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ABSTRACT 

 

Despite a large number of studies during the last decade that investigated mucosal 

immunity in humans, very few works have been done on this immune compartment in 

lower vertebrates. In the following two studies we focused on the mucosal 

immunoglobulins in two important species of two classes of ectothermic vertebrates: 

amphibians and bony fishes. Many studies address the influence of the gut microbiome on 

the immune system, but few dissect the effect of T cells on gut microbiota and mucosal 

responses. We have employed larval thymectomy in Xenopus to study the gut microbiota 

with and without the influence of T lymphocytes. Pyrosequencing of 16S ribosomal RNA 

genes was used to assess the relative abundance of bacterial groups present in the stomach, 

and the small and large intestine. Clostridiaceae were the most abundant family throughout 

the gut, while Bacteroidaceae, Enterobacteriaceae, and Flavobacteriaceae also were well 

represented. Unifrac analysis revealed no differences in microbiota distribution between 

thymectomized and unoperated frogs. This is consistent with immunization data showing 

that levels of the mucosal immunoglobulin IgX are not altered significantly by 

thymectomy. This study in Xenopus represents the oldest organisms that exhibit class 

switch to a mucosal isotype and is relevant to mammalian immunology, as IgA appears to 

have evolved from IgX based upon phylogeny, genomic synteny, and function. 

It is now appreciated that in addition to the immunoglobulin (Ig)M and D isotypes 

fish also make the mucosal IgT. In this study we sequenced the full length of Ig tau as well 

as mu in the commercially important Thunnus orientalis (Pacific bluefin tuna), the first 
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analysis of both of these Ig isotypes in a member of the order Perciformes. Tuna IgM and 

IgT are each composed of four constant (CH) domains. We cloned and sequenced 48 

different variable (VH) domain rearrangements of tuna immunoglobulins and grouped the 

VH gene sequences to four VH gene segment families based on 70% nucleotide identity. 

Three VH gene families were used by both IgM and IgT but one group was only found to 

be used by IgM. Most interestingly, both Ig mu and Ig tau clones appear to use the same 

diversity (DH) segment, unlike what has been described in other species, although they 

have dedicated IgT and IgM joining (JH) gene segments. We complemented this repertoire 

study with phylogenetic and tissue expression analysis. In addition to supporting the 

development of humoral vaccines in this important aquaculture species, these data suggest 

that the DH-JH recombination rather than the VH-DH recombination may be instructive 

for IgT versus IgM/D bearing lymphocyte lineages in some fish. 
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1. INTRODUCTION AND  

LITERATURE REVIEW 

 

1.1 Immunology and the immune system 

 

Immunology is the study of how the body defends itself against different infectious 

microorganisms that cause disease. The origin of experimental immunology is often cited 

as 1796 when Edward Jenner discovered protection against small pox through inoculation 

with cowpox [1]. 

The immune system defends the body against pathogens through immune responses. 

There are two major forms of immune responses: innate and adaptive, each of which 

employs its own cells and molecules.  

 Innate immunity includes the rapid reaction to an infectious organism generally 

within hours. Although innate immunity can recognize a wide range of pathogens it is not 

specific for an individual pathogen and the response which is provided does not generally 

last for a long time. In contrast to innate immunity, adaptive immune responses take days 

to develop but will usually produce more effective and longer lasting immunity with fine 

molecular specificity recognizing individual antigens and providing memory of those 

antigens for years and decades to come.  

Major components of the innate immune system include: epithelial surfaces of the 

body, different phagocytes and other leukocytes (such as macrophages, dendritic cells, 
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neutrophils, eosinophils, basophils, and mast cells), specialized lymphocytes called 

natural killer cells, and immunological proteins like defensins, lysozyme, cytokines, 

chemokines, and components of the complement cascade. Macrophages, neutrophils, and 

dendritic cells recognize pathogen-associated molecular patterns (PAMPs) using their 

pattern recognition receptors (PRRs), toll-like receptors being perhaps the best understood 

of these. The PAMP recognized by a PRR is usually a simple repetitive molecular structure 

that is present on many microorganisms of a pathogen class such as components of 

bacterial cell walls or double stranded RNA of viruses.  

In contrast to the innate immune system, the adaptive immune system recognizes 

particular antigenic components of pathogens through its two major types of lymphocytes: 

B (B cells) and T (T cells). B lymphocytes mediate humoral immunity using antibody 

production and T lymphocytes provide cell mediated immunity primarily through 

cytokine secretion and direct cellular cytotoxicity (Figure 1-1). Antibodies belong to the 

immunoglobulin superfamily of molecules and can be produced in secreted and 

membrane-bound forms. The membrane form is attached to the surface of the B cell and 

is also known as surface immunoglobulin or B cell receptor. Surface immunoglobulins 

recognize specific antigens and this binding is crucial for B cell activation, proliferation 

and differentiation in response to those particular antigens.  

T lymphocytes are divided into three different groups of cytotoxic T cells, helper 

T cells, and regulatory T cells. Cytotoxic T cells kill neoplastically transformed cells and 

those infected with viruses or intracellular parasites. Helper T cells help other immune 
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cells to become activated against pathogens, and regulatory T cells suppress and control 

specific adaptive immune responses [2]. 

 

 

 

Figure 1- 1. Simplified overview of major innate and adaptive immune components. 
BCR: B cell receptor. TCR: T cell receptor. TLR: toll like receptor 
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1.2 Immunoglobulins 

 

The lymphocyte based adaptive immune system evolved in jawless fish 

(Cyclostomata) [3]. One of the important characteristics of this system is the ability to 

produce antigen specific antibodies or immunoglobulins. Jawless vertebrates such as 

lamprey and hagfish do not express immunoglobulins but instead recognize antigens using 

variable lymphocyte receptors (VLRs) [4]. The immunoglobulins of jawed vertebrates 

were discovered more than a century ago [5]. 

These immunoglobulin superfamily antibodies emerged in the cartilaginous fish 

nearly one half billion years ago [5]. Different isotypes of immunoglobulins with specific 

functions have developed during their subsequent evolution. The two main partitions of 

the immune system in all jawed vertebrates are the systemic and mucosal immune 

compartments [6]. At least in all bony vertebrates immunoglobulin isotypes appear to have 

specialized for these systemic or mucosal compartments [7]. 

Antibodies are protein molecules composed of four chains: two identical heavy 

chains and two identical light chains. Each chain consists of two regions called variable 

and constant. The constant regions are nearly identical amongst all antibodies of a given 

isotype in the organism, but the variable regions are extremely diverse and create the 

repertoire of antigenic specificity within the animal. The light chains of all isotypes of 

antibodies are composed of a single variable domain and one constant domain. Heavy 

chains of all isotypes also are comprised of a single variable domain, but the number of 

constant domains differs from one isotype to another. Additionally, this number of 
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constant domains may be different in the same isotype from different vertebrate species. 

The constant domains of immunoglobulin heavy chains determine antibody function [8]. 

Each different major class of vertebrates (cartilaginous fish, bony fish, amphibians, 

reptiles, birds, and mammals) express multiple Ig isotypes [9].The isotype of the 

immunoglobulin determines effector functions such as complement activation, 

multimerization and Fc receptor binding which depends on the nature of motifs in the 

constant region of the antibody heavy chain [8]. In mammals five Ig (immunoglobulin) 

isotypes are recognized including IgM, IgD, IgA, IgG, and IgE [8] (Figure 1- 2). IgM is 

the oldest and the most conserved isotype present in all vertebrates except the coelacanth 

with slight structural variations in different species [9-13] (Figure 1- 3).  

IgD and IgA (or its functional analogs IgX and IgZ/T) also exist in non- 

mammalian vertebrates. It has been shown that IgG and IgE arose from IgY which is 

expressed in birds, reptiles, and amphibians. Beside the canonical mammalian isotypes 

there are reports of other unique Ig classes such as IgO in the platypus, IgF in Xenopus 

and IgY in ducks [14], although these often are merely differential splice products of 

established isotypes. 

Among these isotypes, IgM and IgG (or IgY in birds and reptiles and amphibians) 

play prominent roles in systemic responses and IgA (and ortholog of IgX and the 

functional analog of IgZ/T of fish) are most associated with mucosal immune responses 

[15, 16]. 
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Figure 1- 2. Human immunoglobulin isotypes. The differences between different antibody 
classes are in their constant region. VH: variable domain heavy chain.CH: constant 
domain heavy chain. VL:variable domain light chain. CL: constant light chain 
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Figure 1- 3. Phylogeny of adaptive immunity 
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1.3 Mucosal immunity 

 

The mucosal immune system is the first line of defense against most pathogens and 

forms the largest immune compartment in terms of total cells and total immunoglobulin. 

Mucosal immunity is composed of three major districts: gastrointestinal tract, respiratory 

tract, and urogenital tract. 

The gastrointestinal tract  is one of the most conserved parts of the adaptive immune 

system in jawed vertebrates [17]. The gut is populated with innate and adaptive 

lymphocytes as both scattered cells and more  organized aggregates [2]. Dendritic cells, 

macrophages, T cells and B cells populate both the outer lumen and inner layer (lamina 

propria) of the intestine which is separated by a single layer of epithelial cells. The 

organized lymphoid tissues of the gut are called gut associated lymphoiud tissue (GALT) 

and include: Peyer’s patches andisolated lymphoid folicules. B cells and T cells of the gut 

usually encounter their specific antigens in the GALT that is expressed to them by 

dendritic cells in these tissues. Activated T and B cells are also scattered in the lumen and 

lamina propria. Plasma cells of the mucosal immune system mostly produce secretory 

IgA,therefore this class of immunoglobulin is the major isotype that protects mucosal 

surfaces [2] (Figure 1.4) 
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1.3.1 IgA 

IgA was discovered by Williams and Grabar in 1954 [18]. Then later in1957 and 

1960 IgA was also described by Burtin and Heremans respectively but under different 

names [18]. Hermans was the first to isolate and characterize serum IgA [18]. Despite the 

other four classes of mammalian immunoglobulin  (IgM, IgD, IgG, and IgE) all being 

associated prominently with serum, IgA was determined to be the major isotype in 

exocrine secretions [19, 20]. 

Sequence identity and functional analyses show that all mammals and birds studied 

have IgA. IgA accounts for 70% of antibody production in the human body [21]. The IgA 

molecule is composed of two identical heavy chains (α- chains for IgA) and two similar 

light chains which in mammals can be either λ or κ. The IgA heavy chain contains one 

variable domain (VH) and three constant domains (Cα1, Cα2, and Cα3). The heavy and 

light chains are attached with disulfide bridges. Inter-chain disulfide bridges between the 

Cα2 domains of two heavy chains stabilize the IgA molecule. Disulfide bridges between 

the Fc regions of two IgA monomers and the joining (J) chain polymerize to form IgA 

dimers (Figure1.2). Dimeric IgA is transferred to mucosal surfaces and secretions by the 

polymeric Ig receptor (pIgR) which is expressed by mucosal epithelial cells. The pIgR 

binds to dimeric IgA with disulfide bridges and transports it across epithelial cells before 

releasing it into the gut lumen [22]. The J chain is essential for this transportation [23]. 

There are two subclasses for IgA (IgA1 and IgA2) in some species of mammals such as 

primates, but in most other mammalian species IgA just has one subclass [24]. Vyas and 

Fudenberg discovered the first genetic marker representing IgA in 1969 and called it Am 
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1 [25]. The same genetic marker was described by Kunkel et al. In 1969 and they named 

it Am 2 [26]. Both belong to the IgA2 subclass [20, 25]. 

1.3.2 IgA producing B cells and class switch recombination 

IgA1 is mostly found in human serum. It is chiefly monomeric in serum but it is 

also able to form dimers through disulfide linkages using J chain. Secretory IgA (S-IgA) 

belonging to the IgA2 subclass dominates in the gut and is dimeric. The human IgA2 

subclass is more appropriate for the gut as it is more resistant to proteases due to the lack 

of 13 amino acids in the hinge region present in IgA1 [21, 22].IgA producing B cells and 

class switch recombination 

IgA is produced by Peyer’s patch plasma cells, isolated lymphoid follicle (ILF) 

plasma cells, peritoneal B1 cells, and spleen marginal zone B cells. Mucosal IgA-secreting 

cells are absent in neonates and are considerably decreased in germ free mice [27]. 

Although the IgA production in intestinal mucous drastically decreased in germ free mice, 

about half of normal serum IgA production is maintained [27-29]. It should be mentioned 

that there are independent IgA production sources in serum and mucosa [21]. 

 B cells undergo class switch recombination (CSR) to be able to produce IgA. CSR 

may occur either independently of or dependent upon T cells. Theoretically CSR needs a 

total of two signals: first cytokines which activate transcription of switch regions, and 

second ligation of CD40 (on B cells) by CD40L (on T cells).  But as mentioned CSR can 

also occur independently of T cell help, so there should be a third signal replacing the 

CD40-CD40L signal [30, 31]. Two members of the tumor necrosis factor (TNF) family 

comprise this third signal: BAFF (B-cell activating factor) expressed by monocytes and 
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dendritic cells, and APRIL (a proliferation-inducing ligand) expressed by monocytes, 

macrophages, dendritic cells and activated B cells. This third group of signals can induce 

local IgA production from human colonic epithelial cells in response to innate immune 

activation from Toll-like receptors [21, 32]. B cells in lamina propria and B1 lineage cells 

in the peritoneal cavity can produce IgA2 independently from T cells which is of a low 

affinity. High affinity IgA1 subclass is usually produced by B cells in germinal centers of 

Peyer’s patches, mesenteric lymph nodes, and isolated lymphoid follicles and in a T cell 

dependent manner [33-35]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1- 4. Human gut immune system. 
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1.3.3 Evolutionary origins of immunoglobulins 

Antibody molecules with immunoglobulin superfamily structure are only observed 

in jawed vertebrate species. It is proposed by some scientists that immunoglobulin genes 

originated from a common ancestor through mechanism of gene duplications followed by 

divergence in to variable and constant region gene families [36].  Generally gene 

duplication and point mutations are considered as fundamental mechanisms as far as 

creating diversification in antibody gene structure during evolution [20, 37].  

1.3.4 Gut flora 

Soon after birth the sterile body of an infant encounters environmental 

microorganisms and the mucosal surfaces and skin are colonized by vast numbers of these 

symbionts [38]. This polymicrobial community consists of archaea, fungi, viruses, 

protozoans, multicellular helminthes and most abundantly bacteria [39]. The large 

population of microbes resides in skin, upper and lower respiratory passages, the 

reproductive mucosa and gastrointestinal tract. The greatest density and diversity of 

microbial flora is associated with the lower gastrointestinal tract [40].  In a human the 

number of microorganisms living as normal flora exceeds the number of  cells of the 

human body tenfold and this microbiota contains more than 1000 species in the human 

population, yet each person harbors around 160 species. So there was individual variations 

from person to person depending on many factors, including diet, environmental 

differences and host genetics [40, 41]. 



 

13 

 

 The relationship between the microflora and host is normally mutualistic as both 

sides benefit from each other. The host body is a permanent habitat and a rich source of 

energy uptake for the bacteria, and on the other side the host takes advantage of the 

bacteria for digestion of otherwise indigestible food components such as cellulose, 

synthesis of K1 and B12 vitamins, forming a barrier against pathogen invasion by niche 

occupancy, and fostering the development of the host immune system through the 

stimulation of Peyer’s patch formation and antibody production [38, 42].  

Studies on germ-free mouse models show symptoms of imbalances in mucosal 

immune system development such as: smaller Peyer’s patches, considerably less IgA 

producing plasma cells, and less lamina propria CD4+ T cells [38].The content of gut 

microflora has previously been analyzed with culture based methods but a considerable 

limitation of this method is that it can only identify easily cultivable microorganisms, 

which account for a minor population of the microbial species of gut flora. The discovery 

and application of molecular methods such as 16S rRNA gene analysis has facilitated 

recognition and classification of many more diverse species of bacterial flora [43]. 

           The majority of research on gut flora employing current, molecularly based 

methods focuses on human and mouse microbiota and very few studies have been done 

with other species. Recently we investigated the gut flora content of the frog Xenopus 

laevis using 16S rRNA, a first in an amphibian.  

Despite a lot of good work performed on human and mouse mucosal immunity 

there is still very little known about this important and the ancient immune compartment 

in lower vertebrates. There is a need for understanding this part of the immune system in 
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species from more ancestral groups of vertebrates, which can effectively help us gain a 

better understanding of the origins and evolution of our own adaptive and mucosal 

immunity. This may also provide us new tools for developing more effective treatment 

methods and designing novel vaccines against diseases that involve mucosal and 

specifically gut associated immunity such as inflammatory bowel disease (IBD), Crohn's 

disease, AIDS and others.Two studies were performed on the mucosal specific 

immunoglobulins in two species of lower vertebrates: Xenopus laevis and Thunnus 

orientalis.  

Class switch recombination at a single IgH locus evolved in amphibians, therefore 

Xenopus laevis is a strong model to study the evolution of the adaptive immune system 

and physiology of different classes of immunoglobulins. We took advantage of this 

ancient model of IgH class switch to investigate the effect of T cell help on systemic and 

mucosal IgA/X production. As other studies have shown human IgA2 subclass can be 

produced without T cell help in the gut, we were curious about the effect of T cell help on 

a mucosal Ig production in lower vertebrates to address the evolutionary origins of T cell 

help.   

Another important gap in our knowledge of the mucosal adaptive immune system 

in lower vertebrates is whether all fish have  mucosal specific antibody or not. IgZ/T seems 

to be a mucosal isotype of several bony fish but seems to be absent in others [44]. Tuna 

comprise a group of bony fish that we have special interest in since some are endothermic 

(warm-blooded) species although via different mechanisms than those used to maintain 

mammalian body temperature. Unfortunately very little information is available about the 
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immune system in the large Perciforme group of fish, including whether they express any 

sort of antibody associated with the mucosal surfaces or not. The focus of my second study 

is to answer the aformentioned question in one of the most economically important fish: 

Thunnus orientalis. 
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2. ANCIENT T-INDEPENDENCE OF MUCOSAL IGX/A: GUT 

MICROBIOTA UNAFFECTED BY LARVAL THYMECTOMY IN 

XENOPUS LAEVIS* 

 

2.1 Introduction 

 

The thymus is the primary T lymphoid organ of vertebrates from shark to man [45, 

46]. In humans, a small deletion on chromosome 22 in DiGeorge syndrome often results 

in an absent or hypoplastic thymus, with resulting loss of T mediated responses (reviewed 

in [47]). The hairless “nude” strain of mouse has an absent or greatly degenerated thymus 

due to a mutation in the Foxn1 gene [48]. These mice do have B cells but T cells are very 

few. Due to the lack of both cytotoxic and helper T cells, nude or thymectomized mice no 

longer have  allograft and mixed leucocyte reactions, proliferative responses to classical 

T cell mitogens, and antibody responses against T-dependent antigens [49]. 

The mucosal immune system forms the largest immune compartment and is 

mediated by specialized cells and immunoglobulins, such as plasma cells producing 

                                                 

* Reprinted with permission from “Ancient T-independence of mucosal IgX/A: gut microbiota 
unaffected by larval thymectomy in Xenopus laevis” by S Mashoof, A Goodroe, C C Du, J 
O Eubanks, N Jacobs, J M Steiner, I Tizard, J S Suchodolski and M F Criscitiello,2013. 
Mucosal Immunology, 6, 358-368, Copyright © 2012, Rights Managed by Nature Publishing 
Group 
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secretory IgA. IgA secretion in the gut is not constitutive as shown by its absence and the 

lack of lamina propria plasma cells producing it in germ-free mice [50]. Experiments 

investigating the humoral mucosal immune responses of mammals lacking a T cell 

compartment have yielded mixed results [51, 52], but a picture is emerging of a significant 

T-cell independent mechanism of gut IgA management of mutualistic flora [53, 54]. Gut 

IgA producing plasma cell in mammals employ tumor necrosis factor-α (TNF-α) and 

inducible nitric oxide synthase (iNOS) usually associated with innate phagocytes [55]. 

Interestingly, B cells of lower vertebrates have been found to have strong phagocytic 

activity [56], continuing a theme of primitive, innate, T-independent B cells producing 

IgA in the gut. These findings prompted the present assessment of the T-dependence of 

humoral mucosal immunology in a phylogenetically relevant model species. 

The African clawed frog Xenopus laevis belongs to the tongue-less frog family 

Pipidae. It is a choice model for ontogeny and phylogeny of both humoral and cell 

mediated immunity, sharing a common ancestor with mammals 350 million years ago and 

linking them to the more ancient vertebrates where the adaptive immune system arose 

(reviewed in [57]). The ability to perform thymectomy on transparent early stage Xenopus 

tadpoles made this frog an ideal model species to query the thymic dependence of 

management of gut microbiota and mucosal antibody responses from a fundamental point 

in vertebrate humoral immunity (reviewed in [58]). 

This present study is the first investigation determining the gut bacterial population 

of Xenopus laevis using massive parallel 16S rRNA gene pyrosequencing. In addition, we 

examined the flora and the ability of thymectomized frogs produce mucosal antibody 
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responses. IgX has been functionally associated with mucosal responses and (in contrast 

to IgY) found in thymectomized frogs [59] [60] but evolutionarily has been thought to be 

closer to IgM [61]. T-independent responses are known from Xenopus serum [62], but 

here we aimed to determine the effect of thymectomy upon the gut flora, mucosal and 

systemic IgX response. Lastly we evaluated the relationship of amphibian IgX to 

mammalian IgA, in hopes of resolving ambiguity as to the origins and natural history of 

the class of antibody that manages vast numbers of mutualistic microbes and is the first 

defense of the barriers breached by most pathogens. 

 

2.2 Methods 

2.2.1 Animals 

Xenopus laevis was used as a model for the tetrapod vertebrate immune system. 

Outbred frogs were initially purchased from Xenopus Express (Brooksville FL). 

Subsequent generations were bred in-house using human chorionic gonadotropin  to prime 

for egg and sperm maturation (Sigma-Aldrich, St. Louis MO). Frogs were maintained at 

the Texas A&M Comparative Medicine Program facility. They were housed in two 

separate but similar recirculating rack systems (Techniplast, Buguggiate Italy) on a 12-

hour light cycle. Frogs were moved from an antigen free system to a “DNP-KLH exposed” 

system upon first immunization. Adults were fed a sinking pellet and tadpoles a powder 

diet (Xenopus Express). All husbandry, surgery, and immunization protocols were 

approved by the Texas A&M Institutional Animal Care and Use Committee (AUP 2008-
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33). Post-metamorphosis frogs were micro-chipped (Avid, Norco CA) and assigned to gut 

microbiota harvest or immunization protocols.   

2.2.2 Thymectomy 

Frogs were thymectomized nine days post-fertilization through microscopic 

cauterization, adapting the protocol devised by Horton [63]. The surgery was performed 

under a dissecting microscope using a micro-cautery apparatus originally designed for 

insect stylectomy (http://aphidzapper.com), delivering a VHF pulse of 10 millisecond 

duration and power of 10 watts via an abraded tungsten wire to the target tissue. Tadpoles 

were anesthetized using a 300mg/L MS222 (tricaine methanesulfonate, Argent, Redmond 

WA) bath for 2-10 minutes, before placing on wet cool cheesecloth over a grounded metal 

plate stage. The thymus was then burned with one pulse on each side. The thymus is 

located bilaterally caudally and medially to the eyes and lateral by the dark central nervous 

system (Figure 2 - 1). The tadpole was transferred to an ice bath immediately after thymic 

ablation to cool the animal for three seconds before being allowed to recover in an aerated 

tank with but 80mg/L carbenicillin (and no MS-222) to prevent superficial infections. 

After 24 hours tadpoles were transferred back to the primary recirculating Xenoplus 

systems (without antibiotic). Three days after surgery tadpoles were monitored for any re-

growth of the thymus by visual inspection for the melanized organ under the microscope 

(approximately 20% of frogs that recover from surgery). The monitoring continued every 

4-6 days for one month post-surgery. Tadpoles with thymic regrowth due to incomplete 

thymectomy were euthanized. 

 

http://aphidzapper.com/
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Figure 2 - 1. Larval thymectomy greatly depletes TCRα and δ message from the adult 
frogs. A. unilateral thymectomy at day 9 shows absence of naturally melanized thymus on 
the left compared with intact organ on the right. Experimental frogs were bilaterally 
thymectomized. Image captured at day 20 at original magnification x 3. B. PCR 
contrasting levels of TCR α, β, and δ to β2-microglobulin in peripheral blood of three intact 
post-metamorphic frogs and three thymectomized post-metamorphic frogs. Results of 40 
cycles of amplification. C. reverse transcriptase PCR comparing the same amphibians 
from intestine of 9-day tadpoles (the age of thymectomy, gut of 10 animals pooled per 
row) and two intact post-metamorphic frogs and two thymectomized post-metamorphic 
frogs. 

 

Unilateral thymectomy at day 9 shows absence of naturally melanized thymus on 

the left compared to intact organ on the right. Image captured at day 20 at 3X 

magnification. Experimental frogs were bilaterally thymectomized. B. PCR contrasting 

levels of TCRα, β and δ to β2-microglobulin in peripheral blood of three intact post-

A. 
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metamorphic frogs and three thymectomized post metamorphic frogs. Results of 40 cycles 

of amplification. C. RT-PCR comparing the same amplicons from intestine of nine-day 

tadpoles (the age of thymectomy, gut of 10 animals pooled per row) and two intact post-

metamorphic frogs and two thymectomized post-metamorphic frogs. 

2.2.3 PCR validation of thymectomy 

Frogs thymectomized as tadpoles were checked for the presence of TCR α, β, and 

δ mRNA using PCR at least six months post-surgery (they undergo metamorphosis in the 

second month, (Table 2 - 1). The more exposed tarsal veins associated with digits two and 

three were bled for 100-500 μL with 1 mL syringes and 28 gauge needles. Additional 

checks for TCR expression were performed on the gut of nine-day tadpoles, the gut of 

thymectomized adult, and the gut of normal adult. PCR was performed on cDNA prepared 

from RNA prepared from whole peripheral blood, due to the small volumes of blood 

collected using RNAeasy preparations (Qiagen, Valencia CA) with on-column genomic 

DNA digestion. First strand cDNA was synthesized using random hexamer priming with 

Superscript III (Invitrogen, Carlsbad CA) according to the manufacturer’s protocol. PCR 

amplification was performed using oligonucleotide primers designed for constant domain 

genes of TCR α, β, δ and β2M (Table 2 - 2).  Gotaq polymerase (Promega, Madison, WI) 

and 50 ng template were used during these PCR reactions for 35 cycles for blood, 2 μg 

template for 39 cycles for intestine. Primer sets for TCR α and β2m annealed at 52 °C and 

β and δ at 58 °C. 
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Table 2 - 1. Timeline of frog manipulations. After sacrifice, nucleic acid was prepared 
from non-immunized frog gut contents and lymphocytes were harvested for culture from 
immunized frogs. Only the last three digits of frog microchip numbers are used in other 
figures and text.  

 

 

 

Table 2 - 2. Primers used in PCR. 
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2.2.4 DNA preparation and 16S rRNA gene sequencing 

Gut contents were sampled from normal and thymectomized frogs at three 

anatomical sites: stomach, small intestine and large intestine (Figure 2 - 2). Bolus and 

chyme were scraped from longitudinally opened organs and collected as ~300 μL samples 

for DNA isolation via phenol-chloroform-isoamyl alcohol extraction [64]. Bacterial tag-

encoded FLX-titanium amplicon pyrosequencing (bTEFAP) was performed similarly as 

described previously at the Research and Testing Laboratory,  

Lubbock, TX, USA [42], but based on the V4-V6 region (E. coli position 530-

1100) of the 16S rRNA gene, with primers forward 530F  and reverse 1100R (Table 2 - 

2). Briefly, the DNA concentration was determined using a Nanodrop spectrophotometer 

(Nyxor Biotech, Paris France). A 100 ng (1 μl) aliquot of each DNA sample was used for 

a 50 μl PCR reaction. HotStarTaq Plus Master Mix Kit (Qiagen, Valencia CA) was used 

for PCR under the following conditions: 94°C for 3 min followed by 32 cycles of 94°C 

for 30 sec; 60°C for 40 sec and 72°C for 1 min; and a final elongation step at 72°C for 5 

min. A secondary PCR was performed for FLX (Roche, Nutley NJ) amplicon sequencing 

under the same conditions by using designed special fusion primers with different tag 

sequences as: LinkerA-Tags-530F and LinkerB-1100R. The use of a secondary PCR 

prevents amplification of any potential bias that might be caused by inclusion of tag and 

linkers during initial template amplification reactions. After secondary PCR, all amplicon 

products from the different samples were mixed in equal volumes, and purified using 

Agencourt Ampure beads (Agencourt, Danvers MA). 
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Figure 2 - 2. Site of flora sampling from Xenopus laevis gastrointestinal tract.  
Resected alimentary canal from adult X. laevis fed one day before tissue harvest. Red 
arrows show the three sites where luminal contents were harvested. 

2.2.5 Gut flora analysis 

 Raw sequence data were screened, trimmed, filtered, denoised, and chimera 

depleted with default settings using the QIIME pipeline version 1.4.0 

(http://qiime.sourceforge.net) [65] and with USEARCH using the OTU pipeline 

(www.drive5.com). Operational taxonomic units (OTUs) were defined as sequences with 

at least 97% similarity using QIIME. For classification of sequences on a genus level the 

naïve Bayesian classifier within the Ribosomal Database Project (RDP, v10.28) was used. 

The compiled data were used to determine the relative percentages of bacteria for each 

individual sample, six frogs by three samples each for a total of eighteen. To account for 

Stomach 

Small intestine 

Large intestine 

http://qiime.sourceforge.net/
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unequal sequencing depth across samples subsequent analysis was performed on a 

randomly selected subset of 1800 sequences per sample. This number was chosen to avoid 

exclusion of samples with lower number of sequence reads from further analysis. Alpha 

diversity (i.e., rarefaction) and beta diversity measures were calculated and plotted using 

QIIME. Differences in microbial communities between different groups were investigated 

using the phylogeny-based unweighted Unifrac distance metric. This analysis measures 

the phylogenetic distance among bacterial communities in a phylogenetic tree, and thereby 

provides a measure of similarity among microbial communities present in different 

biological samples. 

2.2.6 IgX phylogenetics 

 Amino acid sequences of tetrapod immunoglobulin heavy chain constant regions 

were compiled and aligned in BioEdit with ClustalW employing gap opening penalties of 

10 and gap extension penalties of 0.1 for pairwise alignments and then 0.2 for multiple 

alignments with the protein-weighting matrix of Gonnett or Blossum [66, 67]. These 

alignments were then heavily modified by hand. MEGA was used to infer the phylogenetic 

relationships of the immunoglobulin heavy chain constant genes. Evolutionary distances 

were computed using the Dayhoff matrix [68] and 509 column positions in the 56 selected 

sequences. Several tree-building algorithms were employed, including a consensus 

neighbor-joining tree made from 1000 bootstrap replicates. 
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2.2.7 Immunizations 

For immunization, two routes of administration were used. Four frogs received 

intracoelomic (IC, frogs have no peritoneal cavity) and four oral (PO) immunizations. We 

used an oral gavage needle to deliver conjugated dinitrophenol- keyhole limpet 

hemocyanin (DNP-KLH, Calbiochem, San Diego CA) for mucosal immunization as 

previously described for X. laevis [60].  There were two normal and two thymectomized 

frogs in each group for a total of eight frogs. Frogs orally immunized received 2.5mg 

DNP/KLH with 10μg cholera toxin as adjuvant three times, each at weekly intervals. 

Animals in the intracoelomic group received 200μg of antigen with equal volume (200μl) 

of Freund’s complete adjuvant once and Freund’s incomplete adjuvant twice, at weekly 

intervals.  

2.2.8 Lymphocyte isolation and culture 

 Three weeks after the last boost, we euthanized frogs with an MS-222 overdose 

and decapitation. Spleens were removed and cells dissociated by scraping the organs over 

a wire mesh inundated with amphibian-adjusted PBS. The intestine was excised below the 

stomach and above the rectum. We removed mucous, chime and fecal matter by physically 

scraping and flushing the organ with PBS. The intestine was cut into smaller pieces 

(approximately 0.5 cm2) and placed in PBS. We then added 2% collagenase (Calbiochem, 

San Diego CA) in amphibian PBS to aid in isolation of the intestinal lymphocytes. We 

allowed the intestine to be digested for 120 minutes at room temperature. It was vortexed 

initially and then once every thirty minutes. The intestine was strained through a 100μm 
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nylon cell strainer (BD Falcon, San Jose CA) at the end of the 120 minutes. Lymphocytes 

were isolated from the washed supernatant of the intestine and from the cells isolated from 

the spleen with Lymphocyte Separation Medium (Mediatech, Manassas VA). All intestine 

and spleen cells isolated were counted Figure 2 - 3) and cultured in twenty-four well plates 

containing 250μl of L-15 media with 10% fetal calf serum at a density of 2.3x106 cells/ml 

for the spleen cells and 1.0x106 cells/ml for the intestinal cells. Cultures were incubated 

at humidified 28°C and 5% CO2. On the third day, supernatant was collected and new 

media was added to maintain a volume of 250μL per well. On the sixth day, supernatant 

was once again collected and pooled with the day three collections. 
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Figure 2 - 3. Total cell counts from tissue harvests. After sacrifice, lymphocytes were 
isolated from spleen and intestine as described in Methods. Total cells isolated from 
each immunized frog are shown, identified by surgery status and immunization route. 
 

2.2.9 Enzyme-linked Immunosorbent Assay (ELISA) 

We used ELISAs to determine the total (non-antigen specific) and antigen-specific 

levels of amphibian mucosal antibody isotype IgX produced in response to DNP-KLH. 

Serial dilutions from 1/10 to 1/1011 were made from the supernatants of the spleen and 

intestinal cultures. For the total immunoglobulin ELISAs, we added 100μL of each 

dilution to the well of a plate and incubated for one hour at 37°C. The plate was then 

washed 2X with 200μL PBS and 200μL of 2% casein in PBS was added as blocking 

solution. The plate was allowed to sit overnight at 4°C, and was then washed 3X with 
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200μL PBS. We added mouse anti-Xenopus IgX monoclonal 4110B3 (kind gifts of Martin 

Flajnik, University of Maryland at Baltimore and Louis Du Pasquier, University of Basel), 

to each well to obtain a volume of 100μl [69]. The plate was allowed to incubate at room 

temperature for one hour and then was washed 4X with 200μl PBS with 0.05% Tween-20 

(PBS-T, Sigma, St. Louis MO). The wells received 100μl of anti-mouse IgG peroxidase 

conjugated secondary antibody (Sigma) and were incubated for one hour at room 

temperature. We then washed the plate 4X with 200μl PBS-T and 1X with PBS. A 3, 3’, 

5, 5’-tetramethylbenzidine substrate solution was then added to each well and the reaction 

was allowed to take place for three minutes before being stopped with 2M H2SO4. Plates 

were read at an optical density of 450nm in a BioRadiMark Microplate Reader (Hercules 

CA). We used the 104 dilution of supernatant for all trials. The antigen-specific ELISAs 

used a similar protocol, except 100 μl of 10 μg/ml DNP-KLH was added to each well for 

initial coating. After blocking overnight, serial dilutions of the sample supernatant were 

added and allowed to incubate for two hours at 37°C. The remaining protocol was the 

same as that for total IgX. We assayed wells in triplicate, showed the standard error of the 

mean and employed a student’s t-test.   

 

2.3 Results 

2.3.1 Larval thymectomy depletes T cells in the adult 

To study the role of T cells in the management of gut bacterial communities and 

mucosal humoral immunity from a fundamental standpoint in vertebrate evolution, we 
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used the frog larval thymectomy model. We performed thymectomies largely executed as 

in the original studies [63], but two days later in development than in the original protocol 

due to slightly slower development of the larvae in our system. No frogs used in the 

thymectomized group showed any thymic regrowth after cauterization (using microscopic 

inspection). Thymectomy greatly diminished the detectable number of TCR transcripts 

using constant region PCR in the adult frog. TCR β and δ amplicons could be detected in 

some frogs, but at a much lower frequency than in frogs that had not undergone surgery. 

Regardless, larval bilateral thymectomy almost completely ablated expression of TCRα, 

showing that the classic αβ T cell compartment had been removed from the experimental 

gut model. 

2.3.2 Pyrosequencing reveals diverse gut bacterial flora in amphibian  

DNA was prepared from frog luminal contents at three distinct locations in the 

gastrointestinal tract, which is relatively simple in poikilothermic frogs and reptiles as they 

have lower metabolic rates compared to most mammals and birds (Figure 2 - 2). 

Pyrosequencing of the 16S rRNA gene resulted in a total of 51,992 quality sequencing 

tags (mean, range: 2888, 1870-5314).  

Figure 2 - 4 illustrates the rarefaction curves for all samples at 1800 sequences, 

suggesting sufficient coverage. Although rare OTUs might have been identified with a 

higher sequencing depth, the number of sequence tags used here was deemed adequate to 

allow comparison of the beta diversity between samples [70]. Samples taken from Large 

intestine showed the richest diversity of flora. Individual frogs showed distinct microbiota 

composition (Figure 2 - 5). Four frogs yielded similar rarefaction curves, whereas one 
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non-thymectomized frog (N321) showed more diversity and one non-thymectomized 

(N571) less. Averaged thymectomized samples gave a very similar rarefaction plot as 

those from normal animals. These data allowed us to gain an initial molecular description 

of the base amphibian gastrointestinal microbiota and look for differences between 

anatomic sites and surgical groups. 

 

 

 

Figure 2 - 4. Rarefaction analysis of 16S rRNA gene sequences obtained from frog 
gastrointestinal content. The analysis was performed on a randomly selected subset of 
1800 sequences per sample.Lines represent the average of each sample type. A. stomach 
= orange, large intestine = red,and small intestine = blue. B. normal (no surgery) = blue 
and thymectomized = red. C. frog N011 = red, N321 = blue, T258 = green, T606 = yellow, 
T339 = brown, and N571 = orange. 
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Figure 2 - 5.  Bacterial families in the gastrointestinal tract of Xenopus laevis. 
Familial distribution is shown with different colors from individual samples, grouped by 
thymus status from each of the three sampled positions in the gastrointestinal tract. 
Families with at least 1% representation in any sample are listed at the right. Complete 
taxonomic data is in Table 2 - 3. Clostridiaceae were the predominant family, and no 
differences in bacterial groups between normal and thymectomized frogs were observed. 
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2.3.3 Frog gut flora is anatomically distinct but not altered by T cells  

Many of the prokaryotic groups that dominate the human flora are also major 

components in the frog flora. Clostridiaceae dominated this amphibian community, and 

Bacteroidaceae and Enterobacteriaceae were abundant in our sequencing (Figure 2 - 5). In 

contrast to terrestrial mammalian flora, the environmental Flavobacteriaceae constituted 

nearly a third (32.34%) of the stomach flora of one frog and comprised 6.20% and 4.20% 

in two other individuals. The Synergistaceae, Desulfovibrionaceae, Erysipelotrichaceae, 

Ruminococcaceae, Rikenellaceae and Porphyromonadaceae also were substantial 

contributors (over 5% in at least one sample) to the X. laevis microbiota. 

 The PCoA plots based on the unweighted UniFrac distance metric indicated that 

the X. laevis stomach is composed of distinct microbial communities compared to the 

small and large intestine (Figure 2 - 6). This was most pronounced in the greater 

representation of Flavobacteriaceae in the stomach compared to the more distal sites. 

Oscillatoriaceae cyanobacteria and Enterobacteriaceae were in greater abundance in the 

stomach. This latter group includes the common gram negative sometimes pathogenic 

Salmonella, Escherichia coli, Klebsiella, Shigella and Yersinia pestis more commonly 

associated with the mammalian intestine. Synergistaceae were found in the intestines more 

than the stomach, particularly in the small intestine of thymectomized frog #258. 

However, PCoA plots based on the unweighted UniFrac did not reveal differences 

between small and large intestinal microbiota and, importantly, between normal and 

thymectomized frogs (Figure 2 - 6). The similar microbiological findings in the guts of 
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normal and T cell depleted frogs prompted investigations of the mucosal humoral immune 

compartment in this model. 

2.3.4 Amphibian IgX is likely orthologous to mammalian IgA 

In order to assess the T-dependence of humoral immunity in the frog alimentary 

canal, we wanted to be more confident of the mucosal immunoglobulin in this amphibian. 

As more immunogenetic data have recently become available from reptiles, birds, and 

ancestral groups of mammals, we revisited the phylogenetic relationships of tetrapod 

antibody classes to see if there was now convergence of expression and functional data 

suggesting IgX as the mucosal isotype. Entire immunoglobulin heavy chain C region 

sequences from diverse vertebrates were used to determine the relationship between 

amphibian IgX and mammalian IgA (Figure 2 - 7). Sequences were aligned and manually 

adjusted to maintain domain alignment between isotypes having either three or four 

constant domains (Figure 2 - 8). The resulting trees showed that IgX did not cluster closest 

to IgM. Unlike any past phylogenetic analyses, these data show that IgX and IgA share a 

common ancestor earlier than either IgX or IgA does with IgM with high statistical support 

(91% of 1000 bootstrap replications). This finding provided confidence in assaying IgX 

in the frog as an ortholog as well as a functional analog of mammalian IgA in mucosal 

immunity.  
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Figure 2 - 6.  Principal Coordinates Analysis (PCoA) of unweighted UniFrac distances of 
16S rRNA gene sequencing. The analysis was performed on a randomly selected subset 
of 1800 sequences per sample. Stomach (blue circles) samples separated from small (green 
square) and large (red triangle) intestine, indicative of distinct flora. 
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Figure 2 - 7.  Amphibian IgX is orthologous to IgA of birds and mammals.  
Neighbor joining phylogenetic tree of the constant regions of diverse tetrapod immunoglobulin heavy chains, with the fish 
mucosal isotype IgZ/T included as an outgroup. Numbers at nodes show bootstrap support for each bifurcation after 1000 
replications.  
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Figure 2 - 8. Amino acid alignment of constant regions of vertebrate immunoglobulins 
used in Figure 2 - 7 phylogeny. Sequences were aligned using Clustal in MEGA then 
manually adjusted based on cysteine residues in paralogous domains. That alignment was 
used for the dendrogram and exported to Bioedit for creation of this figure. 
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( Figure 2 - 8 continued).  
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( Figure 2 - 8 continued).  
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( Figure 2 - 8 continued).  
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( Figure 2 - 8 continued).  
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          ( Figure 2 - 8 continued). 
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2.3.5 Thymectomy does not impede mucosal antibody production 

Normal and thymectomized frogs distinct from those assayed for gut flora were 

immunized with DNP-KLH either intracoelomically or orally (Figure 2 - 9). B cells were 

harvested and cultured from spleen and gut of these animals, and ELISAs were performed 

for both total IgX and antigen-specific IgX on the supernatant. Oral immunization elicited 

significantly (p=0.025) more total IgX from intestinal B cells than intra-coelomic delivery, 

but no significant difference was seen from the spleen cells or between B cells from normal 

and thymectomized animals. When DNP-KLH specific IgX was assayed, the only 

significant (p=0.013) difference seen was an increase in specific IgX from orally 

immunized splenocytes from thymectomized frogs versus orally immunized spleen cells 

from normal frogs. Thus larval thymectomy does not appear to retard the frogs’ ability to 

make total IgX, or IgX specific to this hapten-carrier conjugate.  
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Figure 2 - 9. Thymectomy does not retard induction of mucosal IgX response 

ELISA for the IgX isotype on supernatant of lymphocytes cultured from spleen or intestine 
of frogs immunized to DNP-KLH. Units of the Y axes are absorbance at 450nm. A. Oral 
(PO) gives a significantly greater total IgX response in the gut than intracoelomic (IC) 
immunization (p=0.025, marked by *), but no significant difference was seen with 
thymectomized frogs. B. No significance was seen monitoring antigen-specific IgX in the 
gut. C. no significant difference was seen with total IgX in the spleen, D. Antigen specific 
IgX actually increased from spleen cells after thymectomy (p=0.013, marked by*). 
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(Figure 2 - 9 continued) 

C: Spleen Total IgX                             
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2.4 Discussion 

2.4.1 Frog gut flora  

Molecular sequencing techniques have surpassed culture methods of investigating 

gastrointestinal microbiota due to their increased sensitivity (and the majority of 

unculturable genera present there) [71]. The amplification and subsequent sequencing of 

the 16S rRNA gene allows the identification of bacterial groups present in the GI tract of 

humans and other animal species [72-74].  

High throughput sequencing techniques had not been applied to the  gut microbiota in any 

amphibian model, and X. laevis’s use in developmental, cell- and immuno-biology made 

it an obvious first candidate [57]. High-throughput 16S rRNA sequencing has been used 

to analyze the anti-fungal cutaneous bacterial populations in a salamander [75]. The most 

comprehensive culture based studies of amphibian gut flora have been performed in the 

leopard frog (Rana pipiens) [76].  Similar to the present work in Xenopus, Rana was found 

to have many Clostridiaceae, Eubacteriaceae, and Bacteroidaceae, and hibernating frogs 

at lower temperatures had a significant shift of flora to dominant Pseudomonodaceae [77]. 

Using the pyrosequencing based approach described here we were able to identify >60 

families of bacteria in the Xenopus gut that to our knowledge have not been described 

previously in amphibians. These include the known decomposers of plant polymers 

Marinilabiaceae [78], the potential pathogens in the guts of humans and fish 

Porphyromonadaceae [79], insect endosymbiont Sphingobacteriaceae [80] and the known 

fermenters of fish microbiota Verrucomicrobiaceae [81].  
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 The frogs in our gut flora analysis all spent their lives in the same aquatic animal 

room descended from the same outbred founders just one generation before. They all 

received the same prepared diet. Although not sterilized, this homogenous, consistent feed 

is certainly in stark contrast to the varied, inconsistent, and microbe rich diet wild Xenopus 

would consume in Africa. Yet we saw great individual variance in their gastrointestinal 

flora, as has been described in humans [82] and dogs [64]. These communities are 

undoubtedly temporally dynamic as well within the individual animals. This work in X. 

laevis provides a reference for anatomically discrete gut microbial communities in an 

omnivorous amphibian. This is the Class of vertebrates that gave rise to the amniotic 

reptiles, birds and mammals, and first employed immunoglobulin heavy chain istotype 

switching to a mucosal isotype. 

2.4.2 T cell influence on mucosal immunity 

Formative studies in nude (athymic) mice found that the poorly developed Peyer’s 

patches lacking substantial germinal centers and low IgA levels of this rodent model could 

be largely restored by thymic grafts and the resulting T cell population [83]. Yet loss of T 

cell function was not found to dramatically alter the cultivable gastrointestinal microbiota 

in these mice [84]. As our understanding of T cell help, class switch recombination and 

mucosal immunity have improved in the decades since this work; much energy has 

focused on the relationship between the adaptive immune system and the gut flora. This 

has extended to hypotheses of the two coevolving and even rationale for the original 

genesis of the adaptive system [85, 86].  
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We turned to the major biological model “between” Danio rerio and mammals to 

ask questions about the influence of T cells in the mucosal immune compartment. This 

choice affords a comparative view of what the first immune system with both MHC-

restricted T cells and a humoral response capable of class switch to a mucosal isotype was 

like in the ancestral tetrapod 300 million years ago. Thymectomy in this animal is an 

established model system for removal of the T cell compartment [58, 87-90], but this study 

is the first to rigorously test the adults for T cell receptor expression by PCR. We assayed 

TCRβ, δ, and α, as TCRγ has been shown to be expressed early in the X. laevis thymus 

[91]. Initially we were dismayed by some constant region (not necessarily indicative of 

functional rearrangement) TCR mRNA expression from peripheral blood of adults in 

which we visually scored the thymectomies to be perfectly clean. But perhaps this is to be 

expected, as TCRβ constant region message has been shown from bone marrow derived 

lymphocytes [92] and even functional TCRδ and TCRγ transcripts have been found in 

nude mice [93]. Despite these observed low levels of constant domain nucleic acid 

expression, we are confident that the scrupulous culling of tadpoles with incomplete 

surgeries and molecular diagnostics of mature animals yielded frogs with no functional αβ 

T cell compartment (and γδ as well). Monoclonal antibodies have confirmed this absence 

at the cellular level of receptor expression in this model [94]. 

The possibility of extra-thymic T cell development was explored in Xenopus by 

including PCR controls of gut tissue at the time of thymectomy in addition to adult gut 

from normal and thymectomized frogs (Figure 2 - 1). Extra-thymic T cell development 

has been described in mouse gut [95] and may even be stimulated by thymic ablation [96]. 
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Highly organized mucosal lymphoid structures such as Peyer’s patches do not exist in 

poikilothermic vertebrates such as Xenopus [97], yet a suggestion of gut T lymphopoiesis 

has been described in bony fish [98]. Tadpoles showed no TCR expression in gut at the 

age of thymectomy, nor was TCR expression seen in adult gut of larval thymectomized 

frogs. While extrathymic routes of T cell development are possible in frog our data suggest 

that these are at best minor relative to thymic for gut seeding, and that thymectomy does 

not force extrathymic developmental programs. 

Some “natural” gut IgA in mouse has been thought to be from T-independent B-1 

cells [99]. The specificity of gut IgA was later shown to be less “natural” and actually 

driven by specific antigens of the gut microbial symbionts and food [53]. Moreover, use 

of TCRβ/δ double knock-out transgenic mice ensured that T cells from thymus or 

elsewhere were not responsible for this phenomenon, nor was any “bystander” 

contribution of their lymphokines [100]. They further showed that this response was at 

least in part due to B1 peritoneal cells in mice [53]. These findings seem consistent with 

the lack of effect that thymectomy has on mucosal IgX in the present study. Yet in 

mammals there is plenty of evidence for T-dependence in gut IgA too. Most human IgA-

switched plasma cells in the lamina propria show evidence of somatic hypermutation, 

presumably from a germinal center event with T cell help [101, 102]. Moreover, most 

(~80%) plasma cells in the gut were found to be antigen specific and not poly-reactive 

[103]. AID transgenic mice defective somatic hypermutation but still competent to make 

IgA exhibited greater colony counts of small intestinal flora, germinal center hyperplasia 

and susceptibility to Yersinia enterocolitica [104]. This suggests T-dependent, germinal 
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center processes do shape the gut flora through the specific IgA generated against it in 

mice. Deep sequencing of IgA rearrangements in CD3-/- mice showed evidence for T-

dependent somatic hypermutation in aged mice, thus the relatively young age of the frogs 

in this study could be a factor [51]. We did not find evidence corroborating such T 

dependences in the amphibian, but recognize that this is one relatively small study in a 

captive population. 

2.4.3 Evolution of mucosal antibody isotypes and IgA 

Recent data now allow more rigorous studies of the natural history of tetrapod 

immunoglobulin genes. Sequence similarities and predicted structural resemblance to 

IgM, originally suggested that IgX might be the functional analog, but not the ortholog of 

IgA [59, 61]. The IgA of Aves appears to be a mucosal functional analog of mammalian 

IgA [105] and there is high sequence identity that suggests orthology [106]. However, 

there are four C domains in avian IgA suggesting a deletion occurred to yield the 

mammalian IgA of three [107]. The incomplete evolutionary loss of the Cα2 domain 

present in IgX and avian IgA could have given rise to the hinge region in mammalian IgA 

before the divergence of monotremes and the therian marsupial and placental mammals 

[108]. 

Although IgX has been hypothesized to be an ortholog of IgA [60, 109] the 

phylogenetic analysis described here is the first to lend experimental support to the notion. 

The availability of more diverse tetrapod immunoglobulin sequences allowed us to make 

this analysis. The CH1 and CH2 encoding exons of the IgX gene may have been derived 

from the IgY encoding locus and the CH3 and CH4 from the IgM encoding gene [110, 
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111]. These relationships will need to be retested as more amphibian, reptile, bird and non-

placental mammal genomes are sequenced. However, this scenario is consistent with the 

known synteny of the C region encoding genes in the immunoglobulin heavy chain loci 

of known tetrapod genomes (Figure 2 - 10), where IgX/A is in between the genes encoding 

the IgM/D and IgY encoding loci that birthed it. The locus in mammals has undergone 

duplicative expansions giving rise to subfunctionalization of IgG and IgE from IgY and a 

proliferation of sub-isotypes [112]. Thus, the resulting IgY/IgM chimera IgX gave rise to 

(or perhaps should be synonymous with) IgA in endothermic vertebrates. This appears to 

be the second time vertebrate evolution has produced a dedicated mucosal 

immunoglobulin isotype (Figure 2 - 11), the first being IgZ/T that is unique to some teleost 

fish [113-115]. IgX/A is the first mucosal isotype whose expression is controlled via AID 

mediated class switch recombination, as IgZ/T is produced via deletional RAG-mediated 

V(D)J recombination similar to the rearrangement at the α/δ T cell receptor locus [9, 116]. 
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Figure 2 - 10. Genomic synteny of IgX is consistent with its giving rise to IgA.  
Genomic assemblies and published genomic studies of the IgH locus were used to 
compare the position of the constant genes of IgX of amphibians with IgA of birds and 
mammals. The asterisk denotes that IgA is present in some reptiles such as the leopard 
gecko though genomic data are lacking. 
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Figure 2 - 11. Model of immunoglobulin natural history with mucosal IgX/A emerging in 
early tetrapods. A. Simplified phylogeny of vertebrates showing approximate emergence 
times of heavy chain isotypes. B. This analysis suggests that the isotype previously 
described as IgX in amphibians may be orthologous to IgA of warm blooded vertebrates 
(model adapted from M. Flajnik’s chapter of Fundamental Immunology, W. Paul editor). 
In addition to the isotypes extant in man, the immunoglobulin light chain-less IgNAR of 
cartilaginous fish and the mucosal IgZ/T of bony fish is also shown. 
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(Figure 2 - 11 continued). 
  

Revised Model 
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2.5 Conclusions 

 

 In the frog we find evidence for an ancient, T-independent, humoral mucosal 

response. We defined the gut flora of the model amphibian X. laevis but found the bacterial 

communities of the stomach, small and large intestine to be unaffected by thymectomy. 

More representative phylogenetic analysis of the relationship between amphibian IgX and 

IgA of amniotic tetrapods shows their orthology, explaining the origin of human’s most 

abundant immunoglobulin. Therefore we conclude that the T cell independent IgA 

pathway is likely an ancient mechanism to manage the microbial symbionts of the gut and 

other mucosal surfaces. More comparative studies must resolve the (convergent?) 

functional relationship between the two vertebrate mucosal isotypes: IgZ/T and IgX/A. 
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Table 2 - 3. Percentage of 16S rRNA gene clones belonging to bacterial families. 

Averages +/- standard deviation of samples from stomach, small intestine, large intestine, 
normal (thymus intact) and thymectomized frogs. 
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(Table 2 - 3 continued ) 
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(Table 2 - 3 continued) 
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(Table 2 - 3 continued) 
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(Table 2 - 3 continued) 
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(Table 2 - 3 continued)
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(Table 2 - 3 continued). 
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3. EXPRESSED IGH Μ AND Τ TRANSCRIPTS SHARE DIVERSITY 

SEGMENT IN RANCHED THUNNUS ORIENTALIS* 

 

3.1 Introduction 

 

 The immunoglobulin (Ig) superfamily-based adaptive immune system evolved in 

cartilaginous fish (Chondriechtyes), including sharks and skates,  is maintained in all 

jawed vertebrates [117]. One of the major characteristics of this adaptive immune system 

is the production of a repertoire of antibodies through somatic V(D)J recombination of the 

loci that encode them. While mammals possess five functionally distinct Ig isotypes (IgM, 

IgD, IgG, IgA and IgE), teleost fish have only three: IgM, IgD and IgT [114, 115, 118, 

119]. 

IgT was concomitantly discovered in trout (Oncorhynchus mykiss) and zebrafish 

(Danio rerio, where it was given the appellative IgZ) and IgT or  forms of Ig with IgT 

domains have since been described in fugu (Fugu rubripes) [120], carp (Cyprinus carpio) 

[121], and stickleback (Gasterosteus aculeatus) [122]. IgT perhaps exists in most teleost 

groups, although it has yet to be found in catfish [116, 123] and medaka [124]. So far IgT 

                                                 

* Reprinted with permission from “Expressed IgH μ and τ transcripts share diversity segment 
in ranched Thunnus orientalis.” by Sara Mashoof, Camilo Pohlenz, Patricia L. Chena, 
Thaddeus C. Deiss Delbert Gatlin III, Alejandro Buentello, Michael F. Criscitiello, 2014. 
Developmental and Comparative Immunology, 43(1), 76-86, Copyright © 2014, Elsevier 

 

http://www.sciencedirect.com/science/article/pii/S0145305X13003066
http://www.sciencedirect.com/science/article/pii/S0145305X13003066
http://www.sciencedirect.com/science/article/pii/S0145305X13003066
http://www.sciencedirect.com/science/article/pii/S0145305X13003066
http://www.sciencedirect.com/science/article/pii/S0145305X13003066
http://www.sciencedirect.com/science/article/pii/S0145305X13003066
http://www.sciencedirect.com/science/article/pii/S0145305X13003066
http://www.sciencedirect.com/science/article/pii/S0145305X13003066
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is an isotype restricted to bony fish (Osteichtyes), and sequence characteristics [114], gut 

localization and functional work [113] have suggested that it is a dedicated mucosal 

isotype [125], functionally analogous but not orthologous with IgX/A of tetrapods [126]. 

IgT was found to be expressed in gill of Chinese perch (Siniperca chuatsi) [127], IgT 

positive cells were identified in the epithelium of Oncorhynchus mykiss gill lamellae 

[128], and clonal IgT responses were induced to Oncorhynchus mykiss viral pathogens 

[129], all further supporting the idea of this isotype filling a mucosal role in teleost 

humoral adaptive immunity. The IgT encoding DH-JH-CH elements are located 5’ of the 

μ and δ DH-JH-CH regions in the fish genomes in which it has been studied, with most or 

all VH genes 5’ to the τ block [115, 120, 122]. Although class switch recombination has 

been described in shark [130] and fish activation-induced cytidine deaminase (AID) is 

competent to induce somatic hypermutation and class switch in mammalian cells [131], it 

does not appear that teleosts employ this for Ig heavy (H) chain isotype switching, instead 

they use deletional VH(DH)JH rearrangement to remove τ in IgM and IgD expressing 

cells and differential RNA splicing to control expression of IgM and IgD [132], the τ/μ 

rearrangement appearing to have influence on lineage commitment similarly to the 

mechanism operating at the T cell receptor δ locus. 

We recently turned our attention to the expressed IgH transcripts of the Pacific 

bluefin tuna (Thunnus orientalis). Thunnus species are the most valuable global 

aquaculture product [133], yet infections from several groups of parasites plague high 

intensity tuna mariculture ranches [134], impeding the industry from optimal relief of 

fishing pressures upon wild adult stocks. In addition to their economic importance, the 
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extreme physiological specializations of these migratory apex predators made their Ig of 

interest to us. Tuna are among the fastest fish and have countercurrent heat exchangers 

that minimize convective heat loss to maintain a form of endothermy distinct from that of 

birds and mammals [135, 136]. Specifically, we were curious whether tuna Ig harbored 

any special adaptations evident in their primary amino acid sequence to this rare form of 

fish endothermy. 

Here we report the first full-length μ and τ sequences from a tuna species. We have 

analyzed representative clones of the expressed variable domain repertoire of these 

isotypes, performed phylogenetic analysis of the IgH genes of this modern teleost, and 

analyzed their relative expression in T. orientalis primary and secondary lymphoid tissues, 

including the mucosal gill. Our results demonstrate that these fish employ the same Ig VH 

gene families as other teleosts, can use the same VH genes in both IgM and IgT heavy 

chains, make diverse IgH complementarity determining region (CDR)3 regions, and 

surprisingly employ the same DH segment in both τ and μ rearrangements in what appears 

to be a previously undescribed mechanism of B cell isotype determination. 

 

3.2 Methods 

3.2.1 Animals and collection of tissues  

      Sample tissues of spleen, gill and kidney from ranched T. orientalis were collected 

during the regular slaughter process from two different commercial tuna facilities located 

off the coast of Ensenada, Baja California, Mexico. At the time of harvest, fish weight and 
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fork length were 16.2 ± 6.5 kg and 96.3 ± 14.3 cm, respectively. Samples were placed in 

RNAlater (Qiagen, Valencia CA), frozen in liquid nitrogen, shipped to Texas A&M on 

dry ice and stored at -80◦C until further use.  

3.2.2 Total RNA isolation and cDNA synthesis 

Total RNA was purified from spleen, gill and head kidney (pronephros, or anterior 

kidney) (35 mg from each tissue) using the RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s instruction. The quantity and quality of the RNA samples were assessed 

by NanoDrop 2000c spectrophotometer (Thermo Scientific, Wilmington, DE) and Agilent 

2100 Bioanalyzer (Agilent, Santa Clara CA) respectively. Message representation of RNA 

was assessed by PCR of common (β-actin) and less common transcripts (TNF-α, IL1-β), 

using previously published primer sets [137]. The GeneRacer kit (Life Technologies, 

Grand Island NY) with GeneRacer oligo dT and gene specific primers was used to produce 

5’ rapid amplification of cDNA ends (RACE) PCR products. Pools of 3’ RACE products 

were synthesized by Superscript III First-Strand Synthesis SuperMix kit (Life 

Technologies) using the oligo dT primer. 

3.2.3 IgH RACE PCR, cloning, and sequencing  

5’ and 3’ RACE products were amplified by standard PCR using various 

combinations of 5’ GeneRacer (as forward primer in 5’RACE), Oligo dT (as reverse 

primer in 3’RACE), and specifically designed primers for the conserved regions encoding 

the C domains of  T. orientalis  IgM and IgT (as forward or reverse for 3’ RACE or 5’ 

RACE, respectively). Primers are listed in Table 3 - 1. The PCR conditions were as 
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follows: one cycle of 95°C for 2 minutes, 35 cycles of 95°C for 30 seconds, 50-53°C for 

30 seconds, 72°C for 2 minutes, followed by one cycle of 72°C for 7 minutes. The 

amplicons were purified from a 0.8% agarose gel after electrophoresis in Tris/acetic  

 

 

Table 3 - 1. Primers. Mladineo, I., Block,B.A., 2009. Expression of Hsp70, Na+/K+ ATP-
ase, HIF-1 alpha, IL-1 beta and TNF-alpha in captive Pacific bluefin tuna (Thunnus 

orientalis) after chronic warm and cold exposure. J Exp Mar Biol Ecol 374, 51-57. 
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 acid/EDTA (TAE) buffer, cloned into pCR II vector with the TOPO TA cloning kit (Life 

Technologies), and transformed into chemically competent TOP10 Escherichia coli cells 

(Invitrogen). Colonies were picked based on blue/white screening produced by X-Gal 

(Sigma-Aldrich, Saint Louis MO). The plasmid DNA was purified using Zyppy Plasmid 

Miniprep kit (Zymo Research Corporation, Irvine CA) and was digested with EcoRI 

(Promega, Madison, WI) to identify clones with inserts. Products for sequencing were 

amplified using either M13 forward or reverse primers, purified using ABI BigDye X 

terminator purification kit (Life Technologies), and sequenced by the DNA Technologies 

Core lab of the Department of Veterinary Pathobiology at Texas A&M University. 

 

3.2.4 Sequence analysis of μ and τ gene rearrangements in pacific bluefin tuna 

BLASTX (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and visual inspection were used 

to identify the Ig isotype as well as VH, JH and CH sequences of T. orientalis amplicons 

based upon homology to those from representative fish and other vertebrates. The amino 

acid sequences were blasted to discriminate the VH segments and CH domains. SignalP 

4.1 was used to determine the leader peptides [138]. Three prediction methods concurred 

upon the cleavage site of the representative μVH (after the 18th residue) and were in less 

agreement for τVH (after the 20th residue) as shown in Figure 3 - 1 and Figure 3 - 2 

Sequences were translated with Expasy translate tool (http://web.expasy.org/translate/), 

and the Clustal W program in Bioedit was employed to align amino acid sequences 

(http://www.mbio.ncsu.edu/bioedit/bioedit.html) for figures. Sequences were managed 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://web.expasy.org/translate/
http://www.mbio.ncsu.edu/bioedit/bioedit.html
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and assembled in Bioedit and have been deposited in Genbank under accession numbers 

(pending final numbers, submitted 8/30/2013). CDR3 length was calculated using the 

“CDR3 length = exclusive number of amino acids from C (of VH segment YxC) to F (of 

JH segment FGxG)” IMGT formula [139]. 

 

Figure 3 - 1. Nucleic acid and deduced amino acid sequence of T. orientalis IgHµ full 
length clone 6. The start of the predicted signal peptide, VH, JH, CH domains and 
secretory tail are marked above the sequence. Potential N-linked glycosylation sites are 
underlined. Cysteines and tryptophans necessary for the Ig superfamily fold are 
highlighted in black, the cysteine that forms the disulfide bond to the Ig light chain is 
highlighted in red. 
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Figure 3 - 2. Nucleic acid and deduced amino acid sequence of T. orientalis IgHτ full 
length clone 59. The start of the predicted signal peptide, VH, JH, CH domains and 
secretory tail are marked above the sequence.  

 

3.2.5 Phylogenetic studies 

 Amino acid alignments were made with Clustal W employing gap opening 

penalties of 10 and gap extension penalties of 0.1 for pairwise alignments, then 0.2 for 

multiple alignments using a Dayhoff matrix based method [68]. Phylogenetic trees were 

constructed using MEGA 5 software [140]. Neighbor joining trees using the substitution 
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method of Jones, Taylor and Thornton [141] and pairwise deletion of empty positions 

were constructed from alignments of VH and CH domain sequences.. Trees were 

bootstrapped 1000 times [142] and were viewed and adjusted using the TreeView 

Software [143]. 

3.2.6 Real time quantitative PCR 

Oligo-dT transcribed cDNA samples from spleen, gill and anterior kidney were 

assayed for levels of μ and τ message using β-actin as a constitutively expressed control. 

Real-time PCR reactions were performed using 25 and 50ng of cDNA with SYBR 

Advantage qPCR Premix (Clontech, Mountain View, CA) per the manufacturer’s 

instructions. Primers were designed to span across introns. Using a Roche LightCycler 

480 a three-step thermal cycling program was followed: 1 cycle at 95°C for 5 minutes, 

then 45 cycles of 95°C for 10 seconds, then 60°C for 5 seconds, then 72°C for 5 seconds. 

The Roche LightCycler software was utilized for raw data acquisition and calculation of 

Ct (threshold cycle) values. Changes in gene expression were estimated using the 2−ΔΔCt 

method (Livak and Schmittgen, 2001), with β-actin utilized as the stable reference gene 

for all experimental situations. The fold changes in gene expression were calculated with 

respect to the expression level of the genes in the anterior kidney (the primary B 

lymphopoietic tissue of bony fish).  

 

file:///C:/Users/Darsa/Desktop/Sara/tuna%20paper/paper%20submission/tuna%20Ig%20manuscript%202013%209%2029.docx%23_ENREF_13
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3.3 Results 

3.3.1 Characterization of μ cDNA of T. orientalis 

The initial full length T. orientalis μ was cloned and sequenced using a cDNA RACE 

library that was obtained from RNA pooled from several T. orientalis anterior kidney, 

spleen and gill samples. The secretory T. orientalis μ sequence shown in Figure 3 - 1 is an 

1827 bp open reading frame which encodes a 609 amino acid protein containing a leader 

peptide of 18 residues, one Ig VH and four CH domains. The primary amino acid sequence 

showed two cysteine residues (and intervening tryptophan) conserved for intra-domain 

disulfide bond formation present in each of the Ig domains with the cysteines being spaced 

by approximately 70 residues in the VH domain and 60 in the CH domains. The amino-

terminal cysteine in the CH1 domain forms an interdomain disulfide bond between the 

IgH chain to the IgL chain. The potential N-linked glycosylation site near the carboxyl 

terminus of the IgM chain was found at this position of the T. orientalis IgM [144].  

3.3.2 Characterization of tuna IgT 

 While sequencing 3’ RACE PCR products employing VH primers designed from 

μ clones we found other clones with Ig CH region amino acid sequences distinct from 

IgM, although they often shared a VH domain highly homologous with μ clones. The CH1 

domain of these clones shares 56% amino acid identity with the CH1 of Siniperca chuatsi. 

More primers allowed the complete cloning of the IgT encoding cDNAs, with CH3 

proving to be even more definitively of the isotype (60% identical amino acids to S. 

chuatsi). 
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 The secretory T. orientalis τ cDNA is composed of 1614 base pairs translating to 

539 amino acids forming a leader peptide, VH domain and four CH domains. As in T. 

orientalis IgM, two conserved cysteine residues and one tryptophan were identified in the 

VH and each CH domain which are important for folding of the β-sandwich Ig domains. 

There is also one conserved cysteine in the CH1 domain which forms a disulfide covalent 

linkage between the IgH chain to the IgL chain. The secretory tail of T. orientalis IgT is 

composed of 12 amino acids.  

3.3.3 IgHμ and τ VH, DH and JH segments 

 The same cDNA pools were used to examine T. orientalis IgH μ and τ VH (DH) 

JH rearrangement diversity. In total 50 different sequences encoding VH domains (Figure 

3 - 3) that possessed full or partial unique VH regions were cloned, 36 spliced to μ CH 

regions and 11 with τ (three contained complete VH regions but were incompletely 

rearranged or did not splice to a CH). Based on percent identity the VH segment sequences 

were divided into four separate families of IgH V genes. Members of each family were 

more than 70% identical in their nucleotide sequences [145, 146] (Figure 3 - 4).

 Analysis of the carboxy-terminal portion of the VH domains gave insight into the 

DH and JH gene segments used to rearrange mature VH exons. We predicted 11 different 

JH segments used in these clones and one DH segment 

(TATACGGGGGGGGTACTGGG) could be identified in the 48 unique CDR3 encoding 

rearrangements analyzed (Figure 3 - 5) The one DH segment apparently was employed by 

both isotypes, as various stretches of the sequence (including portions at each end) are 

found in both μ and τ clones. The predicted DH germline nucleotide contribution to the 
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final expressed CDR3 encoding sequence ranges from 3 to 10 with a mean of 5.5 base 

pairs. All three reading frames of the D segment were used (Figure 3 - 6). The τ clones all 

used a dedicated JH segment (J9).  

 IgH CDR3 is the crucial loop in the paratope of most antibody-antigen interactions. 

This sample of the T. orientalis Ig heavy chains expressed at the mRNA level allowed an 

initial analysis of the length of IgH CDR3 of μ and τ. Figure 3 - 3 shows that T. orientalis 

μ clones display a broader range of CDR3 lengths (from 9 to 18aa) as well as an average 

of one amino acid longer CDR3 length than those found in T. orientalis τ.  

3.3.4 IgM and IgT CH regions of tuna 

 The T. orientalis IgM CH region amino acid sequence showed the most identity to 

the mandarin fish (S. chuatsi, also known as the Chinese perch and also a member of the 

Order Perciformes) with 53.6% and then to the Oncorhynchus mykiss with 39.8% identity 

and presented the least with chicken (23.8% identity) amongst the sequences we included 

in our analysis (Figure 3 - 7). The T. orientalis IgT CH region has the highest identity also 

to that of the mandarin fish with 52.5% and the least to grass carp with 20.4% (Figure 3 - 

8). Unlike the cyprinid grass carp and Danio rerio, the CH3 domain of T. orientalis IgT 

conforms to the canonical immunoglobulin domain fold with cysteines and tryptophans in 

positions common for β-sandwich tertiary structure. 
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Figure 3 - 3. Four VH families used by T. orientalis IgH.  
Amino acid alignment of VH segment encoded sequences found within T. orientalis μ and τ cDNAs. Clone numbers are shown to the left and VH family designations are shown to the right. VH gene segment families 
were ascribed based upon 70% nucleotide identity in a pairwise matrix (Figure 3 – 4). Gaps introduced into the alignments are indicated by dashes (“-“) and identity to the first sequence is indicated by a period (“.”) in 
the column. CDR1 and CDR2 are indicated below the alignment. If clone contained CH region encoding region, μ or τ is indicated at left of sequence after the clone name.  
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Figure 3 - 4. Nucleotide identity matrix of VH region coding sequences to identity VH 
families. Clone numbers are in bold the left and right of rows and top and bottom of 
columns. Pairwise differences of less than 30% using nucleotide version of alignment in 
Figure 3 - 6 are highlighted in green and indicate inclusion in same VH family (by 70% 
nucleotide identity). 
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Figure 3 - 5. T. orientalis VH (DH) JH junctional diversity. 
Nucleotide alignment arranged by VH family VH(DH)JH junctional region. Clone names 
and VH family are denoted on the left, JH gene and CH region is given to the right. 
Conserved tyrosine and cysteine codons of YxC motif of VH segment as well as GxG 
glycines of JH gene are highlighted in yellow. Predicted DH segment is highlighted in 
blue. 
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Figure 3 - 6. Translated complementarity determining region (CDR) 3 repertoire sampling 
of T. orientalis IgH. Amino acid alignment arranged by JH gene of the VH (DH) JH 
junctional region. Clone names and VH family are denoted on the left, JH gene, reading 
frame of DH used and CH region is given to the right. Conserved tyrosine and cysteine of 
YxC motif of VH segment as well as GxG glycines of JH gene are highlighted in yellow. 
Predicted DH segment is highlighted in green, blue or magenta depending on the use of 
reading frame one, two or three, respectively, in panel B. Amino acids were assigned to 
VH, DH or JH based on at least two bases of codon matching consensus, grey highlighting 
indicates a residue partially encoded by D consensus that does not encode consensus 
amino acid. 
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3.3.5 Phylogenetic analysis 

 To assess the phylogenetic relationship of the T. orientalis Ig VH gene segments 

with those of other teleosts we created dendrograms with their pairwise genetic distances 

(Figure 3 - 9).  

 

 The four T. orientalis IgH V gene families interleaved amongst those VH segment 

sequences used by the other fish, indicating that they are using members of the same 

ancient VH families that have been conserved by trans-species maintenance since at least 

the common ancestor of these divergent fish. However T. orientalis families VH1 and 

VH2 appear to have arisen from a more recent duplication in the order Perciformes. 

We also explored the relationship of these new T. orientalis IgH C regions to those 

of other fish and other vertebrates (Figure 3 - 10). As expected, the T. orientalis IgM 

grouped with that isotype from other fish, most closely the Perciforme trumpeter fish 

(Latris lineata). Within the IgM, teleosts group together as a sister group to all of the other 

vertebrates, including the shark which shares a more ancient common ancestor and would 

be expected to branch outside of teleosts and tetrapods.  However this incongruence with 

the organisms’ natural history is not unusual for phylogenetic analyses of teleost antigen 

receptors, unless balancing numbers of operational taxonomic units fill the other 

vertebrate classes [147]. IgT of T. orientalis clusters with that isotype from other 

representative fish. 
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                 CH1 

T. orientalis    TPRAPTLFPLAPCGSG--TGDMVTLGCLATEFTPSS-VTFSWT-KSGTALTDFIQ--YPPVQKGEFYTGVSQVQVRRQDWEAKQP-F-KCTVTHPDGT-SSVTPYPSEP 

S. chautsi       TSTGPTVFPLMQCGSG—-TGDMVTLGCLATGFTPSS-LTYAWS-KNGAALTDSIQ--YPPVQKGDVYTGVSQIRVRRQDWDARES-F-RCAVTHPAGN-GKADFMKPKV 

I. punctatus     -SAPKSLFPVWQCGSA--SDGLVTLGCVTRDLASADGLSFIWKDASGSALTDVVQ--YPAVQATGGYTSVSHVRVKASDWNGNKK-F-TCEVKNGLGS-KDASLQKPVE 

D. rerio         -SAPQSVFGLSQCSSG--SDGSITLGCLAKGFSPADSLNFKWKDPAGKDLSDFVQ--YPAFGKEGDYTKISHIRVRKSDWDAKKP-Y-TCEASNSVGAPKTASLAPPAP 

L. lineata       ----PTTFPLMQCGHG--SEQMVTLGCLATGFTPSS-LTYTWS-KNEVALNDFIQ--YPPVLKGNLYQGISQIRVSRQDWEAAKPNTIRCAVTHAAGN-AQCDFRPIHV 

O. mykiss        -------FPLAQCGSG--TGDMMTLGCIATGFTPAS-LTFKWNDEGGNSLTDFVQ--YPAVQTGGSYMGVSQLRVKRADWD-SKK--FECAVEHSAGS-KKVPVKKQPE 

P. olivaceus     TPAIPTLFPVMPCGSG--TGQTVTLGCLATGFTPSS-LTFAWD-KNGAALTDAIQ--YPSVLKGNFYTGVSQIRVPRQEWDNSRP--FKCTVTHEAGS-PQITLQKPKV 

S. salar         SSTAPTLFPLAQCGSG--TGDMMTLGCIATGFTPAS-LTFKWNEQGGNSLTDFVQ--YPAVQTSGSYMGVSQLRVKRADWD-SKI--FECAVEHSAGS-KTVPVKKQAE 

G. cirratum      -PSSPTLYGLVSSCQQQTNDGSVIFGCLAMDYSPDT-TSVTWKK-RGEPITTGIKTYPSVRNKKGTYTLSSQLALNEPDAECS---QISCEVRHSGSDKSTG-----MP 

X. laevis        TSKSPSLFPLISCGES---MDPVTIGCLAKDFLPET-ISFTWGDKNNASYSTGLKSYKPVMQSSGTYSASSQVNVAS--AVWDNIEQFYCNAKHLDTIKSVELKKDPVK 

A. platyrhyncho  TPRGPTLFPLLSCSSSSSSSSLYAVGCVAVGHVPAG-VTFSWTDVTNATVATTIV-NFPEARGPGGNWAASRLELPLQEGKGR--QPFYCRAAHPRGNPVVLAVSNPG- 

B. taurus        --------------SSPSDESTVALGCLARDFVPNS-VSFSWKF-NNSTVSSERFWTFPEVLRDGLWSASSQVVLPSSSAFQGPDDYLVCEVQHPKGGKTVGTVRVVAT 

H. sapiens       SASAPTLFPLVSCENSPSDTSSVAVGCLAQDFLPDS-ITFSWKYKNNSDISSTR--GFPSVLRGGKYAATSQVLLPSKDVMQGTDEHVVCKVQHPNGNKEK---NVPLP 

 

                 CH2   ^                                                                  ^ 

T. orientalis    LFELPT-LKVLASTDDGSE-------ASFSCYAKYFSPEEYE-IKWLKDDGDVFDKVYEIKTPIKEGQTTDGKTLYSVASFLMVPTSDLRPNSTKFTCEFKLKNEN--AFVNSTVTYGGSCPEPTGCE 

S. chautsi       TYVPPTELKVLASSGEEQE-------ASFSCFARDFSPKDYE-IKWLKNEAEIPNKIYEIKMPLGERQDKNGTTLYSAASFLTVPASEW-TVDTKFTCEFEGKGENGATFMNSSVTYKHTTP--GNCE 

I. punctatus     R-ELHASLLLTTPTQTEIDNGT----ATFVCLATPFSPKSHT-FKWTLEKTDISNKVKENIV----SQNKG---NFTAISVLELSASEWTSSTSPVKCEFQQKNHN--------VFKEASYAP-GDTK 

D. rerio         PPDLRATVFLTAPTKMELEGGS----ATFMCLARRFSPKQYE-FKWYQNDQEVTNAVDNFFK----DEKNGSVTEYSATSILKINAETWKQAESKVKCVFEHNKRN-------DSREIQYKDTMQDCI 

L. lineata       PCDLPTLKVLASSDEESE--------ASFSCFAKDFSPKDYK-IKWLKNEVEIPNKIYEVHTPAGQ-RDLNGSTLYSAASFLKVPSSEW-THDDRYTCLFEGKCKTSSTFKNSTVTYK-DCKS-DVCD 

O. mykiss        YLQQPSLYVMTPSKEEMSENKT----ASFACFANDFSPRTHT-IKWMRMEKGTEQEVVSDFKSSCESEKKSETTLYSTTSYLRVNESEWKSEEVTFTCVFENKAGN----VRRTVGYT--SSDAGPVH 

P. olivaceus     LFSSPELKVSAFYGEKNE--------ASFFCSAENFSPKDYQ-IKWMKNGDDFTDIISEITTSTEE-HKSENGTLYSATSILRVHTSDL-PESAKIKCQFKGKDASGVKLTEAFVTYK-PITCTKGCM 

S. salar         YLQHPSLYVMTPSKEEMAENMT----ASFACFANDFSPRTHT-IKWMRMEQGIEKEVVSDFKSSCESEKKSDKTLYSTTSYLRVNESEWKSEEVAFTCVFENKAGN----VRRTVGYT--SSDAGPVH 

G. cirratum      CGNGDPPTVLLTVSSSEEIESI--KFATIVCSIIDFHSKSIS-VNWLKNG-----GSVHSDILTSPVCEVNGS--FSATSRLRVPYAEW-FDKAVYTCQVTYDGDV----QSWN------ITGPQVSE 

X. laevis        PVEK--PVVSIHPPSKDALALN--ESLFIVCLATNFTPTHIV-IKWLKNG----NQTTEGVRVEEPVEDKKRG--YEATSYLSITRKEW-DLDTLYSCVVEHAESG----SLQEKNMSKSLMCDTPIT 

A. platyrhyncho  SSQPTAPVLSIHPPSREDFEGP-YRNSSLLCRVR--GPRGLTPVTWLKNG----APVTAGAVTAGSRTDGTGA--YVTDSWLSVTEAEW-DAGTVYTCQADGEMRN----SSK----SLECGLDKPDS 

B. taurus        KAEVLSPVVSVFVPPRNSLSGDGNSKSSLICQATDFSPKQIS-LSWFRDGKRIVSGISEGQVETVQ--SSPVT--FRAYSMLTITERDW-LSQNVYTCQVEHNKET----FQK----NVSSSCDVAPP 

H. sapiens       VIAELPPKVSVFVPPRDGFFGN-PRKSKLICQATGFSPRQIQ-VSWLREGKQVGSGVTTDQVQAEAKESGPTT--YKVTSTLTIKESDW-LSQSMFTCRVDHRGLT----FQQ----NASSMCVPDQD 

 

                 CH3                    ^                                                              ^ 

T. orientalis    VLDVEVEIKGPTMTDMFVESKGTLVCQVKIN--KPQVTKIFWEDEDGKS-----MIEESVPA-DGFKGTVNVPLDITYDEWTAGIKRVCVVQHTNFL-EPIKRVYERKIV 

S.chautsi        V-DVDIKITGPTLADMFLNREGTIVCQVKVN--EPYVGRILWEDEKGNE-----MAGASKTFNDEGTF-S-LPLEITYDEWSKGIKRYCVVEHENLI-EPLKELYERSFG 

I. punctatus     QP--QVKITGPSTEDILIKRAGQLECRAEG---DTGFKSIKWLIGNRE--------ISSLSNLSSKTTVS-LQTHIGFEEWINGTEFICEVEHEAFTQQYEKVTFKRENG 

D. rerio         DDNVHIDIIPPTPEDMLKNRKGILKCKASG---NPQFHFTKIEIKAND--------LVIAEKEEPLTNREELDAPINYQEWSNGTVFKCIAENTGKTLPEEK-TFVRENG 

L. lineata       KVNVDIKISGPAVEDMFLHGKGTITCHVNAS--EPSLGKIWWEDQHGNE-----MAAASITPPKGSKGPVNVPLEITYEEWSKGIERYCFVEHTDWL-VPEKKRYERNIG 

O. mykiss        GHLVVITIIEPSLEDMLMNKKAQLVCDVNEL--VPGFLSVKWENDNGK----------TLTSRKGVTDKIAI-LDITYEDWSNGTVFYCAVDHMENLGDLVKKAYKRETG 

P. olivaceus     EADVDVYIEGPTEQDMLVDKTGTIKCHVKVK--NPTVMKIYWENHDGEE-----IPDATLKP-NGRGDSYIVPVDITYDEWSQGIKLNCVVEHSDWF-ELLRTPYERSTG 

S. salar         AHSVVIKITPPSLEDMLMNKKAELVCDVEEL--VPGFMSVKWENDNGK----------TLTSRKGVTDRIAI-LDITYEDWSNGTVFYCAVDHLENLGSLVKKPYKRETG 

G. cirratum      CHGYTAKILPPPVEQVLLEATVTLTCVVSNLHSGVNFT---WMQGK------KTLKSEIAHDSGEHSDGTISKLDISTESWLSEVVFDCVVNHQYLP-TPLRDSIHKETI 

X. laevis        PTSIQVITIPPSLESIFEKKSATLTCLVSNMANSEDLRSISWFKKSGTQEIPLKTELGDAIYNDNRTYSVKGTTTVCADEWNN-DKFVCKVEHTELA-SMKEVFLFKEKG 

A. platyrhyncho  -SDIAVRVLPPSFVDIFNEKVAKLTCKVSNLPTVEGLV-ISWLKEDGQ---KLETKTMPRVLQANSLYGVEGVASVCADEWNKEEVYTCKVSHPELL-FPVEEKLQKATE 

B. taurus        -SPIGVFTIPPSFADIFLTKSAKLSCLVTNLASYDGLN-ISWSRQNGK---ALETHT-YFERHLNDTFSARGEASVCSEDWESGEEFTCTVAHSDLP-FPEKNTVSKPKD 

H. sapiens       -TAIRVFAIPPSFASIFLTKSTKLTCLVTDLTTYDSVT-ISWTRQNGE---AVKTHTNISESHPNATFSAVGEASICEDDWNSGERFTCTVTHTDLP-SPLKQTISRPKG 
 

 
Figure 3 - 7. Amino acid sequence alignment of the heavy chain of IgM in different vertebrate species. The conserved (identical and similar) residues are highlighted in black. Arrows indicate CH1-CH4 and the secretory 
tail. An asterisk (*) is above the conserved cysteine that forms a disulfide bond with the light chain, a carrot (^) is above conserved cysteines that form intra-domain disulfide bonds. Gaps are indicated by dashes. Genbank 
accession numbers are: AAQ14846.1 Siniperca chuatsi (Chinese perch), A45804 Ictalurus punctatus (channel catfish), AF281480_1 Danio rerio (zebrafish), ADC45388.1 Latris lineata (striped trumpeter), AAW66973.1 
Oncorhynchu mykiss (rainbow trout), AF226284_1 Paralichthys olivaceus (flounder), AAB24064.1 Salmo salar (salmon), AAU04507.1 Ginglymostoma cirratum (nurse shark), AAA49774.1 Xenopus laevis (African 
clawed frog), CAC43280.1 Anas platyrhyncho (duck),AAN60017.1 Bos taurus (cattle), and AAS01769.1 Homo sapiens (human). 
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                 CH4                      ^                                                                      ^ 

T. orientalis    GLEQHPSVFMLVP--VEQANKETVTLTCFVKGFYPKEVLVSWLVDDVPADSN-----YDISTT-----NPVESNGFYSVYGQLTLSLDDWKDSDKVYSCVVYHESLKNTTKAIVRSMAHGST 

S. chautsi       GQTQRPAVFMLPP— VEHTRKETVTLTCYVKDFFPQEVLVTWLVDDEEADSK-----YKFYTT-----NPVESNGSYFAYGQLSLSLEQWKKNDVVYSCVVHHQSLVNTTNAIVRSIGHRTF 

I. punctatus     NP-EFPKVYLLAP--PES-SGESVTLTCYVKDFYPKEVAVSWLVNDKQVEEVVG---YEQNTT-----AVIDRNNLFSVYSQLIIKTADWN-SGSVFSCLVYHESIKDCVRHISRSIAK-DS 

D. rerio         K--KRPSVYVLAP--PENKANEAMTLTCYVKNFLPKEVFVTWLVND---EPAYG---YKNSTS-----EPVENDDSFSMYSQITVENSEWT-GGKVYTCVVYHESIDEKLLVLTRSITD-NM 

L. lineata       GQTQRPSVFMLPP--LEHTRKDMVTLACYVKDFFPHDVLVSWLVDDVEADPQ-----YEYYTT-----NPVKSNGSYSAYGQLTISLEQWKKNDVVYSCVVHHESLVNTTKAIVRSIGHRIF 

O. mykiss        GVPQRPSVFLLAP--AEQTSDNTVTLTCYVKDFYPKDVLVAWLVDDEPVERTSSSALYQFNTT-----SQIQSGRTYSVYSQLTFSNDLWKNEEVVYSCVVYHESMIKSTNIIMRTIDR-TS 

P. olivaceus     VQTQRPSVFMMPP--VEHVKKDTVTLTCYVKDFSPPEVFVSWLVDD-EYPSG-----YKFNTT-----NPIESNGSYSAYGQLSLSLEQWKKEGVMYSCVVYHQSVVNNTKAIVRSIGHKTS 

S. salar         GDPQRPSVFLLAP--AEKTSDNTVTLTCYVKDFYPKEVLVAWLIDDEPVERTSSSALYQFNTT-----SQIQTGRTYSVYSQLTFSNDLWKNKEVVYSCVVYHESMIKSTKILMRTIDR-TS 

G. cirratum      KNPLEPSVSVLLPTTEELSAQRFVSLTCLVRGFRPREIFVKWTTNDKPVNPSN----YKNTEV-----TAESDNTSFFLYSLLSIAAEEWA-SGASYSCVVGHEAIP--LKIINRTVDK-SS 

X. laevis        -EYNTPSVYVFPPPLEELSKRETATLTCLVKGFSPSEIFVKWLHKNEAVPKQN----YINTSINDELLPKGQKSGKFFLYSLHTIDIKDWD-AGDSFSCVVGHESLP--LQLTQRSIDK-SS 

A. platyrhyncho  RDAKPPALYVFPPPPEQLNAHETATVTCLAKGFNPPDLFIRWLRNGEPLPASS----YVTMPP----VAESQLARSYFTYSALSVATEDWG-AGNVFTCLVGHERLP--LQVAQKSVDK-PS 

B. taurus        VAMKPPSVYLLPPTREQLSLRESASVTCLVKGFAPADVFVQWLQRGEPVTKSK----YVTSSP----APEPQDPSVYFVHSILTVAEEDWS-KGETYTCVVGHEALP--HMVTERTVDK-ST 

H. sapiens       VALHRPDVYLLPPAREQLNLRESATITCLVTGFSPADVFVQWMQRGQPLSPEK----YVTSAP----MPEPQAPGRYFAHSILTVSEEEWN-TGETYTCVVAHEALP--NRVTERTVDK-ST 

 

                 SEC 

T. orientalis    AQTNLVNLNMEVH--------  

S. chautsi       ENTNLVNLNMNIPESCKAQ--- 

I. punctatus     KTPTLVNLTLTNPQSCSCSTY  

D. rerio         DKSSIINLSMTTPAPCKA---  

L. lineata       EKTNLVNLNMNIPETCKPQ--  

O. mykiss        NQPNLVNLSLNVPQRCMAQ--  

P. olivaceus     ETTNLVNLNLNIP--CKAQ--  

S. salar         NQPYLVNLSLNVPQSCKAQ--  

G. cirratum      GKPSFVNISLALMDTINSCQ-  

X. laevis        GKPTNVNVSLVLSDTC-----  

A. platyrhyncho  GKPTSVNVSLVLSDTASSCY-  

B. taurus        GKPTLYNVSLVLSDTASTCY-  

H. sapiens       GKPTLYNVSLVMSDTAGTCY-  

 

(Figure 3 – 7. Continuoud) 
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               CH1 

                                *           ^                                                         ^ 

T. orientalis    ---TPSSPTLYPLLQCDSDTGNKVTVGCLARDFFPKSIDFQWNDARGTRVDS-AQYISGQNN-KYTGVSVVQVSRSDIKS--SYNCSVDHLGRTMAVTVK 93   

S. chuatsi       SSVTVASPTLFPLVQCNSGPADKITVGCLARDFYPKSLTFQWTNSSGTALTS-ENYPPAEKNNKYTGVSLVQVSKSDWDSRKSFKCSVHHNGSTHDLQVH 99   

S. salar         -AATTAPSSLFPLMNCGTPSNDIYSIGCVATGFSPSSITFKWTDASESPLTDFVQYPSVQSGGAYIGVSQVRVSKNDWEKSKSFRCSVEHPGGGKTAVIK 99   

O. mykiss        SAAATAPSTLLTLMNCGTPSNDIYSLGCIAKGFSPSSHTFQWTDASGKALTDFVQYPAVQSGETYTGVSQLRVAKNVWENSKSFRCSVDHPGGAKTAVIN 100  

D. rerio         --ETLTAPVVFKMSQCSS-STDSLIIGCLASEFSPDSVNFRWS-SNGNEMKNVTQHSTANN----LKFSYITITKKQRYQS-DIMCTADHPSKTVNETF- 90   

C. idella        VSDSKSPPIVFTMSQCKS-SSDFLFIGCLAS----DSLNLKLK-DNGKDLTGIIQYPPVKTGDKTFQVSLLNITKQNMDQS-NITCDAAYQNETVSKQF- 92   

E. coioides      YSQTTAAPALFPLVQCKSGTAGTVTVGCIAQDFFPESLTFQWTDASGTTQTF-KQYPTVMKDNKYTGVSVLDVSKSAWDSRRSFSCSVTHPGGSESVTLQ 99   

 

                 CH2 

                                        ^                                                          ^ 

T. orientalis    LPSP--PRVTLLSVPNGDTQVLVCTIEEFLPETLS-VKWKKNRDYESDFTDWVPKQ-IGDVYSAVSVLKVKNADWESKAVYTCEVTHKGKIYEKKASK-A 188  

S. chuatsi       KPIP--PKVTLVSVPSEDSQALVCTIEDGRSGTLDSFKWKKNGAELNDYIQSPIQK-TGELHSAVSVLKVKNTDWDSKAVYTCEVTYSGTQYKKKASK-A 195  

S. salar         KTVPKSPTVSLLSAPIGTTQYLMCMIEDFTSNTVT-VTWKKNDMEVEGQTPTLVKQ-PSGLYSGSSLLKVINTNWNNKVKYSCVVQHQEQTINKTISKTE 197  

O. mykiss        KPVPKSPTVSLLSAPIGTTQYLMCMIEDFTSETVK-VTWKKNDMEVEGQTPTLGKR-PSGLYSGSSLLKVTNTDWNNKVKYSCVVEHQGETISKTTSKTE 198  

D. rerio         ---STAPTLSLVLVPTEKNTFAMCVIEDFYTENIT-VRWKENNIYKQSQTNLEYKLNMNGLHTALSLYKLNEIVIPN-TEYTCEVSHRGKTFHKTQNFTA 185  

C. idella        KVNPQEPTLSLVPVITQKSTFAMCVIENFYPKNLI-VQWKVNDEYSQKQTKLESKRNAEGLFTAHSFYEVSSKTWNVNTRYTCEVTHQGKLIPVTKNFKA 191  

E. coioides      KPPPP-PKVTLVAVPAGDTQTLVCTIEDLPSNQLS-VKWKKDDNSVTGFTDCPPQL-NGGVYTAVSILKVTNSEWDSKAVYTCEVTNQGTTYPKKVSK-V 195  

 

                 CH3 

                                        ^                                                               ^ 

T. orientalis    PITVTLNPPSPKKFFNNNQAELECIVEGQDNTIVSETEMTWQINGKNVAGNMG-----LLKTAGSQYSKTNTLTRSLTEWLQVNTVRCSAKR--KDVTVTKDLTFHKG 289  

S. chuatsi       PITVTLNQPSPKEIFSNKQAELECIITGQDETIVDEIKVTWQIDGQDVSDNIN----ETTKSVDGQRIKTSTMTRSRTEWQRVNKVRCSAIR--DDDTLIQDLTVHKG 297  

S. salar         PLTVTLNPPRVREVFLDNQAVLECVITGTDQDTVSGTTITWQVNGEDKMDGIDL---KNIESKGNLNSRVSTLTIGQTEWTNVNKVQCSAMKSGEDTPVIQDLSFTKG 302  

O. mykiss        PLTVTLNPPRVREVFLDNQAVLECVITATDQNTVSGTNITWHINGDIQTAHIDL---KPIESKGNLNSRVSTLTIDQTRWTNVNKVQCSAMKRGEDTPVIQDISFTKG 303  

D. rerio         KFRLMLKPPMVREMFINNRIVLQAVVSGDLSTAVKEASVSCKMDNVPIN--------SVSQENESQHVKIYNVPVDTTKWFNGGKVTCTTRDTLNNKDIKQEIYFNKG 285  

C. idella        TFALTLNPPIERELFVHNKTVLEAVVSGDVKEMVQAASVSCKVKDANVASESITSEIIVPSNDTSSFMKKHKVTIDTNKWFDGEYVTCTIRDTNNNRDIQQKIHFDKG 299  

E. coioides      PITVTLTQSSPKEIFSNNQAKFECVITGTDQTGP-DFQIIWQVDGQNVTDNIE------TKPGSK---KISTMTRAHTDWQSINKVRCSAIR-DNMTPVIQELTIQKG 292  

 

                 CH4  

                                              ^                                                              ^ 

T. orientalis    DRSKTTVTVHILSEEEIR---KNSDVTLVCLVSSSVQQDYYIAWSDDAGQNTGNYVDGITFPPQKTQHG-YSVTSVYTINKEKWNQQRSVFNCNVWLVGSNKSMIIR--GV 394  

S. chuatsi       DGREPKVTVHVLTEEDIN---KGAEVTLVCLVSSPVLQDYYIAWSEDE---TNIYTDGINFPPQKTQHG-YSVTSVYTTTKEKWN-KFNMFYCNVWPAGSNDSMEPR--GV 398  

S. salar         S-VAPSVSVHLLPEEDTK---KEGEVTLVCLVVCPSLCDVYIMWQVD----SGQYQEGVTSPPQKTQKANYFVTSVFTTTKDKWERN-LVFTCAVKHAGSDNNTALKERRV 404  

O. mykiss        S-EAPSVSVHILPEEDTK---KDGDVTLMCLVVSPSLCDVYIMWKED----SGEYQEGVTSPPQKTKKGNYFVTSVFTITKDKWDTN-VLFTCAVKHAGSDNSTSPKEMSV 405  

D. rerio         DGQEPSVKMYKPDDISTK------QISYVCEVSSPNLGDVYIMWKVN-----NTFTEGKSSDPIQQQGS-TSVVSILTISKKEFENPETTINCAVVHANMKDTASPLLKST 384  

C. idella        DGRKPNVTIYRPDDIKAD------PVSLVCKVTSSDLGNVYIMWKIGN----GPYIEGRTSAPIRQNDS-TSILSILTITKEQYKSLTTTVTCAVKHTNMVNIESPLQATT 399  

E. coioides      DGSDPKVTVHILPLEDIDKAAQGSEVTLVCLVSSRAQQDYYIAWREDTGQNTGTYSDGINFPPQKIQNR-YLVTSIYITTKDKWNTT--KFSCNVWPAGGNKSMKSR--DV 398  

 

                 SEC 

 

T. orientalis    SKATGNSLECDK 406  

S. chuatsi       SKSHGNSIECRK 410  

S. salar         SKSMGNSCEDK- 415  

O. mykiss        SKSTGNSCEDK- 416  

D. rerio         SKSKQTECDD-- 394  

C. idella        SKSKQAECPVDY 411  

E. coioides      SYAMSNSVECKK 410  

 

Figure 3 - 8. Amino acid sequence alignment of the heavy chain of IgT CH domain. 
The conserved (identical and similar) residues are marked in black. Arrows indicate CH1-CH4 and the secretory tail. An asterisk (*) is above the conserved cysteine that forms a disulfide bond with the light chain, a 
carrot (^) is above conserved cysteine of intra-domain bonds. Gaps are indicated by dashes. Genbank accession numbers are: ACZ54909.1 Epinephelus coioides (grouper), ABF19723.1 Ctenopharyngodon idella (grass 
carp), AAY42141.1 S. chuatsi, ACX50291. S. salar, AAW66981.1 O. mykiss, and CAI20890.1 D. rerio. 
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Figure 3 - 9. T. orientalis IgH V genes shared with 1 other fish. Phylogenetic analysis of 
representatives of the four T. orientalis IgH V families (clone 3 for VH1, 5 for VH2, 57 
for VH3 and 29 for VH4) with VH genes from two of the better studied teleost models, 
rainbow trout and Danio rerio. Oncorhynchus mykiss and Danio rerio accession numbers 
are labeled at each branch terminus. 
  

 tuna V3

 AAA56663.1 rainbow trout

 AAA61755.1 rainbow trout

 AAA56662.1 rainbow trout

 AAU06717.1 zebrafish

 AAU06718.1 zebrafish

 AAU06710.1 zebrafish

 AAB27359.2 rainbow trout

 AAU06704.1 zebrafish

 AAU06708.1 zebrafish

 AAA61752.1 rainbow trout

 AAU06709.1 zebrafish

 tuna V4

 AAU06705.1 zebrafish

 AAU06712.1 zebrafish

 AAU06713.1 zebrafish

 AAU06723.1 zebrafish

 AAA61754.1 rainbow trout

 AAU06707.1 zebrafish

 AAU06721.1 zebrafish

 AAU06719.1 zebrafish

 AAA61757.1 rainbow trout

 AAU06715.1 zebrafish

 AAU06716.1 zebrafish

 AAA61753.1 rainbow trout

 tuna V1

 tuna V2

 AAA61756.1 rainbow trout

 AAW66974.1 rainbow trout

100

59

77

99

94

87

89

99

35

32

26

98

96

60

100

61

83

43

26

47

41

23

35

30

33

93

0.1



 

84 

 

   

Figure 3 - 10. Tuna IgM and IgT CH regions group with those isotypes of other teleosts. 
Neighbor joining phylogeny using Dayhoff matrix and 1000 bootstrap replications.  
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3.3.6 IgH μ and τ relative tissue expression 

 Quantitative real-time PCR (Figure 3 - 11) was used to assess the expression of 

these isotypes at the mRNA level in secondary lymphoid tissues relative to the anterior 

kidney (the chief primary lymphoid tissue of fish [119, 148, 149]). Relative levels of μ 

were higher than τ in both spleen and gill, but μ did not predominate τ to as great an extent 

in gill as it did in spleen. The averaged ratio of HCμ to HCτ in T. orientalis spleen was 

7.35 compared to 2.89 in the gill. 

 

 

 
Figure 3 - 11. IgH μ and τ expression in systemic and mucosal lymphoid tissues. 
Quantitative real-time PCR of secondary lymphoid tissue μ and τ C region mRNA 
expression relative to that in anterior kidney, standardized to β-actin. Two template 
concentrations were analyzed. Experiment performed in triplicate, error bars indicate 
standard deviation. 
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3.4 Discussion 

3.4.1 Repertoire 

 The 20-30% sequence disparity between some VH family members in tuna 

suggests either ample somatic hypermutation for affinity maturation of these fish 

antibodies or an older divergence date of VH family members than has been seen in some 

other teleosts such as stickleback [122]. Families VH1 and VH2 share between 52% and 

64% nucleotide identity (Figure 3 - 4) and appear recently diverged (Figure 3 - 9), perhaps 

within a Perciformes branch including tuna. 

Despite the initial report that found shorter CDR3 in Oncorhynchus mykiss IgM 

than IgT [114], in T. orientalis we found a small skewing towards shorter IgT CDR3 

(Table 3 - 2). We predict that this may be an effect of a different immunogenetic 

rearrangement mechanism involving a single shared DH gene segment that governs τ 

versus μ/δ in a clade including tuna and other fish (more below). IgH CDR3 often 

dominates antigen recognition properties of the six CDRs comprising the Fab paratope 

[150, 151]. The three reading frames usually supplied by DH gene segments therefore 

contribute significantly to the eventual translated repertoire of antigenic specificities. 

Additionally, extended length of IgH CDR3 has been crucial in many clinically important 

antibodies against viral scourges [152, 153], and the loop has evolved into an entirely new 

domain in some antibodies of cattle [154]. Thus, restricting the entire repertoire to 

rearrangements based on a single DH would be expected to place constraints on antigen 

recognition.  
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As Perciformes, tuna belong to the largest order of vertebrates that accounts for 

approximately 40% of all bony fishes. As T. orientalis is the first Perciforme member to 

have either their IgM and T repertoire or IgH locus analyzed immunogenetically, there 

may be a great many fish that employ this system for Ig isotype control and B lineage 

commitment. As successful as the Perciformes have been in radiating to occupy most fresh 

and saltwater niches on Earth, the potential restriction in CDR3 length variability must not 

have taken too great a toll on the fitness of these fish. 

 
 IgM IgT 

Maximum 18 13 

Minimum 9 8 

Range 9 5 

Median 12 11 

Mean 12.49 11.00 

Variance 3.31 2.00 

Table 3 - 2. CDR3 Lengths in amino acids 
 

 

3.4.2 Genomic organization 

 The generalized translocon configuration of the teleost IgH locus with a set of VH 

genes and downstream μ and δ CH regions has been confirmed in many studies [155-157], 

but many deviations fromthe theme are present as catfish and medaka appear to lack τ and 

many fish have duplications of blocks of the locus [119]. Although reported in shark [130], 
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class switch recombination (CSR) has not been described in a teleost. However, one study 

showed that teleost AID could induce CSR in mouse [158].  

The IgH τ gene together with its dedicated DH and JH gene segments are located between 

the VH gene segment block and the (DH-JH-CH) μ cluster in Danio rerio, fugu (Takifugu 

rubripes) and three-spined stickleback (Gasterosteus aculeatus) [114, 115, 122, 159], or 

it is inserted within the VH gene segment array as in Oncorhynchus mykiss [160].  Thus, 

in these fish the RAG mediated joining of a VH gene segment to either DH of τ or DH of 

μ/δ will determine whether the developing pro-B lymphocyte (using mammalian 

convention) becomes an IgT or IgM/D producer. Experiments in Danio rerio [161] and 

Oncorhynchus mykiss [113] have demonstrated heavy chain isotype exclusion at the 

cellular level in fish.   

The repertoire data presented here suggest that something different may be 

occurring in tuna. Like in other fish, VH genes appear to be shared between both τ and 

μ/δ. Three of the four families we found expressed in these fish clearly were used in both 

μ and τ, although a fourth was only found with μ. This could easily be a case of low 

sampling depth as VH4 appeared as a singular use in the described clones. Since this is a 

more parsimonious explanation than a dedicated μ VH rearranging to a shared DH 

segment that rearranges to dedicated JH segments, Figure 3 - 12 depicts an array of VH 

gene segments that can be used in either primary transcript type. 

However, unlike in other fish, both τ and μ rearrangements of T. orientalis appear 

to employ the same DH gene segment. As all the T. orientalis JH genes appear with only 

μ or τ (none seem to be shared), this points to an arrangement where a single shared DH 
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can rearrange with JH segments upstream of either μ or τ to determine isotypic fate of the 

cell, and this DH’s rearrangement to several shared VH’s is not the event that 

stochastically determines isotype. So at least two possibilities of IgT vs. IgM/D lineage 

fate are now supported by data, one in which τ and μ/δ share VH genes from one block 

(as in Danio rerio) or more than one array 5’ and 3’ to the τ elements (as in Oncorhynchus 

mykiss) but DH and JH are dedicated to isotype, and now the tuna paradigm where VH 

and DH are shared and JH is dedicated to isotype. In one instance (tuna) the DH-JH join 

would instruct lineage and in the other the VH-DH join would. Importantly, we note that 

genomic sequencing of the locus has not yet confirmed this organization in the T. 

orientalis or the absence of additional DH that we did not sample. Interestingly, this 

hypothesized organization could also explain why in Oncorhynchus mykiss a significant 

difference was seen in CDR3 length and repertoire between τ and μ clones (each using 

dedicated DH and JH gene segments [129], while we do not see a great difference in T. 

orientalis (sharing VH and DH and only having dedicated JH (Table 3 - 2). Future work 

must determine if this is truly stochastic in lymphocyte development or if there are more 

complex control mechanisms instructing this important juncture determining the B cell’s 

fate.   
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Figure 3 - 12. Hypothetical organization of elements in the tuna IgH locus suggests a novel 
method of lineage determination at the fish IgH locus. Simplified cartoon showing three 
paradigms in the locus organization and immunogenetic control of IgH τ vs μ/δ 
rearrangement.   
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3.4.3 CH regions 

IgM is the most conserved isotype in jawed vertebrates (Gnathostomata) and was 

thought to be omnipresent until the discovery of its absence in coelacanth [162]. The tuna 

IgM CH region seems very consistent with its orthologs in other fish. 

As also noted in other IgT sequences [114], there are many prolines in the region of the 

tuna IgT CH1/CH2 juncture which may be indicative of hinge-like flexibility. Tuna IgT 

CH3 seems to conform to the classical Ig superfamily β-sandwich with canonical cysteines 

and tryptophan positions seen in the domain of the salmonids and grouper that are 

important in the folding of this domain (Figure 3 - 8) [163]. The tryptophan to cysteine 

replacement seen in Danio rerio and grass carp appears to be a cyprinid characteristic, and 

has been suggested by modeling to still allow an immunoglobulin superfamily domain 

fold [164]. 

In this limited sampling, we found no evidence of the IgT hybrid molecule with 

two CH domains identified in the common carp Cyprinus carpio [121], the IgM/D hybrids 

(with or without VH domains) found in catfish [165], the IgMCH1/IgTCH4 variant IgT2 

in carp [166], nor the run-on transcription secreted IgD form of Oncorhynchus mykiss 

[167].  

In mammalian IgM a carboxyl terminal glycosylation site in the secretory tail is 

important in J chain polymerization [168, 169], but may have distinct physiology in teleost 

such as catfish and Danio rerio that have it [170]. This conserved N-linked glycosylation 

site is part of a larger sequence motif enabling polymerization of IgM and IgA of mammals 

but is not present in the secretory tail of tuna IgM or IgT, although there is a conserved 
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cysteine in IgT shared with other teleosts. Oncorhynchus mykiss IgT was found as a 

monomer in serum but a multimer in mucus [113]; however these IgT multimers did not 

appear to be covalently linked as they are known to be for Oncorhynchus mykiss IgM 

[171]. More biochemical studies are necessary to resolve the stoichiometry and functional 

avidity of IgT. 

3.4.4 Expression 

 Isotype expression studies in T. orientalis echo what has been determined in other 

fish species: IgT and IgM both are present in primary and secondary lymphoid tissues, yet 

more IgM than IgT, however the gap closes at mucosal sites [114, 120, 166, 172]. IgT1 in 

adult Danio rerio deviated from this pattern in being primarily in the head-kidney and 

thymus [173]. The molecular data presented here could serve as a springboard for 

revisiting immunoglobulin studies in tuna at the protein level that were initiated in the 

southern bluefin (Thunnus maccoyii) [174]. The work also opens gates to explorations of 

B lineage development and commitment, where molecular markers might could be 

adapted from fish species such as Danio rerio [175] and Oncorhynchus mykiss [176, 177] 

where more work has been performed. 

3.5 Conclusions 

 

 Endothermic birds and mammals employ immunoglobulin isotypes IgM, IgY, IgE 

and IgG in systemic immunity but have specialized IgA for mucosal immunity. 

Poikilothermic vertebrates lack IgA, although amphibians do have an orthologous 
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mucosal isotype in their IgX. IgM had long been the primary functional immunoglobulin 

isotype recognized in teleost until the recent discovery of the mucosal specialization of 

IgT. The mucosal epithelium is the barrier breached or exploited by most internal 

pathogens of vertebrates, and also ectoparasites of fish [178]. This penetration of mucosal 

defense is also true of many pathogens of concern in the tuna ranching industry, including 

sea lice [179], betanodaviruses [180] and gill platyhelminths [181]. It is hoped that this 

basic molecular characterization of humoral immunity in these economically important 

endothermic fish will enable more studies of host-pathogen interactions and the feasibility 

of vaccine development for offshore ranches. Increasing the productivity of these 

operations by reducing infectious disease mortality will reduce pressures on wild tuna 

stocks and the fish species used to feed ranched tuna. 

   Moreover, the apparent shift of isotype determination from VH-DH 

recombination to DH-JH recombination at the tuna IgH locus is interesting from a 

fundamental standpoint of lymphocyte antigen receptor immunogenetics, and begs many 

questions that must be verified and queried with new algorithms [182] at the levels of the 

tuna genome, the immunoglobulin proteins, tuna B cells, development in the pronephros, 

and the fish’s response to pathogen. If the single tuna DH gene is verified at the genome, 

it will be interesting to know whether this IgH locus orientation is found only within this 

clade of endothermic fish or a broader set of Perciformes. These studies should provide 

insight into the natural history and fundamental physiology of antibodies while providing 

much needed tools for managing the health of ranched, and thereby wild, tuna stocks. 
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4. CONCLUSION 

 

The major focus of these two studies was on two mucosal immunoglobulins in two 

groups of non-mammalian vertebrates: IgX in an amphibian Xenopus laevis (African 

clawed frog) and IgT in a teleost fish Thunnus orientalis (Pacific bluefin tuna).  

In the first study we showed that IgX, which was known as a mucosal immunoglobulin 

and functional analog of mammalian IgA, is also the ortholog of IgA. The entire 

immunoglobulin heavy chain C region sequences from different vertebrates were used to 

revise the phylogenetic relationship of tetrapod antibody classes and the specific 

relationship between amphibian IgX and mammalian IgA. Unlike previous phylogenetic 

analysis, the resulting tree showed that IgX and IgA shared a common ancestor and 

branched closer together than either of them does with IgM.  

Thymectomy did not affect IgX production neither in systemic nor in mucosal 

secretions. The same IgX expression in our larval-thymectomized post-metamorphosis 

frog model as the normal non-thymectomized model indicates that IgX expression is not 

dependent upon T cells, corroborating IgX identity to IgA. The significant higher IgX 

production after oral immunization in cultured gut B cells rather than intra-coelomically 

immunized frogs supports other studies showing that IgX is the specific isotype of the gut. 

Thymectomy did not influence the gut microbial flora either. For the first time our 

study investigated an amphibian gut microbial population using 16S rRNA gene 

pyrosequencing based on distinct anatomical sites. The microbial population in the normal 
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non-thymectomized and thymectomized frogs showed no significant difference but a 

significant difference was detected based upon the anatomical district sampled. The large 

intestine microbial samples presented the richest diversity in the whole gut and samples 

obtained from stomach composed of distinct microbial families compared with the small 

and large intestine as confirmed by principle component analysis. Generally the 

predominant groups of gut microbial flora in Xenopus resemble major microbial 

components in human flora such as Clostridiaceae, Bacteroidaceae, and 

Enterobacteriaceae. In contrast to small and large intestine the most abundant bacterial 

family in the stomach was Flavobactriaceae, followed by Oscillatoriaceae, cyanobacteria, 

and Enterobacteriaceae. 

IgT was discovered in 2005 and subsequently has been identified in several teleost 

fish classes. In the second study we described isolation and characterization of tuna IgT, 

the first from Perciformes (the largest order of vertebrates). Tuna is one of a few 

endothermic fishes. The full length of IgM was also sequenced for the first time in this 

species of tuna. 

The sequencing analysis of Thunnus orientalis secretory IgT showed that it is 

composed of four constant domains as in other teleosts’ IgZ/T except for the IgH in fugu 

and the chimeric IgM-IgZ in common carp which has two constant domains. Each domain 

contains two conserved cysteines except for the third domain with just one conserved Cys. 

These conserved Cys residues play an important role in forming intra- domain disulfide 

bridges. There is an additional Cys within the first domain (Cys-13) that shows this 

molecule can attach to the light chain. Despite the lack of J chain IgZ/T in tuna associated 
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with N-glycosylation site like IgZ and IgT respectively in Danio rerio and Oncorhynchus 

mykiss but it shares little similarity to the motif required for J chain similarity. 

The phylogenetic analysis of the full length of C domain in tuna and other teleost 

IgZ/T showed that the IgT in tuna branched closest to mandarin fish or Chinese perch. 

Also the phylogenetic analysis of the full C domain of varies vertebrates immunoglobulin 

showed that IgZ/T is phylogenetically distinct from mammalian IgA but is functionally 

identical to mammalian IgA.     

Figure 4 - 1 summarizes the evolution of different isotypes of antibody in main 

classes of jawed vertebrates. As you can see in this figure IgM is the most ancient and 

conserved class of antibody with four constant domains in almost all groups of vertebrates 

[13]. IgW in the earliest vertebrate is believed to be related to IgD [183]. IgD is lost in 

birds but it is expressed with high plasticity in other species and the function poorly 

understood. IgY is believed to be the ancestor of mammalian IgE and IgG and it first 

appeared in amphibians[184]. IgA, an accepted isotype of mucosal immunity, first was 

found in reptiles and then later in other vertebrates. IgX in frog was believed to be 

functionally a mucosal antibody but genetically not related to mammalian IgA until our 

recent phylogenetic studies on Xenopus laevis that revealed IgX as an evolutionary 

ancestor of IgA. The recently discovered IgZ/T in, lower group of vertebrate, teleost is 

shown to provide mucosal immunity but phylogenetically originated from IgM so IgA and 

all IgA analogues serve the same function in all animals and it is yet to be discovered in 

jawless vertebrates (Figure 4 - 1). 
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There are a lot of open questions in the evolution of mucosal immunity and the antibodies 

that mediate it. Some potential work to be continued by our study are:  investigating the 

presence or absence of IgZ/T in other species of tuna and finding out the structure of Ig 

genes, and performing phylogenetic analysis with IgA/X in other vertebrates which may 

find a novel structure of Ig gene and even some characteristics in common with other 

warm-blooded animals. Also performing oral and systemic immunization of different 

species of vertebrate especially lower cartilaginous vertebrates and analysis of their gut 

flora will result in acquiring a better understanding of the evolution, function, and 

development of this immune compartment.   
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Figure 4 - 1.  Evolution of immunoglobulin isotypes . 
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