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ABSTRACT

Radiation hydrodynamics (RH) provides a theoretical description for many astro-

physical events spanning a wide range of observable phenomena. It is the goal of

high-energy-density laboratory astrophysics (HEDLA) to reproduce some of these

events in terrestrial settings. Computational models exist to aide our understanding

by simulating astrophysical observations and laboratory experiments, and by mak-

ing predictions which guide both experiments and observations. It is the goal of this

dissertation to contribute to our understanding of computational models in RH. Two

problems are solved that aide this understanding: 1) we showed that the asymptotic

equilibrium diffusion limit (EDL) of the RH equations reproduces the equilibrium

diffusion approximation (EDA), through first-order in the asymptotic expansion, in

agreement with previous transport models that neglect material motion; and, 2) we

produced semi-analytic radiative shock solutions using grey, angularly discretized

(Sn) transport. The first problem establishes the asymptotic limits of the EDA in

RH, which will have direct applications to discretizations of RH models. The second

problem extends previous semi-analytic solution methods for radiative shocks to in-

clude grey Sn transport. Previous semi-analytic methods relied on nonequilibrium

diffusion theory to describe the radiation, which assumes that while the radiation is

out of equilibrium with the material, the angular dependence of the radiation field

is isotropic over the extended spatial domain of the radiative shock, and that the

radiation energy density is monotonic over the shock’s spatial domain. The purpose

of using grey Sn transport is to determine the angular dependence of the radiation

field. It is shown that the anisotropy of the radiation field can cause the radiation

energy density to be nonmonotonic and exhibit a local maximum if a spike in the

ii



material temperature, called a Zel’dovich spike, near the shock discontinuity exists.

This local maximum of the radiation energy density is termed “anti-diffusive” ra-

diation because the radiation flux and the gradient of the radiation energy density

may have the same sign in this region, which is in stark contrast to diffusion theory

wherein the radiation flux is proportional to the negative gradient of the radiation

energy density.
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CHAPTER I

INTRODUCTION

Radiation hydrodynamics (RH) provides a theoretical description for many astro-

physical events spanning a wide range of observable phenomena. It is the goal of

high-energy-density laboratory astrophysics (HEDLA) to reproduce some of these

events in terrestrial settings. Computational models exist to aide our understanding

by simulating astrophysical observations and laboratory experiments, and by making

predictions which guide both experiments and observations.

It is the goal of this dissertation to contribute to our understanding of computa-

tional models in RH. Two problems are solved that aide this understanding: 1) we

showed that the asymptotic equilibrium diffusion limit (EDL) of the RH equations

reproduces the equilibrium diffusion approximation (EDA), through first-order in

the asymptotic expansion, in agreement with previous transport models that neglect

material motion; and, 2) we produced semi-analytic radiative shock solutions using

grey, angularly discretized (Sn) transport. The first problem establishes the asymp-

totic limits of the EDA in RH, which will have direct applications to discretizations

of RH models. The second problem extends the semi-analytic solution method of

Lowrie and Edwards [1] for radiative shocks to include grey Sn transport. Previous

semi-analytic methods relied on nonequilibrium diffusion theory to describe the radi-

ation, which assumes that while the radiation is out of equilibrium with the material,

the angular dependence of the radiation field is isotropic over the extended spatial

domain of the radiative shock, and that the radiation energy density is monotonic
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over the shock’s spatial domain. The purpose of using grey Sn transport is to deter-

mine the angular dependence of the radiation field. It is shown that the anisotropy

of the radiation field can cause the radiation energy density to be nonmonotonic and

exhibit a local maximum if a spike in the material temperature, called a Zel’dovich

spike, near the shock discontinuity exists. This local maximum of the radiation en-

ergy density has been termed “anti-diffusive” radiation by McClarren and Drake [2]

because the radiation flux and the gradient of the radiation energy density may have

the same sign in this region, which is in stark contrast to diffusion theory wherein the

radiation flux is proportional to the negative gradient of the radiation energy density.

It is the goal of this chapter to introduce some of the physical concepts and ob-

servations which are important and interesting in RH, and pertinent to the problems

solved in this dissertation. In Chapter II, the elements of radiation transport and

RH that pertain to this dissertation are briefly reviewed. Specifically, the lab-frame

formulations of both theories are derived, and specific equations that are needed in

Chapters III - V are collected. In Chapter III, an asymptotic analysis is performed in

the EDL of the RH equations, and the results are discussed. In Chapter IV, a review

of past-work on analytic and semi-analytic radiative shocks is made. The reviewed

work includes the standard treatises by Zel’dovich and Raizer [3], and Mihalas and

Mihalas [4], for analytic nonequilibrium diffusion theory, recent work by Drake [5,

6], and McClarren and Drake [2], wherein radiation transport models are considered

and computational results are predicted, and the recent work by Lowrie and collabo-

rators [1, 7] which describe semi-analytic radiative shock solutions with the EDA and

with nonequilibrium diffusion theory, respectively. This review represents the cur-

rent state-of-the-art in analytic and semi-analytic radiative shock solutions. Codes

that use discretization methods to solve the RH equations and then model radiative
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shocks are mentioned for the purposes of code-verification, but not discussed as com-

parative alternatives. In Chapter V, a semi-analytic radiative shock solution method

using grey Sn transport is described, and standard results are presented. Distinctions

between these results and those obtained from nonequilibrium diffusion theory are

discussed, then the method is used for code-verification, and finally new results are

analyzed. A concluding chapter summarizes the results presented in this dissertation.

The rest of this chapter is meant to provide an overview of important topics in

RH. In Section I.1, a brief description of the physical domain of RH is given. In

Section I.2, the EDA in RH is briefly described and a historical background to the

EDL, in general, is given. In Section I.3, astrophysical and laboratory observations

of radiative shocks are discussed, along with a brief account of some computational

attempts to model the astrophysical origins of radiative shocks. This chapter con-

cludes, in Section I.4, with an overview of current state-of-the-art computational

methods which solve the RH equations. The purpose of this dissertation is to aide

such computational methods.

I.1 Background

The appropriate purview of RH is to kinetic and dynamic responses of a material-

radiation system. Kinetic effects are those in which the thermodynamic state of the

fluid is altered. For example, changes to the internal energy state by exciting trans-

lational, rotational and/or vibrational degrees of freedom. This potentially leads to

a significant departure in the fluid from local thermodynamic equilibrium (LTE),

and is responsible for shock waves, and ionization and disassociation fronts, along

with other observable phenomena. Dynamic effects are those in which the energy
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and/or momentum deposition rates to the fluid from the radiation are significant. In

these cases, the radiation represents a considerable fraction of the total momentum

density, for example, stellar winds, and may represent a considerable fraction of the

content in the stress-energy tensor, which results in, for example, effective changes to

the speed of sound. Novae and supernovae represent phenomena in which both the

kinetics and dynamics of the system are largely affected by the radiation field, and

also by the more weakly interacting neutrino field, which is not considered here. It is

the study of these effects, in HEDLA experiments and in astrophysical observations,

which make the theory of RH useful and interesting.

The canonical work by Mihalas and Mihalas, “Foundations of Radiation Hydro-

dynamics” [4], is the time-honored place to begin learning RH. But perhaps the

best place to begin understanding the extent of its astrophysical applications is in

a lesser-known Lecture Notes in Physics publication, edited by Mihalas and Win-

kler, “Radiation Hydrodynamics in Stars and Compact Objects” [8]. The table of

contents in this publication covers a vast expanse of astrophysical phenomena: pro-

tostellar objects; normal stars; supernovae; stellar x-ray sources; novae and accretion

disks; x-ray and gamma-ray bursters; active galactic nuclei; stellar and extragalactic

jets. The texts by Shapiro and Teukolsky, “Black Holes, White Dwarfs, and Neutron

Stars” [9], and Zel’dovich and Novikov, “Relativistic Astrophysics”, are devoted to

studying truly compact astrophysical objects where relativistic effects are relevant.

While the latter two books never explicitly mention RH, the basic concepts are con-

tinuously used: equilibrium and nonequilibrium phases within the local fluid, and

the non-local transport of energy and momentum, by radiation and other fields.
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I.2 Equilibrium diffusion in radiation hydrodynamics

Stellar and compact astrophysical objects have in common that their interiors, as-

sumed to be composed of some bulk material and radiation, are largely in thermal

equilibrium (TE), which is not to be confused with LTE which is a statement about

electron level populations. Much of the local radiation is strongly interacting with

the interior material, and the radiation energy transported by the photon-field has

a diffusive character. Simultaneous TE and diffusive coupling between the fluid and

the radiation defines the EDA, and is of significant interest in many astrophysical

applications because it reduces the system in a way that allows analysis or even a

physical solution. In certain physical situations, it is not clear a priori whether the

EDA reasonably applies to the problem, but, in the interest of describing the system

and obtaining a solution, the system may be assumed to obey the EDA. The EDA,

and its physical limits of validity, are well covered in the classic texts by Mihalas and

Mihalas [4] and Zel’dovich and Raizer [3].

It is typically assumed that the physical system, whether an astrophysical object

or a portion of a laboratory experiment, can be decomposed into two spatially sep-

arable parts, the interior and the boundary, where the boundary is a “few” photon

mean-free-paths thick. In the EDA, the radiation energy and momentum deposited

in the fluid is dominantly due to photon absorption in the interior region, where this

energy is isotropically re-emitted, and slowly approaches the boundary of the system.

As the radiation approaches the boundary-layer there is a significant probability that

it will escape the system, and potentially be observed by the astronomer or experi-

mentalist. As such, the EDA is not directly observable, but, it is also not possible to

observe exactly how far the system is from satisfying the EDA, unless it is obviously
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nowhere near it. So for many problems, on heuristic grounds, the EDA is reasonable.

An open question that has been discussed in the literature for several decades [4,

10, 11] is, “What level of material-motion corrections are required in the radiation

transport equation, when coupled to the RH equations, such that the EDA is sat-

isfied?” This is the first question this dissertation rigorously answers. A subtle

rejoinder might be, “If the EDA can not be observed, then why is it important to

resolve this question?”, and the answer is “Because we expect computational models

to accurately simulate the interior regions of stellar objects, compact objects, and

laboratory experiments.” Thus, it is necessary to know which terms are required

in the analytic equations of the model which may then be discretized, and solved

computationally. Previous work has shown that once the necessary terms to describe

diffusion processes in neutron transport [12, 13], and radiative transfer [14, 15], are

known rigorously, then specific discretizations can be meaningfully tested to deter-

mine whether a given discretization 1) rigorously preserves the EDA, and 2) produces

accurate solutions to analytic problems. Work by Lowrie, Morel and Hittinger [11]

began the rigorous analytic extension to the equations of RH, but stopped short of

determining which terms were necessary and sufficient for the EDA. This question

is addressed in Chapter III, but only to the extent of establishing which terms are

necessary in the radiation transport equation to satisfy the EDA in RH. The problem

of testing specific RH discretizations will be a complex challenge due to the severe

complexity of consistent RH codes, even in one-dimension, and also due to the fact

that novel codes are currently being developed and released.
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Figure I.1: Simeis 147, the remnant of SN185. A neutron star is in the center of the
figure. The red filaments represent color enhancement of hydrogen recombination
at the front of the expanding shock. Adapted from the March 24, 2005, Astronomy
Picture of the Day [16].

I.3 Radiative shocks

The canonical work by Zel’dovich and Raizer, “Physics of Shock Waves and High-

Temperature Hydrodynamic Phenomena” [3], provides a clear explanation of the

kinetic and dynamic processes between the radiation and the fluid mentioned above.

Before this publication, both authors, and many other contributors to the field, per-

formed extensive research attempting to understand the theoretical and experimental

aspects of radiative shocks associated with myriad phenomena. Much of this work

continues today.

While the process of equilibrium diffusion erases all traces of its existence, radiating

shocks typically have explosive signatures. Supernovae represent the earliest obser-

vations of radiating shocks with estimated dates of observation going back to the year

185AD when Chinese astronomers recorded a “guest star” in the Book of Later Han,
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which is labelled Simeis 147. Simeis 147 is a supernova remnant whose supernova is

estimated to have occurred in the year 38,000BCE. It was featured as an Astronomy

Picture of the Day on March 24, 2005, and is shown in Figure (I.1). Part of the

Figure’s caption [16] reads:

It covers a width of 150 light-years. The color composite image includes

eight hours of exposure time with an H-alpha filter, transmitting only the

light from recombining hydrogen atoms in the expanding nebulosity and

tracing the regions of shocked, glowing gas.

Perhaps the most well known supernova in recent history is SN1987A, which was

observed from earth on February 23, 1987, and is shown in Figure (I.2). One of the

first models of SN1987A was made by Ensman and Burrows [17] wherein they in-

vestigate the physics of shock breakout using the two-temperature, one-dimensional,

Lagrangian, LTE, RH code VISPHOT, which includes a variable Eddington closure

of the radiation transport angular moments. They computationally observe both

kinetic and dynamic affects to the shock regime during shock breakout, and present

simulated evidence of a radiative precursor. The radiative precursor was first pre-

dicted in 1957, by Sen and Guess [18], when reporting semi-analytic radiative shock

solutions. The radiative precursor is predicted to have two classifications, subcriti-

cal and supercritical, depending on whether the material temperature ahead of the

shock is less than (subcritical), or greater than (supercritical), the material’s final

post-shock temperature.

HEDLA is relatively young compared to observational astronomy, and there is con-

siderable overlap between the two fields; excellent reviews can be found in [20–24]. In
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Figure I.2: SN1987A was viewed from earth on February 23, 1987. Only 168,000
light-years away, it is one of the most well-studied supernovae. The brightly lit
inner-ring and the two fainter outer-rings were blown off long before the supernova
event, and the cause of their formation is still discussed. The inner-ring is currently
glowing due to the supernova shocked gas which is travelling through the ring exciting
local matter. Adapted from the February 26, 2012, Astronomy Picture of the Day
[19].

2002, Keiter, et. al. [25], using the OMEGA laser, reported observing the radiative

precursor created due to a hydrodynamic shock. In 2004, Bouquet et. al. [26], using

the LULI laser, reported observing supercritical radiative shock precursors. Blast

wave development of a radiation precursor was observed in 2005 by Hansen [27]; see

Figure (I.3). Radiatively collapsed shocks were reported in 2006 by Reighard, et. al.

[28] which are of observational interest in the regime of thin shocks. These papers

all used their experimental tests as validation for the simulation code of their choice.

But as mentioned at the end of the previous paragraph, many of these observations

were originally predicted using semi-analytic methods.
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Figure I.3: An ablative laser pulse (10 J for 5 ns), from the left, is focused on a solid
pin. The super-critical radiating shock preheats the ambient gas as seen in the faint
glow. Adapted from [27].

I.4 State-of-the-art computational methods

One of the first modern multi-dimensional radiation (magneto-)hydrodynamic codes,

ZEUS-2D, was the work of Stone, Mihalas and Norman [29]. In 1994, Ensman pub-

lished a suite of test problems for RH codes [30], which she used to test VISPHOT.

Two of the tests reported in Ensman’s suite are for a subcritical radiative shock

and a supercritical radiative shock. This is not to say that Ensman generated semi-

analytic solutions to radiating shocks, but the importance of such solutions, for code

comparison, was recognized, and it appears that many of the semi-analytic solu-

tion methods developed in the 1960’s had been forgotten, or ignored. TITAN was

released in 1994 by Gehmeyr and Mihalas as a one-dimensional adaptive grid RH

code. They used Ensman’s test suite as part of their verification process. The papers

by Sincell, Gehmeyr and Mihalas [31, 32] focused TITAN specifically on the time-

dependent structure of radiating shocks, and again, Ensman’s test-suite was used for

code comparison. Analytic results described in Zel’dovich and Raizer, and reviewed

in their paper [31], disagreed with their computational results, which were explained

as being due to terms second-order in the gas compression ratio. Drake [5, 6] made

the poignant comment that discretized computational results must be in agreement
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with analytic methods. High-resolution Godunov and discontinuous Galerkin meth-

ods were addressed by Lowrie and Morel [33, 34], but little progress was made in

the way of advanced numerical methods. It would take almost a decade before a

hybrid-Godunov RH solver would be published. It seems appropriate that it was

produced by Jim Stone and his student [35], almost 20 years after Stone introduced

ZEUS-2D.

While code development in the 1990’s was focused largely on methods in one-

dimension, with the early exception of Stone’s work on ZEUS-2D [29], the last

decade-and-a-half has seen a number of advances in physical developments in 3-

D RH. The 2003 paper by Hayes and Norman [36] presents physical and numerical

extensions of Stone’s ZEUS-2D code, including time-dependent transport and the

ability to run the code on massively parallel architectures. In 2007 Krumholz et.

al. [37] introduced an operator-splitting flux-limited diffusion 3-D algorithm cou-

pled to the base code ORION. In 2009, Klein and Stone [38] co-wrote a conference

proceedings on the numerical methods used in their separate codes. Their review

is a stout reminder of the complexity of modelling astronomical observations and

HEDLA experiments. The vast amount of chemical physics involved in astrophysical

processes is packaged in the code by Reynolds, et. al., [39], which was published

in 2009. In 2010, Sekora and Stone [35] developed the first one-dimensional hybrid-

Godunov RH algorithm. In 2011, John Bell’s group [40] added a grey flux-limited

diffusion solver to their compressible astrophysics code, CASTRO. In 2012, Stone’s

[41] group extended Sekora’s one-dimensional hybrid-Godunov solver to multiple di-

mensions using a variable Eddington tensor treatment for the radiation transport.

Bell’s group [42] extended their work, in 2013, by incorporating a multigroup solver

for the radiation frequency.
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CHAPTER II

RADIATION TRANSPORT AND RADIATION HYDRODYNAMICS

As mentioned in Chapter I, RH describes the kinetic and dynamic responses between

radiation and a fluid. When kinetic effects are dominant, the radiation mainly effects

the internal state of the fluid via (de)excitation of atomic electron levels and local

thermal properties. When dynamic effects are also important, the radiation signifi-

cantly affects the trajectory of the fluid and other hydrodynamic characteristics.

We begin the study of radiation-material interactions by considering the radiation

transport equation, without material motion, which is represented by the Boltzmann

transport equation,

1

c
∂tIν + Ωi∂iIν = −σtIν +

σs
4π
φν + σaBν(T ) . (II.1)

The left-hand side (LHS) of equation (II.1) represents the time and space rates of

change of the frequency dependent radiation intensity, Iν [energy/length2 − time−

steradian− frequency], where c [length/time] is the speed of light, and the deriva-

tives are with respect to the lab-frame space-time coordinates. These derivatives are

referred to as the transport terms. Latin subscripts are integer valued, with domain

i ∈ {1, 2, 3}. A repeated Latin subscript represents Einstein summation, and since

the distinction between covariant and contravariant tensors will not be needed in this

dissertation, all indices will be written as subscripts. The right-hand side (RHS) rep-

resents the interaction of the radiation with the fluid, where σt [length−1] is the total
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cross-section analogous to the extinction coefficient, σs [length−1] is the scattering

cross-section which is assumed to be isotropic (denoted by dividing by 4π) acting

on the angle-integrated radiation intensity φν [energy/length2− time− frequency],

and σa [length−1] is the absorption cross-section acting on the Planck function Bν(T )

[energy/length2− time−steradian−frequency]. The total cross-section is the sum

of the scattering and absorption cross-sections, σt = σs + σa. All the cross-sections

are assumed to depend on the material temperature and density, and the absorption

and total cross-sections are assumed to be frequency-dependent.

The three terms on the RHS of equation (II.1) are the extinction of photons with

frequency ν [time−1], the isotropic net in-scatter of photons with frequency ν, and

the isotropic Planck emission of photons with frequency ν. The Planck function,

Bν(T ) =
2hν3

c2

[
exp

(
hν

kBT

)
− 1

]−1

, (II.2)

represents the radiation intensity emitted by a black-body in thermal equilibrium

with its surroundings (TE), where h [energy − time] is Planck’s constant and kB

[energy/Kelvin] is Boltzmann’s constant. It is generally assumed in RH that mate-

rials at temperature T [Kelvin] radiate according to the Planck function, and thus

that the material is in LTE with its surroundings. Even though it is known that this

is a weak assumption at best, it allows the use of standard thermodynamic relation-

ships. This makes it important in many studies of stellar environments to correctly

determine the effective material temperature, such that the correct Planck distri-

bution is used, and the correct radiation emission is modeled. Figure (II.1) shows

the accuracy of assuming that the sun is a black-body at an effective temperature,

Teff = 5777K.
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Figure II.1: Spectral irradiance of the sun overlayed on the blackbody spectrum for
an object with temperature value ∼ 5777K. It is seen that the sun’s spectrum very
nearly fits the blackbody spectrum. Adapted from Wikipedia [43].

The Planck function may be frequency-integrated to obtain the temperature-dependent

Planck function

B(T ) =

∫ ∞
0

Bν(T ) dν =
arcT

4

4π
= σSBT

4 , (II.3)

where ar [energy/Kelvin4−length3] is the radiation constant and σSB [energy/Kelvin4−

length2 − time − steradian] is the Stefan-Boltzmann constant. The frequency-
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integrated Planck function is isotropic and its zeroth angular-moment is

∫
4π

B(T )dΩ = arcT
4 . (II.4)

The LHS of equation (II.4) is the spectral irradiance for a body emitting radiation

according to the Planck-function. It is this integrated value, measured for the sun,

which determines the sun’s effective temperature via the RHS of equation (II.4).

II.1 Radiation transport without material motion

Since the radiation transport equation is effectively a kinetic theory for photons, the

zeroth, first, and second angular-moments of the radiation intensity are physically

meaningful

φν ≡
∫

4π

Iν dΩ , (II.5a)

Fi,ν ≡
∫

4π

ΩiIν dΩ , (II.5b)

Pij,ν ≡
∫

4π

ΩiΩjIν dΩ , (II.5c)

and represent the angle-integrated radiation intensity φν , the frequency-dependent

radiation flux Fi,ν , and the frequency-dependent radiation pressure Pij,ν . These terms

may be frequency-integrated

E ≡ 1

c

∫ ∞
0

∫
4π

Iν dνdΩ , (II.6a)

Fi ≡
∫ ∞

0

∫
4π

ΩiIν dνdΩ , (II.6b)

Pij ≡
1

c

∫ ∞
0

∫
4π

ΩiΩjIν dνdΩ , (II.6c)
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and represent the radiation energy density E , the radiation flux Fi, and the radia-

tion pressure Pij. The zeroth and first angular-moments of the frequency-integrated

transport equation (II.1),

∫ ∞
0

∫
4π

[
1

c
∂tIν + Ωi∂iIν

]
dνdΩ ≡ ∂tE + ∂iFi =

∫ ∞
0

∫
4π

QνdνdΩ ≡ Sre , (II.7a)

1

c

∫ ∞
0

∫
4π

Ωi

[
1

c
∂tIν + Ωj∂jIν

]
dνdΩ ≡ 1

c2
∂tFi + ∂jPij

=
1

c

∫ ∞
0

∫
4π

ΩiQνdνdΩ ≡ Si,rp , (II.7b)

represent the rate at which radiation energy and radiation momentum enter the

radiation field, such that the radiation energy and momentum source rates, Sre and

Si,rp, are represented on the RHS. The factor of c dividing the momentum source rate

is required to obtain the correct units since a photon’s momentum is defined as its

energy divided by the speed of light: pγ = Eγ/c. Since the interaction terms on the

RHS of equation (II.1), which are written as Qν in equations (II.7), are frequency-

dependent they do not immediately simplify, and including these terms does not

clarify the meaning of equations (II.7). Now that the necessary angular moments

have been defined, it is appropriate to talk about the P1 approximation, the diffusion

approximation, and the EDA.

II.1.1 The P1 approximation

The radiation energy and momentum equations (II.7) represent two equations con-

taining three radiation variables. These are the first two angular-moments of the

radiation transport equation (II.1) and each new angular-moment would simply in-

troduce a new radiation variable of one higher angular-moment. Thus the angular-
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moments method of solving the transport equation is always an under-determined

system of n-equations in (n + 1)-unknowns. One way to solve this hierarchy prob-

lem, which is physically reasonable in certain circumstances, is to invoke the P1

approximation and stipulate that the radiation intensity is weakly anisotropic, i.e.,

|Fi,ν | � φν ,

Iν =
1

4π
(φν + 3ΩiFi,ν) . (II.8)

Thus, the radiation intensity is dominantly isotropic since φν dominates Fi,ν , and

the angular-dependence of the radiation intensity is allowed to come from the weak

radiation flux. The name P1 is a reference to the first-order Legendre polynomial

expansion in the angular variable Ωi. The zeroth, first, and second angular-moments

of the weakly anisotropic radiation intensity, equation (II.8), produce

φν =
1

4π

∫
4π

(φν + 3ΩiFi,ν) dΩ = φν , (II.9a)

Fi,ν =
1

4π

∫
4π

Ωi (φν + 3ΩiFi,ν) dΩ = Fi,ν , (II.9b)

Pij,ν =
1

4π

∫
4π

ΩiΩj (φν + 3ΩiFi,ν) dΩ =
1

3
φν , (II.9c)

where the first and second expressions are consistency checks, and the third ex-

pression relates the frequency-dependent radiation pressure to the angle-integrated

radiation intensity. The frequency-integrated expressions are

E =
h

4π

∫ ∞
0

∫
4π

(φν + 3ΩiFi,ν) dνdΩ = E , (II.10a)

Fi =
h

4π

∫ ∞
0

∫
4π

Ωi (φν + 3ΩiFi,ν) dνdΩ = Fi , (II.10b)

Pij =
h

4π

∫ ∞
0

∫
4π

ΩiΩj (φν + 3ΩiFi,ν) dνdΩ =
1

3
Eδij , (II.10c)
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where, again, the first two expressions are consistency conditions and the third ex-

pression relates the radiation pressure to the radiation energy density. In the as-

trophysical literature, this relation between the radiation pressure and the radiation

energy density is termed the Eddington approximation, after Sir Arthur Eddington.

The assumption that the radiation field is weakly anisotropic has the effect of mak-

ing the radiation pressure isotropic. The radiation energy and momentum equations

(II.7), in the P1 approximation, take the form of a 2 × 2 system of equations with

two variables in two equations:

∂tE + ∂iFi = Sre , (II.11a)

1

c2
∂tFi +

1

3
∂iE = Si,rp . (II.11b)

The physical grounds for the P1 approximation are that, in many problems of interest,

the radiation intensity is nearly isotropic such that the radiation flux is weak and the

radiation pressure is effectively isotropic. Isotropy of the radiation pressure, equation

(II.10c), implies that the net radiation forces acting across a perpendicular plane are

zero, which represent the off-diagonal components of the radiation pressure. As for

the diagonal components, the trace of the radiation pressure tensor is the radiation

energy density

Tr(Pij) = Pxx + Pyy + Pzz

=

∫ ∞
0

∫
4π

(
Ω2
x + Ω2

y + Ω2
z

)
Iν dνdΩ

=

∫ ∞
0

∫
4π

Iν dνdΩ

= E , (II.12)
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and due to the isotropy of the radiation pressure the three diagonal terms are equal

such that

Pxx = Pyy = Pzz =
1

3
E . (II.13)

II.1.2 The diffusion approximation

The diffusion approximation incorporates the P1 approximation in equations (II.7), as

written in equations (II.11a), and imposes on them that the radiation diffuses through

the material. Diffusion theory says that the radiation flux should be proportional to

the negative gradient of the radiation energy density: Fi ∼ −∂iE . Assuming that

the interaction terms on the RHS of the transport equation (II.1) are isotropic and

frequency-independent, then the first-angular moment of the frequency-integrated

transport equation can be extended to the RHS,

1

c2
∂tFi +

1

3
∂iE = −σt

c
Fi , (II.14)

and it is apparent that the time-derivative of the radiation flux must be set to zero

to obtain an expression in which the radiation flux is the gradient of the radiation

energy density:

Fi = − c

3σt
∂iE . (II.15)

In Chapter III, it will be shown that the time-derivative in the radiation momen-

tum equation, in the EDL, is O(ε2), and therefore negligible. Thus, the diffusion

approximation requires, beyond the P1 approximation, that the time derivative in

the radiation momentum equation be zero.
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II.1.3 The equilibrium diffusion approximation

The EDA extends the diffusion approximation in such a way that the radiation and

material are in TE such that they acquire the same temperature, T , the radiation

energy density is E ≡ arT
4, and the radiation flux is approximately zero, Fi ≈ 0.

Physically, the EDA stipulates that the absorption mean-free-path for the radiation

in the material, λa = σ−1
a , is very small compared to the size of the material-system,

L: λa � L. Then the material, at temperature T , isotropically emits photons

in accordance with the Planck function, and these photons travel, on average, one

mean-free-path before being reabsorbed by the material. The isotropy of radiation

emission by the material is responsible for the vanishing of the radiation flux. The

absorption mean-free-path is assumed to be very small compared to the physical

size of the material system, λa � L, such that the radiation energy is reabsorbed

in a neighborhood near its emission. In this way the radiation energy density is a

manifestation of the local material temperature, and the material temperature from

point to point is tightly coupled locally via radiation emission and absorption. Thus

the radiation-material system is in TE.

II.2 Invariants and transformations

It is known from special relativity that certain physical characteristics of a system

are invariant under transformations between different reference frames. These frame-

independent terms help determine how to transform other important terms that are

not invariant, and thus the special importance of the frame-invariants. It is worth

commenting that the photon is treated in this dissertation as a conserved particle.

While this does not hold in quantum electrodynamics, it is a reasonable assumption
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in nonrelativistic quantum mechanics and much of quantum statistics, and it is a

reasonable assumption for the problems of interest here. Much of this Section, and

Appendix A, follow directly from Section 1.6 of Jeremy Goodman’s High-Energy

Astrophysics lecture notes [44] and section 4.9 of Rybicki and Lightman [45].

Four invariants are needed in this chapter: the intensity invariant, the absorption or

cross-section invariant, the emission invariant, and the invariant of the momentum-

space volume. While their derivations are interesting, they divert from the necessary

course of discussion, and are relegated to Appendix A. The respective expressions

for these invariants are:

I =
Iν
ν3
, (II.16a)

a = νσa , (II.16b)

e =
σaBν(T )

ν2
, (II.16c)

ν dνdΩ = νo dνodΩo , (II.16d)

where the subscript-o denotes a comoving-frame quantity. The second and third in-

variants are familiar from the first and third interaction terms on the RHS of the

radiation transport equation (II.1), and since that equation is written without con-

sidering material motion, such that the comoving- and lab-frames are the same, their

importance is more obvious. The first and fourth invariants are necessary for the

isotropic in-scatter source on the RHS of equation (II.1), which is the second inter-

action term.

While Lorentz invariants are helpful, they are not the full story. Many “objects”
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in special relativity cannot be viewed simply as Lorentz invariants without losing a

considerable amount of the information they carry. A simple example is the space-

time four-vector; a more useful one is the four-momentum of a particle. A Lorentz

invariant can be defined for both, individually, as the square of the four-vector, but

at the cost of losing the information contained in the coordinates.

The Lorentz transformation from the lab-frame to the comoving-frame, x going to

xo, is written

xo =

 γu −γuβᵀ

−γuβ I + (γu − 1) β−2ββᵀ

x , (II.17)

where γu = (1− β2)
−1

is the Lorentz factor, β ≡ u/c is a column-vector, and βᵀ is

its transpose, I is the 3-by-3 identity matrix, and x = (ct,x)ᵀ represents the space-

time four-vector. A photon’s four-momentum may similarly be Lorentz transformed

between the two frames of reference

po =

 γu −γuβᵀ

−γuβ I + (γu − 1) β−2ββᵀ

p , (II.18)

where p = (E/c,p) = (hν/c)(1,Ω)ᵀ is the photon four-momentum, and Ω represents

the photon’s unit-normalized direction of travel. The transformation of the photon

frequency,

νo = νγu (1− β ·Ω) , (II.19)

corresponds to the E/c term of the photon four-momentum in equation (II.18).
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II.3 Radiation transport in the lab-frame with material motion

The radiation transport equation, as written in equation (II.1), is for a material at

rest in the lab-frame. The question is then, “How should this equation change when

the material is in motion but the radiation and the fluid are viewed from the lab-

frame?” The cross-sections and the Planck function are experimentally measured in

the comoving-frame, and so the comoving-frame is the physically correct frame from

which to reference the interaction terms and the Planck function. For notational

convenience, the subscript-o will be omitted from all cross-sections and the Planck

function with the understanding that they reference their comoving-frame values.

Every term in equation (II.1) is a lab-frame quantity, so it is necessary to transform

the interaction and source terms to the comoving-frame. Thus, every term on the

LHS is an innate lab-frame quantity since there are no interaction nor source terms

there, and the LHS will be left alone. The first term on the RHS contains the material

total cross-section and the lab-frame measured radiation intensity. The cross-section

must be correctly transformed to the comoving-frame according to equation (II.16b)

−σtIν 7→ −
νo
ν
σtIν . (II.20)

The second term on the RHS is fairly involved since, as the in-scatter source, it

represents a source term and must be treated on the same footing as the invariant

emission in equation (II.16c). Ultimately, this means transforming the in-scatter

source to the comoving-frame, and then transforming the radiation intensity and the

momentum-space volume back to the lab-frame. Its derivation is left to Appendix

23



B, and the result is presented here:

σs
4π
φν 7→

(
ν

νo

)2
σs
4π

∫
4π

νo
ν ′
Iν′(Ω

′) dΩ′ . (II.21)

The third term is the emission source, the invariance of which is defined in equation

(II.16c),

σaBν(T ) 7→
(
ν

νo

)2

σaBν(T ) . (II.22)

Thus, the lab-frame radiation transport equation correct through all orders in β,

with interaction terms appropriately transformed to their comoving-frame values, is

1

c
∂tIν + Ωi∂iIν

= −νo
ν
σtIν +

(
ν

νo

)2
σs
4π

∫
4π

νo
ν ′
Iν′(Ω

′) dΩ′ +

(
ν

νo

)2

σaBν(T ) . (II.23)

It is worth calling attention to the primed-′ angular variable and frequency in the

second interaction term on the RHS, which can be considered from equation (II.19),

νo = ν ′γu (1− β ·Ω′) . (II.24)

The primed angular variable and frequency reside in the same frame as the unprimed

variables, and hence have the same velocity and β. The frequency dependence of the

radiation intensity in the integrand is with respect to the primed frequency variable.
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II.4 Radiation hydrodynamics

Now that the correct lab-frame radiation transport equation has been derived, the

rates at which radiation energy and momentum are deposited into the fluid can be

determined, and these values can be coupled to the Euler equations of hydrody-

namics. In this way, the radiation informs the hydrodynamics about the appropriate

kinetic and dynamic effects and the equations of radiation hydrodynamics are formed.

The radiation energy and momentum source rates represent radiation source rates to

the radiation field due to interactions between the material-radiation system. Since

the total energy and momentum of the material-radiation system must be conserved

during these interactions, it is necessary to couple these sources to the Euler equa-

tions of hydrodynamics as deposition rates into the material:

∂tρ+ ∂i (ρui) = 0 , (II.25a)

∂t (ρui) + ∂j (ρuiuj + pij) = −Si,rp , (II.25b)

∂t

(
1

2
ρu2 + ρe

)
+ ∂i

[
uj

(
1

2
ρuiuj + ρeδij + pij

)]
= −Sre , (II.25c)

1

c
∂tIν + Ωi∂iIν

= −νo
ν
σtIν +

(
ν

νo

)2
σs
4π

∫
4π

νo
ν ′
Iν′(Ω

′) dΩ′ +

(
ν

νo

)2

σaBν(T ) ≡ Qν , (II.25d)

where

Sre ≡
∫ ∞

0

∫
4π

QνdνdΩ = ∂tE + ∂iFi , (II.25e)

Si,rp ≡
1

c

∫ ∞
0

∫
4π

ΩiQνdνdΩ =
1

c2
∂tFi + ∂jPij . (II.25f)
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These equations represent the conservation of mass, material momentum and ma-

terial energy coupled to the radiation momentum and energy source rates, the lab-

frame radiation transport equation with comoving-frame cross-sections and Planck

function, and the source rates of radiation energy and momentum to the radiation

field. Photons are massless so there is no contribution to the mass conservation

equation. The minus signs on the RHS of the fluid equations are necessary because

Sre and Si,rp represent sources for the radiation field, i.e., they are sinks for the fluid,

but the RHS is expected to represent sources for the fluid, thus the minus signs.

These four equations represent a closed set of equations which correctly describe the

radiation-material system. The range of physical applications of these four equations

was briefly discussed in Chapter I.

It is worth noting that the Navier-Stokes equations of hydrodynamics, which in-

corporate fluid viscosity and thermal conductivity, could have been coupled to the

radiation energy and momentum source rates instead of the Euler equations. How-

ever, these effects are 1) often too computationally expensive and produce potentially

small corrections, and 2) Traugott [46] showed that in radiating shocks the radiation

length scale dominates the fluid length scale, which controls viscosity and thermal

conductivity. More importantly, the effects of viscosity and conductivity are not

important to the problems solved in this dissertation. If another problem demanded

it, then the pertinent Navier-Stokes terms could be implemented without affecting

the radiation variables.
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CHAPTER III

ASYMPTOTIC ACCURACY OF THE EQUILIBRIUM DIFFUSION

APPROXIMATION IN RADIATION HYDRODYNAMICS

Asymptotic analysis provides a rigorous mathematical framework from which to de-

rive the behaviour of a set of equations in the limit that certain terms are dominant.

This dominance generally corresponds to the manifestation of some physical approx-

imations, which define asymptotic scalings. The equations being analyzed can be

either the analytic equations of a theory, an associated model, or a specific dis-

cretization. If the asymptotic solutions of the scaled analytic equations exhibit a

physical approximation, through some order in the scaling, then we say that the

solutions of the (unscaled) analytic equations “satisfy” the approximation through

this asymptotic order. When the associated model, or discretization, also exhibits

the physical approximation, in the asymptotic limit, we say that they “preserve”

the limit. Even if the analytic equations asymptotically satisfy the physical approx-

imation it is possible that the associated model, or discretization, may not preserve

the limit, or perhaps not to the same asymptotic order. Those models, and dis-

cretizations, that do preserve the approximations that the analytic equations satisfy

are generally more accurate, and less computationally expensive due to less severe

meshing requirements.

III.1 Example: asymptotic analysis of the neutron transport equation

As a specific but simple example, we will generate the analytic neutron diffusion

equation by performing an asymptotic analysis of the analytic neutron transport
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equation. This requires nondimensionalizing the neutron transport equation, and

determining the appropriate scalings. For convenience, we will work in 1-D, and

focus on asymptotic expansions of the neutron variables that appear in the neutron

transport equation, which are the angular flux ψ, and the scalar flux φ.

Before the asymptotic analysis, we derive the neutron diffusion equation from the

neutron transport equation. Consider the 1-D neutron transport equation

1

v
∂tψ + µ∂xψ + σtψ =

σs
4π
φ+

Q

4π
, (III.1)

whose zeroth and first angular moments are:

1

v
∂tφ+ ∂xJ + σaφ = Q , (III.2a)

1

v
∂tJ +

1

3
∂xφ+ σtJ = 0 . (III.2b)

A diffusion equation is constructed by dropping the time derivative in the first angular

moment, solving for the neutron flux

J = − 1

3σt
∂xφ , (III.3)

and inserting this into the zeroth angular moment

1

v
∂tφ− ∂x

(
1

3σt
∂xφ

)
+ σaφ = Q. (III.4)

This is the neutron diffusion equation, which we now derive asymptotically. The

following nondimensionalization decomposes dimensional variables into the product

of a variable containing the dimension with subscript-∞, and a hatted-̂ variable
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containing a characteristic value of the variable:

t = t∞t̂ , (III.5a)

x = l∞x̂ , (III.5b)

ψ = ψ∞ψ̂ , (III.5c)

φ = φ∞φ̂ = 4πψ∞φ̂ , where φ̂ ≡ 1

4π

∫
4π

ψ̂dΩ , (III.5d)

Q = Q∞Q̂. (III.5e)

Therefore, t∞ contains units of [time], x∞ contains units of [length], ψ∞ contains

units of [energy/length2 − time − steradian − energy], and φ∞ contains units of

[energy/length2 − time− energy]. Implementing this nondimensionalization in the

neutron transport equation (III.1), and dividing through by σtψ∞, produces the

nondimensional neutron transport equation

1

t∞vσt
∂t̂ψ̂ +

1

σtl∞
µ∂x̂ψ̂ + ψ̂ =

(
1− σa

σt

)
φ̂

ψ∞
+

Q̂

4πσtψ∞
, (III.6)

where the scattering cross-section has been split into the difference between the total

and absorption cross-sections: σs = σt − σa. The equation above indicates that the

transport operators, and source terms, are associated with specific nondimensional

ratios:

1

v
∂t →

1

t∞vσt
∂t̂ , (III.7a)

µ∂x →
1

σtl∞
µ∂x̂ , (III.7b)

φ→ φ̂

ψ∞
, (III.7c)
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Q→ Q̂

σtψ∞
. (III.7d)

This information is used to nondimensionalize the neutron diffusion equation (III.4)

1

t∞vσt
∂tφ−

1

3

(
1

σtl∞

)
∂x

(
1

σtl∞

)
∂xφ+

σa
σt
φ =

Q

4πσt
, (III.8)

where the hats-̂ have been dropped for notational convenience, and the common

factor of ψ∞ has been removed. The diffusion solution φ, must be invariant to the

scaling (neglecting boundary conditions), and since the diffusive term is quadratic

in (σtl∞)−1, a reasonable scaling is to multiply all terms by ε2

ε2

t∞vσt
∂tφ−

1

3

(
ε

σtl∞

)
∂x

(
ε

σtl∞

)
∂xφ+

ε2σa
σt

φ = ε2
Q

4πσt
. (III.9)

The following scalings are thus defined,

1

t∞vσt
→ ε2

t∞vσt
, (III.10a)

1

σtl∞
→ ε

σtl∞
, (III.10b)

σa
σt
→ ε2σa

σt
, (III.10c)

Q→ ε2Q , (III.10d)

and used to define the scaled, redimensionalized, neutron transport equation (III.1)

ε2
1

v
∂tψ + εµ∂xψ + σtψ =

(σt − ε2σa)
4π

φ+ ε2
Q

4π
. (III.11)

The scalings in equations (III.10) define the neutron diffusion limit. The angular

flux and scalar flux in equation (III.11) are now asymptotically expanded in powers
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of ε,

ψ =
∞∑
n=0

ψ(n)εn , (III.12a)

φ =
∞∑
n=0

φ(n)εn , (III.12b)

generating a hierarchical set of equations. The leading-, first-, second-, and third-

order asymptotic neutron transport equations of this hierarchical set are:

O(ε(0))

ψ(0) =
φ(0)

4π
, (III.13a)

O(ε(1))

µ∂xψ
(0) + σtψ

(1) =
σt
4π
φ(1) , (III.13b)

O(ε(2))

1

v
∂tψ

(0) + µ∂xψ
(1) + σtψ

(2) =
σt
4π
φ(2) − σa

4π
φ(0) +

Q

4π
, (III.13c)

O(ε(3))

1

v
∂tψ

(1) + µ∂xψ
(2) + σtψ

(3) =
σt
4π
φ(3) − σa

4π
φ(1) . (III.13d)

The zeroth angular moment of the second- and third-order asymptotic equations

(III.13c) - (III.13d) represent balance equations of the neutron transport equation,
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O(ε(2))

1

v
∂tφ

(0) + ∂xJ
(1) = −σaφ(0) +Q , (III.14a)

O(ε(3))

1

v
∂tφ

(1) + ∂xJ
(2) = −σaφ(1) , (III.14b)

and also define which asymptotic terms must be evaluated: φ(0), φ(1), J (1), and J (2).

To obtain the expressions for these asymptotic variables the zeroth and first angular

moments must be taken of ψ(0), ψ(1), and ψ(2), which are determined from equations

(III.13a) - (III.13c):

O(ε(0))

ψ(0) =
φ(0)

4π
, (III.15a)

O(ε(1))

ψ(1) = − µ
σt
∂xψ

(0) +
1

4π
φ(1) , (III.15b)

O(ε(2))

ψ(2) = − 1

vσt
∂tψ

(0) − µ

σt
∂xψ

(1) +
1

4π
φ(2) − σa

4πσt
φ(0) +

Q

4πσt
. (III.15c)
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The necessary zeroth and first angular moments of these angular flux solutions are:

O(ε(0))

φ(0) = φ(0) , (III.16a)

J (0) = 0 , (III.16b)

O(ε(1))

φ(1) = φ(1) , (III.16c)

J (1) = − 1

3σt
∂xφ

(0) , (III.16d)

O(ε(2))

J (2) = − 1

3σt
∂xφ

(1) . (III.16e)

Using these results in equations (III.14) produces the leading- and first-order asymp-

totic neutron diffusion equations,

O(ε(0))

1

v
∂tφ

(0) − ∂x
1

3σt
∂xφ

(0) + σaφ
(0) = Q , (III.17a)

O(ε(1))

1

v
∂tφ

(1) − ∂x
1

3σt
∂xφ

(1) + σaφ
(1) = 0 . (III.17b)
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For notational convenience we write the first-order expansion of a variable as

φ[1] ≡ φ(0) + εφ(1) , (III.18)

such that the term in brackets represents the order of expansion. Then, equations

(III.17) can be summed

1

v
∂tφ

[1] − ∂x
1

3σt
∂xφ

[1] + σaφ
[1] = Q , (III.19)

and the asymptotic neutron transport equation (III.11) has been used to reproduce

the neutron diffusion equation through first-order, and we say that the asymptotic

neutron transport solutions satisfy the neutron diffusion equation (III.4) through

first-order. This is the highest-order at which the asymptotic solutions of the neutron

transport equation satisfy the neutron diffusion approximation. Thus, for a physical

model, or a valid discretization, associated with the neutron transport equation to

fully preserve the neutron diffusion limit their asymptotic solutions must preserve the

neutron diffusion equation through first-order. Then, we say that the model, or the

discretization, preserves the diffusion limit. In this case, the diffusion approximation

is valid under the discretization. If two different physical models independently pre-

serve the diffusion limit, then we say that these models are equivalent in the diffusion

limit.

The various discretizations used to computationally solve the neutron transport equa-

tion give quantitatively different solutions to the diffusion equation, and some of the

solutions are even qualitatively different, especially near the boundaries. Larsen,

Morel and Miller [12] and Larsen and Morel [13] used asymptotic analysis to predict
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when and which discretizations preserve the neutron diffusion limit; some discretiza-

tions preserve the diffusion limit in certain limiting circumstances and to certain

orders in the expansion parameter. They then presented computational results from

the discretized solutions of the neutron diffusion equation. The asymptotic analysis

predictions are in agreement with the computational results, and provided guidance

to understand the distinctions between, and weaknesses, of the individual discretiza-

tions.

Similar asymptotic analysis work was performed for the equations of radiative trans-

fer, which manifest the equilibrium diffusion approximation (EDA), and defined the

scalings of the equilibrium diffusion limit (EDL). This coupled, non-linear, set of

differential equations does not simplify to a single diffusion equation, but various dis-

cretizations of these equations have been used to solve diffusive problems, again, with

quantitatively and sometimes qualitatively different solutions. Morel used asymp-

totic analysis to show that the coupled equations satisfy the EDA through first-order.

Morel then applied asymptotic analysis to various discretizations to predict which

preserved the EDL and under what circumstances, or at what order a discretization

failed to preserve the EDL. Olson, Auer and Hall computationally tested the accu-

racy of these discretizations against the analytic time-dependent Su-Olson radiative

transfer problem [47], which uses a constant opacity, and against a problem in which

the opacity varies with temperature as T−3 and the heat capacity is constant, analo-

gous to an ideal gas. The S8 transport solution with a variable Eddington factor was

used as the exact answer for this problem. While these two problems do not have an

analytic equilibrium-diffusion solution, and they pose boundary limits, they do test

similar important physics. Invariably, the discretizations which preserved the EDL

were more accurate in both problems.
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The EDA of RH was considered by Lowrie, Morel and Hittinger [11], but they only

presented results showing that it was satisfied through leading-order, and left for

future work whether the EDL was fully satisfied through first-order. The work by

Sekora and Stone [35], which describes a 1-D hybrid Godunov scheme for RH, per-

formed self-similar convergence tests, analogous to the work of Larsen, Morel and

Miller [12], to ensure that their scheme preserved the EDL to the level presented in

[11]. The results in this Chapter extend the work in [11].

The RH equations, used in this chapter, are

∂tρ+ ∂i (ρui) = 0 (III.20a)

∂t

(
ρui +

1

c2
Fi
)

+ ∂j (ρuiuj + pij + Pij) = 0 (III.20b)

∂t

(
1

2
ρu2 + ρe+ E

)
+ ∂i

[
uj

(
1

2
ρuiuj + ρeδij + pij

)
+ Fi

]
= 0 (III.20c)

1

c
∂tIν + Ωi∂iIν = σtBν − σtIν +

σs
4π

(φν − 4πBν)

+ βiΩi (σtIν + Iνν∂νσt + 2σtBν − ν∂ν (σtBν))

+
σs
4π
βi (Ωi (2φν − 8πBν − ν∂νφν + ν∂νBν)− Fi,ν + ν∂νFi,ν)

− 1

2
βiβj

(
σtδijIν + δijIνν∂νσt + ΩiΩjIνν

2∂2
νσt
)

+ βiβj

(
(3ΩiΩj − δij)σtBν +

(
1

2
δij − 3ΩiΩj

)
ν∂ν (σtBν) +

1

2
ΩiΩjν

2∂2
ν (σtBν)

)
+
σs
4π
βiβj

((
3ΩiΩj −

1

2
δij

)
φν − 2ΩiΩjν∂νφν − 2ΩiFj,ν + 2Ωiν∂νFj,ν

)
− σsβiβj

(
(3ΩiΩj − δij)Bν −

(
1

2
δij − 3ΩiΩj

)
ν∂νBν +

1

2
ΩiΩjν

2∂2
νBν

)
. (III.20d)

In Section III.2, the equations are nondimensionalized, and nondimensional scaling

ratios are defined. In Section III.3, the asymptotic expansion of the RH equations is
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performed, and it is shown that the asymptotic solutions of the RH equations satisfy

the EDA through O(ε). In Section III.4, the validity of the lab- and comoving-frame

P1 and diffusion models, in the EDL, are compared.

III.2 Nondimensional variables and scaling ratios

It is useful, before beginning the asymptotic expansion, to nondimensionalize the RH

equations, group the dimensional variables, and define scaling ratios with respect to

the asymptotically small parameter ε. Each dimensional variable is decomposed into

the product of a variable containing the dimension with subscript-∞, and a hatted-̂

variable containing a characteristic value of the variable. This decomposition for the

RH variables is

x = x̂ l∞ , (III.21a)

u = û u∞ , (III.21b)

t = t̂
l∞
u∞

, (III.21c)

ρ = ρ̂ ρ∞ , (III.21d)

p = p̂ ρ∞u
2
∞ , (III.21e)

e = ê u2
∞ , (III.21f)

σt = σ̂t σt,∞ , (III.21g)

σs = σ̂s σs,∞ , (III.21h)

Iν = Îν
archT

3
∞

kB
, (III.21i)

ν = ν̂
kBT∞
h

, (III.21j)
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where l∞ is a reference length, u∞ is a reference speed typically assumed to be the

speed of sound, ρ∞ is a reference density, σt,∞ and σs,∞ are reference total and scat-

tering cross-sections, respectively, T∞ is a reference temperature, ar is the radiation

constant, c is the speed of light, h is Planck’s constant, and kB is Boltzmann’s con-

stant. The definition of the radiation intensity, and the frequency, are chosen such

that the definitions for the radiation energy density, radiation flux, and radiation

pressure are sensible:

E =
1

c

∫ ∞
0

∫
4π

Îν
archT

3
∞

kB

kBT∞
h

dν̂dΩ = Ê arT 4
∞ , (III.22a)

Fi =

∫ ∞
0

∫
4π

Ωi Îν
archT

3
∞

kB

kBT∞
h

dν̂dΩ = F̂i arcT 4
∞ , (III.22b)

Pij =
1

c

∫ ∞
0

∫
4π

ΩiΩj Îν
archT

3
∞

kB

kBT∞
h

dν̂dΩ = P̂ij arT 4
∞ . (III.22c)

The nondimensional RH equations, with the reference variables collected, and the

hats dropped for notational convenience, are

∂tρ+ ∂i (ρui) = 0 , (III.23a)

∂t

(
ρui +

u∞
c

arT
4
∞

ρ∞u2
∞
Fi
)

+ ∂j

(
ρuiuj + pij +

arT
4
∞

ρ∞u2
∞
Pij
)

= 0 , (III.23b)

u∞
c
∂t

(
1

2
ρu2 + ρe+

arT
4
∞

ρ∞u2
∞
E
)

+ ∂i

(
u∞
c
uj

(
1

2
ρuiuj + ρeδij + pij

)
+
arT

4
∞

ρ∞u2
∞
Fi
)

= 0 , (III.23c)

1

l∞σt,∞

(u∞
c
∂tIν + Ωi∂iIν

)
= σtBν − σtIν +

σs,∞
σt,∞

σs
4π

(φν − 4πBν)

+
u∞
c
uiΩi (σtIν + Iνν∂νσt + 2σtBν − ν∂ν (σtBν))

+
σs,∞
σt,∞

σs
4π

u∞
c
ui (Ωi (2 (φν − 4πBν)− ν∂νφν + 4πν∂νBν)− Fi,ν + ν∂νFi,ν)

− 1

2

(u∞
c

)2

uiuj
(
σtδijIν + δijIνν∂νσt + ΩiΩjIνν

2∂2
νσt
)
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+
(u∞
c

)2

uiuj

(
(3ΩiΩj − δij)σtBν +

(
1

2
δij − 3ΩiΩj

)
ν∂ν (σtBν) +

1

2
ΩiΩjν

2∂2
ν (σtBν)

)
+
σs,∞
σt,∞

σs
4π

(u∞
c

)2

uiuj

((
3ΩiΩj −

1

2
δij

)
φν − 2ΩiΩjν∂νφν − 2ΩiFj,ν + 2Ωiν∂νFj,ν

)
− σs,∞
σt,∞

σs

(u∞
c

)2

uiuj

(
(3ΩiΩj − δij)Bν −

(
1

2
δij − 3ΩiΩj

)
ν∂νBν +

1

2
ΩiΩjν

2∂2
νBν

)
.

(III.23d)

Four ratios of dimensional reference variables occur in the equations above,

u∞
c
, (III.24a)

arT
4
∞

ρ∞u2
∞
, (III.24b)

σs,∞
σt,∞

, (III.24c)

1

l∞σt,∞
, (III.24d)

such that the dimensionless scaling ratios, and their scalings with the asymptotically

small parameter ε, are defined as:

U =
u∞
c

= O(ε) , (III.25a)

P0 =
arT

4
∞

ρ∞u2
∞

= O(1) , (III.25b)

Ls =
σs,∞
σt,∞

= O(ε) , (III.25c)

L = l∞σt,∞ = O
(

1

ε

)
. (III.25d)

The first scaling is appropriate to nonrelativistic physics, and says that the material

reference velocity is small compared to the speed of light, and hence scales as ε. The

second scaling is a measure of the strength of the radiation energy compared to the

material kinetic energy, and scaling it as a constant means that no assumptions are
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made as to its size. This scaling may be chosen to be small, in which case radiation

effects are expected to be negligible, or it may be chosen to be large and radiation

effects are expected to dominate fluid flow. The third scaling is a measure of the

ratio of the scattering cross-section to the total cross-section, which is assumed to be

small; thus absorption dominates scattering. It is this scaling that is traditionally

used in physical considerations of diffusion [48, 49], and since diffusion is correct

through a linear-power of this ratio it is necessary to expand the RH equations at

least through O(ε). The fourth scaling is a measure of the system reference length

compared to the radiation mean-free-path for interaction. It is assumed that the

radiation travels a very short distance between each interaction, such that the ratio

of the system size to the mean-free-path is very large, and scales inversely to ε. These

scalings define the EDL.

III.3 Asymptotic expansion of the radiation hydrodynamic equations

Upon implementing the scaling ratios (III.24), and their scalings (III.25), in the

nondimensional RH equations (III.23), it is helpful to consider the first three RH

equations separately from the radiation transport equation (III.23d), which will be

considered shortly. The scaled, redimensionalized, equations of mass, momentum,

and energy conservation, are

∂tρ+ ∂i (ρui) = 0 , (III.26a)

∂t (ρui) + ∂j (ρuiuj + pij) = −ε∂tFi − ∂jPij , (III.26b)

ε

[
∂t

(
1

2
ρu2 + ρe

)
+ ∂i

(
uj

(
1

2
ρuiuj + ρeδij + pij

))]
= −ε∂tE − ∂iFi . (III.26c)
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The energy conservation equation, at O(ε0), implies that the leading-order radiation

flux should be zero when calculated from the radiation transport equation since the

radiation flux is the only variable at O(ε0). It is known from the work of Lowrie,

Morel and Hittinger [11] that this is correct. This corresponds to a state near equi-

librium. Using this information in the momentum conservation equation, through

O(ε), implies that the time derivative of the radiation flux disappears, in agreement

with a diffusion approximation.

An asymptotic power-series expansion is assumed for the RH variables:

ρ =
∞∑
n=0

ρ(n)εn , (III.27a)

ui =
∞∑
n=0

u
(n)
i εn , (III.27b)

pij =
∞∑
n=0

p
(n)
ij ε

n , (III.27c)

e =
∞∑
n=0

e(n)εn , (III.27d)

T =
∞∑
n=0

T (n)εn , (III.27e)

T 4 =
∞∑
n=0

T (n),4εn , (III.27f)

σt =
∞∑
n=0

σ
(n)
t εn , (III.27g)

σs =
∞∑
n=0

σ(n)
s εn , (III.27h)

Iν =
∞∑
n=0

I(n)
ν εn , (III.27i)

Bν =
∞∑
n=0

B(n)
ν εn . (III.27j)
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In accordance with the comment above that asymptotic solutions of the diffusion

equation only satisfy the diffusion approximation through O(ε), the leading- and

first-order expansions of the conservation RH equations are:

O(ε(0))

[∂tρ+ ∂i (ρui)]
(0) = 0 , (III.28a)

[∂t (ρui) + ∂j (ρuiuj + pij)]
(0) = −∂jP(0)

ij , (III.28b)[
∂t

(
1

2
ρu2 + ρe

)
+ ∂i

(
uj

(
1

2
ρuiuj + ρeδij + pij

))](0)

= −∂tE (0) − ∂iF (1)
i , (III.28c)

O(ε(1))

[∂tρ+ ∂i (ρui)]
(1) = 0 , (III.28d)

[∂t (ρui) + ∂j (ρuiuj + pij)]
(1) = −∂tF (0)

i − ∂jP
(1)
ij , (III.28e)[

∂t

(
1

2
ρu2 + ρe

)
+ ∂i

(
uj

(
1

2
ρuiuj + ρeδij + pij

))](1)

= −∂tE (1) − ∂iF (2)
i . (III.28f)

The asymptotic terms of E , F and P on the RHS of equations (III.28) are evaluated

in Appendix D. The results are:

O(ε(0))

E (0) = arT
(0),4 , (III.29a)

F (0)
i = 0 , (III.29b)

P(0)
ij =

1

3
E (0) , (III.29c)
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O(ε(1))

E (1) = arT
(1),4 , (III.29d)

F (1)
i =

[
− arc

3σt,R
∂iT

4 +
4

3
aruiT

4

](0)

, (III.29e)

P(1)
ij =

1

3
E (1) , (III.29f)

O(ε(2))

F (2)
i =

[
− arc

3σt,R
∂iT

4 +
4

3
aruiT

4

](1)

, (III.29g)

where σt,R is the Rosseland mean opacity, defined in Appendix D. The radiation vari-

ables can now be written through O(ε), according to equation (III.27), and recalling

equation (III.18):

E [1] = E (0) + E (1)ε = arT
(0),4 + arT

(1),4ε = arT
[1],4 , (III.30a)

F [1]
i = F (0)

i + F (1)
i ε =

[
− arc

3σt,R
∂iT

4 +
4

3
aruiT

4

](0)

+

[
− arc

3σt,R
∂iT

4 +
4

3
aruiT

4

](1)

ε

=

[
− arc

3σt,R
∂iT

4 +
4

3
aruiT

4

][1]

, (III.30b)

P [1]
ij = P(0)

ij + P(1)
ij ε =

1

3
arT

(0),4 +
1

3
arT

(1),4ε =
1

3
arT

[1],4 . (III.30c)

Similarly, the three RH conservation equations, through O(ε), are:

{∂tρ+ ∂i (ρui)}[1] = 0 , (III.31a){
∂t (ρui) + ∂j

(
ρuiuj + pij +

1

3
arT

4δij

)}[1]

= 0 , (III.31b){
∂t

(
1

2
ρu2 + ρe+ arT

4

)
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+∂i

[
uj

(
1

2
ρuiuj +

(
ρe+

4

3
arT

4

)
δij + pij

)
− arc

3σt,R
∂iT

4

]}[1]

= 0 (III.31c)

The radiation variables have been returned to the LHS to make obvious the conser-

vative nature of the equations. In the momentum conservation equation, there is no

time-derivative of a radiation flux, which is representative of a diffusion approxima-

tion. The terms containing T 4 represent either the radiation pressure Pij = 1
3
arT

4δij,

the radiation energy density E = arT
4, or their dyadic sum Pij + Eδij = 4

3
arT

4δij.

Thus, the radiation pressure takes on the lab-frame P1 approximation, which was

defined in Chapter II for radiation interacting with a material at rest, recall that

the P1 approximation is typically assumed in the diffusion approximation, and the

radiation energy density is in equilibrium with material at temperature T . The ma-

terial pressure and the radiation pressure, as well as the material internal energy

density and the radiation energy density, can be written as a total pressure and a

total internal energy density,

p∗ij = pij +
1

3
arT

4δij , (III.32a)

e∗ = e+
arT

4

ρ
. (III.32b)

Finally, two special cases of diffusion are considered, which are defined for particular

values of the product βτ , when the individual terms are held to the limits, β � 1

and τ � 1:

βτ =
u∞
c

l∞
λt,∞

� 1 , static diffusion, (III.33a)

βτ =
u∞
c

l∞
λt,∞

& 1 , dynamic diffusion, (III.33b)
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where τ ≡ l∞σt,∞ = l∞/λ∞ represents the optical depth of the system. Based on

the scaling ratios (III.25), the product βτ = UL = O(ε)/O(ε) scales as O(1) in

the EDL, such that the analysis above holds both limits. Formally, these ratios are

represented as the ratio of the diffusion time-scale to the fluid time-scale, td/tf . The

diffusion time-scale is set by the average number of diffusive interactions such that

a photon will travel a distance l∞, multiplied by the time between two interactions,

td ∼ (l2∞/λ
2
t )(λt/c). The fluid time-scale is set by the size of the system and some

reference fluid speed, tf ∼ l∞/u∞. Static diffusion holds when the material velocity,

as a fraction of the speed of light, is significantly less than the photon mean-free-path

compared to the system size; that is, when the diffusion time-scale is small compared

to the fluid time-scale. This is the situation most often associated with diffusion. The

radiation is locally trapped in the fluid and develops on its own time-scale. Dynamic

diffusion holds when the non-relativistic material velocity, as a fraction of the speed

of light, is slightly larger than the ratio of the photon mean-free-path to the system

size; that is, when the diffusion time-scale is slightly larger than fluid time-scale.

In this case the radiation is advected by the fluid, and the fluid can dynamically

drive local changes in the radiation field on a time-scale faster than the radiation’s

diffusion time-scale.

III.4 P1 and diffusion models in the lab- and comoving-frames in the

equilibrium diffusion limit

In this section, the lab-frame and comoving-frame variants of two physical models

are compared in the EDL. First, the radiation energy and momentum equations

are Lorentz transformed, as a four-vector, to the comoving-frame, then the physical

model is imposed, and the equations are Lorentz transformed back to the lab-frame.
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We call this the comoving-frame approximation of the physical model. To obtain the

lab-frame approximation of the physical model, we simply impose the physical model

on the lab-frame radiation energy and momentum equations. The comoving-frame

and lab-frame approximations are compared in the EDL, and it is shown that the

comoving-frame and lab-frame physical models are equivalent in the EDL. The two

physical models we consider, in the next two subsections, are the P1 approximation

and the grey-diffusion approximation, which were introduced in Chapter II.

The lab-frame radiation energy and momentum equations are:

∂tE + ∂iFi = Sre , (III.34a)

∂tFi + ∂jPij = Srp,i . (III.34b)

To Lorentz transform the radiation source rate equations to the comoving-frame, it is

not enough to Lorentz transform the individual radiation variables, because the indi-

vidual equations of radiation energy and momentum are not Lorentz scalars. Instead,

the one radiation energy equation, and the three radiation momentum equations, are

combined to give a set of four equations, the radiation energy-momentum four-vector,

Sµ = (Sre/c, Srp,i)
ᵀ, which is Lorentz transformed, via the Lorentz matrix defined in

equation (A.13), from the lab-frame to the comoving-frame, (So)ν = Λµ
νSµ. Sim-

ilarly, the radiation variables can be combined to form the radiation stress-energy

tensor

Pµν =

 E 1
c
Fᵀ
i

1
c
Fi Pij

 , (III.35)
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which is Lorentz transformed in an analogous manner to the energy-momentum four-

vector (Po)µν = Λσ
νPρσΛµ

ρ, where Λµ
ρ ≡ (Λµ

ρ)
ᵀ = Λµ

ρ due to the symmetry of the

Lorentz transformations. The Lorentz matrix, through O(β), is:

Λ =

 1 −βᵀ
i

−βi 1

 . (III.36)

The comoving-frame radiation energy and momentum source rates, written with

lab-frame radiation variables, are:

So,re = Sre − uiSi,rp = ∂tE + ∂iFi −
ui
c2
∂tFi − ui∂jPij , (III.37a)

So,i,rp = −ui
c2
Sre + Si,rp = −ui

c2
∂tE −

ui
c2
∂jFj +

1

c2
∂tFi + ∂jPij . (III.37b)

The Lorentz transformations of the lab-frame radiation variables to the comoving-

frame are:

E = Eo + 2
ui
c2
Fo,i , (III.38a)

Fi = Fo,i + uj (Eoδij + Po,ij) , (III.38b)

Pij = Po,ij +
ui
c2
Fo,j +

uj
c2
Fo,i . (III.38c)

The Lorentz transformations of the radiation variables can be quickly reversed by

simply reversing the direction of the velocity, i.e., ui → −ui. The comoving-frame

radiation energy and momentum source rate equations can now be written in terms

of the comoving-frame radiation variables, through O(β),

So,re = ∂tEo +
1

c2
∂t (uiFo,i) +

ai
c2
Fo,i + ∂iFo,i + ∂i (uiEo) + Po,ij∂jui , (III.39a)
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So,i,rp =
1

c2
∂tFo,i +

ai
c2
Eo +

1

c2
∂t (ujPo,ij)

+ ∂jPo,ij +
1

c2
Fo,j∂jui +

1

c2
∂j (ujFo,i) , (III.39b)

where ai = ∂tui. These equations agree with Castor’s equations (6.47) and (6.48)

[49], and represent the comoving-frame radiation energy and momentum equations

to which the comoving-frame P1 and diffusion approximations will be applied in the

next two sections.

III.4.1 The comoving- and lab-frame P1 models

In this subsection, the comoving- and lab-frame P1 approximations are applied to

the comoving- and lab-frame radiation energy and momentum source rate equations,

(III.34) and (III.39), respectively, and compared. The comoving-frame equations are

Lorentz transformed to the lab-frame, and the effect of the comoving-frame approxi-

mation on the lab-frame radiation pressure is determined. The EDL is applied to this

lab-frame radiation pressure, and it is determined that, in the EDL, the comoving-

frame P1 approximation implies the lab-frame P1 approximation. The lab-frame P1

approximation is also investigated, and it is determined that the difference between it

and the lab-frame radiation pressure, due to the comoving-frame P1 approximation,

is a traceless symmetric dyad, which is O(ε2). Thus, in the EDL, the comoving- and

lab-frame P1 approximations produce identical models through O(ε).

The comoving-frame P1 approximation assumes that the comoving-frame radiation

intensity is weakly anisotropic, |Fo,i,ν | � φo,ν , and linear in the comoving-frame

angle,

Io,ν =
1

4π
(φo,ν + 3Ωo,iFo,i,ν) , (III.40)
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where φo,ν and Fo,i,ν are the zeroth and first angular-moments of the radiation in-

tensity as defined in Chapter II. The result of angle- and frequency-integrating this

comoving-frame radiation intensity is that the radiation pressure is related to the

radiation energy density via the comoving-frame Eddington approximation,

Po,ij =
1

3
Eoδij . (III.41)

Applying the comoving-frame P1 approximation to the comoving-frame radiation

source rate equations (III.39), produces

So,re = ∂tEo +
1

c2
∂t (uiFo,i) +

ai
c2
Fo,i + ∂iFo,i + ∂i (uiEo) +

1

3
Eo∂iui , (III.42a)

So,i,rp =
1

c2
∂tFo,i +

ai
c2
Eo +

1

3c2
∂t (uiEo)

+
1

3
∂iEo +

1

c2
Fo,j∂jui +

1

c2
∂j (ujFo,i) , (III.42b)

and transforming the equations, and their radiation variables, back to the lab-frame

produces

Sre = ∂tE + ∂iFi + ∂i

(
1

3
uiE − ujPij

)
, (III.43a)

Si,rp =
1

c2
∂t

(
Fi + uj

(
1

3
Eδij − Pij

))
+ ∂j

(
1

3
Eδij +

1

c2
uiFj +

1

c2
ujFi −

2

3c2
ukFkδij)

)
. (III.43b)

In further reducing the above equations, it is helpful to consider the effect of the

comoving-frame P1 approximation on the lab-frame radiation pressure. Transform-

ing the comoving-frame radiation energy density, due to the comoving-frame P1 ap-
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proximation, to the lab-frame gives

Po,ij =
1

3
Eoδij =

1

3

(
E − 2uk

c2
Fk
)
δij , (III.44)

and the comoving-frame radiation pressure written in terms of lab-frame variables is

Po,ij = Pij −
ui
c2
Fj −

uj
c2
Fi . (III.45)

Therefore, by equating these last two expressions for the comoving-frame radiation

pressure, the effect of the comoving-frame P1 approximation on the lab-frame ra-

diation pressure is that the lab-frame radiation pressure is now decomposed into a

symmetric diagonal term and a symmetric traceless dyad,

Pij =
1

3
Eδij +

1

c2

(
uiFj + ujFi −

2

3
ukFkδij

)
, (III.46a)

and further,

ui

(
1

3
Eδij − Pij

)
= O(β2) ∼ O(ε2) . (III.46b)

Recalling the effect of the comoving-frame P1 approximation on the lab-frame ra-

diation source rate equations (III.43), it is seen that the last term in the radia-

tion momentum source rate equation is the lab-frame radiation pressure under the

comoving-frame P1 approximation (III.46a), and the two terms which are the differ-

ence between the lab-frame P1 approximation multiplied by a velocity are O(ε), and

thus negligible. Thus, the comoving-frame radiation source rate equations (III.39),

under the comoving-frame P1 approximation, transformed to the lab-frame, equa-
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tions (III.43), take the form

∂tE + ∂iFi = Sre , (III.47a)

1

c2
∂tFi + ∂jPij = Si,rp , (III.47b)

which are identical to the lab-frame radiation source rate equations (III.34), and

where the radiation pressure in the radiation momentum equation assumes the Ed-

dington approximation, through O(ε2), as written in equation (III.46a). Finally, the

effect of the comoving-frame P1 approximation on the lab-frame radiation pressure

can be asymptotically expanded in the EDL

P [1]
ij =

1

3
E (0)δij + ε

1

3
E (1)δij + ε

1

c2

[
uiFj + ujFi −

2

3
ukFkδij

](0)

=
1

3
E [1]δij , (III.48)

where it must be recalled that F (0)
i = 0. Therefore, the comoving-frame P1 approxi-

mation not only preserves the lab-frame source rate equations, it also reproduces the

lab-frame P1 approximation, in the EDL.

Now that the effect of the comoving-frame P1 approximation on the lab-frame radi-

ation pressure is known, it is worth considering how this is different from the lab-

frame P1 approximation Pij = 1
3
Eδij. Comparing the lab-frame P1 approximation

to equation (III.46a), the difference is the symmetric traceless dyad 1
c2

(uiFj +ujFi

−2
3
ukFkδij

)
. As mentioned previously, in the EDL, this tensor is zero through O(ε).

Thus, the comoving-frame P1 approximation, and the lab-frame P1 approximation,

preserve the EDL.
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III.4.2 The comoving- and lab-frame grey-diffusion models

In this context the word “grey” means that the cross-sections are assumed to be

frequency-independent. Typically, this is not a terribly valid physical assumption,

but it is common and often necessary for practical reasons. The analysis in this

subsection for the grey-diffusion approximation largely imitates that of the previous

subsection. The comoving- and lab-frame grey-diffusion approximations are applied

to the comoving- and lab-frame radiation energy and momentum source rate equa-

tions, (III.34) and (III.39), and compared. The EDL is applied to the lab-frame

results of these comoving- and lab-frames models, and it is shown that both models

preserve the EDL through O(ε). This subsection concludes the chapter with a dis-

cussion on the importance of the results presented in this section.

The grey radiation transport equation through O(β) is taken from Appendix D:

1

c
∂tIν + Ωi∂iIν = σt (Bν − Iν) + βiΩi (σtIν + 2σtBν − σtν∂νBν)

+
σs
4π

(φν − 4πBν) . (III.49)

The radiation energy and momentum equations, derived from equation (III.49) as

the frequency-integrated zeroth and first angular-moments, are

∂tE + ∂iFi = σac
(
arT

4 − E
)

+ βiσtFi , (III.50a)

1

c2
∂tFi + ∂jPij = −σt

c
Fi + βjσt

(
Pij + arT

4δij
)
. (III.50b)

Lorentz transforming these equations to the comoving-frame yields:
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∂tEo +
1

c2
∂t (uiFo,i) +

ai
c2
Fo,i + ∂iFo,i + ∂i (uiEo) + Po,ij∂jui

= σac
(
arT

4 − Eo
)

+ 2βiσsFo,i , (III.51a)

1

c2
∂tFo,i +

ai
c2
Eo +

1

c2
∂t (ujPo,ij) + ∂jPo,ij +

1

c2
Fo,j∂jui +

1

c2
∂j (ujFo,i)

= −σt
c
Fo,i + βiσs

(
arT

4 − Eo
)
. (III.51b)

The comoving-frame diffusion approximation requires the comoving-frame P1 ap-

proximation, Po,ij = 1
3
Eoδij, setting the time-derivative in the radiation momentum

equation to zero, and dropping the velocity terms in that equation, which yields a

comoving-frame diffusion equation for the radiation flux,

Fo,i = − c

3σt
∂iEo . (III.52)

The comoving-frame radiation energy and momentum equations, under the comoving-

frame grey-diffusion approximation, are:

∂tEo − ∂t
1

3σt
βi∂iEo −

ai
3cσt

∂iEo − ∂i
c

3σt
∂iEo + ∂i (uiEo) +

1

3
Eo∂iui

= σac
(
arT

4 − Eo
)

+ 2βiσsFo,i , (III.53a)

1

3
∂iEo = −σt

c
Fo,i . (III.53b)

Since the time-derivative in the radiation momentum equation is neglected these

equations are not in conservative form. Lorentz transformation of these equations to

the lab-frame yields:

∂tE −
2

c
∂t (βiFi)− ∂t

1

3σt
βi∂iE −

ai
3cσt

∂iE − ∂i
c

3σt
∂iE + ∂i

1

3σt
∂i (βjFj) +

4

3
∂i (uiE)
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= σac
(
arT

4 − E
)

+ βiσtFi , (III.54a)

βi

(
1

c
∂tE − ∂j

1

3σt
∂jE
)

+
1

3
∂iE −

1

3c
∂i (βjFj)

= βiσa
(
arT

4 − E
)
− σt

c
Fi + σt (βiE + βjPij) . (III.54b)

It is helpful to consider the effect of the comoving-frame grey-diffusion approximation

on the lab-frame radiation flux, and to recall that the comoving-frame P1 approxi-

mation induces the P1 approximation in the lab-frame through O(β) ∼ O(ε). Since

the only appearance of the lab-frame radiation flux is as the product with the ve-

locity, uiFi, and to O(β) this product does not distinguish between the comoving-

and lab-frame radiation fluxes, uiFi = uiFo,i + O(β2), then we have the following

relation:

− ui
3σt

∂iEo = βiFo,i = βiFi = − ui
3σt

∂iE . (III.55)

Therefore, the lab-frame radiation energy and momentum equations, under the

comoving-frame grey-diffusion approximation, are:

∂tE + βi∂t
1

3σt
∂iE − ∂i

c

3σt
∂iE − ∂i

2

3σt
∂i

(
uj
3σt

∂jE
)

+
4

3
∂i (uiE)

= σac
(
arT

4 − E
)
− 1

3
ui∂iE , (III.56a)

1

c
βi∂tE − βi∂j

1

3σt
∂jE +

1

3
∂iE +

1

3
∂i

1

3σt
βj∂jE

= βiσa
(
arT

4 − E
)
− σt

c
Fi +

4

3
σtβiE . (III.56b)
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Again, these lab-frame radiation energy and momentum equations are not conserva-

tive. In the EDL, the scaled equations are:

ε2∂tE + ε4βi∂t
1

3σt
∂iE − ε2∂i

c

3σt
∂iE − ε4∂i

2

3σt
∂i

(
uj
3σt

∂jE
)

+ ε2
4

3
∂i (uiE)

= σtc
(
arT

4 − E
)
− εσsc

(
arT

4 − E
)
− ε1

3
ui∂iE , (III.57a)

ε3
1

c
βi∂tE − ε3βi∂j

1

3σt
∂jE + ε

1

3
∂iE + ε3

1

3
∂i

1

3σt
βj∂jE

= εβiσt

(
arT

4 +
1

3
E
)
− ε2βiσs

(
arT

4 − E
)
− σt

c
Fi . (III.57b)

The leading-, first, and second-order results can be read from the equations above:

O(ε(0))

E (0) = arT
(0),4 , (III.58a)

F (0)
i = 0 , (III.58b)

P(0)
ij =

1

3
E (0)δij , (III.58c)

O(ε(1))

E (1) = arT
(1),4 , (III.58d)

F (1)
i =

[
− c

3σt
∂iE +

4

3
uiarT

4

](0)

, (III.58e)

P(1)
ij =

1

3
E (1)δij , (III.58f)

O(ε(2))

F (2)
i =

[
− c

3σt
∂iE +

4

3
uiarT

4

](1)

, (III.58g)
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where, at first-order in the energy equation, it was used that ui∂iE (0) ∼ βiF (0)
i = 0,

and the lab-frame P1 approximation is induced from the comoving-frame P1 approx-

imation.

The lab-frame grey-diffusion approximation can be applied to the original lab-frame

source rate equations, (III.50), wherein the time-derivative in the momentum equa-

tion is set to zero, and the lab-frame P1 approximation is made, which yields a

lab-frame diffusion approximation,

Fi = − c

3σt
∂iE + ui

(
1

3
E + arT

4

)
, (III.59)

such that the lab-frame radiation energy and momentum equations are:

∂tE − ∂i
c

3σt
∂iE = σac

(
arT

4 − E
)
− 1

3
ui∂iE , (III.60a)

1

3
∂iE = −σt

c
Fi + βiσt

(
1

3
E + arT

4

)
. (III.60b)

Once again, these equations do not take a conservative form, which is appropriate

for the diffusion approximation. Scaling them with the EDL yields,

ε2∂tE − ε2∂i
c

3σt
∂iE = σtc

(
arT

4 − E
)
− εσsc

(
arT

4 − E
)
− ε2 1

3
ui∂iE , (III.61a)

ε
1

3
∂iE = −σt

c
Fi + εβiσt

(
1

3
E + arT

4

)
. (III.61b)

Again, the leading-, first-, and second-order results can be read from the equations

above:
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O(ε(0))

E (0) = arT
(0),4 , (III.62a)

F (0)
i = 0 , (III.62b)

P(0)
ij =

1

3
E (0)δij , (III.62c)

O(ε(1))

E (1) = arT
(1),4 , (III.62d)

F (1)
i =

[
− c

3σt
∂iE +

4

3
uiarT

4

](0)

, (III.62e)

P(1)
ij =

1

3
E (1)δij , (III.62f)

O(ε(2))

F (2)
i =

[
− c

3σt
∂iE +

4

3
uiarT

4

](1)

. (III.62g)

It must be recalled that the diffusion approximation subsumes the P1 approxima-

tion. These results come from quite different equations than the analysis in Section

III.3, where the complete asymptotic analysis was performed. There, the lab-frame

RH equations, with no further approximations, were scaled via the EDL, and the

asymptotic results were obtained from the radiation transport equation: specifically,

the lab-frame P1 approximation, lab-frame radiation diffusion, and lab-frame equi-

librium between the radiation and material. In this Section, the comoving- and lab-

frame grey-diffusion approximations were independently applied to the frequency-

integrated zeroth and first angular-moments of the radiation transport equation,

and the same results were obtained.
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The EDA is an important physical concept that guides our understanding of the

natural world, especially as it relates to astrophysical observations and terrestrial

experiments, c.f., Chapter I. The EDA is a set of approximations that describe the ki-

netic and dynamic interactions of radiation with matter, which are typically claimed

to be true only in the comoving-frame. However, the RH equations that describe

these kinetic and dynamic interactions are best written, for reasons of expressing to-

tal conservation, in the lab-frame. The EDL scaling of the RH equations shows that

the solutions of the RH equations will satisfy the EDA through O(ε), in agreement

with the order accuracy of previous asymptotic analyses of the radiative transfer

and neutron transport equations. What the EDL scaling of the RH equations says

is, the EDA may be made in either frame and the correct results are expected

through O(β) ∼ O(ε). In the asymptotic analysis given in Section III.3, neither the

P1, nor the grey-diffusion models were assumed. In Section III.4, the P1 and grey-

diffusion models were imposed in the comoving- and lab-frames, individually, and it

was shown that their results preserve the EDA. In this sense, in the EDL, we consider

the comoving-frame P1 model to be equivalent to the lab-frame P1 model, and the

comoving-frame grey-diffusion model to be equivalent to the lab-frame grey-diffusion

model. It is not obvious that there should exist any limit, with material motion, in

which these models should be frame invariant.
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CHAPTER IV

PREVIOUS ANALYTIC AND SEMI-ANALYTIC RADIATIVE SHOCK

SOLUTIONS

There have been few successful attempts to find analytic solutions of the hydro-

dynamic equations. One solution was obtained by Becker [50] for the steady-state

Navier-Stokes equations (Euler equations plus viscosity and heat-conduction) in one

planar dimension, with constant viscosity and a Prandtl number Pr, of 3/4. The

Prandtl number is proportional to the ratio of viscosity to heat-conduction. Another

solution was discovered by Noh [51], for a fluid assuming the ideal-gas equation-of-

state with γ = 5/3, constant velocity flow with infinite strength, moving toward a

rigid wall. Coggeshall discovered many distinct solutions using Lie group theory,

including solutions with hydrodynamic shocks, and equilibrium diffusion radiative

shocks [52]. More recently, Johnson [53] has obtained analytic solutions for Pr → 0

and Pr → ∞. The solutions for Pr → 0 correspond to a solution of the radia-

tion hydrodynamic equations with P0 → 0. Analytic solutions are critical in aiding

code verification, and furthering our understanding of the equations and their results.

Despite the more recent analytic solutions, the theoretical development of RH pro-

vided by Zel’dovich and Raizer [3], and Mihalas and Mihalas [4], is fundamental to

understanding analytic solutions in RH. These two books are now 50 and 30 years

old, respectively, though, and it is expected that their content, while classic, should

become dated. Only recently, however, have the ideas expressed in these books been

challenged, and extensions beyond the nonequilibrium diffusion model, including the
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effect of incorporating radiation transport into RH calculations, been made.

The goal in this Chapter is to review the current state-of-the-art analytic, and semi-

analytic, solution methods in 1-D RH. In Section IV.1, physical approximations are

assumed of the nonequilibrium diffusion model, resulting in analytic solutions for

subcritical (“weak”) and supercritical (“strong”) shocks [3, 4]. The results show that

the radiation energy density is monotonic across the shock profile, and provide a

graphical representation of T , F , and p, versus η ≡ 1/ρ, which is supposed to pro-

vide an analytic check on computational solutions of radiative shocks. In Section

IV.2, recent work by Drake [5, 6], and McClarren and Drake [2], describing a three-

layer model of RH, and anti-diffusive transport in radiative shocks, respectively, is

outlined. Anti-diffusion will be discussed in greater depth in Chapter V. In Section

IV.3, a historical review of semi-analytic solution methods for radiative shocks is

given, and some results from the multi-physics package, KULL [54], developed at

Lawrence Livermore National Lab (LLNL), are presented for code-verification pur-

poses. Semi-analytic solutions of various shocks was an active research area during

the 1960’s and, after a dormant period, was rejuvenated in 2007 by Lowrie and col-

laborators [1, 7]. The nonequilibrium diffusion radiative shock solutions by Lowrie

and Edwards [1] are now a common measure of a RH code’s ability to accurately

simulate radiative shocks [35, 39–42, 55–58].

IV.1 Nonequilibrium diffusion analytic results

In this Section, the steady-state grey nonequilibrium diffusion model of RH is used

to derive analytic results found in [3] and [4]. The steady-state nondimensional RH

equations are collected from equations (II.25) and equation (C.21), and rewritten
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here for convenience:

∂x (ρu) = 0 , (IV.1a)

∂x
(
ρu2 + p+ P0Pr

)
= 0 , (IV.1b)

∂x

[
β

(
1

2
ρu2 + p+ ρe

)
+ P0F

]
= 0 , (IV.1c)

µ∂xI = −σtI +
σs
4π
E +

σa
4π
T 4 − 2

σs
4π
βF + βµ

(
σtI +

3σs
4π
E +

3σa
4π

T 4

)
. (IV.1d)

The first three equations represent the conservation of total mass, total momentum

and total energy of Eulerian fluid mechanics coupled to radiation. These equations

represent an approximation to the fully relativistic RH equations, and are correct

through O(β). The fourth equation is the grey lab-frame radiation transport equa-

tion, which is also correct through O(β). The grey approximation assumes that all

frequencies of radiation interact with the material in the same way. This is physically

wrong, but the approximation makes the analytic solution tractable.

IV.1.1 Derivation of the nonequilibrium diffusion equations

In this subsection, the nonequilibrium diffusion model is derived from the RH equa-

tions with the goal of making the required assumptions to obtain the analytic re-

sults explicit. The analytic results describe the general shape expected for radiative

shocks, but not the exact shape of any given radiative shock, and they give a func-

tional dependence of T , F , and p, on η ≡ 1/ρ the inverse compression ratio, which

can be checked graphically.

The nonequilibrium diffusion model, discussed in the books by Zel’dovich and Raizer

[3], and Mihalas and Mihalas [4], imposes the following assumptions on the RH equa-
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tions (IV.1):

• the material obeys an ideal gas equation-of-state (EOS) and maintains LTE

throughout the shock profile, for all particle species, such that there is only

one material temperature;

• the radiative shock is propagating into a cold material, such that the upstream

internal energy density and material pressure are negligible;

• the radiation is considered weak, such that the radiation energy density, and

radiation pressure, are negligible compared to their material counterparts;

• the radiation may be out of equilibrium with the material, but still obeys a

diffusive law;

• the material is optically thick upstream and downstream of the shock.

The first assumption establishes the functional form of the internal energy density

and material pressure, which are assumed to depend on the material density and

temperature:

e =
T

γ (γ − 1)
, (IV.2a)

p = ρe (γ − 1) =
ρT

γ
. (IV.2b)

The second assumption drops the radiation pressure from total momentum conser-

vation equation (IV.1b). The three conservation equations represent first-integrals.

Mass conservation can be used to simplify the other two first-integrals by defining

M0 = ρu. For notational convenience, Mc = ρβ is analogously defined. Integrating
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the other two conservation equations over the domain (−∞, x) gives:

M0u+ p =M0u0 , (IV.3a)

1

2
Mcu

2 +
McT

γ − 1
+ P0F =

1

2
Mcu

2
0 . (IV.3b)

The third assumption has the effect of dropping the velocity-dependent terms from

the radiation transport equation (IV.1d), such that the zeroth and first angular

moments are:

∂τF = T 4 − E , (IV.4a)

F = −1

3
∂τE , (IV.4b)

where the opacity has been absorbed into the derivative to form a derivative with

respect to the optical depth, τ = σtx. Their combination produces

∂2
τF = 3F + 4T 3∂τT . (IV.4c)

The fourth assumption is satisfied by the radiation diffusion equation (IV.4b). The

fifth assumption imposes a closed thermodynamic system.

The zeroth and first angular-moments, presented in equations (IV.4), are solved

subject to the boundary conditions at τ = ±∞:

T (τ = −∞) = 0 T (τ =∞) = Tf , (IV.5)

E (τ = −∞) = 0 E (τ =∞) = T 4
f , (IV.6)

F (τ = −∞) = 0 F (τ =∞) = 0 . (IV.7)
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The material pressure, from the first-integral of the momentum conservation equation

(IV.3a), can be solved for in terms of the inverse compression ratio, η = ρ0/ρ = u/u0:

p =M0 (u0 − u)

=M0u0

(
1− u

u0

)
=M0u0 (1− η) , (IV.8)

and using the ideal gas EOS (IV.2), the material temperature is:

p

pf
=

ρT

ρfTf

⇒ T

Tf
=
pρf
pfρ

=
(1− η) ρf
(1− ηf ) ρ

ρ0

ρ0

=
η (1− η)

ηf (1− ηf )
, (IV.9)

where ηf = ρ0/ρf is defined to be the maximum compression ratio, taking the form

(γ − 1) / (γ + 1), which is 1/4 for γ = 5/3. Strictly speaking, this value of the

maximum compression ratio is only valid when the radiation is very weak, as assumed

in this case. The radiation flux may now be written in terms of η, using equations

(IV.2b), (IV.3b), (IV.8) and (IV.9):

F = −McT

2γP0

(η − ηf )
ηηf

= −McTf
2γP0

(1− η) (η − ηf )
η2
f (1− ηf )

. (IV.10)

As τ → −∞, which is the unheated precursor state, T = 0 such that F = 0, as

required by the boundary conditions. Similarly, as τ → ∞, the compression ratio

reaches its maximum value, η = ηf , such that F = 0, as required, again, by the
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Figure IV.1: Radiation flux, material pressure and material temperature as functions
of the inverse compression ratio. The upstream precursor region begins at η0 = 1,
the solution traverses the radiative shock wave as η decreases, until η = ηf , when
the fluid and radiation have returned to their equilibrium values, as noted by the
radiation flux returning to zero. Adapted from [3].

boundary conditions. Figure IV.1 shows p, T , and F versus η.

IV.1.2 Subcritical radiating shocks

Subcritical and supercritical radiating shocks are distinguished by the value of the

material temperature, Tp, immediately upstream of the shock discontinuity. In sub-

critical shocks, Tp < Tf , whereas in supercritical shocks, Tp = Tf . The value of the

material temperature immediately downstream of the shock is labelled Ts, and an

embedded hydrodynamic shock is defined between state-p and state-s. In radiative

shocks, the material density is largely unaffected in the precursor region, and most

of the compression takes place inside the embedded hydrodynamic shock. See Figure
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Figure IV.2: Radiation flux and material temperature as functions of the inverse
compression ratio for a subcritical radiative shock. The upstream precursor region
begins at η0 = 1 and ends at ηp, where T = Tp. Continuity of the radiation flux be-
tween state-p and state-s defines the embedded hydrodynamic shock, and determines
the value of the material temperature at state-s, Ts. The downstream relaxation
region is defined between ηs and ηf . Adapted from [4].

IV.2. Subsequently, it is reasonable to assume that no compression takes place before

the shock, and η ≈ 1. Therefore, in the precursor region, the radiation flux takes the

form

F = −McT

2γP0

(1− ηf )
ηf

= − McT

γ (γ − 1)P0

= −Mc

P0

e , (IV.11)

such that the upstream flow of radiation from the shock is offset by the downstream
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flow of internal energy, which is due to the material being heated by the radiation.

Referring to equation (IV.3b), this implies that the speed profile in the precursor

region is largely unaffected, which is verified by the semi-analytic solutions. The

radiation emitted into the precursor region can be assumed to radiate from an opaque

wall with material temperature, Tf , such that, at state-p, Ep ∼ T 4
f and Fp ∼ T 4

f . It

is now assumed that T 4
p � T 4

f and equations (IV.4) can be considered near the

precursor shock state-p,

∂τF|p = T 4
p − Ep ≈ −Ep , (IV.12a)

∂2
τF = 3Fp + ∂τT

4
∣∣
p
≈ 3Fp , (IV.12b)

and solved for in the precursor region

F = Fpe−
√

3τ , (IV.13a)

E = −
√

3Fpe−
√

3τ . (IV.13b)

Given this solution for the radiation flux (IV.13a), and the relation between the

radiation flux and the flow of internal energy, per equation (IV.11), the material

temperature solution is:

T = − 2γP0ηf
Mc (1− ηf )

Fpe−
√

3τ = Tpe
−
√

3τ . (IV.14)

While the hydrodynamic variables may be discontinuous across the shock, the ra-

diation variables must be continuous. This is because the radiation variables are

angular moments of a Boltzmann equation, which is a continuity equation for the

radiation intensity. If either of the radiation variables were discontinuous, then equa-
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Figure IV.3: Analytic profiles for the material temperature, radiation temperature
and radiation energy flux for a subcritical radiative shock with M0 = 2 and P0 =
1.e − 4. The embedded hydrodynamic shock defined between state-p and state-

s is represented by the dashed red line. The temperatures equilibrate far from the
embedded hydrodynamic shock. The radiation energy flux is continuous at the shock
discontinuity, and exponentially relaxes to zero far from the embedded hydrodynamic
shock. Adapted from [4].

tions (IV.4a) and (IV.4b) would force the other variable to be infinite at some point,

which is physically nonsensical.

In the downstream post-shock relaxation region, it is assumed that the material

temperature is constant, taking its final value, T ≈ Tf . Then the second term in

(IV.4c) is zero, and again the radiation flux takes the form

F = Fpe−
√

3τ , (IV.15)
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where continuity at τ = 0 is used to show that this Fp is the same as in the precursor

region. To determine the radiation energy density in the downstream region it helps

to remove the derivative with respect to τ by multiplying equations (IV.4a) and

(IV.4b), and working through the ordinary differentials:

F∂τF = −1

3

(
T 4
f − E

)
∂τE

FdF = −1

3

(
T 4
f − E

)
dE =

1

3

(
E − T 4

f

)
d
(
E − T 4

f

)
dF2 =

1

3
d
(
E − T 4

f

)2

F =
1√
3

(
E − T 4

f

)
E =
√

3F + T 4
f . (IV.16)

Enforcing continuity of the radiation energy density at τ = 0 produces the following

values of Fp, Ep and Tp:

Ep = −
√

3Fp =
√

3Fp + T 4
f ,

⇒ Fp = − 1

2
√

3
T 4
f , (IV.17a)

⇒ Ep =
1

2
T 4
f , (IV.17b)

⇒ Tp =
γP0ηf

Mc (1− ηf )
√

3
T 4
f . (IV.17c)

Additionally, Mihalas and Mihalas claim that the following two relations for the

material temperature, on the relaxation side of the embedded hydrodynamic shock,

can be derived from the radiation flux:

T − Tf = (Ts − Tf ) e−
√

3τ , (IV.18a)

Ts − Tf =
3− γ
γ + 1

Tp . (IV.18b)

69



The spatial-profiles of the radiation energy density, radiation flux, and material tem-

perature are:

E(x) =


1
2
e−
√

3τT 4
f ,

−1
2
T 4
f e
−
√

3τ + T 4
f ,

x < 0 ,

x > 0 ,
(IV.19a)

F(x) = − 1

2
√

3
e−
√

3τ , ∀x , (IV.19b)

T (x) =


γP0ηf

Mc(1−ηf)
√

3
e−
√

3τT 4
f ,

Tf +
(3−γ)γP0ηf

(γ+1)Mc(1−ηf)
√

3
e−
√

3τT 4
f ,

x < 0 ,

x > 0 ,
(IV.19c)

and are plotted in Figure IV.3. An immediate problem with the material tempera-

ture profile presented in equation (IV.19c) is that the material temperature always

exhibits a Zel’dovich spike, since Ts > Tf in equation (IV.18b).

IV.1.3 Supercritical radiating shocks

As mentioned at the beginning of the previous subsection, supercritical radiating

shocks are defined as having Tp = Tf . See Figure IV.4. The value of the material

temperature at the final equilibrium state, Tf , increases proportionally with the Mach

number. It is claimed that the increasing radiant energy emitted from the embedded

hydrodynamic shock, ∼ T 4
f , does not cause Tp > Tf , but instead drives the radiation

precursor deeper into the unshocked material. Since Tp = Tf at the shock front,

then as the Mach number increases and the radiation precursor extends further from

the shock discontinuity, there exists a zone of equilibrium between the radiation and

the material. This equilibrium zone extends a depth τc into the precursor region

before the material and radiation are not in equilibrium. The material temperature

at this point is prescribed to be Tc. The analysis for the precursor region of the
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Figure IV.4: Radiation flux and material temperature as functions of the inverse
compression ratio for a supercritical radiating shock. The upstream precursor region
begins at η0 = 1 and ends at ηp, where Tp = Tf . Continuity of the radiation
flux between state-p and state-s defines the embedded hydrodynamic shock, and
determines the value of the material temperature at state-s, Ts. The downstream
relaxation region is defined between ηs and ηf . Adapted from [4].

previous subsection can be applied here to the nonequilibrium domain, but with

|τ | → |τ − τc|, yielding:

F = Fce−
√

3|τ−τc| , (IV.20a)

E = −
√

3Fce−
√

3|τ−τc| . (IV.20b)

For the purpose of illustration in Figure IV.5, the material temperature is fored to

decay as

T = Tce
−3|τ−τc|/4 . (IV.21)
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According to [4], the values of Fc = −T 4
c /
√

3 and Ec = T 4
c contain a multiplicative

factor of 2 that was missing from the previous analysis. Since the comparison of the

radiation flux to the internal energy flux in equation (IV.11) is still valid, the value

of Tc can be determined:

Fc = −P0T
4
c√

3
= − McTc

γ (γ − 1)

⇒ T 3
c =

√
3Mc

P0γ (γ − 1)
. (IV.22)

In the equilibrium domain, E = T 4, and radiation diffusion takes on the form of

heat-conduction:

F = −4

3
T 3∂τT . (IV.23)

The differentials of material temperature and optical depth can be related by equa-

tions (IV.11), (IV.1.3) and (IV.23):

F = −4

3
T 3∂τT = − McT

P0γ (γ − 1)

4

3
T 2dT =

Mc

P0γ (γ − 1)
dτ =

T 3
c√
3
dτ

⇒ T 2dT =

√
3

4
T 3
c dτ . (IV.24)

Integrating from |τc|, into the equilibrium zone, toward the shock, to |τ |, produces

the ratio of the material temperatures:

∫ T

Tc

T 2dT =

√
3

4
T 3
c

∫ |τ−τc|
0

dτ

1

3

(
T 3 − T 3

c

)
=

√
3

4
T 3
c |τ − τc|

72



Figure IV.5: Analytic profiles for the material temperature, radiation temperature
and radiation energy flux for a supercritical radiating shock with M0 = 5 and P0 =
1.e − 4. The nonequilibrium region spans the domain τ ∈ (−∞,−τc), and the
equilibrium region spans the domain τ ∈ [−τc, 0]. An embedded hydrodynamic shock
exists between state-p and state-s. The material temperature shows a Zel’dovich spike
in the relaxation region, downstream of the shock discontinuity, while the radiation
temperature maintains a constant value equal to the final equilibrium temperature.
Adapted from [4].

T 3 − T 3
c

T 3
c

=
3
√

3

4
|τ − τc|

⇒ T

Tc
=

(
1 +

3
√

3

4
|τ − τc|

)1/3

, (IV.25)

and extending this result to the shock, and recalling that Tp = Tf , allows |τc| to be

solved for:

|τc| =
4

3
√

3

((
Tf
Tc

)3

− 1

)
. (IV.26)
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According to [3] and [4], the relaxation region cannot be solved, or approximately

solved, with any satisfaction via simple analytic models. However, the Zel’dovich

spike can be superposed if Ts is known, and using the knowledge that the optical

thickness of the spike is less than one photon mean-free-path. Mihalas and Mihalas

[4] claim Ts can be ascertained by using equations (IV.9) and (IV.10), and forcing

Tp = Tf , which is supposed to result in:

Ts = (3− γ)Tf . (IV.27)

Since the material and radiation are out of equilibrium in the relaxation region, in

Figure IV.5 the radiation energy flux is forced to decay as

F = Fpe−
√

3τ , (IV.28)

in agreement with the nonequilibrium region of the precursor, and where Fp is taken

from the derivation of equation (IV.24), with T = Tp = Tf . The spatial profiles of

the radiation temperature, radiation energy flux, and the material temperature are

displayed in Figure IV.5.

IV.2 Analytic work of Drake, and McClarren and Drake

In this Section, the theory of the three-layer model, developed by Drake [5, 6], is dis-

cussed, as is the prediction of anti-diffusive radiative shocks, developed by McClarren

and Drake [2]. Both descriptions of radiative shocks make predictions that are dis-

cussed in the next Chapter.
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Figure IV.6: The three-layer model as described by Drake [5, 6] for a supercritical
radiative shock. The first layer defines the precursor region, and contains the up-
stream equilibrium state, the transmissive precursor and the diffusive precursor. The
second layer is the cooling layer, often referred to as the relaxation region, which is
considered to be optically thin, with τcl < 1. The third layer is the downstream equi-
librium state. The first and third layers are assumed to be optically thick. Adapted
from [5, 6].

IV.2.1 The three-layer model

Drake’s three-layer model focuses on supercritical radiating shocks and consists of

the precursor region, the relaxation region, which he terms the cooling layer, and

the final downstream region. The precursor region is claimed to be composed of two

regions: the transmissive precursor near the upstream equilibrium state, and the

diffusive precursor which sits between the transmissive precursor and the embedded

hydrodynamic shock. See Figure IV.6. As such, the three-layer model builds on

the nonequilibrium diffusion theory as described in the previous section, but avoids
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describing each region analytically. Instead, emphasis is placed on analyzing the

fluid equations, and considering appropriate transport descriptions. Essentially, the

three-layer model represents a semi-analytic solution procedure, but without making

this solution procedure explicit.

The fluid equations are the integrated Euler equations, in the flux-dominated regime:

ρu = ρ0u0 , (IV.29a)

ρu2 + p = ρ0u0u+ p = ρ0u
2
0 , (IV.29b)

1

2
ρu3 + (ρe+ p)u+ F =

1

2
ρ0u

3
0 . (IV.29c)

These equations represent the conservation of mass, material momentum, and mate-

rial energy, coupled to the energy flux of radiation. The radiation energy density, and

radiation pressure, are assumed to be negligible compared to their material counter-

parts, and only the radiation energy flux is assumed to contribute substantially to

the material dynamics.

Normalization constants can be introduced for the pressure, temperature, and ra-

diation energy flux, which simplify the analysis of the Euler fluid equations:

pn =
p

ρ0u2
0

, (IV.30a)

Tn =
T

u2
0

, (IV.30b)

Fn =
2F
ρ0u3

0

. (IV.30c)
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Figure IV.7: Simplified model of the Zel’dovich spike proposed by Drake [5, 6]. For
a supercritical radiating shock the upstream precursor region approaches the shock
discontinuity with temperature, Tf . The embedded hydrodynamic shock and the
Zel’dovich spike are defined as the region where T > Tf and has an optical depth
of τcl. The cooling layer represents the Zel’dovich spike and the relaxation region.
Downstream of the cooling layer the shock is in its final equilibrium state. Adapted
from [5, 6].

Recalling the inverse compression ratio η = ρ0/ρ, the conservation equations of mass

and momentum can be combined to give an equation for the normalized pressure

pn = (1− η) , (IV.31)

assuming an ideal gas, where p = ρRT , provides an equation for the normalized

temperature

Tn = η (1− η) . (IV.32)
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Assuming a γ-law EOS,

p = ρe (γ − 1) , (IV.33a)

e =
T

γ (γ − 1)
, (IV.33b)

provides an equation for the normalized radiation flux

Fn = 1− 2γ

γ − 1
η +

γ + 1

γ − 1
η2 . (IV.34)

Thus, a complete understanding of the hydrodynamic variables and the radiation

flux rest only on the inverse compression ratio, and results in the same illustration

given in Figure IV.1. This much was discussed in [3] and [4]. Drake goes further

by considering how to couple the hydrodynamics to the radiation, without initially

assuming that the nonequilibrium diffusion model suffices.

The spatial derivative of Fn provides an expression for the spatial derivative of the

inverse compression:

∂xFn =

(
2γ − 2η (γ + 1)

γ − 1

)
∂xη . (IV.35)

The radiation transport equation is now introduced

1

c
∂tI + µ∂xI = −σtI +

σa
4π
αRcT

4 +
σs
4π
cE , (IV.36)

and the time-derivative is dropped with the explanation that the radiation equili-

brates with the material on time-scales sufficiently small compared to the hydrody-

namic time-scale. This was discussed at the end of Section III.3 when the diffusive
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time-scale was compared to the fluid time-scale, and this particular situation was

termed “static diffusion”. The zeroth angular-moment is

∂xFn = σac
(
αRT

4 − E
)
, (IV.37)

which provides an expression for the gradient of the radiation flux at the expense of

introducing a new variable. Drake resolves this by introducing the diffusion approx-

imation with a quasi-static variable Eddington factor (VEF),

∂xP = f∂xE = −σt
c
Fn . (IV.38)

Drake immediately addresses the assumed quasi-static nature of the VEF, claiming

that integrating the precursor region with it is fine, where the gradients of P and E

are “parallel”, but “this method proves to be qualitatively incorrect for the cooling

layer in a radiative shock”. What is meant by the gradients being parallel is made

clear in the next Subsection. Equations (IV.34) and (IV.38) can now be coupled, as

can equations (IV.35) and (IV.37), such that the precursor region is governed by two

spatial ordinary differential equations (ODEs):

c

σt
f∂xE − 1 +

2γ

γ − 1
η − γ + 1

γ − 1
η2 , (IV.39a)

2πσac

(
E − αRT

4

4π

)
=

(
η (γ + 1)− γ

γ − 1

)
∂xη . (IV.39b)

The simultaneous integration of these two ODEs provides a complete solution of the

precursor region. In this sense, Drake’s solution method is semi-analytic.

For the relaxation region, a simple model of the Zel’dovich spike is assumed, see

79



Figure IV.7, and conservation of the radiation energy flux is enforced on both sides

of the spike. On the downstream edge of the spike, it is assumed that the material

and radiation are in equilibrium, such that the radiation energy flux entering the

spike from further downstream is zero. Then balance of the radiation energy flux at

the downstream edge of the relaxation region imposes

σtf
4
s T

4
f (1− τcl) + 1.2τclσtT

4
ds − σtT 4

f = 0 . (IV.40)

Analogously, at the downstream edge of the precursor, the radiation flux from the

spike must balance the radiation flux entering the precursor:

σtfsT
4
f − 1.2τclσtTds − σt (1− τcl)T 4

f −
(

1− 2γ

γ − 1
η +

γ + 1

γ − 1
η2

)
= 0 . (IV.41)

The variable fs relates the precursor material temperature at the shock discontinu-

ity to the final temperature: Tp = fsTf . For supercritical shocks, nonequilibrium

diffusion theory assumes fs = 1. Drake chooses, instead, to consistently solve for fs

and τcl using the two previous equations. “The factor of 1.2 results from the integral

of the radiation transfer equation over angle to find the flux from an optically thin

layer given the assumed emission profile and isotropic emission.” The term (1− τcl)

represents the assumption that the cooling layer is exponentially thin, and can be

expanded to first order. The maximum temperature and the inverse compression

ratio in the Zel’dovich spike are taken from [4]:

Ts = (3− γ)Tf , (IV.42a)

ηs =
2 (γ − 1)

(γ + 1)
. (IV.42b)
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Figure IV.8: An Eulerian shock, between temperatures βT and αT , where α > β, su-
perposed with a rectangular Zel’dovich spike of optical depth τ0 < 1 and temperature
T . Adapted from [2].

Equations (IV.40) and (IV.41) represent a 2 × 2 system of equations, with the un-

knowns fs and τcl.

IV.2.2 Anti-diffusive radiative shocks

The work by McClarren and Drake [2] on anti-diffusive radiating shocks supposes

an Eulerian type shock for the material temperature, superposed with a rectangular

Zel’dovich spike, of a given optical thickness. The maximum temperature is assumed

to occur in the Zel’dovich spike, and this value of temperature is normalized to unity,

while the upstream temperature is denoted by βT , and the downstream temperature

is denoted αT , where 1 > α > β. See Figure IV.8.
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Figure IV.9: The analytic radiation energy density, solved for the simplified
Zel’dovich spike shown in Figure IV.8, and normalized with the isotropic Planck
function, 4πB(T ). The local maximum in the radiation energy density under the
rectangular Zel’dovich spike is obvious, and has been termed “anti-diffusive” radia-
tion by McClarren and Drake. Adapted from [2].

The material is assumed to be a pure-absorber, and the gray steady-state radia-

tion transport equation is:

µ∂xI =
σac

4π

(
αRT

4 − E
)
. (IV.43)

This equation is solved analytically across the spatial-profile of the material temper-

ature for all three distinct regions, and the radiation energy density, radiation energy

flux, and radiation pressure, are constructed from the angular moments.

The purpose of the paper is to show that, for the simplified radiative shock model,
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it is possible for the radiation temperature to have a local maximum under the

Zel’dovich spike. See Figure IV.9. This manifestation of a local maximum in the ra-

diation energy density is termed anti-diffusive radiation, since, for a diffusion theory,

the radiation flux is proportional to the negative gradient of the radiation energy

density, and if the radiation energy density has a local maximum then the radiation

flux would pass through zero and become positive (or change sign from positive to

negative, for material flows traveling in the opposite direction). This change of sign

for the radiation flux does not make physical sense, and so diffusion theory fails

to qualitatively capture the correct radiation transport solution. The radiation en-

ergy density obtains a local maximum under the Zel’dovich spike because the variable

Eddington factor, f ≡ P/E obtains a minimum in the same region. See Figure IV.10.

The radiation flux, neglecting material-motion corrections and adopting a variable

Eddington factor, can be written as

F = − 1

σt
∂x (fE) = − 1

σt
(f∂xE + E∂xf) . (IV.44)

In diffusion theory the VEF is constant, f = 1/3, and the scalar product of F and

the gradient of E is negative:

F · ∂xE = − 1

3σt
(∂xE)2 < 0 . (IV.45)

However, in transport theory the VEF is not constant, and the scalar product of F

and the gradient of E may not be negative depending on the magnitude, and sign,
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Figure IV.10: The analytic variable Eddington factor (VEF), solved for the simplified
Zel’dovich spike shown in Figure IV.8, and the constant Eddington factor, f = 1/3,
for comparison. The VEF relaxes to the constant value 1/3 near the equilibrium
endpoints, but takes on a maximum value late in the precursor region, and obtains
a sharp minimum under the rectangular Zel’dovich spike. Adapted from [2].

of ∂xf , and ∂xE :

F · ∂xE = − 1

σt
f (∂xE)2 − 1

σt
E (∂xf) (∂xE) . (IV.46)

While the first term on the RHS is negative-definite, the second term may be positive

if the gradient of either E , or f , is negative, and the whole RHS may be positive if one

of these gradients is sufficiently negative. Anti-diffusion is discussed more thoroughly

in the next Chapter.
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IV.3 Previous semi-analytic solutions and code-verification

IV.3.1 Review of work before 2007

Significant work in the late 1950’s, and 1960’s, was devoted to semi-analytic solu-

tions of various shock waves, computed from fluid mechanics with a variety of physics.

Sen and Guess [18] were the first to recognize that the inclusion of radiation would

create an extended precursor region which would be much larger than the smooth-

ing effects of viscosity, or thermal conduction. Heaslet and Baldwin [59] were the

first to study the effect of Mach number and radiation strength on the structure of

the nonequilibrium diffusion radiating shocks using Euler’s equations, i.e., without

viscosity and heat-conduction. Jaffrin and Probstein [60] considered fully ionized

plasma shock waves by solving the Navier-Stokes equations, i.e., including viscos-

ity and heat-conduction, but without radiation. Traugott [46] verified the claim by

Sen and Guess that the radiation precursor extended many photon mean-free-paths,

and that the photon mean-free-path was considerably larger than the ion or electron

mean-free-path in fluid mechanics calculations.

Reviewing RH code-verification test-suites from the literature, it appears that much

of this work was forgotten, or ignored, by the 1990’s. Ensman [30] generated her own

test-suite of five problems to verify her RH code, VISPHOT, including subcritical and

supercritical radiating shocks. Gehmeyr and Mihalas [61] used Ensman’s test-suite

to verify their adaptive grid RH code, TITAN, as did Hayes and Norman [36] when

verifying their parallelized update to the ZEUS code. Ensman’s code-verification for

radiating shocks continues to be used among the astrophysics community [35, 62–64].

85



IV.3.2 Semi-analytic solutions by Lowrie and collaborators

More recently, Lowrie and collaborators [1, 7] have reintroduced semi-analytic solu-

tion methods for radiating shocks as a code-verification tool. The latter semi-analytic

solution method uses nonequilibrium diffusion theory, with the Eddington approxi-

mation, f ≡ P/E = 1/3. This verification tool has been used by many RH codes

which solve for the radiation variables via diffusion and the Eddington approxima-

tion [39, 55–57], and also by many codes which solve the radiation transport equation

with a variable Eddington factor (in 1-D), or a variable Eddington tensor (in 2-D or

3-D) [35, 40–42, 58].

Beyond code-verification, semi-analytic solutions help develop physical intuition, and

potentially lead to a deeper understanding of the physics involved, and allow testing

specific ideas and established formulae. One particular, and erroneous, formula was

introduced in Section IV.1 to determine the maximum material temperature at the

shock discontinuity of a supercritical shock, c.f., equation (IV.27),

Ts = (3− γ)Tf , (IV.47)

and is shown by Lowrie and Edwards [1] to be qualitatively wrong for Mach numbers

spanning two orders of magnitude. In that paper, they derive for the maximum

material temperature, the formula:

Tmax = max

(
Tf ,

[
3 (γM2

0 + 1) + γP0

(
1− T 4

f

)]2
36γM2

0

)
. (IV.48)
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Figure IV.11: Comparison of Mihalas’s estimate of the maximum material tem-
perature for a radiative shock, equation (IV.47), with Lowrie’s estimate, equation
(IV.48), along with semi-analytic solutions computed from Lowrie’s nonequilibrium
radiation solution method. Mihalas’s estimate is qualitatively wrong. Lowrie’s esti-
mate is qualitatively wrong for very weak shocks,M0 . 1.2, and very strong shocks,
M0 & 50, but agrees nicely with the computed results in between. Adapted from
[1].

See Figure IV.11.

The semi-analytic solutions of Heaslet and Baldwin [59] showed conclusively that

radiating shocks could be smooth across the spatial profile, and not admit an em-

bedded hydrodynamic shock, or, they could admit a Zel’dovich spike associated with

the embedded hydrodynamic shock. Lowrie and Edwards [1] closely examined em-

bedded hydrodynamic shocks, and the Zel’dovich spike, and determined that the

Zel’dovich spike was not dependent on the existence of the embedded hydrodynamic

shock, but instead it depends on the existence, and location, of the isothermal sonic
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Figure IV.12: Comparison of approximate and semi-analytic solutions for a subcrit-
ical shock in a weak radiation field, P0 = 1.e − 4. The analytic solutions provide a
reasonable estimate of the shock’s optical depth, as well as the radiation variables
and the material temperature.

point. Thus, even in the absence of an embedded hydrodynamic shock, i.e., for

continuous radiating shock solutions, a Zel’dovich spike may exist in the relaxation

region. These details aide our intuition and potentially remove false beliefs about

radiating shocks, or at least place them in the proper context of the assumptions be-

ing made, and the models being used. Figures IV.12 and IV.13 show the difference

between the analytic and semi-analytic solutions for a subcritical and supercritical

shock.
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Figure IV.13: Comparison of approximate and semi-analytic solutions for a super-
critical shock in a weak radiation field, P0 = 1.e− 4. The analytic solutions do not
provide a reasonable estimate of the radiating shock.

IV.3.2.1 Lowrie’s semi-analytic solution method: General equations

The solution method developed by Lowrie and collaborators is clearly outlined here

because it is the foundation for the solution procedure in the next Chapter. Lowrie

begins with the RH equations,

∂x (ρu) = 0 ,

∂x
(
ρu2 + p

)
= −P0Srp ,

∂x

[
u

(
1

2
ρu2 + p+ ρe

)]
= −P0Sre ,

µ∂xI = −σtI +
σs
4π
E +

σa
4π
T 4 − 2

σs
4π
βF + βµ

(
σtI +

3σs
4π
E +

3σa
4π

T 4

)
,
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and generates the radiation energy and momentum equations by taking the zeroth

and first angular-moments of the radiation transport equation,

∫
µ

µ∂xIdµ = ∂xF = σa
(
T 4 − E

)
+ (σa − σs) βF ≡ Sre , (IV.49a)∫

µ

µ2∂xIdµ = ∂xP = −σtF + β
(
σtP + σsE + σaT

4
)
≡ Srp . (IV.49b)

The radiation flux in the material energy equation is nondimensionalized as aru∞T
4
∞,

instead of arcT
4
∞. The radiation variables are Lorentz transformed, at first-order in

β, from the lab-frame to the comoving-frame,

Eo = E − 2βF , (IV.50a)

Fo = F − β (E + P) , (IV.50b)

and the Eddington approximation is made, P = E/3, such that the lab-frame ra-

diation energy and momentum equations, in terms of the comoving-frame radiation

variables, are:

Sre = ∂xFo +
4

3
∂x (βEo) = σa

(
T 4 − Eo

)
− σtβFo , (IV.51a)

Srp =
1

3
∂xEo +

2

3
∂x (βFo) = −σtFo + σaβ

(
T 4 − Eo

)
. (IV.51b)

The second derivative in the radiation momentum equation, 2∂x (βFo) /3, is dropped

since it is of second-order in the equilibrium-diffusion limit. The radiation flux can

then be solved for in equation (IV.51b),

Fo = − 1

3σt
∂xEo + β

(
T 4 − Eo

)
, (IV.52)
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and used in the radiation energy equation (IV.51a):

∂x

(
− 1

3σt
∂xEo + β

(
T 4 − Eo

)
+

4

3
βEo
)

= σa
(
T 4 − Eo

)
− σtβFo . (IV.53)

The term β (T 4 − Eo) is dropped since, again, it is of second-order in the equilibrium

diffusion limit. Thus, the radiation energy equation is

−∂x
(

1

3σt
∂xEo

)
+

4

3
∂x (βEo) = σa

(
T 4 − Eo

)
− σtβFo . (IV.54)

The terms above that were dropped due to being second-order in the EDL are a

consequence of Lowrie’s original work on radiating shocks [7] for the EDL, and that

his primary intentions were to use the semi-analytic solutions as a code-verification

tool for a RH code which uses a specific radiation model. Thus, many equations in

[7] were transferred to the nonequilibrium diffusion radiating shocks paper [1], with

the effect that the only changes to many equations in [1] are to distinguish some valid

T 4 terms from terms that should be Eo ≡ θ4, where θ is the radiation temperature.

In the case of equilibrium diffusion radiating shocks, there now exist three equa-

tions, the three conservation equations, for three unknowns, ρ, u and T , where an

ideal-gas EOS is assumed. For nonequilibrium diffusion solutions, the material tem-

perature and radiation temperature are solved separately, and a fourth equation

must be introduced. For this purpose Lowrie uses the steady-state material internal

energy equation

ρu∂xe+ p∂xu = P0σa
(
Eo − T 4

)
. (IV.55)

The ideal-gas EOS is
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Figure IV.14: Code-verification of the IMC radiation transport package, with rela-
tivistic material-motion corrections [65], in KULL using Lowrie’s semi-analytic (“an-
alytic”) solution forM0 = 1.2 and P0 = 10−4. The material and radiation tempera-
tures, computed by KULL, reasonably match the analytic solutions.

p =
ρT

γ
, (IV.56a)

e =
T

γ (γ − 1)
. (IV.56b)

The system of equations to be solved, with the ideal-gas EOS implemented, are

∂x (ρu) = 0 , (IV.57a)

∂x

(
ρu2 +

ρT

γ
+

1

3
P0Eo

)
= 0 , (IV.57b)

∂x

[
u

(
1

2
ρu2 +

ρT

γ − 1
+

4

3
P0Eo

)]
= P0∂x (κ∂xEo) , (IV.57c)

ρu

γ (γ − 1)
∂xT +

ρT

γ
∂xu = P0σa

(
Eo − T 4

)
, (IV.57d)
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which represent mass conservation, total momentum conservation, total energy con-

servation, and the internal energy equation.

IV.3.2.2 Lowrie’s semi-analytic solution method: Problem statement

Since the nondimensionalization imposed that the reference dimensional quantities

are given at the upstream equilibrium state, the nondimensional variables of the

reference dimensional quantities, at the upstream equilibrium state, are set to unity:

ρ0 = 1, T0 = 1 and Eo = 1. Given the values of γ,M0, P0, and the functions σa(ρ, T )

and σt(ρ, T ), equations (IV.57) allow the functions ρ(x), u(x), T (x) and Eo(x) to be

computed.

IV.3.2.3 Lowrie’s semi-analytic solution method: Overall jump conditions

The first three equations of equations (IV.57) can be integrated from the initial

upstream equilibrium state-0 to the final downstream equilibrium state-f :


ρu

ρu2 + ρT
γ

+ 1
3
P0T

4

u
(

1
2
ρu2 + ρT

γ−1
+ 4

3
P0T

4
)


0

=


ρu

ρu2 + ρT
γ

+ 1
3
P0T

4

u
(

1
2
ρu2 + ρT

γ−1
+ 4

3
P0T

4
)

f

, (IV.58)

which define the radiation-modified Rankine-Hugoniot jump conditions for the radi-

ating shock at the far-upstream and far-downstream boundaries. These jump condi-

tions must be solved numerically for Tf , and then all of the downstream equilibrium

state values may be determined. The first constraint, the first-integral of mass con-

servation, allows the initial Mach number to be defined:

M0 = ρ0u0 = u0. (IV.59)
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Figure IV.15: Same conditions as Figure IV.14, but with M0 = 2. The material
and radiation temperatures, computed by KULL, begin to show distortions from the
analytic temperatures. The radiation temperature shows a “lead-lag-lead” behavior
compared to the analytic solution. The material temperature, near the apex of the
Zel’dovich spike, appears to have a strongly damped oscillation as it goes into the
final downstream equilibrium region.

IV.3.2.4 Lowrie’s semi-analytic solution method: Reduced equations

The four equations (IV.57) may be reduced to two ODEs,

dEo
dx

=
M0

P0κ

[
T − 1

γ − 1
+
M2

0

2ρ2

(
1− ρ2

)
+

4

3
P0

(
Eo
ρ
− 1

)]
, (IV.60a)

dx

dM
= − 6M0ρT (M2 − 1)

P0 (γ + 1)M
[
M0

dEo
dx

+ 3ρσa

(
γ−1
γ+1

)
(γM2 + 1) (Eo − T 4)

] , (IV.60b)
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Figure IV.16: Same conditions as Figure IV.14, but with M0 = 3. The material
and radiation temperatures, computed by KULL, show distortions from the ana-
lytic temperatures. The radiation temperature and, to a lesser extent the material
temperature, shows a “lead-lag-lead” behavior compared to the analytic solution.
The radiation temperature, under the Zel’dovich spike, has a local-maximum. The
material temperature, around the Zel’dovich spike, shows considerable distortion.

where

ρ = ρ (M) =
M2

0 (γM2 + 1)

M2 (γM2
0 + 1)

, (IV.61a)

T = T (ρ (M) ,M) =
M2

0

ρ2M2
. (IV.61b)

Equations (IV.60) are integrated across the precursor region,M∈ (M0 > 1, 1), and

the relaxation region,M∈ (Mf < 1, 1), independently. If the precursor value of Eo,

atMp = 1+ε, is less than the value of Eo on the relaxation side, atMs = 1−ε, where

ε � 1, then the shock is continuous across the entire spatial profile. If the shock
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Figure IV.17: Same conditions as Figure IV.14, but with M0 = 5. The material
and radiation temperatures, computed by KULL, show distortions from the analytic
solutions in the nonequilibrium region; in the equilibrium region, the KULL results
exhibit remarkable agreement with the analytic solutions over an extended distance,
up to the Zel’dovich spike. At the Zel’dovich spike, the material temperature is
significantly lower than the analytic temperature, and the radiation temperature has
a local-maximum.

is not continuous, then there exists an embedded hydrodynamic shock. State-p and

state-s, bounding the embedded hydrodynamic shock, are determined by enforcing

continuity of the lab-frame radiation energy flux

F = −κ∂xEo +
4

3
uEo . (IV.62)

The distinction between the analytic results obtained in Section IV.1, and Lowrie’s

semi-analytic solutions, outlined above, are shown in Figures IV.12 and IV.13.
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IV.3.3 Code-verification of KULL’s Implicit Monte Carlo radiation transport

package using Lowrie’s semi-analytic solutions

Lowrie’s nonequilibrium diffusion semi-analytic solution method can be used for

code-verification of RH codes which generate radiative shocks. For convenience,

Lowrie’s solution will now be referred to as an analytic solution. In work with Bryan

Johnson at LLNL, Lowrie’s nonequilibrium radiative shock code was developed for

the purpose of testing the Implicit Monte Carlo (IMC) [66] radiation transport pack-

age in the multi-physics package, KULL. The variant of IMC tested here solves the

radiation transport equation, with modified material-motion corrections, which are

not accurate through O(β). Figures IV.14 - IV.17 show the results of these tests

for initial Mach numbers, M0 = 1.2, 2, 3 and 5, respectively, and P0 = 10−4. The

KULL input data is initialized with the analytic solution for a givenM0. KULL then

propagates the shock wave along a planar-direction, with reflective boundary condi-

tions at the end-planes. The simulation stops after a prescribed time-lapse, which

represents a few shock crossing-times. If there are no bugs in the physics packages

used by KULL, specific to radiation transport and hydrodynamics, and assuming

the physics in the solution is not too dissimilar from the physics packages used by

KULL, then KULL should propagate the shock wave without considerable distortion.

Figure IV.14 shows the result from KULL for M0 = 1.2. The noise in the IMC

data, near equilibrium, is an artifact of Monte Carlo processes. Overall, KULL holds

the shock wave reasonably well. The material temperature does not hold the shock

discontinuity perfectly, but this is expected from a discretized hydrodynamic solver

that is not using adaptive mesh refinement. The radiation temperatures appear to

be “close enough”.
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Figure IV.15 was generated with the same conditions as Figure IV.14, but with

M0 = 2. These KULL results show an organized deviation from the analytic solu-

tions, especially in the radiation temperature. The radiation temperature, computed

by KULL, is slightly larger than the analytic result near the upstream equilibrium

state, then less than it until the shock discontinuity, and then significantly larger

than the analytic radiation temperature under the Zel’dovich spike. Due to this

“lead-lag” nature, it can not be an artefact of misaligning the KULL result with

the analytic solution. The material temperature, computed by KULL, matches the

analytic result reasonably well, except near the apex of the Zel’dovich spike where

an oscillation appears to be quickly damped going into the relaxation region.

Figure IV.16 shows the results from KULL for M0 = 3. These results show sim-

ilar characteristics to those just mentioned. The radiation temperature, computed

by KULL, exhibits a “lead-lag” nature, but this time takes on a local-maximum

value under the Zel’dovich spike. This last feature under the Zel’dovich spike is a

manifestation of anti-diffusion due to a radiation transport solution. The material

temperature, computed by KULL, might also be exhibiting the same “lead-lag” na-

ture as the radiation temperature. Approaching the shock discontinuity, the material

temperature diverges from the analytic solution.

Figure IV.17 shows the results from KULL for M0 = 5. These results show the

characteristics mentioned previously in the nonequilibrium region, but in the equi-

librium region the results from KULL and the analytic solution exhibit remarkable

agreement over an extended distance, up to the Zel’dovich spike. At the Zel’dovich

spike, the material temperature, computed by KULL, is significantly lower than the
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analytic temperature, and the radiation temperature, computed by KULL, still ap-

pears to have a local-maximum.
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CHAPTER V

RADIATIVE SHOCK SOLUTIONS WITH GREY SN TRANSPORT

In this chapter, we describe a semi-analytic solution method for planar nonequi-

librium radiative shocks using a variable Eddington factor (VEF) computed using

angularly-discretized (Sn) radiation transport. This work is an extension of the work

by Lowrie and Edwards [1], wherein the radiation is modeled using nonequilibrium-

diffusion with a constant Eddington factor, f(x) ≡ 1
3
, and uses ideas, and verifies

predictions, made in the work by McClarren and Drake [2]. Specifically, a two-step

iteration procedure is described which consistently converges 1) the radiative shock

solution and, 2) the VEF. The first step is to compute the spatial structure of the

radiative shock, given a VEF, in a manner similar to [1]; this is called “the RH solve”.

In the first iteration, the VEF for the RH solve is assumed to be one-third every-

where: f(x) ≡ 1/3. The second step uses the values of variables computed in step

one to solve the Sn radiation transport equation; this is called “the RT solve”. The

RT solve produces the solutions for n radiation intensities. Quadrature integration

of the n radiation intensities produces new values of the radiation variables, and the

VEF. Consistently converge means that the measured error of the radiation variables

between the RH and RT solves converges, and is controlled by the error tolerance

of the numerical integrator. The solutions described here are accurate enough to be

used to verify RH codes that solve the radiation transport equation for the radiation

intensity, or its angular moments [35, 40, 41]. Because a numerical procedure is re-

quired, the solutions are referred to as semi-analytic.
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For a given equation of state (EOS), the spatial character of a radiative shock wave

is determined by the initial Mach number, M0, the radiation strength, P0, and the

functional form of the material cross-sections: σa and σt = σa + σs. Shock waves

separate two distinct states of the fluid which are in different equilibrium states. The

stronger the shock, the further apart these equilibrium states are. The initial Mach

number determines the strength of the shock. The radiation strength measures the

relative amount of radiation energy present in the ambient, unshocked,equilibrium

system. The cross-sections control the rate at which the radiation-material system

interacts.

The VEF is a measure of the dominant direction of the radiation field. We use

the direction cosine, {µ ≡ cos θ | 0 ≤ θ ≤ 180◦; −1 ≤ µ ≤ 1}, to describe the net

macroscopic flow of the radiation field through the fluid. This is because it is dµ,

instead of dθ, that produces equal intervals of probability over the reference domain.

Given the radiation intensity, as a function of the direction cosine, the VEF is defined

as the ratio of the second- and zeroth-angular moments of the radiation intensity

f ≡
∫

4π
µ2I (µ) dµ∫

4π
I (µ) dµ

. (V.1)

When f = 1/3, radiation is travelling with equal intensity in all directions, resem-

bling isotropic emission and absorption, or diffusion. As will be shown in Subsection

V.5.1, when f > 1/3, the radiation intensity is strongest for values of |µ| . 1, re-

sembling forward peaked or transmissive radiation. When f < 1/3 the radiation

intensity is strongest for values of |µ| & 0, resembling oblique radiation. Oblique

radiation is strongest under the Zel’dovich spike near the embedded hydrodynamic

shock. When the material and radiation temperatures are in equilibrium, then radi-
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ation is emitted and absorbed isotropically, and f ≡ 1/3. An imperfect measure of

the VEF is how far the material and radiation temperatures are out of equilibrium.

As a rule-of-thumb, when the radiation temperature is greater than the material

temperature then the VEF is greater than 1/3, and conversely, when the radiation

temperature is less than the material temperature then the VEF is less than 1/3.

Near an embedded hydrodynamic shock, sharp changes in the relationship between

the material and radiation temperatures cause the constant Eddington approxima-

tion to be invalid.

In order to simplify the analysis, several additional assumptions are made. The

material cross-sections are restricted to depend only on the material density and

temperature. In particular, the material is assumed to be homogeneous, such that

the cross-sections have no explicit spatial dependence. Although the solutions pre-

sented here can be useful to help verify RH codes and offer additional physical insight,

the assumptions made must be kept in mind. The Sn-transport model assumes that

the angular distribution of the radiation intensity is reasonably represented by a fi-

nite number of discrete angles. The grey assumption represents each cross-section as

a frequency-averaged value. It is particularly invalid when line- or edge-structures of

the material cross-sections play a significant role. The ion and electron temperatures

are assumed to be equal throughout the material, and heat conduction and viscous

effects within the material are ignored. In short, these assumptions may certainly

break down.

The rest of this Chapter is devoted to describing the solution method and exam-

ining the results. In Section V.1, the general equations of RH are collected, along

with the zeroth- and first-angular moments of the radiation transport equation, and
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nondimensionalized, as steady-state ODEs. In Section V.2, the problem to be solved

is succinctly defined. In Section V.3, the nondimensionalized ODEs are manipulated

into a single ODE for the RH solve, and a separate ODE for the RT solve. In Section

V.4, the two-step iterated solution procedure is described, and specific attention is

given to the initializations of the RH and RT solves. In Section V.5, the semi-analytic

results are presented and discussed: they are compared to the nonequilibrium diffu-

sion solutions found in [1]; used for code-verification of the IMC radiation transport

package coupled to the KULL multi-physics package developed at LLNL; used to an-

alyze the material and radiation temperature on the precursor side of the Zel’dovich

spike and to understand the mechanism of anti-diffusion; and used to re-examine the

onset of supercritical (“diffusive”) shocks.

V.1 Governing equations and nondimensionalization

We seek consistent shock wave solutions of the RH equations. In this section, the

RH equations are written, along with the first two angular moments of the radiation

transport equation, and nondimensionalized. The equations are then rewritten in a

form that allows them to be solved semi-analytically.

The equations of 1-D grey RH are the Euler equations of fluid-mechanics and the

frequency-integrated equation of radiation transport:

∂tρ+ ∂x (ρu) = 0 , (V.2a)

∂t (ρu) + ∂x
(
ρu2 + p

)
= −Srp , (V.2b)

∂t

(
1

2
ρu2 + ρe

)
+ ∂x

[
u

(
1

2
ρu2 + ρe+ p

)]
= −Sre , (V.2c)
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∂tI + µ∂xI = −σtI +
σs
4π
cE +

σa
4π
arcT

4 + βµ
(
σtI + 3

σs
4π
cE + 3

σa
4π
arcT

4
)

− 2β
σs
4π
F +

1

4π
(C0 + 3µC1) ≡ Q , (V.2d)

where Sre and Srp are the first two angular moments of the radiation transport

equation, and represent the radiation source-rates of energy and momentum

Sre ≡
∫

4π

Qdµ = ∂tE + ∂xF = σac

[
arT

4 −
(
E − 2

c
βF
)]
− σtβF + C0 , (V.3a)

Srp ≡
1

c

∫
4π

Qµdµ =
1

c2
∂tF + ∂xP

= −σt
c

[F − (E + P)u] + σaβ
(
arT

4 − E
)

+
1

c
C1 . (V.3b)

The purpose of C0 and C1 is to ensure that the radiation source-rates go to zero in

equilibrium, and to also allow us to define the radiation internal energy source-rate

as

Sre − uSrp = σac
(
αRT

4 − Eo
)
. (V.4)

The values of C0 and C1 which accomplish this task are derived in Appendix E:

C0 = β2c
(
(σs − σa) (E + P) + σa

(
αRT

4 − E
))
, (V.5a)

C1 = 0 . (V.5b)

Thus, the radiation source-rates of energy, momentum, and internal energy, written

explicitly in terms of the lab-frame radiation variables, are:

Sre = σac

[
arT

4 −
(
E − 2

c
βF
)]
− σtβF

+ β2c
(
(σs − σa) (E + P) + σa

(
αRT

4 − E
))
, (V.6a)
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Srp = −σt
c

[F − (E + P)u] + σaβ
(
arT

4 − E
)
, (V.6b)

Sre − uSrp = σac
(
αRT

4 − E
)

+ 2σaβF − 2σau (E + P) . (V.6c)

It is useful to nondimensionalize the RH equations and group the dimensional vari-

ables. Each dimensional variable is decomposed into a variable containing the di-

mension, and a separate variable, with a tilde over it, which contains the value; e.g.,

a length is nondimensionalized as x̃ = xL̃. The following dimensional quantities are

used extensively in the nondimensionalization:

L̃ (reference length) ,

ρ̃0 (reference material mass density) ,

T̃0 (reference material temperature) ,

ã0 (reference material sound speed) ,

c̃ (speed of light) ,

α̃R (radiation constant) .

The subscript-“0” indicates that a variable is evaluated at the pre-shock, upstream

equilibrium, state. The reference length L̃, is assumed to be O(1cm). The nondi-

mensional quantities are then defined in terms of their dimensional counterparts as

follows:

x =
x̃

L̃
(spatial coordinate) ,

t =
t̃ã0

L̃
(time coordinate) ,

ρ =
ρ̃

ρ̃0

(material mass density) ,

u =
ũ

ã0

(material velocity) ,
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C ≡ c̃

ã0

,

β =
ũ

c̃
= u

ã0

c̃
=
u

C
,

e =
ẽ

ã2
0

(material internal energy density) ,

p =
p̃

ρ̃ã2
0

(material pressure) ,

T =
T̃

T̃0

(material temperature) ,

θ =
θ̃

T̃0

(radiation temperature) ,

σa = σ̃aL̃ (absorption cross-section) ,

σs = σ̃sL̃ (scattering cross-section) ,

σt = σ̃tL̃ (total cross-section) ,

κ =
1

σ̃tL̃
=

1

σt
(radiation diffusivity) ,

I =
Ĩ

α̃Rc̃T̃ 4
0

(radiation intensity) ,

E =
Ẽ

α̃RT̃ 4
0

(radiation energy density) ,

F =
F̃

α̃RcT̃ 4
0

(radiation flux) ,

P =
P̃

α̃RT̃ 4
0

≡ fE (radiation pressure) .

The reason for nondimensionalizing the material internal energy density ẽ, with the

square of the reference sound speed ã2
0, is explained in Appendix F. The VEF, f , is

introduced in the definition of the radiation pressure P .

We further impose the steady-state condition on the RH equations (V.2) and (V.3),
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and write this system in nondimensional form as

∂x (ρu) = 0 , (V.7a)

∂x
(
ρu2 + p

)
= −P0Srp , (V.7b)

∂x

[
u

(
1

2
ρu2 + ρe+ p

)]
= −P0CSre , (V.7c)

µ∂xI = −σtI +
σs
4π
E +

σa
4π
T 4 − 2

σs
4π
βF + βµ

(
σtI +

3σs
4π
E +

3σa
4π

T 4

)
+

1

4π
β2
(
(σs − σa) (E + P) + σa

(
T 4 − E

))
, (V.7d)

where the nondimensional radiation source-rates of energy, momentum and internal

energy are

Sre = σa
[
T 4 − E

]
+ β (σa − σs)F

+ β2
(
(σs − σa) (E + P) + σa

(
T 4 − E

))
= ∂xF , (V.8a)

Srp = −σt [F − β (E + P)] + σaβ
(
T 4 − E

)
= ∂xP , (V.8b)

Sre − βSrp = σa
(
T 4 − E

)
+ 2σaβ (F − E − P) . (V.8c)

The nondimensional constant P0, defined as P0 ≡ α̃RT̃
4
0

ρ̃0ã20
, represents the relative con-

tribution of radiation energy to the total energy in the system; P0 is proportional to

the ratio of the radiation pressure to material pressure and alternatively, the radia-

tion energy to the material energy. It is a measure of the influence of radiation on

the flow dynamics.

The radiation flux can be derived from the radiation momentum source rate, equation
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(V.8b),

F = − 1

σt
∂xP +

1

σt
β
(
σtP + σsE + σaT

4
)
. (V.9)

Solutions of the RH system, equations (V.7), also satisfy the material internal energy

equation

ρu∂xe+ p∂xu = −P0C (Sre − βSrp) . (V.10)

As stated at the beginning of this section, we seek consistent shock wave solutions of

the RH equations (V.7). However, we obtain these solutions by combining equations

(V.7a) - (V.7c) with equations (V.8a) and (V.8b), along with equation (V.10) which

uses equation (V.8c), and solving the resulting system

∂x (ρu) = 0 , (V.11a)

∂x
(
ρu2 + p+ P0P

)
= 0 , (V.11b)

∂x

[
u

(
1

2
ρu2 + ρe+ p

)
+ P0CF

]
= 0 , (V.11c)

ρu∂xe+ p∂xu = −P0C
[
σa
(
T 4 − E

)
+ 2σaβ (F − E − P)

]
, (V.11d)

the solutions of which must relate the radiation pressure to the radiation energy

density via the VEF, P = fE , which is constructed by solving the steady-state

radiation transport equation

µ∂xI = −σtI +
σs
4π
E +

σa
4π
T 4 − 2

σs
4π
βF + βµ

(
σtI +

3σs
4π
E +

3σa
4π

T 4

)
+

1

4π
β2
(
(σs − σa) (E + P) + σa

(
T 4 − E

))
. (V.12)
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These steady-state equations (V.11) and (V.12), represent the conservation state-

ments of mass, total momentum and total energy, the internal energy equation, and

the radiation transport equation, respectively. The RH solve determines solutions of

equations (V.11); the RT solve determines solutions of equation (V.12). When the

separate solutions of equations (V.11) and (V.12) converge via iteration, we say the

solutions are consistent and that we have found the steady-state shock wave solutions

to the RH equations (V.7), which we sought.

V.2 Problem statement

In this section, the problem to be solved is defined. The material fluid flow is

assumed to move in the +x−direction. The reference state with subscript-0 refers

to the pre-shock, upstream equilibrium conditions, attained as x → −∞, while

the subscript-1 refers to post-shock, downstream equilibrium conditions, attained

as x → ∞. Far from the shock the flow is in radiative equilibrium, E = T 4, and

isotropic, f = 1/3. Note that the nondimensional pre-shock solution state is known

since reference dimensional values were taken from this upstream equilibrium region,

therefore, E0 = 1, T0 = 1, ρ0 = 1, and f0 = 1/3. The problem statement then is:

• Assume: An ideal-gas γ-law EOS, for a monatomic fluid obeying Eulerian

hydrodynamics, and interacting with radiation which is described by grey Sn

transport.

• Given: The values γ, M0, P0, and the functions σa(ρ, T ) and σt(ρ, T ).

• Calculate: The functions p(x), ρ(x), u(x), T (x),M(x), I(µm, x), θ4(x) ≡ E(x),

F(x), P(x), and f(x).

109



V.3 Reduced equations

In this Section, the ideal gas γ-law EOS is given, and the reduced set of ODEs that

satisfy the steady-state system of RH equations (V.11) and (V.12), for the shock

problem given in Section V.2, are derived. In Subsection V.3.1, the steady-state RH

moment equations (V.11) are reduced to a single ODE. In Subsection V.3.2, the ra-

diation transport equation (V.12) is angularly discretized, and the angular moments

of its solutions are defined, and computed via quadrature integration.

The ideal-gas γ-law EOS is written in nondimensional form as

p =
ρT

γ
, (V.13a)

e =
T

γ (γ − 1)
, (V.13b)

where the adiabatic index γ, is assumed constant and equal to 5/3 for a monatomic

gas. This form of the EOS is derived in Appendix F. This EOS is quite restrictive

for several radiation-hydrodynamic flow regimes, but greatly simplifies the analysis.

It is also convenient to include here the nondimensional expression for the local

Mach number, as derived in Appendix F:

M =
u√
T
. (V.14)

The ODEs for the RH solve, which result from the ideal gas γ-law EOS (V.13), are

∂x (ρu) = 0 , (V.15a)
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∂x

(
ρu2 +

ρT

γ
+ P0P

)
= 0 , (V.15b)

∂x

[
u

(
1

2
ρu2 +

ρT

γ − 1

)
+ P0CF

]
= 0 , (V.15c)

ρu

γ (γ − 1)
∂xT +

ρT

γ
∂xu = −P0C

[
σa
(
T 4 − E

)
+ 2σaβ (F − E − P)

]
. (V.15d)

Again, these equations represent the conservation of mass, conservation of total

momentum, conservation of total energy, and the material internal energy equation,

respectively. These ODEs are simplified to a single ODE in the next subsection; the

ODEs for the RT solve are the angularly discretized radiation transport equations,

presented in Subsection V.3.2.

V.3.1 The ordinary differential equations for the radiation hydrodynamic solve

In this subsection, the ODEs that simultaneously describe the precursor and re-

laxation regions, equations (V.15), are manipulated into a single ODE. This ma-

nipulation begins by expressing the equation of mass conservation as an algebraic

expression, and the equation of total momentum conservation as a differential expres-

sion. Algebraically manipulating the equation of material internal energy produces

a gradient expression for the material temperature. Integrating the equation of total

energy conservation produces a gradient expression for the radiation pressure, which

can be combined with the gradient of the local Mach number, to produce the ODE

which is to be integrated. The numerical integration of this ODE, and the method to

splice the solutions from the precursor and relaxation regions together is described

in Section V.4.
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Integrate the equation of mass conservation (V.15a) to give

ρu = ρ0u0 = u0 =M0 , (V.16)

where it has been recalled, from Section V.2, that ρ0 = 1 T0 = 1, and the equation

for the local Mach number (V.14), has been used. The local Mach number (V.14),

may now be expressed as a function of density and temperature

M =
u√
T

=
M0

ρ
√
T
. (V.17)

Distribute the derivative in the equation of total momentum conservation (V.15b),

and use equations (V.17) and (V.16), to produce:

∂xρ =
ρ∂xT + γP0∂xP
T (γM2 − 1)

. (V.18)

Integrate the equation of total energy conservation (V.15c), and use equation (V.16),

to produce:

∂xP =
σtM0

CP0

[
T − 1

γ − 1
+
M2

0

2ρ2

(
1− ρ2

)
+ P0

(
σtP + σsE + σaT

4

ρσt
− 4

3

)]
. (V.19)

The material internal energy equation (V.15d) can be rearranged to solve for the

spatial derivative of the material temperature:

∂xT =
P0 (γ − 1)

M0ρ (M2 − 1)
[M0∂xP

+
(
γM2 − 1

)
ρσaC

[
E − T 4 − 2βF + 2β2 (E + P)

]]
, (V.20)
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where equations (V.16) and (V.18) have been used. The derivative of the local Mach

number, equation (V.17),

∂xM = −M
(

1

ρ
∂xρ+

1

2T
∂xT

)
, (V.21)

can be simplified, but this does not provide additional insight. The local Mach

number is assumed to be monotonic, and equation (V.21) is inverted,

dx

dM
= − 2ρT

M (2T∂xρ+ ρ∂xT )
, (V.22)

such that the local Mach number may now be used as an integration parameter. No

proof of the monotonicity of equation (V.21) is known. Thus, the spatial gradient of

the radiation pressure, equation (V.19), may be multiplied by equation (V.22),

dP
dx

dx

dM
=

dP
dM

(M,P) , (V.23)

and integrated along the local Mach number to determine the radiation pressure.

Then, integrating equation (V.22) along the local Mach number provides the spatial

domain. The radiation pressure and the local Mach number are now the primary

variables on which all the other RH variables depend. The only two variables which

have not been explicitly written in a functional form are the material density and the

material temperature. They can be written as functions of the local Mach number

and the radiation pressure by integrating the equation of total momentum conserva-

tion, equation (V.15b), and by rearranging equation (V.17):

ρ (M,P) =
M2

0 (γM2 + 1)

M2
(
γM2

0 + 1 + γP0

(
1
3
− P

)) , (V.24a)
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T (M,P) =
M2

0

ρ2M2
. (V.24b)

Alternatively, the material temperature may be chosen as the dependent variable, in-

stead of the radiation pressure, then the material density and the radiation pressure,

as functions of the local Mach number and the material temperature, are:

ρ (M, T ) =
M0

M
√
T
, (V.25a)

P (M, T ) =
1

γP0

[
γM2

0

ρ
(ρ− 1) + 1 +

1

3
γP0 −

M2
0

M2ρ

]
. (V.25b)

V.3.2 The ordinary differential equations for the radiation transport solve

In this subsection, the radiation transport equation (V.7d) is angularly discretized

along n angular directions. This is often referred to as the Sn method. Quadrature

weights, 0 < wm < 1, and roots, −1 < µm < 1, are used that allow accurate

quadrature-integration of an n-th order polynomial, where m ∈ Z{1, n}. The Sn

method discretizes the angular-variable, µ → µm, and by extension the radiation

intensity, I (µ)→ Im ≡ I (µm), generating n radiation transport equations

µm∂xIm + σtIm − βµmσtIm =
σs
4π
E +

σa
4π
T 4 − 2

σs
4π
β
F
C

+ βµm

(
3σs
4π
E +

3σa
4π

T 4

)
+

1

4π
β2
(
(σs − σa) (E + P) + σa

(
T 4 − E

))
. (V.26)

All terms involving the angularly discretized radiation intensity have been moved to

the LHS to emphasize that this is the variable being solved for; all of the terms on the

RHS are known from the RH solve described in the previous subsection. After the

Sn transport equation has been solved for each radiation intensity, the quadrature
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integrated angular moments of the radiation intensities produce new values of the

radiation energy density, radiation flux, and radiation pressure, respectively,

E = 2π
n∑

m=1

wmIm , (V.27a)

F = 2π
n∑

m=1

µmwmIm , (V.27b)

P = 2π
n∑

m=1

µ2
mwmIm , (V.27c)

from which the VEF is constructed

f =
P
E
. (V.27d)

V.4 Solution procedure

In Subsection V.4.1, the Rankine-Hugoniot jump conditions, from the upstream equi-

librium state to the downstream equilibrium state, are presented. In Subsection

V.4.2, the initialization procedure for the integration of the RH solve is described.

The ODEs used in the RH solve are identically zero in equilibrium, and an initial-

ization procedure must be used to move the solution away from equilibrium so that

equation (V.23) can be integrated. The Sn transport equation (V.26), is not identi-

cally zero in equilibrium. This is because we are using the O(β2) Taylor-expansion of

the radiation transport equation, and the O(β2) truncation destroys the equilibrium

condition. Subsequently, in Subsection V.3.2, the correct lab-frame initial values of

the Sn radiation intensities are determined.
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V.4.1 The Rankine-Hugoniot jump conditions

The Rankine-Hugoniot jump conditions determine the downstream equilibrium state

of the shock, where M1 < 1, given the upstream equilibrium state, where M0 > 1,

by enforcing the conservation statements of mass, total momentum and total energy:


ρu

ρu2 + p+ 1
3
P0T

4

u
(

1
2
ρu2 + ρe+ p+ 4

3
P0T

4
)

M0>1

=


ρu

ρu2 + p+ 1
3
P0T

4

u
(

1
2
ρu2 + ρe+ p+ 4

3
P0T

4
)

M1<1

.

(V.28)

The upstream equilibrium state is established in the problem statement, see Section

V.2, so the terms on the LHS are known. The equation in the first row defines

the initial Mach number, M0 = ρu, see equation (V.16), which helps simplify the

second and third equations. Recalling that the ideal-gas EOS specifies that the

material pressure and internal energy density are functions of the material density

and temperature, the last two equations are functions only of the material density

and temperature. However, the equation produced by solving them is of higher-order

than quartic, and must be solved numerically.

V.4.2 The radiation hydrodynamic solve

The first RH solve follows exactly the procedure detailed in [1], and produces a ra-

diative shock profile similar to any of the figures in Section IV.3. Initialization of

the ODE integration can be done by linearizing away from the equilibrium state to

a state perturbed by ε: (M,P , T, ...)ε. This is achieved by linearizing the RH vari-

ables about their equilibrium values, Y (x) 7→ Y (x)eq + δY (x), and it is assumed that
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Figure V.1: Solution procedure for the RH solve up to enforcing continuity of the
radiation variables. The upstream precursor equilibrium state is given in the problem
statement. The radiation modified Rankine-Hugoniot jump conditions allow the
downstream relaxation equilibrium state to be determined. The equilibrium states
must move to the linearly initialized states-ε to allow integration of the RH ODEs
in the precursor and relaxation regions. If the radiation temperatures from the
precursor and relaxation integrations overlap, as shown, then there’s an embedded
hydrodynamic shock, and continuity of the radiation variables must be enforced; see
Figure V.2. The red lines show where to splice the precursor and relaxation regions
to construct the complete shock profile. All data between the red lines is discarded.

the linear term can be decomposed into the product of a constant and a spatially

dependent exponential term, δY eαx, such that ∂xδY (x) = αδY eαx. Then, equations

(V.19) - (V.21) are used to obtain a 2 × 2 system of equations, as derived in Ap-

pendix G, which depend only on the equilibrium states, such that the eigenvalue, α,

can be determined. Given the local Mach number at state-ε, the radiation pressure

at state-ε can be determined using this linearized initialization. The RH ODEs can
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Figure V.2: Radiation energy density and radiation flux plotted versus the inverse
compression ratio. Given the values of the integrated radiation variables in the
precursor and relaxation regions, continuity of the radiation energy density and ra-
diation pressure is enforced to find the location of the shock. The blue shaded region
represents an overlap of the radiation energy density values due to the integrations
through the precursor and relaxation regions. The boundary of this overlap is pro-
jected onto the values of the radiation flux and defines the boundary of its possible
values. The red rectangle represents the correct enforcement of continuity of the
radiation variables.

then be integrated in the precursor and relaxation regions; see Figure V.1.

To determine how the solutions in the precursor and relaxation regions are con-

nected requires simultaneously enforcing continuity of the radiation energy density

and the radiation flux. See Figure V.2. Enforcing continuity of the radiation flux

is equivalent to enforcing conservation of total material energy. Finally, the inverse

of the gradient of the local Mach number, equation (V.21), can be integrated to

produce the values of the x-coordinate. The RH solves, after the first one, initialize
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the radiation pressure by using the value of the radiation pressure determined from

the preceding RT solve at the state-ε.

V.4.3 The radiation transport solve

In Appendix F, the radiation energy density in the comoving- and lab-frame is defined

such that its equilibrium values are equivalent at O(β2). The radiation intensity is

not invariant between the comoving- and lab-frame, but instead, it transforms invari-

antly as I/ν3, where ν3o
ν3

= 1 + 3µβ +O(β2). The comoving-frame equilibrium value

of the radiation intensity is given as Io,eq = Eeq
4π

, such that the lab-frame equilibrium

value is Ieq = Eeq
4π

(1 + 3µβeq) + O(β2). When this expression is discretized along n

angular rays it becomes:

Im,eq =
Eeq
4π

(1 + 3µmβeq) +O(β2) . (V.29)

This provides the initializations for the n lab-frame radiation intensities, so that they

can be integrated along the appropriate µm. These radiation intensities allow E , F ,

P , and f to be calculated via equations (V.27), and tested against the solutions from

the RH solve for convergence. In this way, E , F and P are expected to consistently

converge between the RH solve and the RT solve, and f is expected to converge

iteratively.

Now, values exist for the local Mach number and the radiation pressure, from the RT

solve, which span the spatial domain of the radiative shock wave. Given the value

of the local Mach number at the initialization state-ε, the value of the radiation

pressure, from the RT solve, at this state can be determined by linear interpolation.

This method of determining the initial value of the radiation pressure at state-ε, by
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comparing it to the value of the local Mach number at state-ε, is used to initialize

subsequent RH solves.

The two-step procedure defines one iteration. At the end of each iteration, L2 and

relative L∞ errors for the radiation variables between the RH and RT solves are

computed, as are L2 and relative L∞ errors for the VEF between iterations. The so-

lution procedure is terminated after either 1) the solution tolerance for f is reached,

or 2) an iteration occurs wherein no measured error improves. The VEF solution

tolerance for the plots shown is 10−6.

V.5 Results and analysis

In this section, the grey Sn radiative shock solutions are discussed. In Subsection

V.5.1, differences between the solutions obtained from nonequilibrium diffusion the-

ory [1] and Sn transport are discussed; see Figures V.3 and V.4. In Subsection

V.5.2, the Sn radiative shock solutions are used as a code-verification tool for the

KULL multi-physics package, as done in Subsection IV.3.3, where Lowrie’s nonequi-

librium diffusion solutions were used. In Subsection V.5.3, the maximum material

and radiation temperatures, and their values on the upstream side of the embedded

hydrodynamic shock, in relation to the final equilibrium temperature are discussed;

see Figure V.9. Particular emphasis is placed on understanding why the material

and radiation temperatures immediately upstream of the embedded hydrodynamic

shock may be greater than the final equilibrium temperature, which is in disagree-

ment with nonequilibrium diffusion theory. The anti-diffusive regions found in some

shocks, which was first discussed in [2], is a consequence of this behaviour. In Subsec-

tion V.5.4, the onset of a diffusive region in strong shocks is briefly discussed. Drake

120



[5, 6] argues that “subcritical” and “supercritical” shocks are not well separated by

the condition of whether Tp < Tf , as claimed by nonequilibrium diffusion theory,

which is validated.

All of the radiative shock solutions presented in this section use γ = 5/3, P0 = 10−4,

σt = 577.35 = σa and Sn = 16; S16 provides considerably better resolution than S8,

and is computationally cheaper than S32 which provides no noticeable improvement.

V.5.1 Comparison of nonequilibrium diffusion and Sn radiative shock solutions

Figure V.3 shows the radiative shock solution for M0 = 2, comparing the material

and radiation temperatures computed from nonequilibrium diffusion, Tdiff and θdiff ,

and Sn transport, T and θ, along with the converged profile for f(x), and f = 1/3

for reference. The shock profiles do not differ dramatically, despite the distinct dif-

ference of the VEF from 1/3. Figure V.4, however, shows a qualitative distinction

between the nonequilibrium diffusion solution and the Sn transport solution where

θ > Tf under the Zel’dovich spike. This artifact is discussed in the next subsection.

Thus, these solutions are a good test of the hydrodynamic properties via the shock

profile, and of the radiation transport properties via the VEF profile and the radia-

tion intensities.

The radiative shock solutions computed from nonequilibrium diffusion theory, and

grey Sn transport, are similar because equations (V.19) and (V.20) are not strongly

dependent on the radiation model. This can be seen by considering the difference
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Figure V.3: The converged radiative shock solution for M0 = 2, P0 = 10−4, and
σt = 577.35 = σa, with temperature scale on the left axis, and VEF scale on the
right axis. The nonequilibrium diffusion solution is plotted with dashed lines for
comparison. The temperature solutions between the two models are obviously dif-
ferent, and exhibit a “lead-lag-lead” characteristic that was mentioned in Subsection
IV.3.3. The converged radiative temperature solutions, θRH and θRT , are plotted
individually, and are indistinguishable. The VEF is considerably different from 1/3,
with values greater than 1/3 in the precursor region leading to the embedded hy-
drodynamic shock, and dropping below 1/3 in the relaxation region. The constant
Eddington factor value of 1/3 is plotted for comparison.

between their gradients for the radiation pressure, and material temperature,

(∂xP)Sn −
(

1

3
∂xE
)
diff

∝ TSn − Tdiff
γ − 1

+ P0

((
fESn − 1

3
Ediff

)
ρ

)
, (V.30a)

(∂xT )Sn − (∂xT )diff ∝M0

[
(∂xP)Sn −

(
1

3
∂xE
)
diff

]

+
(
γM2 − 1

)
ρσaC

[(
E − T 4

)
Sn
−
(
E − T 4

)
diff

]
, (V.30b)
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Figure V.4: Same conditions as in Figure V.3 but with M0 = 3. The nonequi-
librium diffusion solutions and the constant Eddington factor of 1/3 are plotted for
comparison. The “lead-lag-lead” characteristic is distinctly apparent. The converged
radiation temperature solutions, θRH and θRT , are plotted individually and are indis-
tinguishable. The anti-diffusive structure of θ, i.e., the local maximum, is apparent
under the Zel’dovich spike. The values of the VEF diverge farther from the constant
Eddington factor for this solution than for the M0 = 2 solution in Figure V.3.

where the subscript-diff means nonequilibrium diffusion, and we neglect the differ-

ence in material density between the two radiation models. Early in the precursor,

while f(x) & 1/3, the material temperatures, TSn and Tdiff are effectively equal, as

are the radiation energy densities, ESn and Ediff , such that the Sn gradient of pres-

sure is slightly larger than the diffusion gradient because f(x) & 1/3, allowing both

of the Sn temperature solutions to exit equilibrium earlier than the nonequilibrium

diffusion solutions. To compare the gradients of the radiation energy densities far

from equilibrium, we must expand the derivative of the Sn pressure gradient, and
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rearrange terms

(∂xE)Sn =

(
∂xP − E∂xf

f

)
Sn

≈ 1

f

(
1

3
∂xE
)
diff

− E
f
∂xf . (V.31)

The scales of f and T are not proportional, so what appear to be large fluctuations

of f , in Figures V.3 and V.4, are relatively modest, although important. As f and

∂xf increase, the diffusion gradient of E , (∂xE)diff , grows more quickly than the Sn

gradient of E , (∂xE), such that θdiff > θ after a few optical depths, τ = σt |x|. How-

ever, as f passes through its apex ∂xf changes sign, and the relationship between the

gradients of E change as well with (∂xE)Sn > (∂xE)diff . As f descends toward 1/3,

the gradients are almost equal, and the values of θ and θdiff approach equality after

a few optical depths. If the shock is strong enough, f relaxes to the value 1/3 for a

few optical depths, which marks equality between the radiation and material tem-

peratures, regardless of the radiation model. As f proceeds below 1/3, the gradients

of E act to make θ > θdiff , which holds through the dip in f , which is associated

with the relaxation region downstream of the embedded hydrodynamic shock, un-

til both radiation models reach the final equilibrium state where θ = Tf = θdiff .

If the shock is strong enough, upon reaching the embedded hydrodynamic shock f

makes a steeper progression towards its minimum, causing (∂xE)Sn to increase suffi-

ciently such that θ > Tf , resulting in an anti-diffusive region; see Figure V.4. This

phenomena is discussed in Subsection V.5.3.

V.5.2 Code-verification of KULL’s Implicit Monte Carlo radiation transport

package using grey Sn transport

In this subsection, the ability to use the grey Sn transport solutions as a code-

verification tool is demonstrated. The multi-physics package, KULL, and partic-
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Figure V.5: Code-verification of the IMC radiation transport package in KULL using
grey Sn transport with M0 = 1.2. The material temperature and the analytic
solution are indistinguishable except near the embedded hydrodynamic shock. The
radiation temperature follows the analytic solution reasonably well, especially near
the embedded hydrodynamic shock. The VEF is noisy but the general features follow
the analytic solution especially near the apex, through the embedded hydrodynamic
shock, and down into the local minimum.

ularly its IMC radiation transport package, are tested for initial Mach numbers,

M0 = 1.2, 2, 3, and 5, and the results are presented in Figures V.5 - V.8. The IMC

package solves the radiation transport equation with full material-motion corrections

correct through O(β). IMC is then coupled to KULL using operator-splitting. The

KULL input data is initialized with the analytic solution, then KULL propagates

the shock wave along a planar-direction, with reflective boundary conditions at the

end-planes. The simulation stops after a prescribed time-lapse, which represents a

few shock crossing-times. If there are no bugs in the physics packages utilized by

KULL, specific to radiation transport and hydrodynamics, and assuming the physics
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Figure V.6: Code-verification of IMC and KULL using grey Sn transport with
M0 = 2. The material temperature is indistinguishable from the analytic solu-
tion except near the embedded hydrodynamic shock. The radiation temperature is
almost indistinguishable from the analytic solution. The VEF follows the analytic
solution closely in the precursor region, especially after the apex and going into the
embedded hydrodynamic shock, and through the local-minimum into equilibrium.

in the solution is not too dissimilar from the physics packages utilized by KULL,

then KULL should propagate the shock wave without distortion.

Figure V.5 shows the results from KULL for M0 = 1.2. The material temperature

and the analytic solution are indistinguishable except near the embedded hydrody-

namic shock. This is due to the hydrodynamic package in KULL retaining corrections

due to viscosity and heat conduction. The radiation temperature follows the analytic

solution reasonably well, especially near the embedded hydrodynamic shock. The

noise in the IMC data appears to be centered around the analytic solution. The
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Figure V.7: Code-verification of IMC and KULL using grey Sn transport withM0 =
3. The material and radiation temperatures are almost indistinguishable from the
analytic solutions, except for the material temperature at the Zel’dovich spike. The
radiation temperature contains a local-maximum under the Zel’dovich spike which is
discussed in Subsection V.5.3. The VEF is noisy in the upstream equilibrium state,
but follows the analytic solution reasonably well in the precursor region especially
after the apex and going toward the Zel’dovich spike, through the local-minimum,
and even into the downstream equilibrium state.

VEF, computed by KULL, is significantly noisier than the radiation temperature,

but this is because it is the ratio of two variables which are proportional to the fourth

power of the radiation temperature, so the noise is significantly “louder”. The VEF

does hold the correct general shape, however, especially around the embedded hy-

drodynamic shock.

Figure V.6 shows the results from KULL for M0 = 2. Again, the material tem-

perature is indistinguishable from the analytic solution except near the embedded
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Figure V.8: Code-verification of IMC and KULL using grey Sn transport with
M0 = 5. The material and radiation temperatures appear to lag behind the analytic
solution by a constant distance. This is particularly noticeable in the nonequilib-
rium/transmissive region and under the Zel’dovich spike. The temperature at the
Zel’dovich spike is considerably smaller than the temperature spike in the analytic
solution, and the optical depth of the spike is wider. The VEF is considerably noisier
in the upstream equilibrium state, but follows the analytic solution reasonably well
in especially after the apex and going toward the Zel’dovich spike, and through the
local-minimum into the downstream equilibrium state. The local minimum in the
VEF appears to be lagged by a distance similar to that seen in the temperature
profiles.

hydrodynamic shock. The excessive temperature spike was seen in the nonequilib-

rium diffusion code-verification; it appears to be damped more quickly here. The

radiation temperature is almost indistinguishable from the analytic solution, except

for some slight noise which uncovers the analytic solution. The VEF follows the

analytic solution much better than in Figure V.5, with most of the deviation coming

in the equilibrium regions, especially the upstream equilibrium region. The general
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structure of the VEF agrees with the analytic result, especially after the apex in the

precursor region.

Figure V.7 shows the results from KULL for M0 = 3. The temperatures, again,

are in agreement with the analytic results, including the local-maximum in the ra-

diation temperature under the Zel’dovich spike. This local-maximum was seen in

the KULL results from the nonequilibrium diffusion theory code-verification tests,

and its origins are discussed in Subsection V.5.3. The material temperature at the

Zel’dovich spike is again slightly distorted, but not as badly as in Figure IV.16. The

VEF follows the analytic solution, and does an especially good job after the apex in

the precursor region.

Figure V.8 shows the results from KULL for M0 = 5. The KULL data appear

to lag the analytic solution by a constant distance. This is particularly noticeable

in the nonequilibrium/transmissive region and at the Zel’dovich spike. The temper-

ature at the Zel’dovich spike is considerably smaller than the temperature provided

by the analytic solution, and the optical depth of the spike is wider. The VEF is

considerably noisier in the upstream equilibrium region, but, again, after the apex

settles onto the analytic result. The local minimum in the VEF is also lagged by

distance similar to that seen in the temperatures.

As a code-verification test, the grey Sn transport solutions provide richer details

of the radiative shock solutions, and for RH codes that are solving the radiation

transport equation, these solutions are a closer match to the physics being modelled.

The importance of matching this modelling is made apparent when comparing the

Figures IV.14 - IV.17 from the code-verification of KULL using nonequilibrium dif-
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Figure V.9: Ratios of Tmax, θmax, θp and Tp to Tf , taking values on the left axis,
along with τspike, taking logarithmic values on the right axis, plotted against M0.
Nonequilibrium diffusion theory forces Tf to act as an upper-bound on θ and Tp to
be Tf ; this bound is relaxed in transport theory. When a Zel’dovich spike exists, its
full-width-half-maximum optical thickness is represented by τspike. The capacity for
θmax to increase with Tmax is restricted by the optical depth of the Zel’dovich spike,
which is seen to fall off exponentially with increasing M0.

fusion, and Figures V.5 - V.8 which used grey Sn transport. In addition, the grey

Sn solutions produce considerably more data to use for code-verification. As shown

above, the VEF can be constructed and is a useful measure of the radiation trans-

port model’s ability to correctly simulate the geometric character of the radiation.

In addition, the n radiation intensities from an analytic Sn solution could be used to

test the solutions of Sn transport codes.
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Figure V.10: Same conditions as Figure V.4 but with M0 = 3.7, and zoomed in on
the Zel’dovich spike showing that Tp and θp are both greater than Tf . Drake calls
this an adaptation zone [5, 6], which is seen to correspond to a local drop in the
VEF. See Figure V.11.

V.5.3 Comparison of the material and radiative temperatures near the embedded

hydrodynamic shock to the final temperature and anti-diffusive radiation

In standard nonequilibrium diffusion treatments [3, 4], the radiation temperature

is monotonic, and strictly bounded by the final temperature. A thermodynamic

argument ([3] see sections 7.14 and 7.17, and [4] see sections 104(c)), based on this

premise, similarly bounds the material temperature in the precursor region, up to the

embedded hydrodynamic shock. Recall that on the precursor side of the embedded

hydrodynamic shock the material and radiation temperatures are labelled Tp and θp,

respectively. However, McClarren and Drake [2] showed that a transport treatment

of the radiation, for a simple model of a material temperature spike, allowed the
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Figure V.11: Same conditions as Figure V.10. Zoomed in on the Zel’dovich spike and
showing the 16 radiation intensities, which are normalized to units of temperature,
(4πI)1/4. The right-going intensities, I (µ > 0), increase proportional to σaT

4/µ, so
intensities along smaller values of µ are larger approaching the shock discontinuity,
and are more strongly affected by the Zel’dovich spike. The left-going intensities,
I (µ), exponentially increase under the Zel’dovich spike proportional to σaT

4/µ, and
are similarly attenuated in the precursor region, so large values at the shock discon-
tinuity decay more rapidly. Radiation intensities along values of |µ| . 1 are more
densely packed than radiation intensities along values of |µ| & 0 which show more
spreading. See Figure V.12.

radiation temperature to exceed this bound.

Figure V.9 shows the maximum values of the material and radiation temperatures,

and their upstream values at the embedded hydrodynamic shock, unit-normalized

to the final temperature, and plotted against the initial Mach number, taking val-

ues on the left axis. In the same Figure, but taking values on the right axis, the

natural-log values of the full-width-half-maximum (FWHM) optical thickness of the

Zel’dovich spike, τspike, is plotted. To compute the FWHM, the half-max temperature
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Figure V.12: Polar plot of the values of the radiation intensities at the embedded
hydrodynamic shock shown in Figure V.11. The radiation intensity values are largest
as |µ| → 0, but are not monotonically increasing, signifying the dominance of oblique
radiation. The radiation is dominantly moving in the µ < 0 direction. If the radiation
was diffusive, or isotropic, then the values of intensity would appear more circular
and equal for µ < 0 and µ > 0.

is taken between the material temperature’s maximum value and the final tempera-

ture
Tmax+Tf

2
, and the full-width is defined as the optical depth of the Zel’dovich spike

at this temperature. Figure V.9 shows that θp and Tp exceed Tf for certainM0. The

four temperatures, Tmax, θmax, θp, and Tp, being unit normalized against Tf , ascend

above one, reach their maximum values, and then θmax, θp and Tp asymptote to-

gether to one, while Tmax takes a longer approach to unity. Anti-diffusive regions are

defined by θmax > Tf . That Tp may be greater than Tf has been noticed recently [5,

6, 49, 67], and the rest of this Subsection attempts to explain this within the context

of grey radiation transport. Figure V.10 explicitly shows Tp and θp greater than Tf

for a zoomed-in region near the embedded hydrodynamic shock, for M0 = 3.7.
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For radiative shocks with a Zel’dovich spike, Tmax is effectively the value of the ma-

terial temperature on the downstream edge of the embedded hydrodynamic shock,

Ts, from which the material temperature exponentially decays to Tf . In [1], Lowrie

and Edwards estimated Tmax, which is shown in Figure IV.11. The grey Sn trans-

port equation (V.26), can be approximately solved [68] in the relaxation region by

neglecting terms with β, which downstream of the embedded hydrodynamic shock

is reasonable:

I(µ < 0, x) = Ieqe
−τ/|µ| + e−τ/|µ|

∫ τ T 4

4π |µ|
eτ

′/|µ|dτ ′ , (V.32)

where τ measures the optical depth, σt |x− xeq|, from the downstream equilibrium

state toward the embedded hydrodynamic shock, and Ieq = T 4
f /4π. Thus, the left-

ward radiation intensities I(µ < 0, x), grow exponentially under the Zel’dovich spike

as they approach the embedded hydrodynamic shock, as shown in Figure V.11. For

a fixed location, as µ = cos (θ) → 0−, I(µ < 0, x) increases, as shown in Figure

V.12. So I(µ < 0, x) grows exponentially with optical depth under the Zel’dovich,

and approaches T 4
max at the embedded hydrodynamic shock, as µ → 0−. Since the

radiation temperature follows the spatial structure of the radiation intensities,

θ ≡ E1/4 =

(
n∑

m=0

Imwm

)1/4

,

and the radiation intensity is growing as T 4, especially for |µ| → 0, where the weights

wm, are larger, it would seem then that θmax should grow with Tmax, and with it θp

and Tp. However, Figure V.9 shows that Tmax/Tf reaches a maximum value of 1.3

when M0 ∼ 6, but θmax has already begun hovering near 1 after peaking around
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M0 = 3.2. This is because the optical depth of the shock τspike, decays exponen-

tially (linear decay on a log-scale) with M0, as shown in Figure V.9. In equation

(V.32), the integration variable is similar to the shock thickness, τ ′ ∼ τspike, such

that I(µ < 0, x) does not have enough optical depth to be significantly affected by

Zel’dovich spike, which limits θmax, θp and Tp. The material temperature on the

upstream side of the embedded hydrodynamic shock is bounded by the radiation

temperature there because it is the local absorption of radiation that affects the

local material temperature, whereas the local radiation field is the emission of the

local material and the transport of radiation energy from nearby neighbors.

Since the radiation temperature may be greater than the final temperature under

the Zel’dovich spike, there exists a spatial range where ∂xθ < 0 as the radiation

temperature decays to the final temperature; see Figure V.4. McClarren and Drake

[2] refer to this as anti-diffusive radiation.

V.5.4 Onset of supercritical shocks

In much of the literature, subcritical shocks are defined as Tp < Tf , and supercritical

shocks are defined as Tp = Tf , with the claim that they take on different shock

structures. The assumption is that above some critical Mach number, for which Tp =

Tf , an equilibrium region adjacent to the embedded hydrodynamic shock extends

into the precursor region, after which a nonequilibrium region allows the radiation

to exponentially decay as it is more strongly absorbed by the material trying to attain

equilibrium with the radiation. Thus, the supercritical shock is expected to signal the

onset of an extended equilibrium (diffusive) region. Figure V.9 shows that Tp = Tf

atM0 = 3.1, but Figure V.13 shows that a diffusive region adjacent to the embedded
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Figure V.13: Plots of the VEFs for four different values of M0. A diffusive region
is defined where f ≈ 1/3, which nonequilibrium diffusion theory says should begin
occurring when Tp = Tf , which occurs for M0 = 3.3 for the parameters in this
chapter. The diffusive regime has not begun byM0 = 3.5, and is not well established
until M0 = 4.5.

hydrodynamic shock does not exist until M0 & 4.5. So if Tp = Tf does not signal

the onset of the diffusive region, then what does? Drake [5, 6] suggests considering

where E and F overlap (in his normalized units). Considering how closely the fluid

dynamics between the nonequilibrium diffusion and Sn transport model coincide,

and that a diffusive region is ultimately a description of the radiation, it seems most

appropriate to look for a radiation answer. This is currently an open problem.
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CHAPTER VI

SUMMARY

It is the purpose of this dissertation to contribute to our understanding of RH. Two

problems were solved which, hopefully, aide this understanding: 1) we showed that

the equilibrium diffusion approximation (EDA) of RH is correct through first-order

in the asymptotic equilibrium diffusion limit (EDL), in agreement with other trans-

port models; and, 2) we produced semi-analytic radiative shock solutions using grey

Sn transport. These two problems span a broad range of ideas in RH.

The first problem addresses RH systems which are nearly in equilibrium, but wherein

the radiation intensity is, at most, weakly anisotropic, as opposed to an equilibrium

system which has an isotropic radiation field. Such systems are found in stellar interi-

ors, as in the sun, and some high-energy-density laboratory experiments. Computa-

tionally, we expect RH codes to reasonably simulate stellar interiors. The asymptotic

analysis used to solve the first problem is the first-step to ensuring that RH codes

do simulate stellar interiors reasonably. Specifically, the first problem showed that

the asymptotic solutions of the RH equations, in the EDL, satisfy the EDA through

O(ε), i.e., through “first-order”.

Then, two model approximations of the radiation transport equation, P1 and grey-

diffusion, in the EDL, were treated in the comoving- and lab-frames. The comoving-

and lab-frame variants of the P1 model, in the EDL, were compared and it is found

that the two P1 models are equivalent. The difference between the comoving- and lab-
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frame P1 approximations, after transformation to the lab-frame, is a dyadic tensor

which is O(ε2). Similarly, the asymptotic solutions of the comoving- and lab-frame

variants of the grey-diffusion model, in the EDL, were compared, after transforma-

tion to the lab-frame, and it is found that their solutions are equivalent. This work

shows that the P1 and grey-diffusion models can be made in either the comoving- or

lab-frame, and in the EDL, the same results will be obtained.

The second problem addresses steady-state shock wave solutions in RH systems.

Due to the steady-state character of the equations, semi-analytic solutions can be

obtained, i.e., the analytic ODEs are numerically integrated with arbitrary control

of the integration tolerance. The work in this dissertation builds on the recent work

of Lowrie and collaborators [1, 7], wherein the radiation transport is modelled with

nonequilibrium diffusion. We model the radiation with grey Sn radiation transport,

with material motion corrections through O(β), and we choose the O(β2) corrections

to ensure conservation of radiation energy and momentum, and to allow a reason-

able form of the internal energy equation. These steady-state shock wave solution

are accurate enough to be used for code-verification, which we do.

The results from our steady-state shock wave solutions are compared to those from

nonequilibrium diffusion. While the differences in the radiation precursor region are

not pronounced, though they are noticeable, the differences in the relaxation region

are qualitatively distinct. For certain radiative shocks, there exists in the relaxation

region, under the Zel’dovich spike, a local maximum in the radiation temperature

that was predicted by McClarren and Drake [2], which the nonequilibrium diffusion

model of radiation fails to simulate. This local maximum in the radiation temper-

ature is called “anti-diffusive” radiation. The anti-diffusive radiation comes from a
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precipitous decrease in the VEF near the embedded hydrodynamic shock. Next, our

steady-state shock wave solutions were used as a code-verification tool for the IMC

radiation model coupled to KULL. The IMC radiation model we tested solves the

Lorentz-invariant radiation transport equation, which is correct through all orders in

velocity; the KULL hydrodynamic package is only correct through O(β). The IMC

radiation model accurately maintained our analytic steady-state radiative shock wave

solution, including the anti-diffusive radiation. We had previously used the nonequi-

librium diffusion model of Lowrie and Edwards [1] for code-verification of the IMC

radiation model, and for certain radiative shock wave solutions, the IMC radiation

model (correctly!) generated anti-diffusive radiation, which was not provided by the

nonequilibrium diffusion model. Finally, we explored the transition from subcritical

to supercritical shocks.

While the solutions to these two problems contribute to a better understanding

of RH, they also leave some questions unanswered, and make certain problems more

amenable to solution which are not yet solved. With regards to asymptotics: what

other models preserve the EDL?; which discretizations, or computational methods,

preserve the EDL?; is there an analytic problem that can test whether RH codes pre-

serve the EDL? The solution to the question about which models preserve the EDL

should be straight-forward, if tedious. It will be interesting to see if the answers

resolving questions about discretizations, and computational methods, is as easy.

Perhaps the most important question listed is whether there is an analytic problem

to test whether RH codes preserve the EDL. If an analytic solution to an equilibrium

diffusion problem is found then it will be possible to determine how satisfactorily RH

codes implement the EDA.

139



Similarly, our method of solving for the steady-state radiative shock wave solutions

lays the ground-work for different solution implementations, which will, hopefully,

answer deeper questions, and it also leaves untested many different code-verification

scenarios. Some possible extensions of the solution implementation would be to in-

clude either multi-group, in frequency, radiation diffusion or radiation transport; to

use a different initialization than nonequilibrium diffusion before the first radiation

transport solve, e.g., any flux-limited-diffusion scheme, this could potentially also

serve as a test of flux-limited-diffusion schemes; to model the radiation with the full

Lorentz-invariant radiation transport equation, which would serve as a useful code-

verification tool for RH codes which seek solutions of relativistic problems. There

are many RH codes, especially those using a Monte Carlo solver, which are used to

solve problems where frequency-dependence is important, but this can be expensive,

and short-cuts are often necessary. Similarly, because radiation transport solutions

are often deemed “too expensive”, flux-limited-diffusion is often used.

In conclusion, this dissertation only addresses two problems in RH, and exposes

many more problems to solve. Hopefully this dissertation will make their solutions

easier, and their solutions more insightful, for those who follow.
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[62] M. González, E. Audit, and P. Huynh, HERACLES - a three-dimensional
radiation hydrodynamics code, Astronomy and Astrophysics 464 (Mar. 2007),
429–435.

[63] R. Kuiper, H. Klahr, C. Dullemond, W. Kley, and T. Henning, Fast and
accurate frequency-dependent radiation transport for hydrodynamics
simulations in massive star formation, Astronomy and Astrophysics 511
(Feb. 2010).

[64] U. M. Noebauer, S. A. Sim, M. Kromer, F. K. Röpke, and W. Hillebrandt,
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APPENDIX A

DERIVATION OF THE FOUR LORENTZ INVARIANTS

Quantum statistics is interested in counting the number of quantum states, dN =

g d3x d3p/h3, where g represents the degrees of photon polarization, and generally

represents the degeneracy of the state. These countable states represent an invariant,

and Planck’s constant is an invariant, such that the phase-space measure, d3x d3p,

must be an invariant. There are n particles in each state, and this represents another

invariant. All of these n particles have the same energy, En, so if the total energy of

the quantum state is known then the number of particles in the state can be deter-

mined. The preceding discussion is an outline of the counting procedure below.

The photon momentum and the momentum-space volume are

pi =
hν

c
Ωi , (A.1a)

d3p = p2 dp dΩ =
h3ν2

c3
dνdΩ , (A.1b)

and the three-space volume for a cylinder of height c dt and base area dA is

d3x = c dtdA . (A.2)

The number of quantum mechanical photon-states with a given frequency, dNν , in a

phase-space volume is

dNν =
2 d3x d3p

h3
, (A.3)
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where the factor of 2 accounts for the photon polarization. Using equations (A.1)

and (A.2) above for the phase-space volume, this can be written as

dNν = 2
ν2

c2
dνdΩ dtdA . (A.4)

The radiation intensity is, by definition, the total radiation energy travelling in the

frequency range (ν, ν + dν), within the solid-angle dΩ, crossing a normalized area

dA, within a time interval dt:

dE = IνdνdΩ dtdA . (A.5)

Thus, the total energy in each photon-state is Iνc
2/2ν2. Since each photon in the

state has energy hν, then the number of photons in each state nν , is

nν =
Iνc

2

2hν3
. (A.6)

As mentioned previously, the number of photons in a quantum state is an invariant,

so an invariant radiation intensity transforms as:

I =
Iν
ν3
. (A.7)

The transformation of the absorption cross-section may be determined by considering

a beam of photons crossing a homogeneous pure-absorber, i.e., σs = 0, of infinite

width in the x−direction, and thickness l in the y−direction. Since the initial and

final number of photons are invariants, then so is the fraction that survive e−τ , where

τ = σax is the optical depth of the material; “obviously”, τ is also an invariant. When

the material is at rest, and the beam crosses at an angle θ, with respect to the x−axis,
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the optical depth is

τ =
σal

sin(θ)
, (A.8)

and the photon momentum may be decomposed into its x− and y−components

px =
hν

c
cos(θ) , (A.9a)

py =
hν

c
sin(θ) . (A.9b)

Since the y−component of momentum (A.9b), is invariant under a boost along the

x−direction then so is ν sin(θ), and similarly for l as the y−component of travelled

distance. Then the optical depth may be rewritten as

τ =
l

ν sin(θ)
νσa , (A.10)

and since the optical depth, and the fraction l/ν sin(θ), are invariant, the invariant

absorption is written

a = νσa . (A.11)

The transformation of the emission term, σaBν(T ), is now straight-forward. The

Planck function must obey the same transformation as the radiation intensity, and

combined with the result for the invariant absorption (A.11), produces the invariant

emission

e =
σaBν(T )

ν2
. (A.12)
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The Lorentz transformation between two coordinate frames of reference, x going to

x′, can be written in the form

x′ =

 γu −γuβᵀ

−γuβ I + (γu − 1) β−2ββᵀ

x , (A.13)

where γu = (1− β2)
−1

is the Lorentz factor, β = u/c is a column-vector and βᵀ is

its transpose, I is the 3 × 3 unit-matrix, and x = (ct,x)ᵀ represents the space-time

four-vector. Similarly, the photon’s four-momentum may be Lorentz transformed

between the two frames of reference as

p′ =

 γu −γuβᵀ

−γuβ I + (γu − 1) β−2ββᵀ

p , (A.14)

where p = (p0,p) = (hν/c)(1,Ω)ᵀ is the photon four-momentum, and Ω represents

the photon’s unit-normalized direction of travel. Since the photon is “light-like”, its

squared four-momentum is identically zero

p2 = −p2
0 + p2 = 0 ⇒ p2 = pipi = p2

0 , (A.15)

and this constraint reduces the number of unknowns in the photon four-momentum

to three; the typical reduction to the two gauge degrees-of-freedom is due to the

transversality of the photon four-momentum, but this is not important in this dis-

sertation because we are not concerned with electromagnetic interactions. It is im-

portant to emphasize the three-vector components of the photon four-momentum:
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p = (hν/c)Ω. The transformation of the photon frequency, p0/h, is

ν ′ = νγu (1− β ·Ω) . (A.16)

The transformation of the momentum-space volume, d3p 7→ d3p′, for a boost along

the x−direction is found by focusing on the three-vector transformation of the

Lorentz matrix, and constructing its Jacobian J :

∣∣∣∣∣∣∣∣∣∣
∂p′1/∂p1 ∂p′1/∂p2 ∂p′1/∂p3

∂p′2/∂p1 ∂p′2/∂p2 ∂p′2/∂p3

∂p′3/∂p1 ∂p′3/∂p2 ∂p′3/∂p3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
γu (1− β∂p0/∂p1) −γuβ∂p0/∂p2 −γuβ∂p0∂p3

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
= γu (1− β∂p0/∂p1) ≡ J . (A.17)

The derivative term can be evaluated by recalling the constraint on the photon

momentum in equation (A.15):

p0 =
√
pipi , (A.18a)

∂p0

∂p1

=
1

2

2p1√
pipi

=
p1

p0

. (A.18b)

Then, the Jacobian is J = γu(1−βp1/p0) = γu(p0−βp1)/p0, which can be simplified

via equation (A.16), J =
p′0
p0

, and the transformation of the photon momentum-space

volume, and its invariant, are

d3p′ =
p′0
p0

d3p , (A.19a)

d3p

p0

=
p2
i dpdΩ

p0

= p0 dpdΩ =

(
h

c

)2

ν dνdΩ . (A.19b)
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APPENDIX B

DERIVATION OF THE TRANSFORMED IN-SCATTER

SOURCE

The derivation of the correctly transformed in-scatter source in Chapter II, the second

term in equation (II.1), begins

σs
4π
φν 7→

(
ν

ν0

)2
σs
4π

∫
4π

I0,ν(ν0,Ω
′
0) dΩ′0

=

(
ν

ν0

)2
σs
4π

∫ ∞
0

∫
4π

I0,ν(ν
′
0,Ω

′
0)δ (ν ′0 − ν0)

(
ν ′0
ν ′0

)
dν ′0dΩ′0

=

(
ν

ν0

)2
σs
4π

∫ ∞
0

∫
4π

(
ν ′0
ν ′

)3

Iν(ν
′,Ω′)δ (ν ′0 − ν0)

(
ν ′

ν ′0

)
dν ′dΩ′

=

(
ν

ν0

)2
σs
4π

∫ ∞
0

∫
4π

(
ν ′0
ν ′

)2

Iν(ν
′,Ω′)δ (ν ′0 − ν0) dν ′dΩ′ . (B.1)

The first line represents the mapping from the lab-frame to the comoving-frame. The

second line introduces a Dirac-delta function, and multiplies the integrand by unity

to introduce an invariant momentum-space volume; see equation (A.19b). The third

line transforms the radiation intensity, and the invariant momentum-space volume,

to the lab-frame. The fourth line simplifies the result. Focusing on the frequency-

integral, it is useful to recall a property of the Dirac-delta function:

∫
f(x)δ (y(x)− y(x0)) dx =

[
dy(x)

dx

∣∣∣∣
x=x0

]−1

f(x0)

=

[(
dy(x)

dx

)−1

f(x)

]
y(x)=y(x0)

. (B.2)
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Mapping the terms in equation (B.1) to the property just given yields:

x = ν ′ , (B.3a)

f(x) =

(
ν ′0
ν ′

)2

Iν(ν
′,Ω′) , (B.3b)

y(x) = ν ′0 = ν ′γu (1− β · n) , (B.3c)

y(x0) = ν0 , (B.3d)

dy(x)

dx
=

d

dν ′
[ν ′γu (1− β · n)]

∣∣∣∣
ν′0=ν′

Ω=constant

= ∂ν′ [ν ′γu (1− β · n)]

= γu (1− β · n)

=
ν ′0
ν ′
, (B.3e)

and the frequency-integral becomes:

∫ ∞
0

(
ν ′0
ν ′

)2

I(ν ′,Ω′)δ (ν ′0 − ν ′) dν ′ =

[
ν ′

ν ′0

(
ν ′0
ν ′

)2

Iν(ν
′,Ω′)

]
ν′0=ν0

=
(ν0

ν ′

)
Iν(ν

′,Ω′) . (B.4)

Thus, the second term in equation (II.1), with the correct transformations, is:

σs
4π
φ 7→

(
ν

ν0

)2
σs
4π

∫
4π

ν0

ν ′
Iν(ν

′,Ω′) dΩ′ . (B.5)
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APPENDIX C

DERIVATION OF THE LAB-FRAME RADIATION TRANSPORT EQUATION

THROUGH O(β2)

The lab-frame radiation transport equation, correct through all orders in velocity, is:

1

c
∂tIν + Ωi∂iIν

= −ν0

ν
σtIν +

(
ν

ν0

)2
σs
4π

∫
4π

ν0

ν ′
Iν(ν

′,Ω′) dΩ′ +

(
ν

ν0

)2

σaB(T ) . (C.1)

The ratio of the comoving-frame frequency to the lab-frame frequency is given in

equation (A.16):

ν0

ν
= γu (1− βiΩi) . (C.2)

The frequency ratio in the integrand can be written

ν0

ν ′
= γu (1− βiΩ′i) , (C.3)

and it is helpful to recored here the ratio of the primed and unprimed frequencies:

ν ′

ν
=

1− βiΩi

1− βiΩ′i
. (C.4)

The objective of this appendix is to Taylor expand the frequency ratios, the comoving-

frame cross-sections, and the Planck function, in order to make their lab-frame values

manifest. This includes Taylor-expanding the radiation intensity in the integrand
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since it is a function of ν ′, and according to equation (C.4), ν ′ is a function of ν, an

appropriate lab-frame value, and Ω′, the integration variable. To ignore this depen-

dence would produce the wrong results.

The expanded Lorentz factor, through O(β2), is well-known in physics as it rep-

resents the sum of the rest mass and the kinetic energy from classical physics,

γu = 1 +
1

2
β2 , (C.5)

so the frequency ratios expanded through O(β2) are

ν0

ν
= γu (1− βiΩi) =

(
1 +

1

2
β2

)
(1− βiΩi) = 1− βiΩi +

1

2
β2 , (C.6a)

ν0

ν ′
= γu (1− βiΩ′i) = 1− βiΩ′i +

1

2
β2 , (C.6b)

(
ν

ν0

)2

=

(
1

γu (1− βiΩi)

)2

=
1− β2

(1− βiΩi)
2

= 1 + 2βiΩi + βiβj (3ΩiΩj − δij) . (C.6c)

It is convenient to record here other results that will be useful for Taylor-expanding

the cross-section and Planck function:

ν0 − ν = ν

(
−βiΩi +

1

2
β2

)
, (C.7a)

(ν0 − ν)2 = ν2βiβjΩiΩj , (C.7b)

ν =
ν0

γu (1− βiΩi)
= ν0

(
1 + βiΩi + βiβj

(
ΩiΩj +

1

2
δij

))
, (C.7c)
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∂ν0ν = 1 + βiΩi + βiβj

(
ΩiΩj +

1

2
δij

)
=

ν

ν0

, (C.7d)

(ν0 − ν)
ν

ν0

= ν

[
−βiΩi + βiβj

(
1

2
δij − ΩiΩj

)]
, (C.7e)

(ν0 − ν)2 f(ν0) = (ν0 − ν)2 f(ν) . (C.7f)

Since the comoving-frame cross-section, and Planck function, are Taylor-expanded

with respect to the lab-frame frequency, the first two expressions are obviously nec-

essary. The second expression implies that since the radiation transport equation

is only to be expanded through O(β2), then it is only necessary to Taylor-expand

the cross-section and Planck function through O ((ν0 − ν)2). The last expression is

simply stating that since the squared difference in frequencies is already O(β2), then

any function of frequency that multiplies it transforms at leading-order. The Taylor-

expansion of a general function of the comoving-frame frequency, with respect to the

lab-frame frequency, through O((ν0 − ν)2) ∼ O(β2), is

f(ν0) = f + (ν0 − ν) ∂ν0f +
1

2
(ν0 − ν)2 ∂2

ν0
f

= f + (ν0 − ν) (∂ν0ν) ∂νf +
1

2
(ν0 − ν)2 (∂ν0ν) ∂ν

(
(∂ν0ν) ∂νf

)
= f + (ν0 − ν)

(
ν

ν0

)
∂νf +

1

2
(ν0 − ν)2

(
ν

ν0

)(
1

ν0

∂νf +
ν

ν0

∂2
νf

)
= f + (ν0 − ν)

(
ν

ν0

)
∂νf +

1

2
(ν0 − ν)2

(
1

ν
∂νf + ∂2

νf

)
= f + ν

[
−βiΩi + βiβj

(
1

2
δij − ΩiΩj

)]
∂νf +

1

2
ν2βiβjΩiΩj

(
1

ν
∂νf + ∂2

νf

)
= f − βiΩiν∂νf +

1

2
βiβj

(
(δij − 2ΩiΩj) ν∂νf + ΩiΩjν

2∂2
νf
)
. (C.8)
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Thus, the Taylor-expansions of the total cross-section, and the Planck function, with

respect to the lab-frame frequency, are

σt(ν0) = σt − βiΩiν∂νσt +
1

2
βiβj

(
(δij − 2ΩiΩj) ν∂νσt + ΩiΩjν

2∂2
νσt
)
, (C.9a)

Bν0 = Bν − βiΩiν∂νBν

+
1

2
βiβj

(
(δij − 2ΩiΩj) ν∂νBν + ΩiΩjν

2∂2
νBν

)
, (C.9b)

σa(ν0)Bν0 = σaBν − βiΩiν∂ν (σaBν)

+
1

2
βiβj

(
(δij − 2ΩiΩj) ν∂ν (σaBν) + ΩiΩjν

2∂2
ν (σaBν)

)
. (C.9c)

The Taylor-expansion of the radiation intensity in the integrand proceeds along the

same lines as shown for the general function in equation (C.8), except the comoving-

frame frequency carries a prime- ′ here, and the required relations take the form:

ν = ν ′
1− βiΩi

1− βiΩ′i
= ν ′ (1 + βi (Ω

′
i − Ωi)) +O(β3) , (C.10a)

(ν ′ − ν) = νβi (Ω
′
i − Ωi) +O(β3) , (C.10b)

(ν ′ − ν)
2

= ν2βiβj (Ω′i − Ωi)
(
Ω′j − Ωj

)
= O(β3) , (C.10c)

∂ν′ν = 1 + βi (Ω
′
i − Ωi) +O(β3) =

ν

ν ′
, (C.10d)

(ν ′ − ν)
ν

ν ′
= νβi (Ω

′
i − Ωi) +O(β3) . (C.10e)

In the relations above containing the term O(β3), it has been used that terms like

βiβjΩi(Ωj−Ω′j) are zero at O(β2) since the angular variables are the same at O(β0).

The first two expressions come from equation (C.4), and the rest are analogous to

those given in equations (C.7). Beginning from the fourth line of equation (C.8), and
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recognizing that ν0 is now ν ′, the Taylor-expansion of the general function, using the

relations in (C.10), is

f(ν ′) = f + (ν ′ − ν)
( ν
ν ′

)
∂νf +

1

2
(ν ′ − ν)

2

(
1

ν
∂νf + ∂2

νf

)
= f + βi (Ω

′
i − Ωi) ν∂νf +O(β3) , (C.11)

such that the Taylor-expanded radiation intensity is

Iν(Ω
′) = Iν + βi (Ω

′
i − Ωi) ν∂νIν . (C.12)

Now that all of the Taylor-expansions have been performed it is necessary to combine

them appropriately according to the three terms on the RHS of equation (C.1),

retaining terms of O(β2). The first term is straight-forward:

−ν0

ν
σtIν = −Iν

(
1− βiΩi +

1

2
β2

)
×
(
σt − βiΩiν∂νσt +

1

2
βiβj

(
(δij − 2ΩiΩj) ν∂νσt + ΩiΩjν

2∂2
νσt
))

= Iν

(
−σt + βiΩiν∂νσt −

1

2
βiβj

(
(δij − 2ΩiΩj) ν∂νσt + ΩiΩjν

2∂2
νσt
))

+ βiΩiIν (σt − βiΩiν∂νσt)−
1

2
β2σtIν

= −σtIν + βiΩi (σtIν + Iνν∂νσt)

− 1

2
βiβj

(
σtδijIν + δijIνν∂νσt + ΩiΩjIνν

2∂2
νσt
)
. (C.13)

The second term,

(
ν

ν0

)2
σs
4π

∫
4π

ν0

ν ′
Iν′(Ω

′) dΩ′ , (C.14)
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is, again, involved, and is best broken into parts. The integrand is

ν0

ν ′
Iν′(Ω

′) = (Iν + βi (Ω
′
i − Ωi) ν∂νIν)

(
1− βjΩ′j +

1

2
β2

)
= Iν + βi (−Ω′iIν + (Ω′i − Ωi) ν∂νIν) +

1

2
β2Iν , (C.15)

where the dependence of the radiation intensity on the angular variable, Iν = Iν(Ω
′),

has been suppressed for notational convenience. The integral then is

∫
4π

ν0

ν ′
Iν′(Ω

′) dΩ′ = φν + βi (−Ωiν∂νφν − Fi,ν + ν∂νFi,ν) +
1

2
β2φν . (C.16)

The ratio
(
ν
ν0

)2

multiplying the integral is given in equation (C.6c), and the second

term is

(
ν

ν0

)2
σs
4π

∫
4π

ν0

ν ′
Iν′(Ω

′) dΩ′ =
σs
4π

(1 + 2βiΩi + βiβj (3ΩiΩj − δij))

×
(
φν + βk (−Ωkν∂νφν − Fk,ν + ν∂νFk,ν) +

1

2
β2φν

)
=
σs
4π

[
φν + βi (2Ωiφν − Ωiν∂νφν − Fi,ν + ν∂νFi,ν)

+ βiβj

((
3ΩiΩj −

1

2
δij

)
φν − 2ΩiΩjν∂νφν

)
+ βiβj (−2ΩiFj,ν + 2Ωiν∂νFj,ν)

]
. (C.17)

The third term is relatively straight-forward to compute, if tedious:

(
ν

ν0

)2

σaB(T ) = (1 + 2βiΩi + βiβj (3ΩiΩj − δij))

×
(
σaBν − βiΩiν∂ν (σaBν) +

1

2
βiβj

(
(δij − 2ΩiΩj) ν∂ν (σaBν) + ΩiΩjν

2∂2
ν (σaBν)

))
= σaBν − βiΩiν∂ν (σaBν) +

1

2
βiβj

(
(δij − 2ΩiΩj) ν∂ν (σaBν) + ΩiΩjν

2∂2
ν (σaBν)

)
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+ 2βiΩi (σaBν − βiΩiν∂ν (σaBν)) + βiβj (3ΩiΩj − δij)σaBν

= σaBν + βiΩi (2σaBν − ν∂ν (σaBν))

+ βiβj

(
(3ΩiΩj − δij)σaBν +

(
1

2
δij − 3ΩiΩj

)
ν∂ν (σaBν) +

1

2
ΩiΩjν

2∂2
ν (σaBν)

)
.

(C.18)

The lab-frame radiation transport equation expanded through O(β2), which is the

primary goal of this appendix, is:

1

c
∂tIν + Ωi∂iIν =

σs
4π
φν + σaBν − σtIν

+ βiΩi

(
σtIν + Iνν∂νσt + 2

σs
4π
φν + 2σaBν −

σs
4π
ν∂νφν − ν∂ν (σaBν)

)
− σs

4π
βi (Fi,ν − ν∂νFi,ν)−

1

2
βiβj

(
σtδijIν + δijIνν∂νσt + ΩiΩjIνν

2∂2
νσt
)

+
σs
4π
βiβj

((
3ΩiΩj −

1

2
δij

)
φν − 2ΩiΩjν∂νφν − 2ΩiFj,ν + 2Ωiν∂νFj,ν

)
+ βiβj

(
(3ΩiΩj − δij)σaBν +

(
1

2
δij − 3ΩiΩj

)
ν∂ν (σaBν) +

1

2
ΩiΩjν

2∂2
ν (σaBν)

)
.

(C.19)

For the purposes of the asymptotic analysis in Chapter III, it is necessary to split the

absorption cross-section into the difference between the total and scattering cross-

sections: σa = σt − σs. As a reminder, the scattering cross-section is frequency

independent. The result is

1

c
∂tIν + Ωi∂iIν =

σs
4π
φν + σtBν − σsBν − σtIν −

σs
4π
βi (Fi,ν − ν∂νFi,ν)

+ βiΩi

(
σtIν + Iνν∂νσt +

σs
4π

(2φν − ν∂νφν) + 2σtBν − ν∂ν (σtBν) + σs (ν∂νBν − 2Bν)
)

− 1

2
βiβj

(
σtδijIν + δijIνν∂νσt + ΩiΩjIνν

2∂2
νσt
)

+
σs
4π
βiβj

((
3ΩiΩj −

1

2
δij

)
φν − 2ΩiΩjν∂νφν − 2ΩiFj,ν + 2Ωiν∂νFj,ν

)
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+ βiβj

(
(3ΩiΩj − δij)σtBν +

(
1

2
δij − 3ΩiΩj

)
ν∂ν (σtBν) +

1

2
ΩiΩjν

2∂2
ν (σtBν)

)
− σsβiβj

(
(3ΩiΩj − δij)Bν −

(
1

2
δij − 3ΩiΩj

)
ν∂νBν +

1

2
ΩiΩjν

2∂2
νBν

)
. (C.20)

For the purposes of the radiative shock solutions, in Chapters IV and V, it is helpful

to present the 1-D time-independent grey radiation transport equation, truncated at

O(β)

µ∂xI =
σs
4π
cE +

σa
4π
arcT

4 − σtI − 2
σs
4π
βF

+ βµ
(
σtI + 3

σs
4π
cE + 3

σa
4π
arcT

4
)
. (C.21)
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APPENDIX D

ASYMPTOTIC DERIVATION OF THE RADIATION VARIABLES THROUGH

O(ε2)

The asymptotic analysis of the radiation transport equation (III.23d) requires im-

plementing the scaled ratios (III.25), and retaining terms through O(ε2), such that

the scaled redimensionalized radiation transport equation is

ε2
1

c
∂tIν + εΩi∂iIν = σt (Bν − Iν)

+ ε
(
βiΩi (σtIν + Iνν∂νσt + 2σtBν − ν∂ν (σtBν)) +

σs
4π

(φν − 4πBν)
)

+ ε2βiβj

(
(3ΩiΩj − δij)σtBν +

(
1

2
δij − 3ΩiΩj

)
ν∂ν (σtBν) +

1

2
ΩiΩjν

2∂2
ν (σtBν)

)
− ε2 1

2
βiβj

(
σtδijIν + δijIνν∂νσt + ΩiΩjIνν

2∂2
νσt
)
. (D.1)

It is worth noticing a few things about equation (D.1), and choosing the order of

angle- and frequency-integration to be made. First, the Planck function Bν , and the

angle-integrated radiation variables φν and Fi,ν , are angle-independent, such that

odd angular moments of these variables are identically zero; i.e., the radiation flux

will not include contain contributions from these terms. Second, there exist a few

terms where the frequency derivative is pre-multiplied by frequency, and integration-

by-parts in the frequency variable will help in the analysis of these terms. The only

frequency derivative where this fails is the second term on the second line which

is also pre-multiplied by the frequency-dependent radiation intensity Iν . As for

the integration-by-parts in the frequency variable, it is assumed that all radiation

variables have finite bounded support over the frequency domain, ν ∈ [0,∞), such
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that the radiation variables are zero at the frequency boundaries:

Iν=0 = 0 = Iν=∞ , (D.2a)

Bν=0 = 0 = Bν=∞ , (D.2b)

φν=0 = 0 = φν=∞ , (D.2c)

Fi,ν=0 = 0 = Fi,ν=∞ . (D.2d)

Based on the comments above, it is preferable to angle-integrate, and then frequency-

integrate, the radiation intensity when constructing its angle- and frequency-integrated

angular moments. The leading-, first- and second-order expansion in ε, and the as-

sociated angle-integrations, and angle- and frequency integrations, are given below.

ε(0)

The leading-order radiation transport equation, from equation (D.1), is

0 = [σt (Bν − Iν)](0) , (D.3)

such that the O(ε(0)) radiation intensity, and its angle-integrated, and angle- and

frequency-integrated radiation variables, are

I(0)
ν = B(0)

ν , (D.4a)

φ(0)
ν =

∫
4π

I(0)
ν dΩ = 4πB(0)

ν , (D.4b)

F
(0)
i,ν =

∫
4π

ΩiI
(0)
ν dΩ = 0 , (D.4c)

P
(0)
ij,ν =

∫
4π

ΩiΩjI
(0)
ν dΩ =

4π

3
δijB

(0)
ν =

1

3
δijφ

(0)
ν , (D.4d)

E (0) =
1

c

∫ ∞
0

∫
4π

I(0)
ν dΩdν = arT

(0),4 , (D.4e)
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F (0)
i =

∫ ∞
0

∫
4π

ΩiI
(0)
ν dΩdν = 0 , (D.4f)

P(0)
ij =

1

c

∫ ∞
0

∫
4π

ΩiΩjI
(0)
ν dΩdν =

1

3
δijarT

(0),4 =
1

3
δijE (0) . (D.4g)

It is interesting to notice that the P1 approximation naturally appears in the equa-

tions above. This will also be seen in the O(ε) equations below, and the connection

to the comoving-frame P1 approximation is made in Section III.4.1.

ε(1)

The first-order radiation transport equation, from equation (D.1), is

[Ωi∂iIν ]
(0)

= [σt (Bν − Iν)](1) +
[
βiΩi (σtIν + Iνν∂νσt + 2σtBν − ν∂ν (σtBν)) +

σs
4π

(φν − 4πBν)
](0)

= σ
(1)
t [Bν − Iν ](0) + σ

(0)
t [Bν − Iν ](1)

+
[
βiΩi (σtIν + Iνν∂νσt + 2σtBν − ν∂ν (σtBν)) +

σs
4π

(φν − 4πBν)
](0)

, (D.5)

and using results from equations (D.4), the first-order radiation transport equation

simplifies to:

[Ωi∂iBν ]
(0) = σ

(0)
t [Bν − Iν ](1) + Ωi [βi (3σtBν − σtν∂νBν)]

(0) . (D.6)

The O(ε(1)) radiation intensity, and the angle-integrated and angle- and frequency-

integrated radiation variables are

I(1)
ν = B(1)

ν + Ωi

[
− 1

σt
∂iBν + βi (3Bν − ν∂νBν)

](0)

, (D.7a)

φ(1)
ν =

∫
4π

I(1)
ν dΩ = 4πB(1)

ν , (D.7b)
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F
(1)
i,ν =

∫
4π

ΩiI
(1)
ν dΩ =

4π

3

[
− 1

σt
∂iBν + βi (3Bν − ν∂νBν)

](0)

, (D.7c)

P
(1)
ij,ν =

∫
4π

ΩiΩjI
(1)
ν dΩ =

4π

3
δijB

(1)
ν =

1

3
δijφ

(1)
ν , (D.7d)

E (1) =
1

c

∫ ∞
0

∫
4π

I(1)
ν dΩdν = arT

(1),4 , (D.7e)

F (1)
i =

∫ ∞
0

∫
4π

ΩiI
(1)
ν dΩdν =

1

3

[
− arc
σt,R

∂iT
4 + 4aruiT

4

](0)

, (D.7f)

P(1)
ij =

1

c

∫ ∞
0

∫
4π

ΩiΩjI
(1)
ν dΩdν =

1

3
δijarT

(1),4 =
1

3
δijE (1) . (D.7g)

In passing from equation (D.7c) to (D.7f), the Rosseland mean opacity σt,R, has been

defined,

∫ ∞
0

1

σt
∂iBν dν = ∂iT

∫ ∞
0

1

σt
∂TBν dν = ∂iT

∫∞
0

1
σt
∂TBν∫∞

0
∂TBν dν︸ ︷︷ ︸
≡ 1
σt,R

∫ ∞
0

∂TBν dν︸ ︷︷ ︸
=∂T

∫∞
0 Bν dν

=
1

σt,R
∂iT

(
∂T
arcT

4

4π

)
=

arc

4πσt,R
∂iT

4 ,

and an integration-by-parts has been performed. Again, the P1 approximation ap-

pears in equations (D.7d) and (D.7g). It is also interesting to notice that the first-

order radiation flux depends solely on O(ε(0)) variables.

ε(2)

The second-order radiation transport equation, from equation (D.1), is

1

c
∂tI

(0)
ν + Ωi∂iI

(1)
ν = [σt (Bν − Iν)](2)

+
[
βiΩi (σtIν + Iνν∂νσt + 2σtBν − ν∂ν (σtBν)) +

σs
4π

(φν − 4πBν)
](1)

+
[ σs

4π
βi (Ωi (2 (φν − 4πBν) + ν∂ν (4πBν − φν))− Fi,ν + ν∂νFi,ν)

](0)
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+

[
βiβj

(
(3ΩiΩj − δij)σtBν +

(
1

2
δij − 3ΩiΩj

)
ν∂ν (σtBν) +

1

2
ΩiΩjν

2∂2
ν (σtBν)

)](0)

−
[

1

2
βiβj

(
σtδijIν + δijIνν∂νσt + ΩiΩjIνν

2∂2
νσt
)](0)

, (D.8)

and using results from equations (D.4) and (D.7), the second-order radiation trans-

port equation simplifies

1

c
∂tB

(0)
ν + Ωi∂iI

(1)
ν = σ

(0)
t [Bν − Iν ](2) + σ

(1)
t [Bν − Iν ](1)

+ Ωi [βi (σtIν + Iνν∂νσt + 2σtBν − ν∂ν (σtBν))]
(1)

− 1

2

[
β2 (3σtBν − σtν∂νBν)

](0)

+ ΩiΩj

[
βiβj

(
3σtBν − 3ν∂ν (σtBν) + ν2 (∂νσt) (∂νBν) +

1

2
σtν

2∂2
νBν

)](0)

. (D.9)

The O(ε(2)) radiation intensity is

I(2)
ν = B(2)

ν +
1

σ
(0)
t

Ωi [−∂iIν + βi (σtIν + Iνν∂νσt + 2σtBν − ν∂ν (σtBν))]
(1)

+
σ

(1)
t

σ
(0)
t

[Bν − Iν ](1) −
[

1

cσt
∂tBν +

1

2
β2 (3Bν − ν∂νBν)

](0)

+
1

σ
(0)
t

ΩiΩj

[
βiβj

(
3σtBν − 3ν∂ν (σtBν) + ν2 (∂νσt) (∂νBν) +

1

2
σtν

2∂2
νBν

)](0)

.

(D.10)

Before deriving the angle-integrated radiation variables it is worth noticing that

there is already one factor of the angular variable coupled to the radiation intensity.

Thus, the second angular moment for the radiation pressure will involve an angular

integral of the radiation intensity with three angular variables, and the result will be a

radiation variable with three-indices. Since this variable has not been defined herein,

this derivation is avoided, and is unnecessary. The second-order angle-integrated
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radiation intensity is

φ(2)
ν = 4πB(2)

ν +
1

σ
(0)
t

[−∂iFi,ν + βi (σtFi,ν + Fi,νν∂νσt)]
(1)

+
4π

3σ
(0)
t

[
β2

(
3σtBν − 3ν∂ν (σtBν) + ν2 (∂νσt) (∂νBν) +

1

2
σtν

2∂2
νBν

)](0)

− 4π

σ
(0)
t

[
1

c
∂tBν +

1

2
β2 (3σtBν − σtν∂νBν)

](0)

= 4πB(2)
ν +

1

σ
(0)
t

(
−∂iF (1)

i,ν + β
(0)
i F

(1)
i,ν

(
σ

(0)
t + ν∂νσ

(0)
t

))
+

4π

3σ
(0)
t

[
β2

(
3σtBν − 3ν∂ν (σtBν) + ν2 (∂νσt) (∂νBν) +

1

2
σtν

2∂2
νBν

)](0)

− 4π

[
1

cσt
∂tBν +

1

2
β2 (3Bν − ν∂νBν)

](0)

= 4πB(2)
ν −

4π

3σ
(0)
t

∂i

[
− 1

σt
∂iBν + βi (3Bν − ν∂νBν)

](0)

+
4π

3
β

(0)
i

[
− 1

σ2
t

∂iBν +
1

σt
βi (3Bν − ν∂νBν)

](0) [
1 +

1

σt
ν∂νσt

](0)

+
4π

3σ
(0)
t

[
β2

(
3σtBν − 3ν∂ν (σtBν) + ν2 (∂νσt) (∂νBν) +

1

2
σtν

2∂2
νBν

)](0)

− 4π

[
1

cσt
∂tBν +

1

2
β2 (3Bν − ν∂νBν)

](0)

. (D.11a)

In passing from the second equality to the third, equation (D.7c) has been used

for Fi,ν . The second-order angle-integrated radiation flux is comparatively straight-

forward

F
(2)
i,ν

= −σ
(1)
t

σ
(0)
t

F
(1)
i,ν +

1

σ
(0)
t

[
−∂jPij,ν + βj

(
σtPij,ν + Pij,νν∂νσt +

4π

3
(2σtBν − ν∂ν (σtBν))

)](1)

=
4πσ

(1)
t

3

[
1

σ2
t

∂iBν −
1

σt
βi (3Bν − ν∂νBν)

](0)

+
4π

3σ
(0)
t

[−∂iBν + βi (3σtBν − σtν∂νBν)]
(1)
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= −4π

3

(
1

σ
(0)
t

∂iB
(1)
ν − σ

(1)
t

[
1

σ2
t

∂iBν

](0)
)

+
4π

3

(
−σ(1)

t

[
1

σt
βi (3Bν − ν∂νBν)

](0)

+
1

σ
(0)
t

[βi (3σtBν − σtν∂νBν)]
(1)

)

=
4π

3

[
− 1

σt
∂iBν + βi (3Bν − ν∂νBν)

](1)

. (D.11b)

In passing to the last line, it must be recognized that the first term is a ratio of two

terms, which obey the property:

[
A

B

](1)

= A(1)

[
1

B

](0)

+ A(0)

[
1

B

](1)

=
1

B(0)
A(1) −

[
A

B2

](0)

B(1) .

The radiation flux can be frequency-integrated immediately:

F (2)
i =

∫ ∞
0

F
(2)
i,ν dν =

[
− arc

3σt,R
∂iT

4 +
4

3
aruiT

4

](1)

. (D.11c)

Since the second-order angle-integrated radiation intensity is so different from its

leading- and first-order counterparts, and since the second-order radiation intensity

is considerably more involved than its first-order counterpart, it is fairly surprising

that the first- and second-order angle-integrated radiation fluxes have the same form.

The second-order angle-integrated radiation intensity was presented only to impress

that the second-order radiation energy density, and radiation pressure, will not take

the same form as their leading- and first-order counterparts. Thus, the RH equations,

in the EDL, cannot satisfy the EDA beyond O(ε).
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APPENDIX E

DERIVATION OF THE O(β2) CORRECTIONS TO THE RADIATION

TRANSPORT EQUATION

The 1-D grey RH equations are the Euler equations of fluid-mechanics, and the

frequency-integrated equation of radiation transport:

∂tρ+ ∂x (ρu) = 0 , (E.1a)

∂t (ρu) + ∂x
(
ρu2 + p

)
= −Srp , (E.1b)

∂t

(
1

2
ρu2 + ρe

)
+ ∂x

[
u

(
1

2
ρu2 + ρe+ p

)]
= −Sre , (E.1c)

∂tI + µ∂xI = −σtI +
σs
4π
cE +

σa
4π
arcT

4 + βµ
(
σtI + 3

σs
4π
E + 3

σa
4π
arT

4
)

− 2β
σs
4π
F +

1

4π
(C0 + 3µC1) ≡ Q , (E.1d)

where Sre and Srp are the radiation source-rates of energy and momentum, which

are defined according to equations (II.25e),

Sre =

∫
4π

Qdµ = ∂tE + ∂xF = σac

[
arT

4 −
(
E − 2

c
βF
)]
− σtβF + C0 , (E.2a)

Srp =
1

c

∫
4π

Qµdµ =
1

c2
∂tF + ∂xP

= −σt
c

[F − (E + P)u] + σaβ
(
arT

4 − E
)

+
1

c
C1 . (E.2b)

The purpose of C0 and C1 is to ensure that the radiation energy and momentum

source-rates go to zero in equilibrium, and to allow us to define the radiation internal
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energy source-rate as

Sre − uSrp = σac
(
αRT

4 − Eo
)
. (E.3)

Thus, to define C0 and C1 correctly, it is necessary to define the equilibrium state. As

mentioned previously, the RH equations (E.1), including the radiation source-rates

equations (E.2) and (E.3), are correct through O(β). In equilibrium, we know on

physical grounds that the following identities hold in the comoving-frame

(Eo)eq = αRT
4
eq , (E.4a)

(Fo)eq = 0 , (E.4b)

(Po)eq =
1

3
(Eo)eq , (E.4c)

and that these identities may be approximately transformed to the lab-frame, via

Lorentz transformations with O(β2) truncations

Eo = E − 2

c
βF +O(β2) , (E.5a)

Fo = F − (E + P)u+O(β2) , (E.5b)

Po = P − 2

c
βF +O(β2) . (E.5c)

The reason we want to transform the comoving-frame equilibrium identities to the

lab-frame is because the source-rate equations (E.2) are written using lab-frame

variables, which are also used to solve equations (E.1). We modify the Lorentz

transformations for the radiation energy density, and radiation pressure, at O(β2),
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by writing them as

Eo = E − 2

c
βFo +O(β2) , (E.6a)

Fo = F − (E + P)u+O(β2) , (E.6b)

Po = P − 2

c
βFo +O(β2) , (E.6c)

where we have rewritten the radiation flux for completeness, although it has not been

changed. It is worth emphasizing that this change to the Lorentz transformations is

at O(β2), which is at the same order of the truncation of the Lorentz transformations,

such that no extra error has been introduced. These are the Lorentz transformations

that we choose to use. Now, in equilibrium, the lab-frame radiation variables, to

O(β2), are

Eeq = Eo = αRT
4
eq , (E.7a)

Feq = (E + P)eq ueq =
4

3
(Eu)eq , (E.7b)

Peq = (Po)eq =
1

3
(Eo)eq =

1

3
Eeq . (E.7c)

From now on, when we talk about equilibrium we mean equations (E.7). Having

defined the equilibrium state, we now consider C0 and C1. The radiation momentum

source-rate equation (E.2b), in equilibrium, is zero without any modifications

(Srp)eq = −σt
c

[F − (E + P)u]eq + σaβeq
(
arT

4 − E
)
eq

+
1

c
(C1)eq = 0 , (E.8)
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therefore, we set C1 = 0. Next, consider the radiation internal source-rate as found

from the radiation energy and momentum source-rates given in equations (E.2),

Sre − uSrp = σac

[
arT

4 −
(
E − 2

c
βF
)]
− σtβF + C0

− u
(
−σt
c

[F − (E + P)u] + σaβ
(
arT

4 − E
))

= σac

[
arT

4 −
(
E − 2

c
βF
)]
− β2c

(
σtP + σsE + σaαRT

4
)

+ C0. (E.9)

The first term on the RHS almost matches the radiation internal source-rate equation

(E.3), but the radiation flux term must be Lorentz transformed via equation (E.6b)

so that the Lorentz transformed radiation energy density agrees with equation (E.6a):

Sre − uSrp = σac

[
arT

4 −
(
E − 2

c
βFo

)]
+ 2σaβ (F − Fo)

− β2c
(
σtP + σsE + σaαRT

4
)

+ C0

= σac
[
arT

4 − Eo
]

+ β2c
(
(σa − σs) (E + P) + σa

(
E − αRT 4

))
+ C0 ,

⇒ C0 = β2c
(
(σs − σa) (E + P) + σa

(
αRT

4 − E
))
. (E.10a)

It is worth testing C0 in the radiation energy source-rate equation (E.2a) to ensure

that the equation does go to zero in equilibrium as expected

(Sre)eq = σac

[
arT

4 −
(
E − 2

c
βF
)]

eq

− σtβeqFeq + (C0)eq

= (σa − σs) βeqFeq + (C0)eq

= β2
eqc (σa − σs) (E + P)eq + β2

eqc (σs − σa) (E + P)eq

= 0 . (E.11)
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APPENDIX F

DERIVATION OF THE WAVE EQUATION AND NONDIMENSIONALIZATION

OF THE IDEAL GAS EQUATION OF STATE

We assume an ideal-gas γ−law equation-of-state (EOS) to describe the thermody-

namics of the material system. Since we are ultimately interested in shock waves

in the ideal-gas, it is necessary to go beyond standard thermodynamic treatments

and obtain information about the speed of sound for the ideal-gas. The standard

equation of an ideal-gas is

p = nkBT = nm
kB
m
T = ρRspecificT , (F.1)

where p is the material pressure with units [energy/volume], n is the number density

of atoms or molecules in the system with units [number/volume], m is the mass of

an individual atom or molecule, ρ is the mass density with units [mass/volume],

kB is Boltzmann’s constant with units [energy/Kelvin], Rspecific is the specific gas

constant which is equivalent to the gas constant R divided by the molar mass of

interest, and T is the material temperature with units of [Kelvin]. For an ideal-gas,

Rspecific is the difference between the specific heat at constant pressure and constant

volume, Rspecific = cp − cV , and the ratio of the specific heat at constant pressure to

the specific heat at constant volume is the adiabatic index, γ,

cp
cV

= γ , (F.2)
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such that

Rspecific

cV
=
cp
cV
− 1 = γ − 1 . (F.3)

For a monatomic gas, γ = 5/3. The ideal-gas equation (F.1) can now be written as

p = ρ
Rspecific

cV
cV T = ρ (γ − 1) e , (F.4)

where the material’s specific internal energy, e = cV T , has been introduced. Since

the material motion is described by the Euler equations, sound waves are isentropic

propagation waves of a small disturbance about the material’s equilibrium state:

ρ = ρ0 + ρ′ (F.5a)

p = p0 + p′ (F.5b)

u = u′. (F.5c)

The last expression, for the velocity, implies that the material is at rest prior to the

disturbance, and also shows that the velocity is inherently a first-order valued quan-

tity. Linearizing the Euler equations with respect to the disturbance, and neglecting

the radiation sources, produces

∂tρ
′ + ρ0∂xu

′ = 0 , (F.6a)

ρ0∂tu
′ + ∂xp

′ = 0 , (F.6b)

1

γ − 1
∂tp
′ +

γp0

γ − 1
∂xu

′ = 0 . (F.6c)
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The difference between the time-derivative of the momentum conservation equation,

and the spatial-derivative of the energy conservation equation, produces the wave

equation for the velocity field

ρ0∂
2
t u
′ − γp0∂

2
xu
′ = 0 ⇒ ∂2

t u
′ =

γp0

ρ0

∂2
xu
′ , (F.7)

such that the propagation speed a0 of a small disturbance is:

a0 =

√
γp0

ρ0

. (F.8)

Similarly, the pressure may be written as a function of the two thermodynamic

quantities, entropy and density: p = p (s, ρ). The isentropic Taylor expansion of the

pressure is

p (s, ρ) = p (s, ρ0) + ρ′
(
∂p

∂ρ

)
s=const

+ . . . (F.9)

and the squared speed of sound a2 is canonically defined as

a2 ≡
(
∂p

∂ρ

)
s=const

. (F.10)

The derivative is computed by considering the thermodynamic first-law for an isen-

tropic process,

Tds = de+ pd

(
1

ρ

)
= 0 , (F.11)
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and noting that the ideal-gas equation (F.4) can be rearranged

e =
p

ρ (γ − 1)
. (F.12)

Then the thermodynamic first-law for an isentropic process is

0 = d

(
p

ρ (γ − 1)

)
+ pd

(
1

ρ

)
=

1

ρ (γ − 1)
dp− p

ρ2 (γ − 1)
dρ− p

ρ2
dρ

=
1

ρ (γ − 1)
dp− γp

ρ2 (γ − 1)
dρ ,

⇒
(
dp

dρ

)
s=const

=
γp

ρ
, (F.13)

and the speed of sound, as determined by thermodynamic reasoning, is

a =

√
γp

ρ
. (F.14)

While the two equations for the speed of sound derived above, (F.8) and (F.14),

look slightly different, they are the same. The derivation of equation (F.14) uses

the canonical definition of the speed of sound, which truncates the Taylor expansion

after the first-derivative, and the thermodynamic first law, equation (F.11), which

implies the use of the equilibrium state; thermodynamics only strictly applies to

physical systems in equilibrium and at rest. Therefore, the values of pressure and

density in equation (F.14) are their equilibrium values, which are written as p0 and

ρ0 in equation (F.8). The squared speed of sound may be written in two equal, but

different, ways

a2 =
γp

ρ
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= γRspecificT (F.15a)

= γ (γ − 1) e , (F.15b)

and it is apparent that the material specific internal energy has the dimensions of

speed squared.

Having defined the local sound speed, we also define the local Mach number M,

as the ratio of the local flow velocity u, to the local sound speed a:

M =
u

a
. (F.16)

We now seek to understand how to nondimensionalize the thermodynamic quantities

associated with the ideal-gas. Dimensional variables can be decomposed into their

nondimensional reference values, and their dimensional quantities, e.g., x̃ = xx̃0.

Items with a tilde over them carry physical dimensions. For nondimensionalization,

we choose to use reference variables for the sound speed ã0, and the temperature T̃0,

but not the internal energy. Further, for consistency, reference quantities for sound

speed, and temperature, should agree,

ã2
0 = γR̃specificT̃0 , (F.17)

which implies that the nondimensional sound speed, determined from the local sound

speed, is

ã2 = a2ã2
0 = a2γR̃specificT̃0

= γR̃specificT̃ = TγR̃specificT̃0
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⇒ a2 = T . (F.18)

The material is described by three forms of energy density, kinetic energy density

ρu2, internal energy density ρe, and pressure p, and it is convenient to nondimension-

alize these quantities with the same parameters, ρ̃0ã
2
0. Nondimensionalization of the

material specific internal energy produces the nondimensional form of the specific

heat at constant volume, cV ,

ẽ = eã2
0 = cV TγR̃specificT̃0

= c̃V T̃ = T c̃V T̃0

⇒ cV =
c̃V

γR̃specific

=
1

γ (γ − 1)
, (F.19)

where c̃V is the specific heat at constant volume, and we have used equation (F.3)

to get (γ − 1) in the denominator of equation (F.19). We have assumed that the

nondimensional specific internal energy can still be written as the product of the

specific heat at constant volume and temperature:

e = cV T =
1

γ (γ − 1)
T . (F.20)

The nondimensional equation for the pressure follows from the dimensional ideal-gas

equation:

p̃ = pρ̃0ã
2
0

= ρ̃ẽ (γ − 1) = ρe (γ − 1) ρ̃0ã
2
0

⇒ p = ρe (γ − 1) . (F.21)
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The local Mach number may be rewritten by recalling equation (F.16):

M =
ũ

ã
=
uã0

aã0

=
u√
T
. (F.22)
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APPENDIX G

DERIVATION OF THE LINEARIZATION PROCEDURE USED FOR THE

RADIATION HYDRODYNAMIC SOLVE IN THE FIRST ITERATION

In equilibrium, the RH variables assume constant values, and their respective ODEs

are zero, as expected. The purpose of linearizing the RH ODEs is to provide a value

of the RH variables away from equilibrium which is consistent with the equations to

be solved.

We begin with ODEs for the spatial gradient of the radiation pressure, and the

material temperature, equations (V.20) and (V.19), which are rewritten here for

convenience, and where P = 1
3
E is used since we are stepping out of equilibrium:

∂xE =
3σtM0

CP0

[
T − 1

γ − 1

+
M2

0

2ρ2

(
1− ρ2

)
+ P0

(
4
3
σsE + σa

(
1
3
E + T 4

)
ρσt

− 4

3

)]
, (G.1a)

∂xT =
P0 (γ − 1)

M0ρ (M2 − 1)

[
M0

3
∂xE

+
(
γM2 − 1

)
ρσaC

[
E − T 4 − 2βF +

8

3
β2E

]]
. (G.1b)

The first step is to expand each variable about an equilibrium state, Y = Yeq + δY ,

and retain only the terms which are linear in an expanded variable δ:

∂xδE =
3σtM0

CP0

[
δT

γ − 1
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−
(
M2

0

ρ2
+

4P0

3

E
ρ

)
δρ

ρ
+ P0

4
3
σsδE + σa

(
1
3
δE + 4T 3δT

)
ρσt

]
, (G.2a)

∂xδT =
P0 (γ − 1)

M0ρ (M2 − 1)

[
M0

3
∂xδE +

(
γM2 − 1

)
ρσaC

[
δE − 4T 3δT

]]
. (G.2b)

The cross-sections have not been expanded above for simplicity. We now assume

that δY (x) = δY eαx, such that ∂xY (x) = αδY (x), and we choose to divide both

equations by the equilibrium value of T :

α
δE
T

=
3σtM0

CP0

[
1

γ − 1

δT

T

−
(
M2

0

ρ2T
+

4P0

3

E
ρT

)
δρ

ρ
+ P0

4
3
σsδE + σa

(
1
3
δE + 4T 3δT

)
ρTσt

]
, (G.3a)

α
δT

T
=

P0 (γ − 1)

M0ρT (M2 − 1)

[
M0

3
∂xδE +

(
γM2 − 1

)
ρσaC

[
δE − 4T 3δT

]]
. (G.3b)

Some algebraic manipulation is in order. Let P0E = ρTP , recall that M2 ≡ M2
0

ρ2T
,

and recognize that in equilibrium E = T 4, then these two equations become:

α
δE
E

=
3σtM0

CPρ

[
1

γ − 1

δT

T

−
(
M2 +

4P

3

)
δρ

ρ
+ P

((
1

3
+
σs
σt

)
δE
E

+ 4
σa
σt

δT

T

)]
, (G.4a)

α
δT

T
=

P (γ − 1)

M0 (M2 − 1)

[
α

3
M0

δE
E

+
(
γM2 − 1

)
ρσaC

[
δE
E
− 4

δT

T

]]
. (G.4b)

Obviously, we must find a relation for δρ
ρ

in terms of δE
E and δT

T
. Consider the first-

integral of the total momentum conservation equation

ρu2 + p+ P0P = Keq , (G.5a)
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which may also be written as

M2
0

ρ
+
ρT

γ
+

1

3
P0E = Keq , (G.5b)

where Keq represents the equilibrium value of the LHS. Linearizing this equation

produces:

−M
2
0

ρ

δρ

ρ
+
ρT

γ

δρ

ρ
+
ρT

γ

δT

T
+

1

3
P0δE = 0 . (G.6)

Rearranging the equation above yields the desired result:

δρ

ρ
=

1

(γM2 − 1)

(
δT

T
+
γP

3

δE
E

)
. (G.7)

Using this result in equation G.4a, and rearranging terms manifests a 2 × 2 system

of equations:

(
1

γ − 1
−
(
M2 + 4P

3

)
(γM2 − 1)

+ 4P
σa
σt

)
δT

T

+

(
−α Cρ

3σtM0

+

(
M2 + 4P

3

)
(γM2 − 1)

γ

3
+

(
1

3
+
σs
σt

))
P
δE
E

= 0 , (G.8a)

(
α
M0 (M2 − 1)

(γ − 1)
+ 4P

(
γM2 − 1

)
ρσaC

)
δT

T

−
(α

3
M0 −

(
γM2 − 1

)
ρσaC

)
P
δE
E

= 0 . (G.8b)

Since the RHS is zero, the determinant of this 2 × 2 system must be zero, which

generates a second-order characteristic equation for α:

(
1

γ − 1
−
(
M2 + 4P

3

)
(γM2 − 1)

+ 4P
σa
σt

)(α
3
M0 −

(
γM2 − 1

)
ρσaC

)
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+

(
−α Cρ

3σtM0

+

(
M2 + 4P

3

)
(γM2 − 1)

γ

3
+

(
1

3
+
σs
σt

))

×
(
α
M0 (M2 − 1)

(γ − 1)
+ 4P

(
γM2 − 1

)
ρσaC

)
= 0 . (G.9)

Of course, this equation can be made to look less intimidating since all of the variables

except α are known from their equilibrium values, and can be rewritten as constants:

a (b α + c) + (dα + e) (f α + g) = 0 , (G.10a)

⇒ d f α2 + (a b+ d g + e f)α + e g + a c = 0 , (G.10b)

where

a =
1

γ − 1
−
(
M2 + 4P

3

)
(γM2 − 1)

+ 4P
σa
σt
, (G.10c)

b = −M0

3
, (G.10d)

c = −
(
γM2 − 1

)
ρσaC , (G.10e)

d =
Cρ

3σtM0

, (G.10f)

e =

(
M2 + 4P

3

)
(γM2 − 1)

γ

3
− 1

3
− σs
σt
, (G.10g)

f =
M0 (M2 − 1)

(γ − 1)
, (G.10h)

g = 4P
(
γM2 − 1

)
ρσaC . (G.10i)

From the current context, the f above is obviously not the VEF. Then α is:

α =
− (a b+ d g + e f)±

√
(a b+ d g + e f)2 − 4 d f (e g + a c)

2 d f
. (G.11)
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The positive root of the discriminant appears to consistently give the desired results

at upstream and downstream equilibrium. Of course, the ultimate test is that the

radiation energy density should be increased at the upstream state and decreased at

the downstream state.

The 2 × 2 system of equations (G.8) can now be solved, but we know neither δE ,

nor δT , explicitly. Instead, since we are integrating alongM, this is the variable we

control. Recalling M = M0

ρ
√
T

, this equation can be linearized,

δM = −M
(
δρ

ρ
+
δT

2T

)
, (G.12)

and using equation (G.7) for δρ
ρ

, the solution for α in equation (G.11), and the 2× 2

system of equations (G.8), then δE can be written in terms of δM, as

δE =
6 a (γM2 − 1) E

P (3 (γM2 + 1) (b α + c)− 2 a γ)

δM
M

. (G.13)

It is important to remember that all of the variables above take their equilibrium

values. If the upstream equilibrium integration is being performed then it is necessary

to use the upstream equilibrium values, and similarly, if the downstream equilibrium

integration is being performed then it is necessary to use the downstream equilibrium

values.
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