatom and cyanobacteria samples 



 

153 

 

collected from test cultures were directly used to measure Ø PS II under ambient light 

conditions. Measurements of yield value were conducted at the same time (11:00 am) in 

each day. Ø PS II was determined by the saturation pulse method using a pulse amplitude 

modulated chlorophyll fluorometer (PAM-210, Heinz Walz GmbH, Germany) according 

to Genty et al. (1989). A strong pulse of light causes photochemical energy conversion 

in PS II becomes saturated, the quantum yield transiently decreases to 0. The 

fluorescence yield increased to a maximum value. The effective PS II quantum yield (Ø 

PS II) can be determined following equation 1(Genty et al. 1989): 

Ø PS II = (Fm‟ – Ft) / Fm‟= ∆ F/ Fm‟                                    (Equation 1) 

Fm‟ is defined as relative maximal fluorescence yield of illuminated samples 

induced by a saturating pulse with short wavelength red emission peak (650 nm). Ft 

represents the fluorescence yield excited by ambient light at a given time, which is 

measured before the saturation pulse. ∆ F represent variation fluorescence after 

saturation pulse, which determined by Fm‟ – Ft. The Ø PS II is determined by normalizing 

∆ F against the Fm‟, which represent proportion of light absorbed by chlorophyll 

associated with PS II that is used in photochemistry. 

During preliminary experiments, I found that Ø PS II value in same sample 

remained constant over a range of Ft. However, Ft above the range would cause a decline 

of Ø PS II. It is because that sample was collected on filters and too much cell may induce 

self- shading. Thus, samples used to measure Ø PS II need to remain in a specific range of 

Ft for the same species. Firstly, cells were filtered onto 0.4 µm pore size polycarbonate 

filters (Whatman). After that, filters were used to measure Ø PS II immediately by PAM. A 
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filter blank was used to zero the instrument. The sensitivity of fluorescence detector in 

instrument was set at a low GAIN (GAIN 1 was selected). It was found that Ft 

maintained within the range 230 to 280 for S. elongates produced sufficient signal 

without evidence of self-shading. Ft was maintained within the range 340 to 380 for T. 

weissflogii. Ensuring that Ft was maintained within the optimized range for each species 

eliminated biomass artifacts and therefore variations in yield could be related to 

oxidative stress. 

 

6.2.4 Measurements of caspase activity 

 

Caspase activity was determined by cleavage of a caspase substrate. 

Measurement of caspase activity was modified from Bouchard and Purdie (2011). A 100 

ml of the cultures were centrifuged at 20 °C for 20 minutes (4000g), and then 

supernatant was removed. The pellet was resuspended in 40 ml of phosphate buffered 

saline (PBS) (100 mM, pH = 7.0) and centrifuged cell pellet down at 20 °C (20 minutes, 

4000g). After three cycles of resuspend- centrifuge, cells were washed well. The pellet 

was stored at -20 °C until the measurement of caspase-like activity within one week of 

sample collection. The cells were lysed in a buffer (50 mM HEPES, 1 mM EDTA, 100 

mM NaCl at pH = 7.3) modified from Bouchard and Purdie (2011). When a sample was 

measured, the frozen pellet was defrosted at room temperature, and then resuspended in 

the cell lyses buffer (0.6 ml), and sonicated on ice (Qsonica, 125 Watts, 20 kHz) for 1 

minute with the amplitude set at 50 % in 5 second pulses. After sonication, the sample 
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was immediately frozen in liquid N2 and stored at -20 °C for 10 minutes and then thawed. 

For optimal lyses, the sample was frozen, thawed, and sonicated three times. The lysed 

sample was centrifuged at 4 °C for 30 min (10,000 g). The supernatant contained the 

protein extract. Lysed protein concentration was measured using bovine serum albumin 

as a standard protein (Sigma Aldrich Company). The method of protein measurement 

followed a 1.5 ml assay protocol shown in a technical bulletin (Sigma Aldrich 

Company). Bradford Reagent (1.5 ml) and sample (50 μl) were added into a cuvette. 

Samples were incubated in a dark place at room temperature for 30 minutes and then the 

absorbance of the sample was measured at 595 nm to determine protein concentration in 

the sample. 

The capase-3 like protein activity was determined using Enzcheck Caspase-3 

Assay Kit #1(Invitrogen Inc.). Cell extract (75 μl of supernatant per well) was 

transferred onto a black 96 well microplate (Greiner bio-one). A caspase-3 substrate (Z-

DEVD-AMC, 10 mM final concentration; 75 μl per well) was added into wells 

containing cell extract. The sample was incubated for 48 hour in the dark, at a 

temperature of 25 °C. Z-DEVD-AMC does not fluoresce, but AMC, produced by 

caspase-3 cleavage of Z-DEVD-AMC, does fluoresce. The fluorescence of AMC was 

measured using a microplate reader (SPECTRAmax, GeminiEM) with excitation at 368 

nm and emission at 467 nm. 
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6.2.5 Cell permeability 

 

 The proportion of the population with compromised cell membranes was 

determined using SYTOX Green staining (refer to 2.2.9). 

 

6.2.6 TEP and CSP staining and analysis 

 

TEP (refer to 2.2.5) and CSP (refer to 2.2.6) concentration and size were 

observed using light microscopy and image analysis was performed with Image J 

(National Institutes of Health). 

 

6.2.7 Bacteria check 

 

Bacteria concentrations in the cultures were determined on the last day of the 

experiment (refer to 2.2.2.). 

 

6.3 Results 

 

6.3.1 Cell concentrations 

 

Figure 39 shows changes of cell abundance and chlorophyll a in cultures of 

Thalassiosira weissflogii and Synechococcus elongatus under different oxidative stress 
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levels. Cell abundance markedly increased before cultures were submitted to different 

treatments. After three days of incubation in H2O2 supplement, mean cell abundance of T. 

weissflogii in the control (0 μM H2O2) increased to 1.38 ×105 cells ml-1, which was 

slightly higher than the cell abundance in cultures under oxidative stress (in 10 μM H2O2: 

1.36 × 105 cells ml-1; in 100 μM H2O2: 1.28 × 105). There was no significant difference 

in cell abundance between the control and oxidative stress cultures (P > 0.05). However, 

in cultures of Synechococcus elongatus, cell abundance in the cultures exposed to 

oxidative stress was significantly lower than the cell abundance in the control (7.03 × 

106 cells ml-1). The cell abundance in 10 μM H2O2 cultures was 5.97 × 106 cells ml-1 and 

in 100 μM H2O2 cultures it was only 3.02 × 106 cells ml-1. There was a significant 

difference in cell abundance between the control and 100 μM H2O2 cultures on day 1 and 

day 3 (P < 0.001). 

Chlorophyll a concentration showed similar patterns between oxidative stress 

and non- oxidative stress cultures (Figure 39). In the cultures of T. weissflogii, 

chlorophyll a concentration was not significantly different between control cultures and 

cultures under oxidative stress from day 0 to day 2 (P > 0.05). On day 3, chl. a in 

cultures with H2O2 additions was lower than it was in the control cultures. There was a 

significant difference between chl. a in the control and oxidative stressed cultures (p < 

0.001) on day 3. However, in cultures of Synechococcus elongatus, chlorophyll a 

concentration in the 100 μM H2O2 culture was four times lower than in the control after 

four days of culturing. Greater oxidative stress cultures (100 μM H2O2) were 

significantly different (p < 0.001) from control cultures in all cultures every day. 
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Cultures under less oxidative stress (10 μM H2O2) started to have significant differences 

with control and with higher oxidative stress (10 μM H2O2) after day 1.  

 

 

 

Figure 39. Variation in cell abundance (a; c) and chlorophyll α (b; d) with time in the 
cultures of Thalassiosira weissflogii and Synechococcus elongatus under control (0 μM 
H2O2), and H2O2 treatments (10 μM H2O2 and 100 μM H2O2). Purple circles (●) 
represent cell abundances before treatments. Black rectangles (■) represent control, Red 
circles (●) represent 10 μM H2O2, and green triangles (▼) represent 100 μM H2O2. 
Points show mean ± SD (n = 3). 
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6.3.2 Photosynthetic efficiency 

 

Photosynthetic efficiency was expressed as the quantum yield of photosyntem II 

(Ø PS II) in ambient light conditions. Photosynthetic efficiency of Thalassiosira 

weissflogii was higher than that of Synechococcus elongatus (Figure 40). In cultures of 

Thalassiosira weissflogii, the Ø PS II in the control cultures did not significantly change 

over time (P > 0.05), remaining at a value of 0.65 ± 0.02 (Mean ± SD; n = 12). The 

photosynthetic efficiency of cultures under oxidative stress was slightly lower than that 

in the control, the mean photosynthetic efficiency value in the 10 μM H2O2 cultures 

decreased from 0.63 to 0.57, and in the 100 μM H2O2 cultures it decreased from 0.66 to 

0.53 after four days (Figure 40). In the cultures of Synechococcus elongatus, the Ø PS II 

value under oxidative stress (100 μM H2O2) was significantly lower than that in the 

controls and 10 μM H2O2 cultures (Figure 40). The yield value in control and low 

oxidative stress (10 μM H2O2) cultures remained between 0.45 and 0.53. However, the Ø 

PS II value in greater oxidative stress (100 μM H2O2) cultures decreased significantly from 

0.50 to 0.21 after four days of treatment. 
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Figure 40. Variation in quantum yield of PSII fluorescence Ø PS II in cultures of 
Thalassiosira weissflogii and Synechococcus elongatus under oxidative stress and 
control conditions. Black bars represent Ø PS II in control cultures. Red bars represent Ø PS 

II in cultures with 10 μM H2O2. Green bars represent Ø PS II in cultures with 100 μM H2O2. 
Bars showed in Mean + SD, n = 3. 
 

 

6.3.3 Caspase activity 

 

Cultures under oxidative stress showed higher caspase 3-like protein activity than 

the control cultures (Figure 41). In the cultures of Thalassiosira weissflogii, caspase 3-

like protein activity was low in the control and 10 μM H2O2 cultures, in which it 

remained between 97.06 RFU mg protein-1 h-1 and 115.06 RFU mg protein -1 h-1 (Figure 

41). However, the caspase 3- like protein activity in cultures with 100 μM H2O2 

increased significantly to 172.70 RFU mg protein-1 h-1 after four days exposure. There 

was a significant difference between caspase activity in the cultures with 100 μM H2O2 
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and 10 μM H2O2 (F1, 5 = 16.365, p < 0.01) and in the control cultures (F1,5 = 19.891, p < 

0.01). 

In the cultures of Synechococcus elongatus, the caspase 3- like protein activity in 

the cultures under control and oxidative stress increased with culturing time (Figure 41). 

The caspase activity in three different treatments was close to equal during the first two 

days, after which caspase activity increased in the cultures exposed to H2O2 relative to 

the controls. Caspase activity increased significantly to 1184.29 RFU * mg protein -1 h-1 

in the 10 μM H2O2 cultures and reached 1628.46 RFU * mg protein -1 h-1in the 100 μM 

H2O2 cultures. There were significant differences between caspase activity in the control 

cultures and cultures with 10 μM H2O2 (F1, 5 = 22.378, p < 0.01), and between control 

cultures and cultures with 100 μM H2O2 (F1, 5 = 49.746, p < 0.01). 
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Figure 41. Variation of caspase- 3 like protein activity with culture times in the cultures 
of Thalassiosira weissflogii and Synechococcus elongatus under control (0μM H2O2), 
and H2O2 additions (10μM H2O2 and 100μM H2O2). Black rectangles (■) represent 
control, Red circles (●) represent 10μM H2O2, and green triangles (▼) represent 100μM 
H2O2. Each data point shows mean ± SD (n = 3). 
 

 

6.3.4 Cell permeability 

 

The proportion of SYTOX Green labeled cells followed the same pattern as 

caspase activity with culture time in the different oxidative treatments for both species. 

This indicates that an increase in cell permeability was associated with dying cells. In the 

culture of T. weissflogii, the proportion of SYTOX Green labeled cells was not 

significantly different between control cultures and 10μM H2O2 supplemented cultures. 

The proportion of SYTOX Green labeled cells in these cultures increased slightly during 

culture time, from 4 % to 10 % (Figure 42). The proportion of SYTOX Green labeled 
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cells in 100 μM H2O2 supplemented cultures increased markedly from day 2, and 

reached 39 % at the end (Figure 42). In the cultures of Synechococcus elongatus, there 

was a greater proportion of SYTOX Green labeled cells in cultures under oxidative 

stress than in control cultures (Figure 42). The proportion of SYTOX Green labeled cells 

in the cultures under oxidative stress increased dramatically to 78 % (in 100 μM H2O2 

culture) and 47 % (in 10 μM H2O2 culture) over time (Figure 42). Although the 

proportion of SYTOX Green labeled cells in the control cultures slight increased, the 

increase was very low and no more than 24 % in the final. 

 

 

 

Figure 42. Proportion of SYTOX Green labeled cells in a total of 400 cells in the 
cultures of Thalassiosira weissflogii and Synechococcus elongatus under oxidative stress 
and in control over culture time. Deviation bars show Mean ± SD (n = 3). Black 
rectangles (■) represent control cultures. Red circles (●) represent cultures under 10 μM 
H2O2 and green triangles (▼) represent cultures under 100 μM H2O2. 
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6.3.5 TEP formation 

 

As TEP was attached to cell surfaces and it was difficult to remove cells from the 

TEP image, TEP concentration was normalized to chl. a concentration. In cultures of 

both species, those grown with 100 μM H2O2 showed higher TEP concentration than at 

10 μM H2O2 and in the control cultures after three days (Figure 43). In the cultures of T. 

weissflogii, TEP abundance did not show a significant difference between control 

cultures and cultures under oxidative stress over culture time. However, TEP were larger 

in the 100 μM H2O2 cultures than in the 10 μM H2O2 and in control cultures. Therefore, 

TEP concentration (total TEP area) was greater in the 100 μM H2O2 cultures than in the 

10 μM H2O2 and control cultures (Figure 43). In cultures of Synechococcus elongatus, 

TEP abundance in the three treatment cultures remained constant in first two days, and 

then TEP abundance started to increase in cultures with 100 μM H2O2, but not in control 

cultures or those containing 10 μM H2O2. The size of TEP particles did not change with 

culture time. Thus, I found that total TEP concentration normalized to chl. a 

significantly increased in high oxidative stress (100 μM H2O2) cultures, but not in low 

oxidative stress cultures and in control cultures (Figure 43). 
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Figure 43. TEP concentration with culture time in cultures of Thalassiosira weissflogii 
and in Synechococcus elongatus under oxidative stress. Black bars represent control 
cultures. Red bars represent cultures with 10 μM H2O2. Green bars represent cultures 
with 100 μM H2O2. Bars show mean + SD, n = 3. 
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6.3.6 CSP formation 

 

In the cultures of T. weissflogii, there was no pattern of CSP abundance and CSP 

size change over culture time in different treatments (Figure 44). The CSP concentration 

in the cultures of T. weissflogii was not significantly different between cultures under 

oxidative stress and in control cultures (Figure 44). In the cultures of Synechococcus 

elongatus, CSP abundance in 100 μM H2O2 was greater than those in other treatments on 

the last culture day (day 3). The size of CSP particles increased in all treatments over 

culture time, and there were larger sized particles in the control and 10 μM H2O2 than in 

100 μM H2O2 cultures. Therefore, CSP concentration increased in all treatments during 

the course of experiment, and there was lower concentration of CSP in 100 μM H2O2 

cultures than in others (Figure 44). 
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Figure 44. CSP concentration with culture time in cultures of Thalassiosira weissflogii 

and Synechococcus elongatus under oxidative stress. Black bars represent control 
cultures. Red bars represent cultures with 10 μM H2O2. Green bars represent cultures 
with 100 μM H2O2. Bars show mean + SD, n = 3. 
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6.3.7 Cell observation 

 

Morphological changes were observed in cells exposed to H2O2. On day 3, T. 

weissflogii cells in the control cultures had intact membranes and chloroplasts (Figure 45 

A). In the cultures grown with 10 μM H2O2, cells showed a stressed shape (Figure 45 B). 

In the cultures grown with 100 μM H2O2, the cells were characterized by more cell lyses 

and empty frustules that did not contain organelles (Figure 45 C). In the cultures of 

Synechococcus elongatus, cells in control cultures had less lyses and cells looked 

greener indicating that the cells contained higher amounts of chlorophyll (Figure 45 D). 

Cells collected from 10 μM H2O2 cultures contained low chlorophyll concentrations 

(Figure 45 E). In the cultures with 100 μM H2O2, most cells appeared empty. In addition, 

there were sticky gels that stuck the cells together (Figure 45 F). 
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Figure 45. Morphology of Thalassiosira weissflogii and Synechococcus elongatus under 
oxidative stress and in control treatments after three days. A: T. weissflogii in the control. 
B: T. weissflogii in the 10 μM H2O2. C: T. weissflogii in 100 μM H2O2. D: S. elongatus 
in the control. E: S. elongatus in 10 μM H2O2 . F: S. elongatus in 100 μM H2O2. 
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6.3.8 The correlation between TEP production and photosynthetic efficiency and 

caspase activity 

 

The correlation between TEP production, photosynthetic efficiency (quantum 

yield of PSII fluorescence Ø PS II), and caspase activity in the diatom Thalassiosira 

weissflogii and cyanobacterium Synechococcus elongatus under differing oxidative 

stress is shown in table 8. There were significant positive correlations between TEP 

production and Ø PS II in the diatom T. weissflogii and cyanobacterium S. elongatus under 

100 μM H2O2, indicating TEP production increased in cultures with greater oxidative 

stress. In addition, TEP production increased with increasing caspase activity in T. 

weissflogii in100 μM H2O2 cultures. In the cyanobacterium, there was a positive 

correlation between TEP production and caspase activity at both 10 and 100 μM H2O2. 

There was higher correlation between TEP production and caspase activity in the S. 

elongatus than in the T. weissflogii. Thus, cyanobacteria have stronger responses to 

reactive oxidative stress than do diatoms. In addition, there was good correlation 

between Ø PS II and caspase activity in T. weissflogii and S. elongatus under 100 μM 

H2O2. 
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Table 8. The correlation coefficient between TEP production and quantum yield of PSII 
fluorescence (Ø PS II); TEP production and caspase activity; Ø PS II and caspase activity in 
cultures of Thalassiosira weissflogii and Synechococcus elongatus under control, 10 μM 
H2O2 and 100 μM H2O2. When P ≥ 0.05, coefficients shown as    ; * represent 0.001 < P 
< 0.05; ** represent P < 0.01. 
 

 
Thalassiosira weissflogii Synechococcus elongatus 

H2O2 concentration 0μM 10μM 100μM  0μM 10μM 100μM 

TEP v.s. Ø PS II       -0.765*         -0.603* 

TEP v.s. Caspase activity       0.804*     0.803** 0.886** 

Ø PS II v.s. Caspase activity        -0.777*               -0.762* 

 

 

6.4 Discussion 

 

6.4.1 Relationship between TEP formation and cell death 

 

Oxidative stress is an important factor influencing phytoplankton physiology 

(Apel and Hirt 2004). Many studies have shown that oxidative stress causes a decrease 

in photosynthetic efficiency and an elevation in caspase activity (Qian et al. 2010, 

Bouchard and Purdie 2011). My result is consistent with their observations, lower cell 

abundance and photosynthetic efficiency (Ø PS II) was associated with an increase in 

caspase activity in the Thalassiosira weissflogii and Synechococcus elongatus cultures 

under oxidative stress.  
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ROS are toxic to many species andreact with a large variety of biomolecules 

cause damage to cells. ROS may change regulator gene expression, such as activation of 

Mitogen-Activated Protein Kinase (MAPK) (Gustin et al. 1998) and inhibition of Protein 

Phosphatases (van Montfort et al. 2003) and onset of PCD. On the other hand, ROS are 

deliberately generated within cells under some circumstances to serve as signaling 

molecules to help regulate processes within the cell. ROS influence the expression of a 

number of genes and signal transduction pathways, which play a central role in plant 

pathogen defense (Klessig et al. 2000, Apel & Hirt 2004). Many studies indicated that 

modified regulator genes of stressed cells have evolved as strategies during acclimation 

tolerance (Pandolfil et al. 1995, Gasch et al. 2000, Chen et al. 2003). Thus, stress 

acclimation protects cells from the same stress at a later time. 

In this study, I also found that TEP production was enhanced with greater 

oxidative stress (100 μM H2O2) in both species. Berman-Frank et al. (2007) found that 

caspase activity was strongly correlated with TEP production in the cyanobacterium 

Trichodesium spp. Claquin et al. (2008) showed a good correlation between TEP 

production and photosynthetic efficiency (Ø PS II) in the diatom T. pseduonana at 

different temperatures. From microscope observations and TEP analysis, I found that 

cultures under oxidative stress had more permeable cell membranes and larger TEP were 

released around stressed cells. Under oxidative stress, high production of TEP in cultures 

was properly associated with leakage of TEP precursors from stressed cells and as a 

result of cell lysis. However, the way in which TEP produced by diatoms and 

cyanobacteria responded to oxidative stress was different. T. weissflogii produced larger 
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TEP particles with oxidative stress. TEP produced by S. elongatus did not vary in size, 

but more was produced under oxidative stress. My results are supported by Vardi et al. 

(2012), who found that more TEP was produced by the coccolithophore E. huxleyi as 

cells underwent PCD under stressed growth conditions. Similarly, Kahl et al. (2008) also 

found larger particles and more TEP production in the diatom Thalassiosira pseudonana 

during cell death. My results are different from observations by Berman-Frank et al 

(2007), who demonstrated that the increase in TEP production by the cyanobacterium 

Trichodesmium was derived from an increase in TEP size, not in TEP abundance. This 

difference from my results may reflect physiology differences between genera and the 

difference in stress factors as my cultures were under oxidative stress, but their 

experiment was under iron starvation. Whether increased TEP production was due to 

increased particle size or abundance, oxidative stress triggered PCD and caused a 

significant increase in TEP production by both species. Thus, I propose that the TEP 

production mechanism can be influenced by oxidative stress.  

It is well established that TEP are sticky and can affect aggregation (Passow 

1994). Therefore, the increase of TEP production with PCD may play an important role 

in enhancing aggregate formation and the transport of biological carbon into the ocean 

interior. Indeed, in lab and in situ studies showed higher stickiness and sedimentation 

rate occurred as PCD lead to diatom and cyanobacterium bloom termination (Berman-

Frank 2007, Kahl et al. 2008, Vardi et al. 2012). 
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6.4.2 The relationship between photosynthetic efficiency and cell death 

 

In this study, a decline in photosynthetic efficiency was correlated with elevated 

levels of caspase activity, indicating cells with PCD had an unhealthy physiological 

condition, such as photosynthetic stress. My result is supported by other observations. 

Franklin et al. (2012) found that photosynthesis in the diatom Thalassiosira pseudonana 

decreased during cell death. Bidle and Bender (2008) also reported a decrease in 

quantum yield of photosynthesis II (Ø PS II) in the diatom T. pseudonana, from 0.6 to 0.3 

after 6 days of culturing in iron starvation conditions. Bouchard and Purdie (2011) grew 

the cyanobacterium Microcystis aeruginosa in oxidative stress conditions and found that 

Ø PS II decreased to 0. Furthermore, an increase in caspase activity consistent with greater 

permeability of cells and lower cell abundance appeared in cultures under oxidative 

stress. Cells under stress were identified by cell lyses and weak fluorescence, suggesting 

caspase activity induced cell mortality. My results are supported by the findings of 

Jiménez et al. (2009), who found a good correlation between caspase activity and cell 

death. In their study, cell death was defined by the distinct morphology of cell lysis. 

Thus, cells under stress always have low photosynthesis efficiency and high cell 

permeability. However, in this study cultures with high proportions of permeable cells 

and high caspase activity still had a high Ø PS II value. For example, in S. elongatus under 

100 μM H2O2, Ø PS II did not decline to 0, but 78 % of cells with permeable cell 

membrane under stress. Ø PS II was 0.2 in the stress cultures, which was not significantly 

lower than that in a healthy culture with a quantum yield of 0.5. The Ø PS II value in this 
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experiment is greater than in other studies. This may be because the effect of oxidative 

stress on the photosynthetic efficiency may be different between strains. Franklin et al. 

(2009) measured photosyntem II efficiency in stressed dying cells among different 

species and found that the effects of dying cells on photosynthetic efficiency were 

specific to species. 

 

6.4.3 Comparison of the effect of oxidative stress on a diatom and cyanobacterium 

 

Many studies indicate that oxidative stress can cause a physiological change from 

healthy to unhealthy in cyanobacteria and diatoms, and influence them to release caspase 

and trigger programmed cell death (PCD) (Berman-Frank et al. 2004, Qian et al. 2010, 

Bouchard and Purdie 2011). However there is no report comparing the effect of 

oxidative stress on TEP production and caspase activity and photosynthetic efficiency in 

a cyanobacterium and diatom under the same conditions. In this study, the 

cyanobacterium showed a caspase activity that was10 times higher and a value of Ø PS II 

that was half that in the diatom. There was a higher correlation between TEP production 

and Ø PS II in the cyanobacterium than that in the diatom species, indicating the 

cyanobacterium has a stronger response at each level of oxidative stress. Many studies 

on cell death in phytoplankton showed similar results. Under oxidative stress, Fv /Fm in 

the diatom Phaeodactylum tricornutum decreased from 0.6 to 0.4 (Domingues et al. 

2012). In the diatom Thalassiosira pseudonana, it decreased from 0.7 to 0.6 (Rijstenbil 

2002). Bouchard and Purdie (2011) found a lower value of Ø PS II, which decreased from 
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0.3 to 0, in the cyanobacterium Microcystis aeruginosa than in the diatom. Moreover, in 

this study low H2O2 concentration (10μM) caused significant physiological variation in 

the cyanobacterium S. elongatus, but not in the diatom T. weissflogii, indicating the 

diatom is more tolerant to oxidative stress than the cyanobacterium. This can be 

explained by different stress effects on different cell volumes. The diatom T. weissflogii 

has a larger cell volume between 800 to 2800 µm3 (Costello and Chisholm 1981), 

whereas the cell volume of the cyanobacterium S. elongatus was much smaller, only 

15µm 3 (calculated using length and width information showed on the NCMA website). 

As the volume of the diatoms is larger, the amount of H2O2 needed for a physiological 

change would likely be higher in the diatom than in the cyanobacterium. In addition, 

surface area to volume ratio of the cells is higher in the cyanobacterium than in the 

diatom (Snoeijs et al. 2002), which consequently increases H2O2 stress for cyanobacteria 

relative to the diatom at similar H2O2 concentrations. There may also be physiological 

differences that explain why H2O2 is more toxic to cyanobacteria. Perhaps internal 

membranes around the organelles help protect eukaryotes or maybe eukaryotes have 

better developed enzyme systems etc. to deal with oxidative stress (Hunter 2008). The 

cells that survived under oxidative stress were properly related to the adjustment of 

metabolism to stress (Wu et al. 2008). 

In this study, H2O2 was used as a regent to cause oxidative stress. It was reported 

that H2O2 is toxic to most phytoplankton (Kay 1982). In the environment, hydrogen 

peroxide is formed in surface water exposed to high light and also can be delivered into 

the ocean by rainfall (Cooper and Zika 1983).The hydrogen peroxide concentration can 
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reach 250 nM in the open ocean (Miller et al. 2005), and 800 nM in the coastal areas like 

the Gulf of Mexico (Cooper et al. 1987). In fresh water, the concentration of H2O2 can 

reach up to 10 μM (Cooper and Zika 1983). In this experiment, H2O2 concentrations 

were 10 μM and 100 μM, which is close to the concentration in the coastal ocean and 10 

and 100 times the concentration in coastal ocean. My results suggested that 10 μM H2O2 

is high enough to trigger cell death and induce more TEP formation in the 

cyanobacterium S. elongatus, whereas greater oxidative stress (100 μM H2O2) is needed 

to effect cell death and influence TEP production in the diatom T. weissflogii. Therefore, 

the effect of H2O2 on phytoplankton depends on species.  

Under oxidative stress, oxidant lead to photosynthetic electron transport and 

rubisco catalysis and the generation of ROS is in chloroplasts and peroxisomes. 

However, the release of ROS by different organisms is chemically distinct or is 

generated in different cellular compartments (Neill et al. 2002). Different inorganic 

carbon concentration mechanisms (CCMs) exist in different genera (Raven & Larkum 

2007), which may induce specific responds to same level of oxidative stress. There are 

many evolutionary origins of CCMs. Diatom and cyanobacteria with specific origin 

histories implicate different CCMs. In cyanobacteria, the CCM occurs in the cytosol, 

where HCO3 is transport into the carboxysomes and conversion to CO2 (Badger et al. 

2002; Price et al. 2007, Raven et al. 2008). CCM occurs in the chloroplast stroma and 

contain rubisco, where active transport of CO2 (Raven & Larkum 2007; Raven et al. 

2008). Many studies indicated that algal photosynthetic biochemistry included C3 or C4 

photosynthetic biochemistry. For example, recent tracer carbon data suggested that the 
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diatom Thalassiosira weissflogii has C3-C4 intermediate biochemistry (Roberts et al. 

2007a & b, McGinn & Morel 2008). CCMs in different genera with different 

photosynthetic mechanism are associated with different functions. For C4 or C3-C4 

intermediate organisms, their photosynthesis is constitutive, CCMs show many 

acclimation mechanisms, including variations in the supply of CO2 and nutrients (Raven 

et al. 2008). Cyanobacterial CCMs regulation evolved to decrease CO2 availability and 

increase the O2 concentration in cells, which leads to reactive oxygen species (Raven et 

al. 2008). In my experiment, the greater response to oxidative stress shown in 

cyanobacteria compared with the diatom was probably influenced by cyanobacterial 

CCMs. Greater oxygen production and higher photosynthetic quantum yield by the 

cyanobacterium generated more ROS compared to the diatom, and caused greater 

damage to the cyanobacterial cells. My results are consistent with Raven& Larkum 

(2007), who suggested that higher concentrations of O2 around the photosynthetic 

apparatus lead to rubisco catalysis and the generation of reactive oxygen species and 

injury cells (Raven & Larkum 2007). 

In addition, caspase activity measured in diatom cultures in this study was much 

lower than results reported by others. Bidle and Bender (2008) showed a caspase activity 

up to 2000 RFU mg protein-1 h-1 after 8 days of culturing the diatom T. pseudonana 

under iron starvation, which is three times higher than my results. RFU means „relative 

fluorescence units‟, which is arbitrary and depends on the measuring instrument. 

Different instruments may give different relative fluorescence units. The difference in 

the effect of oxidative stress on TEP production and cell death between a diatom and a 
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cyanobacterium has important implications in understanding the demise of blooms and 

vertical flux of organic matter into the ocean interior. Under the same level of oxidative 

stress, the cyanobacterium may induce a more intense demise of a bloom and cause a 

faster carbon flux into ocean depth than the diatom. Thus, the effect of oxidative stress 

on PCD of cyanobacteria need be given attention for their important role in carbon flux 

in the ocean. When diatoms were exposed to oxidative stress, their caspase activity was 

used as a cellular indicator of PCD. Whether or not the cells really possessed a PCD 

pathway, it must be determined by the gene coding for caspase. Bidle and Bender (2008) 

published the specific gene sequence coding for caspase in the diatom T. pseudonana. In 

the future, we can define the PCD by investigating the presence of the metacaspase gene 

to prove whether or not cells activate PCD. In addition, we could use a fluorescent probe, 

eg. caspaseACE, to bind to cells to indicate variation in PCD (Franklin et al. 2012). 

 

6.5 Conclusions 

 

In this study, I compared the effect of oxidative stress on TEP production and 

cell death in the diatom T. weissflogii and in the cyanobacterium S. elongatus. My 

results indicated that the cyanobacterium was more sensitive to oxidative stress than the 

diatom. However, the results from diatom and cyanobacteria cultures all indicated that 

oxidative stress enhance TEP production, which was associated with increases in cell 

permeability. Oxidative stress triggered high caspase activity, a decline in photosynthetic 

efficiency, and induced cell mortality. In addition, TEP production was enhanced under 
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oxidative stress indicating that oxidative stress influenced the mechanism of TEP 

formation. This would consequently influence aggregate formation and carbon cycling in 

the ocean.  
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CHAPTER VII 

SUMMARY AND CONCLUSIONS PRODUCTION BY DIATOMS AND 

CYANOBACTERIUM 

 

In conclusion, my study investigated different factors (temperature, nutrient 

availability, oxidative stress, and growth) affecting the release of EPS by diatoms, and 

their role in aggregation. The formation of TEP is strongly associated with EPS 

production and affects the formation of aggregates and marine snow, which 

consequently influence the biological carbon pump and global carbon cycle. This 

research contributed to our understanding of the dynamics of TEP production by diatoms 

and improved our understanding of the fate of primary production and carbon cycling in 

the ocean. 

 

7.1 Result summary  

 

In lab experiments to investigate the effect of temperature on TEP production, 

results from semi-continuous cultures of Thalassiosira weissflogii and Skeletonema 

marinoi were not consistent. Increased temperature caused a decrease of cell abundance 

in S. marinoi, but not in T. weissflogii (Figure 7). S. marinoi grows better in cooler water 

and the range of thermal tolerance for T. weissflogii was wider than S. marinoi. This 

observation is consistent with the distribution of these two species in the ocean. My 

hypothesis for this experiment was that more EPS and TEP would be produced and more 
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aggregates would form in cultures at higher temperatures. My results indicated that 

diatoms produced more EPS and TEP at higher temperatures, supporting my hypothesis. 

Compared with TEP, CSP did not correlate with temperature. That may be because TEP 

and CSP have different formation mechanisms as they are composed, respectively, of 

acidic polysaccharides and protein. More aggregates occurred in S. marinoi cultures at 

higher temperatures, indicating cells become stickier at warmer temperatures. On the 

contrary, fewer aggregates formed in the cultures of T. weissflogii at higher temperatures. 

This was associated with high TEP production and indicates that TEP are not very 

important in aggregate formation, and perhaps it has more to do with the stickiness of 

the cells. In addition, temperature may affect TEP composition and consequently 

influence their chemical or physical properties. Aggregation is a source of marine snow. 

Therefore, the response of aggregation to temperature may lead to different levels of 

vertical flux of carbon in the ocean. My results suggested that temperature increase did 

not affect different species in the same way. Thus, we cannot make a generalization 

about diatoms and temperature increase. We cannot say that all diatoms will be more 

likely to form aggregation as temperature increases. 

In the experiment for determining the effects of growth rate on TEP production 

and aggregate formation by T. weissflogii under nitrogen limitation, my experiment 

revealed that growth rate affected both TEP formation and aggregation when cultures 

were grown under nitrogen-limited conditions. The hypotheses for this experiment was 

that cultures with low growth rates would be the most nutrient limited and therefore 

produce more TEP and more aggregations than fast growing cultures, and that cells with 
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low growth rate would have higher permeability than cells in high growth rate cultures. 

My results suggested that T. weissflogii cells were more permeable at low dilution rates, 

supporting this hypothesis. We know that DOM is a precursor of TEP and therefore 

higher permeability of cells and higher cell abundances in slow growing cultures would 

probably lead to more DOM leakage from lysed cells into outside. This would lead to 

greater TEP production. However, total TEP concentration in slow growing cultures did 

not increase and there was a greater rate of TEP production in fast growing cultures, 

suggesting that most TEP production was associated with fast growing cells (healthy 

cells), rather than stressed cells and cell lyses. In addition, measurement of particle size 

distribution (PSD) and volume concentration of particles illustrated greater aggregate 

formation in cultures grown at higher growth rates. Increased stickiness of cells or an 

increase in the stickiness of the TEP all could lead to an increase of aggregation in the 

fast growing cultures. However, it is challenging to define the major factor in 

influencing aggregate formation and the relationship between TEP and aggregation in 

my study. 

In a lab experiment investigating the effect of growth and death on TEP 

production in three different diatom species, I found a significant difference between two 

coastal species (Thalassiosira weissflogii; Skeletonema marinoi) and a benthic species 

(Cylindrotheca closterium). In this experiment, I hypothesized that there would be more 

EPS production in dying cultures, and allocation of carbon into different carbohydrate 

pools would change during different growth phases. In addition, cell permeability was 

hypothesized to increase during stationary and death phase. My results indicated that 
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TEP production was strongly associated with how the cells allocated carbon into 

carbohydrate. TEP produced by T. weissflogii and S. marinoi may be produced using 

intracellular carbohydrate. In coastal species (T. weissflogii and S. marinoi), the 

dissolved extracellular carbohydrate and EPS production increased in cultures during 

stationary and death phases. The most TEP was produced by these two species during 

stationary to declining growth phase, which was associated with greater a proportion of 

permeable cells in these two species. In contrast, the benthic species Cylindrotheca 

closterium produced most dissolved extracellular carbohydrate and TEP during 

exponential growth phases, when the cultures contained many healthy cells. Thus, I 

conclude that TEP production in benthic diatom species is associated with healthy cells, 

and planktonic diatoms produced the most TEP when the cultures contained relatively 

old and dying cells. 

In addition, I predicted that there might be two TEP formation pathways. One is 

associated with leakage of DOC and TEP precursors from lyses and dying cells. The 

other is a biotic way of forming TEP by exudation from healthy, rapidly growing cells. 

Although, I cannot prove this hypothesis in this experiment, observations by other 

researchers, such as Fukao et al. (2010), support this idea. Why should TEP be formed 

during different growth phases by different species? It can be explained by differences in 

life history and TEP functions between coastal and benthic species. T. weissflogii and S. 

marinoi are planktonic species. TEP helps planktonic diatoms float in the oceans. C. 

closterium is a benthic species, which adheres to and moves through seafloor. TEP is a 

sticky particle which assists benthic diatoms in attaching to the seafloor.  
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In the experiments to investigate the effect of oxidative stress on TEP production 

and relationship with cell death I compared oxidative stress effects on TEP production 

and cell death in the diatom Thalassiosira weissflogii and in the cyanobacterium 

Synechococcus elongatus. My results indicated that the cyanobacterium was more 

sensitive to oxidative stress than the diatom. Oxidative stress triggered high caspase 

activity and a decline in photosynthetic efficiency and increased cell mortality. In 

addition, TEP production was enhanced with increased caspase activity under oxidative 

stress, indicating that oxidative stress influenced mechanisms of TEP formation. This 

would consequently influence aggregate formation and the carbon cycle in the ocean. 

 

7.2 Conclusions and future work 

 

7.2.1 Active exudation and passive leakage of DOM 

 

DOM can be released from diatom cells by active exudation and passive leakage. 

Some DOM particles are TEP precursors, their release from diatoms may contribute to 

TEP production. Our experiments indicated that diatoms produced more extracellular 

dissolved carbohydrate as EPS under stressful growth conditions, such as high 

temperature, oxidative stress and nitrogen limitation. In addition, these stresses increased 

the proportion of cells in the cultures that had permeable cell membranes, as indicated by 

SYTOX Green staining. Permeable cells are predicted to more easily release 

intracellular DOM and nucleic acids to the outside environment than intact cells. The 
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passive leakage of DOM from permeable cells may contribute to the outside DOM pool, 

which could be used in the form of TEP and support for grazers (Bhaskar and Bhosle 

2005, Thornton 2013). The good correlation between TEP production and cell 

permeability in cultures under stress conditions suggests that the mechanism of passive 

leakage may contribute to TEP precursors. However, my work did not determine 

whether cell lyses can release more TEP precursors than cell leakage. However, other 

work has shown that TEP precursors could be contributed actively by cell exudation or 

passively by cell lyses (Bhaskar and Bhosle 2005). Thus, I propose that there might be 

two mechanisms of TEP formation (Figure 46). One way is the formation of TEP from 

passive leakage of DOC and TEP precursors by permeable cells, such as the formation 

of TEP by the diatoms T. weissflogii and S. marinoi and the cyanobacterium 

Synechococcus elongatus during the death phase. The second mechanism is formation 

by active exudation of DOC by healthy cells, such as the production of a lot of TEP by C. 

closterium during exponential growth phase. DOM release by passive and active process 

may consist of different compositions of small or large molecular compounds 

(Myklestad 2000). The different compositions of TEP precursors could cause diversity 

in chemical and / or physical properties. However, I still do not know the relative 

production levels of TEP from the two pathways or what factors will trigger which TEP 

production pathway. 

Hence, it would be interesting to investigate the mechanisms of DOM release 

from cells and to clarify TEP formation related to carbon allocation. I propose using 

isotopes as tracers to indicate the processes of DOM release and define which 
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carbohydrate fractions were transformed into TEP. In addition, I could study TEP 

composition by staining TEP with different fluorescent probes, such as lectins, to show 

the presence of a particular saccharide. 

 

 

 

Figure 46. A hypothesis for two TEP formation pathways. One pathway is the formation 
of TEP from passive leakage of DOC and TEP precursors from permeable cells. The 
second pathway is the formation of TEP by active exudation of DOC by healthy cells. 
The purple area represents DOM, which can be actively exuded by healthy cell or 
passively released from permeable cell into the outside DOM pool. DOM contributes to 
TEP formation. 
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7.2.2 Factors influencing aggregation 

 

According to coagulation theory, aggregation is dependent on stickiness. TEP are 

very sticky particles, so they promote formation of aggregates and marine snow. 

Aggregation is determined by a combination of TEP production and stickiness of the 

particles. Results from the growth rate and temperature experiments suggest that 

temperature and growth rate influence both of these factors. Many studies demonstrated 

that stickiness of particles could vary with different factors, such as temperature and 

growth phase (Kiørboe and Hansen 1993, Thornton and Thake 1998). Kiørboe et al. 

(1998) pointed out that the stickiness of particles varied during a bloom of Chaetoceros 

spp. in the Benguela upwelling. In addition, variation in stickiness among species also 

influences aggregate formation. Sticky cells, such as Skeletonema costatum, would tend 

to aggregate during blooms and result in the fast sinking of organic carbon. Many 

observations of aggregation of S. costatum in the coastal ocean and sequential 

sedimentation have been documented (Crocker 1993).  

On the contrary, if the cells have low stickiness, such as T. weissflogii, they will 

remain in surface waters for a long time during the bloom. The sinking of diatom 

aggregates and marine snow plays a critical role in the rapid transfer of primary 

production from the euphotic zone to deeper water. 

The increase of stickiness in fast growth cultures and at warm temperatures may 

relate to the chemical structure of the cell surface or changes in TEP composition. In the 

future, it would be interesting to study the chemical composition of the cell surface and 
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TEP and investigate whether any change in them is related to stickiness. For example, I 

could use FITC labeled lectins as a tool to label different carbohydrates on cell surfaces 

of the diatoms (Bӧckelmann et al. 2002, Elloway et al. 2004, Wigglesworth-Cooksey 

and Cooksey 2005). 

 

7.2.3 TEP and CSP analysis method 

 

TEP and CSP are transparent gel particles which mean that they cannot be seen 

by light microscopy. Based on their major composition, scientists developed techniques 

for the visualization of TEP and CSP. Alldredge et al. (1993) found that TEP are formed 

from acid polysaccharides, which can be stained using Alcian Blue (Alldredge et al. 

1993). Long and Azam (1996) found that CSP are proteinaceous, these protein particles 

can be stained by Coomassie Brilliant Blue. Up to now, three methods have been used to 

measure TEP and CSP concentrations. 

The first method is determining the concentration of TEP colorimetrically 

(Passow and Alldrege 1995). The second method requires the measurement of individual 

TEP and CSP particles during observation by light microscopy (Logan et al. 1994). TEP 

and CSP concentration and area were analyzed from light micrographs using Axio 

Vision 4.8 software (Carl Zeiss MicroImaging, details in 2.2.5 and 2.2.6). The third 

method is quantification of TEP and CSP concentration and area from light micrographs 

using semi-automated procedures in Image J software (National Institutes of Health, 

details in 2.2.5 and 2.2.6) (Engel 2009). Table 9 summarizes advantages and 
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disadvantages of these three methods. Results from my experiment suggest that TEP 

abundance and individual TEP particles did not change consistently. For example, TEP 

numbers decreased with increasing growth rate in cultures of Thalassiosira weissflogii, 

whereas the size of TEP particles was larger at higher growth rates. Thus, the total area 

of TEP (TEP number × TEP size) remained constant at different growth rates. In this 

case, counting TEP abundance or measuring TEP particle size alone does not provide 

sufficient information to determine changes in the amount of TEP in the cultures. Thus, 

the total area of TEP may be a better proxy to reveal TEP concentration. 

When I analyzed TEP or CSP using the Image J method, I removed cells in the 

image using the „pencil‟ or „brush‟ tools in the Image J to paint these cells out to match 

the background color. This ensured that cells were not counted as exopolymer particles 

during subsequent processing of the images. However, in situations where cells are 

imbedded in TEP or CSP it can be difficult to accurately and consistently define what is 

exopolymer particles and what is cell on the images. This is compounded by the fact that 

TEP and CSP are naturally three dimensional structures that are enumerated by 

processing two-dimensional images of exopolymer particles collected on filters. 

Furthermore, in very sticky species, such as the cyanobacterium Synechococcus sp., TEP 

and CSP were coating the cells‟ surface and many cells were stuck together to form a 

mixture of TEP (or CSP) and cells. It is difficult to remove cells from TEP using „pencil‟ 

or to extract TEP out through splitting the image into different color channels because 

the color of TEP and CSP are similar to the color of the cells. Therefore, we need 

improve TEP and CSP analysis methods in the future. For example, a better threshold 
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method may help in extraction of TEP or CSP and give more accurate results. In 

addition, automated programs could be developed to analyze TEP and CSP 

automatically by computer, which would save labor time and increase efficiency during 

work on exopolymer particles. Furthermore, the method of collection TEP and CSP 

needs improve. For example, if we need measure some samples which are stickiness, 

such as cyanobacteria, or benthic diatoms, we needs pipette many times (at least 20 

times) to break up TEP or CSP and cells aggregates into individual cells and particles in 

a micro contribute tube. After that, filtered unaggregated samples (cells were not 

attached on sticky particles before extraction of TEP of CSP.  
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Table 9. Summary of TEP measurement methods. 
 

TEP Methods Description Suitable Advantage Disadvantage 

Colorimetrical Dye binding assay All species Fast and simple Not truly quantitative, standard is 

different from TEP. 

Light microscopy  Manually draw around particles and 

count number 

All species quantitative 

straightforward 

Labor intensive, time consuming. 

Image J Remove cells and automatically measure 

size and abundance 

Big cells (eg. 

diatom, 

dianoflagellate) 

Accuracy Time consuming 
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7.2.4 Bacterial interaction with diatoms 

 

The interaction between bacteria and diatoms is summarized in Figure 47. 

Bacteria can produce TEP and TEP precursors and affect TEP formation. They also 

decompose TEP and DOM and utilize them as a carbon source (Mari and Kioboe 1996; 

Passow 2002b; Engel 2004). Many studies indicate that the interaction between bacteria 

and diatoms determines the stickiness and aggregation of diatom cultures (Gärdes et al. 

2011, 2012). Thus, the presence of bacteria in experimental cultures and their 

interactions with diatoms cannot be ignored. In my results, carbon associated with 

bacteria was < 5 % of the total microbial carbon in the cultures, suggesting that bacteria 

did not have a significant effect on biomass in the cultures. Gärdes et al. (2011) showed 

that the bacterium Marinobacter adhaerens causes aggregation in cultures of 

Thalassiosira weissflogii in nutrient replete cultures. But in nutrient limited conditions, 

Gärdes et al. (2011) found that M. adhaerens did not enhance TEP production. My 

growth rate and temperature experiments were conducted under nitrogen limitation and I 

do not know which bacteria existed in my cultures. It may be that the presence of 

bacteria did not have a significant effect on TEP formation and aggregation in diatom 

cultures, or their effect was relatively small compared to diatom influences. 

However, it is not clear how bacteria affected TEP production and aggregate 

formation in my cultures. Therefore, we need to investigate the mechanisms by which 

bacteria affect aggregation and TEP formation in different types of bacteria and 

microalgae. 
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Figure 47. Interaction between bacteria and diatom cells. Bacteria can produce TEP and 
they also decompose TEP. Bacteria attached to diatom surfaces may enhance aggregate 
formation. 
 

 

7.2.5 Comparison of PSA and TPTZ method  

 

In my experiments, carbohydrate fractions measured by the PSA and TPTZ 

methods for phytoplankton were compared to each other. The amount of carbohydrate 

measured by the PSA method was always higher than those obtained by the TPTZ 

method. Two probable reasons for these differences are different compositions and 

concentrations of polysaccharides exuded by the diatoms and a difference in hydrolysis 
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efficiency of these two methods. In the future, we need to more thoroughly investigate 

differences between these two methods and improve both methods in order to apply 

them to natural sample measurement and to enable direct comparisons between data 

collected using these two common methods for bulk carbohydrate analysis. 

 

7.2.6 Summary of microbial pathway in marine ecosystem 

 

My work contributed to understanding of the microbial pathway in the ocean 

which is shown in the figure 48. In the euphotic zone, phytoplankton carry out primary 

production through photosynthesis (Thornton 2012). A large fraction of organic matter 

that is synthesized by primary producers becomes DOM and POM. Larger amount of 

fixed organic carbon are transported by carbon cycling in the ocean. Diatoms are 

important primary producers which have an important role in the oceanic carbon cycle. 

They exude large amounts of EPS from healthy cells, or use programmed cell death 

(PCD) or other cell death pathways to release DOM from the lysis of cells, which 

contribute to the DOM pool in the ocean. EPS can coagulate into transparent 

exopolymer particles (TEP), which belong to the POC size range. Therefore, TEP 

formation transforms DOC into POC. TEP are sticky gel-like particles which promote 

aggregate formation and sinking of marine snow (Passow 2002b; Thornton 2002; 

Verdugo et al. 2004). Therefore, TEP formation causes a fast vertical carbon flux from 

the euphotic zone to the deep ocean and increases the efficiency of the biological carbon 

pump.  
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In the ocean, sinking of marine snow decreased with depth (Passow and Carlson 

2012). Fixed organic matter is remineralized to dissolve inorganic matter and nutrients 

and return back to surface oceans. The total time for return back to the sea surface is 

longer for remineralization at greater depths (Passow and Carlson 2012). If the aggregate 

sinks into the deep ocean or is buried in the seafloor, it needs thousands or even millions 

of years to remineralize and return CO2 back to the surface of the ocean (Thornton 2012). 

Therefore, strengthening of the biological pump by diatom production of TEP has a 

critical influence in changing global carbon cycling time and carbon storage in the ocean. 

In addition, bacteria have important interactions with phytoplankton and affect 

biogeochemistry in the ocean (Gärdes et al. 2011, 2012). Aggregates and POM can be 

hydrolyzed by bacteria to form DOM. DOM in the ocean (from exudation, cell lyses, 

and hydrolysis of POM) can be utilized by bacteria for their growth. In contrast, the 

interaction between bacteria and microalgae also helps in the formation of aggregates. 

Bacteria participate in the microbial loop to remineralize organic matter into inorganic 

matter (C, N, P, Fe, Si) and return carbon dioxide to the ocean surface by respiration. 

Therefore, diverse microorganism activities participate in biochemical pathways and 

interactions between them modify the marine ecosystem and the carbon cycle.  
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Figure 48. Microbial pathways in the marine ecosystem. Modified from Azam and 
Malfatti 2007. Primary producers carry out primary production via photosynthesis and 
transport by the grazing food chain. Large fractions of fixed organic matter become 
POM and DOM and are transported to the ocean interior by the biological carbon pump. 
Diatoms contribute large amounts of DOM through exudation of EPS and lysis of DOM 
from PCD or other cell death. Coagulation of EPS into TEP transports carbon from 
DOM to POM. TEP glues POM to form aggregates, which enhance biological carbon 
pump efficiency. If remineralized at a deeper depth, a longer time is required to 
remineralize DOM to DIC and return CO2 back to the surface. Therefore, TEP 
increasing the sinking of aggregates may influence carbon cycling time. Bacteria have 
interactions with phytoplankton, including producing TEP and influencing aggregate 
formation. POM also can be hydrolyzed to DOM by bacteria and used in their growth. In 
addition, bacteria participate in the microbial loop and remineralize inorganic matter and 
return CO2 back to the surface of the ocean. 
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APPENDIX 

 

 

Figure A-1.Total carbohydrate concentration and total carbohydrate concentration per 
cell in semi-continuous cultures of Thalassiosira weissflogii and Skeletonema marinoi 
when they grown at 20oC, 24oC and 28oC. A) Total carbohydrate concentration. B) Total 
carbohydrate concentration per cell. Solid cycles represent the total carbohydrate 
concentration in cultures at each sampling time (n = 12). Open cycles represent the total 
carbohydrate per cell in cultures at each sampling time (n = 12). Solid lines represent the 
mean value of total carbohydrate content in the cultures at 20oC, 24oC and 28oC (n = 36). 
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Figure A-2. Colloidal concentration and colloidal concentration per cell in semi-
continuous cultures of Thalassiosira weissflogii and Skeletonema marinoi when they 
grown at 20, 24 and 28 °C. A) Colloidal concentration. B) Colloidal concentration per 
cell. Solid cycles represent the colloidal concentrations in cultures at each sampling time 
(n = 12). Open cycles represent the colloidal per cell in cultures at each sampling time (n 
= 12). Solid lines represent the mean value of colloidal content in cultures at 20, 24 and 
28°C (n = 36). 
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Figure A-3. Cell pellet concentration and cell pellet concentration per cell in semi-
continuous cultures of Thalassiosira weissflogii and Skeletonema marinoi when they 
grown at 20, 24 and 28 °C. A) Cell pellet concentration. B) Cell pellet concentration per 
cell. Solid cycles represent the mean value of cell pellet concentration in cultures at each 
sampling time (n = 12). Open cycles represent the mean value of cell pellet per cell in 
cultures at each sampling time (n = 12). Solid lines represent the mean value of cell 
pellet content in cultures at 20, 24 and 28 °C (n = 36). 
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Table A-1. Carbohydrate fractions concentration in Thalassiosira weissflogii grown at different temperatures. 
 

Temperature 
(°C) 

TOC  
(µg ml-1) 

TOC per cell 
(ng cell-1) 

CL  
(µg ml-1) 

CL per cell (ng 
cell-1) 

EPS  
(µg ml-1) 

EPS per 
cell(ng cell-1) 

Cell associated 
carbohydrate (µg 
ml-1) 

Cell associated 
carbohydrate per 
cell(ng cell-1) 

 Mean DEV Mean DEV Mean DEV Mean DEV Mean DEV Mean DEV Mean DEV Mean DEV 
20 21.276  4.429  0.317  0.059  11.364  0.290  3.007  5.572  2.821  0.162  0.042  0.004  13.287  0.298  0.199  0.006  
20 18.599  3.996  0.278  0.050  9.183  2.864  3.094  4.255  3.193  0.340  0.048  0.005  13.951  0.924  0.209  0.010  
20 21.495  2.929  0.324  0.040  10.845  0.597  2.952  5.267  3.707  0.794  0.056  0.011  14.674  1.068  0.222  0.020  
24 38.088  0.323  0.580  0.031  5.179  0.342  1.533  2.441  4.947  0.562  0.076  0.012  23.670  1.142  0.360  0.020  
24 40.500  2.897  0.665  0.025  5.687  0.655  1.758  2.636  4.110  0.323  0.068  0.006  19.680  1.560  0.323  0.022  
24 29.803  1.354  0.474  0.012  6.633  2.227  2.337  3.019  2.738  0.404  0.044  0.007  18.585  1.073  0.297  0.027  
28 27.911  6.621  0.401  0.091  11.618  0.584  3.174  5.633  6.427  0.718  0.093  0.009  15.747  0.371  0.227  0.004  
28 29.526  4.136  0.428  0.062  11.860  0.910  3.315  5.707  6.892  0.713  0.100  0.012  15.218  0.785  0.221  0.011  
28 36.888  1.898  0.507  0.039  11.675  0.322  3.136  5.696  6.624  0.990  0.091  0.012  14.963  0.946  0.206  0.017  
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Table A-2. Carbohydrate fractions concentration in Skeletonema marinoi grown at different temperatures. 

Temperature 
(°C) 
 

TOC  
(µg ml-1) 

TOC per cell (ng 
cell-1) 

CL  
(µg ml-1) 

CL per cell (ng 
cell-1) 

EPS  
(µg ml-1) 

EPS per cell 
(ng cell-1) 

Cell associated 
carbohydrate (µg 
ml-1) 

Cell associated 
carbohydrate per 
cell(ng cell-1) 

  Mean DEV Mean DEV Mean DEV Mean DEV Mean DEV Mean DEV Mean DEV Mean DEV 

20 7.164  0.044  0.038  0.000  1.879  0.087  0.010  0.001  0.919  0.021  0.005  0.000  4.061  0.031  0.022  0.000  

20 6.264  0.523  0.035  0.004  1.752  0.229  0.010  0.001  0.904  0.029  0.005  0.000  4.098  0.102  0.023  0.001  

20 6.148  0.283  0.036  0.002  1.879  0.133  0.011  0.001  0.907  0.061  0.005  0.000  4.234  0.152  0.025  0.001  

24 8.006  1.156  0.053  0.009  1.590  0.346  0.011  0.002  1.055  0.061  0.007  0.001  3.809  0.078  0.025  0.001  

24 8.317  1.994  0.060  0.014  2.179  0.336  0.016  0.003  1.086  0.061  0.008  0.001  3.983  0.114  0.029  0.002  

24 8.341  2.572  0.063  0.020  2.202  0.340  0.017  0.002  1.150  0.161  0.009  0.001  3.915  0.129  0.030  0.001  

28 3.183  0.901  0.046  0.014  1.302  0.609  0.019  0.009  0.673  0.068  0.010  0.002  2.163  0.067  0.031  0.004  

28 3.887  0.443  0.055  0.005  0.909  0.509  0.013  0.008  0.547  0.093  0.008  0.002  2.185  0.155  0.031  0.003  

28 3.379  1.287  0.049  0.016  0.759  0.138  0.011  0.002  0.630  0.038  0.009  0.000  2.158  0.279  0.031  0.005  
 




