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ABSTRACT 

 

Superconducting wires based on the high field superconductor Bi2Sr2Ca1Cu2O8+x 

are an enabling technology for the development of very high field (>18 T) magnets. 

While these conductors have the potential to serve as the conductors for magnets 

operating in excess of 45 T, the achieved current carrying capacity of these materials is 

too low for economical implementation in high field operation. This is in part due to low 

density of the superconductors within the cores, the presence of current occluding non-

superconducting phases, and a non-optimum alignment of the superconducting particles 

that form the conductor. The body of work reported in this dissertation aims to develop 

methods to align (texture) the superconducting particles within the conductors, to 

enhance the density of the superconducting filaments, to examine a heat treatment that 

does not form parasitic phases, and to demonstrate that long lengths of superconducting 

wire can be fabricated with these properties. 

Three general experimental thrusts are carried out within the work. First, 

methods for texturing Bi-2212 loose powders were developed and the products of these 

developments were characterized via x-ray diffraction and microscopy to qualify the 

degree of imparted texture. The second thrust focused on the development of a 

monocore wire based on a high density textured Bi-2212 precursor. Multiple wires were 

extruded and drawn through traditional processes and the products were characterized 

microscopically to ascertain the quality of the products. The third and final thrust was 

the development of a non-melt heat treatment that was shown to grow grains of Bi-2212 
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powder and densify composites. Measurements of the transport critical currents for the 

heat treated conductors were carried out in boiling liquid helium and background 

magnetic fields of up to 5 T. These results were correlated to microstructural 

observations. Ultimately, it was found that the connections between grains in the 

sintered conductors were insufficient to allow robust transport current and only 1% of 

the predicted transport currents were reached through the sintering study. 
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1. INTRODUCTION 

 

1.1 Superconductors for High Field Magnets 

1.1.1 Introduction to Superconducting Wires 

Since the discovery of superconductivity [1], the applications of conductors that 

operate without loss have been a tantalizing prospect for the development of efficient, 

high field magnets. In fact, Onnes himself envisioned the creation of 10 T magnets with 

a lead conductor [2]. Unfortunately for Onnes, the only superconductors known in the 

earliest epoch of superconductivity were elemental, Type I superconductors. These 

materials are universally plagued by critical fields (the magnetic field which destroys the 

superconducting state) of less than 90 mT for Ta which fundamentally prevents their use 

in magnet applications [3]. 

The use of superconductors for the creation of high magnetic fields experienced a 

new vigor with the subsequent discovery of Type II superconductors which are primarily 

alloys, intermetallics, or ceramics although Nb, V, and Tc are elemental Type II 

superconductors [3-6]. While similar to their predecessors in their ability to carry 

currents without losses while in the superconducting state, their behavior in magnetic 

fields is markedly different. Namely, Type II superconductors typically allow magnetic 

flux to penetrate into the bulk of the material above a certain threshold critical field 

(Hc1). Instead of destroying the superconducting state as in a Type I conductor, these 

Type II materials isolate the penetrating flux within a small normal region of the 

conductor as explained by Abrikosov [7]. The remainder of the material is screened from 
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the penetrating flux by the generation of a vortex of supercurrents that oppose every 

quantized unit of magnetic flux that penetrates the conductor. While these vortices 

inherently contain a normal core which does not contribute to lossless current carrying, 

the remainder of the material remains in the superconducting state. As more and more 

flux is applied to the material, these vortices arrange themselves into a triangular lattice 

which is the minimum energy distribution of the vortices. This action continues until a 

second critical field, known as the upper critical field or Hc2, is reached and the 

superconducting state is finally destroyed. For Type II superconductors, this upper 

critical field can be extremely high, reaching 14.5 T for NbTi [8] and 30.1 T for Nb3Sn 

[9], which are the most commonly used conductors for magnet technology. Compared to 

the Type I conductors, the fundamental limits of Type II materials make them inherently 

applicable to the generation of > 1 T magnetic fields.  

While the upper critical field is an important parameter for Type II 

superconductors, it is insufficient to qualify a material for service as a magnet conductor. 

If a current is carried through the conductor, the vortex lattice experiences a force from 

the self-field of the current and from the interaction of adjacent vortices. This force acts 

to displace the vortices which then propagate the normal core across the conductor in 

what is known as vortex flow. This motion dissipates energy within the superconductor 

which subsequently destroys the superconducting state. To maintain lossless transport 

current requires the stabilization of the vortex lattice in the presence of a transport 

current, or pinning the individual vortices. This pinning can be achieved through defects 

in the superconducting lattice, either occurring naturally as boundaries between 
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individual regions of perfect superconductor (grains) or artificially through the 

introduction of dislocations within a grain or inclusion of secondary phases with weak or 

no superconducting properties. Regardless of the mechanism, these pinning sites 

produce an energy favorable location for the penetration of magnetic flux. With a 

uniform distribution of these pinning centers in the superconductor, the lattice is 

stabilized so long as the force acting on the vortices is insufficient to overcome the 

potential holding the vortex at the pin. The force acting on an individual vortex is 

dependent on both the current density within the conductor, J, the magnetic flux density, 

B, and the temperature of the superconductor [10]. When this force exceeds the strength 

of a pinning center, the vortex jumps to another site, releasing energy in the process. 

Provided sufficient cooling is available and the remainder of the lattice is stable, these 

vortex jumps are transient effects which do not necessarily provide the fundamental limit 

of the conductor as their effects are reversible. The limit is instead reached when the 

entire vortex lattice flows or heat may not be effectively removed from the 

superconductor, causing an irreversible transition out of the superconducting state 

throughout the material. Due to repulsive interactions between vortices which are solely 

dependent on the magnetic field, a threshold field for the irreversible vortex flow can be 

established. This field, known as the irreversibility field, Hirr, is the magnetic field at 

which a superconductor can no longer carry lossless current at a given temperature. 

While the superconducting state may be maintained magnetically above Hirr since the 

vortex lattice will stabilize itself outside of the presence of a current, the introduction of 
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any current to the material results in a cascading flow of vortices and destroys the 

superconducting state [11, 12]. 

To be useful for current carrying applications in significant magnetic fields, a 

superconductor must allow penetration of magnetic flux, otherwise all currents are 

confined to the surface of the material, and this penetrating flux must not dissipate 

energy in the presence of currents. Therefore, strongly pinning Type II superconductors 

are the most useful materials for the generation of high magnetic fields [13]. 

With these basic requirements in mind, practical applications of superconductors 

typically require one to consider the economics of an application. After all, 

superconducting materials are typically novel, require exceptional amounts of 

processing, and their operation requires the implementation of a cryogen or very low 

temperature (< 77 K) working gas which is an inherently an energy intensive endeavor. 

The total effect is that a superconducting magnet is a highly technical, expensive device. 

However, superconductors have two unique advantages. First, they may operate without 

loss at exceptionally high currents. This is an important consideration for large scale 

applications such as accelerators which typically use thousands of kilometers of wire 

operating at several thousand amperes. For a superconducting magnet, the power 

required to operate this system is effectively the energy bill of the cryogenic system. 

However if the device were made with a normal conductor, say Cu, power would have to 

be applied to overcome the resistive losses of the conductor and to remove the heat 

caused by these resistive losses, increasing the cost per hour of operation. Economy then 

favors the use of superconductors when long term installations can recoup their 
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installation costs through more efficient operation [14, 15]. This is the argument which 

has driven the use of superconductors in MRI magnets [16, 17], particle accelerators, 

and high field research magnets [18], all of which are long life, high use devices. 

A second advantage of superconductors that is pertinent to very high field 

operations is the exceptional current these materials can carry, even in very small cross 

section wires. To engineer a magnet, one would like to pack as much current as close as 

possible to the volume of interest. This places a premium on the current density of the 

conductor. Since normal conductors are limited by the amount of heat they generate and 

one must therefore remove, superconductors typically exhibit much greater current 

densities than normal conductors at modest fields and low temperatures. 

As previously mentioned, superconductors typically find applications in magnets 

for particle accelerators, MRI/NMR magnets, and in research magnets requiring high 

field operation. Particle accelerators and NMR magnets generally push the development 

of conductors for the production of higher magnetic fields. These applications both 

require very precise control of the magnetic field quality, which is primarily achieved by 

dictating the location of the conductors. While technologically possible, high aspect ratio 

wires or tapes are difficult to engineer, particularly in accelerator magnets. Instead, 

round or square wires are highly preferred for these applications as they allow for 

straightforward fabrication processes and simple tooling [19].  

A final requirement for high field magnets, particularly rampable magnets like 

those found in particle accelerators, is a filamentary wire in which a composite wire is 

formed. The composite has a high quality normal conductor matrix, such as copper or 
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aluminum, with multiple filaments of superconducting symmetrically distributed 

throughout the matrix. The conductors are optimized by decreasing filament sizes which 

in turn decreases the magnetization of the individual filaments. As screening currents are 

setup within the superconductor to resist changes in magnetic fields, minimizing the 

magnetization, or stored energy, within each filament and subsequently maximizing the 

surface area to volume ratio of the filaments to enable effective heat transport through a 

normal matrix, produces a stable conductor during changes in current and magnetic 

field. So long as the power dissipated within the conductor is lower than the effective 

rate of heat removal, the conductor is stable to transient changes. While this argument 

was articulated with respect to ramping magnets, minimizing the diameter of filaments 

helps stabilize the conductor against any disturbance which dissipates heat. Additionally, 

coupling currents between filaments may be reduced by helically transposing the 

filaments [11]. 

In summary, for application as a magnet conductor, a superconducting wire must 

be based upon a Type II material with an irreversibility field above the desired 

operational field. Additionally, the highest performing magnets, namely dipole and 

quadrupole magnets for particle accelerators, require fine, multifilamentary conductors 

with the highest current density possible at the given operating field and temperature.  

1.1.2 The High Field Frontier 

Historically, the development of superconducting wires for high field 

applications has been driven by the High Energy Physics (HEP) community. As 

previously discussed, accelerator dipoles typically have the most stringent requirements 
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for superconducting wires in high field operation. The push for higher fields has been 

motivated by the desire to increase the collision energy of synchrotron accelerator 

facilities, which roughly scales as:  

𝐸 [𝐺𝑒𝑉] = 0.3 × 𝐵[𝑇] × 𝑅[𝑚] 

While increasing the radius of a synchrotron is an effective means to increase the 

collision energy, the cost of increasing the circumference of the device adds to both the 

capital cost of creating the tunnel and increases the number of magnets, RF cavities, and 

every other system within the accelerator. While this was a consideration during the 

development of existing accelerator facilities such as the LHC [20], Tevatron [21, 22], 

and RHIC [23], pragmatic considerations dictate that new accelerators be installed 

within the existing infrastructure of the accelerator community. Therefore, maximizing 

the magnetic field strength of bending dipoles within the ring is the most effective way 

to increase the threshold for discovery in terrestrial HEP.  

To date, every superconducting dipole magnet in a synchrotron accelerator has 

been fabricated from NbTi wire. With the installation of the LHC, the ultimate 

performance of NbTi (8.33 T @ 1.9 K) has been achieved, most likely making the LHC 

the last hadron collider to be based upon NbTi [20]. Increasing the energy frontier will 

therefore require the adoption of a new superconducting material. At the time of this 

publication, Nb3Sn is poised to serve as the immediate replacement to NbTi. However, 

in an accelerator dipole geometry, Nb3Sn is limited in application to fields of 18 T [24]. 

While this allows for a doubling of the LHC’s energy, it does not allow for the frontier 

extending research that will inevitably be desirable in the next generation of HEP 
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experiments. This next great step forward in the energy frontier will therefore require the 

maturation of a new conductor for HEP. 

Candidate materials for this generational shift in HEP conductors are presently 

limited to 2 materials: Bi-2212 and YBCO. While YBCO has a higher current density 

than Bi-2212 [25], it is only available as a high performance conductor in monofilament 

tape form. As previously described in Section 1.1.1, a monofilamentary tape is the least 

desirable geometry for an HEP conductor. Meanwhile, Bi-2212 may be fabricated in 

round wire, multifilament geometries that are scalable to long lengths. This makes Bi-

2212 the most promising conductor for the future of HEP [26-30]. 

1.2 Bi-2212 Basics 

Bi-2212 is a high-temperature superconducting ceramic with a transition 

temperature of up to 90 K [31] and an upper critical field of ~100 T at 4.2 K [32]. Bi-

2212 is part of the Bi-Sr-Ca-Cu-O family of superconductors that also includes the Bi-

2201 (Raveau, Tc = 35 K) [33-35] and Bi-2223 phases (Tc = 110 K, μ0Hc2 = 39 T) [36]. 

Of the three phases within the Bi-Sr-Ca-Cu-O system, the Raveau phase carries little 

current and has a low upper critical field with μ0Hc2(4.2 K) = 3 T, making it unsuitable 

for the common applications of superconductors [37]. However, the Bi-2212 and Bi-

2223 phases exhibit exceptional critical temperatures, tantalizing critical current 

densities at 4.2 K and 77 K, and remarkable upper critical fields. As such, the Bi-2212 

and Bi-2223 phases have been extensively studied in the past two decades at the 

fundamental level to elicit information about the mechanisms of high-temperature 
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superconductivity and in the field of applied superconductivity with the fabrication of 

wires and tapes based upon the materials. 

Unlike Type I superconductors and the low temperature superconductors, the 

bismuth based conductors exhibit a marked anisotropy in their superconducting 

properties with transport currents primarily flowing within the copper oxide layers, 

which are shown in the unit cell in Fig. 1. This 2 dimensional structure requires that 

grains of Bi-2212 and Bi-2223 form links that minimize the out of plane current 

transport (c-axis transport). This may be accomplished by growing large, plate-like 

grains with parallel copper oxide planes. Furthermore, the mechanical properties of the 

material exhibit a similar anisotropy, namely the shear strength between the bismuth 

oxide layers is markedly lower than that of any other crystalline plane [38] and 

crystalline growth occurs preferentially in the ab planes [39]. These two complimentary 

Fig. 1: Bi-2212 unit cell. Atomic radii are scaled by a factor of 2 for clarity. 



 

10 

 

effects determine the microscopic behavior of Bi-2212: single crystals tend to grow into 

a high aspect ratio platelet and upon milling, a micron scale micaceous powder is formed 

with similarly aspected platelets as shown in Fig. 2 [40]. 

1.3 The OPIT Conductor 

For practical purposes, superconducting wires must be fabricated in continuous 

lengths at least 1 km to be efficiently used in most high energy physics (HEP) 

applications. In previous generations of superconducting wires, these lengths have been 

fabricated by conventional metallurgical processes since the precursor materials (Nb, Sn, 

Ti, Al, etc.) have all been ductile metals that generally co-reduce well with copper 

(matrix material) and are readily formed into fine filament wires. However, the bismuth 

based superconductors are oxides and are inherently brittle materials. The combination 

of the necessity for texturing and poor deformation properties dictates that for any 

practical application, BSCCO based conductors must be “grown” in place. For 

superconducting wires, this requires a wind and react strategy, the process of which 

differs for the Bi-2212 and Bi-2223 phases. Both wires begin as an Oxide Powder in 

Fig. 2: Micaceous Bi-2212 platelets with ab plane labeled. 
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Tube (OPIT) conductor in which a matrix material, universally a silver alloy, is formed 

into a seamless tube and packed with either a phase pure powder or a stoichiometric 

mixture of precursor oxides [41]. Standard wire fabrication techniques are utilized to 

form long lengths of multifilament conductor which must then be reacted to create a 

textured, well connected superconducting core for supercurrent transport. At this point 

processing Bi-2212 and Bi-2223 conductors diverges. In the Bi-2223 conductors, a 

thermomechanical processing is required in which the Bi-2223 composite is subjected to 

an annealing/sintering heat treatment, then undergoes further deformation (typically 

rolling) to impart a large degree of texture to the grains. The conductor is then subjected 

to a final heat treatment that results in a highly textured, well connected transport matrix. 

The end result of this processing is a high aspect ratio wire (generally 2.5:1) or tape 

capable of carrying appreciable currents at 77 K. However, the anisotropy of the tape 

creates a conductor that is difficult to utilize in a magnet winding and lacks the current 

density of YBCO tapes [25, 42]. Given that 2223 is slightly more robust than YBCO in 

windings and still carries appreciable currents at 77 K, it has found applications in niche 

areas typically related to superconducting motors or generators, but also in DC high 

current transfer lines [43]. 

Meanwhile, the Bi-2212 phase is typically cold drawn into fine wire dimensions 

with no intermediate sintering or annealing steps. Bi-2212/Ag round wires then require a 

true wind and react processing in which the round Bi-2212 wire is wound into its final 

geometry, then subjected to a high temperature (~890 C) heat treatment in a 100% O2 

atmosphere. This heat treatment is typically referred to within the literature as partial 
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melt processing (PMP). The name implies the Bi-2212 phase decomposes into a Bi rich 

liquid, alkaline earth cuprates (AEC’s), a copper free phase, and the 2201 phase 

depending on the temperature, oxygen partial pressure, and cation stoichiometry. Here 

the term partial melt refers to the presence of some solid components, the AEC’s, 2201, 

and copper free phases, as well as the liquid. The solubility of oxygen within the liquid 

formed during decomposition is lower than that of the solid, and the liquid releases 

oxygen to the surrounding environment. This is one of the key reasons that Ag is utilized 

as a matrix material in Bi-2212 conductors: at the reaction temperatures, the diffusion 

rate of O2 through Ag is among the highest in nature [44]. Furthermore, this partial melt 

phase is highly corrosive and tends to leach cations from the surrounding environment, 

poisoning the final superconducting phase [27]. Fortunately, only about 3 wt% Ag is 

soluble in the melt and the matrix remains fairly unaffected [45]. However, impurities 

within the Ag (ie. oils from the tube fabrication or Cu contamination), or even materials 

contacting the Ag (SiO2 insulating sleeves and fabrics or mandrel materials for 

windings) can diffuse into the partial melt or leach cations from the partial melt to 

poison the reaction and destroy the superconducting phase [46]. Each of these issues has 

been addressed through empirical studies with varying degrees of success, culminating 

in the state of the art engineering density of 800 A/mm2 [47]. After as little as 8 minutes 

above the partial melt temperature, the wire or coil is slowly cooled to allow the liquid to 

recrystallize into the Bi-2212 phase. The transport properties of the superconducting 

wire have been found to be sensitive to differences in the peak temperature of 2 C with 

~10% decreases in Jc observed for 2 C changes in peak temperature. Similarly, dwelling 
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too long at max temp also decreases the wire performance, making it very difficult to 

accurately and reproducibly react a large coil from the conductor [18]. Upon 

recrystallization, the Bi-2212 appears to be somewhat aligned, matching the contours of 

the Ag surfaces. However, AEC’s, 2201, and other parasitic phases also precipitate out 

of the melt and become current impediments while void spaces, left over from the initial 

porosity of the packed powder, appearing due to the dissolution of Ag and breakdown of 

the matrix, or the result of trapped gases originally adsorbed on the surface of the 

powder, coalesce and form large empty bubbles within the matrix [48-50]. The net result 

of these impediments is a drastically reduced and variable cross sectional area of Bi-

2212 in the finally reacted conductor resulting in wire transport currents that are 

drastically lower than the theoretical values one would expect of high density, well 

aligned Bi-2212 from single crystal studies [51]. To date, this problem has been 

addressed by altering the partial melting process. Steady but slow progress has been 

made in enhancing the transport properties of these conductors, yet the HEP goal of a 

conductor with engineering densities greater than 1000 A/mm2 in background fields 

above 20 T remains elusive [25, 26]. 

1.4 Hypotheses 

Limitations of state of the art OPIT conductors appear to arise from a plurality of 

processing issues including low superconducting core densities, presence of occluding 

parasitic phases, and un-optimized texture. To address these issues with the intention of 

increasing core Jc as well as the overall engineering density of Bi-2212 conductors, three 

distinct hypotheses were conceptualized: 
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1. Bi-2212 powders may be pre-textured by aligning the high transport 

current ab planes of the conductor parallel to one another. 

2. A wire fabrication process based on a high density, textured Bi-2212 

precursor may be realized in a manner that preserves the texture and achieves a 

near theoretical density superconducting core. 

3. A non-melt heat treatment process may be employed to grow and connect 

a textured Bi-2212 conductor without rapid growth of parasitic phases or the 

growth of occluding void spaces. 

Testing these three basic hypotheses was the foundation of the work in this 

dissertation and the ultimate goal of this work was the demonstration of a high core 

density textured powder conductor (TPC) that achieves as good or better Jc and Je than 

an OPIT conductor after a non-melt sintering heat treatment.  

1.5 Document Outline 

This work is divided into distinct chapters that address the individual hypotheses 

outlined in the previous section. Chapter 2 addresses the development of pre-texturing 

methods. Chapter 3 focuses on the development of a high core density textured powder 

conductor through a wire fabrication process. Chapter 4 describes the heat treatments 

used within this study and compares them to processes found in the literature. Chapter 5 

focuses on characterization of the conductors including transport current measurements 

correlated to microstructural phenomena. Chapter 6 summarizes the conclusions that 

may be reached from the completed work and provides insight into future directions for 

the development of a textured powder conductor. 
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2. TEXTURING 

 

2.1 Bi-2212 Powders 

Bi-2212 precursor powders for OPIT wire fabrication have historically been 

produced by a myriad of vendors [52-54] and independent research groups in their 

attempts to fabricate Bi-2212 conductors [55-58].  Several powder processing routes 

have been reported in the expansive literature, however two methods dominate. The first 

is a carbonate decomposition route in which oxides and carbonates of Bi, Sr, Ca, and Cu 

are mixed in a stoichiometric ratio of the cations. These precursors are calcined, 

typically in oxygen or air, then ground to fine scale. Subsequent calcinations and 

grinding steps are utilized to remove more carbon and to drive the solid phase diffusion 

process toward a homogeneous equilibrium of near stoichiometric Bi-2212. This method 

is affordable, may be carried out with relatively high purity, and is achievable in nearly 

any laboratory environment. Consequently, the carbonate decomposition route is widely 

used by research groups developing their own conductors. However, the quality of these 

powders varies drastically among groups with the main difference being the inclusion of 

impurities (most notably carbon) and the homogeneity of the powders. Due to the 

extreme variations in stoichiometry and purity of early powders, it is difficult to compare 

much of the early work on Bi-2212 wires as variations between powder batches 

contributes to wild swings in wire performance.  

Higher purity and more homogeneous powders are prepared via Nexans eutectic 

melt cast processing [59]. This process utilizes a eutectic point in the Bi-2212 phase 
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diagram that allows for the formation of a highly homogeneous amorphous mixture of 

near stoichiometric Bi-2212 to be formed. This melt cast material is then jet milled to 

fine powder and may be processed in a variety of different manners to form granular, 

agglomerated, or fine powders comprised of primarily Bi-2212 and low non-metallic 

impurities. Generally, this powder is superior to home grown varieties, with very 

reproducible results achieved from batch to batch and year to year. As such, Oxford 

Superconducting Technologies has adopted Nexans powders for all of their OPIT wire 

production. For development purposes, the only drawbacks of the Nexans powder are 

the expense and lack of domestic production.  

 

 

Table 1: Available Bi-2212 Powders 

Manufacturer Powder Condition Composition 

Praxair -200 Mesh  (75 µm or smaller) Bi2.29Sr2Ca1Cu2.016 

Nexans Jet Milled/d50 = 1.38 µm Bi2.17Sr1.96Ca0.87Cu2.00 

SCI Ball Milled/Agglomerated Bi2.06Sr2.04Ca0.87Cu2.03 
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For the body of this work, powders were sourced from a variety of manufacturers 

and preparations. Table 1 lists the respective vendors, powder type, and particle size. 

Typically, all powders contained micron scale, micaceous particulates like those shown 

in Fig. 3. Some Nexans powders were agglomerated into several hundred micron balls 

like those shown in Fig. 4. In both agglomerated and fine powders, the basic unit of the 

material are the fine, randomly oriented grains of Bi-2212. 

2.2 Texture Definition 

For the purpose of this study, texture is defined as the induced alignment of the 

micaceous grains of Bi-2212. As described previously in Section 1.2, the preferred 

orientation for high current transport in Bi-2212 conductors is with the c-axis 

perpendicular (out of plane) to the transport current. The most useful measurements of 

texture are therefore of the relationship between the c-axis and ab planes of the multitude 

of Bi-2212 particles in a sample. Two criteria have been established to evaluate the 

Fig. 3: SEI of micaceous Bi-2212 powder particles showing a platelet morphology 

with ~100 nm thickness and micron scale widths. 
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degree of texture in a given powder sample. First, samples are examined microscopically 

using an SEM to determine qualitatively whether the sample primarily has ab planes 

within the imaged plane. To quantify the degree of texture, albeit somewhat crudely, x-

ray diffraction (XRD) techniques were used to examine the out of plane c-axis texture. 

This was accomplished by comparing the maximum intensity of a c-axis diffraction 

peak, typically the (0010) or (008) peak, to that of an ab peak, typically (200/020), or 

dominant randomly dispersed peak (115) in a ratio that was subsequently deemed a 

texture parameter, τ, given by: 

𝜏 =  
𝐼0010 − 0.25 ∗ 𝐼115

𝐼0010 + 0.75 ∗ 𝐼115
 

This analysis was modeled after examples found in the literature [52, 60]. As the 

texture parameter approaches 1, more and more of the ab planes are aligned parallel to 

one another at the while the parameter returns a value approaching 0 for a truly random 

Fig. 4: Secondary electron image of agglomerated Nexans powder. Agglomeration 

is primarily due to electrostatic charging effects. 
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powder alignment. While incredibly useful in determining the behavior of a given 

powder sample with multiple texturing applications, the parameter fails at providing a 

comparison between powder samples of different particle size distributions and 

compositions. This failure is primarily due to differences in particle size distributions 

which lead to differing dispersions of incident x-rays. This in turn can lead to peak 

broadening which artificially decreases the apparent value of the texture parameter 

which uses only a maximum intensity approach rather than the area under the peak. For 

the ultimate purpose of this study, a single powder was used, so the texture parameter 

served as a sufficient figure of merit for the imparted texture to samples of this powder 

and provided significant, meaningful guidance during the development of the various 

texturing methods. 

2.3 Texturing Methods 

In the attempt to impart a high degree of pre-texture to Bi-2212 powders for 

subsequent wire fabrication, several methods were examined in detail and evaluated 

based upon the degree of achieved texture, relative density of the products from the 

process, contamination issues, and commercial scalability. While novel in the sense that 

pre-texturing Bi-2212 powders had not been undertaken, several methods for texturing 

Bi-2212 conductors have been reported in the literature [61-64]. These methods are 

predominantly based upon tape like conductors and are therefore limited by anisotropic 

properties that were intended to be specifically avoided in all wire fabrication techniques 

of this study as they lead to conductors which are difficult to incorporate in high field, 

fast ramping magnets. Additionally, texturing methods during melt processing of Bi-
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2212/Ag conductors have been reported as well. Specifically, these efforts include 

magnetic melt processing (MMP), in which conductors are heat treated within a 

background magnetic field [65-67], institution of thermal gradients to control grain 

growth [68], and manipulation of the Ag/Bi-2212 interface to control oxygen diffusivity 

[69]. Universally, these conductor geometries and processing methods led to incremental 

increases in Jc, typically on the order of 10% over traditionally processed materials, 

increases in Je were less forthcoming. Additionally, undesirable side effects were 

observed, specifically anisotropic conductor properties with respect to applied field and 

difficulty scaling to coil fabrication process, specifically with MMP.  

In order to achieve an enhanced precursor texture while maintaining purity and a 

high packing density in a Bi-2212/Ag conductor, several methods were directly 

examined in this study. These included magnetic texturing, die stamping, and roll 

compaction. The following sections address the details of each texturing method as well 

as the examination of the imparted texture. 

2.3.1 Magnetic Texturing 

Due to an anisotropic magnetic susceptibility [70-72] Bi-2212 particles 

preferentially align their c-axis parallel to applied magnetic fields. Table 2 lists the 

magnetic susceptibilities of Bi-2212 in both the ab plane and along the c-axis, and Fig. 5 

shows the orienting torques acting on a Bi-2212 particle in an applied magnetic field. In 

a vacuum, this orienting torque would induce a series of oscillations that would keep the 

particulates of Bi-2212 in harmonic motion indefinitely. In order to achieve a true 

textured powder, a viscous damping medium was required to dampen this periodic 
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motion and align the particles with c-axis parallel to the applied field. Two distinct series 

of experiments were performed with magnetic texturing. The first consisted of mixing 

Bi-2212 loose powders in epoxy and allowing the epoxy to cure in an applied magnetic 

field. A second method utilized organic solvents which acted as a viscous, removable 

carrier for the loose powders. 

 

Table 2: Anisotropic Magnetic Susceptibility of Bi-2212 Single Crystal 

Crystalline Axis Magnetic Susceptibility (cm3/g) [72] 

a/b -0.8 x 10-7 
c 2 x 10-7 

 

Epoxy Carrier 

Epoxies were used as both a viscous damping medium and to preserve powder 

samples for XRD studies in a series of proof of concept experiments for magnetic 

texturing. Samples were prepared by mixing loose Bi-2212 powders in epoxy and 

Fig. 5: Orienting torque acting on a single, micaceous Bi-2212 particle in 2 

dimensions. The magnetization vector is the vector sum of the diamagnetic 

susceptibility in the ab plane and the paramagnetic response along the c-axis. 
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allowing the particles to settle in a magnetic field while the epoxy cured in a small, 

removable cup. In these studies, two different epoxies were sourced. Both epoxies 

originated from Buehler and carried brand names of Epoxicure (500 cP viscosity) and 

Epothin (250 cP) [73]. The dependence of induced texture on applied field strength was 

examined over a series of applied background fields in several different magnets. These 

included magnets within the Electrical Engineering department at TAMU and at the 

National High Magnetic Field Laboratory in Tallahassee, FL. Additionally, effects of 

time in field were examined on textured development during the curing process. Finally, 

two different powders were explored in the study, one an agglomerated Nexans powder, 

the other an ancient batch of Praxair powder that had seen multiple months of exposure 

in the back of a late model BMW as part of a proprietary TAMU accelerator laboratory 

Fig. 6: Epoxy sample cup with mixed Bi-2212 powder on non-magnetic sample 

holder. The magnetic field would be oriented vertically (parallel to the supporting 

dowels) in this image. 
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aging process. Fig. 6 [40] shows a sample mounted in the test fixture, ready to be loaded 

into the magnet bore. 

Upon curing, the samples were removed from their cups and samples were 

examined with XRD to ascertain their degree of texture. Due to settling, it was evident 

that the higher powder concentration was located at the gravitational minimum, which 

was also the flattest, smoothest surface, making it the ideal face for XRD analysis.  

Texture Dependence on Applied Field Strength 

To study the effects of applied field strength on the orientation of loose Bi-2212 

powders, a volume of 1.25 cm3 the Praxair powder from Table 1 was uniformly mixed 

with a 15 cm3 of Epoxicure in a small cup. Upon mixing, these samples were 

immediately placed within the bore of a variable field superconducting magnet and 
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Fig. 7: Texture parameter vs. applied field strength for Praxair powder in a 500 cP 
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allowed to harden in a fixed background field of up to 8 T. After curing, the samples 

were removed from the magnet and the bottom surface of the cured samples was 

subjected to XRD. The results of these experiments are presented in Fig. 7 and indicate 

that the naïve suspicion that increasing magnetic field strength leads to a monotonically 

increasing particle alignment is indeed true [53]. 

Powder, Viscosity, and Time in Field Effects 

Due to the fact that a fresh Bi-2212 powder was required for actual conductor 

fabrication and epoxy would most likely not be the carrier medium of choice for a 

conductor development, a second round of experiments were carried out at fixed field of 

8.9 T. Praxair and Nexans powders as listed in Table 1 were used in this study. 

Additionally, both the Epothin and Epoxicure epoxies were used to determine the effect 

of viscosity on the process. Samples were prepared by measuring 1.25 cm3 of powder 

and mixing this volume in 15 cm3 of epoxy. The samples were immediately loaded into 

the bore of the magnet, then allowed to cure for variable amounts of time ranging from 5 

minutes to the full cure time of the epoxy, which was 9 h for the Epothin and 6 h for the 

Epoxicure. Samples were then removed from the bore and, if necessary, allowed to 

complete their cure outside of the applied field. Upon completion of the cure, samples 

were removed from their mounting cups and XRD was performed to determine the 

texture parameter. The results of these experiments are presented in Fig. 8. 

From Fig. 8, several observations may be immediately made. First, there is a 

distinct difference between the texture observed in the two different powders with the 

Praxair powder more strongly orienting with the magnetic field. This effect was due to 
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the larger particle size of the Praxair powders whose greater surface in the ab plane 

increased the magnetic moment of the particles under the applied field. Additionally, the 

Nexans powder was observed to electrostatically agglomerate, which would prevent the 

individual particulates from orienting themselves, thereby lowering the imparted texture. 

Secondly, while a slight difference was seen between the 250 cP and 500 cP epoxies, 

this effect was small compared to the differences between powders.  

Regarding the texture evolution with respect to time, the texture plateau appeared 

after 2 hours of exposure to the magnetic field. This time roughly correlated to the 

working time for the epoxy, which markedly increased its viscosity after about 2 hours 

of pot time [74]. 
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Solvent Carriers 

While the epoxy carriers provided a sufficient vehicle to understand the effects of 

various powders, field strengths, and viscosities of the carrier, the epoxy was 

irremovable and left no room for application to a wire geometry. At this point, it was 

necessary to develop a deposition method that would provide a viscous medium for 

powder deposition that was easily removable, left a negligible amount of contamination, 

and would not disturb the imparted texture during removal. Early work with Bi-2212 

conductors focused on tape casting techniques such as doctor blade manufacturing which 

deposited a slurry of Bi-2212 suspended in an organic binder onto a moving substrate 

[61, 75, 76]. These open faced tapes were then heated to burn out the organic binder, 

presumably leaving little or no contamination behind. Afterward, these tapes could be 

melt processed to connect the superconducting grains. Despite significant current 

densities at the time of their fabrications, these tape conductors were highly anisotropic 

with large AC losses and limiting geometries. However, these previous works 

demonstrated that certain alcohols left little or no residue on Bi-2212 powders and 

displayed no net interaction with the material. Furthermore, alcohols are readily 

available in very high purities at low costs and tend to have very high vapor pressures 

allowing them to be removed by evaporation with a variety of techniques. Three 

alcohols with were chosen for the solvent deposition study: isopropanol, methanol, and 

ethanol. In general, these solvents were mixed with Bi-2212 powders to form a slurry 

that could be deposited on a substrate followed by removal of the solvent. Ultimately the 

concept for preparing these slurries was for the fabrication of a modified jelly roll 
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conductor based upon the highly textured Bi-2212 powder [77]. In this model, a 

corrugated or troughed silver foil would be filled with a Bi-2212/solvent slurry. A 

background magnetic field would be applied and the solvent would be evaporated, 

leaving behind only the Bi-2212. The substrate could then be wound around a central 

mandrel and drawn into a multifilament wire based upon the textured powder. The 

process is illustrated in the images of Fig. 9 [52]. As a proof of concept, textured 

samples were prepared by dispersing a fixed mass of Bi-2212 loose powder in a fixed 

volume of alcohol. Typically, 1.6 g of powder was dispersed in 20 mL of solvent. Due to 

aggregation of the dry powders, the very dense Bi-2212 sank in the low viscosity, low 

density solvents. To combat this effect, samples were agitated ultrasonically for a 

minimum of 15 minutes. Fig. 10 shows the dispersion achieved through ultrasonic 

agitation for one such sample.  

Fig. 9: Jelly roll fabrication process. Textured precursor is placed into a specially 

prepared substrate (top left), an Ag foil is laid across the top (bottom left) and the 

composite is rolled to form a billet for subsequent area reduction processes (right). 

© 2011 IEEE 
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To apply the background magnetic field, a 7.0 T magnet was used. A fixture was 

fabricated that consisted of a vacuum tight tube, at the bottom of which was placed an 

aluminum SEM sample mount in a sealed volume. A schematic of the experimental 

setup is shown in Fig. 11 [52]. The fixture was placed inside the bore of the magnet and 

the top 5.0 mL of the agitated slurry was injected into the tube via a syringe. After a 

settling time of 5 minutes, a vacuum pump was used to evacuate the tube. Instead of 

rapidly pulling vacuum, a throttling valve was incorporated to prevent rapid boiling of 

the solvents. Pumping continued until the alcohol was completely removed from the 

sample, as indicated by a precipitous drop in pressure within the sample chamber. 

Empirically, samples that were not allowed the full 5 minutes of settling time were 

missing significant quantities of powder, indicating that the Bi-2212 was being pulled 

off with the vacuum pump as a fine powder. Additionally, samples that were evaporated 

too rapidly went into a violent boiling regime that disturbed the texture of the samples. 

The fixture was then removed from the field and the textured powder samples were 

carefully removed from the fixture for further study. The tube was flushed with organic  

Fig. 10: Coating from an ultrasonically agitated Bi-2212/Ethanol slurry. Solvent 

was evaporatively removed. 
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 Fig. 12: Texture parameter evaluated at 7.0 T for primary solvents. © 2011 IEEE 

Fig. 11: Solvent deposition experimental layout. Samples were loaded through the 

vacuum evacuation tube via syringe and allowed to settle in the applied field. After 

settling, vacuum was pulled on the sample chamber to remove the volatile solvents. 
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solvent and wiped clean multiple times to remove any residual Bi-2212 along the walls 

before a run was repeated. 

Samples were then taken for XRD analysis to ascertain their texture parameters. 

Fig. 12 shows the texture parameter of various solvents in a 7.0 T background field. 

These results indicated that there were no major differences in imparted texture between 

the three non-interacting solvents investigated.  

Microscopy was carried out to determine the quality of the powder coating. As 

previously discussed, the quality of powder coatings varied with the speed at which the 

solvent was evacuated. Examples of poor and acceptable powder coatings are shown in 

Fig. 13 and Fig. 14 respectively. Even in the acceptable coatings, it was evident that a 

large amount of porosity persisted in the deposited powders.  

 

 

Fig. 13: Destroyed coating due to rapid boiling of the ethanol carrier solvent. 
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Magnetic Texturing Conclusions 

Through both x-ray diffraction and SEM studies, magnetic texturing of Bi-2212 

through use of a carrier medium of either epoxy or a removable liquid was confirmed. 

General trends existed that higher viscosity fluids resulted in a greater degree of texture 

by dampening the harmonic motion of the Bi-2212 particles in applied field. 

Additionally, increased applied field strength was also observed to enhance the degree of 

imparted texture. Ultimately, the solvent deposition method was an acceptable avenue 

for pre-texturing Bi-2212 powders for a jelly-roll conductor approach [53]. 

2.3.2 Mechanical Texturing 

Aside from the anisotropic magnetic properties utilized to advantage in the 

previous section, Bi-2212 also demonstrates an anisotropic shear modulus and bulk 

modulus [38]. In many ways, Bi-2212 behaves very similarly to mica, a mineral with a 

crystalline structure very close to that of Bi-2212. Both materials exhibit preferential 

Fig. 14: Deposited coating allowing a sufficient settling time and evaporation rate. 
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shear planes that allow particles to slide over one another. Combined with the higher 

modulus along the c-axis, Bi-2212 preferentially deforms under load by sliding along the 

ab planes. These anisotropic properties and the general platelet shape of Bi-2212 

powders allow them to stack so their c-axes are normal to whatever surface on which 

they light. However without an orienting force, random effects influence the packing, 

leading to either a randomly oriented powder, similar to dumping a pile of bricks on the 

ground, or an electrostatically agglomerated powder, like Styrofoam packing peanuts 

clinging together.  

Given the anisotropic mechanical behavior of the particles, it was hypothesized 

that texture could be achieved by applying a force normal to the plane in which texture is 

desired to be achieved. This force would primarily overcome electrostatic effects and 

enhance the packing density of the particles, locking them in place with one another to 

form a solid unit. To examine the possibility of achieving texture in this manner, a series 

of experiments were undertaken. The first consisted of a simple die set to demonstrate 

that texture could be achieved through uniaxial application of mechanical force. 

Secondly, a demonstration of the scalability of the texturing method to a continuous 

process was undertaken. Finally, a series of die sets were commissioned to provide 

textured samples which would be conducive to short sample testing and ultimately, wire 

fabrication. A relationship was established between compaction force and density as 

well as between compaction force and imparted texture of Bi-2212 powders.  
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Pellet Studies 

The first and most rudimentary method of examining texture development by 

mechanical methods was through the fabrication of high density pellets of Bi-2212 

through a round die set. These die sets were of varying diameters and consisted of three 

components: a hardened tool steel anvil, a hardened hammer (a mold ejector pin), and a 

medium strength (Alloy 1144) sleeve. The sleeve was placed on top of the anvil and 

loaded with a precise mass of Bi-2212 powder. The hammer was inserted and then a 

hydraulic press was used to slowly apply a loading force. After allowing the particles to 

settle under load, which typically required multiple additions of force, the hydraulic load 

was removed and the pellet was ejected from the sleeve. One example of the die set and 

a fabricated pellet are shown in Fig. 15.  

The amount of pressure applied to the samples was varied to determine the 

dependence of pellet thickness (and thereby density) and texture on the applied force. 

Fig. 15: Die set (left) and coined pellet (right). Die set consists of a hydraulic press 

(1), hardened tool steel hammer (2), Alloy 1144 Steel mold (3), and hardened O1 

tool steel anvil (4). 
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XRD was used to find the texture parameter of the pellets. Results from these 

experiments are presented in Fig. 16 [52]. It was found that loads as low as 10 ksi were 

sufficient to compact the powders into a stable configuration. Furthermore, it was 

evident that increasing applied pressure had the predictable effect of enhancing the pellet 

density and that texture also increased with applied pressure. Both of these effects 

saturated with applied pressures exceeding ~40 ksi, while 20 ksi resulted in a drastic 

increase in both density and texture. 

Microstructure examination of the pellets indicated that the surfaces were indeed 

highly textured and had very little apparent porosity. Importantly, the surface showed no 

significant signs of contamination from the stamping process, indicating that the 

hardness of the steels in these die sets was sufficient to hold up against the hard, abrasive 

Bi-2212 powders [52]. 

Fig. 16: Texture parameter vs. applied pressure for pellets. 
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While the surface of the pellets was evidently well textured, questions remained 

as to the behavior of the bulk of the material. To examine the bulk of the material, a 

series of pellets were fabricated and subsequently cleaved along their mid-plane. This 

was accomplished by using a razor blade to halve the pellet, like splitting open an Oreo. 

The two halves were then characterized with XRD and SEM to establish the texture of 

the bulk. For a compaction pressure of 20 ksi, an average texture parameter of 0.79 was 

found on the cleaved surfaces. This result agreed favorably with the results of surface 

texturing at the same compaction pressure. Furthermore, the texture was confirmed via 

microscopy and Fig. 17 shows a representative SEM image of the cleaved pellets.  

At this point, a conclusion was reached that an optimum density and texture 

could be obtained by applying a 20 ksi load normal to the desired texturing plane. This 

value was chosen because texture was at the plateau level with respect to applied 

pressure, yet the density remained low enough to allow for subsequent deformation. 

Fig. 17: Surface of pellet cleaved parallel to its face. The bulk appears highly 

uniform and remains well aligned. 
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Round pellets could not readily be fabricated into a geometry desirable for wire 

fabrication, so a new method for creating conductor ready textured powders was 

required to be established for incorporation of mechanical pre-texturing in a wire 

fabrication process [40, 52].  

Continuous Roll Processing 

Aside from the inhospitable geometry of the pellet studies, batch processes 

typically limit the applications of superconducting materials as short lengths increase the 

number of joints in long length applications. As joints are typically the most problematic 

area in a superconducting application [78], it is imperative to limit their number and 

precisely control their location. At the present, Bi-2212 production is only limited in 

length by available sizes in Ag tubing which allows for at least 1 km long production 

[79]. Given a die stamping process, even in an amenable geometry for wire fabrication, 

is inherently limited in length by the scale with which the Bi-2212 may be compacted, 

an alternative to batch processing is necessary to maintain any semblance of economy in 

Bi-2212 wire fabrication and to produce the several kilometer lengths that are coveted by 

the HEP community and magnet technologists in general.  

The parameters for such a continuous process were clearly that the process must 

be able to produce a uniformly textured sample by applying a mechanical load of 20 ksi 

to loose Bi-2212 powders without introducing contaminants. Additionally, it was highly 

desirable from both a safety point of view and a scientific perspective to control the 

atmosphere that the process takes place in. This is to prevent the adsorption of carbon 

dioxide and water onto the surface of the Bi-2212 powders, which would then be trapped 
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within a conductor to be processed later. Additionally, providing atmosphere control for 

the powder is the primary engineering safety control that prevents the inhalation of the 

sharp, ultrafine particles. 

Roll processing evinced itself as the leading concept to provide the requisite 

compaction and texturing in an industrial scale processes. To demonstrate the feasibility 

of such an approach, a demonstration scale experiment of the effects of roll compacting 

Bi-2212 powders was undertaken. To enable this endeavor, a piece of equipment from 

the pharmaceutical industry was adapted for use in the roll processing of Bi-2212 loose 

Fig. 18: Installed L-83 Chilsonator (left) and mechanical schematic of the roll 

processing unit (right). The glovebox in the image (left) enables a positive or 

negative pressure to be maintained for during operation, maintaining the hermetic 

seal on the output. © 2011 IEEE 
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powders. Fig. 18 [40, 52] shows the equipment, an L83 Chilsonator procured from 

Fitzpatrick Co. The device consists of two hardened steel rollers rotating in opposite 

direction to one another with a variable gap width between the two rollers. Powder is 

forced through the rollers by a vertical feed screw and a constant supply of powder is 

provided through a horizontal auger connected to a hopper containing the loose powder. 

Variable parameters include the vertical auger’s rotational speed, roll gap width 

controlled by a variable hydraulic pressure, and the powder feed rate from the hopper. 

By tuning these parameters, a uniform density ribbon of Bi-2212 powders was produced. 

Since these ribbons were inherently stiff and atmosphere control was still important, an 

uptake system was employed that allowed the fabrication of 1 m long ribbons of Bi-

2212. In practice, lengths in excess of 1 m would be possible with a superior take-up 

system and the length of ribbon produced would only be limited by the amount of 

available powder in an industrial scale process.  

 

Table 3: Properties of Roll Processed Ribbons [52] 

Sample 
Loose 

Powder 

Ribbon 

Transverse 

Ribbon 

Longitudinal 

Ribbon 

Bulk 

20 ksi 

Pellet 

Texture 
parameter, τ 0.16 0.70 0.70 0.67 0.70 

Density 
g/cm3 ---- 4.24  3.9 

 

Confirmation of the texture and evaluation of the imparted density of the ribbons 

were carried out utilizing the methods described previously. Results of the texture 

evaluation are shown in Table 3 [40, 52, 80] along with SEM images of the compacted 

ribbons surface and cross sections in Fig. 19 and Fig. 20 respectively. Density measurements
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were performed by direct measurement of at the thickness of a given ribbon via micrometers 

and area fraction calculations were achieved by taking scanned images of the ribbons with a 

calibrated scale and post processing them in ImageJ. Due to the complicated load structure 

of a rolling process, the compaction pressure applied to the powder was not well defined. 

However, upon comparison of the texture and density of the roll compacted ribbons, 

the roll compaction method was equivalent to applying a load of ~20 ksi to the powder in a 

die stamping process. 

While the roll processing experiments were successful in demonstrating the 

efficacy of the method for texturing and densifying the loose Bi-2212 powders, the scale 

of the experiments was not amenable to further process development. First, the wide 

ribbons were inhospitable for heat treatment and short sample measurement. These 

highly compacted ribbons were also very difficult to cut or trim after fabrication and 

Fig. 19: SEM images of the surface of a continuously compacted ribbon from the 

Chilsonator. Surface roughness is greater than that of the pellets (left), but the 

imparted texture is nearly identical (right). 
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altering the dimensions coming from the Chilsonator presented an engineering challenge 

whose solution required redesigning the entire compaction process. Additionally, several 

kilograms of powder were required to operate the Chilsonator for even a minimum run 

with a significant fraction of that powder resulting as waste in either the leading or 

trailing feed of the process. While initial commissioning took place with a quantity of 

inexpensive, low quality powder, running the process with high quality powders for 

Fig. 20: SEM images (SEI) of a transverse fractured ribbon of Bi-2212 from the 

chilsonator. Very low void space is prevalent and the narrow aspect ratio grains 

are apparent in the highest magnification images. 
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conductor development would have been prohibitively expensive. As such, the 

development of a batch scale process for further conductor development became 

necessary. 

Square Rod Compaction 

In an effort to economically and efficiently fabricate a conductor that would 

allow for the development of deformation processes of the high density, textured 

conductor as well as to embody a conductor which may be heat treated and tested for 

transport measurements, a series of die sets were commissioned. These die sets worked 

on the principle of uniaxial compression in much the same manner as the pellet studies 

and were specified to produce samples of a given dimension for either direct short 

sample testing of Bi-2212 bulk material or for a wire development project.  

Direct Short Sample Measurement 

To match available power supplies and to rapidly enable short sample testing, the 

first die set was fabricated to produce a 1 mm x 1 mm x 150 mm square rod of Bi-2212 

at compaction pressures up to 80 ksi, but nominally specified at 20 ksi. The die set is 

shown in Fig. 21 with a coined bar shown in Fig. 22. As with the pellet studies, 

compaction took place in air and all components of the die set were cleaned prior to each 

coining operation. Texture of these bulk materials was confirmed via XRD and 

microcopy as shown in Fig. 23 and Fig. 24 [80]. No contamination from the die set 
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(comprised of D2 and M2 steels) was found in the resulting bars. After coining, samples 

were heat treated in contact with Ag foils to provide current transport leads as described 

in the Heat Treatment section. 

Fig. 21: Die set for compacting square rods mounted in a hydraulic press. Powder 

is loaded into the lower half (mold) then aligned with the upper half (hammer) for 

the compacting strikes. 

Fig. 22: A 1 mm x 1 mm x 43 mm coined square rod for direct transport 

measurement. 
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Texturing for Wire Fabrication 

While 1 mm square Bi-2212 bars were acceptable for demonstrating the texturing 

method and provided a first attempt at achieving a short sample measurement, these bars 

Fig. 23: XRD patterns of untextured loose powder and a coined bar. The circled 

peak is the (0010) peak. The dominance of this peak in the coined bar indicates the 

enhancement of out of plane c-axis texture. 

Fig. 24: Surface (hammer side) of coined Bi-2212 1 mm x 1 mm bar showing the 

high degree of uniformity and aligned particles. 
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were not robust enough to fabricate a billet. Additionally, given their small size, a 

monocore wire development was ill advised since any monocore development that 

obtained an appreciable (>20%) area fraction of superconductor would require the use of 

prohibitively small Ag components. As such, a bar with greater cross sectional area was 

required for the purpose of manufacturing a monocore wire based on a high density 

textured powder. To match Ag tubes that were available with dimensions of 7.3 mm OD 

and internal square section of 4.5 mm flat to flat, the die set from the 1 mm square bar 

experiments was modified to produce a 4 mm x 4 mm x 150 mm bar of Bi-2212 

compacted at 20 ksi. Such a bar is shown in Fig. 25. As in the previous case with the 1 

mm square bars, compaction took place in air. Again, texture was confirmed via XRD 

and microscopy with xray spectra and SEM with identical results to those presented for 

the 1 mm x 1 mm bars. Density of the 4 mm coined bars was consistent with results from 

both the 1 mm bars and pellet studies and the 20 ksi compaction pressure yielded a 

density of roughly 4.2 g/cm3, or 64% of single crystal density [81]. 

Fig. 25: Coined 4 mm x 4 mm x 150 mm bar as a precursor to TPC fabrication. 
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2.4 Texturing Conclusions 

Two methods for texturing Bi-2212 loose powders were studied through a series 

of experiments. Both the magnetic orientation and mechanical texturing were 

demonstrated to align the anisotropic Bi-2212 particles. However, the uniaxial 

compression technique yielded the highest quality oriented powders and was determined 

to be the most amenable form of textured powder for wire development and transport 

current testing as evinced by the pellet studies. While continuous ribbons of high density 

textured powder were possible through a roll compaction process, the investment to 

reliably produce high quality ribbons was uneconomical for research scale 

developments. Instead of continuing the development of these ribbons, high quality 

square bars were fabricated to provide testable textured powders for both wire 

fabrication studies and direct short sample measurements.  

 



 

46 

 

3. WIRE FABRICATION 

 

3.1 Introduction to Wire Fabrication 

Details of the OPIT process and the evolution of Bi-2212 from a novel 

superconducting material to a round wire form were presented in the introductory chapter 

of this work. As such, the following chapter focuses specifically on the details of the wire 

fabrication of a monocore textured powder conductor. The intention of such a wire 

fabrication process was to both produce a conductor amenable to short sample testing and 

to investigate the deformation properties of a Bi-2212/Ag composite for further conductor 

development.  

Wire fabrication required four main components that will be discussed in detail. 

First, billets were fabricated with a textured powder precursor. Following this step, an 

isostatic extrusion was the first deformation step in the process. Third, deformation 

continued through a series of wire drawing operations. And finally, wires were stripped of 

supporting copper from the deformation processes to provide an oxygen transport path 

during heat treatment. 

3.2 Billet Fabrication 

The three primary components of the textured powder billets are shown in Fig. 

26 [81]. They consist of a textured powder Bi-2212 component compacted uniaxially as 

described in the texturing chapter, an Ag tube (Tanaka fine Ag provided by 

SupraMagnetics) drawn with a square inner section, and finally, an alloy 110 Cu 

extrusion jacket.  
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The dimensions of these components are listed in Table 4 along with their 

suppliers. The copper extrusion jacket was additionally machined to the form shown in 

Fig. 27 through multiple steps. Gun drilling of the inner diameter was carried out by 

HDH instruments Pattison, TX with subsequent machining of the tapered nose cone and 

evacuation tube port taking place at TAMU. The evacuation tube consisted of a 9.5 mm 

OD, 8.0 mm ID Cu tube and was brazed in place. Upon the completion of all machining 

and soldering steps, the interior was cleaned with a series of solvents, first by 

mechanically scrubbing the interior and ultimately through ultrasonic agitation to 

remove all internal grease and debris. Notably, no acids were used to remove the surface 

layer of copper oxide within the extrusion jacket since this would favor the metallurgical 

bonding of the Ag and Cu 

Fig. 26: Billet components during assembly including Cu extrusion jacket, Ag tube, 

and coined Bi-2212 rod partially inserted into the Ag tube. 
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Table 4: Billet Components 

Material/Supplier OD ID Fabricated 

Cu 110/ 
McMaster Carr 1.25” 0.297” HDH 

Instruments/TAMU 
Ag/Tanaka 0.289” 4.5 mm flat to flat SupraMagnetics 

Bi-2212/Nexans 4 mm x 4 mm -- TAMU 
 

interfaces. Upon termination of the final cleaning step, the extrusion jacket was placed 

within an Ar glove box to await assembly of the remaining billet components. 

Fabrication of the Ag tube was carried out at SupraMagnetics who provided a 

single 18.5” long tube to TAMU. The tube was EDM cut at TAMU to yield 2, 6.5” long 

tubes and 1, 6” long tube. The 6” long tube was reserved for future work while the 

remaining 6.5” tubes were first cleaned with ethanol, then taken to a class 100 clean 

room and etched to a dull bright with 0.8 M HNO3. Tubes were sealed within the 

cleanroom in an ethanol bath which was maintained until the tubes were placed in the 

vacuum port of the Ar glove box. At this point, the ethanol was evaporated by 

evacuating the chamber and the Ag tubes were stored in the Ar glove box until billet 

assembly.Four independent Bi-2212 components were fabricated for the fabrication of 

two billets. The redundancy was in part due to the fragile nature of the square rods and 

the difficulty of inserting the rods into the Ag tube by hand without fracturing the Bi-

Fig. 27: Cross sectional view of assembled billet showing from interior to exterior 

the placement of the Bi-2212 rod, Ag tube, and Cu extrusion jacket. The evacuation 

tube and Cu plugs are ommitted for clarity. 
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2212 component. Billets were labeled based upon the Bi-2212 component. Ultimately, 

bars TAMU IV-2 and TAMU IV-4 were used in the study. The dimensions of these bars 

are presented in Table 5 along with their initial density and other pertinent parameters. 

Of specific interest is the fact that bar TAMUIV-2 was calcined at 600 C for 4 h in a 10 

mTorr vacuum followed by an 8 h soak at 200 C under 1 atm of O2 in an attempt to pull 

off volatiles that had adsorbed on the bar’s surface and in interstitial spaces and to 

remove as much H and C contamination from the powder as possible. This heat 

treatment was done in concert with examples from the literature [82, 83]. Upon 

completion of the heat treatment, the bar was removed from the furnace under 

atmospheric conditions and immediately transferred to the glove box where it was stored 

under Ar until billet assembly. Once inserted into the glove box, it was evident that a 

slight brown discoloration had occurred on all sides of billet TAMU IV-2. The billet was 

scraped to remove any discoloration and assembly proceeded.  

Billet assembly took place by hand in the Ar glove box. The Bi-2212 bars were 

dressed with a razor blade to loosen the powder at their surfaces and facilitate sliding 

into the Ag tubes. Bars were inserted such that the 2212 bar was recessed into the Ag 

 

Table 5: Textured Rods Used in Billets 

Sample 
Width/Height/Length 

(mm) 

Mass 

(g) 

Density 

(g/cm3) 

Compaction 

Pressure 

(ksi) 

Calcined 

TAMU 
IV-2 3.91/3.90/150 9.92 4.34 20.7 Yes 

TAMU 
IV-4 3.90/3.95/150 9.69 4.19 20.7 No 
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tube by roughly 0.25” on each side. This void space was filled with a custom Ag plug 

that was fabricated with Ag wire which had been previously cleaned and entered the 

glove box in the same manner as the Ag tubing. With the Ag plugs in place, the Ag and 

2212 component was inserted into the extrusion jacket. A Cu rod which had previously 

been degreased in the same fashion as the interior of the extrusion jacket was used to fill 

2” of the remaining void space within the extrusion jacket and a Cu mesh was packed 

into the remaining void. A needle valve was attached to each billet’s evacuation tube. 

This valve was closed in the Ar environment, sealing the billet with a protective 

atmosphere. At this point, billet assembly was complete and the billets were removed 

from the glove box. In an effort to remove trapped gases within the billets and to anneal 

the metallic components, both billets were attached to a vacuum pump and evacuated 

while the billets heated to 450 C and were held for 6 h. Vacuum pressure was monitored 

and a base pressure of 10 mTorr was established within the system. At 100 C and 300 C, 

momentary spikes in the vacuum pressure were observed, presumably corresponding to 

the removal of surface water and CO2 contamination respectively. It was not possible to 

ascertain which billet served as the originator of these pressure spikes as the billets were 

co-treated in a common vacuum system.  

At the end of the 6 hour anneal, the billets were removed from the furnace and 

the evacuation tubes were first crimped, then welded shut behind the needle valve. The 

crimping and welding operations took place with the vacuum pump in operation and 

acted to seal the vacuum in place during transport of the billets from TAMU to the 

Applied Superconductivity Center in Tallahassee, FL for extrusion. Images of the 
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completed billets are shown in Fig. 28. At this point, billet fabrication was complete and 

the billets were shipped to Tallahassee for extrusion. 

3.3 Extrusion 

An isostatic extrusion was selected for the first deformation of the assembled 

billets. This decision was made due to the low modulus of silver, significant void space 

in the billet between the Ag and 2212 components, and because of the mismatched 

moduli of the Bi-2212 and Ag components. By choosing an extrusion with a strain 

sufficient to remove the residual void space, the billet would essentially be locked in 

place for subsequent drawing operations. Isostatic extrusions apply a hydraulic load 

about the entirety of the billet which prevents mushrooming effects for soft modulus 

materials. An additional concern for billets of mixed moduli, such as our billet with soft 

Ag and hard Bi-2212 is the propensity for the conductor to sausage. This effect occurs 

Fig. 28: Fully assembled, sealed billets with carbide die over evacuation tube. 
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when the soft modulus material preferentially deforms until a sufficient load is applied to 

deform the hard component. Motion continues through the die in a stick slip motion 

resulting in a linked sausage appearance of the filamentary composite, similar to the 

image shown in Fig. 29. The isostatic loading addresses this issue by preventing the 

bulging effects that are typical of sausaged composites. Finally, extrusion serves to 

perform a severe areal reduction which reduces the number of subsequent passes 

necessary to achieve a fine wire dimension. In this light, it appears most economical to 

take the largest reduction possible in the extrusion pass without causing a sausaging 

phenomenon or degradation of the conductor.  

With the aforementioned concerns in consideration, a moderate engineering 

strain of 2.2, corresponding to a reduction in diameter from 1.25” down to 0.5”, was 

selected for the extrusion. This reduction was calculated to be sufficient to remove any 

void space within the billet and primarily served to lock the components in place for 

subsequent drawing. The strain was inherently limited by several concerns. First, a 

pragmatic issue arose with the necessity to fit the 3/8” diameter evacuation tube through 

the extrusion die. Second, energy deposited due to the deformation of the billet results in 

Fig. 29: Sausaging phenomenon caused by over-deforming a mixed composite with 

a high modulus interior (Bi-2212) and low modulus exterior (Ag). 
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a significant temperature increase. Given the sensitivity of the Bi-2212 component to 

excessive heat, and the propensity of Ag and Cu to alloy, the maximum temperature of 

the billet would preferably stay below 600 C. As the temperature rise would increase 

with increasing applied strain and the temperature rise is highly dependent on empirical 

factors such as die condition, lubricant used, strain state of the material extruded, and 

extrusion rate among others which made this value difficult to calculate, a conservative 

strain was chosen. Additionally, extrusion at a higher strain would run the risk of 

breaking the billet or otherwise degrading the conductor. 

Due to the specialized equipment necessary to achieve a desirable result, the 

extrusion was carried out at the Applied Superconductivity Center in Tallahassee, FL 

under the expert tutelage of William Starch. Fig. 30 shows the extrusion press. Prior to 

the extrusion, the billets were machined to confirm their precise outer diameter and taper 

Fig. 30: Isostatic extrusion press at ASC. Billets are loaded through the opening at 

left into the extrusion chamber. The chamber is flooded with hydraulic fluid, and 

pressurized until the billet seals on the die. Continued increase in hydraulic 

pressure extrudes the billet. 
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by ASC staff and lubricated a Loctite Nickel Anti-Seize compound. While lubrications 

can be a significant concern in multifilament Bi-2212 processing, the fact that the outer 

copper jacket was isolating the billet from the lubricant mitigated any concerns that may 

have arisen.  

Extrusions of both billets were carried out without incident with extrusion rates 

being controlled by an experienced operator and the hydraulic pressure within the 

chamber continually monitored. Plots of the hydraulic pressure vs. extrusion distance 

were charted during the extrusion. The smooth nature of these plots which maintained a 

nearly constant loading pressure during processing indicated that no significant 

sausaging or non-homogeneous reduction occurred along the length of the billet.  

Upon removal from the press, the billets had extended in length to 1.55 m each. 

This included a leader and tail of copper that did not contain the Ag/2212 composite. At 

this stage, sampling of the billets to determine the uniformity of the transverse and 

Fig. 31: Polished sections of extruded billet. Left: Transverse section showing the 

earring phenomenon and anisotropic reduction with preferential reduction in the 

vertical direction. Right: Longitudinal section showing relatively uniform Ag/Bi-

2212 interface. 
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longitudinal sections. Polished samples at this stage are shown in Fig. 31 [81]. In this 

early analysis, it was evident that sausaging did not occur in a significant fashion in the 

extrude conductor. From the transverse section, two effects were also clear: the Bi-2212 

reduced anisotropically and the conductor exhibited an “earring” effect. The anisotropic 

reduction was an anticipated effect and was attributed to the anisotropic modulus of the 

textured Bi-2212 which preferentially shears along the ab planes. Meanwhile, the earring 

was not anticipated, but can be explained by the square inner geometry of the Bi-2212 

undergoing a round deformation coupled with the difference between the Bi-2212 and 

Ag moduli.  

As the billets had been cut for sampling, and gas contamination of the billets was 

a significant concern, the back of the billet was pointed using a swaging machine. This 

effectively re-sealed the billet with a crimped metal seal, preventing significant gaseous 

diffusion while the billets were shipped for drawing. 

3.4 Wire Drawing 

Post-extrusion, billets IV-2 and IV-4 were both nominally 0.500” in diameter and 

of 1.55 m in length. In order to examine multiple parameters in the drawing process, the 

billets were halved with roughly 18” (taken from the tail of the extruded billet) cut from 

the back of each billet. These tail billets were labeled as TAMUIV-2b and TAMUIV-4b 

respectively. Due to the large amount of copper still jacketing the Ag/2212 component, 

the “b” series billets were machined down from the ½” diameter to a ¼” diameter in an 

effort to reduce the amount of copper that would later be removed and to determine if 
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changing the copper wall thickness would alter the deformation properties. Drawing 

took place at SupraMagnetics, a firm experienced with drawing Bi-2212 wires.  

 

Table 6: Drawing Schedule for “A” Billets 

Die Size Reduction % Total Strain (eng.) 

0.5000” Starting Size 2.2 
0.4600” 15.36 2.4 
0.4100” 20.56 2.6 
0.3650” 20.75 2.8 
0.3250” 20.72 3.1 
0.2893” 20.76 3.3 
0.2573” 20.90 3.5 
0.2294” 20.51 3.8 
0.2053” 19.91 4.0 
0.1819” 21.50 4.2 
0.1620” 20.68 4.5 

 

Carbide dies with an 8.5 degree entrance angle and long landing were selected 

based on previous experience of the SupraMagnetics staff. Since copper was still 

jacketing the Ag/2212 component so a mixture of lubricating oils were used to assist in 

the drawing process. The reduction schedule used on the “A” schedule billets is shown 

in  Table 6, while the “B” reduction schedule is shown in Table 7.  

The drawing process consisted of iteratively pointing (swaging) the front end of 

the wire, lubricating the sample, passing the point through the die, then pulling the wire 

through the die via a hydraulically pulled jaw. A picture of the draw bench with a billet 

is shown in Fig. 32. Periodically, samples of various lengths were cut from the back of 

the billet to analyze the cross section and for future studies of the core densities, cross 

section, and transport properties of the conductor.  
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Table 7: Drawing Schedule for "B" Billets 

Die Size Reduction % Total Strain (eng.) 

0.250” Starting Size 2.2 
0.2294” 15.80 2.4 
0.2053” 19.91 2.6 
0.1819” 21.50 2.8 
0.1620” 20.68 3.1 
0.1440” 20.99 3.3 
0.1285” 20.37 3.5 
0.1144” 20.74 3.8 
0.1019” 20.66 4.0 
0.0907” 20.77 4.2 
0.0808” 20.64 4.5 

 

Wire fabrication continued without breaks until the wire diameters and lengths 

listed in  Table 8 were achieved. Ends were pointed in a similar manner to the post extruded 

samples in an effort to prevent gaseous diffusion into the cores. At this point, the wire 

Fig. 32: Billet during drawing process. The sample at left is pointed and inserted 

through the die. The pointed end is then grabbed by the jaws at right and the 

rod/wire is pulled through the die mounted in the bull block. 
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fabrication was considered complete and the products of the effort were stored until the 

copper could be removed and the Ag/Bi-2212 wires heat treated. 

 

Table 8: Dimensions of Drawn Conductors 

Billet Cu Diameter (mm) Ag width (mm) Quantity (m) 
2A 4 1 3 
2B 2 1 4 
4A 4 1 0.2 
4A 0.5 0.125 >5 
4A 1 0.25 >5 
4B 0.5 0.25 >5 

 

3.5 Copper Removal 

After all deformation processes had been completed, heat treatment of the Ag/Bi-

2212 wires could not take place until the Cu jacket was removed from the conductors. 

This was a requisite as the Cu jacket would likely alloy with the Ag and diffuse into the 

Bi-2212 as a potential poison as well as the more significant issue of preventing oxygen 

transport into the superconducting cores. As many common etchants for Cu, such as 

HNO3 also aggressively attack Ag and are imminently harmful to the Bi-2212 cores, 

much care was required to select an etchant that would preferentially etch Cu. A mixture 

of Ferric Chloride (FeCl3), HCl, and ethanol was selected for this task. Samples were cut 

into ~2” lengths for transport measurements. Multiple sealants were tested to prevent the 

etchant from entering the Bi-2212 cores through the cut ends and a waterproof 

commercial silicone based sealant was the highest performing material. 

While the etchant proved to be effective at removing only the copper component, 

it was a painfully slow process, requiring several days to clean the largest diameter 
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samples. As such, it was often beneficial to employ a pre-etch with HNO3 to expose 

some component of the Ag. This etch was then immediately followed by the Cu only 

etchant until all Cu was removed. 

After all Cu was visibly seen to be removed, samples were cleaned using a light 

etch of NH4OH, H2O2, and ethanol. This etch removed a surface layer of Ag and any Cu 

residue that may have remained. Samples were rinsed and stored in ethanol until they 

could be transported to a vacuum chamber where they were stored until ready for further 

processing. 

3.6 Wire Fabrication Conclusions 

The wire fabrication effort was largely a success with the monocore extrusion 

and drawing process proceeding without breaks in the conductor or dramatic sausaging. 

Anisotropic reduction of the Ag/Bi-2212 composite was observed as a result of the 

differential modulus of the textured Bi-2212 powder. Even with this preferential 

deformation, a minimum filament of 175 µm x 100 µm was achieved. No difference was 

observed in the deformation properties of the “A” and “B” schedule billets, suggesting 

that more copper may have been removed without detriment to the process. Sufficient 

lengths of conductor were produced for heat treatment optimization studies of the wire to 

take place with multiple diameters and billet preparations available for investigation. 
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4. HEAT TREATMENTS 

 

4.1 Introduction to Bi-2212 Heat Treatments 

The previous chapters have described Bi-2212 wire fabrication and powder 

properties which comprise 2 of the 3 basic processing steps for Bi-2212/Ag conductors. 

The final step to achieving high current densities in Bi-2212/Ag wires is a heat treatment 

which grows, connects, and densifies the superconducting cores. Typically, this is 

achieved by taking the Bi-2212 past its melt temperature followed by recrystallizing the 

superconducting phase out of the melt [68, 82, 84-86]. While seemingly similar to 

melting ice chips then freezing them into a solid mass, Bi-2212 melt processing is 

anything but simple: the melt temperature depends on the oxygen partial pressure [84], 

melting occurs incongruently with decomposition into a Bi rich liquid and solid phases 

[44, 49, 50, 87], the presence of Ag alters the melt temperature, and oxygen escapes 

from the melt which has a lower oxygen solubility than the stoichiometry of the solid 

phase. Additionally, poisoning of the superconductor can occur when either a diffusing 

element (such as Cr or Cu) is able to move through the Ag or the Ag itself is attacked 

(such as with Si), leading to significant leakage of the superconducting cores [26, 27, 

88].  

Because of the complications associated with consolidating and texturing the 

superconducting cores within a Bi-2212/Ag wire, significant effort has been put into the 

development of an optimum heat treatment procedure for Bi-2212 wires. Due to the 

prolific, broad spreading nature of this research, a comprehensive discussion of the 
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various heat treatments that have been reported within the literature is neither practical 

nor informative as the majority of the efforts led to unsuccessful results.  

4.1.1 Partial Melt Processing 

Out of the myriad of processing options reported in the literature, one route has 

dominated the development and become the standard of comparison for all other 

processing routes: Partial Melt Processing (PMP). In PMP, a wire sample or coil is 

placed in a controlled atmosphere (typically 100% O2 or alternatively, dry air) and 

heated to a temperature typically between 5 and 15 C above melt. The conductor is 

briefly held at this temperature, usually between 5 and 30 minutes, then slowly cooled to 

an intermediate annealing temperature between 830 and 840 C where the conductor is 

held for a period of about 48 hours before finally cooling to room temperature. A typical 

time/temperature profile of PMP is shown in Fig. 33 [81]. Details of the temperatures, 
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Fig. 33: Time vs. temperature profile for a standard partial melt processing heat 

treatment. 
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intermediate steps, ramp rates, and holding times vary wildly between studies but the 

following effects have been generally demonstrated to influence Bi-2212 processing: 

1. Jc is highly dependent on the peak melt temperature and time at peak 

temperature [89]. 

2. Oxygen uptake during the slow cooling and anneal are critical to the 

recrystallization process and the re-formation of the Bi-2212 phase [82, 84, 90, 

91]. 

3. Upon melting, the filamentary structure of Bi-2212/Ag multifilament 

wires is significantly altered [92]. 

4. The Bi-2212 recrystallized along the Ag interface in a well textured 

manner, yet the bulk within the filaments do not exhibit strong texture [85]. 

To elaborate upon this first point, the growth kinetics of the solid phases within 

the melt dictate which phases will be left after recrystallization. If the temperature 

remains too low, alkaline earth cuprates favorably form large solid phases which can 

grow to a similar scale of the filament diameter. During the recrystallization, these 

phases are not consumed and can occlude the entire filament, blocking transport 

currents. These growth dynamics are exacerbated by extending the time in melt. 

Additionally, if the temperature is raised too high, an alternative set of parasitic phases 

form, again blocking current transport in the re-crystallized conductor. In the end, a 

balance must be struck between the two extremes and a narrow processing window of ~4 

C must be maintained for optimum performance to be achieved [93]. Immediately, this 

raises concerns that a large scale coil for either accelerator magnets or significant 
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research applications (NMR spectroscopy) would be capable of being effectively 

processed as typical thermal diffusion times for coils of this scale and temperature range 

are of the same time scale as the optimum time at peak temperature [94]. As a result, 

coils of Bi-2212 have the propensity to have regions that are either over or under-reacted 

[95, 96]. Furthermore, maintaining a temperature within 4 C on a large volume of 

conductor is a difficult engineering task. Both effects pose significant challenges to 

making Bi-2212 an engineering ready conductor. 

Likewise, the slow cooling which allows O2 to over-dope the Bi-2212 conductor 

reaching its optimum performance is difficult to translate from short sample windings 

into coil form. This is primarily due to the fact that oxygen must diffuse through 

insulation materials and several layers of the coil. Additionally, controlling the thermal 

behavior of a large coil to achieve the slow cooling rates required for PMP can be 

difficult as described before. 

Finally, the fact that filaments merge and grow into one another during PMP is a 

result of several factors including the ability of liquid Bi-2212 to dissolve a small 

amount of Ag, the ability of Bi-2212 grains to grow through the Ag matrix, connecting 

filaments, and the effects of residual gas pressures within the initially isolated filaments 

causing the Ag matrix to creep and filaments to merge. Regardless of the mechanism, 

these bridged filaments have three distinct effects. In a positive sense, the merged 

filaments allow transport currents to flow around occlusions in a single filament. This 

shared transport allows Bi-2212 wires to carry high currents even though transport 

current is blocked in every filament by either a parasitic phase, high angle grain 
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boundary, or void space. Indeed, without these bridges, transport in Bi-2212 conductors 

would be limited to a fraction of the achieved transport to date. While this first effect is 

positive in nature, the remaining two effects are detractions from the potential 

performance of Bi-2212 conductors. The second effect of note is the fact that if 

superconductor is in the interstitial space of the matrix, density within the filaments has 

been sacrificed, reducing the current carrying capacity of the filament [92]. The final 

effect is that the coupled filaments increase the effective filament size of the conductor 

which has serious implications for ramped magnets which depend on low magnetization 

losses within the superconducting wires [92, 97]. 

Despite the challenges and possible limitations of PMP, it remains the dominant 

processing route for Bi-2212 conductors. Several variants to PMP have been 

investigated and those pertinent to enhancing texture or improving density are reported 

in the sections that follow. 

4.1.2 Isothermal Melt Processing 

Isothermal Melt Processing (IMP) is a variation of PMP in which the temperature 

of a wire or coil is held constant and the partial pressure of O2 is varied, thereby 

changing the melting temperature of the Bi-2212 to below that of the furnace. The melt 

is continued for an appropriate time, then the O2 partial pressure is again changed in 

order to pull the conductor out of the melt. While comparable results to PMP were 

achieved through this process, controlling the local atmosphere of O2 with sufficient 

precision to achieve the melt was a limitation to scaling IMP to coils [98-102].  
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4.1.3 Magnetic Melt Processing 

Magnetic Melt Processing (MMP) is a direct variant of the PMP described in 

detail above. However, while the PMP is taking place, coils or wires are subjected to a 

significant background magnetic field. By orienting the magnetic field normal to the axis 

of the conductor (in either short straight samples or coil geometries), the presumption 

was that during recrystallization, the anisotropic Bi-2212 particles would preferentially 

orient themselves with their conducting planes orthogonal to the applied field. By 

aligning the bulk of these particles within the filament, HAGB may be reduced and 

transport properties improved. In actuality, the enhancements seen through this process 

were on the order of a 10% increase in Jc. Given the immense overhead and difficulty 

scaling the process for coil applications, this method of processing was not further 

investigated [66, 67]. 

4.1.4 Split Melt Processing/React Wind Sinter 

Unlike the previous processing approaches, split melt processing (SMP) and 

react wind sinter (RWS) were conceived solely to simplify coil processing. In RWS, 

conductors were partially melted as described previously while still on the spool or in 

short straight lengths. Instead of continuing the full heat treatment, RWS conductors are 

quenched before the typical 836 C sintering step at an intermediate temperature. The coil 

or final geometry is then wound. Invariably, this led to fractures in the brittle 

superconducting filaments. However, after winding, the coils were subjected to the 

remainder of the heat treatment, resuming at the same temperature at which they were 

previously quenched. The results of such processing were more promising than one may 
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initially presume, actually exceeding the PMP results by up to 40% in some experiments 

[86]. Results from this heat treatment method indicated that there is a mechanism for 

“healing” micro fractured Bi-2212 interconnections after the peak melt temperature. This 

is most likely due to the re-melting of the mixture that results from quenching/cooling 

the reaction prior to recrystallization of the Bi-2212 phase. 

4.2 Sintering Heat Treatment 

As previously stated, the melt processing of Bi-2212 is carried out to connect and 

texture the Bi-2212 grains within a filamentary structure. In OPIT conductors where core 

densities typically exhibit ~70% theoretical density in the as drawn condition and near 

random texture, it is highly important to densify and align the particle grains [103]. 

However, if Bi-2212 were already textured for maximum transport properties and at near 

full density, the requirement to fully melt the superconducting cores appears to be 

relaxed as the only obstacle to transport current flow is the lack of connection between 

the superconducting grains. If one were able to grow the grains within a core in a manner 

that increased their contact area and locally merged adjoining grains, there would 

theoretically be no distinction between this method and a melt processing method.  

Indeed, single crystal studies [104] demonstrated that transport properties might 

be recovered when a crystal of Bi-2212 was cleaved along its ab planes, then 

subsequently sintered below melt temperature whereby the grains might grow and 

connect through solid phase diffusion. This approach is both unique to the textured 

powder conductor process and could potentially lessen the stringent requirements on Bi-

2212 conductor processing. The benefit of this final statement may be seen by 
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comparing the Bi-2212 and Nb3Sn internal Sn reaction formation heat treatments [105]. 

Nb3Sn coils fabricated with internal Sn conductor are subjected to a long time, multistep 

diffusion based process which results in the high performance of state of the art RRP 

internal Sn conductors. While these heat treatments are long, often requiring up to 2 

weeks for the completion of meter scale research coils, they are by no means 

cumbersome enough or expensive enough to limit production of full length accelerator 

magnets. Additionally, these heat treatments are sensitive to fluctuations on the order of 

10 – 15 C, not the 2 - 4 C temperature ranges required by Bi-2212 conductors [106-108]. 

Due to the specific benefits of the textured powder conductor, namely the high 

density and pre-achieved texture, a study of the effects of sintering on high density, 

textured bulks of Bi-2212 was not prevalent within the literature. An independent study 

of sintering parameters on textured Bi-2212 bulks (pellets) and wires made by the 

textured powder process were carried out in this work. Three measureable parameters 

were of interest in this investigation, achieved density, achieved grain size, and transport 

current density. The results of the density and grain size investigations of pellets, 

stamped bars, and wires subjected to sintering heat treatments will be presented here 

while the transport properties will be discussed in a following chapter.  

4.2.1 Texture and Density Evolution in Pellets 

As pellets were chronologically the first samples to be investigated for texture 

and provided a simple test bed for x-ray diffraction studies, they were also the first 

samples subjected to a systematic study of density and texture evolution during sintering. 

Pellets were prepared in the same manner as described in the previous chapters and were 
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characterized for texture by SEM imaging and XRD. Samples were heat treated on 

alumina boats with an Ag foil base to prevent interaction between the boat and Bi-2212 

and provide an ease of handling during processing. Fig. 34 [80] shows these pellets prior 

to being loaded into the furnace. A general heat treatment profile was used and shown in 

Fig. 35 [81] with the peak temperature and time at peak temperature as the variables in 

different studies. All samples were heat treated in 1 atm of flowing O2. 

Table 9 [80] provides a synopsis of the pellets studied in this work with the time, 

temperature, initial density, final density, typical grain sizes after heat treatment and 

texture parameter of the heat treated pellets presented. Dimensional measurements were 

carried out by averaging several measurements from a set of calipers. This was the most 

precise measurement technique available that did not risk significantly damaging the 

pellets before or after heat treatment. Mass measurements were carried out on a Mettler 

P1200 scale with a resolution of 10 mg.  

Fig. 34: Pressed pellets on Ag boats with different Ag preparations. From left to 

right these are as received Ag, Annealed Ag, and Etched + Annealed Ag. 
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From the results presented in Table 9, it is evident that increasing time and 

temperature resulted in higher densities and a greater degree of texture. An optimum 

sintering time of ~24 h was found to maximize the grain sizes. Continuing beyond this 

threshold resulted in little or no additional densification or texture enhancement. The 

overall behavior of the sintered samples agreed with initial predictions that solid phase 

diffusion would be the dominant mechanism for solidifying and densifying the Bi-2212 

pellets and this process would strictly behave as an exponential dependent on time and 

temperature.  

 

Fig. 35: Time vs. Temperature profile of Sintering HT's. Peak temperature and 

time at Peak temperature were both variables. 
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Table 9: 20 Ksi Compacted Pellets With Texture Evolution Due to Sintering Heat 

Treatments [52, 80]. 

Heat Treatment Density 
Avg. Grain 
Size in ab 

plane 

Texture 
Parameter 

Temp (C) Time (h) g/cm3 µm τ 
Green Pellet 0 3.98 1.20 0.68 

800 2 -- 1.39 0.69 
835 2 4.24 1.55 0.74 
835 24 4.37 1.79 0.75 
865 24 5.13 3.55 0.80 
875 2 5.24 2.69 0.84 
875 24 6.32 4.31 0.89 
 

While the macroscopic measurements shed light on the overall behavior of the 

sintering process, it was worthwhile to examine the microsctructure of the pellets 

through a series of SEM investigations of their surfaces. Fig. 36a through Fig. 36d [80] 

show samples sintered at increasing times and temperatures and demonstrate the grain 

growth achieved during the sintering process. Additionally, EDS data associated with 

these images did not show significant growth of parasitic alkaline earth cuprates, Bi-

2201 or other parasitic phases and the grain boundaries of the samples appeared to 

remain free of occluding phases. Finally, these data also showed a necking and apparent 

connection between grains which were interpreted as a strong indication of inter grain 

connectivity.  

4.2.2 Texture and Density Evolution in Coined Bars 

Following the successful demonstration of grain grown in the pellet heat 

treatment studies, a series of coined rods were fabricated in an effort to produce a 

geometry that was amenable to measuring transport properties of the bulk Bi-2212 in the 
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as sintered condition. These rods were coined in the 1 x 1 x 150 mm3 die set previously 

described. Initially, these samples were attempted to be encased in Ag foils to provide a 

normal conductor that could serve as an interface for soldering attempts as well as a 

stabilizer and boat material during heat treatment. Fig. 37 shows one of these “cigarette” 

style conductors after transport measurement testing.  

Fig. 36: Surface of textured pellets after various heat treatments of a.) 800 C/2 h b.) 

835 C/24 h c.) 865 C/24 h and d.) 875 C/2 h. 
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Ultimately, these samples were intended to be characterized with critical current 

measurements at the NHMFL in Tallahassee, FL. However, some pieces of the samples 

either broke away from the larger, testable pieces or were sacrificed for microsctructure 

examination. A sample heat treated at a peak temperature of 870 C for 24 h is shown in 

transverse section in Fig. 38. From this image, it is clear that significant grain growth has 

taken place and that parasitic phases, while present, are not growing without limit during 

the sintering process. Through image analysis, it was also possible to estimate the 

porosity of the sample and thereby the density of the coined bar. It was found that the 

density of the rod increased from 4.2 g/cm3 to 5.6 g/cm3 during heat treatment. It was 

evident that the density enhancement came primarily from a thinning of the sample in 

the vertical direction which also coincided with the imparted c-axis texture. Transport 

properties and critical temperature data of similar samples will be presented later. 

Fig. 37: Encased sample from early transport measurement attempts with sintered 

1 mm x 1 mm bar encased in a coined Ag foil. 
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4.2.3 Texture and Density Evolution in Wires 

Monocore wires fabricated by the method outlined in Chapter 2 were also 

evaluated for their texture and density evolution during heat treatment. As mentioned 

previously, samples were drawn on two schedules from two different billets.to multiple 

sizes.  

After copper removal, sintering and partial melt processing of these conductors 

was carried out as previously described. Samples were prepared as 2” (5 cm) long 

straight samples that were tested at TAMU. The results of those tests will be the focus of 

the following chapter and will not be elaborated upon here. All samples were co-heat 

treated with an OPIT conductor previously acquired from Oxford Superconductor 

Technologies as a control. 

Fig. 38: Transverse section of a 1 mm x 1 mm Bi-2212 bar coined at 20 ksi and 

sintered for 24 h at 870 C. In image at right, white is Bi-2212, light grey are AEC’s, 

and black is porosity. For the entire sample, the maximum AEC observed was 49 

µm2 and AEC’s only accounted for 2% of the transverse area. 
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Results from the sintering heat treatment studies were consistent with the 

previously discussed pellet studies and coined rod studies and a representative image is 

shown in Fig. 39 [81] which displays the lack of parasitic phase growth and high density 

of the textured powder cores. 

4.2.4 Fine Gauge Wires 

As previously described in Chapter 2, a large quantity of very fine 0.52 and 1.10 

mm diameter wires were also produced in the study. Chronologically, these samples 

were heat treated after the larger samples had undergone a rigorous sintering/partial 

Fig. 39: Transverse section of TPC sintered for 24 h at 875 C. Due to the density and 

hardness of the Bi-2212 tearaouts were common during the polishing process. No 

large AEC's are present in the sample and void space is attributed solely to tearouts 

during sample preparation. 
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melting heat treatment study. In the first round of heat treatments on these samples, 

sintering heat treatments were used in an attempt to achieve exceptional transport 

properties. While temperature control was achieved in an identical manner to the 

previous sintering work, these samples demonstrated a remarkable and discouraging 

phenomenon: Bi-2212 crystals appeared to grow out of the Ag sheath. Additionally, 

seams were found in the Ag matrix which had apparently split due to trapped gases 

within the monocore element. Both of these effects can be seen in Fig. 40 and Fig. 41  

Fig. 40: Seam splitting Ag matrix during sintering HT of a fine wire conductor. 

This effect is presumably due to trapped gases within the monocore that build up 

pressure during heat treatment and cause the Ag to rupture. 
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[81]. Despite the higher starting density, the remaining Ag in these conductors was too 

thin for subsequent heat treating of the monocores and these conductors were of no 

additional scientific interest with no samples remaining preserved for what would most 

likely be a futile and expensive transport property measurement.  

4.3 Partial Melt Heat Treatment 

As the Bi-2212 was expected to melt at ~880 C, samples heat treated at 881 C, 

and 888 C were expected to be partially melted. All samples partially melted in this 

study were subjected to the heat treatment time vs. temperature profile shown in Fig. 33. 

Fig. 41: Bi-2212 growing through a very fine Ag wire. 
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One of two Lindberg furnaces were used to perform the partial melt heat treatments. 

These furnaces were fitted with 1” OD quartz process tubes that were custom made at 

the TAMU Chemistry glass shop. Vacuum tight seals were employed to provide 

complete atmosphere control, and the setup is shown in Fig. 42. Thermocouples were 

placed as close to the samples as possible to ensure a very precise control of the furnace 

temperature and excellent data logging during heat treatment. When combined with a Ni 

200 boat, the temperature profile was flat within 1 C over the entire Ni boat, creating a 

sufficient isotherm. Baffles were also utilized to limit radiative losses in the small bore 

furnaces.  

Regarding peak temperature selection, the 881 C sample was investigated as a 

potential “liquid assisted sinter” with hopes that some level of texture may be preserved 

Fig. 42: Lindberg furnace with quartz tube for heat treatment processing. 
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through this processing while the 888 C processed samples were anticipated to conform 

with the well developed concepts present in the literature [51, 86, 92, 93]. Samples with 

roughly 1mm OD (Ag) were selected in this initial study from Billet IV-2b, which had a 

Bi-2212 core roughly 650 µm x 300 µm.  

Samples from this billet subjected to the partial melt heat treatments exhibited an 

extremely destructive behavior. Primarily, the powder cores were found to leak out of 

the Ag crimped ends of the conductor. This effect was much more pronounced in the 

TPC conductors than in the OPIT wires, as can be seen in Fig. 43 which compares a pre 

and post reacted sample. Aside from the apparent end leakage, a seam splitting 

Fig. 43: Left: Pre-heat treated samples on Ni 200 boat. The central sample is an 

OPIT control. Right: Samples after heat treatment showing core leakage of TPC 

samples. 
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phenomenon also appeared. Both of these effects were a combination of two issues. The 

first and dominant concern was the buildup of gases within the conductor which was 

alluded to in part in Section 4.2.4. In those samples, it was apparent that the Ag was 

splitting along longitudinal seams which subsequently destroyed the integrity of the 

wire. A second, less obvious cause of the void coalescence was the relatively large size 

of the Bi-2212 filament. Due to the surface tension of the liquid, it was preferential for 

large voids to agglomerate in the melted samples. A subsequent search of the literature 

found that these effects were common for >150 um filaments, even in a multifilament, 

low core density conductor [109] 

Despite the evident leakage from the TPC monocores, samples were preserved 

for transport measurements that were subsequently carried out and are described in the 

following chapter. 
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5. CONDUCTOR CHARACTERIZATION 

 

5.1 Introduction 

The ultimate figure of merit for any superconducting wire is the critical current it 

carries under operational field and temperature conditions. While the current in amperes 

that a wire carries is of significant importance, it is an insufficient parameter to compare 

superconducting wires and tapes for magnet applications where space is at a premium. 

Instead, the transport current per unit of cross sectional area, or engineering current 

density (Je) is the figure of merit for magnet conductors. While Je is the most critical 

parameter for applications, it does a poor job of relating the fundamental properties of 

the superconducting material. For this purpose, the critical current density of the 

superconductor, Jc, is often chosen as the figure of merit for fundamental work on 

superconducting materials. Jc is specifically defined here as the critical current of a 

superconducting composite per unit of superconductor cross sectional area. The 

comparison of Jc in different composite conductors provides insight into whether the 

superconductor is optimized in the composite relative to some benchmarked standard, 

typically a best of class sample <1 m long or bulk material properties.  

Bi-2212 has its greatest merit as a low temperature, high field conductor, and the 

characterization of the TPC’s fabricated and processed as described in the preceding 

chapters was focused on the properties of the conductors immersed in boiling liquid 

helium (4.2 K) and in background magnetic fields up to 5 T. Aside from transport 
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current measurements, critical temperature measurements were also carried out on select 

TPC samples.  

5.1.1 Basics of Short Sample Measurement 

Transport current measurements typically take place in one of two fashions for 

superconducting wires. The first are short straight samples (short samples) which are 

typically less than about 8 cm in length. These samples are short enough to fit within the 

bore of widely available superconducting magnets which are used to apply the 

background fields used in testing, yet they are long enough to allow for adequate voltage 

tap spacing which is usually a minimum of 1 cm. Barrel samples which accommodate up 

to 1 m lengths of conductor are also used, however these are usually applied to materials 

with straightforward heat treatments (Nb3Sn, MgB2) or wires that require no heat 

treatment at all (NbTi). Additionally, the geometry of these coils induces significant self 

-field corrections and requires significant tooling to be accomplished reliably. Due to 

limited availability of conductors as listed in Chapter 3, straight, 5 cm long samples were 

the focus of the present work. 

If one is evaluating either fundamental properties of the superconducting material 

by comparing Jc’s or engineering properties by determining Je, the pertinent 

measurement always begins with the evaluation of a wire’s critical current. A transport 

critical current is evaluated by monitoring the voltage across a known length of a 

representative portion of the wire sample while ramping a current source. While 

superconducting, the wire will generate no appreciable voltage away from the current 

supplying joints (these joints inevitably generate some losses as current is required to 
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transfer from a normal lead, typically Cu, through the normal conductor of the 

superconducting composite wire). As the current ramps, the Jc of the superconducting 

components is approached and subsequently surpassed, pushing the superconducting 

material into its normal state. This is accompanied by an immediate current share 

between the surrounding matrix material and the now quite resistive superconductor 

which induces a voltage across the sample. This transition between superconducting and 

normal states may also be induced by holding a fixed current and increasing either the 

temperature or magnetic field to induce a similar transition, although these methods are 

less prevalent as they require much more complicated equipment to achieve the same 

level of precision as a ramped current measurement. Naively, one would expect the 

transition to take place in a stepwise function, like that shown in Fig. 44, with an 

instantaneous transition from a zero voltage state to that of a finite voltage from the 

transition to a resistive medium. In this simple view, the critical current would be found 

from the vertical line that defines the step. However, nature is rarely as ideal as one 

would naively hope, and the superconducting transition is no exception. Due to slightly 

different material properties, varying cross sectional areas of individual filaments, and 

random temperature or magnetic field fluctuations, the onset of voltage in the 

superconducting to normal transition is significantly broader than one would expect. 

Instead of a step function, the transition from superconducting to normal phases appears 

as a power law rise in voltage characterized by V α (I/Ic)n, where Ic is the critical current, 

I is a current near Ic (typically within 10%), and n is the index of the transition. The V 

vs. I behavior of such a transition is shown in Fig. 45. In this case, the critical parameter, 
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Fig. 44: Stepwise V vs. I curve for a superconductor that uniformly and instantly 

transitions to the resistive state. 

Fig. 45: Idealized V vs. I curve with a finite n value. 
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Ic, is no longer clear and could be indicated at any arbitrary point along the transition as 

a mixed superconducting/normal state exists within the wire. Due to the arbitrary nature 

of assigning a practical value for Ic, a series of conventions have been adopted within the 

field. Typically, Bi-2212 critical currents are reported at a 1.0 µV/cm threshold. This 

value is also used in MgB2, YBCO, and other emerging, high temperature materials. 

However, magnet engineers have previously used a 0.1 µV/cm criterion for LTS 

materials. The difference in heat generation between the two criterion (at constant 

current) is an order of magnitude greater for the HTS materials and great care must be 

taken when specifying HTS conductors and designing compatible cryogenic systems for 

magnets based on these conductors. The 1.0 µV/cm criterion is also driven by pragmatic 

concerns, as short straight samples of the HTS conductors typically allow for voltage tap 

Fig. 46: Principle of a 4 point voltage measurement demonstrated on a 1 mm x 1 

mm Bi-2212 coined bar. 
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spacing on the order of 1 cm and typical fast voltage meters are accurate to the nV level, 

setting a minimum threshold for quench detection at 1 µV/cm levels. 

Experimentally determining Ic is accomplished through a 4 point voltage 

measurement as sketched in Fig. 46 [40]. Current is applied through a pair of leads at 

either end of a sample and the voltage is simultaneously measured across the middle pair 

of voltage taps. By measuring the distance between the taps, the electric field between 

the taps may be readily calculated, making for a fair comparison between samples with 

inevitably differing tap lengths. Currents are typically monitored by measuring the 

voltage across a calibrated shunt and calculating the delivered current. This decouples 

the measurement somewhat from variations in the delivery of the current from the power 

supply and is particularly important when a digital supply is used. 

 

Fig. 47: Test facility at the NHMFL. 
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5.2 Experimental Setup 

Transport measurements were carried out at both the NHMFL and TAMU with 

different experimental configurations, although capabilities of the two facilities are very 

similar (0 – 5 T variable magnetic field, 4.2 K pool boiling LHe, and 1 kA current 

supply). The apparatus at the NHMFL is shown in Fig. 47 while the TAMU facility, 

kindly provided by Dr. Naugle’s laboratory, is shown in Fig. 48. In both cases, samples 

were limited to 5 cm lengths.  

Generally, testing was broken into two distinct phases. The first phase was 

carried out on the coined and sintered 1 mm x 1mm Bi-2212 bars. Transport 

measurements took place at NHMFL while a very limited study of the critical 

Fig. 48: Test facilities at TAMU under test conditions. 



 

87 

 

temperature was performed on a PPMS at TAMU. A second phase of transport 

measurement testing took place at TAMU and focused on wire samples. 

5.2.1 Transport Properties of Coined Bars 

As previously mentioned, sintered 1 mm x 1 mm square bars were tested at the 

NHMFL on the probe shown in Fig. 49. These tests were conducted in collaboration 

with ASC/NHMFL staff. Two specific sample geometries were used in the study. The 

first is shown in Fig. 49 which depicts a “cigarette” rolled Bi-2212/Ag composite which 

was fabricated by first coining the Bi-2212 bar, then stamping an Ag foil into a “U”-

shaped cup, followed by crimping the top of the foil around the Bi-2212 bar. These 

crude wires were then sintered as described in previous chapters.  

The second sample geometry was a bare bridge of Bi-2212. These samples were 

supported on either side during reaction bake by a pair of Ag foils that isolated the Bi-

Fig. 49: NHMFL short sample testing probe with a cigarette style sample at left, 

bare bridge center, and open faced sample at right. 
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2212 from the alumina furnace boat. Additionally, the Ag was intended to fuse to the Bi-

2212, allowing a current connection to be made.  

Two rounds of testing took place. In the first round, only the “cigarette” rolled 

samples were tested. A typical V – I curve for one of these conductors is shown in Fig. 

50 and the results of the first round of testing are summarized in Table 10. The linear 

nature at all currents of the V – I curve was a strong indication that the superconductor 

was not acting as a zero resistance current path. While discouraging, these data were not 

conclusive indications of a poor performance of the superconductor as a poor interface
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Fig. 50: V vs. I curve for a "cigarette" rolled sample. The linear nature of the curve 

indicates no appreciable current is being carried through the superconductor. 

Inner taps are across the interior of the sample for a traditional 4 point 

measurement. Outer taps are across the entire sample, and the joint taps are the 

voltages across the positive and negative joints respectively. 
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between the Bi-2212 and Ag components could have resulted in a large resistance 
 
between the superconductor and Ag.  

 

Table 10: Results of First Round of Short Sample Measurements. All Bi-2212 was 

Coined at a Pressure of 20 ksi. 

Sample 
Sintering 

Tmax/Time 

Measured 

Resistance (µΩ) 

I-8 870 C, 24 h 0.11 
I-13 860 C, 24 h 0.76 
I-14 860 C, 24 h 0.18 
I-15 860 C,24 h 1.00 

 

To clarify whether the underlying effect was the result of poor superconducting 

properties or an inadequate transfer of current to the superconductor, a new series of 

samples were fabricated. Again, “cigarette” rolled samples were created with an open 

top geometry and additional, open bridge samples were also heat treated. The open top 

samples were subsequently filled with an Indium based solder which wetted well to the 

Ag. By pooling the solder around the Bi-2212 component, the superconductor was 

surrounded on four sides. As indium contracts more than Bi-2212 upon cooling, this 

guaranteed at least a mechanical “clamping” joint between the Bi-2212 and Ag current 

leads. This geometry also allowed for voltage taps to be placed in contact with the Bi-

2212 components. However, solders do not wet to Bi-2212 well, so voltage taps could 

not be directly attached to the oxide component in this geometry. 

The second sample are the open bridge samples shown mounted to the probe in 

Fig. 49. Samples were sandwiched between Cu blocks pre-tinned with an In rich solder. 

The total encapsulation of the Bi-2212 rod was again intended to act as a clamped 
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current joint. Unlike the previous cigarette rolled samples, the topography of these 

samples allowed for voltage taps to be twisted around the bars, providing a contact for 

voltage measurements without relying on solder. As an aside, these samples were 

incredibly delicate, often fracturing irreparably during handling, soldering, or due to 

pressure applied during cool down by the voltage taps. 

Unfortunately, the bare bridge samples were unable to be adequately tested upon 

cool down as the In was found to release from the Bi-2212, resulting in kΩ resistances 

across the bridge. No samples of the bare bridge were able to be reliable tested, and this 

most robust attempt at measuring the transport properties of the bare superconductor 

were unfruitful. Results of the indium filled “cigarette” rolled samples are presented in 

Table 11. Again, these data indicated that the samples exhibited a finite resistance even 

at very low currents. While much more robust than the previous efforts, these samples 

still had less than convincing current connections to the Bi-2212 component as evinced 

by the propensity of the In to release from the bare bridge samples.  

 

Table 11: Second Round of Short Sample Testing. All Bars Were Coined at 20 ksi 

and Heat Treated at 870 C for 24 h. 

Sample Applied Field (T) 
Measured 

Resistance (µΩ) 

I-8 5 0.96 
II-5 0 1.66 
II-5 5 4.42 
I-4 0 0.36 
I-4 5 0.68 
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5.2.2 Critical Temperature of Sintered, Coined Rods 

After the previous failures to adequately characterize the transport properties of 

the Bi-2212 coined rods, a small sample was submitted for characterization on a physical 

properties measurement system (PPMS) housed within Dr. Naugle’s laboratory. This 

device has a fully instrumented suite with a variable temperature cryostat, 9 T magnet, 

and mA current supply. As only µA currents were required for Tc measurements, a 

robust low current lead was developed. The sintered rods of Bi-2212 were coated with 

~10 nm of a Pt/Pd alloy through a sputtering process usually applied to SEM samples. 

This alloy interface was intimately adhered to the sample surface and In solders wetted 

Fig. 51: V vs. T data for a sintered 1 mm x 1 mm coined bar. 1 uA of current was 

applied to the sample. 
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readily to the alloy. In this manner, 4 leads, 2 for current input, 2 for voltage 

measurement, were applied to the sample. 

Results of the Tc measurement are shown in Fig. 51 and show a very broad 

transition from the zero resistance state to normal behavior. These data conclusively 

showed that the sintered samples were acting as a superconductor, albeit the broad 

transition indicated a lack of phase homogeneity across the sample. Caution should be 

taken before reading more into this Tc data, as only a single sample was analyzed and the 

use of transport currents in a macroscopic sample can be unreliable as only the lowest 

resistance path is sampled which is in stark contrast to magnetization measurements that 

sample the properties of the conductor on a much finer scale (typically on the order of a 

coherence length). Further analysis of this sample via microscopy showed an apparent 

density of only around 90% after sintering. The residual porosity in the conductor was 

taken as an indication that connectivity between grains needed to be improved for 

significant transport currents to be achieved. As such the paradigm of sintering a 60% 

dense sample was abandoned in favor of developing a wire-like conductor based upon 

the textured powder process that would exhibit a high quality Bi-2212/Ag interface for 

reliable transport current measurements. 

5.2.3 Transport Properties of Monocore TPC’s and OPIT Wires 

Testing of the monocore TPC wires and control OPIT conductors took place 

exclusively at TAMU. To enable these tests, a new sample holder was fabricated to 

provide consistent testing of the samples at currents up to 1 kA in background magnetic 

fields of 5 T. The assembled probe and mounted sample are shown in Fig. 52. To 
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prevent Lorentz forces from degrading the wires, the direction of the magnetic field in 

the probe was applied in such a way that it was guaranteed to always push the sample 

toward the supporting ledge shown on the probe. For curved samples, wax was used to 

fill the void space and prevent high stress points from forming during testing. 

While the facilities at TAMU were comparable to those at NHMFL, the sampling 

rate of the data acquisition system at TAMU was considerably lower (~3 Hz) than the 

NHMFL data acquisition system. This difference did not affect the veracity of the tests, 

but accounts for the aesthetic change in the data between the TAMU and NHMFL tests. 

The only scientific difference between the two facilities was the slower rate of quench 

detection at TAMU which ultimately resulted in the destructive loss of some samples 

after they had already contributed to the volume of data. 

Fig. 52: G10 short sample holder for testing at TAMU. The magnetic field was 

applied such that the Lorentz forces acting on the sample were directed toward the 

supporting ledge. 
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Table 12: Transport Properties of 1 mm Class TPC's With Various Heat 

Treatments. All Samples Were From Billet 2b.[81] 

Sample/HT 875 C, 24 h 877 C, 24 h 881 C, PM 888 C, PM 
OST  

888 C, PM 

Ic 6 2 10 13 500 
 

Table 12 shows the results of the critical current measurements of the OPIT and 

TPC samples tested, while Fig. 53 and Fig. 54 [81] show the V – I curves for the highest 

performing TPC and OPIT control.  
 

 

 

Fig. 53: V vs. I of OPIT conductor from Table 12. 
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5.3 Analysis 

The results presented in the previous section indicated that the TPC’s were 

indeed superconducting albeit with dismally low transport current densities with a 

maximum Ic of only 13 A from a partially melted sample. Given the amount of 

superconductor within each monocore, the expected transport current for a comparable Jc 

to OPIT conductors, would have been 640 A (Assumed Jc 3000 A/mm2 [19, 25, 47]. By 

contrast, the 500 A achieved in the OPIT conductor are perfectly in-line with 

expectations for this conductor for PMP heat treatments [19, 92, 110].  

Since the OPIT conductor matched expectations and was commonly heat treated 

within the same furnace, with the same calibrated thermocouples, and with the same 

Fig. 54: V vs. I curve of highest performing TPC. 
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handling procedure as the TPC’s, it was evident that the underperformance of the TPC’s 

was not due to any external variables, but rather to the conductors themselves.  

To illuminate the cause of this underperformance, microscopy investigations 

were carried out on the tested samples. Examining the sintered samples, shown in Fig. 

39 did show a very low void space fraction (ie. High density). With the confirmation of a 

very high density conductor, no apparent occlusions from parasitic phases, and 

knowledge of the imparted texture, the only possible degradation mechanism was a lack 

of connectivity between grains, or a weak linked structure.  

Since previous studies had already demonstrated that grains were indeed growing 

and connecting to one another in the sintered samples and subsequent TEM studies 

showed apparently clear grain boundaries, the question appeared to be how much of an 

interface is required to carry transport currents in Bi-2212 conductors. As previously 

described, the Jc of Bi-2212 particles is highly anisotropic with a factor of ~1000 x more 

current flowing in the ab planes than along the c-axis [31, 111]. Using this ratio, one 

may calculate for two overlapped grains which have wetted to one another as shown in 

Fig. 55 the minimum allowable overlap of the Bi-2212 particles that would allow for 

Fig. 55: Brick wall model of transport current flow in a granular Bi-2212 

conductor. 
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intergrain transport currents to be carried without grain boundary limitations. A brief 

series of equations is sufficient to explain the behavior: 

𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝑤𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ∗ 𝑥 

𝐴𝑐𝑟𝑜𝑠𝑠 = 𝑤𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ∗ 𝑡 

𝐼𝑖𝑛 = 𝐽𝑐
𝑎𝑏 ∗ 𝐴𝑐𝑟𝑜𝑠𝑠 =  𝐽𝑐

𝑐 ∗ 𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝐼𝑜𝑢𝑡 

Where Aoverlap is the area of the overlapped joint available for transport, Across is 

the cross sectional area of the grain leading into the joint, Jc
α is the current density in the 

plane of α, woverlap is the width of the overlapped joint, x is the length of the overlapped 

joint, t is the thickness of a grain, and Iin/Iout are the current into and out of the joint 

which must be continuous. With the relation that 

𝐽𝑐
𝑎𝑏 = 𝐽𝑐

𝑐  × 103 

One finds 

𝑥 =
𝑡 ∗  𝐽𝑐

𝑎𝑏

𝐽𝑐
𝑐 =

𝑡 ∗ 𝐽𝑐
𝑐 ×  103

𝐽𝑐
𝑐 = 𝑡 × 103 

With the characteristic value of t = 100 nm, a 100 µm long overlap must be 

created between adjacent grains to support c-axis transport current. Since the grains 

observed in this study were on the order of 5 µm after sintering, it is abundantly clear 

that there is not a sufficient overlap between the sintered grains to overcome a weak 

linked behavior. While this is a simplistic calculation that does not take into account any 

more detail than the geometric properties of the joint, it is sufficient to describe the 

underperformance of the sintered samples. 
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Regarding the low Ic’s of the partially melted TPC’s, a microstructure 

investigation was sufficient to elucidate the problem. As previously mentioned, these 

samples were prone to leak out the crimped ends of the conductor during heat treatment. 

Longitudinal and transverse sections of these samples were examined with the SEM and 

images are presented in Fig. 56 and Fig. 57 [81] respectively for the TPC’s partially 

melted at a peak temperature of 888 C, corresponding to the 500 A performing OPIT 

conductor. It is immediately clear that these TPC’s are suffering from very large void 

space that was caused by a combination of capillary action and hydrostatic pressure from 

trapped gases escaping during the partial melt.  

Meanwhile, the 881 C partially melted samples suffered from a different, yet 

equally traumatic effect. These samples showed a drastic growth of parasitic phases 

along with void spaces, indicating that melting did take place in these samples. These 

results also aligned well with examples in the literature which reported that samples of 

Fig. 56: Longitudinal section of an 888 C partially melted TPC from billet 2b. Note 

the very large voids that occur in several locations. 
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OPIT wires heat treated at too low of a temperature incurred excessive growth of 

parasitic phases. This is thought to occur because the growth dynamics at these lower 

temperatures favor the formation of AEC’s and Cu free phases [44, 49, 50, 112, 113].  

Fig. 57: Transverse section of a TPC partially melted at 888 C. Again, a large 

bubble is visible while a few parasitic phases (black) are evident. 
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6. CONCLUSIONS 

 

To summarize the work of the previous chapters, three major conclusions were 

reached in this study. First, multiple methods demonstrated that Bi-2212 loose powders 

may be textured. These included magnetic orientation and continuous roll processing, 

however an optimum method for research level developments was found to be uniaxial 

die compaction. This process resulted in at least 50% dense precursors with exceptional 

levels of texture as evaluated by XRD methods and confirmed through microscopy. 

Secondly, a monocore wire development successfully proved that texture 

imparted in a Bi-2212 precursor may be maintained through a deformation process that 

is conducive to the production of km long lengths of wire. This included extrusion and 

drawing steps which were not marred by sausaging phenomena or breaks during 

fabrication. Additionally, the density achieved after these deformation processes 

indicated that less than 5% void space was present in the monocores. 

Finally, the non-melt heat treatment was found to be unsuccessful at providing 

robust paths for transport current in the TPC monocores. While Bi-2212 grains were 

observed to grow in the ab planes and no deleterious effects were observed at the grain 

boundaries, Jc of these sintered conductors were limited to approximately 1% of the 

levels achieved in partially melted OPIT conductors. This underperformance was 

primarily attributed to a lack of connectivity within the conductors which was the result 

of insufficient contact areas of overlapped grains which were limited in their current 

carrying capacity by the Jc in the ab plane. 
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Due to the ability of the TPC method to achieve a very high core density and 

high degree of texture in a fine wire conductor, there is merit to continue development of 

TPC’s. Proximal steps in this effort should focus on the development of a 

multifilamentary round wire based on a textured precursor. In such a conductor, the 

anisotropic modulus of the Bi-2212 component could be used to advantage by arraying 

the c-axis of a multifilamentary composite radially. Additionally, these conductors 

should utilize an alloy outer sheath to improve their structural integrity and powder 

handling should take place in a tightly controlled Ar or O2 atmosphere to prevent the 

deleterious adsorption of gaseous species on the precursor powder. Finally, overpressure 

processing should be utilized to realize the full potential of such a conductor. The overall 

advantage of this TPC would be the potential for a higher engineering density due to the 

increase in superconducting core density and additionally, the preferential deformation 

of the textured Bi-2212 could lead to very fine filament sizes. However, these 

developments are left for a new generation of students and researchers who will 

hopefully learn in earnest from the successes and failures of this work. 
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