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ABSTRACT 

 

The preservation of skeletal muscle mass, strength, and aerobic capacity have been 

demonstrated to be essential for maintaining one’s health, preventing a wide range of cardio-

metabolic diseases, and improving quality of life.  Therefore, the American College of Sports 

Medicine prescribes a combination of both aerobic and resistance exercise for promoting 

optimal health.  However, previous investigators have reported that aerobic training may 

interfere with skeletal muscle hypertrophy and strength development when performed 

concurrently with resistance training as opposed to performing resistance training in 

isolation.  Within skeletal muscle, this interference has been hypothesized to occur as a result 

of competing intracellular factors within skeletal muscle which are regulated by energy 

balance, insulin signaling, and contractile activity.  However, due to inconsistencies in the 

literature with regards to exercise mode, frequency, intensity, training volume, and subject 

population, certainty about exercise interference remains unclear.  Recent findings from our 

laboratory indicate that aquatic treadmill  (ATM) running, unlike standard land treadmill 

(LTM) running, may enhance rather than impede skeletal muscle growth and strength while 

additionally providing aerobic benefits.     

In the investigation presented herein, we examined the exercise-induced adaptations 

to 12 weeks of concurrent resistance and ATM training (RT-ATM), concurrent resistance 

and land LTM training (RT-LTM), and resistance training (RT) alone in previously untrained 

subjects.  Additionally, we utilized isotope labeling to analyze the acute effects of each on 

myofibrillar fractional synthesis rates.  From our available tissue samples, we also elected to 

measure chronic alterations in the content of signaling proteins hypothesized to play a role in 
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exercise interference:  protein kinase B (Akt), mammailian target of rapamycin (mTOR), and 

tuberous sclerosis complex 2 (TSC2) content.   

 Compared to RT and RT-LTM, concurrent RT-ATM exercise was found to enhance 

myofibrillar fractional synthesis when performed immediately following resistance exercise 

in the untrained state.  These findings were concomitant with greater increases in lean mass 

and muscular strength following 12 weeks of training.  Interestingly, RT-LTM training was 

found to yield greater reductions in fat mass than RT or RT-ATM training.   Neither RT-

LTM nor RT-ATM training was found to experience interference with strength or 

hypertrophy compared to the RT group. 

The results of this investigation challenge the view that training for both strength and 

endurance are universally incompatible.  They also highlight the importance of exercise 

mode selection when prescribing exercise programs for specific health or performance 

outcomes.  In combination with RT, the novel use of ATM running may benefit those who 

desire to preserve strength and muscle mass while also promoting aerobic fitness. 
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CHAPTER I 
 

INTRODUCTION AND REVIEW OF LITERATURE 
 

This dissertation adheres to the journal article format method for dissertations. This 

document is organized into three chapters (Chapter II is intended to serve as standalone 

manuscripts to be submitted for publication in peer-reviewed journals). In accordance with 

these guidelines, this chapter provides a review of pertinent literature and presents the 

questions to be addressed in Chapter II. Chapter III presents general conclusions to the 

dissertation as a whole. 

 Inter-related cardiovascular, musculoskeletal, and metabolic challenges currently face 

the Unites States population which coincide with a high prevalence of obesity, inactivity, and 

sarcopenia (in aging adults).  The preservation of skeletal muscle mass, strength, and aerobic 

capacity have been shown to be essential for maintaining one’s health, preventing a wide 

range of cardio-metabolic diseases, and improving quality of life (101, 124, 202, 264, 265).  

To achieve this, the American College of Sports Medicine prescribes a combination of both 

aerobic and resistance exercise for promoting optimal health (243).   

 Skeletal muscle is an organ with a great deal of plasticity in that it can respond 

quickly to various stimuli and specifically, physical activity.  Because of this, skeletal muscle 

plays an important role in metabolism, physical function, and health.  Resistance training has 

been shown to elicit increases in skeletal muscle mass and strength (56, 113, 213).  Skeletal 

muscle hypertrophy as a result of chronic training represents the summation of acute 

increases in skeletal muscle protein synthesis following individual bouts of resistance 

exercise (45, 75, 95, 121, 145, 181).  Within skeletal muscle, this process is regulated by 

complex intracellular signal transduction pathways (12, 74, 184).  These pathways are also 
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perturbed by endurance exercise, which has been observed to increase maximal oxygen 

uptake, skeletal muscle oxidative capacity, mitochondrial function, and elicit a shift in 

skeletal muscle to a more oxidative or, “Type I like” phenotype (10, 128, 194, 236).   

However, our laboratory (98) as well as others (8, 12, 24, 78, 108, 118, 143) have shown that 

when performed concurrently, endurance and resistance training may result in adaptation 

interference in which training adaptations are diminished compared to either mode performed 

in isolation.  In other words, reduced gains in strength and muscle mass compared to 

resistance alone as well as reduced gains in aerobic capacity compared to endurance training 

alone.  While not completely understood, there is evidence to suggest that within skeletal 

muscle, this interference may be a result of intracellular cross talk between diverging cell 

signaling transduction pathways that regulate skeletal muscle growth, metabolism, and 

function (10, 12, 55, 260).  However, because of inconsistencies between previous 

concurrent training investigations with regards to exercise mode selection, training 

frequencies, exercise intensities, and subject populations used, a broad generalization of 

exercise interference (interference occurring under all concurrent training paradigms) is 

difficult at this time (152, 153, 261).   The following section is a review of literature for acute 

and chronic physiological responses to concurrent exercise. 
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The Physiology of Concurrent Exercise 

Introduction and Historical Perspectives 

 In 1980, Dr. Robert Hickson (118) published an investigation titled “Interference with 

Strength Development while Simultaneously Training for Strength and Endurance”.  His 

investigation was the first to experimentally observe concurrent training interference and thus 

demonstrate the important role of training specificity (118).   In this investigation, 23 

recreationally active participants (18-37yr, 17♂, 6♀) were divided into 3 separate training 

groups:  Endurance training (cycling 3x·wk and running 3/wk, 30-40min at maximum 

achievable pace), Resistance training (high intensity lower body resistance exercise 3x·wk, 

repetition based exercise 2x·wk), Concurrent training (performed both training regimens with 

2h of rest between resistance and endurance exercise sessions).  Following 10 weeks of 

training, the concurrent training group experienced a lower degree of strength development 

compared to the resistance training group.  In a final statement Hickson presented an 

important question regarding whether or not the outcomes of the study were directly related 

to an inability of skeletal muscle to simultaneously adapt to both endurance and resistance 

training.  Given the results, it was suggested that for those desiring the development of 

strength and hypertrophy, simultaneously performing strenuous endurance exercise may be 

detrimental (118).  Because both endurance and resistance exercise elicit unique adaptations, 

it has since been hypothesized that concurrent training prevents optimal conditions for 

adaption to either mode (Figure 1, following page). 
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Figure. 1 - Mode Specific Adaptations of Skeletal Muscle to Resistance and Endurance Training 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

General hypothesis for the interference effect. 
 
 
 
Factors Affecting Concurrent Training Outcomes 
 

 Since Hickson’s original investigation, others have attempted to further expand the 

current understanding of exercise training specificity and how it may shape human adaptation 

to exercise.  Subsequent investigations have both supported (24, 54, 55, 98, 108, 133, 143, 

152) and refuted (5, 67, 72, 161, 222) the presence of exercise interference.  Furthermore the 

characterization of the conditional or molecular causes of interference has proven to be 

difficult (261).   
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suggests that performing high volume training for both strength/power and aerobic fitness 

ultimately results in overtraining (24, 108, 143).  Thus, while the typical adaptations to each 

style of training may be observed, the inability to achieve maximal training volume without 

overtraining may cause training improvements to be smaller.  For example, in Hickson’s 

original study, the concurrent training group performed nearly twice as many exercise 

sessions as either of the single mode groups (118).  Therefore, it is reasonable to hypothesize 

that the exercise interference that was observed resulted from overtraining.  

Successive bouts of high volume exercise (resistance or endurance) can produce 

chronically reduced muscle-glycogen levels over time (59, 184, 240).  Creer et al. (61) 

reported that chronic reductions in muscle-glycogen with concurrent training that resulted in 

impaired intracellular anabolic signaling compared to resistance training in isolation. 

Additionally, Kraemer et al. (143) reported that concurrently performing resistance and 

endurance training at high training volumes resulted in significant elevations in serum 

cortisol, a stress hormone commonly associated with overtraining.  Overtraining has also 

been observed to elicit increases in circulating catecholamines concomitant with increased 

catabolism (228). Together, these data indicate that training programs which involve high 

training frequencies or excessive training volumes may impair recovery, increase catabolism, 

reduce exercise performance in subsequent exercise sessions, and as a result, reduce the 

magnitude of training adaptations (184).  At present, endurance training has been more 

frequently reported to interfere with resistance training adaptations compared to vice versa 

(261).  

To determine if factors other than overtraining contribute to exercise interference, it is 

crucial to reduce total training volume to levels which will minimize the risk for overtraining 
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but still promote increases in muscle mass, strength, and aerobic capacity.  Of note, exercise 

interference has been observed in training studies where lower total training volumes 

(<3/week per training mode) were used.  Hakkinen et al. (108) reported that low volume 

concurrent training ( 2 sessions/wk) still resulted in interference with strength development.  

These data indicate that exercise interference may be caused by more than overtraining alone.  

Therefore designing training programs which minimize interference may be equally 

important for those trying to improve or maintain fitness as it is for those training for 

maximal physical performance.  

Identifying factors other than overtraining which may contribute to interference from 

applied physiological data gathered during chronic training interventions is fundamentally 

difficult because of the challenge of equating total exercise volume between concurrent and 

single mode training programs (71).   Consider a study involving the following training 

groups: resistance training, endurance training, and concurrent training. If the resistance and 

endurance training groups perform their respective modes of exercise 3 times per week and a 

concurrent training group performs a combination of both programs, they would be 

performing twice as many exercise sessions.  Therefore, differences in physiological 

adaptations to training could reasonably be attributed to partially result from the increased 

total exercise volume.  However, if the concurrent group only performed a fraction of the 

resistance or endurance training bouts so that total exercise sessions were matched, it could 

be hypothesized that reductions in resistance or endurance training volume relative to the 

groups performing each mode in isolation would result in under stimulation of adaptive 

mechanisms to either mode. 
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Exercise Intensity  

Low intensity endurance training (<70% VO2max) has been reported to elicit increases 

in pulmonary diffusion, cardiac output, and blood hemoglobin (38, 71, 214).  As training 

intensity increases, there is an increase in the adaptive responses of peripheral musculature in 

the form of increased intramuscular angiogenesis, oxidative enzyme activity, mitochondrial 

density, and myoglobin (25, 38, 71, 120, 214).  Acutely, increased endurance exercise 

intensity also yields a greater recruitment of Type II muscle fibers (15, 77, 116, 215).  

Accordingly, the long term training effects of endurance exercise result in Type II fibers with 

increased oxidative but reduced glycolytic capacity (12, 38, 116).  Because of an increased 

recruitment of Type II fibers during high intensity endurance exercise and the subsequent 

oxidative adaptations of those fibers, it has been postulated that either high intensity or high 

volume endurance training can each negatively impact resistance training adaptations (71, 

261).  However, the degree to which either volume or intensity independently contribute to 

interference has not been established. 

Exercise intensity also affects physiological adaptations to resistance training.   

Acutely, resistance exercise stimulates an increase in skeletal muscle protein synthesis that 

ultimately results in skeletal muscle hypertrophy (74).   With regards to resistance training, 

intensity is commonly expressed as a percentage of an individual’s one-repetition maximum 

(1RM: the maximum resistance that can be lifted) (15).  The traditional intensity range for 

stimulating skeletal muscle hypertrophy has been reported to be between 60-85% of 1RM for 

a performance of 8-12 repetitions per set (15, 89).   Resistance exercise performed within this 

range for multiple fatiguing sets have been reported to acutely promote increases in protein 

synthesis to a greater degree than high intensity low volume exercise (40).   However, 
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exercise volume may also be thought of in terms of total time under tension which refers to 

the amount of time per set that a muscle is producing force.  Accordingly, both the number of 

repetitions performed and time under tension per contraction have been reported to determine 

the anabolic effects of resistance exercise (40, 193).   

Motor unit recruitment plays an equally important role in the development of 

muscular strength (108).  Aagaard et. al (2) demonstrated an increase in rapid force 

development and motoneuron firing frequency following 14 weeks of high intensity 

resistance exercise.  Resistance training has also been observed to increase motor unit 

recruitment and synchronization while decreasing inhibitory proprioceptive mechanisms 

which can limit maximal contractile force (38, 108, 134).   High intensity exercise (>90%) is 

most closely associated with adaptations in neural components of strength development such 

as motor unit recruitment (2, 71, 109).  At high intensity a greater number and 

synchronization of motor units is required to overcome the imposed mechanical demands of 

heavy resistance exercise (38).  Therefore, differing training protocols (↑intensity/↓volume vs 

↓intensity/↑volume) may increase strength through different mechanisms.   

Depending on the concurrent exercise training protocol, interference may occur 

peripherally at the level of individual muscle fibers, centrally at the level of neural activation 

of motor units, or both depending on the volume and intensity of resistance or endurance 

exercise (71, 261).  Based on previous evidence which indicated that high intensity 

endurance exercise and high volume resistance exercise both elicit peripheral adaptations at 

the level of skeletal muscle, Docherty et al. (71) proposed a concurrent training adaptation 

model with the hypothesis that high intensity endurance training paired with high volume / 

low intensity resistance training would yield the greatest level of peripheral interference.  
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However, this model for interference may be oversimplified as it does not consider the roles 

of contraction velocity or differences in neural adaptation between endurance and resistance 

exercise.    

 

Contraction Velocity 

 In addition to volume and intensity, contraction velocity during exercise has been 

implicated in affecting concurrent training adaptations (51, 108, 109).  The specificity of 

training principle suggests that training at high velocities would be the most appropriate way 

to foster increases in contractile velocity and thus power (50, 51).  Compared to endurance 

exercise, resistance exercise involves rapid muscular force production over a relatively short 

duration (10, 38, 108, 207).  In contrast, endurance exercise involves rhythmic movements 

that are less powerful in nature but repeated over a long duration (10, 38, 108, 207).  As such, 

it has been proposed that adaptations to the specific muscle contractions required for each 

mode of exercise are inherently divergent (108, 143, 184, 207, 209).   

Contraction velocity has also been shown to affect adaptation to specific types of 

resistance exercise as well.  With regards to concurrent training, Hakkinen et al. (108) 

reported that rapid force production and muscular power may be more susceptible to 

interference than muscular hypertrophy or maximal strength development.  Similarly, our 

laboratory (98) observed that concurrent resistance and treadmill training impaired muscular 

power development without interfering with improvements in strength development gains in 

muscle.  While low velocity resistance training has been reported to stimulate hypertrophy 

because of increased time under tension, performing high velocity resistance exercise has 

been reported to yield greater increases in skeletal muscle power (34, 51, 84, 165).   
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At present, contraction velocity appears to have the greatest effect on central neural 

adaptations to exercise.  In a study involving 63 subjects who were divided into groups by 

age (older vs. young) and resistance training group (high velocity vs. low velocity), Claflin et 

al. (51) observed similar increases in skeletal muscle hypertrophy following high velocity 

and low velocity resistance training and no differences at the single muscle fiber level with 

regards to contractile properties. Taken together, previous literature indicates that exercise 

interference has the potential to occur peripherally at the level of the muscle fiber as well as 

centrally with regards to neural adaptations to training.  For those training for power 

development, training at high contraction velocities is most appropriate. 

 

Muscle Fiber Adaptations 

 Because higher intensities of aerobic exercise require the recruitment of Type II 

muscle fibers, changes in muscle-fiber composition  (particularly myosin heavy chain 

isoform shifts) have been considered to be partially responsible for endurance training-

associated inhibition of strength development (143, 185).  While strength training in isolation 

has been reported to elicit hypertrophy of Type II fibers (143, 227), intense endurance 

training has been observed to reduce fiber shortening speed of Type II fibers and alter 

myosin ATPase (38, 160, 227).   Karavirta et al. (138) reported that only resistance training 

in isolation promoted increases in the cross-sectional area of Type II fibers compared to 

concurrent or endurance training.   Additionally, Bell et al. (24) observed that along with 

diminished hypertrophy following concurrent compared to resistance training, there was a 

significant increase in capillary per fiber ratio following concurrent training.    In summary, 

endurance exercise promotes a fast-to-slow shift in muscle fiber distribution, and when 
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performed concurrently with resistance training, results in a partial inhibition of hypertrophy 

in Type II fibers, reductions contractile shortening speed, and thus, strength and/or power 

development.  

 

Exercise Mode Specificity 

Given the variety of exercise activities that differ with regards to motor recruitment 

patterns, contraction frequencies, contraction velocities, and mechanical loads, the specific 

mode of exercise performed has been reported to play a critical role in adaptation to 

concurrent training (152, 261).  In a recent meta-analysis, Wilson et al. (261) reported that 

endurance training mode appears to be a strong determinant for interference.  It was also 

reported that exercise interference is body region specific because impaired adaptation was 

only found to occur in lower body in studies where the modes of endurance exercise used 

predominantly involved the legs.   

Cycling and running are the most common modes of endurance exercise used in 

concurrent training investigations (261).  When cycling is performed as opposed to running, 

incidents of exercise interference following concurrent training are rare (261).  Wilson et al. 

(261) speculated this may be because cycling is more biomechanically similar to movements 

performed during resistance exercise and involves less impact than running.  However, future 

investigations are needed to determine the degree to which specific modes of endurance 

exercise contribute to interference. These findings in conjunction with the integrated impact 

of volume, intensity, and contraction velocity on exercise adaptation further indicate that our 

present understanding of concurrent training adaptation is likely oversimplified.   
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Training History 

 For previously untrained or sedentary individuals, considerable increases in muscular 

strength have been observed shortly after beginning strength training (4-8wks) even in the 

absence of hypertrophy (38).  These increases in strength have been previously attributed to 

neural adaptations to training (38, 108, 133).  Furthermore, the degree of exercise intensity or 

mode specificity required to elicit significant improvements in strength or aerobic capacity in 

untrained populations is considerably less than for those who are already highly or 

moderately trained (261).  Furthermore, prior training history has been shown to affect the 

adaptive responses to acute exercise (54).  Coffey et al. (54) reported that prior training 

history in those who are primarily either endurance trained (distance runners) or resistance 

trained (power lifters) can effect transcriptional responses within skeletal muscle to either 

resistance or endurance exercise.  The results from the study indicated that, independent of 

exercise mode, endurance trained athletes appear to be more sensitive to exercise stress than 

resistance trained athletes (54). It was also postulated that the chronic adaptive state of 

muscle following chronic resistance training may require a greater overload stimulus or 

repeated bouts of exercise to increase the transcriptional activity of myogenic genes in 

response to resistance exercise (54).  At present, the degree to which training history may 

affect concurrent training outcomes is not clear.  However, because training history has been 

shown to partially affect exercise adaptation, conclusions from concurrent training 

interventions are likely specific to the populations used.  

 

Exercise Sequence 

 Intra-session exercise mode order (resistance followed by endurance vs. endurance 

followed by resistance) has been observed to affect both acute and chronic responses to 
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concurrent training (43, 44, 49, 55, 102).   Chtara et al. (49) reported greater increases in 

aerobic performance when resistance exercise was performed immediately after endurance 

exercise within the same session.  Following the study, it was suggested that when performed 

before endurance exercise, fatigue resulting from resistance exercise may have influenced 

aerobic performance and thus, the physiological adaptations to endurance training (49).  

While detriments to strength development were not reported in this study, it has also been 

previously proposed that endurance exercise prior to resistance exercise impairs resistance 

training intensity, resulting in less strength improvement (102).  Cadore et al. 2012 and 2013 

(43, 44) found no effect of exercise order on endurance performance but found that strength 

gains were greater in those who performed resistance exercise first.  In an investigation of 

acute intracellular responses to concurrent exercise, Coffey et al. (55) reported that when 

endurance exercise was undertaken before resistance exercise, intracellular anabolic 

responses were diminished.  In turn, it was cautioned that endurance after resistance exercise 

may exacerbate inflammation and protein degradation (55).  These results provide support 

for the existence of exercise interference and indicate that performing divergent exercise 

modes in close proximity does not promote optimal activation of pathways to simultaneously 

promote both anabolic and aerobic responses.   

Few have compared the effects of performing both endurance and resistance exercise 

concurrently on the same day versus on alternate days.  In a study involving 15 young men, 

Sale et al. (216) observed that performing alternate day concurrent training resulted in greater 

strength gains compared to same day concurrent training with similar hypertrophic and 

aerobic adaptations observed with either (216).  Regardless, these data add further support to 



 

14 
 

the hypothesis that exercise interference is more likely to occur when endurance and 

resistance exercise are performed within proximity to one another. 

 

Summary 

 In summary, several factors may contribute to concurrent exercise interference.  

However, a great deal of research is still needed to characterize the specific conditions under 

which interference is most or least likely to occur.  The present literature indicates the 

following: 

 Overtraining can be a primary factor in concurrent exercise interference, partially due 

to depletion of muscle glycogen stores, reduced recovery time, and reduced 

performance in consecutive bouts of exercise.   

 Endurance exercise is more likely to interfere with adaptations stimulated by 

resistance training (hypertrophy, strength) compared to vice versa (VO2max) 

 Exercise intensity affects whether or not adaptation and/or exercise interference 

occurs peripherally or centrally. 

 Velocity and frequency of muscle contractions result in fiber adaptations which suit 

the mechanical and metabolic demands of the exercise performed.  Therefore 

interference may partially result from performing opposing types of contractile 

activity. 

 Mode specificity is a factor in concurrent exercise interference with high intensity / 

high volume running being most associated with causing interference due to 

increased muscle damage and differences in motor-unit recruitment compared to 

cycling type exercise. 
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 Training history and physical condition of individuals influences responses to 

concurrent training.  Because some degree of strength and cardiovascular fitness is 

needed to perform physical activity, several training modes (endurance or resistance) 

may simultaneously yield gains in muscle mass, strength, and aerobic capacity in 

previously sedentary individuals who are not accustomed to mechanical or metabolic 

stresses of physical work. 

 Exercise sequencing plays a role in the adaptive responses to concurrent training.  

Preferential adaptation appears to occur for the mode performed first.  Strength 

development appears to be most impaired when endurance exercise is performed first.  

The primary causes have been suggested to be pre-fatiguing of muscle which limits 

resistance training performance.  Performing resistance and endurance exercise 

sessions in close proximity on the same day versus alternate day appears to 

exacerbate exercise interference. 

 

Each of the above mentioned factors which have been observed to contribute to 

exercise interference are interrelated.  Therefore, the development of exercise protocols to 

limit exercise interference must be highly specific to the training population with careful 

consideration for exercise mode, intensity, volume, and exercise session scheduling.  At 

present, a great deal of further investigation is needed to better characterize and link acute 

concurrent responses and chronic physiological adaptations.  The following section will 

address the proposed intracellular mechanisms which regulate skeletal muscle adaptations to 

exercise and how those mechanisms have been postulated to be partially responsible for 

concurrent training interference.   
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Intracellular Regulation of Skeletal Muscle Growth and Adaptation 

  In recent years, much effort has been expended to characterize the intracellular 

responses to acute exercise and how those responses may govern adaptation.  Regarding 

exercise interference, previous investigations have revealed what has been referred to as 

divergent cell signaling events following bouts of acute endurance and resistance exercise 

that play a role in directing chronic adaptive responses to exercise training (10, 55).  The 

most popular hypothesis for exercise interference from a standpoint of cell signaling states 

that when intracellular energy is low, which comparatively occurs to a greater degree during 

endurance exercise than traditional resistance exercise, mitochondrial biogenesis and 

oxidative energy production become greater intracellular priorities than synthesis of 

contractile proteins (myofibrillar protein synthesis) and hypertrophy.  Therefore, an adaptive 

shift towards less powerful but more fatigue resistant muscle fibers that better utilize 

oxidative metabolism is an appropriate response to endurance exercise.  While the specific 

exercise stimulus to create conditions for interference to occur remain unclear, key regulatory 

mechanisms have been identified as probable role players in exercise interference (12). 

 

The Akt-mTOR Pathway  

 Factors that influence metabolism, growth, degradation, and functional capacities of 

skeletal muscle are not entirely understood.  However, in the past two decades, several 

investigations have provided a great deal of insight into the regulation of skeletal muscle 

growth and adaptation in response to exercise (31, 75, 150, 207).  Protein synthesis is 

regulated primarily at translation by a number of proteins that are controlled by 

posttranslational modification (74, 75, 207).  Eukaryotic initiation factor 2 (eIF2), eukaryotic 
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translation initiation factor 4E-binding protein 1 (4E-BP1), and the p70-S6 protein kinase 

(S6K1) are all highly involved in translation initiation and ribosomal assembly (74).  As 

described below, the activity of all three proteins requires an important complex of proteins 

known as the mammalian target of rapamycin complex 1 (mTORC1) (31, 75, 150, 207).  

While the signaling is not entirely understood, insulin, insulin like growth factor-1 (IGF-1), 

amino acids, energy balance and contraction have been reported to regulate protein synthesis 

through mTORC1 (31, 74, 141, 150, 207).  While other signaling mechanisms within skeletal 

muscle may also contribute, stimulation of protein translation through mTORC1 represents 

the primary mechanism by which muscle contraction and nutrition stimulate skeletal muscle 

growth (Figure 2).   

  

Figure. 2 - Regulation of Protein Synthesis Through the  
Akt-mTOR Signaling Pathway (Abbreviated) 

  

 

 

 

 

 

 

 

 
 

Dotted lines = indirect signaling              Solid lines = direct signaling. 
Definitions:  4E-BP1, eukaryotic initiation factor 4E-binding protein 1;  Akt, protein kinase B;  BCAA, Branched Chain Amino Acids; eIF2β-  eukaryotic 

translation initiation factor 2 - ;  eIF-4E, eukaryotic translation initiation factor 4E, FoxO 1,3, forkhead box O 1,3;  GSK-3 , glycogen synthase kinase 3;  
IRS-1, insulin receptor substrate-1;  mTORC1, mammalian target of rapamycin complex 1; S6K1, p70 ribosomal S6 kinase 1;  TSC2, tuberous sclerosis 
complex 2. 
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The mTOR protein exists in vivo as part of two distinct complexes within the cytosol 

(mTORC1 and mTORC2) and while many of the cofactors within each complex are similar, 

differing cofactors (ex. Raptor-mTORC1, Rictor-mTORC2) between the two dictate 

differing functional roles for each (123, 150).  The specific role of mTORC2 remains elusive 

at this time.  Recent studies have indicated that it may have potential roles in regulating cell 

survival, metabolism, cytoskeletal organization, and cross communication with mTORC1 

and its downstream targets (123, 129, 150, 218).  However, the role of mTORC2 in the 

downstream regulation of protein synthesis as well as its upstream signaling remains largely 

unknown and requires further investigation (129, 218).   

By and large, the role of mTORC1 in skeletal muscle protein synthesis has been 

characterized to a greater extent than mTORC2.  This is partially because of the practical use 

of rapamycin for selective inhibition of mTORC1 compared to the rapamycin-insensitive 

mTORC2 (75, 129).  Therefore the ability to characterize mTORC1 function through its 

inhibition provide a clear model for investigating the degree to which it stimulates anabolism 

in response to various stimuli (75).  Drummond et al. (75) demonstrated the importance of 

mTORC1 in regulation of exercise induced skeletal muscle protein synthesis in study 

involving 15 healthy men who were either assigned to a rapamycin group or a control group.  

After an overnight fast, the rapamycin treatment group ingested 12mg of rapamycin and both 

groups performed resistance exercise using a leg extension (75).  Following the intervention, 

a  significant increase in mixed muscle protein synthesis was observed in the control group 

but not the rapamycin group (75).  A dissociation of the mTORC1 complex in the rapamycin 

group was observed as well (75).  The results of this study demonstrate the importance of 

mTORC1 in resistance exercise-stimulated increases in skeletal muscle protein synthesis and 
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hypertrophy (31, 75, 141, 150, 207).  This study also demonstrated the importance of the 

mTORC1 assembly as being necessary for mTOR function (75).  Because mTORC2 has 

been found to be rapamycin insensitive and genetic knock out of mTORC2 has been shown 

to be fatal in mice, characterizing its specific role in skeletal muscle metabolism and function 

is difficult at this time (129, 218).   

 With regards to skeletal muscle protein synthesis, activated mTORC1 operates with a 

great deal of multifunctionality as it activates its downstream targets and consequently, the 

synthesis of myofibrillar proteins, mRNA biogenesis, ribosomal biogenesis, and mRNA 

transcription (64, 74, 121, 141, 150, 207).  mTORC1 is primarily regulated by an upstream 

signaling cascade which begins at insulin receptors at the cell membrane (121, 150).  Upon 

stimulation by either insulin or IGF-1, insulin-receptor-substrate-1 (IRS-1) is activated and 

facilitates the activation and translocation of phosphoinositide 3-kinase (PI3K) to the cell 

membrane (114, 154).  Following its activation, PI3K begins production of phosphoinositol 

3,4,5 tris phosphate (PIP3) at the cell membrane which then stimulates the co-localization of 

both, 3-phosphoinositide dependent protein kinase-1 (PDK1) and Protein Kinase B (Akt) 

leading to the subsequent phosphorylation and activation of Akt (12, 173).  Of note, 

mTORC2 has also been reported to activate Akt (218).  However, the mechanisms are less 

understood.  Following activation, Akt serves pro-growth, pro-survival, and anti-apoptotic 

roles (29, 230).  Akt has been reported to promote the activation of mTORC1 by 

phosphorylating proline-rich Akt substrate 40 (PRAS40), a competitive inhibitor of mTOR 

(254).  Akt has also been shown to increase mTORC1 activity by phosphorylation and 

inactivation of tuberin (TSC2), another known inhibiter of mTORC1 that is activated by 

AMP activated protein kinase (AMPK) (12, 123, 150).  Among other regulatory roles, Akt 
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has been linked to decreased Forkhead box protein (FOXO) activity (preventing apoptosis) 

and inhibition of Glycogen synthase kinase 3 beta (GSK-3β) (preventing inhibition of 

translation initiation) (12, 31).   

Upon activation, mTORC1 elicits an increase in protein translation through 

phosphorylation of 4E-BP1 which removes its inhibition of eukaryotic translation initiation 

factor 4E (4E) (141).  This results in increased capping of 5’ mRNA and mRNA 

translocation to the ribosome (required for translation initiation) (141).  mTORC1 also 

phosphorylates p70 S6K which has been shown to phosphorylate and activate ribosomal 

protein S6 (causes increased ribosomal biogenesis) and inhibit eukaryotic elongation factor 2 

kinase (eEF2K) (an inhibitor or eEF2 and elongation) (132, 163, 208).  S6 has also been 

reported to enhance ribosomal biogenesis by upregulating transcription of ribosomal mRNA 

(164, 208).  In summary mTORC1 is a major regulator of anabolism that when activated, 

enhances translation initiation, elongation, as well as the transcription of ribosomal proteins.  

Stimulation through mTORC1 also partially inhibits autophagy. 

 

Regulation of the Akt-mTOR Pathway 

 Energy balance is a key regulator of skeletal muscle growth and mitochondrial 

proliferation (12, 150).  AMP-activated protein kinase (AMPK) has been shown to have a 

direct regulatory role in skeletal muscle energy homeostasis and skeletal muscle phenotype 

expression (3, 10, 128, 194, 200).  Activation of AMPK, caused by an increased AMP:ATP 

ratio (↓energy) and an increase in intracellular calcium during exercise, has been shown to 

result in a partial fast to slow phenotype shift via activation of peroxisome proliferator 
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activated receptor-γ coactivator-1α (PGC-1α), a known regulator of mitochondrial biogenesis 

(12, 209).  Furthermore, AMPK has been shown to be a key activator of angiogenesis (194).   

AMPK has also been shown to regulate the mTOR pathway and myofibrillar protein 

synthesis through activation of tuberous scleroses complex 2 (10, 127).  Understandably, the 

tuberous sclerosis tumor suppressing genes hamartin (TSC1) and tuberin (TSC2) have been a 

key interest in many fields involving the study of cell metabolism, growth, and cancer.   

Specifically, the unique ability for TSC2 to act as a “metabolic switchboard” for cell 

signaling has been reported to integrate cellular signaling responses to stress, energy 

availability, anabolic signaling, and the signaling involved in apoptosis (62, 123).   In other 

words, pathways involved in both cell growth and degradation appear to converge at TSC2 

with its activation or inhibition resulting in cellular responses that dictate the metabolic fate 

of a cell.  The TSC2 gene was identified in 1993 and referred to as the tuberous sclerosis 

gene as a deletion of the TSC2 coding sequence was found to be present in patients with 

tuberous sclerosis complex who were found to have a reduced expression of TSC2 compared 

to normal controls (241).  Briefly, tuberous sclerosis complex refers to a disorder involving 

excessive tumor growth in both children and adults that often results in neurologic disorders, 

facial angiofibromas, renal angiomyolipomas, and pulmonary lymphangiomyomatosis (62).  

In contrast, over expression of TSC2 has been shown to result in a marked reduction in cell 

size (91).  Following the identification of the TSC2 protein, research studies over the last 

decade and a half have characterized TSC2 as a key regulator of cellular growth.   

TSC2 has been observed to function as a GTPase activating protein (92, 269).  While 

the functional components of the TSC1-TSC2 complex appear to be limited to TSC2 only, 

TSC1 is required to stabilize the complex and prevent ubiquitin-mediated degradation (46).  
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TSC2 largely acts on mTOR through interaction with ras-like proteins (Rheb) (123). The 

GTPase activity (normally low in comparison to other G-proteins) of Rheb is stimulated by 

TSC2 to enhance the conversion of Rheb-GTP to Rheb-GDP (126, 275).  The affinity of 

TSC2 for Rheb implies a strong role for it in cellular signaling.   

 GTP bound Rheb has been observed to stimulate mTOR resulting in the 

phosphorylation of S6K and 4E-BP1 (126, 219, 231).  This was reported by by Inoki et al. 

(126) in cell culture experiments where Rheb was either preferentially expressed or not 

expressed in vitro.  It was found that when Rheb was not expressed, there was no 

phosphorylation of S6K or 4E-BP1.  Furthermore, it was also demonstrated that in the 

presence of Rheb as well as rapamycin (inhibitor of mTOR), there was no effect of Rheb on 

the phosphorylation of S6K or 4E-BP1 suggesting that Rheb lies upstream of mTOR and 

plays a role in its activation (123, 126).  Therefore, Rheb represents a link by which TSC2 

regulates mTOR.  The mechanism of TSC2 inactivation of mTOR through Rheb is not 

entirely understood, however there have been 2 hypotheses (123).    The first suggests that 

under poor growth conditions (low energy state, hypoxia, ↓amino acids, cell damage, ↑Ca++), 

the TSC1-TSC2 complex stimulates the conversion of Rheb-GTP to Rheb-GDP thus 

dissociating it from mTOR resulting in reduced mTOR activity (Figure 3a, next page) (238).  

The second suggests that Rheb activates mTOR by binding to FK506-binding protein 38 

(FKBP38) and removing its inhibition on mTOR  (Figure 3b, next page) (123).  Support for 

this was provided by Bai et al. (17)  who reported that FKBP38 is an endogenous inhibitor of 

mTOR, whose inhibitory activity is antagonized by Rheb in response to growth factor 

stimulation and nutrient availability.  While further research is necessary to determine the 

specific mechanisms for TSC2-Rheb-mTOR signaling, a significant evidence exists which 



 

23 
 

suggests that TSC2 is a major regulator of mTOR.   

Akt has been observed to deactivate TSC2 as well as cause destabilization of its 

heterodimer complex with TSC1 ultimately resulting in its degradation (201, 203).  It has 

also been reported that the anabolic response in skeletal muscle following resistance exercise,  

 
 

Figure 3 - Proposed Models of mTORC1 Regulation by TSC2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dotted lines = indirect signaling              Solid lines = direct signaling. 
Adapted from Huang and Manning, 2008 (123).  A. Hypothesis of direct stimulation of mTORC1 by Rheb.  B.  Hypothesis of Rheb removal of FKB38 
inhibition for increased mTORC1 activation. Definitions: Akt, protein kinase B;  AMPK, AMP-activated protein kinase; Erk, Extracellular-signaling-regulated 
kinase; FKBP38, FK506-binding protein 38; mTORC1, mammalian target of rapamycin complex 1; Rheb, ras-like protein expressed in brain; TSC1-TSC2, 
hammartin-tuberin components of tuberous sclerosis.  
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may be partially caused by an “override signal” from Akt to TSC2 which may inactivate 

TSC2 and its inhibition of mTOR regardless of AMPKTSC2 signaling (31, 55).  Thus 

along with activation of mTOR, Akt also increases cell anabolism via its inhibition of TSC2. 

Deptor and has recently been characterized as an inhibitor of mTORC1(199, 221).  

Recently, Deptor has been associated with reduced mTOR activity (150).  Additionally, upon 

activation of mTOR, Deptor has been reported to dissociate from the mTORC1 (150).  While 

the exact mechanisms of Deptor action are not well understood, Liu et al. 2010 (158) 

reported that increased Deptor-mTOR association reduced activity of mTORC1.  However, 

whether or not Deptor-mTOR interaction is affected by activity, stress, and energy balance is 

not known.   

 

Mitogen Activated Protein Kinase (MAPK) Signaling 

 MAPK signaling refers to a family of proteins which regulate cellular response to 

stress (144).  These include Extracellular-signaling-regulated kinase (ERK) proteins, p38 

mitogen activated protein kinase, c-Jun NH2-terminal kinase (JNK), and nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) (144).  Each is stimulated by 

cytokines (particularly tumor necrosis factor alpha (TNF-α)), growth factors, metabolic 

stress, and mechanical stress (including exercise) (87, 147).  Depending on the stimulus, 

MAPK pathways may stimulate cell growth, glucose uptake, fat metabolism, structural 

remodeling, and apoptosis (144).  Following activation, MAPK signaling regulates 

metabolism and cell growth through both transcription and translation (85, 87, 147).  ERK 

proteins have been reported to indirectly act on the mTOR pathway through inhibition of 

TSC2 (162).  Insulin mediated stimulation of protein synthesis through ERK and its 
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subsequent phosphorylation of S6K has also been observed to occur independent of mTOR 

(85, 144).  Therefore the regulation of cell growth is dependent on and sustained by multiple 

signaling mechanisms.  MAPK signaling has also been shown to regulate growth and 

metabolism from at the level of transcription through interrelated but separate signaling 

cascades involving ERK, p38, and JNK (144). NF-κB has been reported to be a first 

responder to harmful cellular stimuli. Known inducers of NF-κB activity are highly variable 

and include reactive oxygen species, tumor TNF-α, and alterations in pH initiated by cell 

membrane damage (16).  Upon activation, NF-κB is primarily involved in inflammation and 

transcriptional regulation of cellular remodeling and autophagy (16).  The nature of how 

MAPK pathways interact is dependent on the degree and duration of cell stress (hypoxia, 

infection, mechanical damage) as well as anabolic, catabolic, or inflammatory signaling 

(144).  The integration of MAPK signaling mechanisms may allow for the cell to determine 

the need for adaptation and repair versus apoptosis. 

 

Direct and Indirect Stimulation of Protein Synthesis by Amino Acids 

Previous research (31, 141, 145, 146, 181) has demonstrated the effectiveness of 

resistance exercise on increasing skeletal muscle protein synthesis rates.  Amino acids 

(particularly leucine) ingestion has also been shown to enhance the effects of resistance 

exercise on protein synthesis rates (76, 204). Drummond et al. (74) compiled data from 

numerous studies and compared 4 groups of human subjects who either performed resistance 

exercise, consumed a carbohydrate/leucine enriched supplement, consumed the same 

supplement before resistance exercise, or consumed the supplement following resistance 

exercise.  The compiled findings indicate an additive effect of combining resistance exercise 
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with branched-chain amino acid (BCAA) supplementation.   Moore et al. (181) also 

demonstrated that increases in myofibrilar protein synthesis following resistance exercise 

were enhanced with amino acid supplementation.  These data indicate that both amino acid 

ingestion (particularly BCAA) and resistance exercise may be required to maximally 

stimulate protein synthesis. 

The recommended dietary intake of protein is currently 0.8-1.2g/kg body weight for 

mature adults in the general population (274).  Furthermore, the American Dietetic 

Association recommends a daily protein intake of 1.2-1.7g/kg for optimal performance, 

recovery, and health (1).  Current evidence indicates that the feeding of certain amino acids 

as well as complete protein elicits an increase in skeletal muscle protein synthesis through 

both increased intracellular amino acid availability, insulin secretion, and a direct stimulation 

of the mTOR pathway (31, 70, 90, 142, 188, 266).  However, it should be cautioned that the 

supply of any amino acids in the fasted state or deficiency of any essential amino acid may 

greatly affect protein synthesis (↑AA in fasted state  ↑AA Pool  ↑protein synthesis , 

↓AA  ↓Translation  ↓protein synthesis) based on substrate availability.  Nonetheless, 

current findings indicate that amino acid supplementation can stimulate protein synthesis, 

and that sufficient dietary protein is required to maximize the anabolic response to exercise.  

In particular, leucine has been reported to be a potent stimulator of the mTORC1 (74).  

Interestingly, stimulation of this pathway appears to occur at mTORC1 and at its downstream 

targets rather than upstream of mTORC1.  Croizer et al. 2005 (63) demonstrated the impact 

of leucine on protein synthesis using a rat model.  In this investigation, it was shown that a 

dose of 0.14 g leucine/kg produced a “near maximal” increase in protein synthesis (63).  The 

results of this study also reviled that even at lower physiologically relevant doses of leucine, 
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increases in the phosphorylation of both 4E-BP1 and P70 S6K were observed (63).  

However, it should be cautioned that the experiment was carried out while the rats were in a 

food deprived state (18h fast) (63).  Regardless, oral ingestion of leucine by humans has 

since been reported in many instances to be associated with increases in skeletal muscle 

protein synthesis (70, 74, 76, 191).   

The mechanisms related to the stimulation of the mTOR pathway by L-leucine are 

not entirely understood at this time.  However, there is evidence to suggest that activation of 

mTOR requires both leucine and glutamine (187).  Furthermore, leucine may be crucial for 

mTORC1 assembly and activation (particularly Raptor-mTOR association) as amino acid 

deprivation has been shown to cause inactivation and dissociation of mTORC1 (217).  

Human studies involved in oral leucine supplementation have commonly used values of 

~0.12g/kg (76).   

In conjunction with leucine, glutamine may be an indirect regulator of the mTOR 

pathway as it is required for leucine transport (187).  Because of this, the intracellular/ 

extracellular concentrations of both leucine and glutamine play a key role in the ability 

leucine to effect the mTOR pathway (30).  The effect of leucine on the phosphorylation of 

p70 S6K has also been reported to be increased when combined with glutamine (68). 

Although the signaling mechanisms are not fully understood, glutamine appears to play a 

supportive role in promoting protein anabolism via possible regulation of mTOR and amino 

acid transport (266).   

While not currently recommended by the FDA as an essential amino acid, some 

investigators have shown that arginine may play a critical role in the protein metabolism of 

neonates (267).  With regards to the mTOR pathway and skeletal muscle protein synthesis, 
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the effects of arginine have only recently been investigated in vivo.  Yao et al. 2008 

demonstrated that in the case of neonatal pigs, supplementing milk with L-arg resulting in an 

increased phosphorylation of mTOR in skeletal muscle as well as an increase in the 

phosphorylation of 4E-BP1 as illustrated in Figure 6 (273).  However, further research is 

required to determine if this phenomenon occurs in adult humans.  It is conceivable that the 

stimulated increase in mTOR phosphorylation observed in neonatal pigs could be because 

both neonatal pigs and humans have been shown to be arginine deficient resulting of  an 

inability to produce arginine from glutamine in the small intestine (268).  Therefore, the role 

of arginine-mTOR signaling in humans requires further investigation.  Regarding the mTOR 

pathway, arginine also indirectly stimulates its activation via its stimulation of insulin and 

IGF-1 release (266).   

 

Intracellular Regulation of Exercise Training Adaptation and Interference 

Exercise has been shown to perturb mechanisms which regulate both skeletal muscle 

transcription and translation (12, 53, 184, 207).  Because of this, specific modes of exercise 

play a key role in adaptations and thus reinforce the principle of training specificity (12, 53, 

144, 184, 207).   Exercise also acts as a stress stimulus which activates similar intracellular 

mechanisms that are commonly associated with chronic inflammation, and programmed cell 

death (137, 144).  Together these acute responses mediate the appropriate adaptive that are 

specific to the imposed exercise stimulus. 

 
 
 
 
 
 



 

29 
 

Exercise and Intracellular Conflict 
 

Exercise causes alterations in intracellular energy availability (12).  Therefore, 

depending on the degree of energy depletion, AMPK may be differentially activated with 

resistance compared to endurance exercise (10, 53, 54, 237).  AMPK also plays a key role in 

transcription by phosphorylating PCG1-α (10, 55, 117, 200).  Activation of PCG-1α is 

associated with the transcription of mRNA for genes involved in oxidative metabolism, and 

mitochondrial proliferation, as a partial fast-to-slow phenotypic shift in skeletal muscle 

(215).  Because of this, endurance exercise has been reported to activate AMPK and PGC1-α 

to a greater extent than traditional resistance exercise (53).    Given that AMPK has a 

regulatory effect on mTOR through activation of TSC2, endurance exercise inhibition of 

mTOR signaling has been postulated to be partially responsible for exercise interference 

(53).  Partial support for this was given by Atherton et al. (10)  in an experiment involving 

subjecting rat muscle to long duration low frequency stimulation (simulating endurance 

exercise) and short duration bursts of  high frequency stimulation (simulating resistance 

exercise).  Following the study, AMPK was reported to be activated to a greater degree 

following the simulated endurance exercise (10) in accordance with the hypothesis that 

endurance exercise yields elevated intracellular AMP concentrations compared to resistance 

exercise. Additionally, only the short bursts of high frequency stimulation (simulated 

resistance exercise) elicited increases in both myofibrillar and sarcoplasmic protein synthesis 

(10).    Notably, signaling through mTOR and its downstream targets were also preferentially 

activated by short burst / high frequency stimulation (10).    Wilkinson et al. (260) used a 

novel acute bilateral exercise model to compare the effects of resistance exercise and 

endurance exercise in humans.  Following exercise, greater myfribrillar protein synthesis 
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rates were recorded following resistance compared to endurance exercise with upstream 

signaling similar to that shown by Atherton et al. 2005 (10).  While these results provide 

support for the acute intracellular cross signaling that may determine chronic adaptations to 

concurrent exercise training, it should be cautioned that in the aforementioned investigations, 

acute signaling measures were made in the fasted state and chronic training outcomes were 

not observed.  Furthermore, Vissing et al. 2013 (251) recently reported that activation of 

AMPK was not dissimilar following either resistance or endurance exercise but that anabolic 

signaling through mTOR was more robust following resistance exercise.  Because additional 

mechanisms have been shown to influence skeletal muscle anabolism, AMPK-TSC2 

inhibition of mTOR following endurance exercise should only be considered as a portion of 

the potential mechanisms which contribute to exercise interference.  

Current hypotheses about the intracellular mechanisms responsible for exercise 

interference are largely based upon cell signaling responses to either resistance or endurance 

exercise in isolation.  Few have actually characterized intracellular signaling events in 

humans during and following a session of concurrent exercise.  Coffey et al. (55) observed 

greater Akt activation but no differences in mTOR activity, subsequent phosphorylation of 

p70S6k, or expression of PGC-1α mRNA immediately following resistance exercise 

compared to endurance when both were performed in close proximity.  However, it was 

reported that in comparison to previous investigations of single mode exercise, a session of 

concurrent exercise reduced the molecular responses to either mode (anecdotal comparison) 

(55).  These data provide further rationale for the hypothesis that additional intracellular 

signaling mechanisms may contribute to exercise interference.    Given that feeding has been 

shown to stimulate mTOR signaling (70) and that training history has been shown to affect 
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acute responses to exercise (54, 96), more research is needed to determine how these acute 

responses are affected by feeding and how or if they differ in the trained versus the untrained 

state.  Nonetheless, current literature does support the hypothesis that endurance exercise 

promotes a greater intracellular priority for increasing oxidative energy production by 

increasing mitochondrial biogenesis at the expense of reducing the synthesis of contractile 

protein (53).  This falls in line with previous chronic training investigations where 

researchers hypothesized that concurrent training would result in a reduced hypertrophic 

response following concurrent training as opposed to resistance training in isolation.   

 

Exercise Intensity and MAPK Signaling 

Exercise intensity (metabolic stress and mechanical loading) may also be a factor in 

exercise mode specific responses to training (144).  Specifically, MAPK pathway proteins 

are activated by both mechanical and chemical stimuli (144).  Although not completely 

understood, both exercise mode and intensity determine which MAPK pathways are 

activated, how they interact, and the extent of their effects on the cell (85, 144, 147).  For 

example when comparing passive, concentric, isometric, and eccentric contractions rat 

muscle, Martineu et al. 2001 (166) reported that there was a preferential activation of ERK 

(anabolic) during concentric contractions and JNK (degradation/remodeling) proteins during 

heavy eccentric contractions.  This suggests a preferential signaling for growth from the 

concentric contractions but a greater inflammatory / remodeling signaling from high intensity 

from eccentric contractions.  Therefore load specificity differences between and within 

various modes of endurance and resistance exercise may contribute to differential adaptations 

to chronic training.   
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Endurance exercise induces a shift to a more oxidative phenotype through 

mitochondrial biogenesis, increased oxidative metabolism, and intramuscular capillarizaiton 

for increased oxygen supply (194, 272).  Compared to resistance exercise, endurance 

exercise produces a high flux of electrons through the electron transport chain that 

consequently results in a greater absolute amount of electron leakage and subsequent reactive 

oxygen species (144, 271, 272).  Hypoxia and oxidative stress have been previously reported 

to stimulate p38 signaling within skeletal muscle resulting in a subsequent increase in PGC-

1α expression and mitochondrial biogenesis (144, 271, 272).   In response to endurance 

exercise, p38, AMPK, and PGC-1α activation stimulate the transcription of angiogenic 

growth factors, mitochondrial genes, PGC-1α mRNA, and Type I contractile proteins (272).  

Importantly, this provides a secondary mechanism independent of mTOR inhibition, whereby 

endurance exercise may interfere with resistance exercise-stimulated hypertrophy.  

High intensity eccentric resistance exercise has been shown to cause calcium channel 

deregulation in the sarcoplasmic reticulum, as well as the activation of proteins involved in 

autophagy and remodeling (JNK proteins and NF-κB) (144, 166). Because JNK and NF-κB 

signaling have been observed to be activated in response to high force production and 

mechanical loading, it has been suggested that these pathways may be involved in skeletal 

muscle restructuring at the onset of heavy resistance training to prevent later damage (144, 

166). 

 

Intracellular Calcium 

   Endurance exercise produces greater increases in intracellular calcium over time 

compared to traditional resistance exercise (212).  This type of contractile activity has been 
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shown by some to result in an increased activation of calcineurin (responds to changes in 

intracellular calcium monitor) which results in transcription of mRNA coding for Type I 

myosin heavy chain isoform (271).  Increased intracellular calcium also stimulates 

calmodulin-dependent kinase (CaMK), an inhibitor of eEF2 and translation elongation (212).  

Rose et al. 2005 (212) reported that 90 minutes of submaximal cycling resulted in a calcium-

CaMK dependent inhibition of eEF2.  These results were similar to those reported by 

Atherton et al. 2005 (10) who reported inhibition of eEF2 immediately and 3 hours following 

endurance exercise.  These responses differ from resistance exercise, which has been 

demonstrated to increase eEF2 activity through activity through mTORC1 signaling.  

Therefore, acute increases in intracellular calcium following exercise also represent an 

avenue of mTOR independent exercise interference. 

 

Conclusions – Exercise Interference 

The intracellular signaling mechanisms that regulate skeletal muscle adaptation to 

exercise, while complex, are governed by intracellular energy availability, intensity of 

contractile activity, and duration of activity.  Additionally, recent research provides further 

molecular support for the results reported in applied concurrent training investigations.  

Endurance training promotes enhanced oxidative capacity and reduced fatigueability in 

skeletal muscle by increasing mitochondrial biogenesis, angiogenesis, and stimulating a 

partial fast-to-slow fiber type shift.  Resistance exercise results promote an increase muscular 

strength and size by increasing protein synthesis, anaerobic metabolism, and structural 

remodeling.  However, the mechanisms responsible for resistance and endurance exercise 

adaptation are highly integrated.   Given that several variables may affect concurrent training 
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outcomes, the simplistic approach of comparing steady state endurance training and 

traditional resistance training does not address the complexity of concurrent training.  Both 

resistance and endurance training are commonly practiced in many forms.  Therefore it may 

be more applicable to consider adaptive responses to exercise to occur on a continuum.  

Importantly, the aforementioned literature is a report on physiological tendencies for 

adaptation in response to resistance and endurance exercise.  In other words, it would be 

inaccurate to claim that resistance exercise does not have the potential to partially stimulate 

mitochondrial biogenesis (18), nor would it be correct to state that endurance exercise is 

incapable of stimulating skeletal muscle hypertrophy (70) under certain conditions.  As 

previously stated, exercise intensity, mode selection, training, frequency, and subject 

population all contribute to the adaptive outcomes of a given training stimulus.  At present, 

the degree to which endocrine and immune function also contributes to concurrent training 

interference is not well known.  Given the present limitations in the literature and concurrent 

training program design, a challenge still remains for identifying and implementing 

concurrent training programs, which minimize exercise interference and maximize 

adaptations.   

 

General Molecular Hypothesis for Exercise Interference 

Figure 4 (following page) represents a summary for the aforementioned intracellular 

signaling mechanisms that have been proposed to play a role in concurrent exercise 

interference.  However, the time course for these signaling events following exercise and the 

degree to which each individual signaling cascade contributes to exercise interference is 

unknown.    
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Figure 4 - Intracellular Role Players in Exercise Interference. 

 

Dotted lines = indirect signaling              Solid lines = direct signaling. 

Figure adapted from Laplante et al., 2010 (150), Kramer and Goodyear, 2007 (144), and Baar, 2006 (12). Abbreviations:  
4E-BP1, eukaryotic initiation factor 4E-binding protein 1;  Akt, protein kinase B;  AMPK, AMP-activated protein kinase;  

CaMK, calmodulin-dependent kinase; eIF2 - , eukaryotic translation initiation factor 2 - ;  eIF-4E,   eukaryotic translation 

initiation factor 4E, Erk, Extracellular-signaling-regulated kinase; FoxO 1,3, forkhead box O 1,3;  GSK-3 , glycogen 
synthase kinase 3;  IRS-1, insulin receptor substrate-1;  JNK, c-Jun NH2-terminal kinase; mTORC1, mammalian target of 
rapamycin complex 1;  NRF, nuclear respiratory factor;  NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B 
cells; p38, p38 Mitogen activated protein kinase;  PDK1, phosphoinositide-dependent kinase-1;  PI3-K, phosphoinositide 3 

kinase;  PIP2, phosphotydilinositol (4,5) bisphosphate;  PIP3, phosphotydilinositol (3,4,5) trisphosphate;   PGC-1 , PPAR-  

coactivator 1- ;  S6K1, p70 ribosomal S6 kinase 1;  TSC2, tuberous sclerosis complex 2.   
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Aquatic Treadmill Exercise – Implications for Concurrent Exercise Research  

Introduction 
 
 Aquatic exercise is becoming increasingly prevalent in clinical populations as a form 

of active rehabilitation for lower body injuries (259).  Aquatic exercise has also been 

observed to be an effective therapy for those suffering from such conditions as arthritis, low 

back pain, fibromyalgia and others who may benefit from low impact exercise (9, 42, 155, 

253).  Consequently, aquatic exercise is becoming a valuable tool for increasing the activity 

levels of those with physical limitations that inhibit or deter them from performing traditional 

land based exercises.  Presently, several modes of aquatic exercise have been under 

investigation.  These modes include swimming, water aerobics, deep-water running (DWR), 

aquatic treadmill (ATM) running, and aquatic cycling.  However, while aquatic exercise is 

growing in popularity, much is still uncertain with regards to acute and chronic physiologic 

responses to aquatic based training.  Recently, our laboratory conducted a study comparing 

the efficacy of chronic ATM training with traditional land treadmill (LTM) training using a 

protocol similar to that recommended by the ACSM (106).  Following training, increases in 

VO2max and decreases in fat mass were similar regardless of exercise mode.   Notably, leg 

lean mass (measured with DEXA) was significantly increased following ATM training 

(17.30±.80kg18.10±.80kg, p<0.05), twice that of the LTM group.  These data combined 

with other recent reports from our laboratory (105) indicate that ATM exercise may elicit 

different skeletal muscle adaptations compared to traditional LTM exercise.   

The following section is review physiologic responses to water immersion, acute 

physiologic responses to common modes of aquatic exercise, the effects of chronic aquatic 

exercise training, therapeutic uses for a aquatic exercise, and the potential for aquatic 
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exercise in a concurrent training model.  For the purposes of the investigation presented 

within this dissertation, the following review will primarily focus on head-out aquatic 

exercise with a heightened focus on aquatic running and cycling. 

 
Physiological Adjustments to Water Immersion 
 
Hydrostatic Pressure 

 

When immersed in water, the hydrostatic forces acting upon the body are equal to:  

P = Patm + g  ρ  h (257).   P = water pressure; Patm = atmospheric pres- sure (standard 

sea level 1013 hPa); g = gravity (9.81 m/sec
2
); ρ = water density (1000 kg/m

3
) and h = 

height of the water (m) 

Therefore, on a body immersed in water, the pressure varies relative to depth such that for 

each cm of depth, there is an increase in external pressure of 0.74mmHg (257).  In other 

words, the pressure gradient increases as depth increases which causes upward fluid and gas 

displacement within the body (257).   

 

Cardiovascular Adjustments 

 Upon immersion in water up to the level of the neck, hydrostatic forces acting upon 

the body elicit an increased central blood volume (206).  Due to the pressure gradient that 

arises, a redistribution of blood volume (~700ml) to the central cavity occurs (7).  As a result, 

the heart receives approximately 200ml of this shifted blood volume (7, 206).  Notably, 

increased cardiac preloads have been reported at water depths ranging from the waist to the 

neck (206).  Because of increased preload, increases in cardiac stroke volume (~35%) and 

cardiac output have also been observed (206).   
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 Increases in cardiac preload commonly increase stroke volume (232), contractility, 

and cardiac output as a result of the Frank Starling mechanism whereby the elastic properties 

of the heart enhance the force of cardiac contraction in response to stretch by optimizing the 

length tension relationship (214).  During water immersion, the resulting increased cardiac 

stretch consequently stimulates baroreceptors that assist in regulating sympathetic and 

parasympathetic output.  O’Hare et al. (110) and Norsk et al. (189) each observed depressed 

sympathetic activity during water immersion to the level of the neck.  Norsk et al. (189) also 

reported that neck level immersion resulted in reductions in plasma norepinephrine levels 

that were mirrored by increases in stroke volume, systolic atrial pressure, and pulse pressure.  

Following this study, it was determined that reductions in catecholamine output resulted in a 

decreased resting heart rate.  

 

 

Respiratory Adjustments 

 

 Increased hydrostatic pressure observed during water immersion at chest depth has 

been reported to decrease vital capacity as a result of an upward shift of the diaphragm (206).  

Accordingly, an increase in breathing frequency has been reported at maximal exercise 

efforts during aquatic running (206).  Similarly, depth dependent reductions in functional 

residual capacity have also been reported during water immersion (206).   

 

Renal Adjustments 

 Additional responses to water immersion (prolonged water immersion in particular) 

include alterations in renal function.  Norsk et al. (189) observed an increase in natriuresis 

that was determined to be related to increases in thoracic blood volume and subsequent 
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altered baroreceptor stimulation.  The mechanisms responsible have been hypothesized to be 

reductions in aldosterone section and increases in renal prostaglandin release (206).  In a 

study involving 15 young men, Schou et al. (220) observed a suppression of angiotensin II 

and aldosterone production during a 3 hour water immersion protocol at neck depth with 

thermoneutral water temperatures (33°C).  Therefore, these data suggest that an increase in 

central blood volume mediates compensatory responses through the angiotensin-renin system 

to re-equilibrate during water immersion.   

 

 

Effects of Water Temperature 

 

 Water temperature, like air temperature, can influence cardiovascular responses to 

immersion with regards to thermoregulation.  At cooler temperatures (<25°C), increased 

vaso-constriction causes an additional increase in central blood volume in addition to that 

elicited by hydrostatic pressures (206, 257).  Similar to mechanisms elicited by hydrostatic 

pressure, increases in central blood during cold water immersion propagate an increase in 

cardiac preload (214).  The resulting stimulation of stretch and baroreceptor in the heart 

cause increased parasympathetic tone and reductions in heart rate at rest and exercise (214). 

Due to increases in vasoconstriction to maintain core temperature, cold water immersion 

causes an increase in peripheral vascular resistance (214).   Resultantly, decreases in cardiac 

output have also been observed during rest at neck depth during cold water immersion (32, 

226).   Although, to assist in the maintenance of core temperature, oxygen consumption and 

metabolism are typically increased with decreasing water temperatures while at rest (223, 

226).   

 At warmer water temperatures (>35°C), an increase in skin temperature causes an 
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increase in peripheral vasodilation (32, 257).   Heart rate also increases in response to hot 

water immersion (32, 257).  The reductions in peripheral resistance combined with increases 

in heart rate yield increases in cardiac output.  Because of an increase in subcutaneous blood 

flow, it has been hypothesized that hot water immersion could potentially reduce skeletal 

muscle blood flow (257).  However, future investigations are needed to determine the 

interaction between vascular responses to heat which shunt blood flow to the skin in relation 

to competitive external hydrostatic pressures that exist during water immersion. 

 Previous investigations have yielded an established thermoneutral water temperature 

between 27-35°C at rest (32, 186, 189, 206, 257).  Within this temperature range, heat 

dissipation and cardiovascular responses to exercise have been reported to be similar to land 

(257).   During exercise the optimal temperature of water for thermoneutrality decreases 

slightly.  Craig and Dvorak (60) found exercisers with a light work load to be able to 

maintain a thermoneutral condition at 34°C and with a heavy workload at 29°C.  However, 

thermoneutral temperature ranges specific to various depths (hip, chest, neck) have not been 

fully established.  Body composition has also been reported to play a role in 

thermoregulation during water immersion due to variance in insulation properties and 

abundance of subcutaneous lean versus fat tissue (172).  Regardless, due to exaggerated 

cardiovascular and metabolic responses to water immersion outside of thermoneutral 

temperature ranges, researchers attempting to compare land and aquatic exercises at similar 

workloads should set water temperature within a thermoneutral range so as to not create 

exaggerated responses of physiological measures to extreme temperatures.  This 

thermoneutral temperature may also be adjusted depending on the intensity of the activity. 
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Upright Aquatic Exercise 

Cardiovascular Responses 

At present, several investigations have compared the physiological responses of acute 

aquatic and land exercise (135, 139, 140, 167, 169, 175, 177, 178, 232, 252).   At sub-

maximal workloads, the relationship between heart rate and oxygen consumption (VO2) has 

been found to be similar when comparing the same exercises in water and on land (103).  

Recently, our laboratory characterized the cardiovascular responses to ATM exercise (103).  

In this investigation, the model of ATM used (HydroWorx 1000 and 2000 series, 

HydroWorx International, Inc., Middletown, PA) incorporates a motor driven treadmill 

placed in the floor of a pool with pump-driven water jets, similar to those in commercial 

whirlpool baths, oriented to push against an exercising participant, thus providing resistance 

to forward ambulation. Following this investigation, similar cardiovascular responses were 

found between ATM and LTM exercise.  While reductions in VO2max have been consistently 

found when comparing DWR to LTM exercise (205, 206), comparisons of ATM or cycle 

erogmeter exercise to their land based counterparts have revealed no such differences (48, 

57, 106, 224, 225).  Because of the incorporation of jet based water resistance and 

involvement in the upper body, ATM exercise likely engages a greater muscle mass than 

DWR (106, 232).  Also, a common limitation of maximal exercise testing during DWR in 

previous investigations was that stride lengths were self-selected and as a result, reduced 

when approaching VO2max in order to maintain a specified stride cadence (232, 258).  This 

may have been partially responsible for the previously observed reductions in VO2max with 

DWR.  In our investigation of ATM exercise, self-selection of work rate was removed as it 

was required that participants maintain velocity on a motorized treadmill belt against a jet 
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resistance (106).  These results indicate that the testing parameters used in previous 

investigations may have been responsible for reported reductions in VO2max during DWR and 

that it is possible to achieve comparable maximal aerobic workloads during aquatic exercise. 

While similar cardiovascular responses have been reported between aquatic and land 

based exercise, there have been some exceptions.  Similar to water immersion at rest, 

reduced catecholamine concentrations have been observed during aquatic versus land 

exercise (48, 57).  In a study comparing aquatic versus land based cycle ergometer exercise, 

Connelly et al. (57) reported reductions in epinephrine, nor-epinephrine, and heart rate during 

head-out aquatic cycle ergometer exercise at intensities approaching VO2max in water 

compared to land.  Both Connelly et al. (57) and Christie et al. (48) also reported greater 

increases in pulmonary arterial pressure, end-diastolic volume, stroke volume, and ejection 

fraction associated with lower heart rates during aquatic cycle ergometer exercise.  These 

findings are consistent with those made by Greene et al. (103) who observed reductions in 

maximal heart rate at VO2max.  Therefore, while measurements of hemodynamics are difficult 

during aquatic exercise, present data indicates that physiologic responses to aquatic exercise 

are similar to those observed with water immersion at rest.  

 

Fuel Substrate Utilization 

Svedenhag reported elevated respiratory exchange ratio (RER) and blood lactate 

concentrations during DWR at similar VO2 (232).  Michaud et al. (177) and Broman et al. 

(37) reported similar findings.  Together, these data indicate the possibility of elevated 

carbohydrate oxidation and decreased lipid oxidation during deep water running compared to 

running on land.  However, these findings are contrary to those by our laboratory (103, 106) 
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and others (57, 224, 259) who reported no difference in RER or blood lactate concentration 

between sub-maximal running exercise performed on land versus in water.  Both Greene et 

al. (103) and Connelly et al. (57) also observed reductions in RER at VO2max during aquatic 

versus land based exercise.  Connelly et al. (57) also observed reductions in blood lactate 

concentrations during higher intensities of exercise (>90% VO2max).  Therefore, further 

comparative research is needed between DWR, ATM, and land based running under similar 

exercise testing conditions to determine if any differences in fuel substrate utilization exist 

between land and aquatic based exercises at similar intensities.   

 

Biomechanics and Motor Recruitment Patterns 

At present, there is limited information regarding biomechanical comparisons of 

aquatic versus land exercise.  However, fundamental differences related to buoyancy, 

decreases in vertical load, increases in horizontal resistance, and increased density of water 

versus air provide rational for the potential presence of differing mechanical and metabolic 

demands on skeletal muscle.  Expectedly, when examining ATM running, lower ground 

reaction forces, reduced joint compression, reduced stride frequency, and differences in 

skeletal muscle activation patterns have also been reported compared to LTM exercise (21, 

22, 69, 210, 259).  Moening et al. (180) performed video analysis of LTM and aquatic 

running and found differences in hip, knee, and ankle range of motion.  Similar findings in a 

kinematic analysis of ATM running were reported as the transition of locomotion from 

walking to running was observed to occur at a lower absolute speed than LTM running (168).  

Silvers, Dickin, and Dolney used EMG analysis to evaluate lower limb skeletal muscle 

recruitment patterns during ATM and LTM exercise (259).  Relative to LTM exercise, ATM 
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exercise resulted in greater activation of the biceps femoris, vastus medialis, tibialis anterior, 

and rectus femoris with reduced activation of the gastrocnemius (259).  The investigators 

hypothesized that differences in skeletal muscle recruitment patterns between LTM and 

ATM were likely a result of reduced ground reaction forces and horizontal drag from the 

water.  In the case of DWR, the lack of a ground support phase produces differing 

recruitment patterns than those reported with ATM exercise (195). Kaneda et al. (136) 

observed similarities between aquatic based walking and DWR but found further reductions 

in gastrocnemius and soleus activity with the removal of a ground support phase (136).  In 

summary, differences in muscle recruitment exist between land and aquatic based running 

exercises.  In general hip and knee joint extension and flexion appear to elicit greater 

activation in water compared to land with a greater range of motion achieved during aquatic 

exercise.  However, reductions in gastrocnemius and soleus activation appear to occur during 

aquatic exercises that are dependent on reduced or absent ground reaction forces.   

  

Physiological Adaptations to Chronic Aquatic Exercise Training 

Cardiovascular Adaptation   

 Several studies (19, 20) have observed beneficial adaptations to chronic aquatic 

exercise.  Increases in VO2max have often been consistently observed in sedentary or 

recreationally active subjects (19, 36, 37, 105, 106, 233, 234).  In our investigation of ATM 

training, 57 physically inactive, overweight, and obese men and women (Age: 44±2yr, Body 

Mass:  90.5±2.4 kg, BMI: 30.5±0.7 kg/m2, VO2max: 27.1±0.7 ml·kg·min-1) were assigned to 

perform either LTM or ATM training 3 times per week for 12 weeks.  Exercise programs 

were matched for training intensity and exercise volume.  Similar increases in VO2max were 
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observed in both training groups (+3.6± 0.4 ml·kg·min-1) (106).  In a follow-up investigation, 

we observed decreases in heart rate at submaximal workloads following either LTM or ATM 

training (105). These findings were similar those of Broman et al. (37) who found increases 

in VO2max following DWR in elderly women.   

 Along with improvements in aerobic capacity, additional cardiovascular adaptations 

to aquatic exercise training are beginning to surface.  In our follow-up investigation 

comparing 12 weeks of ATM to LTM training, we observed that chronic ATM training 

elicited significant decreases in blood pressure during rest, submaximal, and maximal 

exercise in previously untrained men and women (Figure 5) (105).  Importantly, these 

reductions were not observed following traditional LTM training.  In an attempt to identify a 

possible mechanism, we analyzed muscle biopsy samples taken from 12 of our subjects who 

volunteered for biopsy sampling.  It was determined that 12 weeks of ATM but not LTM 

exercise stimulated increases in endothelial nitric oxide synthase (eNOS) within skeletal 

muscle (Figure 6).  Because eNOS is the primary means by which nitric oxide (NO) is 

produced to elicit vasodilation in smooth muscle (249), we suggest that ATM exercise (and 

potentially aquatic running in general) may increase the capacity for peripheral 

vasodilatation.  This in turn, would aid in explaining the altered hemodynamic responses to 

exercise following training.  At this time, we cannot discern if the increase was a result of an 

increased eNOS concentration in the  endothelium or an indirect result of greater  
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Figure 5 - Blood Pressure Responses Before and During the Bruce Protocol Exercise  

Stress Test Before and After Twelve Weeks of Exercise Training Using Either  

Aquatic (ATM) or Land-based (LTM) Treadmills 

 

This figure represents previous work recently published from our laboratory (105).  Systolic blood 
pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, and rate pressure product. 
*P<0.05 compared to pretraining value in same group. † P<0.05 between groups at same 
measurement time point. Data are adjusted means ± SEM. Pre: pre-training, Post: post-training. 
Testing stages: Supine (SU), Stage 1 (S1), Stage 2 (S2), Peak Exercise (P). One, three, and five 
minutes of recovery denoted by R1, R3, and R5. 
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Figure 6 - Influence of Exercise and Exercise Training on eNOS Content in ATM Compared to  

LTM Trained Individuals From Vastus Lateralis Biopsies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure represents previous work recently published from our laboratory (105).  Upper panel: 
sample immunoblots of eNOS for both training groups and β-Actin loading control, samples organized 
from left to right are unexercised/untrained (UU), exercised/untrained (EU), and exercised/trained (ET).  
Lower panel: quantitation of the relative abundance of eNOS normalized to β-Actin control, 
densitometry for each subject is normalized to their own unexercised/untrained sample.  *P<0.05 
Compared to resting, untrained.  Data are mean ± SEM. 
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angiogenesis following ATM training.  Therefore, more investigation is needed to better 

characterize the mechanisms behind our observations.  The findings of our investigation 

were similar to those found with swim training with regards to reductions in resting blood 

pressures (58, 192).  Nualnim et al. (192) also observed improvements in baroreflex 

sensitivity and flow-mediated dilation following training.  Given the previously found 

hemodynamic and cardiovascular adjustments to water immersion and acute aquatic exercise, 

the finding that hemodynamic adaptations to chronic aquatic exercise training differ from 

land based training is not unexpected.  The implications of our findings and others with 

regards to possible therapeutic applications for heart cardiovascular disease will be discussed 

further in sections to come. 

 

Body Composition  

 When performed at commonly prescribed thresholds for volume, intensity, and 

frequency, aquatic exercise has been shown to produce favorable changes in body 

composition (105, 106).  In our previous study comparing ATM and LTM training (106), 

both groups were observed to have similar decreases in %body fat (-1.3 %BF).  These 

findings are similar to those reported by others others (56, 155) with observed significant 

decreases in %BF following aquatic exercise training.  While differences in training program 

design exist within the current literature, thresholds with regards to weekly exercise volume 

and caloric expenditure appear to be similar between aquatic and land based exercise training 

thus far.  In addition to reductions in %BF, we have also previously observed significant 

increases in leg lean mass following 12 weeks of ATM training (106).  While no statistically 
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significant differences were found between chronic LTM and ATM training, gains in leg lean 

mass were twice that of the LTM group on average.   

 

Muscular Strength 

While no measures of strength were taken during our original investigation, we 

suspected that the increases in leg lean mass we observed following ATM training may have 

also resulted in increased muscular strength.  However present data reported in the literature 

regarding changes in muscular strength following aquatic training are difficult to interpret.  

Inconsistencies in program design and the incorporation of other equipment such as 

resistance bands or aquatic dumbbells make it difficult to determine the specific contributions 

of aquatic exercise to improvements in strength (19, 20).  However, because of increased 

ambulatory resistance, decreases in vertical load, and differences in muscle recruitment 

patterns (259), we find it reasonable to suspect that mode specific differences in skeletal 

muscle adaptation may differ between aquatic and land based exercises.  Further research is 

needed where land and aquatic exercise analogs are controlled for volume, intensity, and 

frequency to determine the specific effects of aquatic exercise on strength.   

 

Considerations for Athletics   

 Much of the current literature on aquatic running is limited to sedentary, injured, or 

aging populations.   As a result, further research is needed to determine the efficacy of 

aquatic based running for athletic populations who are already physically conditioned.  Given 

the current findings with regards to increases in aerobic capacity, decreases in body fat, and 

potential increases in lean mass, exercises such as ATM running may have the potential to 
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increase athletic performance (259).  While definitive data are lacking, it is notable that 

several collegiate and professional athletics organizations currently incorporate aquatic based 

exercises such as ATM running into their training programs (259).  Therefore, future 

cooperation should be encouraged between research investigators, athletic training staff, and 

strength and conditioning professionals to characterize the physiological response to chronic 

aquatic running when incorporated into various sport specific athletic training programs.   

 

Aquatic Exercise in Rehabilitation and Therapy 

Aquatic based therapies are commonly practiced for those with lower limb injuries, 

spinal injuries, osteoarthritis, chronic inflammation, cardiopulmonary conditions, and 

fibromyalgia (259).  The physical properties of water and acute physiological adjustments to 

water immersion discussed earlier provide specific benefits which have been reported to 

either enhance recovery, or provide an avenue for physical activity for those with limited 

mobility and functional capacity (9, 52, 111, 119, 131, 174, 242).  The following section will 

briefly review current therapeutic applications of aquatic exercise with a focus on aquatic 

based running. 

 

Osteoarthritis and Lower Back Pain  

Because of reductions in impact, aquatic exercise has been demonstrated to be 

effective in reducing the symptoms of osteoarthritis while also improving joint mobility (66, 

80).  Anecdotally, aquatic therapy is also reported to have high rates of compliance in 

comparison to land based therapies (259).  Denning et al. (69) reported reduced joint pain 

during ATM versus LTM walking in patients with osteoarthritis.  Reductions in joint pain 
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from these studies have been determined to result from reductions in ground reaction forces 

generated during exercise (259).  A further example of the effects of reduced vertical loading 

can be found in an investigation by Dowzer et al. (73) observed reduced spinal shrinkage 

during DWR compared to LTM exercise.  A key finding in aquatic exercise research is that 

aquatic based aerobic and resistance exercises have been observed to be effective in eliciting 

increases in cardiovascular fitness and strength in patients with osteoarthritis (111, 112).  

Similar to those with osteoarthritis, aquatic based therapy has been found to be beneficial for 

those with various spinal conditions (253).   Progressive aquatic therapies may also take 

advantage of manipulating water depth and thus, the degree to which the patient is unloaded 

(259).  However, comparative studies are limited and it is unknown as to whether or not 

aquatic exercise provides greater benefits than comparable therapeutic land based exercises 

(253).  Nonetheless, aquatic exercise appears to be an effective tool for promoting increases 

in fitness, reductions in pain, and improved joint mobility with a high rate of patient 

compliance.    

 

Musculoskeletal Injury and Inflammation  

Because of reductions in vertical load, aquatic exercise is commonly utilized in 

rehabilitation to maintain range of motion and function in individuals with lower limb 

injuries (259).   Rational for this is that patients are able to continue to exercise at intensities 

which prevent deconditioning or atrophy as a result of injury induced inactivity (4).  Because 

of the maintenance of physical function, aquatic therapies such as ATM running may 

potentially reduce injury recovery time.   
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Aquatic exercise therapy has also been proposed to reduce skeletal muscle edema and 

inflammation (257).  In response to traumatic injury or a damaging bout of eccentric exercise 

edema has been reported to result in compression of localized capillaries and increase the 

transit time for delivery of oxygen and nutrients as well as the removal of metabolic waist 

(88, 190, 244).  During immersion at rest, there is an increase in skeletal muscle blood flow 

elicited by the gradient which exists between internal tissue hydrostatic pressure and 

capillary filtration pressure (6).  This gradient has been proposed to improve the reabsorption 

of interstitial fluids thereby reducing edema (257).  Because an increased hydrostatic 

pressure gradient can also reduce cellular infiltration by inflammatory cytokines and white 

blood cell fractions (151, 179, 250), Wilcock et al. (257) hypothesized that water immersion 

and aquatic exercise may decrease secondary damage to tissue commonly caused by 

inflammation, and therefore improve recovery.  While this hypothesis has not been 

systematically tested, it is reasonably supported by previous observations by our laboratory 

where ATM exercise was found to reduce delayed onset muscle soreness following intense 

sprinting in trained men compared to passive recovery (149).  Therefore aquatic exercise 

appears to be an effective tool for pain management and functional recovery from either 

injury or strenuous physical activity.  However, the extent to which aquatic exercise may 

improve recovery and reduce inflammation compared to other common therapies is not well 

understood at this time.   

 

Osteoporosis 

Because of reduced joint loading and impact, aquatic exercise is commonly 

prescribed to reduce risk of injury (Crouse book).  However, because bone mineralization is 
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stimulated in part by weight bearing activity (65), further investigation is needed to evaluate 

the benefits of aquatic exercise versus land based weight bearing exercise.  Bravo et al. 1997 

(35) reported that one year of waist depth aquatic exercise involving aerobic and plyometric 

exercises (jumping, bounding) was effective at improving aerobic capacity, flexibility, and 

strength but did not increase either spine or femoral neck bone mineral density in 

postmenopausal women.  On the other hand, Ay et al. 2003 (11) reported increases in 

calcaneal bone density following 6 months of aquatic exercise in a similar population.   

Therefore, because of limited and conflicting data, the degree to which aquatic exercises may 

be utilized to combat osteoporosis is unclear.  Regardless, beneficial roles for aquatic 

exercise in patients suffering from osteoporosis have been identified in that various aquatic 

exercise programs have been observed to elicit improvements in cardiovascular fitness, 

strength, and motor function (97, 107, 156).  Therefore adaptations to chronic aquatic 

exercise and the reduced risk of injury provide an important avenue of activity for those with 

osteoarthritis as long as weekly exercise regimens also incorporate land based exercises to 

achieve adequate loading to stimulate osteogenesis (259).   

 

Cardiovascular and Cardiopulmonary Rehabilitation   

While data are limited, there have been reports which indicate that water immersion 

and aquatic exercise therapy may benefit patients with congestive heart failure (239).  Tei et 

al. (239) reported that immersion in warm water (41˚C) resulted in an increase in 

vasodilatation and subsequent decrease in peripheral resistance, and in response to being 

immersed in water, an increase in cardiac preload and stroke volume.  Chronic responses to 

this treatment included increases in ejection fraction and reductions in left ventricular end-
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diastolic volume.  However, because of the effects of water immersion on blood volume 

distribution, catecholamine output, and cardiac stretch the severity of a patient’s condition 

must be a determining factor when considering hot water therapy (176).  Unfortunately, a 

threshold for whether or not such therapies are appropriate for a given cardiovascular 

condition has not been established and is therefore subjective to physicians on a case by case 

basis.  Still, reports on the use of aquatic therapy for such data are promising (183).   

While little is known about the potential for prolonged aquatic training in patients 

suffering from cardiovascular or cardiopulmonary diseases, findings by our laboratory (105) 

as well as Tei et al. (239) indicate a potential role of aquatic exercise in the prevention and 

treatment of hypertension.  As previously stated, 12 weeks of chronic ATM training elicited 

chronic reductions in blood pressure at rest and during exercise (105).  Although the 

investigation involved normotensive subjects, these findings suggest a therapeutic utility for 

this mode of exercise  in the treatment and prevention of hypertension (81, 170), stroke (82), 

and atherosclerosis (171).  Exaggerated SBP and MAP during exercise may be indicative of 

failure to reduce total peripheral resistance and of early structural changes in the vasculature 

which can lead to hypertension (196, 229, 262).  Our observations of reduced SBP, DBP and 

MAP reactivity to exercise stress with ATM, but not LTM strongly suggest improved vessel 

compliance and a resultant reduced risk of future hypertension and related diseases in ATM 

trained subjects.   

In our previous investigation we also observed a reduced reactivity to exercise stress 

in measures of both PP and RPP.  Pulse pressure is proportional to stroke volume and 

widening of PP may serve as a marker of lost compliance of the vessel wall (171).  The 

observed blunted increases in PP during exercise stress following ATM training may indicate 
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improved vessel compliance.  RPP serves as an indicator of myocardial work/oxygen 

consumption (99), therefore reduced RPP during similar exercise stress is indicative of a 

reduced workload on the heart to perform equivalent total body work .   Taken together these 

findings in previously inactive, normotensive adults demonstrate reduced blood pressure 

reactivity to physical stress following ATM training, which may have application in the 

treatment and prevention of hypertension.  At present, we can only speculate as to how ATM 

training may affect these measures in a hypertensive population.  However, previous data in 

more traditional exercise training modalities suggests that exercise is more likely to improve 

such measures in the hypertensive population (197).  It would therefore be of great clinical 

interest to determine if ATM training may enhance such benefits in this population.  

Although we cannot be certain as to the similarity of the dynamics of immersion between 

swimming and ATM exercise, previous evidence suggests the efficacy of swim training to 

reduce resting blood pressures in both pre-hypertensive and hypertensive subjects (192, 235).  

Therefore, current literature does add support for the use of aquatic exercise in combating 

hypertension.   

Analysis of muscle biopsy samples from our previous investigation revealed that 

eNOS content was enhanced only after exercise training in the ATM group with no change 

observed in the LTM group.  Why such an adaptation would occur following ATM training 

but not LTM we can only speculate at this time.  We suspect that the observed effects on 

ATM training on whole muscle eNOS expression may relate to similar improvements in 

flow-mediated dilation as seen with swim training (192).   
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Obesity   

Aquatic exercise has been found to provide a safe environment for those with obesity 

to exercise at adequate intensities and volumes to elicit reductions in body fat with a reduced 

risk of injury due to reduced vertical loading (106).  Aquatic exercises such as ATM running 

can also assist those with obesity in transitioning to land based exercises over time (259).  As 

mentioned earlier, we have previously observed that chronic ATM training provides similar 

increases in aerobic capacity and improvements in body composition (106).  The increases in 

lean mass observed in our previous investigation also suggest that ATM training may 

promote increases in strength and therefore functional capacity in obese and overweight 

individuals as well (106).   Importantly, aquatic exercise regimens have also been reported to 

have a high rate of compliance among clinical populations (259).  Therefore, if performed at 

appropriate exercise intensities and training volumes, aquatic exercise can be utilized as an 

effective exercise modality for improving body composition and health in obese populations.    

 

Summary and Implications for Aquatic Exercise in Concurrent Training 
 

 In summary, exercise interference results from diverging adaptive processes within 

skeletal muscle that govern skeletal muscle growth, degradation, phenotype expression, and 

metabolic characteristics. While the specific mechanisms responsible are not entirely 

understood, adaptations appear to be largely governed by training volume, intensity, training 

history, and training mode.  Because aquatic exercise elicits unique acute and chronic 

physiologic adjustments compared to land based exercise, it stands to reason that it may yield 

differential physiological responses when performed concurrently with resistance exercise.   
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 Acutely, aquatic exercise increases central blood volume, cardiac preload, stroke 

volume, cardiac output, and barrow receptor firing with reduced catecholamine output, and 

angiotensin II production compared to land based endurance exercise performed at the same 

intensity.  During DWR and ATM running, motor recruitment patterns differ from land-

based exercise because of reduced vertical loading and increased horizontal resistance.  Both 

aquatic and land base training has been previously observed to elicit similar increases in 

aerobic capacity and improvements in body composition.  However, our previous work 

demonstrates that ATM training results in unique cardiovascular and skeletal muscle 

adaptations compared to standard LTM exercise.  These adaptations include reductions in 

blood pressure at rest and during exercise stress, increases in skeletal muscle eNOS content, 

and increases in leg lean mass.  In light of previous observations, we hypothesized that ATM 

running would not interfere with, but enhance skeletal muscle growth and strength 

development when performed concurrently with resistance training (RT-ATM) compared to 

concurrent RT-LTM training and RT alone.  We also hypothesized that both concurrent RT-

ATM and RT-LTM training would yield similar aerobic adaptations that would not be 

observed following resistance training alone (RT).   
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Aims of the Experiment 

 To test our hypotheses, we designed a 12 week training intervention.  The purpose of 

the following investigation was to compare RT-ATM, RT-LTM, and RT with regards to 

chronic physiological adaptations to training, the acute anabolic response of skeletal muscle 

to a single session of exercise, and chronic alterations in intracellular regulators of skeletal 

muscle growth, degradation, and metabolism. Therefore, this dissertation addresses the 

following aims: 

Specific Aim 1:  Compare the physiological responses with regards to body composition lean 

mass, skeletal muscle strength, and aerobic capacity (VO2max) to 12 weeks of chronic, RT, 

RT-LTM, and RT-ATM training.   

Specific Aim 2:  Compare myofibrillar fractional synthesis rates (FSR) measured  

24h following acute RT, RT-ATM, and RT-LTM exercise in the untrained/sedentary state 

and following 12 weeks of chronic training (trained state).   

Specific Aim 3:  Compare the chronic effects of RT, RT-ATM, and RT-LTM exercise 

training on the content of signaling proteins that participate in the regulation of skeletal 

muscle metabolism (TSC2, mTOR, Akt). 

 Notably, we are among the first to examine chronic and acute responses to concurrent 

exercise within the same investigation. The data presented herein challenge the notion that 

endurance and resistance exercise are universally incompatible and further highlight the 

importance of exercise mode selection when designing exercise interventions for specific 

desired outcomes. 
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CHAPTER II 
 

ANABOLIC RESPONSES TO ACUTE AND CHRONIC RESISTANCE 

EXERCISE ARE ENHANCED WHEN COMBINED WITH AQUATIC 

TREADMILL EXERCISE 

Introduction 
 
  In recent years, aquatic exercise has grown in popularity in the general, 

overweight, elderly, and athletic populations as a mode of therapeutic or rehabilitative 

exercise (27, 73, 130, 248, 256).  Aquatic based running exercises such as deep water 

running and aquatic treadmill (ATM) running (Figure 7) have also been shown to be an 

effective alternative to land based aerobic exercises for promoting increases in aerobic fitness 

(28, 37, 41, 83, 106, 174, 256).  Recently, we compared the efficacy of ATM training with 

traditional land treadmill (LTM) training using a protocol similar to that recommended by the 

ACSM (106).  Following training, increases in aerobic capacity and decreases in fat mass 

were similar regardless of training mode.  However, leg lean mass (measured with DEXA) 

was significantly increased following ATM training, twice that of the LTM group.  We 

suspected that because vertical load, lateral resistance, and skeletal muscle activation have 

been shown to differ between ATM exercise and traditional LTM exercise (259), chronic 

ATM training may also elicit unique mode-specific adaptive responses compared to LTM 

training.   
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Figure 7 - Aquatic Treadmill 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HydroWorx 1000i series aquatic treadmill as used in the current study with markers denoting motorized 
belt and frontal resistance jets. The variable speed motorized treadmill from 0 to 200 mIminj1 (0–7.5 
mph) allows for precise control of running velocity; in addition, variable-force resistance jets are 
configured to push against the subject, providing resistance to forward ambulation. 

 

 

While no measures of strength were obtained during our original investigation (106), 

the gains in lean mass observed following training led us to consider a potential role for 

ATM exercise in a concurrent aerobic and resistance training model.   Previous investigators 

(12, 13, 24, 118, 143) have reported that  aerobic training may interfere with skeletal muscle 

hypertrophy and strength development when performed concurrently with resistance training, 

compared to performing resistance training in isolation.  Primary adaptations to aerobic 

exercise include reductions in muscle fiber fatigue-ability and increases in aerobic capacity, 
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oxidative metabolism, and mitochondrial density (47, 117, 128, 185, 260, 271).  On the other 

hand, primary adaptations to traditional resistance exercise typically include skeletal muscle 

hypertrophy, increases in strength, and an increase in glycolytic metabolism (31, 38, 85, 93, 

207, 213).  Because the principle of training specificity states that physiological adaptations 

to training are specific to the types of training performed (15, 38), some (12, 55, 108, 143, 

152, 153) have presented hypotheses that link concurrent training interference to acute 

metabolic responses to exercise, exercise mode specific contractile characteristics, and 

overtraining.  However, present findings are inconclusive since investigations exist which 

both support (54, 55, 98, 108, 118, 143, 152, 184) and refute (5, 67, 72, 161, 222) these 

hypotheses. 

In recent years, intracellular signaling cascades which regulate skeletal muscle 

anabolism have been described following endurance and resistance-type exercise stimuli (10, 

12, 55, 74, 85, 93, 95, 185, 260).  Of note, interactions between protein kinase B (Akt), 

mammalian target of rapamycin (mTOR), and tuberous sclerosis complex 2 (TSC2) have 

been hypothesized to play a role in concurrent exercise interference (12, 184).  Briefly, the 

Akt-mTOR pathway is regulated by energy balance, insulin signaling and skeletal muscle 

contraction, and when stimulated, has been shown to increase skeletal muscle myofibrillar 

fractional synthesis rates (myoFSR) (74).  In times of reduced intracellular energy (↑AMP, 

↓ATP), mTOR is negatively regulated by TSC2 and its anabolic signaling is reduced (127).  

TSC2 activation can be stimulated from multiple activation sites by proteins such as AMP 

activated protein kinase (AMPK), which also stimulates mitochondrial biogenesis (123, 127, 

128, 200, 236).  This information collectively precipitates the current interference hypothesis 

that when intracellular energy is low, which comparatively occurs to a greater degree during 
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endurance exercise than traditional resistance exercise, mitochondrial biogenesis and 

oxidative energy production become greater intracellular priorities than myoFSR and 

hypertrophy.  However, because of inconsistencies between previous concurrent training 

investigations with regards to exercise mode selection, frequencies, intensities, and subject 

populations used, a broad generalization of exercise interference (interference occurring 

under all concurrent training paradigms) is difficult at this time (152, 153, 261).   

In the present study we expanded on our previous findings (106) and examined the 

exercise induced adaptations to 12 wks of concurrent resistance and ATM exercise training 

(RT-ATM), concurrent RT-LTM training, and resistance training (RT) alone in previously 

untrained subjects (n=47).  Additionally, we utilized isotope labeling to analyze the acute 

effects of RT-ATM, RT-LTM, and RT exercise on myoFSR measured for 24h following 

acute exercise before and after training in a subset of subjects who volunteered to undergo 

muscle biopsy sampling (n=25).  From our available tissue samples, we also elected to 

measure chronic alterations in Akt, mTOR, and TSC2 content.  We hypothesized that acute 

RT-ATM exercise would yield greater 24h myoFSRs than RT-LTM or RT and that 12wks of 

concurrent RT-ATM training would enhance rather than interfere with gains in lean mass and 

strength compared with 12wks of RT-LTM or RT alone.  We also hypothesized that RT-

ATM and RT-LTM training would elicit similar gains in aerobic capacity and reductions in 

fat mass, but that LTM exercise would interfere with strength and lean mass development 

when performed concurrently with RT.  The findings presented herein demonstrate that 

concurrent RT-ATM exercise training may serve as a novel and effective tool for increasing 

or preserving muscular strength and skeletal muscle mass while also providing aerobic 

benefits.   
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Methods 

 
All methods and procedures were approved by the Texas A&M University 

Institutional Review Board for Human Subjects in Research.  Prior to participation, all 

subjects provided informed consent.  Sixty-eight, untrained volunteers were recruited from 

Texas A&M University and the College Station, TX communities to participate in the study.  

Potential subjects were recruited through informational flyers, email, and by word of mouth.  

Volunteers were screened to ensure that they had not regularly performed planned exercise 

(>1/wk) for the previous 3 months.  Prior to participation, all subjects were screened to 

ensure that they were healthy enough for exercise (<2 cardiovascular risk factors) (243).  

Screening was based on ACSM risk stratification criteria to exclude subjects with 

contraindications to exercise or those who were taking medications known to affect 

metabolism or blood clotting.  For subjects with two or more risk factors for cardiovascular 

disease, examination and clearance from a cardiologist was required prior to participation.  

Of the 68 volunteers that were recruited, 47 (♂ n=23, 37±11yr, 182.7±6.7cm, 98.9±16.1kg | 

♀ n=24, 38±12yr, 165.6±4.8cm, 82.1±19.1kg) completed all required aspects of the study 

which included all subject testing and completion of a at least 85% of all programmed 

training sessions.  Additionally, rescheduled exercise sessions due to any unforeseen 

absences were required to be completed the week of the missed session.  Baseline 

demographics for subjects who completed this investigation are shown in Table 1 (following 

page). 

Prior to training, participants were asked if they would be willing to volunteer for an 

additional portion of the study which involved acute exercise and muscle sampling before 

and after training (methods to follow).  Subjects were informed of all details related to 
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participation and compensation prior to consent.  Of the original 47 subjects, 25 volunteers 

(♂ n=16, 40 ±4yr, 182.2 ±1.7cm, 93.8 ±5.5kg | ♀ n=9, 38 ±4yr, 166.3 ±2.0cm, 73.1 ±4.0kg) 

elected to participate in acute exercise testing and muscle sampling. 

 

Table 1 - Pre-training Subject Demographics 
   RT       RT-LTM       RT-ATM   

  Men  Women Total  Men  Women Total  Men  Women Total 

Number 7 8 15  8 8 16  8 8 16 

Age (yr) 37 ± 5 37 ± 4 37 ± 3  37 ± 4 40 ± 4 38 ± 3  36 ± 3 40 ± 5 38 ± 3 

Weight (kg) 96.1 ± 6.4 88.4 ± 7.4 92.0 ± 4.9  96.1 ± 6.7 79.0 ± 4.5 87.3 ± 4.5  104.2 ± 4.4 79.6 ± 8.1 91.9 ± 5.5 

BMI (kg· m-2) 28.3 ± 1.5 31.9 ± 2.1 30.2 ± 1.4  28.4 ± 1.9 28.2 ± 2.0 28.3 ± 1.4  31.9 ± 1.3 28.5 ± 2.7 30.2 ± 1.5 

%Body Fat 31.8 ± 2.7 49.3 ± 3.0 41.1 ± 3.1   31.7 ± 3.1 45.4 ± 2.2 38.5 ± 2.6   35.1 ± 2.4 43.0 ± 2.9 38.8 ± 2.1 

Values are presented as means±SEM 

 
 

General Study Protocol 

Prior to participation, all subjects provided informed consent.  Physiological and 

demographic assessments were completed on the second visit to the laboratory (methods to 

follow).  After the completion of training, all physiological and demographic testing 

procedures were repeated within 4 days after the final exercise training session.  

 

Diet and Activity Logs 

  Subjects were instructed to maintain their accustomed dietary and activity habits 

throughout the course of the study.  No attempt was made to modify diet or activity outside 

of the study protocol.  To verify compliance with these instructions, dietary and activity 

habits were assessed on two occasions coinciding with the beginning and end of exercise 

training using methods previously described (26).  Briefly, subjects were instructed to 

complete dietary and physical activity records on days which would best represent their 
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normal daily habits.  On both occasions dietary records were recorded for three consecutive 

days, including one weekend day.  The 3-day dietary records were analyzed for total caloric 

intake and for carbohydrate, fat, and protein composition using commercially available 

computer software (Nutribase®, Cybersoft Inc., Phoenix AZ).  Activity records were 

recorded for seven consecutive days and were analyzed for total energy expenditure.  

Because activity records were used to compare the energy expenditure of daily living before 

and after training, exercise participation in the study was excluded from the final activity 

logs. 

 

Physiological Assessments 

Body composition, including whole body percent fat, fat mass and lean body mass, 

were assessed using DEXA.  An incremental maximal graded exercise test (GXT) was 

conducted on a motor-driven treadmill according to the Bruce protocol (39).  Oxygen 

consumption during exercise was assessed using a calibrated metabolic gas-analysis system 

(Ultima
®

, Medical Graphics, Minneapolis, MN).  VO2max was taken as the highest 15 s 

average oxygen uptake achieved during the exercise test.  Heart rate (HR) and rhythm were 

monitored continuously from
 
a 12-lead electrocardiogram.  Ratings of perceived exertion 

(263) using a Borg 15-point scale ranging from 6-20 (33) and
 
manual blood pressures (BP) 

were obtained during the last 30 s of
 
each treadmill stage and at maximal exercise.  At least 

two of the following criteria were required for the maximal exercise test to be considered 

valid: 1) achievement of maximum heart rate within 10 bpm of the age-predicted maximum; 

2) rating of perceived exertion ≥ 18; 3) respiratory exchange ratio >1.1 at maximal exertion; 
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or 4) O2 uptake plateau despite further increases in workload.  The same skilled laboratory 

personnel consistently performed all physiological measurements.  

 
 
Strength Assessment   
 
  All subjects were tested and trained using Keiser® resistance training equipment 

(Keiser Corporation, Cherry Ave Fresno, CA).   Prior to the strength assessment, subjects 

performed a standardized warm-up protocol involving three minutes of light cycling 

followed by a series of standardized stretching exercises.  After completion of warm-up, 

subjects were tested on the following exercises in order:  leg press, chest press, leg curl, lat 

pull, leg extension, triceps push down, and biceps curl.  Following a series of warm-up sets 

involving increasing perceived intensities (5090% of perceived maximum) and reduced 

repetitions (102) per set, subjects performed repetitions to failure at a resistance perceived 

to be near maximum. Following strength assessment, one-repetition-maximum (1RM) was 

calculated using an equation adapted from Baechle et al. 2010 (14).   This process was again 

repeated during mid-point and final strength assessments where warm-up sets were set at 

percentages of each subject’s previous 1RM values and progressed as follows:  50%(10reps),  

65%(6reps), 75%(4reps), 80%(2reps),  85%(2reps). 

 

Exercise Training 

 Subjects RT-LTM and RT-ATM groups performed resistance exercise immediately 

followed by LTM or ATM twice per week separated by one session of either LTM or ATM 

performed in isolation (Total of 3 sessions/wk).  Subjects in the RT group performed 

resistance exercise in isolation twice per week.  The same resistance exercise-training 

program was performed by all groups.  Resistance exercise consisted of the same exercises  
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Table 2 - Training Progression 
 

RESISTANCE TRAINING PROGRESSION 
Performed by All Groups 

Training Week 
Frequency  

(sessions / week) 
Intensity               

 (% of 1RM) 
Sets · Repetitions Progression 

Weeks 1-6 2 

    
↑ 5%  of baseline 1RM if all 

working sets are completed 
with 12 repetitions 

50% Warmup Set 1 x 12 

60% Working Sets 3 x 12 

    

Week 7 - RESASSESSMENT OF STRENGTH      

Weeks 8-12     2 

    ↑ 5%  of midpoint 1RM if all 

working sets are completed 
with 8 repetitions 

65% Warmup Set 1 x 8 

80% Working Sets 3 x 8 

    

AEROBIC TRAINING PROGRESSION: Concurrent Training Days 

Performed by the RT-LTM and RT-ATM Groups Only 

Training Week 
Frequency 

 (sessions / week) 
Intensity                

(% of VO2max) 
Energy Expenditure (kcal) 

Week 1 2 60 250 - Resistance Exercise Expenditure 

Week 2 2 65 300 - Resistance Exercise Expenditure 

Week 3 2 70 350 - Resistance Exercise Expenditure 

Week 4 2 75 400 - Resistance Exercise Expenditure 

Week 5 2 80 450 - Resistance Exercise Expenditure 

Week 6 2 85 500 - Resistance Exercise Expenditure 

Week 7  - REASSESSMENT OF VO2max       

Weeks 8-12 2 85 500 - Resistance Exercise Expenditure 

AEROBIC TRAINING PROGRESSION: Non - Concurrent Training Days 

Performed by the RT-LTM and RT-ATM Groups Only 

Training Week 
Frequency  

(sessions / week) 
Intensity                

(% of VO2max) 
Energy Expenditure (kcal) 

Week 1 1 60 250 

Week 2 1 65 300 

Week 3 1 70 350 

Week 4 1 75 400 

Week 5 1 80 450 

Week 6 1 85 500 

Week 7  - REASSESSMENT OF VO2max       

Weeks 8-12 1 85 500 

Weekly Training Order 
Training Group                          DAY 1                                                          DAY 2                                                                  DAY3 

RT   Resistance Exercise                                                                                                                 Resistance Exercise 

RT-LTM 
  Resistance Exercise                                            LTM only                                                      Resistance Exercise 
    followed by LTM                                                                                                                      followed by LTM                                                                                            

RT-ATM  
  Resistance Exercise                                            ATM only                                                      Resistance Exercise 
    followed by ATM                                                                                                                      followed by ATM                                                                                            

Resistance training progression performed equally by all groups.  The aerobic training progression (shown above) was 
additionally performed by the RT-LTM and RT-ATM groups twice per week immediately following resistance training and 
once per week in isolation.  For concurrent training groups, the volume of aerobic exercise on concurrent training days was 
determined by subtracting the kcal expenditure of resistance training from the total prescribed kcal expenditure for the day.  
Resistance exercise kcal expenditure was approximated by the following proprietary equation:  kcal = [2.251  Height cm] + 
[0.140  Lean Mass kg] + [1.263  VO2max ml·kg·min-1] + [0.002  (total volume sets  reps  resistance)]. 
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and exercise sequence used during strength assessment.  The RT-ATM and RT-LTM groups 

trained at equivalent caloric expenditures and relative intensities (Table 2).  ATM training 

was conducted using a HydroWorx 1000 series treadmill (HydroWorx International® Inc., 

Middletown, PA).  LTM training was conducted on a standard motor-driven treadmill 

(Quinton TM65, Quinton® Inc., Bothell, WA).  Treadmill velocity and grade/jet resistance 

were adjusted as necessary during the training session to attain the HR and RPE which 

matched the prescribed intensity.  Each individual’s exercise prescription was adjusted for 

increases in VO2max during week 6 such that the prescribed intensity and duration were 

maintained throughout the study.  During aerobic exercise (LTM or ATM), individual energy 

costs (kcal·min-1) were estimated as the product of VO2 (LO2·min-1) and the respiratory 

exchange ratio energy-oxygen equivalent (kcal·LO2
-1) measured during the GXT at each 

respective intensity of interest.  Using this relationship, the exercise duration required to 

expend the required kcal of energy per exercise session was calculated for each subject (23).  

Heart rate and rate of perceived exertion were recorded during each exercise session as a 

means of tracking intensity.  As an additional precaution, a metabolic cart was used to 

sample VO2 from each subject during a training session to ensure correct exercise intensities 

and volumes were being achieved (wks 2, 4, 8,10).  Caloric expenditure of resistance 

exercise was approximated using the  

 

following proprietary equation:  Resistance Exercise Kcal Expenditure = [2.251  Height cm] 

+ [0.140  Lean Mass kg] + [1.263  VO2max ml·kg·min] + [0.002  (total volume sets  reps  

resistance)]. 

 The prescribed exercise progression was such that by week 6 subjects expended 

approximately 1500 kcal·wk
-1

 in exercise training.  On concurrent training days, the 
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prescribed caloric expenditure was met by following resistance training with the appropriate 

volume of aerobic exercise to achieve the prescribed total for a given week.  On days where 

aerobic exercise was performed in isolation, the total prescribed caloric expenditure was 

performed aerobically (Table 2).  While time of day was not controlled for subject training, 

sessions were evenly separated throughout each training week to avoid back-to-back 

sessions.  Each session was also monitored one-on-one for each subject by a trained member 

of the laboratory staff. 

 

Acute Exercise Blood and Muscle Sampling 

Methods for tissue collection have been previously published (93, 104).  Blood 

samples were obtained on 6 occasions and muscle samples were obtained on 4 occasions.  

Muscle sample #1 and blood sample #1 were obtained ~3 days prior to acute exercise 

(resting/untrained state).  Resting samples were taken following at least 72hr without 

strenuous activity.  For blood and muscle sampling, each subject reported to the laboratory, 

(time of day controlled [between 5am-11am]), after a 12hr fast (water allowed ad libitum).  

Prior to sample collection, subjects completed a form reporting their physical activity and 

dietary adherence over the previous 24hr and the time of their last meal.  Blood samples were 

drawn without stasis from an antecubital vein with the subject seated at quiet rest into 

Vacutainer tubes containing 10.5 mg Na-EDTA for plasma collection.  Plasma samples were 

immediately isolated by centrifugation at 1500 x g for 30 minutes at 4°C.  Aliquots of plasma 

were stored at −80°C for later analysis.  Biopsies were taken from the vastus lateralis under 

local anesthesia (1% Xylocaine HCl) using a 5-mm needle.  All muscle samples were 
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cleaned of visible fat, connective tissue, and blood.  Muscle samples were immediately 

frozen in liquid nitrogen (−190ºC), and then stored at −80ºC until analyzed.   

On the morning of acute exercise, subjects arrived to the laboratory and performed a 

standardized warm-up (previously described) followed by a single bout of resistance 

exercise.  The intensity and caloric volume of the prescribed acute exercise bouts were 

matched to Week 1 (1
st
 acute session/Untrained) and Week 12 of training (2

nd
 acute 

session/Trained) (training description to follow).  The rationale for this was to analyze the 

response of each group to exercise in the context of the volumes and intensities that might be 

achieved when untrained or trained.  Resistance exercises occurred in the same order as listed 

for strength assessment.  Heart rate and oxygen consumption were continuously measured 

using a metabolic cart (CPX Express, Medical Graphics, Minneapolis, MN) and caloric 

expenditure was determined using indirect calorimetry.  Additionally, subjects in the RT-

LTM and RT-ATM groups performed either LTM or ATM exercise immediately following 

resistance exercise.  The prescribed caloric expenditure was met by following resistance 

training with the appropriate volume of aerobic exercise to achieve the prescribed total for 

training Week 1 (1st acute session / untrained / 250kcals) and Week 12 (2nd acute session / 

trained / 500kcals).  Acute LTM exercise protocols began with a 3 min warm-up period at 

53.6 m·min
-1

 at a 0% grade (RT-LTM group).  Acute ATM exercise protocols began with a 3 

min warm-up period at 53.6 m·min
-1

 at a 0% jet resistance (RT-ATM group).  The duration 

of each acute exercise session was defined as the time required to expend the remaining 

volume of kcals need to reach a total of 250 kcals (250 - resistance exercise expenditure) at 

60% of VO2max (1
st
 acute session / untrained) or 500 kcals at 85% of VO2max, based on the 

most recently acquired VO2max.  HR, RPE and VO2 were measured every 5 min at the 
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beginning of exercise to adjust treadmill velocity and grade until the required VO2 was 

achieved; thereafter VO2 measurements were taken every 5 min until the cessation of 

exercise, and minor adjustments were made as necessary to the treadmill velocity and grade 

to maintain the required VO2, as well as, exercise time to ensure the correct kcal expenditure.  

Subjects were asked to avoid any physical exertion until after all blood collection procedures 

were completed.   

Deuterium Administration and Isotope Tracing 

The following methods have been previously published (93).  Immediately following 

acute exercise, subjects received their 2
nd

 blood draw and their first of 4 boluses of 70% 

2
H2O (men, 4 ml/kg; women, 3 ml/kg) (Cambridge Isotopes, Andover, MA) to achieve 

approximately 0.4% to 0.8% 2H-labeling of body water.  The remaining boluses were given 

2, 7.5, and 9.5 hours following acute exercise.  Thirty minutes following exercise, 

participants received their first of 5 meals (Boost Nutritional Energy Shake; Novartis 

Medical Nutrition, Fremont, IN), which supplied the subjects with 8037 kJ, 52% 

carbohydrate, 20% protein, and 28% fat.  The remaining 4 meals (Boost) were provided at 3, 

5.5, 8.5, and 11 hours following acute exercise.  Total supplemented energy intake was 

matched to each subject's baseline dietary analysis.  Subjects returned to the laboratory 24h 

following cessation of exercise for the 3
rd

 blood draw and 2
nd

 vastus lateralis muscle biopsy.  

This process was again repeated following training 5 days of the end-of-study physiological 

assessments (exercised/trained state) for the remainder of muscle and blood sample 

collection.  
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Analysis of Myofibrillar FSR 

 Analysis of 
2
H-labeling of body water and protein-bound alanine was determined as 

previously described (93-95).  Briefly, 20 μL of plasma was reacted with 2.0 μL of 

10NNaOH and 4.0 μL of a 5%(vol/vol) solution of acetone in acetonitrile for 24 hours.  

Acetone was removed by the addition of 0.6 mL of chloroform and 0.5 g Na2SO4.  To 

determine myofibrillar FSR, approximately 40mg of wet muscle was homogenized on ice in 

0.4 mL of 1× Norris Buffer (25 mmol/L Tris-HCl, 5 mmol/L β-glycerophosphate, 2 mmol/L 

dithiothreitol, 0.1 mmol/L Na3VO4, 10mmol/LMgCl2; Cell Signaling Technologies, 

Danvers, MA) and 0.01% Triton.  Homogenates were centrifuged at 14,000 rpm @ 4°C for 

30 minutes, the supernatant containing the cytosolic and membrane portion was then saved 

and stored at −80ºC for Western Blot Analysis (methods to follow).  An aliquot (100μL) of 

the hydrolysate was dried, and a 3:2:1 ratio (0.1 mL) of N,N-dimethylformamide dimethyl 

acetal (Methyl-8 reagent; Pierce, Rockford, IL), methanol, and acetonitrile was added to the 

residue to determine the 2H-labeling of alanine on its methyl-8 derivative.  All samples were 

analyzed using an Agilent 5973N-MSD (Agilent Technologies, Santa Clara, CA) equipped 

with an Agilent 6890 GC system and a DB17-MS capillary column (30m × 0.25 mm × 0.25 

μm). 

 

Western Blot Analysis 

Western blot analysis of proteins was performed as previously described (79) with 

minor modifications (104).  Samples for Western blot analysis were collected in the rested 

state before and after exercise.  Briefly, an aliquot of the cytosol-rich immunoblotting 

fraction was
 
diluted in an equal volume of Laemmli buffer (125 mM Tris, pH 6.8, 4%

 
SDS, 
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20% glycerol, 200 mM DTT, and 0.002% bromophenol blue) and subjected to separation 

based on protein size via sodium dodecyl sulfate
 
-polyacrylamide gel electrophoresis (SDS-

PAGE) using precast 4-20% gradient gels (Lonza info).
  
Following separation, proteins were 

transferred to a nitrocellulose membrane (Amersham Biosciences, Piscataway, NJ) using a 

semidry transfer technique.  Membranes were then incubated in a blocking solution 

(containing 5% nonfat dried milk in Tris-buffered saline); 5% milk/TBS at room temperature 

for 1hr.  Following blocking, membranes were incubated overnight at 4°C in a solution of 

5% milk/ TBS with specific antibodies added at 1:1000 to detect proteins of interest.  Anti-

mTOR, anti-Akt, and anti-TSC2 were all obtained from Cell Signaling Technology (Danvers, 

MA) for analysis of total protein expression. 

The membranes were then briefly washed 3 times in TBS and incubated again in 5% 

milk/TBS with 1:2000 of an anti-rabbit IgG secondary antibody coupled to horseradish 

peroxidase
 
(Cell Signaling) for 1hr at room temperature, before a final series of brief rinses 

and visualized using chemiluminescence (Αlpha Innotech, FluorChem SP, San Leandro, 

CA).  Luminescence was normalized to a protein standard (obtained from human vastus 

lateralis) loaded on each gel
 
and expressed as normalized absorbance units (AU).  

 

Statistical Analysis 

A 3(group) x 2(time) x 2(gender) mixed-model ANCOVA (covariate = baseline 

measures) repeated across training was used to detect group x time interactions for maximal 

strength, VO2max, body composition, dietary recall, and daily energy expenditure before and 

after training.  A 1x3 Mixed Model ANOVA was used to analyze changes in the above 

variables following training: Change = (Post-training value) – (Pre-training value).  A 
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3(group) x 1(time) x 1(gender).  A mixed-model ANOVA was used to compared 24h 

myoFSR between groups following acute exercise before (untrained state) and after (trained 

state) training.  3(group) x 2(time) x2(gender) Mixed -model ANOVA repeated across 

training was used to detect changes in mTOR, Akt, and TSC2 skeletal muscle protein content 

before and after training. The comparison-wise error rate, α, was set at 0.05 for all statistical 

tests.  Where significant F ratios are found a Tukey’s post hoc analysis was performed to 

determine difference among groups.  All data were analyzed using SAS Enterprise Guide 

(version 4.3, SAS,Cary, NC).  

 

Results 

Pre-training physiologic characteristics of subjects in each group by gender are shown 

in Table 1.  No significant differences in any of these characteristics were found between 

training groups at the beginning of exercise training. Our statistical analyses showed that 

there were no differential effects of gender on exercise training outcomes (i.e., no interaction 

due to gender); therefore, all exercise training data were collapsed across gender for 

subsequent analysis and for the presentation of results that follow.  Pre and post training 

values for all independent variables are listed in Table 3.  No significant within or between  

group interactions were found for dietary intake and daily energy expenditure.  Statistical 

analysis of pre and post training values revealed significant group x time interactions for 

body composition, strength, and aerobic capacity (p<0.05) as well as skeletal muscle mTOR 

and Akt content (p<0.05).   Significant group interactions were observed for change in body 

composition, strength, and aerobic capacity (p<0.05).  Lastly, a significant group interaction 

was observed for 24h post exercise myoFSR measured before training (untrained state). 
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Table 3 - Pre and Post-Training Data 

Values are represented as means±SEM for daily caloric expenditure on non-exercising days, daily dietary intake, maximal aerobic 
capacity, body composition, and strength assessed before (pre-training) and after (Post-training) 12 weeks of resistance training (RT), 
concurrent resistance and land treadmill training (RT-LTM), or concurrent resistance and aquatic treadmill training (RT-ATM). 

 

 

 

  RT  RT-LTM RT-ATM 

Variable 
Pre 

Training 
Post 

Training 

Sig. 
Within 
Group 

Pre 
Training 

Post 
Training 

Sig. 
Within 
Group 

Pre 
Training 

Post 
Training 

Sig. 
Within 
Group 

Diet and Physical Activity          

Caloric Expenditure (kJ·d-1)
11,740.00 
±441.53 

11,807.53 
±424.90 

NS 
11,368.75 
±552.72 

11,297.25 
±532.68 

NS 
11,802.75 
±553.96 

11,755.25 
±577.08 

NS 

Total Dietary Intake (kJ·d-1) 
9,231.01 
±704.87 

9,458.56 
±988.28 

NS 
9,264.58 
±833.68 

9,231.10 
±1000.80 

NS 
11,101.73 
±1,207.01 

9,398.55 
±916.69 

NS 

Relative Protein Intake (g/kg) 
1.24 

±0.20 
1.10 

±0.17 
NS 

1.07 
±0.09 

1.02 
±0.10 

NS 
1.14 

±0.12 
1.03 

±0.07 
NS 

Relative Carbohydrate Intake 
(g/kg) 

3.43 
±0.41 

3.42 
±0.44 

NS 
3.04 

±0.27 
3.31 

±0.38 
NS 

3.37 
±0.37 

3.18 
±0.27 

NS 

Relative Fat Intake (g/kg) 
0.98 

±0.10 
0.95 

±0.08 
NS 

1.01 
±0.11 

0.98 
±0.11 

NS 
1.18 

±0.12 
0.95 

±0.08 
NS 

Maximal Aerobic Capacity          

VO2max (ml·kg-1·min-1) 
29.48 
±1.80 

31.27 
±1.97 

<0.01 
31.48 
±1.88 

37.33 
±1.95 

<0.0001 
30.53 
±1.67 

33.89 
±1.87 

<0.0001 

GXT Time To Exhaustion (min) 
8.44 

±0.48 
8.88 

±0.55 
<0.05 

8.84 
±0.51 

10.30 
±0.54 

<0.0001 
8.68 

±0.41 
9.49 

±0.50 
<0.0001 

Total Body Composition          

Body Mass (kg) 
91.99 
±4.91 

92.53 
±4.57 

NS 
87.27 
±4.50 

86.63 
±4.25 

NS 
91.93 
±5.47 

93.04 
±5.58 

NS 

BMI (kg·m-2) 
30.20 
±1.36 

30.33 
±1.29 

NS 
28.28 
±1.35 

28.51 
±1.14 

NS 
30.20 
±1.50 

30.59 
±1.50 

NS 

%Body Fat 
41.11% 
±3.05 

40.51% 
±2.95 

NS 
38.54% 
±2.55 

35.75% 
±2.44 

<0.0001 
38.84% 
±2.07 

37.26% 
±2.04 

<0.01 

Fat Mass          

Fat Mass (kg) 
36.57 
±3.74 

36.16 
±3.48 

NS 
32.12 
±3.02 

30.42 
±3.01 

<0.001 
34.10 
±2.90 

33.17 
±2.82 

<0.05 

Trunk Fat Mass (kg) 
20.45 
±1.91 

20.11 
±1.80 

NS 
17.68 
±1.68 

15.79 
±1.95 

<0.01 
19.27 
±1.80 

18.83 
±1.83 

NS 

Total and Regional Lean Mass          

Lean Mass (kg) 
50.86 
±4.50 

51.91 
±4.50 

<0.05 
50.87 
±3.08 

52.32 
±3.12 

<0.01 
53.23 
±3.40 

55.71 
±3.60 

<0.0001 

Trunk Lean Mass (kg) 
23.98 
±1.53 

24.44 
±1.47 

NS 
23.58 
±1.39 

24.29 
±1.37 

NS 
24.86 
±1.53 

26.10 
±1.76 

<0.01 

Legs Lean Mass (kg) 
17.82 
±1.12 

18.24 
±1.13 

<0.05 
17.71 
±1.19 

18.28 
±1.27 

<0.01 
18.14 
±1.80 

18.96 
±1.83 

<0.0001 

Arms Lean mass (kg) 
6.42 

±0.51 
6.67 

±0.54 
<0.01 

6.13 
±0.46 

6.26 
±0.44 

NS 
6.55 

±0.59 
6.81 

±0.61 
<0.01 

Strength          

Total Strength (sum of maxes, 
lbs) 

1,428.63 
±77.14 

1,861.40 
±113.42 

<0.0001 
1,500.25 
±110.02 

1,864.63 
±137.79 

<0.0001 
1,523.94 
±122.77 

2,110.31 
±191.70 

<0.0001 

Leg Press (lbs) 
668.03 
±38.04 

848.47 
±48.48 

<0.0001 
689.31 
±48.43 

841.19 
±66.08 

<0.0001 
715.00 
±59.13 

1,014.25 
±96.24 

<0.0001 

Chest Press (lbs) 
94.00 
± 9.45 

116.00 
±11.47 

<0.0001 
98.25 

±10.56 
117.31 
±10.59 

<0.0001 
103.25 
±12.40 

136.25 
±15.73 

<0.0001 

Leg Curl (lbs) 
144.40 
±8.42 

188.33 
±11.94 

<0.05 
157.00 
±11.04 

196.25 
±14.98 

<0.05 
157.94 
±11.39 

208.31 
±16.66 

<0.01 

Lat Pull (lbs) 
135.47 
±10.49 

170.60 
±13.39 

<0.0001 
140.69 
±11.51 

167.81 
±13.35 

<0.0001 
143.25 
±11.89 

173.56 
±14.66 

<0.0001 

Leg Extension (lbs) 
120.80 
±8.39 

163.80 
±11.45 

<0.0001 
138.69 
±11.65 

181.06 
±16.29 

<0.0001 
123.25 
±10.87 

172.19 
±15.96 

<0.0001 

Triceps Pushdown (lbs) 
222.07 
±12.11 

314.27 
±22.22 

<0.0001 
233.88 
±20.10 

304.38 
±22.51 

<0.0001 
235.06 
±21.24 

346.44 
±37.03 

<0.0001 

Biceps Curl (lbs) 
43.87 
±5.25 

59.93 
±6.70 

<0.0001 
42.44 
±4.84 

56.63 
±5.71 

<0.0001 
46.19 
±5.31 

59.31 
±6.49 

<0.0001 
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Body Composition, Strength, and Aerobic Capacity 

Statistical analysis of pre and post training values revealed significant group x time 

interactions for body composition, strength, and aerobic capacity (p<0.05).  Total lean mass 

(LM: 1.05-2.62kg) and leg lean mass (LLM: 0.43-0.87kg) were significantly increased 

following training in all groups.  The highest gains were observed in the RT-ATM group, 

which were found to be significantly greater than the RT group (Figure 8).  Significant 

increases in arm lean mass (~0.25kg) were observed following training in the RT-ATM and 

RT groups, but were not observed in the RT-LTM group.  A significant increase in trunk lean 

mass was observed in the RT-ATM group only.  Percent body fat (%BF:  -1.71-2.79%) and 

fat mass (FM:  -1.10-1.70kg) was reduced after exercise training in the RT-LTM and RT-

ATM groups with the greatest decrease found in the RT-LTM group for %BF.  Additionally, 

a significant decrease in trunk fat mass (-1.88kg) was observed in the RT-LTM group only.   

Significant increases in strength were observed in all groups for all exercises,  

however, significantly greater increases in total strength (SUM of predicted 1RM values for 

all lifts), leg press, and chest press strength were observed in the RT-ATM group compared 

to RT and RT-LTM groups (Figure 8, to follow).  The RT-ATM group also exhibited 

significantly greater gains in triceps push down than the RT-LTM group.  No differences 

were observed between groups for gains in leg curl, lat pull, leg extension, or biceps curl.  

VO2max (+1.79-5.85 ml·kg·min) and time to exhaustion measured during maximal 

exercise treadmill testing (GXT) were increased in all groups following exercise training 

(Figure 8).   The RT-LTM group was found to have significantly greater increases in both 

variables compared to the RT or RT-ATM groups, although the RT-ATM group did 

demonstrate a greater increase in VO2max (ml·kg·min) than the RT group. 
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Figure 8 - Physiological Adaptations to Chronic Training 
 

 
Values are shown as mean±SEM for change from baseline for body composition, strength and VO2max following 12 weeks 
of resistance training (RT), concurrent resistance and land treadmill training (RT-LTM), or concurrent resistance and aquatic 
treadmill training (RT-ATM).  †= significantly different from baseline.  Letters indicate between group interaction with like 

letters indicating no significant differences between groups.  Type I Error set at α=0.05.     
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Figure 9 - Effects of acute RT, RT-LTM, and RT-ATM exercise on 24h myoFSR 

Values are presented as mean±SEM for myofibrillar fractional synthesis rates (myoFSR) measured fed state for 24h 
following acute RT, RT-LTM, or RT-ATM exercise in the untrained state (Figure 3a) before training and in the trained state 
(Figure 3b).  Letters indicate a significant between group interaction with like letters indicated no significant differences 
between groups (p<0.05).                                                                                                                                                                          

 

 

 

Acute Exercise:  24-hour Myofibrillar Fractional Synthesis Rates 

 
 In the untrained state (prior to training), acute RT-ATM exercise was found to elicit 

higher 24h myoFSRs compared to RT (5.68 %/d, p<0.01) and RT-LTM (4.08 %/d,  p<0.05) 

(Figure 9a).  Following training, acute RT-ATM resulted in the highest myoFSR values on 

average but no differences between groups were observed (Figure 9b).   No differences in 

myoFSR were observed between acute RT and RT-LTM exercise.    

 

 

Chronic Alterations in mTOR, Akt, and TSC2 Content 
 
 Following training, total mTOR content was decreased in the RT-LTM group (-

34.57% ± 14.56, Figure 10a).  Total Akt content was significantly increased (53.93% ± 

23.37) following RT-ATM training only (Figure 10b).    No chronic alterations in total TSC2 

content were observed in any of the training groups (Figure 10c).   
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Figure 10 - Pre and Post training mTOR, Akt, and TSC2 Skeletal Muscle Protein Content 
 

 
Values are presented as mean±SEM for total mTOR(A), Akt(B) and TSC2(C) content measured in the rested state before 
(pre-training) and after (post-training) twelve weeks of either  RT, RT-LTM, or RT-ATM training.  * = significant difference 
from pre-training value within group (p<0.05).                                                                                                                                                                          

 
 
 
Discussion 
 

 Consistent with our hypothesis, RT-ATM exercise elicited a greater anabolic 

response myoFSRs compared to acute RT-LTM exercise and RT alone, which coincided 

with enhanced skeletal muscle growth and strength following chronic training (Figures 8, 9).  

Regional body composition measures made from DEXA analysis also revealed that RT-ATM 

training produced a significant increase in trunk lean mass (+1.25 kg) that was not observed 

in the other groups.  Expectedly, gains in lean mass in this study were also accompanied by 

greater improvements in total strength (+608.53 lbs), chest press strength (+33.60 lbs), and 

leg press strength (+310.47 lbs) in the RT-ATM group in comparison to the RT and RT-LTM 

groups (Figure 8).  Therefore, augmentation of muscle growth and strength was not limited to 
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the legs alone. These findings suggest that the novel addition of low impact ATM exercise 

following resistance exercise in a concurrent training program may particularly benefit 

elderly populations, those who have been previously bedridden, those recovering from injury, 

and athletic populations (9, 52, 115, 119, 206, 242).   

We are the first to examine the acute effects of concurrent RT-ATM exercise on 

myoFSR and to compare 24h myoFSR following acute resistance exercise and concurrent 

exercise before and after chronic training.  Consistent with the findings of Donges et. al. 

2012 (72), the addition of aerobic exercise following a bout of resistance exercise did not 

result in suppression of myoFSR compared to resistance exercise alone in previously 

untrained subjects (Figure 9).  Consequently, these data are at odds with hypothesis that 

reductions in anabolism occur following concurrent exercise compared to resistance exercise 

in isolation (12, 184).  However, we acknowledge that the specific population used, exercise 

modes selected, exercise intensities, frequencies, and volumes may have been a factor in the 

lack of interference observed in this investigation (261) compared to previous investigations 

using trained or athletic populations (54, 143).   

At present, the specific causes of the elevated protein synthesis response to RT-ATM 

exercise are unclear.  However, findings from this study and others (29, 105, 245) may 

provide some direction for further investigation.  A summary of proposed intracellular 

signaling mechanisms responsible for concurrent exercise interference is presented in Figure 

11.  In this investigation, we measured total protein content of mTOR, Akt, and TSC2 in the 

rested state before and after training.  While we did not collect data related to the time-course 

of cell signaling responses to acute exercise, we did observe chronic increases in Akt 

expression following RT-ATM training (Figure 10B) and lower expression of mTOR with 
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RT-LTM.  Akt is a Ser/Thr kinase that plays an important role in upregulating glucose 

uptake, glycogen synthesis, and protein synthesis (29, 207).  Upon, activation through either 

nutritional stimulus or certain types of contractile activity, Akt activation leads to the 

stimulation of mTORC1 and the deactivation of glycogen synthase kinase 3–β (GSK3-β), 

which when active, is a potent inhibitor of eIF2β- , often considered a rate-limiting factor of 

peptide-chain initiation (29, 74).  While we did not determine if Akt activity was chronically 

enhanced following acute exercise, increased Akt expression following training may suggest 

an increased anabolic signaling potential following RT-ATM training.  This is supported by 

observations by Bodine et. al, 2001 (29) who observed increases in Akt expression during 

hypertrophy and decreases during skeletal muscle atrophy.    

 

 

Figure 11 - Previously Proposed Intracellular Signaling Mechanisms 

for Concurrent Exercise Interference (10, 12, 150, 184) 

 
Figure adapted from Laplante et al., 2010 (150) and Baar et al., 2006 (12).  Abbreviations:  4E-BP1, eukaryotic initiation factor 4E-binding protein 1;  Akt, 

protein kinase B;  AMPK, AMP-activated protein kinase;  eIF2 - , eukaryotic translation initiation factor 2 - ;  eIF-4E,   eukaryotic translation initiation 
factor 4E, FoxO 1,3, forkhead box O 1,3;  GSK-3, glycogen synthase kinase 3;  IRS-1, insulin receptor substrate-1;  mTORC1, mammalian target of 
rapamycin complex 1;  NRF, nuclear respiratory factor;  PDK1, phosphoinositide-dependent kinase-1;  PI3-K, phosphoinositide 3 kinase;  PIP2, 

phosphotydilinositol (4,5) bisphosphate;  PIP3, phosphotydilinositol (3,4,5) trisphosphate;   PGC-1 , PPAR-  coactivator 1- ;  S6K1, p70 ribosomal S6 
kinase 1;  TSC2, tuberous sclerosis complex 2. 
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Following training, mTOR content was found to be decreased in the RT-LTM group 

only.  Briefly, the mTOR protein functions as part of the mTORC1 and mTORC2 complexes.   

Upon removal of inhibition by Akt, amino acids, and other mechanisms, active mTORC1  

phosphorylates its downstream targets which include eukaryotic translation initiation factor 

4E-binding protein 1 (4E-BP1), ribosomal protein s6 kinase (S6K), and eukaryotic 

elongation factor 2 kinase (eEF2K) which ultimately results in an increase in protein 

synthesis (Figure 11) (74).  However, because additional intracellular pathways contribute to 

protein anabolism in skeletal muscle (85), it is difficult at this time to determine if a decrease 

in mTOR content across training affected the outcomes observed here.  Furthermore, while 

LTM exercise was not additive, acute and chronic anabolic responses to RT-LTM exercise 

were not found to be reduced compared to the RT group.  While further investigation is 

needed, the observation that no reductions in mTOR content occurred following RT-ATM 

training compared to RT-LTM training may further indicate the presence of mode specific 

training adaptations.  Speculation regarding the impact of these signaling intermediates on 

the basis of protein content should be guarded with caution, primarily because the changes in 

protein content were not always concomitant with changes in myoFSR among the groups.   

A recent study from our laboratory (105) may also provide additional rationale for the 

observed outcomes in this study.  We compared acute hemodynamic responses to acute 

exercise stress following 12wks of either ATM or LTM training.  The aerobic training 

prescription was identical to the present investigation with regard to intensity and frequency.  

In conjunction with significant reductions in blood pressure, skeletal muscle endothelial 

nitric oxide synthase (eNOS) expression was increased following ATM training compared to 

LTM training.  Because of the role of eNOS in the regulation of endothelial mediated 
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vasodilation, (249) those results suggested that ATM exercise may potentially enhance 

skeletal muscle blood flow.   Recent findings by Timmerman et al. 2012 (245) have shown 

that any compromises in blood flow will have deleterious effects on skeletal muscle 

anabolism, perhaps as a result of diminished nutrient delivery.  Therefore, future 

investigations will be needed to determine if skeletal muscle blood flow is enhanced 

following ATM or RT-ATM training. The possibility that our ATM protocol enhances blood 

flow, even in the rested state, may optimize FSR over the course of the 24-h period by 

facilitating nutrient delivery.  Those results are consistent with the heightened and similar 

myoFSR responses in the RT-ATM group when compared to other groups.      

 During this investigation, both the RT-LTM and RT-ATM groups performed at 

equivalent training volumes, intensities, and frequencies.  Because the RT group performed 

only resistance exercise twice per week, overall training volume was lower compared to the 

concurrent training groups (Weeks 6-12:  RT, <1000kcal·wk; RT-LTM & RT-ATM, 

1500kcal·wk).  While it was expected that both the RT-ATM and RT-LTM would 

demonstrate greater decreases in %BF and fat mass than the RT group, the RT-LTM group 

experienced significantly greater reductions in %BF than the RT-ATM group (Figure 8).  

DEXA analysis further revealed that this decrease in %BF was primarily driven by decreases 

in fat mass and more specifically, trunk fat mass which was found to be only significantly 

decreased in the RT-LTM group.  Given that the RT-LTM and RT-ATM groups expended 

the same weekly caloric volumes, these findings further highlight the importance of exercise 

mode selection for individual exercise training goals.   

 The results of this study are at odds with those of Gappmaier et al. 2006 (92) who 

reported no differences in %BF loss between 10wks of either walking on land, walking in 
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water, or swimming where all subjects exercised at the same intensity and duration.  

Additionally, in the previous study performed in our laboratory by Greene et al. 2009 (106) 

which compared 12wks of ATM and LTM exercise, decreases in both %BF and fat mass 

were nearly identical between groups.  In the present investigation, all training groups were 

regularly given nutrition and activity instructions to maintain their normal diets and activities 

which they reported at the beginning of the screening process.  Analysis of pre and post 

training dietary and daily activity records revealed no statistical interactions regarding daily 

activity or nutritional intake.  Because subjects were also selectively randomized into groups 

and matched for age, gender, and body composition, we find the possibility of group specific 

non-compliance in the form of a nutritional or activity shift to be unlikely.   Of note, 

Svedenhag et al. 1992 (232) reported elevated respiratory exchange ratio (RER) and blood 

lactate concentrations during DWR at similar VO2.  Michaud et al. 1995 (177) and Broman et 

al. 2006 (37) reported similar findings.  Together, these data indicate the possibility of 

elevated carbohydrate oxidation and decreased lipid oxidation during deep water running 

compared to running on land.  However, these findings are contrary to those by our 

laboratory (103) and others (57, 224, 259) who reported no difference in RER or blood 

lactate concentration between sub-maximal running exercise performed on land versus in 

water.  Both Greene et al. 2011  and Connelly et al 1990 (57) observed reductions in RER at 

VO2max during aquatic versus land based exercise. Therefore, further comparative research is 

needed between ATM and LTM running to determine if any mode-specific differences in 

fuel substrate utilization exist during exercise and recovery.   

 In addition to greater decreases in fat mass, the RT-LTM group demonstrated greater 

improvements in aerobic capacity and time to exhaustion than the other groups (Figure 8).  
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However, we suspect that the RT-LTM group may have had an advantage over the other 

groups in that they were trained on standard land-based treadmills which were identical to the 

treadmills that they were tested on. Therefore, while our results indicate that concurrent RT-

LTM exercise may be more effective in increasing aerobic capacity, we caution that factors 

related to training specificity may have affected these outcomes.   This was an unforeseen 

limitation as our previous investigation resulted in no statistical difference between ATM or 

LTM exercise training performed in isolation (106).  Future investigations comparing ATM 

and LTM exercise may avoid this limitation by also testing subjects using a cycle ergometer 

to overcome training specificity factors.    

ATM exercise provides a unique exercise stimulus in that is performed with reduced 

vertical load, increased lateral resistance, and an increase in lower body positive pressure as 

opposed to running on land.  As a result, lower ground reaction forces, reduced joint 

compression, reduced stride frequency, and differences in skeletal muscle activation patterns 

have also been reported compared to LTM exercise (21, 22, 69, 210, 259).  Because, skeletal 

muscle adaptation has been shown to be highly dependent on both contraction frequency and 

intensity (10, 207), we find it probable that ambulation through water at chest depth as 

opposed to air may have been a factor in producing the observed outcomes.   The low impact 

nature of ATM exercise along with our past and present results also serve as an impetus for 

further investigation into inflammatory and endocrine responses to ATM exercise which 

have been shown to effect skeletal muscle adaptation (122, 143).   

In summary, we observed that ATM exercise does not interfere with, but augments 

skeletal muscle growth and muscular strength when performed concurrently with resistance 

exercise.  In addition, 12wks of concurrent RT-ATM training resulted in significant increases 
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in skeletal muscle Akt content compared RT-LTM or RT training.  In combination with RT, 

the novel use of ATM running may benefit those who desire to preserve strength and muscle 

mass while also promoting aerobic fitness. RT-LTM training was found to result in greater 

decreases in fat mass compared to RT or RT-ATM training.  Notably, neither concurrent 

training group (RT-LTM or RT-ATM) experienced acute or chronic anabolic interference 

although total mTOR content was decreased following RT-LTM training.  Because a land 

treadmill was utilized for measuring aerobic capacity, further investigation is required to 

discern if training mode specificity was a factor in the aerobic adaptations observed in this 

investigation.  Regardless, the results of this investigation challenge the view that training for 

both strength and endurance are universally incompatible and highlight the importance of 

exercise mode selection when prescribing exercise programs for specific health or 

performance outcomes.  However, we acknowledge the need for further investigation into the 

effectiveness of concurrent RT-ATM exercise for promoting skeletal muscle growth in 

specialized populations such as athletes, the elderly, or those suffering from various chronic 

diseases.  Additional exploration is also needed to further characterize the intracellular 

mechanisms responsible for the outcomes observed in this study.  Nonetheless, in light of our 

results, concurrent RT-ATM training may serve as a novel, low impact training modality for 

simultaneously promoting increases in skeletal muscle mass, strength, and aerobic fitness.   
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CHAPTER III 
 

CONCLUSIONS AND DIRECTIONS  

FOR FUTURE RESEARCH 

 This study was a continuing extension of our previous investigations which indicated 

that ATM training may induce a greater hypertrophic response than standard LTM training in 

previously untrained men and women (106).  Because endurance training is not typically 

considered to be a strong stimulator of muscle growth, we elected to explore the potential use 

of ATM in a concurrent training model where endurance exercise has been purported to 

interfere with resistance exercise-stimulated hypertrophy and strength development.  Within 

this study we characterized the chronic physiological adaptations to RT-ATM, RT-LTM, and 

RT as well as the acute stimulatory effects of each on 24h post exercise myoFSR following a 

single session of exercise before and after training.  To date, this was among the largest 

human training investigations to examine acute molecular responses to exercise in 

conjunction with applied adaptations to training.  Findings from this investigation provide 

new perspective on training specificity and highlight the importance of exercise mode 

selection for desired adaptive outcomes.  Because of the nature of human training studies and 

the regular acquisition of supportive data and human tissue samples, it is likely that 

serendipitous discoveries still await us upon further analysis guided by the results in the 

current study.  While much is still unknown about the factors which govern physiological 

responses to either concurrent training or aquatic exercise, the present study provides support 

for the supportive use of low impact ATM training for populations in need of 

preserving/increasing skeletal muscle mass and improving strength while simultaneously 

improving aerobic fitness.   
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Conclusion #1 

Aquatic treadmill training enhances lean  mass and strength gains when performed 

concurrently with resistance exercise.  In the present investigation we hypothesized that 

twelve weeks of concurrent RT-ATM training would result in greater gains in lean mass and 

strength compared to twelve weeks of concurrent RT-LTM training with similar gains in 

aerobic capacity and reductions in fat mass. RT-ATM training was found to elicit greater 

increases in total lean mass (+2.62 kg) compared to the RT group (+1.05 kg).  Regional body 

composition measures made from DEXA analysis also revealed that only the RT-ATM group 

was found to have a significant increase in trunk lean mass from baseline (+1.25 kg).  This 

suggests that augmentation of muscle growth was not limited to the legs.  Expectedly, gains 

in lean mass in this study were also accompanied by greater increases in total strength 

(+608.53 lbs), chest press strength (+33.60 lbs), and leg press strength (+310.47 lbs) in the 

RT-ATM group in comparison to the RT and RT-LTM groups (Figure 4).  Similar to the lean 

mass gains revealed by our body composition analysis, augmented gains in strength were not 

limited to the lower body. At present, we can only speculate that ambulation through water at 

chest depth as opposed to air may have been a factor in producing the observed outcomes.  

These findings confirm a portion of our initial hypothesis and suggest that combined RT-

ATM training may serve as a novel training modality which may benefit not only those in the 

general population, but clinical populations in need of improving daily functional capacity, 

reducing risk for injury, preserving lean mass, or reversing sarcopenia (101, 125, 264). 
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Conclusion #2  

When low-moderate training volumes are used, neither land  nor aquatic treadmill 

running interfere with gains in skeletal muscle mass or strength when performed concurrently 

with resistance training.  Notably, we did not observe an interference effect with the 

development of strength or lean mass during this study.  This was shown as the RT-LTM 

group demonstrated similar strength and lean mass gains compared to the RT group.  These 

specific findings are similar to those found by Lundberg et al. 2012 and Shaw et al 2009 who 

did not observe any interference of endurance exercise with strength development (161, 222).  

Factors such as the population used as well as training intensities, volumes, mode selection, 

and frequency should be considered here and have shown to play a factor in concurrent 

training outcomes (261).  It has been previously speculated that muscular power may be 

more affected by concurrent endurance and resistance exercise (108).   Therefore, further 

investigations will be required to examine how either mode of training may have influenced 

rapid force development and motor unit recruitment.  This may be of importance for athletic 

populations where power development is often a focus of training.   
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Conclusion #3  

            Aquatic treadmill exercise enhances 24h -post exercise myofibrillar protein synthesis and 

chronically increases Akt when performed immediately following resistance exercise.  In the 

present study, we hypothesized that acute RT-ATM exercise would result in elevated 

myoFSRs compared to acute RT-LTM exercise and RT alone.  In both the untrained and 

trained states, RT-ATM exercise yielded the highest myoFSRs and was found to be 

significantly elevated compared to the RT-LTM and RT groups in the untrained state (Figure 

1). Neither the RT-LTM nor the RT-ATM groups were found to have diminished anabolic 

responses to acute exercise compared to the RT group which performed resistance exercise in 

isolation.  Similar to our chronic training results, these findings and others (5, 67, 72, 159, 

222) challenge the view that endurance and resistance exercise are universally incapable with 

regards to both chronic training adaptations and the acute response of skeletal muscle to 

exercise.   

 While we did not collect data related to the time-course of cell signaling responses to 

acute exercise in this investigation, we did observe chronic increases in Akt expression 

following RT-ATM training.  Therefore, increased Akt expression following training may 

suggest an increased anabolic signaling potential following RT-ATM training.  This is 

supported by observations by Bodine et. al 2001 (29) who observed increases in Akt 

expression during hypertrophy and decreases during skeletal muscle atrophy.    
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Conclusion #4 

Land treadmill exercise chronically decreases skeletal muscle mTOR content but does 

not suppress 24h-post exercise myofibrillar protein synthesis when performed immediately 

following resistance exercise compared to resistance exercise alone.  Neither the RT-LTM 

nor the RT-ATM groups were found to have diminished anabolic responses to acute exercise 

compared to the RT.  Consistent with the findings of Donges et. al 2012 (72), performing 

endurance exercise immediately after resistance exercise did not result in suppression of 

myoFSR compared to resistance exercise alone. These data are at odds with hypothesis that 

reductions in anabolism occur following concurrent exercise (12, 184).  However, the 

specific population used, exercise modes selected, exercise intensities, frequencies, and 

volumes may have been a factor in the lack of interference observed in this investigation 

(261) compared to previous investigations using trained or athletic populations (54, 143).   

Following training, mTOR content was found to be decreased in the RT-LTM group 

only.  However, because additional intracellular pathways contribute to protein anabolism in 

skeletal muscle (85), it is difficult at this time to determine if a decrease in mTOR content 

across training affected the outcomes observed here.  Furthermore, while LTM exercise was 

not additive, acute and chronic anabolic responses to RT-LTM exercise were not found to be 

reduced compared to the RT group.  While further investigation is needed, the observation 

that no reductions in mTOR content occurred following RT-ATM training compared to RT-

LTM training may further indicate the presence of mode specific training adaptations.  

Speculation regarding the impact of these signaling intermediates on the basis of protein 

content should be guarded with caution, primarily because the changes in protein content 

were not always concomitant with changes in FSR among the groups.   
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Conclusion #5  

Concurrent RT-LTM training causes greater reductions in body fat than concurrent 

RT-ATM training or RT alone.  During this investigation, both the RT-LTM and RT-ATM 

groups performed at equivalent training volumes, intensities, and frequencies.  While it was 

expected that both the RT-ATM and RT-LTM would demonstrate greater decreases in %BF 

and fat mass than the RT group, the RT-LTM group experienced significantly greater 

reductions in %BF and fat mass (particularly trunk fat mass) than the RT-ATM group.  

DEXA analysis further revealed that this decrease in %BF was primarily driven by decreases 

in fat mass and more specifically, trunk fat mass that was found to be significantly decreased 

in only the RT-LTM group.  The results of this study are at odds with those of Gappmaier et 

al. 2006 (92) who reported no differences in %BF loss between 10wks of either walking on 

land, walking in water, or swimming where all subjects exercised at the same intensity and 

duration.  Additionally, in the previous study performed in our laboratory by Greene et al. 

2009 (106) which compared 12wks of ATM and LTM exercise, decreases in both %BF and 

fat mass were nearly identical between groups. Therefore, it may stand to reason that there is 

a metabolic interaction between RT and LTM exercise when performed concurrently that 

differs when RT and ATM are performed concurrently. These findings further highlight the 

importance of exercise mode selection for individual exercise training goals.   
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Conclusion #6  

Concurrent RT-LTM training causes greater increases in aerobic capacity than RT-

ATM and RT.  In addition to greater decreases in fat mass, RT-LTM training elicited greater 

increases in aerobic capacity than RT or RT-ATM training.  These results differ from our 

previous investigations of ATM and LTM where both training modes were found to produces 

similar increases in VO2max (105, 106).   Similar to our previous investigation, a Bruce 

protocol maximal GXT was used to assess VO2max.   Regardless, we suspect that the RT-

LTM group may have had an advantage over the other groups in that they were trained on 

standard land-based treadmills, which were identical to the treadmills that they were tested 

on.  Given, the nature of specificity of training, making a conclusion based on the present 

results is somewhat difficult at this time.  Therefore, while our results indicate that 

concurrent RT-LTM exercise may be more effective in increasing aerobic capacity, we 

caution that specificity factors within our training groups may have affected these outcomes.   

While not entirely similar, these results mimic those found in comparisons of DWR and 

LTM exercise (232).  In future investigations, it may be more appropriate to measure 

maximal aerobic capacity on a cycle ergometer so that both ATM and LTM groups are 

equally novice to the testing conditions.   
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Directions for Future Research 
  
Further Characterization of Acute Exercise Responses 

 Our present results indicate that ATM training has the capacity to increase lean mass 

and strength, particularly when combined with RT.  ATM exercise was also found to enhance 

the anabolic response to acute exercise when performed immediately following resistance 

exercise.  At this time, the mechanisms responsible for our observed outcomes are not 

entirely understood.  Because both mTOR and MAPK signaling have been observed to 

contribute to exercise stimulated increases in skeletal muscle protein synthesis (85), an 

investigation of the time course of acute intracellular signaling events will be required to 

determine which pathways are differentially affected by ATM versus LTM exercise.  

 

Skeletal Muscle Fiber Adaptations 

 Both endurance and resistance training elicit unique muscle fiber adaptations.  While 

strength training in isolation has been reported to elicit hypertrophy of Type II fibers (143, 

227), intense endurance training has been observed to reduce fiber shortening speed of Type 

II fibers and alter myosin ATPase (38, 160, 227).  In our initial investigation, ATM training 

was observed to elicit a greater hypertrophic response compared to LTM training, which is 

not commonly associated with muscle growth (106).  Enhanced skeletal muscle anabolism 

and strength gains following concurrent RT-ATM training warrants further investigation into 

fiber specific adaptations to ATM and concurrent RT-ATM training compared to standard 

land based training.  Based on our current data, it is reasonable to hypothesize that increases 

in the cross-sectional area of Type I and II muscle fibers would not be impaired by 

concurrent RT-ATM training.  The effects of RT-ATM or ATM exercise on myosin heavy 
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chain phenotype expression are also unknown.  Therefore, the characterization of fiber 

specific adjustments to ATM and RT-ATM training may provide insight into the 

physiological adaptations observed in this investigation. 

 

Sarcopenia 

 Aging is commonly associated with reductions in skeletal muscle protein synthetic 

responses to exercise and nutrition (70, 165, 211, 245).  In addition to reduced anabolic 

endocrine signaling with aging, reduced skeletal muscle blood flow has also been implicated 

as a potential cause for blunted protein synthesis observed in older subjects (245).   Given the 

findings of our present study and those of our previous work which indicated that ATM 

training increases skeletal muscle eNOS (a strong stimulator of vasodilation) (105), elderly 

populations at risk for sarcopenia may receive great benefit from ATM or concurrent RT-

ATM training.  Concurrent training may also be of benefit for others who are at risk for 

sarcopenia as well such as those suffering from obesity, cancer, previously injury, or those 

who have been recently bed-ridden.  The low impact nature of ATM running and previously 

reported high rates of compliance with aquatic exercise (259) also add further support for 

exploring ATM exercise as a potential treatment intervention for these populations.   

 

Hypertension and Chronic Heart Failure 

 Concomitant with the results of this study, our recent findings of reduced blood 

pressure  and increased skeletal muscle eNOS following chronic ATM training in 

normotensive subjects (105) strongly indicate that both concurrent RT-ATM and ATM may 

also provide benefits for those with, or at risk for hypertension.  In accordance with previous 
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findings, reductions in blood pressure indicate a potential reduction in peripheral vascular 

resistance.  The observed blunted increases in PP during exercise stress following ATM 

training may indicate improved vessel compliance.  Additionally, reductions in RPP 

following training indicates a reduced workload on the heart during exercise stress.   

Therefore, like other forms of aquatic exercise (259), ATM exercise may be an appropriate 

therapy for those suffering from chronic heart failure.   Further investigation is warranted to 

target these populations and examine both acute vascular responses to exercise as well as 

chronic training outcomes. 

 

Inflammation 

 Because of the vertical unloading and reduced ground reaction forces during exercise, 

ATM exercise can be performed with a reduced risk of injury (9, 42, 253, 255).  Also, 

aquatic exercise therapy has also been reported to reduce pain and tissue inflammation (257) 

which may improve performance in subsequent exercise bouts.  Acute inflammatory 

signaling mechanisms have recently been reported to influence skeletal muscle and metabolic 

responses to exercise (100, 122, 198, 228).   Recent pilot data from our laboratory indicate 

that ATM training may reduce post exercise muscle soreness and enhance recovery from 

intense sprint exercise in 20 trained men (149).  In our pilot study, subjects performed a 

warm-up followed by 16 maximal 100 yard sprints. Work to rest ratio was set at 1:3. 

Following exercise, the half of the men performed ATM running at 5mph, 50% maximal jet 

resistance, and water (33°C) level at chest depth for 10 minutes (ATMRec).  The other half 

performed a cool down involving light stretching exercises (PRec).  Both groups then 

evaluated their level of body region specific soreness/pain using a numerical rating scale 
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(NRS: 0-10, 0=no pain, 10=worst pain) immediately following all exercise (IPE), 24h, and 

48h post exercise.  Following exercise, ratings of soreness/pain were markedly lower for the 

majority of the evaluated body regions across the measurement time points (Table 4).  

 

Table 4 - ATM Running Reduces Muscle Soreness Following  

Intense Sprint Exercise in Trained Men 

Independent Var. Group IPE 24h 48h 

LEGS 
ATMRec 3.3 ± 0.3 † 3.7 ± 0.4 † 3.2 ± 0.7 

PRec 4.5 ± 0.7 a 5.2 ± 0.5 a 3.3 ± 0.4 b 

BACK 
ATMRec 1.3 ± 0.4 a 0.9 ± 0.3 a † 0.5 ± 0.3 b † 

PRec 2.5 ± 0.9 2.7 ± 0.7 1.8 ± 0.6 

HIPS 
ATMRec 1.2 ± 0.4 a † 2.1 ± 0.5 b 1.3 ± 0.4 a 

PRec 2.5 ± 0.7 a 2.6 ± 0.5 a 1.2 ± 0.3 b 

ABDOMEN 
ATMRec 0.8 ± 0.4 † 1.1 ± 0.3 † 0.8 ± 0.2 

PRec 2.3 ± 0.5 a 2.6 ± 0.6 a 1.4 ± 0.4 b 

OVERALL 
ATMRec 2.0 ± 0.3 a † 3.0 ± 0.4 b 1.9 ± 0.5 a 

PRec 3.2 ± 0.5 a 3.5 ± 0.4 a 2.1 ± 0.3 b 

Modified from Lambert et al. 2011 (149). Values are means ± SE for NRS scores (0-10, 0=no pain, 10=worst pain).  Letter 
superscript = sig. diff. w/in groups across time, † = sig. diff. between groups at same measurement time point 
(comparisonwise α = 0.05). 
 

 

These data and others suggest that ATM running may minimize post exercise muscle 

soreness, reduce inflammation and enhance recovery following intense exercise.   

 Finally, exercise training has been observed to reduce chronic cardiovascular 

inflammation commonly observed in those with obesity, Type II diabetes, insulin resistance, 

and atherosclerosis (198, 228). Chronic inflammation is associated with increased 

concentrations of inflammatory cytokines and white blood cell fractions (198).  In a recent 

pilot investigation (148), we observed reductions in serum TNF-α concentrations (-13.5%) 

following RT-ATM but not RT-LTM training.  TNF-α is largely associated with local 

inflammation and insulin resistance (137, 198).  Upon signaling through its receptor at the 
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cell membrane, TNF-α also activates signaling cascades which promote autophagy and 

apoptosis.  Because insulin signaling through the Atk-mTOR pathway is a major contributor 

to nutrition and exercise stimulated protein synthesis, the results of the present investigation 

may have been partially caused by chronic reductions in TNF-α.  However, future research is 

needed to better characterize the potential acute and chronic anti-inflammatory effects of 

ATM running.   

 

Water Temperature 

 Water temperature has been observed to effect acute cardiovascular responses to 

aquatic exercise (32, 110, 206).  Thermoneutral water temperature (~29-35° C) allows for 

similar cardiovascular adjustments compared land exercise (206).  Because the majority of 

recent research comparing land and aquatic training involves aquatic exercise at 

thermoneutral water temperatures, it is unknown how hot or cold-water immersion or activity 

may have affected our acute or chronic outcomes.     

 Heatshock proteins (HSPs) are highly conserved temperature and stress sensitive 

regulatory proteins that have been observed to play an important role in fundamental cell 

processes (86). HSPs are upregulated when core body temperatures approach  ~37°C and in 

conditions of general thermoregulatory stress (246).  In particular, the Hsp70 family of HSPs 

respond to hyperthermia, energy depletion, hypoxia, acidosis, reactive oxygen species, and 

infection (182).  Hsp70 has been reported to be associated with the adaptive tolerance to each 

of the aforementioned stressors as well as reduced sensitivity to the inflammatory cytokine 

TNF-α (182).  In terms of its functionality, Hsp70 has been reported to assist in the 

maintenance of cell structure, refolding of unfolded or misfolded proteins, protein 
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translocation across cell compartments, prevention of protein aggregation, and degradation of 

damaged proteins (182).   Additionally, various HSPs have been shown to have either anti-

apoptotic or pro-apoptotic functions. Both resistance and endurance exercise have been 

observed to increase the expression of Hsp70 in a manner that is somewhat proportional to 

the duration of exercise and degree of eccentric loading (86).  Touchberry et al. 2012 (247), 

reported that pre-treatment with heat exposure enhanced the anabolic response to downhill 

running in Wistar rats in a manner that was independent of Akt or MAPK signaling.  

Additionally, Liu et al. 2012 (157) reported that overexpression of Hsp72 may reduce 

skeletal muscle damage induced by eccentric exercise.  Conversely, Yamane et al. 2005 

(270) observed that post exercise cold water immersion reduced the exercise induced 

upregulation of Hsp70.  Following this study, it was also concluded that cold water 

immersion attenuated temperature/stress dependent processes which are essential for training 

adaptation (270).   

 There is little evidence on the chronic training effects of aquatic exercise on HSPs.  

During this study, water temperature was set at 33 C.  Given that our subjects were 

progressed to high exercise intensities and that true thermoneutral temperatures have been 

reported shift down (~29 C) depending on exercise intensity (206), subjects exercising in the 

RT-ATM group may have been exposed to greater levels of heat stress compared to the RT 

or RT-LTM groups.   Conversely, the RT-LTM group was ultimately exposed to the greatest 

amount of cumulative eccentric load.  Therefore, future studies are needed to address the 

following with regards to HSP expression and function:  (1) the effects of ATM versus LTM 

exercise, (2) the effects of water temperature during ATM exercise, and (3) the effects of RT, 

concurrent RT-LTM, and concurrent RT-ATM. 
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Fat Metabolism 

 During our investigation, the RT-LTM group was found to elicit greater reductions in 

body fat than the RT or RT-ATM group.  As previously stated, this was a partially 

unexpected finding  considering that the RT-ATM and RT-LTM groups expended equal 

weekly caloric volumes.  Therefore future investigations are needed to address possible mode 

specific differences in metabolic fuel usage during exercise or alterations in post exercise 

metabolic rates.  In two of our previous investigations (105, 106), no differences were 

observed between ATM or LTM training in isolation with regards to fat reduction.  

Furthermore, previous data published from our laboratory (104) found that chronic ATM and 

LTM exercise resulted in similarly beneficial changes in blood lipid profiles.  Providing 

some support for our findings, Svedenhag et al. 1992 (232) reported elevated respiratory 

exchange ratio (RER) and blood lactate concentrations during DWR at similar VO2.  

Michaud et al. 1995 (177) and Broman et al. 2006 (37) also reported similar findings.   

Therefore, further exploration is needed to determine if ATM and LTM exercise 

differentially affect fuel substrate utilization when performed in isolation or combined with 

resistance exercise.  

 

Athletic Performance 

 Several sports require varying degrees of strength, power, anaerobic conditioning, 

and aerobic fitness (15).  However, training for each may lead to overtraining and thus, 

interference (143, 261).  While ATM exercise is commonly used in athletic rehabilitation, 

little is known about its use as a supportive exercise mode in athletic training.  The sum of 

research data, including data from the present study, indicate that performing ATM training 
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may improve recovery, reduce muscle soreness from training, enhance lean mass, strength, 

and aerobic fitness.  Distance runners, which often perform high volume training may also 

benefit from the incorporation of ATM running into their regimens because of its low impact 

and potentially anti-inflammatory properties (259).  However, little is known about the 

effects of aquatic exercise on athletic performance.  Given that training history has been 

reported to effect concurrent exercise outcomes (54), the incorporation of ATM exercise into 

athletic training programs where athletes are already accustomed to training may yield 

different results than those found in the present investigation.  Therefore future investigation 

is required to determine the efficacy of incorporating ATM running in various athletic 

training programs. 

 
 
 
Limitations and Delimitations 
 
Limitations 

Compliance 

Dietary and activity analysis was based on self-reported information.   During acute 

exercise / sample collection periods self-reported exercise abstinence was used.  Because our 

subjects were randomly selected and assigned, we find it unlikely that group specific non-

compliance occurred.  Subjects were also reminded weekly to of the compliance 

requirements.  All subjects with self-reported non-compliance were removed from our data 

sets.   
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Subject Population 

 Because the present investigation relied on volunteer participants, we were 

unable to control for race demographics.  Within this study, all subjects resided in the same 

geographical area.  Consequently, our subject population was made up of primarily 

Caucasian subjects.  While not likely, it is unknown as to whether or not populations of 

different ethnicities would respond differently to those in the current investigation.   

 

Tissue Sample Analysis 

 Because this study was conducted over a period of five years, certain tissue samples 

were stored at -80˚C for considerably longer than others (ex.  A participant from 2008 vs. 

2012).  However, for consistency, we elected to analyze all of our tissue samples together.   

 

Delimitations 

Subject Specificity 

In this study, we recruited subjects from the general population who were previously 

untrained.  Accordingly, the results of this study are limited to the parameters of our subject 

population.  Further investigation will be required to determine whether or not conclusions 

from this investigation translate into other specialized subject populations such as those who 

are already trained, athletic populations, and clinical populations.   

 

Nutritional Control    

Due to the fact that we chose a free living diet to mimic a “real world” lifestyle, there 

was reduced control over nutritional intake compared to supplied or regulated nutritional 



 

103 
 

intake during training.  However, subjects were instructed and reminded to not change their 

daily eating habits throughout the study.   It is unknown at this time how the addition of post 

exercise nutrition and chronic regulation of nutrient intake may have affected the observed 

outcomes in this study. 

 

Graded Exercise Testing 

In this study, a Bruce protocol graded exercise test using a standard land treadmill 

was used to assess VO2max. This is a repeated procedure from our laboratory’s original 

investigation (Greene citation).  While our aerobically trained groups (RT-ATM and RT-

LTM) were exercising at the same intensities, it is possible that training mode specificity 

(LTM vs ATM) may have played a role during the performance of this test.  To simplify, the 

RT-LTM group performed their exercise training on a mode of exercise (LTM) that they 

were tested on versus the RT-ATM group which was less accustomed to LTM exercise.  

However, the testing methods used in this case were chosen because of their use in common 

clinical settings and applicability to physical exertion which may take place in day to day 

life.  Future studies comparing ATM and LTM training may benefit from using training 

specific modes of graded exercise testing and/or a cycle ergometer for which neither group is 

accustomed. 

 

Mode Selection, Exercise Order, Training Volume 

In this particular study, we chose to mimic the training volume and intensity of our 

initial investigation (36).  Additionally, the results of this study are limited to the training 

modes, the resistance exercises selected, and the order of resistance and aerobic training 
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during concurrent training sessions.  However, the selection of exercises and orders are 

consistent with what is commonly prescribed by the American College of Sports Medicine 

for general health and fitness (10).   With regards to exercise mode, we elected to use a three-

group model (RT, RT-LTM, RT-ATM).  Therefore, our present data do not allow for a 

comparison of the effects of LTM vs ATM exercise on the independent variables measured 

in this study. 

 

Stable Isotope Labeling 

 In this study, the protocol for ingestion of deuterium oxide and nutritional 

manipulation 24h following acute exercise testing was matched to the protocol of Gasier et 

al.  (93).  However, compared to this protocol, plasma sampling only occurred before and 

24h post acute exercise.  Because of this, plasma enrichment of deuterated alanine was 

unknown except for at the 24h post exercise time point.   However, previous unpublished 

observations in our laboratory taken during the experiments of Gasier et al. (94) have verified 

that plasma enrichment determined at the 24h post exercise time point is not significantly 

different than the average enrichment calculated across 24h.  Because of this, we are 

confident in using plasma enrichment at 24h post acute exercise for calculations of 

myoFSRs.  The limited number of blood draws was chosen as a result of high subject 

volume, limited personnel, and the locations of our acute exercise testing sights. 

 In this investigation, we elected to utilize a 24 deuterium oxide method as opposed to 

other stable isotopic methods for measuring myoFSR.  Therefore, we do not know the 

immediate effects of exercise on myoFSR nor do we know if there was an interaction 

between the acute responses of exercise and post exercise nutrition.   
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Control Group 

 In this investigation, we elected not to utilize a non-exercise control group.  Instead, 

the RT group serves as an active control group whereby the effects of adding either ATM or 

LTM exercise and training were compared to it.  However, it may be advisable for future 

investigations to utilize a control group for comparisons of the physiologic responses to acute 

exercise and exercise training. 

 

Data Interpretation – Intracellular Signaling and  Skeletal Muscle Fractional  

Synthesis Rates 

As previously mentioned, interpretation of the findings from this investigation is 

limited to the specific modes, intensities and duration of exercise utilized in the study (ATM, 

LTM, and machine based RT).  The intensity and duration of exercise were chosen to mimic 

exercise recommendations prescribed by the American College of Sports Medicine.  Because 

of limited sample, changes in mTOR, Akt, and TSC2 expression were only measured in the 

rested state before and after training.  Consequently, the specific time course of activation for 

each is unknown.  However, these data in conjunction with elevated myoFSR following RT-

ATM compared to the other training modes add support to the overall conclusions of this 

study and further demonstrate the presence of mode specific differences between ATM and 

LTM exercise and training. 

 

Acute Exercise Session Testing 

In this study, we selected to match our acute exercise testing sessions to the intensity 

and volume prescribed during the first (untrained) and final (trained) weeks of training.  
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Therefore, the acute sessions themselves were not matched to each other with regards to 

intensity and duration.  Therefore, it is inappropriate to compare acute 24h post exercise 

myoFSR responses before and after training.  Although, similar between group differences 

were observed before and after training.  Our current protocol was selected to observe the 

acute responses to exercise that would be prescribed to individuals just entering an exercise 

program following prolonged inactivity (untrained) and to those who have vigorously trained 

for a period of 3 months (trained).   

 

Significance of Findings and General Summary 
 
 With the availability of aquatic treadmill running to the general public increasing, 

these results suggest that ATM running may serve as an effective tool in conjunction with 

resistance exercise for the preservation of muscle mass and strength with added aerobic 

benefits as well.  The results of this investigation confirm a portion of our initial hypothesis 

and suggest that combined RT-ATM training may serve as a novel training modality which 

may benefit not only those in the general population, but clinical populations in need of 

improving daily functional capacity, reducing risk for injury, preserving lean mass, or 

reversing sarcopenia.  Also, the results of this investigation challenge the view that training 

for both strength and endurance are “universally incompatible” and highlight the importance 

of exercise mode selection when prescribing exercise programs for specific health or 

performance outcomes.     

 Questions still remain as to whether or not ATM or RT-ATM training might be 

effective for previously trained populations such as athletes or if either are beneficial for 

clinical populations such as those suffering from hypertension, heart disease, or other chronic 

conditions.  Additionally, the specific mechanisms responsible for the acute and chronic 
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outcomes measured in this study are still unknown.  Further groundwork is also needed to 

characterize differences between ATM and LTM exercise and exercise training. 

The work presented within this dissertation represents one of the largest single-

institution training studies to date.  We are also among the first to characterize both acute and 

chronic responses to concurrent exercise and training within the same study.   While we 

acknowledge the need for further investigation, the current investigation indicates that 

concurrent RT-ATM training may serve as a novel, low impact training modality for 

simultaneously promoting increases in skeletal muscle mass, strength, and aerobic fitness.  
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APPENDIX A 
Informed Consent 

 
*The study presented within this dissertation was conducted in conjunction with other 
investigations.  Therefore, there are additional procedures mentioned within the 
informed consent document that were not included in the experiment described within 
this dissertation. 

 
Chronic effects of concurrent aerobic underwater treadmill training 
and progressive resistance training on various components of 
physical fitness characteristics 
 
Introduction 
 
 
The purpose of this form is to provide you information that may affect your decision as to whether or 
not to participate in this research study.  If you decide to participate in this study, this form will also be 
used to record your consent. 
 
You have been asked to participate in a research project studying the physiological effects of aerobic 
water exercise and resistance exercise.  The purpose of this study is to compare the effects of chronic 
aerobic water exercise to the effects of resistance training as well as concurrent water or land treadmill 
exercise and resistance training in regards to various components of physical fitness such as 
cardiovascular fitness, muscular strength, blood pressure, cholesterol, and overall functional capacity. 
You were selected to be a possible participant because you currently meet the recruitment criteria for 
this project.  This study is being sponsored/funded by HydroWorx International Inc.  
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What will I be asked to do? 
 

Your participation is completely voluntary. 
 

Project Testing/Training Timeline 
 

 
 
- Fitness Assessment and Health Screening 
If you agree to be in this study, you will be asked to perform several procedures requiring a total of 
about 4 hours in the laboratory to test your physical fitness and health.  These tests may require that 
you visit the laboratory on two separate days.. You will perform a graded exercise test (GXT) by 
walking or running on a land-based, motorized treadmill until you are exhausted.  While you are doing 
this test, you will have electrodes attached to your chest to measure the activity of your heart through 
an electrocardiogram (ECG), you will breathe through a mouthpiece connected to a machine to 
measure the amount of oxygen your body is using, and your blood pressure will be measured.  During 
the test, a licensed physician will be on site to review your ECG report to determine if there are any 
cardiovascular contraindications to exercise present.  If there are any abnormalities shown to be 
present from your report, you will be given instructions on how to schedule further health screening 
tests elsewhere.  Please note, that if you are not cleared by the physician during this testing day, you 
must be cleared by further cardiovascular testing elsewhere and provide clearance documentation from 
you doctor in order to be eligible to participate. After the GXT, you will have an earlobe stick with a 
small lancet like the ones used for finger sticks so that about two drops of blood can be collected to 
measure a substance in your blood (lactic acid) produced by exercise.  You will also be asked to 
perform tests to measure your muscle endurance, and flexibility.  Your body bone density and body fat 
will be measured by lying at rest wearing exercise clothing in a DEXA (Dual Energy X-ray 
Absorptiometry) scanning machine.  This machine will scan your body with a small amount of X-ray 
radiation.  The radiation exposure is comparatively less than the amount of natural radiation you would 
be subjected to flying in an airplane from Houston to Dallas.  Anytime you feel uncomfortable in the 
machine you can remove yourself from it.  You will also have seven-site skin fold circumference 
measures taken on parts of your body, including your hip and abdomen.  You will be asked to breathe 
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through a mouthpiece attached to a machine to measure your breathing capacity and the health of your 
lungs.  Please note that at no time will any of the project research team or Texas A&M University be 
responsible for any medical costs outside of normal testing procedures during participation in the 
testing or training during this study. 

 
-FEMALE PARTICIPANTS:  If you are pregnant or if there is a possibility that you might be pregnant, 
you will not be permitted to participate in this study due to the small amount of radiation exposure from 
DEXA scanning. 

 
 

- Strength Assessment 
Following the initial assessment of physical fitness you will be asked to attend a strength training 
session to learn and practice the exercises that will be used to assess your strength levels.  This 
session will be scheduled at least 24 hours following the initial fitness assessment and will last for 
duration of 1-2 hours.   
At least 24 hours following this practice session, you will be tested for maximal strength on the 
exercises that were reviewed.  These exercises will involve all major muscle groups and all testing will 
be supervised by trained members of the research group at all times.  For strength assessment, you 
will be asked to complete 3-5 repetitions with maximal effort at the highest level of resistance that can 
be safely achieve.  Each strength measurement will be preceded by 2-3 warm up sets of each 
exercise.  Again this testing session will last for a duration of 1-2 hours. 

 
Again your participation is completely voluntary and if at any time you feel uncomfortable, you may 
remove yourself from testing.  
 
 
 
- Resting Metabolic Rate Measurements, Blood Draws, and Muscle Biopsy (optional) 
Following the first week of testing you will be asked to sign up for a time the following week for the 
measurement of your Resting Metabolic Rate which gives us a measure of your energy expenditure 
when you are at rest.  This process will involve 1.5-2 hours of your time and will simply involve 
breathing into a mouthpiece which is connected to a machine used to measure the amount of oxygen 
that your body is using at rest. 

 
Also, during the second and third weeks of testing, with your consent, you will be asked to give a small 
piece of muscle from your thigh as well as a small amount of blood.  The first sample will be collected 
before you have done any exercise training at all and the second sample will be collected 24hours 
following an exercise bout during the third week of testing.  Also, an additional blood sample will be 
collected immediately following the same exercise bout.  NOTE:  Research has demonstrated that a 
key time point to measure markers of inflammation occurs immediately following exercise as well as 24 
hours following exercise.  The amount of muscle that will be taken is about the size of a pea and the 
amount of blood drawn will be 4 tubes containing about 2-3 table spoons of blood.  We will also collect 
DNA (the genetic code) from blood samples so that we may study how differences in the genetic 
code between individuals might change responses to exercise.  Please note that all needles used for 
the initial anesthetic injection for each biopsy procedure and blood draws will be only used once.  Also, 
medical instruments such as scalpels and biopsy needles will be thoroughly cleaned and sterilized in 
an autoclave immediately following the biopsy procedure.  Finally, the biopsy site it self will be sterilized 
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and bandaged.  Muscle samples will be stored for measurement of factors related to exercise 
adaptation of muscle and leftover samples will be stored by the Applied Exercise Science Laboratory 
(AESL) for potential future use as it relates to the context of this study.  These samples will be used to 
measure cellular mechanisms and factors related to resistance and aerobic capacity before and after 
exercise.  Blood and muscle samples will be stored by the AESL for potential future measurements 
related to the context of this experiment. These samples will be collected before and after training. 
 

-Heavy Water Administration:  You will be asked to consume 4 ml per kilogram body weight of 
a stable water molecule isotope (not radioactive) over 4 different time points during the day on 
two different occasions (before the muscle biopsy procedure before and after training).  The 
isotope will help us measure your ability to build muscle from the biopsy sample that collected. 
Protein Supplement and Meals: On the day of the study, you will only be allowed to consume 
only boost nutrition shakes which will be provided for you.  The purpose for this will be to 
ensure that diet will not affect the results of either the blood draws or muscle biopsies. 
 

NOTE:  The Muscle Biopsy portion of this project is entirely optional and lack of participation from this 
portion of the project will not exclude you from participation in any other aspect of training or testing.  If 
you do choose to participate in the muscle biopsy procedures, you will be compensated with a payment 
of $25 for each biopsy.  The total amount of compensation will be $100 for both pre and post training 
measurements (Total of 4 biopsies). 
NOTE:  Testing will occur both before and after training 
 
 
-Arterial Compliance Testing 
Because arterial stiffness has been shown to be associated with high blood pressure and heart 
disease, you will be asked to be tested for arterial compliance (blood vessel elasticity) before and after 
training.  This will be non-invasive and will involve a technician simply holding a sensor over a few 
artery locations. 
 
 
- Exercise Training  
Once you complete the initial testing, you will be assigned at random to complete an exercise training 
program performing either underwater treadmill exercise, resistance exercise, or a combination of 
resistance exercise and land treadmill exercise, or a combination of resistance exercise and 
underwater treadmill exercise.  The training program will last 12 weeks, and require that you train 2 - 4 
times per week for about 20 minutes to 1.5 hours each day.  You will have a personal trainer from the 
Applied Exercise Physiology Laboratory staff assigned to supervise each training session, and each 
session will be personalized for you.  For those involved in underwater treadmill exercise, you will be 
asked to walk or run on your assigned treadmill for each training session until you expend about 500 
kilocalories of energy 3 times per week.  The physical effort required to complete each exercise 
session will be easy to moderate at the beginning, but will steadily increase from moderate to hard as 
you get in better physical condition.  For those involved in resistance exercise, you will be asked to 
complete 2-3 sets of 8-15 repetitions per exercise 2 times per week.  These exercises will involve every 
major muscle group and each exercise session will last approximately 1 hour.  Again, the each session 
will be easy to moderate at the beginning but will progress as the number of repetitions and level of 
resistance for each exercise will be personalized for you. For those involved in concurrent training 
(resistance + water or land treadmill exercise), you will perform resistance exercise 2 times per week 
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with either water or land treadmill exercise following resistance exercise.  On a third day during the 
week, you will perform water or land treadmill exercise only.  However, each session will still total 
progress to a total expenditure of 500 kilocalories for each session (for all exercise).  This means that 
on days that you perform resistance exercise; you will spend less time doing aerobic exercise (water or 
land treadmill).  Total exercise frequency for concurrent exercise groups will be 3 days per week.  After 
12 weeks of training, you will be asked to repeat all the measures taken at the beginning of the study, 
including blood sampling, maximal effort GXT, body composition, lung tests, and assessment of your 
muscle strength, endurance, and flexibility.  Values obtained from these measurements will be used to 
compare to your pre-training values to see how well the training program worked.   
 
 
- Diet Records 
For the purpose of research precision, you will be asked to not change your daily eating habits during 
training however, you will be asked to periodically provide 3-day dietary intake records so that it can be 
determined whether or not diet played a role in your adaptation to the training program. 
 
 
 
 

What are the risks involved in this study? 
 
 
The physical exertion required of you in this study will range from easy to maximal effort.  During 
exercise there are physical risks to you including: muscle and bone strains and sprains, abnormal 
blood pressure, fainting, abnormal heart beats, shortness of breath, and in rare instances, heart attack.   
 
Blood Sampling: 

Risks associated with blood sampling:  Obtaining the blood samples by using a small needle or catheter inserted 
into the antecubital vein (for cholesterol and triglyceride analysis) is a routine procedure in the AESL and in many 
clinical settings with rare adverse effects, although the puncture of the skin is accompanied by minor discomfort 
and may result in the development of a minor bruise next to the puncture site.  However, as with any similar 
procedure disrupting the skin barrier, there is a risk of contracting an infection.  This risk to you (and to the 
technician) will be minimized through the use of accepted sterile procedures which include: (1) use of surgical 
rubber gloves by the technician; (2) antiseptic cleansing (70% alcohol) of the involved site prior to puncture; (3) 
use of sterile equipment and instruments for each sample; and (4) proper dressing of the wound with antiseptic 
and band-aid following sample collection.   

 
Muscle Biopsy:  

Dr. J.P. Bramhall has oversight of all skeletal muscle biopsies, which will be performed in the Read Building, room 
149 (Dr. Steven E. Riechman’s Laboratory).  The procedure room is a separate room within Room 149 that is 
sterile, isolated, and secured. This procedure room will house all biopsy materials, including anesthesia, biopsy 
needles, and sterile wound closures (butterfly strips and gauze pads).  All sensitive materials (e.g. anethesia) will 
be stored in a locked cabinet within the procedure room. Dr. Bramhall’s role/oversight on this project will include 
preparation and sterilization of biopsy needles, preparation of the biopsy procedure room to ensure a 
sterile/aseptic environment, administration of local anesthetic, incision of the skin for biopsy procedure, obtaining 
the biopsied sample, application of pressure to the biopsy site and incision closures, along with providing 
instructions to the subject related to post biopsy healing.  Potential complications with biopsy include soreness 
(100%), infection (<1%), and permanent numbness (<<1%).  *However, all previous studies have resulted in no 
complications with this procedure.  
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What are the possible benefits of this study? 
Your benefits for participation in this study include the benefit of physical training, weight loss, a free 
visit with a physician who will review your risk for cardiovascular disease, ECG to directly see the 
health of your heart, and a free cholesterol profile.  Also, this research will provide much insight to the 
scientific community in regards to physical fitness and the body’s ability to adapt to various forms of 
exercise.  Also, You will be offered any and all of your results at the end of your participation in the 
study. 
 
Do I have to participate? 
No.  Your participation is voluntary.  You may decide not to participate or to withdraw at any time 
without your current or future relations with Texas A&M University or the Applied Exercise Science 
Laboratory being affected.   
 
 

Will I be compensated? 
 
For those participating in the muscle biopsy procedure, $25 will be provided as compensation for 
muscle biopsies before and after training for a total of $100.  Again, the decision to not participate in 
the muscle biopsy procedure will not exclude you from participation in all other training or testing.  Also, 
as a reward for participation, you may choose not to receive $100 compensation but to enter in to the 
Applied Exercise Science Lab based FITLIFE program free for one semester.  FITLIFE is made up of a 
series of exercise classes run through the lab designed to promote health and overall physical fitness.  
The benefit of this program is that it will promote the continuing maintenance and improvement in 
physical fitness following participation on this study.     

 
Confidentiality 

 
 
Who will know about my participation in this research study? 
The data collected during this study is confidential and the names of all the subjects will be entered as 
a code in data analysis to ensure the confidentiality.  The records of this study will be kept private.  No 
identifiers linking you to the study will be included in any sort of report that might be published.  
Research records will be stored securely and only Stephen F. Crouse and his research collaborators 
will have access to the records. 
 
Your decision whether or not to participate will not affect your current relations with Texas A&M 
University.  If you decide to participate, you are free to refuse any situations that may be objectionable.  
You can withdraw at any time without your relations with the university, job, benefits, etc., being 
affected. 
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Contact Information 
 
Whom do I contact with questions about the research?  
If you have questions regarding this study, you may contact  
 
Brad Lambert  
Cell: (832) 687-2483  
Office:  (979) 458-0805  
Email: bradlambert@hlkn.tamu.edu  
 
And/Or 
 
The Applied Exercise Science Laboratory  
Phone:  (979) 845-9418 
Fax:  (979) 862-2207 
 
Whom do I contact about my rights as a research participant?   
This research study has been reviewed by the Human Subjects’ Protection Program and/or the Institutional Review Board at 
Texas A&M University.  For research-related problems or questions regarding your rights as a research participant, you can 
contact these offices at (979)458-4067 or irb@tamu.edu. 
 
Signature   
Please be sure you have read the above information, asked questions and received answers to your satisfaction.  You will 
be given a copy of the consent form for your records.  By signing this document, you consent to participate in this study. 
 
Muscle Biopsy Procedure: 
______   YES, I agree to participate in the muscle biopsy procedure before and after training. 
  (Answering yes does not obligate you to participate; you may change your decision at any time if you 
wish) 
______   NO, I do not want to participate in the muscle biopsy procedure at any time.  
 
DNA Collection: 
______   YES, I agree to have my DNA collected from my blood sample. 
  (Answering yes does not obligate you to participate; you may change your decision at any time if you 
wish) 
______   NO, I do not wish for my DNA to be collected during this study. 
 
 
*Female Participants: 
-------- Yes, I am pregnant or may be pregnant at this time 
_____ No, I am not pregnant at this time 
 
 
 

Signature of Participant: ___________________________________________    Date: _________ 
 
Printed Name: ____________________________________________________________________   
 
Signature of Person Obtaining Consent: _______________________    Date: ______________ 
 
Printed Name: ________________________________________________________________ 

mailto:bradlambert@hlkn.tamu.edu
mailto:irb@tamu.edu
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APPENDIX B 
 

  APPLIED EXERCISE SCIENCE LABORATORY 
 SEVEN DAY PHYSICAL ACTIVITY RECORD* 

 
 
Name:              Age:   Ht:               Wt:            
     
 
Address:      Phone:     (W)  
        (H) 
  _____________________  Occupation:              
  

 
 
DIRECTIONS:  This Seven Day Physical Activity Record is designed to measure your habitual physical activities 
over the course of one week.  You are asked to record your sleep habits as well as the physical activities you 
participated in over the course of the past seven days; include both occupational and leisure-time physical 
activities.  
 
1. BEFORE READING ANY FURTHER, PLEASE REVIEW ATTACHMENT 1 FOR EXAMPLES OF LIGHT, 
MODERATE, HARD, AND VERY HARD PHYSICAL ACTIVITIES! 
 
2. DO NOT RECORD LIGHT ACTIVITIES.  See Attachment 1 for examples of LIGHT ACTIVITIES.  Most of you 
will spend the majority of your waking hours in light activity.  For example, a laboratory worker may be on their 
feet all day and may feel "fatigued", but the energy cost is in the "light" category.  However, we need you to 
record the number of hours you spend sleeping. 
 
3. For all other physical activities, which may be classified as moderate, hard, or very hard, DOCUMENT ONLY 
THE TIME ACTUALLY SPENT PERFORMING THE ACTIVITY:  Include both occupational and leisure-time 
activities.  For example, the laboratory worker in the illustration given above may spend a number of hours 
stocking shelves with supplies, which would likely be moderate exercise.  It is unlikely, however, that they would 
spend an 8 hour day performing this task, and time should be subtracted for lunch, breaks, etc.  Similarly, being 
at the pool for 2 hours but swimming for 15 minutes should be recorded as 15 minutes, not 2 hours. 
 
4. For this record to be representative of your normal physical activity habits, it is critical that the week's activities 
be "normal" for you.  For example, a week in which you take a holiday or a few days vacation would clearly NOT 
be a "normal" week for you.  IF THE UPCOMING WEEK'S ACTIVITIES WILL NOT REPRESENT YOUR 
NORMAL ACTIVITY PATTERNS, THEN PLEASE DO NOT COMPLETE THIS FORM - WAIT FOR A WEEK 
THAT WILL REFLECT YOUR NORMAL PHYSICAL ACTIVITY PATTERNS.  Note that a week is not 
necessarily Sunday through Saturday, but may be any consecutive 7 day period. 
 
5. Use the record forms beginning on the next page to record; (1) the physical activity, (2) the total hours/minutes 
spent performing the activity, (3) and rate how hard you worked at the particular physical activity.  Use the 
following scale to rate how hard you worked. 
 
6.  Return this completed record to the laboratory staff at your next laboratory visit. 

SCALE TO RATE HOW HARD YOU WORK 
 

1 - Barely breaking a sweat; breathing just slightly elevated. 
2 - Moderate sweating; breathing significantly above normal, but could talk normally. 
3 - Heavy sweating; breathing very heavy to nearly winded, could NOT talk normally. 

 
 PLEASE GO TO THE NEXT PAGE TO BEGIN YOUR SEVEN DAY ACTIVITY RECORD 
*From:  Blair et al., Assessment of habitual physical activity by a seven day recall in a community survey 

and controlled experiments.  Am. J. Epidem. 122:794-804, 1985. 
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DAY ONE 
 
Date:                    Day of Week:      
 
 

 
Activity  

 
TOTAL TIME 

(Hours:Minutes) 

 
HOW 
HARD 
(1,2,3) 

 
Sleeping, including naps 

  

   

   

   

   

   

   

   

   

   

   

   

 
 

 
DAY TWO 
 
Date:               Day of Week:      

 
 

Activity  
 

TOTAL TIME 
(Hours:Minutes) 

 
HOW 
HARD 
(1,2,3) 

 
Sleeping, including naps 
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DAY THREE 
 
Date:                    Day of Week:      
 
 

 
Activity  

 
TOTAL TIME 

(Hours:Minutes) 

 
HOW 
HARD 
(1,2,3) 

 
Sleeping, including naps 

  

   

   

   

   

   

   

   

   

   

   

   

 
 

 
DAY FOUR 
 
Date:               Day of Week:      

 
 

Activity 
 

TOTAL TIME 
(Hours:Minutes) 

 
HOW 
HARD 
(1,2,3) 

 
Sleeping, including naps 
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DAY FIVE 
 
Date:                    Day of Week:      
 
 

 
Activity 

 
TOTAL TIME 

(Hours:Minutes) 

 
HOW 
HARD 
(1,2,3) 

 
Sleeping, including naps 

  

   

   

   

   

   

   

   

   

   

   

   

 
 

 
DAY SIX 
 
Date:               Day of Week:      

 
 

Activity 
 

TOTAL TIME 
(Hours:Minutes) 

 
HOW 
HARD 
(1,2,3) 

 
Sleeping, including naps 
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DAY SEVEN 
 
Date:                    Day of Week:      
 
 

 
Activity 

 
TOTAL TIME 

(Hours:Minutes) 

 
HOW 
HARD 
(1,2,3) 

 
Sleeping, including naps 
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 CONCLUDING QUESTIONS 
 
1. Would you say that during the past week you were (check one): 

_____less active than usual 
_____about as active as usual 
_____more active than usual 

 
2. Which statement most nearly describes your attitude toward leisure-time physical activity? 

_____I absolutely detest physical activity and exertion of any type. 
_____I do not enjoy physical activity or exertion of any type. 
_____I do not like activities which make me sweat, but I do like some types of light 

activities. 
_____I enjoy light physical activity of many types, and occasionally like hard physical 

activity. 
_____I thoroughly enjoy all types of physical activities, even those which are hard 

and very hard. 
 
3. When you have time off from work (weekends/vacations) or during work breaks (lunch, etc), how 
often do you participate in physical activities, including recreational sports, which would be 
considered moderate to very hard? 

_____Never 
_____Seldom 
_____Sometimes/Irregularly 
_____Frequently/Regularly 
_____Almost Always 

 
THANK YOU VERY MUCH FOR YOUR TIME AND ACCURACY IN COMPLETING THIS 
QUESTIONNAIRE.  THIS INFORMATION IS INDISPENSABLE FOR OUR STUDY, AND WE 
THANK YOU FOR YOUR WILLINGNESS TO COOPERATE IN COMPLETING THIS FORM. 
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 ATTACHMENT 1 
 
 CLASSIFICATION OF PHYSICAL ACTIVITY 

 
 
  

LIGHT ACTIVITIES 
 
Household/Occupational         Sports/Recreational  

Bakery, general  Painting, inside   Billiards  
Bookbinding  Printing    Canoeing (leisure) 
Carpet sweeping Shoe repair, general  Card playing 
Cooking  Sitting quietly   Drawing (standing) 
Eating (sitting)  Standing quietly  Horse racing (walking) 
Farming  Tailoring   Music Playing 

driving harvester  cutting     accordion (sitting) 
driving tractor  hand-sewing     cello (sitting) 
milking by machine  machine-sewing    conducting 

Ironing   Typing (electric and manual)   flute (sitting) 
Knitting, sewing Wallpapering     horn (sitting) 
Lying at ease  Watch repairing    piano (sitting) 
Machine-tooling  Writing (sitting)     trumpet (standing) 

machining         violin (sitting) 
working sheet metal        woodwind (sitting) 

                                                                                                                                                                                                            
                                                                         
 MODERATE ACTIVITIES 
 
Household/Occupational       Sports/Recreational 

Carpentry (general) Locksmith    Archery 
Cleaning  Machine-tooling    Croquet 
Electrical work   operating lathe   Cycling, leisure 5.5 mph 
Farming   tapping and drilling    Dancing (ballroom) 

feeding animals  welding    Gymnastics  
milking by hand Mopping floor    Music playing 

Food shopping  Painting (outside)    drums (sitting) 
Gardening  Planting seedlings    organ (sitting) 

weeding  Plastering    Table tennis  
hedging  Scraping paint    Treading water, normal 
raking  Stock clerking    Volleyball 

Sawing   Pressing (tailoring)   Walking, normal pace 
Woodworking  Window cleaning 
Shopping/Walking 

                                                                                                                                                         
 

HARD ACTIVITIES 
 
Household/Occupational       Sports/Recreational  

Coal Mining  Scrubbing floors   Badminton 
drilling coal, rock Steel mill, working in   Canoeing (racing) 
erecting supports  fettling    Circuit training 
shoveling coal  forging     Universal 

Farming   tipping molds    Nautilus 
feeding cattle Pushmowing yard    free weights 
shoveling grain       Cricket 

Forestry        Cycling, leisure 9.4 mph 
ax chopping, slow       Dancing (medium aerobic) 
hoeing        Golf (without cart) 
planting by hand       Horse racing (trotting) 
stacking firewood       Skiing, soft snow (leisure) 

Furriery        Tennis 
                                                                                                                                                                                                                          
  

VERY HARD ACTIVITIES 
 
Household/Occupational      Sports/Recreational  
Farming   Digging    Basketball  Horse racing 
(galloping) 
 barn cleaning  Horse grooming  Boxing   Judo 
 forking straw bales  Marching, rapid  Circuit training  Jumping rope 
(70-145 per min) 
Forestry   Steel mill, working in  Hydra-Fitness  Racquetball 
 ax chopping, fast  hand rolling   Climbing hills  Running (5 min.-
11 min. mile) 
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 barking trees   merchant mill rolling   no load  Skiing, hard 
snow  
 carrying logs   removing slag   5 kg load  Skindiving 
 felling trees   tending furnace   10 kg load  Snowshoeing, 
soft snow 
 sawing by hand        20 kg load  Squash 
 trimming trees       Cycling (racing)  Swimming (all 
strokes) 
         Dancing   Field hockey 

aerobic (intense) Football 
           twist" and "wiggle" 
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Activity Compliance Form 
 

ACTIVITY COMPLIANCE 
 
 
 
NAME:______________________________                               DATE:______________ 
 
 
 

1. My activity level (has / has not) changed from the last activity record submitted. 
 
 

2. My activities have changed as follows: 

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_________________________________ 

 

 
 
 
                                                          Printed Name ____________________________ 
 
                                                          Signature _______________________________ 
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APPENDIX C 
 

APPLIED EXERCISE SCIENCE LABORATORY 
HYDROWORX PROJECTS 

THREE DAY DIET RECORD 
 

 
Name:_____________________      Age:______      Ht:________     Wt:_______ 
 
 
DIRECTIONS:  This Three Day Diet Record is designed to measure your food intake over 
the course of three consecutive days.  Please make sure that ONE recorded day is a weekend.  
Because of this requirement, this record should be filled out Thursday, Friday, Saturday 
OR Sunday, Monday, Tuesday.    
 

1. Records should be kept over a time period that best represents your “normal” eating 
patterns for 2 weekdays and one weekend day.  For example, if Monday is a work 
holiday, it is unlikely that you will eat as you normally would.   

 
2. Record ALL food and drink (including water) that you consume on each day.  

Record both the type of food or drink and the amounts consumed. 
 
3. Please be as specific on foods and amounts as possible.  For example, if you eat a 

turkey sandwich, please record the type of bread (white, whole wheat, rye, etc), 
number of slices of meat, and any additional items (cheese, tomato, mayonnaise, etc).  
Also include brand names of items when possible.  For help in determining what is 
considered a serving, see the serving size chart on page 2 for some common food 
items. 

 
4. Page 3 shows a sample day of the diet record.  Please read this to help you become 

familiar with the recording format. 
 

5. If you have any questions about filling out the record, please contact laboratory staff 
for assistance. 

 
6. Return this record to the laboratory staff once it is complete.  

 
 
Please do not change your diet in any way during the course of the study.  Maintain 
normal eating habits, please do not begin a “diet”.  If you travel, don’t worry, these 
changes from normal are only temporary.   
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Serving Size Chart 
 

 

        1 Cup cereal flakes or 1 baked potato = size of a fist 
 

    ½ cup cooked rice, pasta or potato = size of an ice cream scoop 
 
 

      1 pancake = size of a CD 
 

        1 cup of salad greens or 1 medium fruit = size of a baseball 
 

          ½ cup fresh fruit or vegetables = size of a standard light bulb 
 

     ¼ cup dried fruit = 1 large egg 
 
 

         3 oz. meat, fish, poultry = size of a deck of cards 
 
 

          2 Tbsp peanut butter = size of a golf ball 
 
 

 1 ½ oz. cheese = 4 stacked dice or 2 cheese slices; 1 tsp margarine, butter 
and spreads = 1 dice 
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DAY 1          Date: _________          Day of 
Week:___________________  
    
 # of servings # of servings 

Food Eaten  or amount Food Eaten  or amount 
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DAY 2          Date: _________          Day of 
Week:___________________  
    
 # of servings # of servings 

Food Eaten or amount Food Eaten or amount 
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DAY 3          Date: _________          Day of 
Week:___________________  
    
 # of servings # of servings 

Food Eaten or amount Food Eaten or amount 

        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        

    



 

155 
 

DAY 1          Date: SAMPLE         Day of Week: _SAMPLE 
DAY__  
 # of servings # of servings 

Food Eaten  or amount Food Eaten  or amount 

Breakfast       

coffee (caffinated) 1-8oz cup     

   w/ half&half 2 Tbsp     

    w/ Splenda 1 Tbsp     

Raisin Bran cereal 1 cup     

    w/ 1% milk 1 cup     

Multivitamin 1 vitamin     

Lunch       

Turkey sandwich (homemade)       

    w/ turkey deli meat 3 slices     

    w/ Kraft American cheese 1 slice     

    w/ Lite mayo 2 Tbsp     

    w/ whole wheat bread 2 slices     

    w/ mustard 1 tbsp     

apple 1 medium     

Lay's potato chips 1 snack bag     

Sprite 12oz can     

Snacks       

water 20oz bottle     

Nature's Own honey granola bar 2 bars     

Hershey's Kisses 3 kisses     

Lemon-lime Gatorade 32oz bottle     

Dinner       

McDonald's Big Mac       

    w/ cheese and mayo       

french fries medium     

Diet Coke medium     

Bluebell Vanilla Ice Cream 2 scoops     
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Diet Compliance Form 
 

DIET COMPLIANCE 
 
 
 
NAME:______________________________                               DATE:______________ 
 
 
 

3. My diet (has / has not) changed from the last diet record submitted. 
 
 

4. My diet changed as follows: 

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_________________________________ 

 

 
 
 
                                                          Printed Name ____________________________ 
 
                                                          Signature _______________________________ 
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APPENDIX D 
 

SAMPLE STRENGTH TESTING FORM 
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GRADED EXERCISE TESTING FORM 
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APPENDIX E 
 

EXERCISE SESSION DATA FORMS 
 

 
 
 
 

 
 

         HydroWorx Concurrent Training Study
LAND TREADMILL SESSION DATA

KCAL: ____ %VO2: ____ Heart Rate: ____
SPEED: ____ GRADE: ____ TIME: ____

Seesion 1 Session 2 Session 3
DATE: __________ DATE: __________ DATE: __________

Weight: __________ Weight: __________ Weight: __________
RBP __________ RBP __________ RBP __________
RHR __________ RHR __________ RHR __________

Exercise HR __________ Exercise HR __________ Exercise HR __________
RPE __________ RPE __________ RPE __________

SPEED __________ SPEED __________ SPEED __________
GRADE __________ GRADE __________ GRADE __________

TIME __________ TIME __________ TIME __________
POST BP __________ POST BP __________ POST BP __________
POST HR __________ POST HR __________ POST HR __________

PAIN __________ PAIN __________ PAIN __________

COMMENTS: _________________________________________________________
_________________________________________________________

         HydroWorx Concurrent Training Study
AQUATIC TREADMILL SESSION DATA

KCAL: ____ %VO2: ____ Heart Rate: ____
SPEED: ____ JET: ____ TIME: ____

Seesion 1 Session 2 Session 3
DATE: __________ DATE: __________ DATE: __________

Weight: __________ Weight: __________ Weight: __________
RBP __________ RBP __________ RBP __________
RHR __________ RHR __________ RHR __________

Exercise HR __________ Exercise HR __________ Exercise HR __________
RPE __________ RPE __________ RPE __________

SPEED __________ SPEED __________ SPEED __________
JET __________ JET __________ JET __________

TIME __________ TIME __________ TIME __________
POST BP __________ POST BP __________ POST BP __________
POST HR __________ POST HR __________ POST HR __________

PAIN __________ PAIN __________ PAIN __________

COMMENTS: _________________________________________________________
_________________________________________________________



 

160 
 

 
 
 
 

 
 

 

SU
BJ
EC

T	
N
A
M
E	
-	S
es
si
on

	1
5	
			
		W

ee
k	
of
	

   
   

   
   

   
   

 E
xe

rc
ise

 D
at

a 
Sh

ee
t -

 H
yd

ro
W

or
x 

St
ud

y
S

u
b

je
c

t
L

e
g

 P
re

s
s

C
h

e
s

t 
P

re
s

s
L

e
g

 C
u

rl
L

a
t 

P
u

ll
L

e
g

 E
x

t
T
ri

c
e

p
s
 E

x
t

B
ic

e
p

s
 C

u
rl

10
0

10
0

10
0

10
0

10
0

10
0

10
0

B
P

 P
re

__
__
__
__
__
_

W
T	
St
ar
t:
__
__
__
__
_

B
P

 P
o

s
t
__
__
__
__
__
_

W
t	
Fi
n:

__
__
__
__
_

__
__
__
__
__

Ex
er
ci
se

Se
t	
#

Re
si
st
an
ce

G
oa
l	R
ep

s
A
ch
vd
	R
ep

s
Ti
m
e	
St
ar
t

Ti
m
e	
Fi
n

Ti
m
e	
To

	C
om

p
H
R	
-	S
ta
rt

H
R	
-F
in

RP
E

Le
g	
Pr
es
s

W
U

60
8-

12
__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

1
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Po
s:
		5

2
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

3
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Ch
es
t	
Pr
es
s

W
U

60
8-

12
__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

1
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Po
s:
		3

2
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

3
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Le
g	
Cu

rl
W
U

60
8-

12
__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

1
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Po
s:
		3

2
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

3
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

La
t	
Pu

ll	
D
ow

n
W
U

60
8-

12
__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

1
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Po
s:
		2

2
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

3
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Le
g	
Ex
te
ns
io
n

W
U

60
8-

12
__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

1
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

2
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

3
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Tr
ic
ep

s	
Ex
t

W
U

60
8-

12
__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

1
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Po
s:
		4

2
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

3
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Bi
ce
ps
	C
ur
l

W
U

60
8-

12
__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

1
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

Po
s:
		6

2
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

3
75

4-
8

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__

__
__
__



 

161 
 

APPENDIX F 
 

ACUTE EXERCISE TESTING FORMS 
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APPENDIX G 
 

SAMPLE STATISTICAL CODE AND RAW DATA FOR CHAPTER II 
 

Independent Variables 
 
 

DATA CODE  VARIABLE DEFINITION 
SUBID  Unique Idendifier  

GROUP  

 
Exercise Training Group (RTATM - Combined Resistance and aquatic  
treadmill training, RTLTM - Combined Resistance and Land Treadmill 

 Training, RT - Resistance training, ATM - aquatic treadmill training)   

TIME  Time of measurement (Pre - pretraining,  Post - Post training 
GENDER  Gender M = male, F = Female 

RACE  C = Caucasian, A = African American, H = Hispanic 
HT  Height in Inches 
HT cm  Height in Centimeters 
WT  Weight in Pounds 
WTKG  Mass in Kilograms 
BMI  Percent body fat measured by DEXA 

AGE  Age in Years 
 
 

Dependent Variables 
 
DATA CODE  VARIABLE DEFINITION 
DXA%FT  %Body Fat Measured By DEXA 
FM  Fat Mass in grams Measured by DEXA 
LM  Lean Mass in grams Measured by DEXA 
FM ARMS  Fat Mass of Arms Region in grams Measured by DEXA 
LM ARMS  Lean Mass of Arms Region in grams Measured by DEXA 
FM LEGS  Fat Mass of Legs Region in grams Measured by DEXA 

LM LEGS  Lean Mass of Legs Region in grams Measured by DEXA 

FM TRUNK  Fat Mass of Trunk Region in grams Measured by DEXA 
LM TRUNK  Lean Mass of Trunk Region in grams Measured by DEXA 
FM AND  Fat Mass of Android (mid torso) Region in grams Measured by DEXA 
LM AND  Lean Mass of Android (mid torso) Region in grams Measured by DEXA 
FM GYN  Fat Mass of Gynoid (glute) Region in grams Measured by DEXA 
LM GYN  Lean Mass of Gynoid (glute) Region in grams Measured by DEXA 
BMC  Bone Mineral Content in grams measured by DEXA 
BMD  Bone Mineral Density (g/cm3) measured by DEXA 
TOTAL TIME  Total time to exhaustion during bruce protocol GXT 
VO2max ml/kg/min  Relative VO2max (ml/kg/min) 
VO2max ml/kgLM  VO2max relative to lean mass (ml/kgLM/min) 
VO2max L/min  Absolute VO2max (L/min) 
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MAX HR  Maximal heart rate recorded during Bruce protocol GXT 
DAILY EXP  Daily caloric expenditure calculated from 7 day activity record analysis 
TOT CAL  Average daily caloric consumption (kcals) calculated from 3 day diet record analysis 
TOT Kj  Average daily consumption expressed in kilojoules from 3 day diet record analysis 
CHO (g)  Average daily carbohydrate intake (grams) calculated from 3 day diet record analysis 
REL CHO  Average daily carbohydrate intake relative to body mass (g/kg) 
CHO%  Average %daily kcal intake from carbohydrate calculated from 3 day diet record analysis 
PRO (g)  Average daily protein intake (grams) calculated from 3 day diet record analysis 
REL PRO  Average daily protein intake relative to body mass (g/kg) 
PRO%  Average %daily kcal intake from carbohydrate calculated from 3 day diet record analysis 
TOT FAT (g)  Average daily fat intake (grams) calculated from 3 day diet record analysis 
REL FAT  Average daily fat intake relative to body mass (g/kg) 
TOTFAT%  Average %daily kcal intake from carbohydrate calculated from 3 day diet record analysis 
MONO (g)  Average daily mono-unsaturated fat intake (grams) calculated from 3 day diet record analysis 
POLY (g)  Average daily poly-unsaturated fat intake (grams) calculated from 3 day diet record analysis 
SAT (g)  Average daily saturated fat intake (grams) calculated from 3 day diet record analysis 
LEG PRESS  One repetition max for leg press (lbs) 
CHEST PRESS  One repetition max for chest press (lbs) 
LEG CURL  One repetition max for leg curl (lbs) 
LAT PULL  One repetition max for lat pull down (lbs) 
LEG EXT  One repetition max for leg extension (lbs) 
TRI PUSH DOWN   One repetition max for triceps push down (lbs) 
BICEPS CURL  One repetition max for bicep curl (lbs) 
TOTALLFT  Sum of all one repetition max values for each exercise (lbs) 
Plasma MPE (%)  Percent plasma enrichment of deuterium  (plasma sample taken 24h following acute exercise)   

Muscle MPE (%)  
Percent myofibrillar protein enrichment of deuterium (muscle sample taken 24h following acute  
exercise)  

FSR %/day  Myofibriallar fractional synthesis rate expressed in %/day  (measured following acute exercise)   

Akt  
Total protein content of Protien Kinase B (Akt) expressed in arbirtrary units (measured in the  
rested state)   

mTOR  
Total protein content of mammalian target of rapamycin (mTOR) expressed in arbitrary units  
(measured in the rested state)  

TSC2  
Total protein content of tuberous sclerosis complex 2 (TSC2) expressed in arbitrary units  
(measured in the rested state)  
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STATISTICAL ANALYSIS 
 
 

A 3(group) x 2(time) x 2(gender) mixed model ANCOVA (covariate = baseline 

measures) repeated across training was used to detect group x time interactions for maximal 

strength, VO2max, body composition, dietary recall, and daily energy expenditure before and 

after training.  A 1x3 Mixed Model ANOVA was used to analyze changes in the above 

variables following training: Change = (Post-training value) – (Pre-training value).  A 

3(group) x 1(time) x 1(gender).  A Mixed Model ANOVA was used to compared 24h 

myoFSR between groups following acute exercise before (untrained state) and after (trained 

state) training.  3(group) x 2(time) x2(gender) Mixed model ANOVA repeated across 

training was used to detect changes in mTOR, Akt, and TSC2 skeletal muscle protein content 

before and after training. The comparison-wise error rate, α, was set at 0.05 for all statistical 

tests.  Where significant F ratios are found a Tukey’s post hoc analysis was performed to 

determine difference among groups.  All data were analyzed using SAS Enterprise Guide 

(version 4.3) interfaced with  Statistical Analysis System (version 9.3; SAS,Cary, NC).  

 

Mixed Model ANCOVA with Repeated Measures 
 
Within this model, baseline measures were selected as covariates.  The procedure for running 
this model in SAS Enterprise Guide (version 4.3) involves the following.   
 

1.  For the variable of interest, first create a second column in the data sheet and that has 
the same variable name and then add a 1.  For example, if the variable is Total 
Strength (TOTLIFT), a second covariate column will be created with the title 
TOTLIFT1.   

2. Within this second column, paste pre time point values alongside both pre and post 
training values in the covariate column.  

3. Save your data sheet with this new column. 
4. Open SAS Enterprise Guide 
5. Click fileopendata and select your data sheet and tab within the data sheet. 
6. Click ANALYZEANOVAMIXED MODELS 
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7. Under classification variables, select SUBID, GENDER, TIME, and GROUP 
8. Under quantitative variables, select TOTLIFT1 
9. Under dependent variables, select TOTLIFT 

 

 
 

10. On the menu to the left, click FIXED EFFECTS MODEL 
11. Select TOTLIFT1 and click MAIN to add it to the model 
12. Do the same for GROUP, GENDER, and TIME 
13. Hold control to select both GROUP and TIME and then click CROSS to add the 

interaction term to the model 
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14. On the menu to the left, click FIXED EFFECTS MODEL OPTIONS 
15. Under Hypothesis Test Type, select TYPE III 
16. Under Estimable Functions, select TYPE III 
 

 
 

17. On the menu to the left, click REPEATED EFFECTS 
18. Under Within-subjects effects, select TIME 
19. Under Subject Identifier, select SUBID 
20. Under Co-variance structure, select Unstructured 
21. Under Group Identifier,  hold control to select both GROUP and SUBID and then 

click CROSS followed by OK 
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22. On the menu to the left, click LEAST SQUARES POST HOC TEST 
23. Click ADD 
24. Under Effects To Use, Change each term from False to TRUE 
25. Under Comparisons/Show p-values, change None to DEFAULT 
26. Under Comparisons/Show p-values, change Default to TUKEY 
 

 
 
27. Click RUN 
 

Following this, SAS Enterprise Guide will generate an Output and provide the input code for 
the analysis.  The code that is generated can function in a standalone fashion using standard 
SAS software as well.  The code below allows for the analysis of any main or interactive 
effects of gender, acute exercise, and exercise training with normalization to baseline for all 
subjects.  The code for this analysis is as follows: 

 
PROC MIXED DATA = WORK.SORTTempTableSorted 
PLOTS(ONLY)=ALL 
METHOD=REML 
; 
CLASS TIME GENDER Group SUBID 
; 
MODEL TOTALLFT= TOTLIFT1 GENDER TIME Group TIME*Group 
/ 
HTYPE=3 
E3 
; 
; 
LSMEANS GENDER TIME Group TIME*Group / PDIFF ADJUST=TUKEY ; 
RUN;  
QUIT; 
 
Note:  Within this study, Type 3 tests of fixed effects revealed that gender was not observed 
to significantly impact any of our statistical models, therefore all models were re-run without 
including gender under “classification data.”   
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Mixed Model ANOVA with Repeated Measures 
 
Because Akt, mTOR, and TSC2 content were normalized to internal standards, a Mixed 
Model ANOVA with Repeated Measures was used.  The only difference in procedure is to 
not create or enter covariate values based on pre training measures (steps 1, 2, and 8).   
 
 
 
Mixed Model ANOVA 
 
Because acute exercise conditions were matched to either the 1st or 12th week of training, we 
chose not to analysis across training for 24h post exercise myoFSR’s.  Instead, a Mixed 

Model ANOVA was used to compared 24h myoFSR between groups following acute 

exercise before (untrained state) and after (trained state) training.  Differences in procedure 

are as follows: 

 

- Omit steps 1 & 2 
- Step 7:  Only enter SUBID, GENDER, and GROUP 
- Omit step 8 
- Omit step 11 
- Step 12:  Only enter GROUP and GENDER 
- Omit step 13 
- Omit steps 17-21 

 
 
Note:  These same procedures were used for analysis of change in maximal strength, VO2max, 
and body composition between groups.  All change variables were created using the 
following equation:  Change = (Post-training value) – (Pre-training value).   
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RAW DATA / INDEPENDENT VARIABLES 
 

SUBID Group TIME GENDER RACE HT HT cm AGE 

BE090 RTATM PRE F w 65.5 166.37 42 

CE033 RTATM PRE F w 62.5 158.75 50 

LA013 RTATM PRE F w 65.5 166.37 34 

LN005 RTATM PRE F w 64 162.56 21 

MA016 RTATM PRE F w 68 172.72 32 

MN052 RTATM PRE F w 68.2 173.228 24 

NY070 RTATM PRE F w 63 160.02 58 

RE081 RTATM PRE F w 66 167.64 59 

DG075 RTATM PRE M w 70.5 179.07 42 

DN050 RTATM PRE M w 68 172.72 27 

JF065 RTATM PRE M W 69.5 176.53 28 

JS063 RTATM PRE M W 68 172.72 50 

JY019 RTATM PRE M w 73 185.42 45 

MT008 RTATM PRE M w 74 187.96 40 

TT024 RTATM PRE M w 71 180.34 33 

TY010 RTATM PRE M w 75 190.5 22 

BE090 RTATM POST F w 65.5 166.37 42 

CE033 RTATM POST F w 62.5 158.75 50 

LA013 RTATM POST F w 65.5 166.37 34 

LN005 RTATM POST F w 64 162.56 22 

MA016 RTATM POST F w 68 172.72 32 

MN052 RTATM POST F w 68.2 173.228 24 

NY070 RTATM POST F w 63 160.02 58 

RE081 RTATM POST F w 66 167.64 59 

DG075 RTATM POST M w 70.5 179.07 42 

DN050 RTATM POST M w 68 172.72 27 

JF065 RTATM POST M W 69.5 176.53 28 

JS063 RTATM POST M W 68 172.72 50 

JY019 RTATM POST M w 73 185.42 45 

MT008 RTATM POST M w 74 187.96 40 

TT024 RTATM POST M w 71 180.34 33 

TY010 RTATM POST M w 75 190.5 22 

BA058 RTLTM PRE F W 64 162.56 155.5 

BH057 RTLTM PRE F W 65 165.1 186 

DE029 RTLTM PRE F W 61 163 163 

LE060 RTLTM PRE F W 66.2 168.148 172.7 

LN051 RTLTM PRE F W 64.5 163.83 146.6 

NY040 RTLTM PRE F W 66.2 168.148 177 
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PI089 RTLTM PRE F W 66 167.64 149.3 

SE035 RTLTM PRE F W 64.5 163.83 232.5 

CS061 RTLTM PRE M A 69 175.26 211.5 

DD071 RTLTM PRE M W 69 175.26 194.7 

GT074 RTLTM PRE M W 71 180.34 194 

LN038 RTLTM PRE M W 71 180.34 215 

MW068 RTLTM PRE M W 75 190.5 303 

RR025 RTLTM PRE M W 72.5 184.15 222.6 

RY092 RTLTM PRE M W 73 185.42 160 

WL091 RTLTM PRE M W 78.5 199.39 188.5 

BA058 RTLTM POST F W 64 162.56 154 

BH057 RTLTM POST F W 65 165.1 186.5 

DE029 RTLTM POST F W 61 163 161.5 

LE060 RTLTM POST F W 66.2 168.148 173 

LN051 RTLTM POST F W 64.5 163.83 152.5 

NY040 RTLTM POST F W 66.2 168.148 178.5 

PI089 RTLTM POST F W 66 167.64 147 

SE035 RTLTM POST F w 64.5 163.83 223 

CS061 RTLTM POST M A 66.2 168.148 208.7 

DD071 RTLTM POST M W 69 175.26 197 

GT074 RTLTM POST M W 71 180.34 193 

LN038 RTLTM POST M W 71 180.34 196 

MW068 RTLTM POST M W 75 190.5 297 

RR025 RTLTM POST M W 72.5 184.15 226.5 

RY092 RTLTM POST M W 78.5 199.39 161 

WL091 RTLTM POST M W 78.5 199.39 194 

AN054 RT PRE F W 65.5 166.37 197 

BK088 RT PRE F w 67.5 171.45 284.5 

JL017 RT PRE F w 70 177.8 219.4 

KE067 RT PRE F W 63 160.02 188 

KY066 RT PRE F w 66 167.64 202 

MA037 RT PRE F H 64 162.56 185.6 

PI006 RT PRE F w 62 157.48 131 

SN009 RT PRE F w 64 162.56 147.6 

AW021 RT PRE M w 74 187.96 179.8 

BE085 RT PRE M A 71 180.34 186.5 

DD015 RT PRE M w 71 180.34 182.8 

JN001 RT PRE M w 76 193.04 286.4 

MK093 RT PRE M W 70 177.8 206.7 

SM072 RT PRE M W 72 182.88 224 

TS042 RT PRE M w 72 182.88 214.2 
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RAW DATA / DEPENDENT VARIABLES / BODY COMPOSITION 
 
 

SUBID Group TIME DXA%FT FM LM 
FM 

ARMS 
LM 

ARMS 

BE090 RTATM PRE 43.70 30071.00 38806.00 27960.00 4611.00 

CE033 RTATM PRE 41.40 24969.00 35298.00 1866.00 3742.00 

LA013 RTATM PRE 39.90 24437.00 36788.00 2323.00 3902.00 

LN005 RTATM PRE 46.20 33232.00 38769.00 3013.00 4369.00 

MA016 RTATM PRE 49.10 48632.00 50389.00 5137.00 5574.00 

MN052 RTATM PRE 24.00 15299.00 48415.00 1363.00 5515.00 

NY070 RTATM PRE 47.70 29297.00 32097.00 2728.00 3143.00 

RE081 RTATM PRE 49.00 58134.00 60152.00 4545.00 4633.00 

DG075 RTATM PRE 44.30 45945.00 57815.00 3445.00 8075.00 

DN050 RTATM PRE 27.30 20927.00 55649.00 1381.00 7944.00 

JF065 RTATM PRE 39.90 38424.00 57928.00 3473.00 6587.00 

JS063 RTATM PRE 39.30 39415.00 60930.00 3763.00 9307.00 

JY019 RTATM PRE 40.10 47823.00 71309.00 4416.00 9268.00 

MT008 RTATM PRE 31.60 31221.00 67505.00 2498.00 8494.00 

TT024 RTATM PRE 32.00 33956.00 72062.00 2918.00 9999.00 

TY010 RTATM PRE 25.90 23855.00 68179.00 1517.00 9594.00 

BE090 RTATM POST 43.80 30696.00 39452.00 2867.00 4783.00 

CE033 RTATM POST 41.70 24955.00 34889.00 1856.00 4008.00 

LA013 RTATM POST 39.50 24739.00 37874.00 2339.00 3790.00 

LN005 RTATM POST 42.20 30145.00 41362.00 2633.00 4251.00 

MA016 RTATM POST 46.30 47668.00 55185.00 4704.00 5576.00 

MN052 RTATM POST 25.50 16691.00 48792.00 1359.00 5811.00 

NY070 RTATM POST 47.00 28514.00 32198.00 2550.00 3407.00 

RE081 RTATM POST 48.60 57809.00 61094.00 4418.00 5025.00 

DG075 RTATM POST 41.50 43927.00 61964.00 3497.00 9173.00 

DN050 RTATM POST 24.50 19474.00 60004.00 1368.00 8640.00 

JF065 RTATM POST 35.90 34089.00 60748.00 3017.00 7347.00 

JS063 RTATM POST 38.20 39286.00 63553.00 3584.00 9004.00 

JY019 RTATM POST 37.30 46573.00 78219.00 4699.00 9058.00 

MT008 RTATM POST 28.90 28670.00 70440.00 2305.00 9111.00 

TT024 RTATM POST 30.80 32876.00 74000.00 2769.00 10279.00 

TY010 RTATM POST 24.40 22974.00 71193.00 1542.00 9702.00 

BA058 RTLTM PRE 50.60 33557.00 32771.00 2689.00 3795.00 

BH057 RTLTM PRE 54.60 43116.00 35848.00 3751.00 4535.00 

DE029 RTLTM PRE 43.30 30434.00 39915.00 2696.00 4842.00 

LE060 RTLTM PRE 47.00 35006.00 39409.00 3059.00 4249.00 

LN051 RTLTM PRE 44.70 28154.00 34835.00 2484.00 3759.00 

NY040 RTLTM PRE 39.40 30245.00 46602.00 2544.00 4492.00 
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PI089 RTLTM PRE 34.70 22325.00 42104.00 2199.00 4713.00 

SE035 RTLTM PRE 48.80 48807.00 51250.00 4304.00 5638.00 

CS061 RTLTM PRE 28.60 26237.00 65509.00 2097.00 9407.00 

DD071 RTLTM PRE 36.70 31005.00 53463.00 2458.00 6681.00 

GT074 RTLTM PRE 30.60 25390.00 57607.00 1940.00 7794.00 

LN038 RTLTM PRE 34.00 31884.00 61825.00 3108.00 7400.00 

MW068 RTLTM PRE 49.30 65393.00 67306.00 4680.00 7413.00 

RR025 RTLTM PRE 28.00 27050.00 69531.00 2026.00 8966.00 

RY092 RTLTM PRE 20.40 14188.00 55384.00 1183.00 6770.00 

WL091 RTLTM PRE 25.90 21192.00 60502.00 1488.00 7669.00 

BA058 RTLTM POST 46.20 30560.00 35555.00 2479.00 3918.00 
BH057 RTLTM POST 41.10 43363.00 36727.00 3702.00 4743.00 
DE029 RTLTM POST 42.60 29736.00 40033.00 2902.00 5146.00 
LE060 RTLTM POST 46.10 34743.00 40582.00 3282.00 4511.00 
LN051 RTLTM POST 41.20 26813.00 38287.00 2210.00 4026.00 
NY040 RTLTM POST 40.20 30949.00 46126.00 2743.00 4792.00 
PI089 RTLTM POST 30.70 19645.00 44363.00 1905.00 4738.00 
SE035 RTLTM POST 48.20 46779.00 50264.00 3700.00 5654.00 
CS061 RTLTM POST 26.30 23978.00 67347.00 1828.00 9454.00 
DD071 RTLTM POST 34.10 29487.00 56912.00 2162.00 6860.00 
GT074 RTLTM POST 30.90 25783.00 57601.00 1824.00 7687.00 
LN038 RTLTM POST 30.40 25917.00 59378.00 2458.00 7568.00 
MW068 RTLTM POST 48.30 62497.00 67030.00 4380.00 7387.00 
RR025 RTLTM POST 24.30 23994.00 74877.00 1736.00 8356.00 
RY092 RTLTM POST 17.30 12250.00 58365.00 1012.00 7181.00 
WL091 RTLTM POST 24.10 20257.00 63752.00 1400.00 8274.00 
AN054 RT PRE 54.70 45989.00 38110.00 4187.00 5102.00 

BK088 RT PRE 53.30 65924.00 57811.00 5817.00 5272.00 

JL017 RT PRE 55.90 52958.00 41730.00 4050.00 5052.00 

KE067 RT PRE 54.30 43737.00 36827.00 3455.00 4156.00 

KY066 RT PRE 55.10 47678.00 38924.00 3679.00 4499.00 

MA037 RT PRE 47.50 38119.00 42077.00 3332.00 4575.00 

PI006 RT PRE 31.70 17992.00 38678.00 . . 

SN009 RT PRE 41.80 27142.00 37801.00 2046.00 4233.00 

AW021 RT PRE 25.10 19541.00 58432.00 1605.00 8042.00 

BE085 RT PRE 23.90 19382.00 61564.00 1795.00 9886.00 

DD015 RT PRE 26.30 21053.00 58949.00 1600.00 7880.00 

JN001 RT PRE 42.00 51039.00 70379.00 3515.00 7267.00 

MK093 RT PRE 31.50 28335.00 61701.00 2719.00 8220.00 

SM072 RT PRE 35.40 34178.00 62465.00 2706.00 8235.00 

TS042 RT PRE 38.10 35445.00 57481.00 2746.00 7488.00 

AN054 RT POST 55.70 46996.00 37408.00 4458.00 5282.00 

BK088 RT POST 50.80 60582.00 58560.00 5379.00 5142.00 
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JL017 RT POST 54.80 53498.00 44211.00 4598.00 5325.00 

KE067 RT POST 55.00 44729.00 36622.00 3505.00 4669.00 

KY066 RT POST 50.10 44135.00 44014.00 3509.00 4627.00 

MA037 RT POST 48.20 39446.00 42374.00 3509.00 4479.00 

PI006 RT POST 32.60 18365.00 37888.00 . . 

SN009 RT POST 41.90 27875.00 38633.00 2087.00 4319.00 

AW021 RT POST 24.10 19224.00 60623.00 1551.00 7973.00 

BE085 RT POST 24.60 20772.00 63553.00 1983.00 10272.00 

DD015 RT POST 26.20 21212.00 59634.00 1611.00 7995.00 

JN001 RT POST 41.00 49438.00 71013.00 3570.00 8330.00 

MK093 RT POST 32.20 29440.00 62094.00 2621.00 8563.00 

SM072 RT POST 36.80 36307.00 62417.00 3009.00 8643.00 

TS042 RT POST 33.70 30317.00 59667.00 2459.00 7732.00 

 
 

SUBID Group TIME FM LEGS LM LEGS FM TRUNK LM TRUNK FM AND 

BE090 RTATM PRE 11218.00 12801.00 15196.00 18312.00 2239.00 

CE033 RTATM PRE 10219.00 11750.00 12110.00 16892.00 2230.00 

LA013 RTATM PRE 9361.00 11819.00 11984.00 18232.00 1835.00 

LN005 RTATM PRE 13061.00 13242.00 16268.00 18194.00 2567.00 

MA016 RTATM PRE 19388.00 18566.00 23019.00 23118.00 3960.00 

MN052 RTATM PRE 6016.00 16641.00 7451.00 22980.00 1163.00 

NY070 RTATM PRE 8528.00 9732.00 17104.00 16331.00 3039.00 

RE081 RTATM PRE 19546.00 18955.00 32712.00 32879.00 6426.00 

DG075 RTATM PRE 12216.00 19590.00 29164.00 26156.00 5888.00 

DN050 RTATM PRE 6033.00 19297.00 12880.00 24536.00 2019.00 

JF065 RTATM PRE 9306.00 19738.00 24584.00 27393.00 4997.00 

JS063 RTATM PRE 11123.00 20348.00 23463.00 27044.00 4115.00 

JY019 RTATM PRE 13373.00 23878.00 29042.00 34255.00 5902.00 

MT008 RTATM PRE 8309.00 23510.00 19557.00 30974.00 3660.00 

TT024 RTATM PRE 10454.00 26076.00 19688.00 31198.00 3782.00 

TY010 RTATM PRE 7508.00 24224.00 14167.00 30229.00 2277.00 

BE090 RTATM POST 11605.00 13129.00 15282.00 18336.00 2375.00 

CE033 RTATM POST 10131.00 11768.00 12087.00 15997.00 2039.00 

LA013 RTATM POST 9575.00 12336.00 12091.00 18988.00 1909.00 

LN005 RTATM POST 12468.00 14744.00 14165.00 18990.00 2385.00 

MA016 RTATM POST 18406.00 21075.00 23247.00 24533.00 4003.00 

MN052 RTATM POST 5781.00 16352.00 9015.00 22982.00 1215.00 

NY070 RTATM POST 8733.00 10354.00 16240.00 15449.00 2810.00 

RE081 RTATM POST 18795.00 19479.00 33024.00 32021.00 6014.00 

DG075 RTATM POST 10087.00 19124.00 29152.00 29323.00 5511.00 

DN050 RTATM POST 6856.00 21471.00 10619.00 25592.00 1719.00 

JF065 RTATM POST 8611.00 20950.00 21414.00 27656.00 4166.00 
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JS063 RTATM POST 10134.00 21026.00 24608.00 29458.00 4628.00 

JY019 RTATM POST 11723.00 25669.00 29298.00 39891.00 6182.00 

MT008 RTATM POST 7706.00 24620.00 17920.00 32354.00 3517.00 

TT024 RTATM POST 9876.00 26308.00 19378.00 32714.00 3696.00 

TY010 RTATM POST 7102.00 24899.00 13708.00 32361.00 2248.00 

BA058 RTLTM PRE 15172.00 11809.00 14756.00 14652.00 2242.00 

BH057 RTLTM PRE 15900.00 12350.00 22430.00 16273.00 3554.00 

DE029 RTLTM PRE 9492.00 12792.00 17437.00 19410.00 2964.00 

LE060 RTLTM PRE 13391.00 13075.00 17538.00 18983.00 3044.00 

LN051 RTLTM PRE 10231.00 12920.00 14570.00 15223.00 2882.00 

NY040 RTLTM PRE 7562.00 14916.00 19283.00 23837.00 3390.00 

PI089 RTLTM PRE 8412.00 14606.00 11108.00 19919.00 1487.00 

SE035 RTLTM PRE 14521.00 16662.00 28834.00 25370.00 5057.00 

CS061 RTLTM PRE 11565.00 25353.00 11862.00 26494.00 1875.00 

DD071 RTLTM PRE 9333.00 19026.00 18400.00 24185.00 3538.00 

GT074 RTLTM PRE 8556.00 20306.00 14236.00 25753.00 2675.00 

LN038 RTLTM PRE 10137.00 20794.00 17801.00 29746.00 3184.00 

MW068 RTLTM PRE 24285.00 24873.00 35364.00 31412.00 7411.00 

RR025 RTLTM PRE 7277.00 24936.00 17079.00 31569.00 3216.00 

RY092 RTLTM PRE 4486.00 17820.00 7918.00 26458.00 1391.00 

WL091 RTLTM PRE 4901.00 21073.00 14205.00 28025.00 2346.00 

BA058 RTLTM POST 15206.00 12329.00 11995.00 16603.00 1862.00 
BH057 RTLTM POST 16722.00 12490.00 21931.00 16994.00 3819.00 
DE029 RTLTM POST 9330.00 12880.00 16743.00 19189.00 3018.00 
LE060 RTLTM POST 13107.00 13562.00 17392.00 19408.00 3103.00 
LN051 RTLTM POST 10095.00 13670.00 13720.00 17478.00 2752.00 
NY040 RTLTM POST 7860.00 15218.00 19485.00 22759.00 3435.00 
PI089 RTLTM POST 7506.00 14887.00 9706.00 21898.00 1327.00 
SE035 RTLTM POST 13578.00 17473.00 28328.00 23503.00 4706.00 
CS061 RTLTM POST 11076.00 26341.00 10460.00 27401.00 1742.00 
DD071 RTLTM POST 9187.00 20153.00 17311.00 25938.00 3427.00 
GT074 RTLTM POST 8197.00 20245.00 15083.00 25800.00 2749.00 
LN038 RTLTM POST 8260.00 19026.00 1480.00 28883.00 2522.00 
MW068 RTLTM POST 23454.00 25695.00 33643.00 30420.00 6975.00 
RR025 RTLTM POST 6385.00 27307.00 15290.00 35240.00 2881.00 
RY092 RTLTM POST 3976.00 19060.00 6750.00 27763.00 1238.00 
WL091 RTLTM POST 4898.00 22145.00 13381.00 29437.00 2101.00 
AN054 RT PRE 19594.00 13454.00 20945.00 16394.00 3180.00 

BK088 RT PRE 25916.00 19690.00 33107.00 29982.00 6713.00 

JL017 RT PRE 22576.00 15434.00 25160.00 18212.00 4294.00 

KE067 RT PRE 17714.00 13181.00 21394.00 16441.00 3864.00 

KY066 RT PRE 18153.00 13963.00 24692.00 17650.00 4250.00 

MA037 RT PRE 10393.00 13546.00 23463.00 20892.00 4388.00 
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PI006 RT PRE . . . . . 

SN009 RT PRE 9158.00 11648.00 15124.00 19025.00 2629.00 

AW021 RT PRE 6370.00 19479.00 10903.00 26790.00 1784.00 

BE085 RT PRE 5467.00 20942.00 11481.00 26365.00 2066.00 

DD015 RT PRE 8038.00 20056.00 10830.00 27369.00 1612.00 

JN001 RT PRE 13998.00 25140.00 32506.00 34228.00 6381.00 

MK093 RT PRE 8155.00 21553.00 16729.00 27968.00 2864.00 

SM072 RT PRE 10254.00 22376.00 20316.00 27694.00 4023.00 

TS042 RT PRE 11988.00 18949.00 19713.00 26732.00 3578.00 

AN054 RT POST 20313.00 13513.00 20936.00 15414.00 3324.00 

BK088 RT POST 23352.00 20883.00 30898.00 29677.00 6380.00 

JL017 RT POST 23801.00 16124.00 23949.00 19688.00 4494.00 

KE067 RT POST 18253.00 12822.00 21839.00 16280.00 4128.00 

KY066 RT POST 17593.00 14612.00 22005.00 21682.00 4166.00 

MA037 RT POST 10095.00 13442.00 24896.00 21402.00 4706.00 

PI006 RT POST . . . . . 

SN009 RT POST 9362.00 12272.00 15602.00 19079.00 2560.00 

AW021 RT POST 5759.00 20527.00 11289.00 28057.00 1822.00 

BE085 RT POST 5892.00 21030.00 12182.00 27742.00 2152.00 

DD015 RT POST 8721.00 21288.00 10319.00 26704.00 1641.00 

JN001 RT POST 12672.00 24685.00 32230.00 34242.00 6394.00 

MK093 RT POST 8510.00 21915.00 17568.00 27737.00 3019.00 

SM072 RT POST 10558.00 22448.00 21721.00 26740.00 3845.00 

TS042 RT POST 10839.00 19803.00 16130.00 27723.00 2923.00 

 
 

SUBID Group TIME LM AND FM GYN LM GYN BMC BMD 

BE090 RTATM PRE 2444.00 6662.00 6155.00 2893.00 1.23 

CE033 RTATM PRE 2516.00 5249.00 5342.00 2630.00 1.24 

LA013 RTATM PRE 2643.00 5451.00 5245.00 2596.00 1.14 

LN005 RTATM PRE 2397.00 6798.00 6227.00 2910.00 1.22 

MA016 RTATM PRE 3443.00 9263.00 8408.00 3356.00 1.29 

MN052 RTATM PRE 3273.00 3910.00 6861.00 3047.00 1.30 

NY070 RTATM PRE 2418.00 5201.00 4773.00 2568.00 1.17 

RE081 RTATM PRE 5422.00 9707.00 9314.00 2802.00 1.20 

DG075 RTATM PRE 4389.00 7019.00 8758.00 3920.00 1.36 

DN050 RTATM PRE 3439.00 3816.00 8116.00 3436.00 1.31 

JF065 RTATM PRE 4421.00 5360.00 9067.00 3890.00 1.41 

JS063 RTATM PRE 4303.00 6738.00 8095.00 3781.00 1.33 

JY019 RTATM PRE 5267.00 7096.00 10299.00 3590.00 1.30 

MT008 RTATM PRE 4648.00 5387.00 10469.00 4102.00 1.46 

TT024 RTATM PRE 4388.00 6247.00 11244.00 3988.00 1.40 

TY010 RTATM PRE 4579.00 4801.00 10433.00 3997.00 1.31 
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BE090 RTATM POST 2466.00 6831.00 6083.00 2881.00 1.22 

CE033 RTATM POST 2275.00 5001.00 5026.00 2737.00 1.26 

LA013 RTATM POST 2759.00 5539.00 5795.00 2579.00 1.11 

LN005 RTATM POST 2470.00 5988.00 6427.00 2751.00 1.24 

MA016 RTATM POST 3679.00 8302.00 9476.00 3233.00 1.32 

MN052 RTATM POST 2998.00 3767.00 6586.00 3102.00 1.32 

NY070 RTATM POST 2251.00 4978.00 4526.00 2573.00 1.17 

RE081 RTATM POST 4833.00 9289.00 9186.00 2795.00 1.22 

DG075 RTATM POST 4441.00 6568.00 8884.00 4059.00 1.38 

DN050 RTATM POST 3644.00 3986.00 8733.00 3292.00 1.32 

JF065 RTATM POST 4141.00 4678.00 8820.00 3968.00 1.43 

JS063 RTATM POST 4663.00 6160.00 8983.00 3682.00 1.35 

JY019 RTATM POST 6365.00 7261.00 11875.00 3392.00 1.29 

MT008 RTATM POST 4746.00 5040.00 11401.00 4023.00 1.44 

TT024 RTATM POST 4939.00 5520.00 11785.00 3976.00 1.41 

TY010 RTATM POST 4607.00 4707.00 11100.00 3887.00 1.29 

BA058 RTLTM PRE 2293.00 7586.00 5213.00 3153.00 1.24 

BH057 RTLTM PRE 2673.00 8624.00 6052.00 3386.00 1.26 

DE029 RTLTM PRE 2889.00 5244.00 5705.00 2794.00 1.25 

LE060 RTLTM PRE 2915.00 7137.00 5957.00 2840.00 1.25 

LN051 RTLTM PRE 2407.00 5764.00 5983.00 2650.00 1.12 

NY040 RTLTM PRE 3712.00 4429.00 6981.00 3035.00 1.27 

PI089 RTLTM PRE 2635.00 5061.00 6060.00 2891.00 1.26 

SE035 RTLTM PRE 3689.00 7819.00 7354.00 3492.00 1.39 

CS061 RTLTM PRE 3628.00 5223.00 9258.00 3860.00 1.42 

DD071 RTLTM PRE 3760.00 5353.00 8103.00 3195.00 1.23 

GT074 RTLTM PRE 3723.00 5275.00 8689.00 3213.00 1.25 

LN038 RTLTM PRE 4486.00 5569.00 9509.00 3363.00 1.26 

MW068 RTLTM PRE 4859.00 12918.00 10665.00 3852.00 1.34 

RR025 RTLTM PRE 4722.00 4715.00 11184.00 4610.00 1.50 

RY092 RTLTM PRE 3857.00 3001.00 8014.00 2943.00 1.14 

WL091 RTLTM PRE 4014.00 3769.00 9674.00 3909.00 1.34 

BA058 RTLTM POST 2467.00 6977.00 5318.00 2978.00 1.28 
BH057 RTLTM POST 2921.00 9048.00 6004.00 3436.00 1.25 
DE029 RTLTM POST 2906.00 5132.00 5877.00 2735.00 1.25 
LE060 RTLTM POST 2936.00 6858.00 6168.00 2767.00 1.26 
LN051 RTLTM POST 2631.00 5650.00 6277.00 2449.00 1.15 
NY040 RTLTM POST 3556.00 4630.00 6869.00 3043.00 1.27 
PI089 RTLTM POST 2867.00 4690.00 6549.00 2756.00 1.24 
SE035 RTLTM POST 3497.00 7352.00 7398.00 3710.00 1.39 
CS061 RTLTM POST 3650.00 4983.00 9842.00 3731.00 1.42 
DD071 RTLTM POST 3962.00 5082.00 8758.00 3115.00 1.24 
GT074 RTLTM POST 3696.00 5152.00 8549.00 3243.00 1.22 
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LN038 RTLTM POST 4174.00 4426.00 9038.00 3311.00 1.23 
MW068 RTLTM POST 4958.00 12183.00 12183.00 3907.00 1.33 
RR025 RTLTM POST 5489.00 3955.00 12884.00 4370.00 1.49 
RY092 RTLTM POST 4050.00 2541.00 8817.00 2836.00 1.15 
WL091 RTLTM POST 4078.00 3660.00 10257.00 3828.00 1.33 
AN054 RT PRE 2654.00 9371.00 6003.00 3920.00 1.33 

BK088 RT PRE 4657.00 11551.00 8652.00 3073.00 1.28 

JL017 RT PRE 2961.00 11373.00 7013.00 3845.00 1.28 

KE067 RT PRE 2740.00 8527.00 5675.00 3203.00 1.26 

KY066 RT PRE 2962.00 9073.00 6135.00 3254.00 1.20 

MA037 RT PRE 3053.00 5627.00 6062.00 2384.00 1.13 

PI006 RT PRE . . . 2638.00 1.21 

SN009 RT PRE 2842.00 5722.00 5581.00 2336.00 1.12 

AW021 RT PRE 3618.00 4016.00 8725.00 3201.00 1.24 

BE085 RT PRE 3713.00 3121.00 9118.00 3841.00 1.45 

DD015 RT PRE 3873.00 4637.00 8675.00 3607.00 1.24 

JN001 RT PRE 5318.00 7927.00 11586.00 3891.00 1.34 

MK093 RT PRE 4256.00 4799.00 9416.00 3811.00 1.44 

SM072 RT PRE 4482.00 5089.00 9310.00 4010.00 1.42 

TS042 RT PRE 4161.00 6147.00 8432.00 3874.00 1.32 

AN054 RT POST 2478.00 9509.00 5604.00 3900.00 1.32 

BK088 RT POST 4581.00 10557.00 9345.00 3014.00 1.29 

JL017 RT POST 3009.00 11727.00 7506.00 3720.00 1.31 

KE067 RT POST 2776.00 9007.00 5834.00 3274.00 1.25 

KY066 RT POST 3204.00 9170.00 6731.00 2862.00 1.26 

MA037 RT POST 3134.00 5953.00 6117.00 2488.00 1.10 

PI006 RT POST . . . 2660.00 1.22 

SN009 RT POST 2614.00 5966.00 5762.00 2324.00 1.10 

AW021 RT POST 3907.00 3873.00 9413.00 3192.00 1.25 

BE085 RT POST 3935.00 3261.00 9305.00 3946.00 1.39 

DD015 RT POST 3857.00 4810.00 8777.00 3585.00 1.29 

JN001 RT POST 5336.00 7316.00 12025.00 3968.00 1.31 

MK093 RT POST 4374.00 5010.00 9571.00 3797.00 1.41 

SM072 RT POST 4112.00 5702.00 8314.00 4184.00 1.41 

TS042 RT POST 4255.00 5628.00 8537.00 3730.00 1.33 

 
 

 
RAW DATA / DEPENDENT VARIABLES / AEROBIC CAPACITY 

 
SUBID Group TIME TOTAL TIME VO2max ml/kg VO2max L/min MAX HR 

BE090 RTATM PRE 7.42 24.50 1.76 175 

CE033 RTATM PRE 7.13 27.6 1.75 171 
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LA013 RTATM PRE 7.95 27.9 1.797 183 

LN005 RTATM PRE 9.66 37.4 2.86 208 

MA016 RTATM PRE 6.83 26.2 2.717 191 

MN052 RTATM PRE 10.30 36.6 2.457 201 

NY070 RTATM PRE 7.93 29.10 1.85 179 

RE081 RTATM PRE 6.12 18.00 2.26 163 

DG075 RTATM PRE 8.38 26.10 2.84 182 

DN050 RTATM PRE 11.16 39.6 3.17 197 

JF065 RTATM PRE 8.98 34.30 3.50 170 

JS063 RTATM PRE 7.28 24.5 2.615 170 

JY019 RTATM PRE 8.27 28.9 3.606 165 

MT008 RTATM PRE 9.75 32.2 3.316 187 

TT024 RTATM PRE 9.66 31 3.39 195 

TY010 RTATM PRE 12.06 44.6 4.362 195 

BE090 RTATM POST 9.00 28.80 2.12 175 

CE033 RTATM POST 8.46 30.5 1.928 174 

LA013 RTATM POST 7.90 31.6 2.089 185 

LN005 RTATM POST 10.57 39 2.923 210 

MA016 RTATM POST 8.15 26.6 2.841 188 

MN052 RTATM POST 11.75 43.9 3.038 198 

NY070 RTATM POST 7.75 29.20 1.86 185 

RE081 RTATM POST 6.25 21.10 2.63 162 

DG075 RTATM POST 9.00 29.80 3.30 185 

DN050 RTATM POST 12.75 45.3 3.76 193 

JF065 RTATM POST 10.55 36.6 3.6 180 

JS063 RTATM POST 7.50 26.5 2.873 164 

JY019 RTATM POST 8.00 29.4 3.829 163 

MT008 RTATM POST 10.75 38.6 4.02 182 

TT024 RTATM POST 10.25 38.9 4.298 190 

TY010 RTATM POST 13.13 46.5 4.571 197 

BA058 RTLTM PRE 7.36 25.4 1.791 187 

BH057 RTLTM PRE 6.50 22 1.852 184 

DE029 RTLTM PRE 6.56 28.7 2.098 178 

LE060 RTLTM PRE 7.86 27.1 2.116 171 

LN051 RTLTM PRE 8.46 28.8 1.916 189 

NY040 RTLTM PRE 6.85 22.9 1.842 149 

PI089 RTLTM PRE 11.10 43.1 2.92 203 

SE035 RTLTM PRE 6.75 24.2 2.56 191 

CS061 RTLTM PRE 11.23 39.6 3.798 200 

DD071 RTLTM PRE 10.22 36.8 3.258 171 

GT074 RTLTM PRE 12.32 42.2 3.712 192 

LN038 RTLTM PRE 6.93 22.7 2.288 192 

MW068 RTLTM PRE 7.40 27.3 3.754 185 
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RR025 RTLTM PRE 11.26 39.5 3.986 173 

RY092 RTLTM PRE 10.20 37.8 2.751 191 

WL091 RTLTM PRE 10.45 35.6 3.043 190 

BA058 RTLTM POST 9.53 31.70 2.212 192 
BH057 RTLTM POST 7.53 24.50 2.074 175 
DE029 RTLTM POST 7.45 29.40 2.153 173 
LE060 RTLTM POST 7.95 30.80 2.414 170 
LN051 RTLTM POST 10.25 37.80 2.612 190 
NY040 RTLTM POST 8.50 30.20 2.445 149 
PI089 RTLTM POST 13.25 48.70 3.250 203 
SE035 RTLTM POST 7.41 29.70 3.006 190 
CS061 RTLTM POST 12.68 45.90 4.350 202 
DD071 RTLTM POST 11.50 39.80 3.574 171 
GT074 RTLTM POST 12.62 47.90 4.214 192 
LN038 RTLTM POST 8.67 32.80 2.918 185 
MW068 RTLTM POST 10.50 35.60 4.791 189 
RR025 RTLTM POST 12.50 47.50 4.885 179 
RY092 RTLTM POST 11.75 42.60 3.118 185 
WL091 RTLTM POST 12.75 42.40 3.729 188 
AN054 RT PRE 7.08 25.6 2.287 180 

BK088 RT PRE 5.23 18 2.321 181 

JL017 RT PRE 6.60 24.5 2.436 160 

KE067 RT PRE 7.68 24.6 2.101 181 

KY066 RT PRE 6.92 24.6 2.251 177 

MA037 RT PRE 6.1 23.8 1.997 180 

PI006 RT PRE 11.03 38.8 2.303 181 

SN009 RT PRE 7.15 23 1.539 178 

AW021 RT PRE 10.75 39.9 3.289 202 

BE085 RT PRE 10.5 37.3 3.153 188 

DD015 RT PRE 10.43 39.4 3.272 200 

JN001 RT PRE 8.83 29.2 3.79 171 

MK093 RT PRE 9.82 34.6 3.323 171 

SM072 RT PRE 9.57 31 3.154 182 

TS042 RT PRE 8.88 27.9 2.708 192 

AN054 RT POST 7.30 26.2 2.375 170 

BK088 RT POST 5.75 20.60 2.56 177 

JL017 RT POST 7.00 24 2.471 177 

KE067 RT POST 7.00 25.00 2.14 182 

KY066 RT POST 7.25 24.00 2.22 176 

MA037 RT POST 6.13 24.7 2.113 175 

PI006 RT POST 11.10 38.1 2.251 194 

SN009 RT POST 7.12 26.8 1.859 180 

AW021 RT POST 11.30 42 3.5 201 
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BE085 RT POST 10.00 39.30 3.45 181 

DD015 RT POST 12.00 43.4 3.67 190 

JN001 RT POST 9.50 27.7 3.454 170 

MK093 RT POST 10.70 38.70 3.68 176 

SM072 RT POST 10.80 32.20 3.33 183 

TS042 RT POST 10.25 36.3 3.426 188 

 
 
 
 

RAW DATA / DEPENDENT VARIABLES / DIET AND ACTIVITY 
 

SUBID Group TIME DAILY EXP TOT CAL TOT Kj CHO (g) REL CHO CHO% 

BE090 RTATM PRE 8467 2488 10414.77 352.00 4.90 0.57 

CE033 RTATM PRE 7912 897 3754.84 117.00 1.84 0.52 

LA013 RTATM PRE 7981 1442 6036.21 137.00 2.12 0.38 

LN005 RTATM PRE 9680 2037 8527.93 332.60 4.34 0.65 

MA016 RTATM PRE 11125 2843 11900.80 . . . 
MN052 RTATM PRE 8412 2223 9305.48 296.00 4.40 0.53 

NY070 RTATM PRE 8181 . . . . . 

RE081 RTATM PRE 12670 . . . . . 

DG075 RTATM PRE 12554 2447 10243.14 179.00 1.65 0.29 

DN050 RTATM PRE 10600 1943 8133.40 247.00 3.08 0.51 

JF065 RTATM PRE 12734 2126 8899.44 218.00 2.13 0.41 

JS063 RTATM PRE 12391 2416 10113.38 245.00 2.29 0.41 

JY019 RTATM PRE 13858 3405 14253.33 394.00 3.15 0.46 

MT008 RTATM PRE 12065 4192 17546.37 448.46 4.33 0.43 

TT024 RTATM PRE 13097 3845 16095.17 415.00 3.79 0.43 

TY010 RTATM PRE 12346 4826 20199.96 568.51 5.80 0.47 

BE090 RTATM POST 8606 2540 10632.44 365.00 4.96 0.57 

CE033 RTATM POST 7842 1353 5663.66 190.00 3.00 0.54 
LA013 RTATM POST 8050 1731 7245.97 196.00 2.96 0.45 

LN005 RTATM POST 9483 1756 7351.54 228.43 3.05 0.52 

MA016 RTATM POST 11345 960 4018.56 117.00 . 0.49 

MN052 RTATM POST 8695 1903 7965.96 218.00 3.13 0.45 

NY070 RTATM POST 8181 . . . . . 

RE081 RTATM POST 12670 . . . . . 

DG075 RTATM POST 12635 2509 10502.67 189.00 1.70 0.30 

DN050 RTATM POST 10891 2058 8614.79 275.00 3.31 0.48 

JF065 RTATM POST 12443 1937 8108.28 243.00 2.46 0.37 

JS063 RTATM POST 12554 . . . . . 

JY019 RTATM POST 14347 3373 14119.38 402.00 3.08 0.48 

MT008 RTATM POST 12146 2317 9698.25 239.42 2.30 0.41 
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TT024 RTATM POST 13183 2992 12524.51 368.00 3.33 0.44 

TY010 RTATM POST 12443 3759 15735.17 476.00 4.83 0.42 

BA058 RTLTM PRE 8397 944 3951.58 113.00 1.60 0.48 

BH057 RTLTM PRE 9726 2517 10536.16 224.00 2.65 0.36 

DE029 RTLTM PRE 8917 1964 8221.30 238.00 3.21 0.48 

LE060 RTLTM PRE 9285 1686 7057.60 256.00 3.26 0.61 

LN051 RTLTM PRE 8412 2396 10029.66 276.00 4.14 0.46 

NY040 RTLTM PRE 9358 1483 6207.84 164.00 2.04 0.44 

PI089 RTLTM PRE 8506 1707 7145.50 174.00 2.56 0.41 

SE035 RTLTM PRE 11271 2103 8803.16 245.00 2.32 0.47 

CS061 RTLTM PRE 12555 . . . . . 

DD071 RTLTM PRE 10924 2260 9460.36 275.00 3.11 0.49 

GT074 RTLTM PRE 11376 . . . . . 

LN038 RTLTM PRE 12069 1357 5680.40 176.00 1.80 0.52 

MW068 RTLTM PRE 16806 3224 13495.66 446.00 3.24 0.55 

RR025 RTLTM PRE 11902 2690 11260.34 319.00 3.15 0.47 

RY092 RTLTM PRE 9620 2851 11934.29 372.00 5.12 0.52 

WL091 RTLTM PRE 11040 3297 13801.24 371.00 4.33 0.43 

BA058 RTLTM POST 8328 1280 5358.08 185.00 2.64 0.58 

BH057 RTLTM POST 9726 2089 8744.55 237.00 2.80 0.45 

DE029 RTLTM POST 8843 1501 6283.19 178.00 2.42 0.47 
LE060 RTLTM POST 9285 1284 5374.82 167.00 2.12 0.52 

LN051 RTLTM POST 8601 2570 10758.02 295.00 4.26 0.46 
NY040 RTLTM POST 9358 1690 7074.34 195.00 2.40 0.46 
PI089 RTLTM POST 8412 . . . . . 
SE035 RTLTM POST 10903 2621 10971.51 335.00 3.30 0.51 

CS061 RTLTM POST 12454 . . . . . 
DD071 RTLTM POST 11005 2231 9338.97 281.00 3.14 0.50 

GT074 RTLTM POST 11376 . . . . . 
LN038 RTLTM POST 11298 1236 5173.90 235.00 2.64 0.53 
MW068 RTLTM POST 16502 2266 9485.48 287.00 2.13 0.51 
RR025 RTLTM POST 12065 2558 10707.79 300.00 2.91 0.47 

RY092 RTLTM POST 9620 3052 12775.67 431.00 5.89 0.57 
WL091 RTLTM POST 11212 4290 17957.94 563.00 6.38 0.53 
AN054 RT PRE 10963 2894 12114.28 362.00 4.04 0.50 

BK088 RT PRE 12965 . . . . . 

JL017 RT PRE 10410 2457 10284.33 343.24 3.44 0.56 

KE067 RT PRE 9438 . . . . . 

KY066 RT PRE 11160 . . . . . 

MA037 RT PRE 9653 1150 4813.90 . . . 

PI006 RT PRE 8002 2590 10840.44 335.42 5.63 0.52 

SN009 RT PRE 8401 2344 9811.31 272.04 4.05 0.46 

AW021 RT PRE 11138 1911 8000.24 277.48 3.40 0.58 
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BE085 RT PRE 10598 2626 10992.44 260.00 3.07 0.40 

DD015 RT PRE 10891 2777 11626.03 416.66 5.01 0.60 

JN001 RT PRE 14265 2233 9349.05 260.20 2.00 0.47 

MK093 RT PRE 11331 1817 7605.84 185.00 1.97 0.25 

SM072 RT PRE 11983 . . . . . 

TS042 RT PRE 11983 1458 6103.19 161.00 1.65 0.44 

AN054 RT POST 11062 . . . . . 

BK088 RT POST 12597 2693 11272.90 386.00 3.10 0.57 

JL017 RT POST 10618 2457 10284.33 343.24 3.32 0.56 

KE067 RT POST 9438 . . . . . 

KY066 RT POST 11260 . . . . . 

MA037 RT POST 9799 1123 4700.88 109.00 1.27 0.39 

PI006 RT POST 7904 2588 10833.37 309.00 5.23 0.48 

SN009 RT POST 8549 2405 10068.59 276.00 3.97 0.46 

AW021 RT POST 11341 2103 8803.16 267.00 3.20 0.47 

BE085 RT POST 10842 2258 9451.15 245.00 2.78 0.43 

DD015 RT POST 11085 2874 12030.56 398.00 4.70 0.46 

JN001 RT POST 14102 3712 15540.44 631.62 4.95 0.68 

MK093 RT POST 11413 1564 6546.90 97.00 1.02 0.25 

SM072 RT POST 11983 . . . . . 

TS042 RT POST 11812 1511 6326.26 163.00 1.72 0.43 

 
 
 

SUBID Group TIME PRO (g) REL PRO PRO% TOT FAT (g) REL FAT 

BE090 RTATM PRE 81.00 1.13 0.13 84.00 1.17 

CE033 RTATM PRE 33.00 0.52 0.15 33.00 0.52 

LA013 RTATM PRE 39.00 0.60 0.11 82.00 1.27 

LN005 RTATM PRE 35.30 0.46 0.07 62.85 0.82 

MA016 RTATM PRE . . . . . 
MN052 RTATM PRE 73.00 1.09 0.13 83.00 1.23 

NY070 RTATM PRE . . . . . 

RE081 RTATM PRE . . . . . 

DG075 RTATM PRE 129.00 1.19 0.21 135.00 1.24 

DN050 RTATM PRE 88.00 1.10 0.18 67.00 0.84 

JF065 RTATM PRE 156.00 1.53 0.29 70.00 0.68 

JS063 RTATM PRE 107.00 1.00 0.18 112.00 1.05 

JY019 RTATM PRE 158.00 1.26 0.19 133.00 1.06 

MT008 RTATM PRE 164.85 1.59 0.16 193.16 1.87 

TT024 RTATM PRE 166.00 1.52 0.17 169.00 1.54 

TY010 RTATM PRE 177.90 1.82 0.15 204.44 2.09 

BE090 RTATM POST 90.00 1.22 0.13 80.00 1.09 

CE033 RTATM POST 56.00 0.88 0.17 41.00 0.65 
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LA013 RTATM POST 77.00 1.16 0.18 71.00 1.07 

LN005 RTATM POST 68.92 0.92 0.16 62.98 0.84 

MA016 RTATM POST 33.00 0.31 0.14 40.00 0.37 

MN052 RTATM POST 89.00 1.28 0.18 75.00 1.08 

NY070 RTATM POST . . . . . 

RE081 RTATM POST . . . . . 

DG075 RTATM POST 148.00 1.33 0.24 129.00 1.16 

DN050 RTATM POST 91.00 1.09 0.16 66.00 0.79 

JF065 RTATM POST 86.00 0.87 0.13 69.00 0.70 

JS063 RTATM POST . . . . . 

JY019 RTATM POST 151.00 1.16 0.18 129.00 0.99 

MT008 RTATM POST 89.70 0.86 0.15 111.15 1.07 

TT024 RTATM POST 128.00 1.16 0.15 112.00 1.01 

TY010 RTATM POST 115.00 1.17 0.10 155.00 1.57 

BA058 RTLTM PRE 51.00 0.72 0.22 32.00 0.45 

BH057 RTLTM PRE 133.00 1.57 0.21 121.00 1.43 

DE029 RTLTM PRE 64.00 0.86 0.13 84.00 1.13 

LE060 RTLTM PRE 71.00 0.90 0.17 42.00 0.54 

LN051 RTLTM PRE 98.00 1.47 0.16 100.00 1.50 

NY040 RTLTM PRE 56.00 0.70 0.15 67.00 0.83 

PI089 RTLTM PRE 75.00 1.11 0.18 79.00 1.16 

SE035 RTLTM PRE 76.00 0.72 0.14 91.00 0.86 

CS061 RTLTM PRE . . . . . 

DD071 RTLTM PRE 119.00 1.34 0.21 76.00 0.86 

GT074 RTLTM PRE . . . . . 

LN038 RTLTM PRE 71.00 0.73 0.21 41.00 0.42 

MW068 RTLTM PRE 135.00 0.98 0.17 100.00 0.73 

RR025 RTLTM PRE 106.00 1.05 0.16 110.00 1.09 

RY092 RTLTM PRE 91.00 1.25 0.13 111.00 1.53 

WL091 RTLTM PRE 136.00 1.59 0.16 141.00 1.65 

BA058 RTLTM POST 45.00 0.64 0.14 40.00 0.57 

BH057 RTLTM POST 76.00 0.90 0.15 93.00 1.10 

DE029 RTLTM POST 60.00 0.82 0.16 61.00 0.83 

LE060 RTLTM POST 64.00 0.81 0.20 40.00 0.51 

LN051 RTLTM POST 91.00 1.31 0.14 114.00 1.64 

NY040 RTLTM POST 61.00 0.75 0.15 74.00 0.91 

PI089 RTLTM POST . . . . . 

SE035 RTLTM POST 75.00 0.74 0.11 109.00 1.08 

CS061 RTLTM POST . . . 59.00 0.62 

DD071 RTLTM POST 117.00 1.31 0.21 71.00 0.79 

GT074 RTLTM POST . . . . . 

LN038 RTLTM POST 74.00 0.83 0.17 . . 

MW068 RTLTM POST 104.00 0.77 0.18 78.00 0.58 
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RR025 RTLTM POST 101.00 0.98 0.16 106.00 1.03 

RY092 RTLTM POST 125.00 1.71 0.16 92.00 1.26 

WL091 RTLTM POST 145.00 1.64 0.14 162.00 1.84 

AN054 RT PRE 114.00 1.27 0.16 110.00 1.23 

BK088 RT PRE . . . . . 

JL017 RT PRE 80.98 0.81 0.13 84.44 0.85 

KE067 RT PRE . . . . . 

KY066 RT PRE . . . . . 

MA037 RT PRE . . . . . 

PI006 RT PRE 165.19 2.77 0.26 65.25 1.10 

SN009 RT PRE 113.85 1.70 0.19 88.92 1.33 

AW021 RT PRE 79.65 0.97 0.17 53.63 0.66 

BE085 RT PRE 104.00 1.23 0.16 130.00 1.53 

DD015 RT PRE 101.82 1.23 0.15 78.16 0.94 

JN001 RT PRE 94.46 0.73 0.17 90.53 0.70 

MK093 RT PRE 100.20 1.07 0.29 75.13 0.80 

SM072 RT PRE . . . . . 

TS042 RT PRE 64.00 0.66 0.18 62.00 0.64 

AN054 RT POST . . . . . 

BK088 RT POST 96.00 0.77 0.14 85.00 0.68 

JL017 RT POST 80.98 0.78 0.13 84.44 0.82 

KE067 RT POST . . . . . 

KY066 RT POST . . . . . 

MA037 RT POST 48.00 0.56 0.17 55.00 0.64 

PI006 RT POST 149.00 2.52 0.23 84.00 1.42 

SN009 RT POST 110.00 1.58 0.18 95.70 1.38 

AW021 RT POST 90.00 1.08 0.16 75.00 0.90 

BE085 RT POST 101.20 1.15 0.18 97.00 1.10 

DD015 RT POST 100.00 1.18 0.12 98.00 1.16 

JN001 RT POST 51.52 0.40 0.06 108.88 0.85 

MK093 RT POST 114.00 1.19 0.29 80.00 0.84 

SM072 RT POST . . . . . 

TS042 RT POST 78.00 0.82 0.21 60.81 0.64 

 
 
 
 

SUBID Group TIME TOTFAT% MONO (g) POLY (g) SAT (g) 

BE090 RTATM PRE 0.30 11.00 4.00 24.00 

CE033 RTATM PRE 0.33 2.66 2.44 11.31 

LA013 RTATM PRE 0.51 6.00 8.00 33.00 

LN005 RTATM PRE 0.28 27.97 8.03 20.65 

MA016 RTATM PRE . . . . 
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MN052 RTATM PRE 0.34 10.00 5.00 32.00 

NY070 RTATM PRE . . . . 

RE081 RTATM PRE . . . . 

DG075 RTATM PRE 0.50 46.00 7.00 52.00 

DN050 RTATM PRE 0.31 9.00 5.00 18.00 

JF065 RTATM PRE 0.30 16.00 6.00 21.00 

JS063 RTATM PRE 0.42 18.00 5.00 38.00 

JY019 RTATM PRE 0.35 40.60 13.57 45.29 

MT008 RTATM PRE 0.41 53.15 20.15 73.24 

TT024 RTATM PRE 0.40 40.39 26.22 48.23 

TY010 RTATM PRE 0.38 54.06 9.75 83.12 

BE090 RTATM POST 0.30 10.00 4.00 22.00 

CE033 RTATM POST 0.29 6.00 4.00 14.00 

LA013 RTATM POST 0.37 6.00 4.00 25.00 

LN005 RTATM POST 0.32 8.60 6.70 22.37 

MA016 RTATM POST 0.38 2.66 2.44 11.31 

MN052 RTATM POST 0.35 5.00 1.00 23.00 

NY070 RTATM POST . . . . 

RE081 RTATM POST . . . . 

DG075 RTATM POST 0.46 38.00 9.00 49.00 

DN050 RTATM POST 0.26 5.00 5.00 19.00 

JF065 RTATM POST 0.24 1.00 0.01 19.00 

JS063 RTATM POST . . . . 

JY019 RTATM POST 0.34 39.00 12.20 43.00 

MT008 RTATM POST 0.43 22.55 0.81 38.13 

TT024 RTATM POST 0.30 15.00 7.00 32.00 

TY010 RTATM POST 0.31 13.00 5.00 47.00 

BA058 RTLTM PRE 0.31 3.00 1.00 9.00 

BH057 RTLTM PRE 0.43 19.00 8.00 33.00 

DE029 RTLTM PRE 0.38 14.71 6.44 28.00 

LE060 RTLTM PRE 0.22 0.00 0.00 14.00 

LN051 RTLTM PRE 0.38 9.00 3.00 31.00 

NY040 RTLTM PRE 0.41 7.00 5.00 26.00 

PI089 RTLTM PRE 0.42 32.00 14.00 24.00 

SE035 RTLTM PRE 0.39 14.00 5.00 33.00 

CS061 RTLTM PRE . . . . 

DD071 RTLTM PRE 0.30 12.00 15.00 13.00 
GT074 RTLTM PRE . . . . 

LN038 RTLTM PRE 0.27 9.00 5.00 14.00 

MW068 RTLTM PRE 0.28 4.00 7.00 39.00 

RR025 RTLTM PRE 0.37 32.01 16.18 36.83 

RY092 RTLTM PRE 0.35 22.00 10.00 36.00 

WL091 RTLTM PRE 0.37 26.00 12.00 47.00 
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BA058 RTLTM POST 0.28 8.00 3.00 11.00 
BH057 RTLTM POST 0.40 12.00 3.00 31.00 
DE029 RTLTM POST 0.37 6.00 1.00 21.00 
LE060 RTLTM POST 0.28 4.00 2.00 14.00 
LN051 RTLTM POST 0.40 16.00 11.00 29.00 
NY040 RTLTM POST 0.39 9.00 11.00 26.00 
PI089 RTLTM POST . . . . 
SE035 RTLTM POST 0.37 24.00 9.00 40.00 
CS061 RTLTM POST 0.30 10.00 6.00 19.00 
DD071 RTLTM POST 0.29 11.00 15.00 11.00 
GT074 RTLTM POST . . . . 
LN038 RTLTM POST . . . . 
MW068 RTLTM POST 0.31 4.00 2.00 29.00 
RR025 RTLTM POST 0.37 30.01 15.00 35.00 

RY092 RTLTM POST 0.27 37.00 12.00 31.00 
WL091 RTLTM POST 0.34 27.00 20.00 52.00 
AN054 RT PRE 0.34 20.00 9.00 35.00 

BK088 RT PRE . . . . 

JL017 RT PRE 0.31 20.67 12.96 30.02 

KE067 RT PRE . . . . 

KY066 RT PRE . . . . 

MA037 RT PRE . . . . 

PI006 RT PRE 0.23 14.47 9.63 21.20 

SN009 RT PRE 0.34 7.36 5.64 19.36 

AW021 RT PRE 0.25 8.88 5.77 18.03 

BE085 RT PRE 0.45 48.00 21.00 34.00 

DD015 RT PRE 0.25 11.98 5.72 31.07 

JN001 RT PRE 0.36 22.89 9.28 28.42 

MK093 RT PRE 0.46 28.00 12.00 32.00 

SM072 RT PRE . . . . 

TS042 RT PRE 0.38 16.00 4.00 20.00 

AN054 RT POST . . . . 

BK088 RT POST 0.28 11.98 5.72 31.07 

JL017 RT POST 0.31 20.67 12.96 30.02 

KE067 RT POST . . . . 

KY066 RT POST . . . . 

MA037 RT POST 0.44 20.00 8.00 20.00 

PI006 RT POST 0.29 5.00 8.00 24.00 

SN009 RT POST 0.36 8.50 5.64 21.36 

AW021 RT POST 0.30 7.00 4.00 22.00 

BE085 RT POST 0.39 24.00 18.00 31.00 

DD015 RT POST 0.26 13.00 5.00 35.00 

JN001 RT POST 0.26 4.17 6.71 16.38 
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MK093 RT POST 0.46 28.00 12.00 32.00 

SM072 RT POST . . . . 

TS042 RT POST 0.36 16.00 4.00 20.00 

 
 
 

RAW DATA / DEPENDENT VARIABLES / STRENGTH 
 

SUBID Group TIME 
LEG 

PRESS 
CHEST 
PRESS LEG CURL LAT PULL LEG EXT 

BE090 RTATM PRE 449 57 100 102 82 

CE033 RTATM PRE 402 47 107 80 83 

LA013 RTATM PRE 300 50 108 78 59 

LN005 RTATM PRE 578 66 144 102 92 

MA016 RTATM PRE 824 72 165 147 120 

MN052 RTATM PRE 580 86 158 149 124 

NY070 RTATM PRE 395 40 102 75 69 

RE081 RTATM PRE 897 77 112 108 88 

DG075 RTATM PRE 789 115 169 159 133 

DN050 RTATM PRE 856 151 158 190 169 

JF065 RTATM PRE 771 97 188 139 151 

JS063 RTATM PRE 758 124 170 176 95 

JY019 RTATM PRE 869 176 200 188 170 

MT008 RTATM PRE 1092 144 163 172 194 

TT024 RTATM PRE 1030 200 253 220 163 

TY010 RTATM PRE 850 150 230 207 180 

BE090 RTATM POST 526 75 120 114 115 
CE033 RTATM POST 533 71 133 97 91 
LA013 RTATM POST 453 61 137 97 93 
LN005 RTATM POST 640 103 179 132 141 
MA016 RTATM POST 1054 112 207 155 180 
MN052 RTATM POST 704 102 215 156 178 
NY070 RTATM POST 647 60 108 100 93 
RE081 RTATM POST 1278 102 157 137 122 
DG075 RTATM POST 1102 145 212 194 150 
DN050 RTATM POST 1278 200 244 215 238 
JF065 RTATM POST 1059 113 219 167 219 
JS063 RTATM POST 1114 164 208 215 142 
JY019 RTATM POST 1229 260 291 252 241 
MT008 RTATM POST 1670 175 289 239 276 
TT024 RTATM POST 1554 222 297 260 199 
TY010 RTATM POST 1387 215 317 247 277 
BA058 RTLTM PRE 374 42 106 86 86 
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BH057 RTLTM PRE 622 51 103 97 91 

DE029 RTLTM PRE 659 91 131 124 74 

LE060 RTLTM PRE 446 42 94 75 78 

LN051 RTLTM PRE 618 62 123 97 121 

NY040 RTLTM PRE 528 61 105 87 88 

PI089 RTLTM PRE 618 78 156 117 142 

SE035 RTLTM PRE 705 80 188 133 139 

CS061 RTLTM PRE 974 168 169 195 216 

DD071 RTLTM PRE 715 118 165 185 173 

GT074 RTLTM PRE 813 178 188 226 166 

LN038 RTLTM PRE 699 115 172 151 139 

MW068 RTLTM PRE 774 133 208 162 180 

RR025 RTLTM PRE 1176 134 251 200 218 

RY092 RTLTM PRE 557 104 158 160 140 

WL091 RTLTM PRE 751 115 195 156 168 

BA058 RTLTM POST 524 56 119 97 100 
BH057 RTLTM POST 789 75 148 107 129 
DE029 RTLTM POST 742 105 141 134 107 
LE060 RTLTM POST 489 58 109 98 113 
LN051 RTLTM POST 753 99 155 116 152 
NY040 RTLTM POST 642 73 129 116 123 
PI089 RTLTM POST 705 92 181 184 152 
SE035 RTLTM POST 1111 100 192 140 159 
CS061 RTLTM POST 1288 194 278 238 321 
DD071 RTLTM POST 825 144 239 229 214 
GT074 RTLTM POST 931 159 231 219 206 
LN038 RTLTM POST 818 135 206 167 188 
MW068 RTLTM POST 1018 145 274 199 244 
RR025 RTLTM POST 1459 174 263 257 276 
RY092 RTLTM POST 679 109 189 181 167 
WL091 RTLTM POST 686 159 286 203 246 
AN054 RT PRE 553 74 140 124 72 

BK088 RT PRE 867 66 149 124 103 

JL017 RT PRE 597 74 144 126 133 

KE067 RT PRE 641 69 100 86 84 

KY066 RT PRE 510 56 131 91 94 

MA037 RT PRE 599 64 124 97 97 

PI006 RT PRE 635 75 108 90 92 

SN009 RT PRE 373 48 88 82 82 

AW021 RT PRE 684 135 189 204 163 

BE085 RT PRE 819 164 168 159 156 

DD015 RT PRE 699 130 172 189 150 

JN001 RT PRE 947 140 129 172 133 
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MK093 RT PRE 821 111 167 176 139 

SM072 RT PRE 630 110 205 156 157 

TS042 RT PRE 645 94 152 156 157 

AN054 RT POST 745 91 173 124 142 

BK088 RT POST 867 86 168 182 157 

JL017 RT POST 798 92 159 129 152 

KE067 RT POST 754 82 135 114 116 

KY066 RT POST 619 63 157 112 122 

MA037 RT POST 832 66 151 102 126 

PI006 RT POST 840 98 151 121 144 

SN009 RT POST 538 68 115 107 100 

AW021 RT POST 769 153 234 230 235 

BE085 RT POST 1064 210 212 222 182 

DD015 RT POST 886 151 222 226 202 

JN001 RT POST 1336 180 276 247 244 

MK093 RT POST 1016 135 222 237 210 

SM072 RT POST 856 134 249 204 135 

TS042 RT POST 807 131 201 202 190 

 
 

 
SUBID Group TIME TRI PUSH DOWN BICEPS CURL TOTALLFT 

BE090 RTATM PRE 191 31 1012 

CE033 RTATM PRE 142 20 881 

LA013 RTATM PRE 118 17 730 

LN005 RTATM PRE 198 30 1210 

MA016 RTATM PRE 213 44 1585 

MN052 RTATM PRE 222 56 1375 

NY070 RTATM PRE 121 17 819 

RE081 RTATM PRE 161 24 1467 

DG075 RTATM PRE 222 60 1647 

DN050 RTATM PRE 343 52 1919 

JF065 RTATM PRE 230 47 1623 

JS063 RTATM PRE 259 57 1639 

JY019 RTATM PRE 309 76 1988 

MT008 RTATM PRE 265 54 2084 

TT024 RTATM PRE 400 84 2350 

TY010 RTATM PRE 367 70 2054 

BE090 RTATM POST 212 39 1201 

CE033 RTATM POST 177 33 1135 

LA013 RTATM POST 167 28 1036 

LN005 RTATM POST 284 37 1516 

MA016 RTATM POST 237 53 1998 
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MN052 RTATM POST 282 51 1688 

NY070 RTATM POST 195 25 1228 

RE081 RTATM POST 234 34 2064 

DG075 RTATM POST 312 60 2175 

DN050 RTATM POST 469 68 2712 

JF065 RTATM POST 395 62 2234 

JS063 RTATM POST 427 82 2352 

JY019 RTATM POST 468 97 2838 

MT008 RTATM POST 564 91 3304 

TT024 RTATM POST 650 101 3283 

TY010 RTATM POST 470 88 3001 

BA058 RTLTM PRE 121 13 828 

BH057 RTLTM PRE 152 32 1148 

DE029 RTLTM PRE 237 33 1349 

LE060 RTLTM PRE 132 20 887 

LN051 RTLTM PRE 180 19 1220 

NY040 RTLTM PRE 137 21 1027 

PI089 RTLTM PRE 223 35 1369 

SE035 RTLTM PRE 245 39 1529 

CS061 RTLTM PRE 360 74 2156 

DD071 RTLTM PRE 246 48 1650 

GT074 RTLTM PRE 405 74 2050 

LN038 RTLTM PRE 225 41 1542 

MW068 RTLTM PRE 286 60 1803 

RR025 RTLTM PRE 314 57 2350 

RY092 RTLTM PRE 244 53 1416 

WL091 RTLTM PRE 235 60 1680 

BA058 RTLTM POST 156 28 1080 

BH057 RTLTM POST 234 41 1523 

DE029 RTLTM POST 306 43 1578 

LE060 RTLTM POST 175 30 1072 

LN051 RTLTM POST 275 33 1583 

NY040 RTLTM POST 181 29 1293 

PI089 RTLTM POST 235 46 1595 

SE035 RTLTM POST 321 42 2065 

CS061 RTLTM POST 428 88 2835 

DD071 RTLTM POST 396 69 2116 

GT074 RTLTM POST 370 89 2205 

LN038 RTLTM POST 338 59 1911 

MW068 RTLTM POST 367 86 2333 

RR025 RTLTM POST 447 80 2956 

RY092 RTLTM POST 283 62 1670 

WL091 RTLTM POST 358 81 2019 
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AN054 RT PRE 216 34 1213 

BK088 RT PRE 185 32 1526 

JL017 RT PRE 215 29 1318 

KE067 RT PRE 170 22 1172 

KY066 RT PRE 186 18 1086 

MA037 RT PRE 194 29 1204 

PI006 RT PRE 211 24 1235 

SN009 RT PRE 140 25 838 

AW021 RT PRE 328 80 1783 

BE085 RT PRE 217 58 1741 

DD015 RT PRE 287 65 1692 

JN001 RT PRE 242 59 1822 

MK093 RT PRE 247 64 1725 

SM072 RT PRE 246 68 1572 

TS042 RT PRE 247 51 1502 

AN054 RT POST 303 36 1614 

BK088 RT POST 261 49 1770 

JL017 RT POST 249 41 1620 

KE067 RT POST 231 39 1471 

KY066 RT POST 252 34 1359 

MA037 RT POST 253 33 1563 

PI006 RT POST 237 43 1634 

SN009 RT POST 200 32 1160 

AW021 RT POST 486 112 2219 

BE085 RT POST 357 81 2328 

DD015 RT POST 394 80 2161 

JN001 RT POST 412 95 2790 

MK093 RT POST 425 79 2324 

SM072 RT POST 366 72 2016 

TS042 RT POST 288 73 1892 

 
 

 
RAW DATA / DEPENDENT VARIABLES / Myofibrillar FSR 

 
SUBID Group TIME Plama MPE(%) Muscle MPE(%) FSR %/day 

BE090 RTATM PRE 0.926524658 0.4193425 0.122323578 

CE033 RTATM PRE 0.962054497 0.530577461 0.149055292 

LA013 RTATM PRE 0.769633571 0.461722261 0.162141836 

LN005 RTATM PRE . . . 

MA016 RTATM PRE 0.845165021 0.357156075 0.114212806 

MN052 RTATM PRE 0.924749494 0.658898702 0.19257186 

NY070 RTATM PRE . . . 
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RE081 RTATM PRE . . . 

DG075 RTATM PRE 0.786530297 0.451729541 0.155224873 

DN050 RTATM PRE 0.643587967 0.350848564 0.147336403 

JF065 RTATM PRE 0.792773868 0.291042023 0.09922124 

JS063 RTATM PRE 0.579911642 0.432484989 0.201561456 

JY019 RTATM PRE 0.69851372 0.433974776 0.167914354 

MT008 RTATM PRE 0.961563326 0.302877611 0.085130965 

TT024 RTATM PRE . . . 

TY010 RTATM PRE . . . 

BE090 RTATM POST 0.655366995 0.491443308 0.202668912 

CE033 RTATM POST . . . 

LA013 RTATM POST 0.908254863 0.621392225 0.18490828 

LN005 RTATM POST . . . 

MA016 RTATM POST 1.809227697 1.080651576 0.161432413 

MN052 RTATM POST 0.570916804 0.292586884 0.138509737 

NY070 RTATM POST . . . 

RE081 RTATM POST . . . 

DG075 RTATM POST 0.842844728 0.494751752 0.158649257 

DN050 RTATM POST 0.689703823 0.501190932 0.196398808 

JF065 RTATM POST 0.999089836 0.568169699 0.15369927 

JS063 RTATM POST 0.521280559 0.471576034 0.24449978 

JY019 RTATM POST 0.822108095 0.290901001 0.095634495 

MT008 RTATM POST 0.808531733 0.566633111 0.189410109 

TT024 RTATM POST . . . 

TY010 RTATM POST 1.109702065 0.602734788 0.146797324 

BA058 RTLTM PRE 1.07000089 0.713024642 0.180102058 

BH057 RTLTM PRE . . . 

DE029 RTLTM PRE . . . 

LE060 RTLTM PRE . . . 

LN051 RTLTM PRE 2.313421867 0.977378987 0.114184311 

NY040 RTLTM PRE . . . 

PI089 RTLTM PRE 0.605465639 0.226415409 0.101068252 

SE035 RTLTM PRE . . . 

CS061 RTLTM PRE . . . 

DD071 RTLTM PRE . . . 

GT074 RTLTM PRE 1.001598602 0.34639416 0.093470621 

LN038 RTLTM PRE . . . 

MW068 RTLTM PRE . . . 

RR025 RTLTM PRE 1.013092559 0.307947607 0.082153484 

RY092 RTLTM PRE 0.952144962 0.334789806 0.095031466 

WL091 RTLTM PRE 1.748886632 0.419576364 0.064840691 

BA058 RTLTM POST 1.333012403 0.734340287 0.148888598 

BH057 RTLTM POST . . . 



 

194 
 

DE029 RTLTM POST 0.579323625 0.249578998 0.116435409 

LE060 RTLTM POST . . . 

LN051 RTLTM POST . . . 

NY040 RTLTM POST . . . 

PI089 RTLTM POST 0.662871436 0.489605819 0.199625282 

SE035 RTLTM POST . . . 

CS061 RTLTM POST . . . 

DD071 RTLTM POST . . . 

GT074 RTLTM POST 0.917583366 0.558679565 0.164556685 

LN038 RTLTM POST . . . 

MW068 RTLTM POST . . . 

RR025 RTLTM POST 0.550610436 0.371962473 0.182579899 

RY092 RTLTM POST 0.696618073 0.255736747 0.099219418 

WL091 RTLTM POST . . . 

AN054 RT PRE . . . 

BK088 RT PRE . . . 

JL017 RT PRE 0.895142596 0.284245087 0.085822077 

KE067 RT PRE 2.152167487 0.781122987 0.098093816 

KY066 RT PRE . . . 

MA037 RT PRE . . . 

PI006 RT PRE . . . 

SN009 RT PRE . . . 

AW021 RT PRE . . . 

BE085 RT PRE 1.159549097 0.237845226 0.055437492 

DD015 RT PRE 0.668443658 0.185225599 0.074891836 

JN001 RT PRE 0.980967851 0.387400957 0.106734345 

MK093 RT PRE 0.613376852 0.284914644 0.125541024 

SM072 RT PRE 0.959968573 0.256479433 0.072209411 

TS042 RT PRE . . . 

AN054 RT POST . . . 

BK088 RT POST . . . 

JL017 RT POST 0.949489385 0.425922308 0.12123794 

KE067 RT POST . . . 

KY066 RT POST . . . 

MA037 RT POST . . . 

PI006 RT POST . . . 

SN009 RT POST . . . 

AW021 RT POST . . . 

BE085 RT POST 1.118944596 0.345645628 0.083487366 

DD015 RT POST 0.738035765 0.368798422 0.135054768 

JN001 RT POST 0.754197505 0.524042242 0.187793035 

MK093 RT POST 1.195422655 0.563456263 0.127390489 

SM072 RT POST 0.966476357 0.686643298 0.192016358 
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TS042 RT POST . . . 

 
RAW DATA / DEPENDENT VARIABLES / WESTERN BLOT DATA 

 
SUBID Group TIME Akt mTOR TSC2 

BE090 RTATM PRE 0.519572954 0.244094488 . 

CE033 RTATM PRE 3.307692308 1.43902439 2.473684211 

LA013 RTATM PRE . .  

LN005 RTATM PRE 5.857142857 . 0.1 

MA016 RTATM PRE 7.571428571 9.11 3.266666667 

MN052 RTATM PRE . . . 

NY070 RTATM PRE . . . 

RE081 RTATM PRE . . . 

DG075 RTATM PRE 0.727272727 1.446808511 0.11444 

DN050 RTATM PRE 0.636085627 0.555944056 2.278688525 

JF065 RTATM PRE 0.4 0.681818182 0.807692308 

JS063 RTATM PRE 1.0559 . . 

JY019 RTATM PRE 0.47826087 . . 

MT008 RTATM PRE . 2.672413793 0.768831169 

TT024 RTATM PRE . . . 

TY010 RTATM PRE . 2.034482759 1.083116883 

BE090 RTATM POST 0.398576512 0.488188976 0.166666667 

CE033 RTATM POST 6.615384615 1.731707317 2.842105263 

LA013 RTATM POST . . . 

LN005 RTATM POST 7 . . 

MA016 RTATM POST 7.714285714 11.44 2.566666667 

MN052 RTATM POST . . . 

NY070 RTATM POST . . . 

RE081 RTATM POST . . . 

DG075 RTATM POST 1.25 1.484042553 0.95666 

DN050 RTATM POST 1.244648318 0.692307692 1.918032787 

JF065 RTATM POST 0.5 0.787878788 0.884615385 

JS063 RTATM POST 3.54037 . . 

JY019 RTATM POST 0.925465839 . . 

MT008 RTATM POST . 2.017241379 0.846753247 

TT024 RTATM POST .   

TY010 RTATM POST . 2.155172414 1.168831169 

BA058 RTLTM PRE 1.54696 3.428571429 0.454545455 

BH057 RTLTM PRE 0.869009585 0.7 . 

DE029 RTLTM PRE 1.693950178 0.826771654 . 

LE060 RTLTM PRE . . . 

LN051 RTLTM PRE 1.871429 1.26 2.566666667 

NY040 RTLTM PRE . . . 
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PI089 RTLTM PRE . . . 

SE035 RTLTM PRE . . . 

CS061 RTLTM PRE . . . 

DD071 RTLTM PRE . . . 

GT074 RTLTM PRE 1.36453202 2.263157895 1.2 

LN038 RTLTM PRE . . . 

MW068 RTLTM PRE . . . 

RR025 RTLTM PRE . . . 

RY092 RTLTM PRE 0.641943734 0.63 . 

WL091 RTLTM PRE . . . 

BA058 RTLTM POST 1.54696 2.428571429 . 

BH057 RTLTM POST 1.460063898 0.765 0.818181818 

DE029 RTLTM POST 0.704626335 0.377952756 . 

LE060 RTLTM POST . . . 

LN051 RTLTM POST 1.00006 0.90 2.533333333 

NY040 RTLTM POST . . . 

PI089 RTLTM POST . . . 

SE035 RTLTM POST . . . 

CS061 RTLTM POST . . . 

DD071 RTLTM POST . . . 

GT074 RTLTM POST 1.461412151 2 0.475862069 

LN038 RTLTM POST . . . 

MW068 RTLTM POST . . . 

RR025 RTLTM POST . . . 

RY092 RTLTM POST 0.199488491 0.04 . 

WL091 RTLTM POST . . . 

AN054 RT PRE    

BK088 RT PRE 0.306709265 1.8 3.090909091 

JL017 RT PRE 2.925266904 0.346456693 . 

KE067 RT PRE . . . 

KY066 RT PRE . . . 

MA037 RT PRE . . . 

PI006 RT PRE . . . 

SN009 RT PRE 2.26037196 2.50862069 2.553246753 

AW021 RT PRE . . . 

BE085 RT PRE 1.692307692 0.682926829 0.210526316 

DD015 RT PRE 0.896797153 1.031496063 . 

JN001 RT PRE 3.425 2.045454545 1.076923077 

MK093 RT PRE 2.272727273 1.15 0.631147541 

SM072 RT PRE . 3.7 0.618 

TS042 RT PRE . . . 

AN054 RT POST . . . 

BK088 RT POST 0.597444089 1.4 1.909090909 
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JL017 RT POST 1.982206406 0.393700787 . 

KE067 RT POST . . . 

KY066 RT POST . . . 

MA037 RT POST . . . 

PI006 RT POST . . . 

SN009 RT POST 3.295622318 3.672413793 1.176623377 

AW021 RT POST . . . 

BE085 RT POST 5.076923077 0.951219512 1.368421053 

DD015 RT POST 1.419928826 1.464566929 . 

JN001 RT POST 1.175 1.212121212 0.75 

MK093 RT POST 2.693181818 5.46 0.663934426 

SM072 RT POST . 4.55 0.545 

TS042 RT POST . . . 
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