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ABSTRACT

Realistic facial animation remains one of the most challenging problems in com-

puter graphics, where facial performance capture of real people has been a key com-

ponent. The current state-of-the-art technologies used to capture facial performances

are far too expensive and cumbersome for general users, which limits the potential

applications of performance capture. The primary contribution of this dissertation

is to propose two systems that are suitable for common users to capture facial per-

formance using a single low-cost device.

Our first system focuses on large-scale facial performance reconstruction from a

single RGBD image. Our goal is to accurately reconstruct global transformation,

as well as large-scale deformations from the images provided by a single shot of a

Microsoft Kinect camera. With the combination of a robust facial feature detector

and an image-based registration method, our system is automatic, robust and accu-

rate to reconstruct facial movements. The result face meshes are topology consistent

and with dense correspondences. Since people are natural experts of native human

expressions and can distinguish subtle differences, e.g. dynamic facial wrinkles, we

propose a second system combining our performance capture with a 3D scanning

system to add person-specific high-resolution details in an efficient and effective way.

We demonstrate the power of our proposed systems by testing on both real and

synthetic data, as well as a commercially available motion capture system. Results

show that the proposed systems generate believable and comparable results. We

believe the proposed systems should be useful and applicable for general as well as

professional users.
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1. INTRODUCTION

Facial performance is a crucial component in many fields, including computer

science and engineering, medical science and psychology. It is also becoming a larger

principle component in many applications, such as movies, video games, online vir-

tual reporters, plastic surgery simulators, behavior monitoring, and other interactive

human-computer interfaces. The recent most notable examples are found in the

success of movies, which apply facial capture techniques to bring digital characters

to life such as in the movies Beowulf and Avatar. Capturing facial performances

of real people has been crucial and can be partially solved by using commercially

available marker-based motion capture equipment such as a Vicon system [26]. How-

ever, this solution is too expensive for common use. Additionally, it is cumbersome,

requiring the user to wear or draw markers on the face and track their movements

with cameras. Most importantly, the marker-based motion capture system has low

spatial resolution (usually 100 to 200 markers), which is not capable of capturing

subtle local changes and details on face, especially the complex deformable surface

of the human face. Capturing detailed 3D facial performances, however, is difficult

because it requires capturing complex facial movements at different scales, including

large-scale motion deformations and fine-scale geomantic details, such as pores and

expression wrinkles.

Other than marker-based motion capture systems, researcher have also been ex-

ploring a number of approaches to capture 3D facial performances, including 3D

scanning, structured light systems, and image-based stereo reconstruction systems.

3D face scanning systems, such as XYZ RGB [39], are capable of acquiring fine detail

facial geometric details, but only for static poses. Structure light systems [40, 21, 2]
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and multi-view stereo reconstruction systems [10] have made it possible to capture

3D dynamic faces with moderate fidelity, resolution, and consistency but their results

still cannot match the spatial resolution of static face scans or the acquisition speed

of marker-based motion capture systems. Most importantly, they use more expensive

capturing equipments, such as multiple professional digital cameras with or without

projectors, and the equipments need to be placed in a specific arrangement, which

makes the systems not portable and not suitable for common users.

In this dissertation, we propose systems to capture and reconstruct facial perfor-

mance by using a single cheap device as capturing equipment, and we demonstrate

that our results are comparable to that of commercial capturing systems at similar

levels of details. Our goal is to design and build automatic facial performance acqui-

sition systems that are suitable for common users. We focus on image-based facial

capture because it is intuitive. People can easily take facial pictures or videos by

using a phone, any commercial camera, or even a cheap gaming device, for example,

a Microsoft Kinect camera, and use it to reconstruct facial performances. We choose

Kinect cameras for facial performance acquisition because they are low-cost, easy to

use, require no markers, and moreover, provide an additional channel depth map,

which is more stable than RGB images under different light conditions. A Kinect

camera simultaneously captures depth maps with a resolution of 320×240 and color

images with a resolution of 640 × 480 at 30 frames per second based on infrared

projection (Figure 1.1).

Choosing to use a single Kinect camera as the input device and use image-based

motion capture technique as our main framework bring about two main challenges.

First, low-cost devices often provide low quality data, such as noisy low-resolution

images, which would directly affect both the accuracy of the results and the robust-

ness of the system. Figure 1.2 shows some sample frames of the observed images and
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Figure 1.1: The Kinect camera simultaneously captures a 320 × 240 pixels depth
map and a 640× 480 pixels color image at 30 Hz.

Figure 1.2: Sample frames of observed images and point clouds of a Kinect camera:
row (1) shows the video images, row (2) shows the depth images, and row (3) shows
the depth point clouds, where warmer color is used for visualizing points that are
closer to the depth camera.
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point clouds. Second, people are naturally experts of native human expressions and

can distinguish subtle differences from global movements, large-scale deformations

and even fine-scale facial geometry details. How to apply low-quality data to recon-

struct accurate and quality results becomes the main issue, and addressing it would

make a major contribution to this field of study.

We propose two systems that provide different needs. The first system focuses

on large-scale facial performance capture from a single RGBD image. Our goal is

to accurately reconstruct global transformation, as well as large-scale deformations

from the images provided by a single shot from a Microsoft Kinect camera. We set

several requirements for this system, including accuracy, generality, robustness, and

automation. The system needs to best utilize the input images, down to sub-pixel

accuracy, to generate a result that closely matched the observed data. The system

needs to be general for common users, meaning no extra prior knowledge would be

needed to reconstruct facial performance, such as person-specific 3D facial models or

blendshapes. The system should be robust to process any single frame independency

without knowing temporal coherence and should be fully automatic without any

manual assistance through out the process.

Due to the aforementioned challenges, low-cost devices typically do not provide

enough information about facial details, such as pores and dynamic wrinkles, which

are vital components of a quality facial performance. Hence, our second system

focuses on reconstructing such details. Considering the feasibility of common users,

we extend the first system by incorporating additional prior information to help in

reconstruction of high-fidelity facial details. The person-specific priors need be easy

to identify, require minimal efforts to retrieve, and be able to be reused. We herein

incorporate a 3D scanning system into the performance capture system, and provide

an automatic facial analysis technique to determine a minimal set of face scans
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Figure 1.3: The capturing equipments and environment settings for our proposed
systems. (left) a Kinect camera is used for capturing large-scale movements; (right)
a Minolta VIVID 910 laser scanner is used for scanning static facial geometry of an
actor to help in reconstruction of high-fidelity facial details.

required for accurate facial performance reconstruction. In other words, we maximize

the use of any single face scan to cover similar expressions under different scales and

rigid transformations. The face scans could be reused afterwards, and therefore,

the user could still use a single Kinect camera to reconstruct high-detailed facial

performances. More face scans used to reconstruct the performance from a sequence

generate closer quality to per-frame face scans. Figure 1.3 shows the capturing

equipments and environment settings for both systems.

The main contribution of our performance capture system is a novel 3D facial

modeling process that automatically reconstructs 3D facial expression from a single

RGBD image without using any 3D facial prior information. Thus, it is not restricted

to capture predefined facial expressions. We focus on per-frame reconstruction be-

cause it ensures the process is fully automatic and does not suffer from drifting error.

At the core of our system lies a 3D facial deformation registration process which it-

eratively deforms a template face model to best match a single depth image. To give

good initialization, we incorporate a facial features detection process into the regis-
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Figure 1.4: Reconstructed faces from our performance capture system using a sin-
gle Kinect RGBD image: (top) observed images; (bottom) the reconstructed facial
performances.

tration process that significantly improves the accuracy and robustness of the facial

capture system. The results obtained from our system are quantitatively comparable

in quality to those obtained from a commercial motion capture system with a full

set of markers. Figure 1.4 shows some reconstruction results from our system.

The second system is an extension of the first system that incorporates a high-

resolution 3D face scan system into the system to make it possible for reconstructing

high-fidelity facial performances with realistic dynamic wrinkles and fine-scale facial

details. We start the process by recording facial performances of an actor using a

Kinect camera. We track the whole sequence of images and depth data by deforming

a 3D template mesh model to match observed data at each frame. We then perform

automatic facial analysis of the facial tracking data and thereby obtain a minimal

set of face scans required for accurate facial reconstruction. We introduce a novel

registration process that utilizes image and depth data across the entire sequence to
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Figure 1.5: Sample frames of the reconstructed high-fidelity facial performances from
our system: (top) observed images; (bottom) the reconstructed facial performances.

automatically build dense and consistent surface correspondences between all the face

scans. Lastly, we combine depth and image data with the minimal set of registered

face scans to reconstruct high-fidelity facial performances in a keyframe interpolation

framework. Figure 1.5 shows some sample frames from our reconstruction results.

We demonstrate the effectiveness of our systems by capturing a wide range of

facial expressions from multiple subjects. Moreover, we evaluate the performance of

our systems by testing on synthetic data and comparing against alternative methods

and a commercially available motion capture system. Results show that our proposed

systems generate believable and comparable results. We believe both systems could

be useful and feasible for both general and professional users.

1.1 Contributions

Our marker-less facial performance capture process, by using a single low-cost

device, is made possible by the following two systems:
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• An automatic, general, robust, and accurate 3D facial performance capture sys-

tem that combines the power of facial feature detection and facial deformation

registration.

• A high-quality facial performance capture system that combines the power of

large-scale facial motion tracking and 3D high-resolution priors acquisition with

minimum efforts using a 3D scanning system.

Our low-cost facial capture process is made possible and feasible for common

users by a number of technical contributions:

• A low-cost, ease of use, and non-intrusive system that uses only a single Kinect

camera and does not need to put either markers or makeups on the face.

• A general system that requires no 3D facial database (priors) or blendshapes,

but just a template.

• A robust framework that reconstruct performance with single-frame estimation.

• An accurate model-based depth flow algorithm that iteratively register a tem-

plate face model with observed facial data in a single depth image via linear

system solvers, which achieves sub-pixel accuracy.

• A combination of a facial feature detector and an image-based registration

framework that guarantees consistent correspondences of all result meshes on

both important features and dense surface. This makes the reconstructed mod-

els easy to use for multiple applications, such as video editing.

Our high-fidelity facial performance acquisition is made possible by a number of

technical contributions:
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• An efficient facial reconstruction method that utilize observed image and depth

data as well as a minimal set of registered face scans to accurately reconstruct

facial performances in a keyframe interpolation framework. This framework

also enables the possibility of reconstructing high detailed facial performance

by reusing the face scans if performing similar performances.

• A novel facial tracking framework that automatically translates, rotates and

deforms a template mesh model to match image and depth data obtained from

a single Kinect camera. This also guarantees the result meshes are topology

consistent and with dense correspondences.

• An automatic facial analysis technique that determines a minimal set of face

scans required for accurate facial performance reconstruction. This not only

improves the accuracy of 3D facial reconstruction but also significantly reduces

the time and effort required for 3D face scanning.

• A new registration process that automatically builds dense, consistent surface

correspondences across all the face scans using image and depth data obtained

from a Kinect camera. This is nontrivial because face scans often contain high

resolution facial details such as pores and wrinkles, and a small misalignment

between any two scans will result in unpleasant visual artifacts in the captured

facial performance.

In the next chapter, we describe how to capture large-scale 3D facial performance

from a single RGBD image. We then describe our approach for reconstructing fine-

scale facial geometric details in Chapter 3.
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2. AUTOMATIC CAPTURE OF 3D FACIAL PERFORMANCES USING A

SINGLE RGBD IMAGE

The ability to accurately reconstruct 3D facial performances would allow the in-

tuitive control of characters in computer games, the control of avatars for virtual

reality or electronically mediated communication, and the rapid prototyping of fa-

cial animations. This problem has been partially solved by commercially available

marker-based motion capture equipment (e.g. [26]), but this solution is far too ex-

pensive for common use. It is also cumbersome, requiring the user to wear more than

90 carefully positioned retro-reflective markers on face. In this system, we present a

different approach to solving this problem: reconstructing the user’s 3D facial per-

formances using a single RGBD camera (Figure 2.1). The results obtained from our

system are quantitatively comparable in quality to those obtained from a commercial

motion capture system with a full set of markers. The cost is much lower because

only a single Kinect camera is required. The system is also portable, easy to set up,

and non-intrusive because it requires no markers or no controlled illumination.

The main contribution of this system is a novel 3D facial modeling process that

automatically reconstructs 3D facial expression from a single RGBD image. We

focus on per-frame reconstruction because it ensures the process is fully automatic

and does not suffer from drifting error. Unlike similar facial capture systems using

a Kinect [36], our process does not require any 3D facial priors and therefore is not

restricted to capture predefined facial expressions. At the core of our system lies a

3D facial deformation registration process which iteratively deforms a template face

model to best match a single depth image. We build the registration algorithm on

Lucas-Kanade registration framework [4] by extending model-based optical flow to
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Figure 2.1: Our system captures a variety of facial performances with a single Kinect
Camera: (top) image data; (bottom) the reconstructed facial performances.

depth data. This allows us to use linear system solvers to incrementally deform a

template face model using a single depth image.

Our registration process, like any other iterative registration process, requires

a good initialization. The system often produces poor reconstruction results when

facial performances are far from the template face model. It also does not take into

account perceptually significant facial features such as nose tip and mouth corners,

thereby resulting in misalignments in those perceptually important facial regions.

We address the challenges by complementing our registration process with facial

feature detection process. Incorporating facial features into our registration process

significantly improves the accuracy and robustness of the facial capture system.

Our final marker-less facial capture process is made possible by a number of

technical contributions:

• A novel facial feature detector that accurately and reliably locates important

facial features in a single RGBD image. The detection process is robust to

variation in human subjects, facial expressions, head poses, and illuminations.
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• A model-based depth flow algorithm that iteratively register a template face

model with observed facial data in a single depth image via linear system

solvers.

• An automatic, accurate 3D facial performance capture system that combines

the power of facial feature detection and facial deformation registration. The

system does not suffer from drifting error because it builds on single-frame

modeling process. It is also flexible because it does not rely on any 3D facial

priors or predefined blendshape models.

We demonstrate the power of our facial performance capture system by capturing

a wide range of facial expressions from multiple subjects. We evaluate the perfor-

mance of our system by comparing against alternative methods such as marker-based

motion capture and nonrigid registration using Iterative Closest Points (ICP). We

have also explored application of our captured facial performances to edit photo-

realistic facial video data.

2.1 Background

Our system reconstructs 3D facial expression using a single RGBD image. There-

fore, we will focus our discussion on methods and systems developed for acquiring

3D facial performances.

One of most successful approaches for 3D facial performance capture is to use

marker-based motion capture systems [38, 17], which robustly and accurately track

a sparse set of markers attached on face. Recent effort in this area has been focused

on complementing marker-based systems with other capturing types of devices such

as video cameras and/or 3D scanners to improve the resolution and details of cap-

tured facial geometry. Bickel and his colleges [7] augmented the marker-based motion

capture system with face paints and two synchronized video cameras for tracking
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medium-scale expression wrinkles. More recently, Huang and his colleagues [18] pro-

posed a system that combines the power of marker-based motion capture and 3D

scanning for acquiring fine-scale geometric details in facial performances. Marker-

based motion capture, however, is not practical for random users targeted by this

system as they are expensive, cumbersome, and intrusive for 3D facial performance

capture.

Marker-less motion capture provides an appealing alternative to facial perfor-

mance capture because it is non-intrusive and does not impede the subject’s ability

to perform facial expressions. One solution to marker-less facial capture is the use

of depth and/or color data obtained from structured light systems [40, 23, 21, 37].

For example, Zhang and his colleagues [40] captured 3D facial geometry and texture

over time and built the correspondences across all the facial geometries by deforming

a generic face template to fit the acquired depth data using optical flow computed

from image sequences. Ma et al. [23] achieved high-resolution facial reconstructions

by interleaving structured light with spherical gradient photometric stereo using the

USC Light Stage. Recently, Li and his colleagues [21] captured dynamic depth maps

with their realtime structured light system and fit a smooth template to the captured

depth maps using embedded deformation techniques [32].

Reconstructing high-quality face models directly from multiview images offers

another possibility for marker-less motion capture [28, 9, 10, 5, 6]. Borshukov and

his colleagues [9] developed the Universal Capture system to recreate actors for The

Matrix Reloaded. Their system deformed a scanned 3D face template by using optical

flow fields computed from multiple image sequences. Bradley and his colleagues [10]

used multi-view stereo reconstruction techniques to obtain initial facial geometry,

which is then used to capture 3D facial movement by tracking the geometry and

texture over time. Beeler et al. [5] presented an impressive multi-view stereo re-
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construction system for capturing the 3D geometry of a face in a single shot and

late extended it to acquiring dynamic facial expressions using multiple synchronized

cameras [6]. More recently, Valgaerts et al. [34] combined image-based tracking with

shading-based geometry refinement to reconstruct facial performances from stereo

image sequences.

The minimal requirement of a single camera for facial performance capture is

particularly appealing, as it offers the lowest cost and a simplified setup. However,

previous single camera systems for facial capture [15, 14, 29] are often vulnerable to

ambiguity caused by a lack of distinctive features on face and uncontrolled lighting

environments. One way to address the issue is to use 3D prior models to reduce the

ambiguity of image-based facial deformations(e.g., [8, 35]). Another possibility is to

extract a small number of 2D facial features from monocular image sequences and

use them to interpolate prerecorded facial data [11].

Among all the systems, our work is most closely related to Weise et al. [36], which

uses RGBD images from a Kinect and a template, along with a set of predefined blend

shape models, to track facial performances over time. Our system shares a similar

perspective as theirs because both are targeting low-cost and portable facial capture

accessible to random users. Our goal, however, is different from theirs in that we focus

on authentic reconstruction of 3D facial performances while they are mainly focused

on performance-based avatar animation and control. Our method for facial capture

is also distinct from theirs. Their approach utilizes a set of predefined blend shape

models and closest points measurement to sequentially track facial performances in

a Maximum A Posteriori(MAP) framework. Our approach does not require any

3D facial model priors. Our facial capture builds on model-based depth flow that

iteratively registers a template face model with observed facial data in a single depth

image. In addition, our system automatically locates important facial features in
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a single RGBD image and uses them to initialize and guide our facial registration

process.

2.2 Overview

Our system acquires high-quality 3D facial models using a single kinect camera.

We choose a Kinect for facial performance capture because it is low cost, portable,

and non-intrusive. A Kinect can simultaneously capture depth maps with a reso-

lution of 320 × 240 and color images with a resolution of 640 × 480 at 30 frames

per second based on infrared projection. Our facial modeling process leverages facial

detection and nonrigid facial registration for automatic 3D facial modeling. In the

following, we highlight the issues that are critical for the success of this endeavor and

summarize our approach for addressing them.

We start the process by automatically identifying important facial features such

as nose tip, eye and mouth corners in a single RGBD image (see Figure 2.2(d)).

The problem is challenging because the algorithm needs to be robust to variation

in human subjects, head movements, facial expressions, and illumination conditions.

We formulate feature detection as a per-pixel classification problem and apply ran-

domized trees to associate each pixel with probability scores of being a particular

feature. The detected features are often noisy and frequently corrupted by outliers

due to classification errors. To handle this challenge, we robustly search closest

examples in a training set of labeled images, where all the key facial features are

labeled, and remove misclassified features that are inconsistent with the closest ex-

ample. In the final step, we refine feature locations by utilizing active appearance

models (AAM) and 2D facial priors embedded in K closest examples of detection

features.

The next challenge is how to accurately reconstruct 3D facial expression from a
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single RGBD image. We model nonrigid facial deformation using embedded defor-

mation [33] and this allows us to constrain the solution to be in a reduced subspace.

We introduce a model-based depth flow algorithm to incrementally deform a face

template to match observed depth data via linear system solvers. In addition, we

incorporate facial feature term and boundary constrain term into the registration

framework to improve the robustness and accuracy of our system.

We demonstrate the power and effectiveness of our 3D facial modeling process

in two applications, including marker-less facial performance capture and photo-

realistic video editing. In particular, our video editing process allows the user to

edit underlying geometry and/or texture data of facial subjects in any frame across

the entire video sequence and propagating the effects of editing to the whole image

sequences. We describe these components in more detail in the next sections.

2.3 Robust Facial Feature Detection

This section introduces a robust feature detection algorithm that accurately lo-

cates a set of predefined facial features (e.g. nose tip and the mouth corners) in

a single RGBD image. The whole detection process consists of three main steps.

The system first detects feature locations by using local information of pixels. The

features from local detection process are often noisy and frequently corrupted by

outliers due to detection errors (see Figure 2.2(a)). We automatically remove mis-

classified pixels by robustly searching closest examples in a training image data set

(Figure 2.2(b) and (c)). In the final step, we refine feature locations and extract loca-

tions of secondary facial features by utilizing Active Appearance Models (AAMs) [24]

and 2D facial priors embedded in closest examples (Figure 2.2(d)). We discuss each

step in detail in the rest of this section.

16



(a) (b) (c) (d)

Figure 2.2: Robust detection of facial features: (a) candidate features after local
detection and multi-mode extraction; (b) detected features after outlier removal;
(c) closest examples of detected features found by robust KNN; (d) final detection
output.

2.3.1 Local Feature Detection

Our local feature detection process focuses on utilizing local information of a pixel

(i.e. an input patch centered at a pixel) to detect locations of facial features. We

formulate the local feature detection process as a per-pixel classification problem.

During training, we construct a set of N = 21 classes of keypoints. Each class

corresponds a prominent facial feature such as nose tip and left corner of the mouth.

Figure 2.3 shows sample RGBD images of training data set, and Figure 2.2(b) shows

the salient facial features considered by local detection process. At runtime, given

an input patch centered at a RGBD pixel x, we want to decide the likelihood that a

desired feature c ∈ {1, ..., N} is located at point x in the image.
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Figure 2.3: Sample training images with manually annotated facial features: (top)
RGB images; (bottom) depth images.

We use randomized decision trees [3, 20] to train a classifier for automatic labeling

of pixels. Randomized trees are an ensemble of L decision trees T1, ..., TL. Each node

in the tree contains a simple test that splits the space of data to be classified, in our

case the space of image patches. Each leaf contains an estimate based on training

data of the posterior distribution over the classes. A new patch is classified by

dropping it down the tree and performing an elementary test at each node that

sends it to one side or the other. When it reaches a leaf, it is assigned probabilities

of belonging to a class depending on the distribution stored in the leaf. Once the

trees T1, ..., TL are built, their responses are combined during classification to achieve

a better recognition rate than a single tree could.

Specifically, for an input patch centered at pixel x, each tree T1, ..., TL outputs

posterior probabilities Prλ(l,x)(c|x), where c is a label in C = {1, ..., N} and λ(l,x) is

the leaf of tree Tl reached by the patch x. The probability of the patch x associated
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with each feature c is the average of the class distributions over the leaf nodes reached

for all L trees:

Pr(c|x) =
1

L

∑
l=1,...,L

Prλ(l,x)(c|x) (2.1)

The probability score Pr(c|x) indicates the likelihood that the desired feature c is

located at point x in the image.

In our application, the tests performed at the nodes are simple binary tests based

on simple functions of raw pixels taken in the neighborhood of the classification pixel.

Our feature function calculates the difference of depth or intensity values of a pair of

pixels taken in the neighborhood of the classification pixel. We normalize the offset

of each depth pixel by its depth value to ensure the features are depth invariant. If

the value of a splitting function is larger than a threshold, go to the left node and

otherwise go to the right node. The choice of which pair of pixels and which type of

pixels (depth or color) to be selected as well as the optimal threshold for splitting the

node is automatically determined by maximizing the information gain for particular

features during the training phase.

Our next task is to infer feature locations from their probability maps in the

whole detection region (or in some smaller region around the face as inferred from

an earlier face detection step). One way to achieve this is to extract the location of

the highest detector score. In practice, no detector is perfect, so the correct location

will not always be at the location with the highest detector score. Instead of choosing

feature locations corresponding to the highest detection score, we extract a set of

candidate locations by detecting peaks of all the important modes in probability

maps and then rely on robust KNN search to remove misclassified features (see next

subsection). This idea is motivated by an observation on local feature detection

results. We have observed that actual locations of features are always correlated
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to the peaks of important modes. We adopt a simple yet very effective method

for detecting peaks of important modes. We first process the probability map by

marking all the pixels with a cutoff threshold. In particular, a pixel is marked if

its score is lower than a threshold. We search the highest detection score among all

the unmarked pixels to extract the peak of the first mode. Once the peak of the

first mode is extracted, we mark the corresponding pixel as well as its connected

regions via flood fill algorithm. We repeat the same process until all the pixels in

the detection window are marked.

2.3.2 Robust KNN Search

In the following, we describe how to use a training image data set to build global

detectors to better handle the cases when the local detectors are likely to go astray.

Due to classification errors, feature candidates inevitably contain “outlier” fea-

tures. Our idea is to robustly search closest examples in a training set of labeled

images, where all the key facial features are labeled, and remove misclassified fea-

tures that are inconsistent with the closest example. KNN search, however, requires

computing similarity transformations for aligning the detection image with every

training image. We formulate the problem as a robust fitting problem and apply

random sampling techniques to automatically detect and remove misclassified fea-

tures. We choose random sampling techniques because it allows for a robust estimate

of the similarity transformation even in the presence of a high percentage of misclas-

sified features.

We randomly sample a pair of feature points obtained from the local detection

process and compute similarity transformations T to align the detection image with

every database image m = 1, ...,M . We measure the similarity between detection

image and a database image by counting the number of “inlier” features. A feature
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c is considered as an “inlier” when the distance between a feature in detection image

T (xc) and a corresponding feature zc in a database image is smaller than a threshold.

Some features might have more than one candidate location caused by multiple modes

in probability maps. When this occurs, we choose the feature location corresponding

to the smallest feature distance T (xc)− ec.

We select the best sample r̃ by maximize the similarity between detection image

and its closest example:

{r̃, m̃} = arg max
r,m

S(m, r), (2.2)

where r and m are sample index and database image index, respectively. S(r,m) is

a similarity score between detection image and m-th database image for r-th sample.

Since our detection process only contains a small number of outliers, we do not

need a large number of samples. We find 15 samples are often sufficient to generate

satisfactory results for all the experiments in the system.

Meanwhile, we can find K closest examples of extracted “inlier” features based

on the following metric:

dist =
∑

c∈inlier
wc ‖T (xc)− zc‖2, (2.3)

where the function T is the 2D similarity transformation that aligns the detected fea-

tures xc with the corresponding database features zc. The weight wc = exp(−‖1−Pr(xc)‖2
2σ2 )

is the probability score of an “inlier” feature. A high probability score Pr(xc) results

in a low weight wc. In our experiment, σ is set to 0.3.

2.3.3 Feature Location Refinement

This step is necessary for high-quality 3D facial modeling because of two reasons.

First, even with outlier removal, results obtained from feature detection are still noisy.
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For important facial features such as nose tip and mouth corners, several pixels of

error might result in significant visual artifacts in output animation. Second, high-

quality 3D facial modeling often requires accurate location of entire facial regions

such as the lip and eyebrows. The set of facial features obtained from detection

process is often not sufficient to accurately model such important regions. We refine

the feature detection results by utilizing Active Appearance Models (AAM) [24] and

K closest example of detected features. Figure 2.2(b) and (d) shows the improvement

of feature locations as well as detected secondary facial features via the refinement

step.

We formulate the refinement process in an optimization framework. The whole

cost function consists of three terms:

E = w1EAAM + w2Edetection + w3Eprior, (2.4)

where the first term EAAM is Active Appearance Models (AAM) term, which measures

the inconsistency between detection image and the AAM model instance (for details,

refer to [24]). The second term is the detection term which penalizes the deviation

of new feature points from detected feature points from Section 2.3.2. The third

term is the prior term which ensures the new feature points are consistent with

2D facial priors embedded in K closest examples. In this work, we fit a Gaussian

prior based on K closest examples and obtain this term by applying the negative

log to the Gaussian distribution. The local priors avoid the problem of finding an

appropriate structure for global priors, which would necessarily be high-dimensional

and nonlinear.

We minimize the cost function by simultaneously optimizing the shape and ap-

pearance parameters of the AAM model instance, as well as the similarity trans-
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formation for aligning the the detection image with the AAM model instance. We

initialize the shape parameter using feature locations of the closest example. The

initialization of the similarity transformation is obtained from detection process via

KNN search. The appearance parameter is set to the base appearance image of

AAM models. We optimize the function in Lucas-Kanade registration framework

via iterative linear system solvers [24]. We experimentally set the weights of w1, w2

and w3 to 1, 2, and 0.001 respectively. The optimization typically converges in 10

iterations because of very good initializations. During the iterations, we gradually

decrease the weight for the second term (w2) from 2 to 0.0001 in order to ensure that

the final feature locations can achieve a better accuracy via AAM fitting.

2.4 Image-based Nonrigid Facial Registration

This section focuses on automatic facial modeling using a single RGBD image.

This is achieved by deforming a template mesh model, s0, to match depth/color image

data as well as facial features from Section 2.3. We obtain the template mesh model

s0 by scanning facial geometry of the subject under a neutral expression (Figure

2.4). We formulate the problem in a Lucas-Kanade image registration framework

and incrementally estimates both rigid transformations (ρ) and nonrigid deformation

(g) via linear system solvers.

We represent rigid transformations of face using a 6-by-1 vector ρ. We model

nonrigid deformation g using embedded deformation representation developed by

Sumner et al. [32]. Embedded deformation builds a space deformation represented

by a collection of affine transformations organized in a graph structure. One affine

transformation is associated with each node and induces a deformation on the nearby

space. The influence of nearby nodes is blended by the embedded deformation al-

gorithm in order to deform the vertices or the graph nodes themselves. We choose
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Figure 2.4: Initial template model obtained from a Minolta VIVID 910 laser scanner
under a neutral expression. (left) scan mesh; (middle) textured scan mesh; (right)
embedded deformation representation using 374 graph nodes represented by cubes.

embedded deformation because it allows us to model the deformation in a reduced

subspace, thereby significantly reducing the ambiguity for facial modeling.

In embedded deformation, the affine transformation for individual node is defined

by a 3-by-3 matrix Ai and a 3-by-1 translation vector ti. In this way, the collection

of all per-node affine transformations, denoted as g = {Ai, ti}i=1,...,M , expresses a

non-rigid deformation of the template mesh model in a reduced deformation space.

In our experiment, graph nodes are chosen by uniformly sampling vertices of the

template mesh model in the frontal facial region. We have found 300 graph nodes

are often sufficient to model facial details captured by a Kinect. Let q = [ρ,g] denote

the state of our modeling process. The 3D representation of our facial model can be

defined as s = s0 ⊕ q.

Let p̄ = [x̄, ȳ, z̄] and p = [x, y, z] be the local and global 3D coordinates of a point

located on the 3D mesh, respectively. Let x = [u, v] be the 2D coordinates of the

corresponding pixel in depth image. We model the mapping from local coordinates to

global coordinates using the forward kinematic function for mesh deformation: p =
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h(q;p0, s0), which computes the global position (p) of a surface point from the model

state (q) given the local coordinates (p0) of a surface point on the template mesh

(s0). The relationship between the global coordinates of a point and its corresponding

pixel on image plane is defined by a projection transformation x = f(p).

2.4.1 Objective Function

We adopt an “analysis-by-synthesis” strategy to measure how well the trans-

formed and deformed face model fits observed data. Our image-based nonrigid facial

registration process aims to minimize the following objective function:

min
q

Edata + α1Erot + α2Ereg, (2.5)

where the first term is the data fitting term that measures how well the reconstructed

facial model matches the observed data. The second term Erot ensures that local

graph nodes deform as rigidly as possible. The third term Ereg serves as a regularizer

for the deformation by indicating that the affine transformations of adjacent graph

nodes should agree with one another.

We define the data fitting term as a weighted combination of three terms:

αdepthEdepth + αfeatureEfeature + αboundaryEboundary, (2.6)

where the first term Edepth is depth image term which minimizes the difference be-

tween the observed and the rendered depth data. The second term Efeature is facial

feature term which ensures the synthesized facial features are consistent with de-

tected facial features in observed data. Figure 2.5 shows the results of using only

facial term, only depth image term, or the combination of the two terms. The

third term is boundary constraint term which stabilizes the registration process by
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(a) (b) (c) (d)

Figure 2.5: The importance of facial feature detection (on synthetic data): (a) ground
truth mesh; (b) reconstructed result using only facial feature term; (c) reconstructed
result using only depth image term; (d) final result.

penalizing the misalignments of boundary points between the “hypothesized” and

“observed” face models. In our experiment, we set α1, α2, αfeature, αdepth, αboundary

to 1.0, 0.5, 0.001, 0.1 and 5.

This requires minimizing a sum of squared nonlinear function values. Our idea is

to extend the Lucas-Kanade algorithm [4] to solve the above non-linear least squares

problem. Lucas-Kanade algorithm, which is a Gauss-Newton gradient descent non-

linear optimization algorithm, assumes that a current estimate of q is known and then

iteratively solves for increments to the parameters δq using linear system solvers.

2.4.1.1 Depth Image Term

This section introduces a model-based depth flow algorithm for incrementally

estimating rigid transformation (ρ) and nonrigid transformation (g) of the template

mesh (s0) to best match a single depth image D. Assume the movement (δp) between

the two frames to be small, the depth image constraint at D(x, t) is defined as follows:

D(x(p), t) + δz = D(x(p + δp), t+ 1). (2.7)
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Figure 2.6: Reparameterization of a 3D point produces a corresponding small change
along the depth axis.

When a 3D point (p) has a delta movement (δp) in 3D space, its projected pixel

x(p) on image plane will have the corresponding movement δx = (δu, δv). However,

unlike color image registration via optical flow, the depth value of a pixel is not

constant. Instead, it will produce a corresponding small change δz along the depth

axis (Figure 2.6). This is due to reparameterization of 3D point p on 2D image

space.

Similar to optical flow formulation, we approximate the right side of Equa-

tion (2.7) with a Taylor series expansion. We have

(
∂D

∂x

∂x

∂p
− ∂z

∂p
)δp +

∂D

∂t
= 0, (2.8)

where partial derivatives ∂D/∂x are gradients of the depth image at pixel x. The

derivatives ∂x/∂p can be evaluated by the projection function f. The temporal
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derivative ∂D/∂t simply measures the pixel difference of two depth images. The

partial derivatives ∂z
∂p is simply a row vector [0, 0, 1].

We adopt an “analysis-by-synthesis” strategy to incrementally register the tem-

plate mesh with observed depth image via depth flow. More specifically, we render

a depth image based on the current model state and estimate an optimal update of

the model state by minimizing the inconsistency between the observed and rendered

depth image. To register the template face with an observed depth image via depth

flow, we associate the delta movement of a point (δp) with the delta change of the

model state (δq):

δp =
∂h(q;p0, s0)

∂q
δq, (2.9)

where the vector-valued function h is the forward kinematics function for mesh de-

formation.

After combing Equation (2.8) with Equation (2.9) using chain rules, we have

(
∂D

∂x

∂x

∂p
− ∂z

∂p
)
∂h

∂q
δq +

∂D

∂t
= 0. (2.10)

The above equation shows how to optimally update the model state (δq) based

on partial derivatives with respect to the spatial and temporal coordinates of the

rendered depth image D(u, v). In model-based depth flow, we evaluate the spatial

derivative based on the rendered depth image. The temporal derivative is evaluated

by the difference between the observed depth image and rendered depth image. An

optimal update of the model state can be achieved by summing over the contributions

of individual depth pixels associated with the template face.

One remaining issue for the depth image term evaluation is to determine which

pixels in the “rendered” image should be included for evaluation. We stabilize the
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(a) (b) (c) (d)

Figure 2.7: The importance of facial feature detection: (a) reference image; (b) the
face template; (c) result without facial feature term; (d) result with facial feature
term.

model-based depth flow estimation process by excluding the pixels located on the

border of outer boundary of the face. Corresponding vertices on the template mesh

are automatically marked by back projecting the border pixels of the rendered depth

image. Similarly, we also remove the pixels that are close to the border of inner

boundary of the face, in particular the mouth and eyes.

2.4.1.2 Facial Feature Term

Depth data alone is often not sufficient to model accurate facial deformation be-

cause it does not take into account perceptually significant facial features such as

nose tip and mouth corners, thereby resulting in misalignments in those perceptu-

ally important facial regions. We address this issue by including the facial feature

term into the objective function. Figure 2.7 shows the importance of facial feature

term. In our implementation, we choose to define the facial feature term based on a

combination of 2D and 3D facial points obtained from detection process.

We annotate facial features on the template mesh model by identifying the local

coordinates (p̄i) of facial features on the template face. The facial feature term
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minimizes the inconsistency between rendered features and observed features in either

2D or 3D space:

∑
i

wi‖f(h(q; p̄i, s0))− xi‖2 + (1− wi)‖h(q; p̄i, s0)− pi‖2, (2.11)

where the vector xi and fi are 2D and 3D coordinates of the i-th detected facial

feature. The weight w is a binary value, which returns “1” if depth information

is missing, otherwise “0”. Note that only facial features around important regions,

including the mouth and nose, eyes, and eyebrows, are used for feature term eval-

uation. This is because facial features located on outer contour are often not very

stable.

2.4.1.3 Boundary Term

Depth data from a Kinect is often very noisy and frequently contains missing

data along the face boundary. This inevitably results in noisy geometry reconstruc-

tion around the face boundary. We introduce the boundary term to stabilize the

registration along the boundary.

To handle noisy depth data around the outer boundary of the face, we first

estimate the rigid-body transformation ρ that aligns the template mesh with observed

data (see Section 2.4.2). During nonrigid registration process, we stabilize the outer

boundary of the deforming face by penalizing the deviation from the transformed

template s0⊕ρ. Vertices on the outer boundary of the template/deforming mesh are

automatically marked by back projecting outer boundary pixels of the “rendered”

depth image. We define the boundary term in 3D position space by minimizing the

sum of the squares of the distances between the boundary vertices of the deforming

mesh (s0⊕ ρ⊕g) and their target 3D positions obtained from the transformed mesh

(s0 ⊕ ρ).
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2.4.2 Registration Optimization

Our 3D facial modeling requires minimizing a sum of squared nonlinear function

values defined in Equation (2.5). Our idea is to extend the Lucas-Kanade framework

[4] to solve the non-linear least squares problem. Lucas-Kanade algorithm [4], which

is a Gauss Newton gradient descent nonlinear optimization algorithm, assumes that

a current estimate of q is known and then iteratively solves for increments to the

parameters δq using linear system solvers. In our implementation, we start with the

template mesh and iteratively transform and deform the template mesh until the

change of the state q is smaller than a specified threshold.

We have observed that a direct estimation of rigid transformations and embedded

deformation is prone to local minima and often produces poor results. We thus

decouple rigid transformations from nonrigid deformation and solve them in two

sequential steps. In the first step, we drop off the boundary term from the objective

function defined in Equation (2.6) and estimate the rigid transformation ρ using

iterative linear solvers. We stabilize the rigid alignment by using a pre-segmented

template that excludes the chin region from the registration as this part of the

face typically exhibits the strongest nonrigid deformations. In the second step, we

keep the computed rigid transformation constant and iteratively estimate embedded

deformation g based on the objective function defined in Equation (2.5).

This requires minimizing a sum of squared nonlinear function values. Our idea is

to extend the Lucas-Kanade algorithm [4] to solve the above non-linear least squares

problem using iterative linear system solvers. In our implementation, we analytically

evaluate the Jacobian terms of the objective function. The fact that each step in the

registration algorithm can be executed in parallel allows implementing a fast solver

on modern graphics hardware. By using CUDA to implement our per-frame facial
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registration algorithm, the current system runs at an interactive frame rate on a

machine with Intel Core i7 3.40GHz CPU and GeForce GTX 580 graphics card.

2.5 Experimental Results and Evaluation

We have evaluated the effectiveness of our system, including both facial feature

detection and image-based nonrigid facial registration. We achieve interactive per-

formance (about 15 fps) by executing both facial detection and 3D reconstruction in

CUDA.

2.5.1 Evaluation on Facial Feature Detection

The training database for AAMs consists of 750 color images, each of which

was annotated manually with 78 facial features (Figure 2.3). In total, there are 45

subjects in the database under different head poses, expressions, illuminations and

skin colors. The database used for learning randomized trees is based on 470 RGBD

images recorded by a Kinect, including 10 subjects with different races and genders.

During capture, subjects were instructed to perform six basic expressions in frontal

and side views (left and right).

We evaluate the performance of facial detection process on six subjects performing

a wide range of facial expressions, which were not in the training database. The

whole testing data sets consist of six image sequences (in total, 5616 frames). We

measure the accuracy of facial detection by computing the root mean square error

(RMSE) between detected feature locations and ground truth locations. In our

test, we considered 21 facial features shown in Figure 2.2(b) for evaluation. We

excluded secondary facial features because even with manual labeling the ground

truth locations of secondary facial features are with large variance and less reliable.

Figure 2.8 shows the comparison results of three methods. We compare our

method against AAM registration and facial feature detection. Note that AAM
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registration often requires a good initialization for global alignment. In our experi-

ment, we initialized the shape parameter of AAMs with the mean shape; the global

transformation of AAMs was initialized using ground truth data. The vertical axis

shows the percentage of “perfectly” detected features. Since it is hard to accurately

quantify “perfectly” detected features due to inevitable errors caused by manual la-

beling of ground truth data, we show the percentage of “perfectly” detected features

against different thresholds. The experimental results clearly show the robustness

and accuracy of our detection method, as well as the necessity of combining detec-

tion method with AAMs. Table 2.1 shows the average detection accuracy of each

method.
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Figure 2.8: Comparisons between AAM with accurate global alignment, detection
with local prior optimization and our method.

2.5.2 Evaluation on Image-based Nonrigid Facial Registration

The evaluation consists of two parts. The first part compares our approach

with alternative methods. The second part validates the proposed approach by
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Table 2.1: Accuracy comparisons (pixel) between AAM with accurate global align-
ment, detection with local prior optimization and our method.

AAM Detection + Local Prior Our Method
1.3061±2.3922 2.7656± 1.3791 0.4337±0.5416

evaluating the importance of each key component of our process. We have evaluated

the effectiveness of our algorithm based on both synthetic and real data.

We evaluate our system on synthetic RGBD image data generated by high-fidelity

3D facial performance data captured by Huang and his colleagues [18]. The whole

testing sequence consists of 1388 frames. We first synthesize a sequence of color

and depth images based on a camera setting similar to what occurs in the real

world. The resolutions of image and depth data, therefore, are set to 640× 480 and

320×240, respectively, with 24-bit RGB color values and 13-bit integer depth values

in millimeters. The face models are placed at a distance to approximate real world

capturing scenarios. Figure 2.9 shows sample frames of the synthetic data. We then

apply our facial reconstruction process to reconstruct the facial performances across

the entire sequence. In this experiments, 236 graph nodes are used to model the

template mesh. Sample frames of our constructed results are shown in Figure 2.10

and Figure 2.11.

We test our algorithm as well as alternative methods on synthetic RGBD images

and obtain the quantitative error of the algorithm by comparing its reconstruction

data against ground truth data. In particular, we compute the average correspon-

dence/reconstruction error between our reconstructed models and the ground truth

data across the entire sequence. We evaluate the reconstruction error by measur-

ing the sum of distances between vertex position on the reconstruction mesh and

its corresponding position on the ground truth mesh. Note that we know the corre-
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spondences between the two meshes because the reconstruction meshes are deformed

from the first mesh of ground truth data.

Frame 0 Frame 38 Frame 136 Frame 482 Frame 567 Frame 618

Frame 679 Frame 795 Frame 907 Frame 975 Frame 1066 Frame 1200

Figure 2.9: Sample frames of the synthetic RGBD images from the data captured
by Huang and his colleagues [18] .
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Frame 0 Frame 38 Frame 136 Frame 482 Frame 567 Frame 618

Figure 2.10: Our reconstructed results on synthetic data: row (1) shows ground truth
facial performances; row (2) shows our reconstructed results; row (3) shows textured
result meshes; row (4) shows result meshes with chessboard pattern.
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Frame 679 Frame 795 Frame 907 Frame 975 Frame 1066 Frame 1200

Figure 2.11: Our reconstructed results on synthetic data (continued): row (1) shows
ground truth facial performances; row (2) shows our reconstructed results; row (3)
shows textured result meshes; row (4) shows result meshes with chessboard pattern.

We further do a real data evaluation by comparing against ground truth facial

data acquired by an optical motion capture system [26]. We placed 62 retro-reflective

markers (4 mm diameter hemispheres) on the subject’s face and set up a twelve-

camera Vicon motion capture system [26] to record dynamic facial movements at 240

frames per second acquisition rate. We synchronize a Kinect camera with the optical
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(a) (b) (c) (d)

Figure 2.12: Evaluation of real data with Vicon data: (a) markers on the subject;
(b) aligned markers on the observed data from Kinect; (c) corresponding marker
locations on the reconstructed model; (d) corresponding marker locations.

motion capture system to record the corresponding RGBD image data. The whole

test sequence consists of 838 frames corresponding a wide range of facial expressions.

We test our algorithm as well as alternative methods on recorded RGBD image data.

We use the 3D trajectories of 62 markers captured by Vicon as ground truth data

to evaluate the performance of the algorithm. The captured marker positions and

observed RGBD image data are from different coordinate systems and therefore we

need to transform them into the same coordinate system. We use the video images

from Kinect as a reference to manually label marker positions in Kinect coordinate

system and use them to estimate an optimal 4×4 transformation matrix to transform

markers from motion capture coordinate system to Kinect coordinate system. Figure

2.12 shows the alignment results.

2.5.2.1 Comparisons Against Alternative Methods

We have evaluated the performance of our system by comparing against alterna-

tive methods.

We quantitatively assess the quality of the captured motion by comparing with
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Table 2.2: Quantitative evaluation of our algorithm and nonrigid ICP registration
(in sequential tracking and per-frame registration) on ground truth data obtained by
Vicon system.

Our Method
(per-frame)

Nonrigid ICP
(temporal)

Nonrigid ICP
(per-frame)

x (2D image plane) 0.64997 pixel 2.2539 pixel 2.5890 pixel
y (2D image plane) 0.85933 pixel 4.5861 pixel 4.0202 pixel

x (3D space) 1.2112 mm 4.5118 mm 4.7829 mm
y (3D space) 1.5817 mm 8.7281 mm 7.5349 mm
z (3D space) 2.1866 mm 12.3468 mm 4.8383 mm

ground truth motion data captured with a full marker set in a twelve-camera Vicon

system [26]. The average reconstruction error, which is computed as average 3D

marker position discrepancy between the reconstructed facial models and the ground

truth mocap data, was reported in Table 2.2. The computed quantitative errors

provide us an upper bound on the actual errors because of reconstruction errors

from the Vicon mocap system and imperfect alignments of the Vicon markers with

the Kinect data. Note that we attached the mocap markers on the subject’s face,

which makes the markers deviate from the actual surface of the face.

We compared our method against non-rigid ICP method on ground truth data

obtained from Vicon system. The nonrigid ICP process is similar to [21]. Both

our method and nonrigid ICP are built on embedded deformation with the same

settings. The only difference is the way to define the data term (i.e. Edata in

Equation (2.5)). Nonrigid ICP process estimates both rigid transformations and

embedded deformation with standard iterative closest point techniques (ICP). In

each iteration, the corresponding point of each vertex on the deforming mesh is

found by its closest point on the observed depth data. The corresponding points of

all the vertices are then used to update the deforming mesh. Both methods estimate
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a rigid transformation, followed by the non-rigid deformation. Figure 2.13 shows that

our system produces much better results than non-rigid ICP either with sequential

tracking or per-frame registration. This is because ICP is often sensitive to initial

values and prone to local minimum, particularly involving tracking high-dimensional

facial mesh model from noisy depth data.

In addition, we have compared our system against nonrigid ICP registration on

synthetic data generated by high-quality facial performance data from Huang et

al. [18]. We compared them in two different ways: per-frame registration and se-

quential tracking. Sequential tracking incorporates temporal coherence into facial

reconstruction process. More specifically, we include a smoothness term into the

objective function to penalize the change of the reconstructed meshes in two consec-

utive frames. In addition, we utilize the result from previous frame to initialize the

current frame. As shown in Figure 2.14, our facial reconstruction produces more ac-

curate results over nonrigid ICP registration, with and without temporal coherence.

Sample frames with high errors are shown in Figure 2.15 and Figure 2.16.

We compare our results against Weise et al [36]. We downloaded their tracking

software “faceshift” [16]. We started their tracking process by building a personal

profile using their system. More specifically, we instructed the user to sit in front of

the Kinect camera and recorded a small number of facial expressions to retarget a set

of predefined blendshape models to the user. With retargetted blendshape models,

we can use their software to sequentially track the facial expression of the user.

The accompanying video clearly shows our system produces much more accurate

results than their system. Figure 2.17 clearly shows our system produces much more

accurate results than their system.

We evaluate the performance of our system by doing a side-by-side comparison

against Microsoft Kinect facial SDK. Kinect facial SDK tracks a number of facial
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Figure 2.13: Comparison against nonrigid ICP registration techniques in per-frame
registration and sequential tracking. Results are compared with ground truth motion
data captured with a full marker set in a twelve-camera Vicon system [18]. Green dots
denote the corresponding marker locations on the meshes, and the red lines visualize
the distance to the aligned Vicon markers. Row (1) shows the reference images and
the aligned Vicon markers, row (2) shows the results of nonrigid ICP registration
in per-frame registration, row (3) shows the results of nonrigid ICP registration in
sequential tracking, , and row (4) shows our results in per-frame registration.
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Figure 2.14: Average correspondence/reconstruction errors across the entire sequence
for nonrigid ICP registration and our method with/without temporal coherence. The
evaluation is based on synthetic RGBD image data.

features (about 100 features) from RGBD image data and combine the tracked facial

features with a small number of predefined blendshape models in the Candide3 model,

including six AUs (Animation Units) and 11 SUs (Shape Units), to reconstruct facial

deformation. Figure 2.17 shows our system produces much better results. This is

because we model detailed deformation of the whole face using both facial features

and per-pixel depth information.

2.5.2.2 Evaluation on Facial Reconstruction Process

We have evaluated the performance of our tracking process by dropping off each

term of the cost function described in Equation 2.6. The evaluation is based on

synthetic RGBD data. The average correspondence error of our result to the ground

truth meshes is 0.68 mm.

We compare results obtained by the facial registration process with or without
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the facial feature term. The accompanying video shows that tracking without the

facial feature term often results in misalignments of perceptually important facial

features. More importantly, when the facial performances are very different or far

away from the template model, the optimization often gets stuck in local minima,

thereby producing inaccurate results. With the facial feature term, the algorithm

can accurately reconstruct facial performances across the entire sequence. Without

the facial feature term, the average correspondence/reconstruction error is increased

from 0.68 mm per vertex to 1.7123 mm per vertex. Results are shown in Figure 2.18.

Our evaluation shows that incorporating the depth image term into the objective

function can significantly improve the reconstruction accuracy. This is because the

facial feature term only constrains facial deformation at locations of a sparse set of

facial features rather than detailed per-vertex constraints. With the depth image

term, the average error of our facial reconstruction process is reduced from 5.4621

mm per vertex to 0.68 mm per vertex. Results are shown in Figure 2.18.

We compare results of with and without the boundary term on both synthetic

data and real data. The result shows that adding the boundary term does stabilize

the facial deformation along the border of face boundary, which is more obvious in

the real data. Results are shown in Figure 2.18.

2.6 Applications

This section discusses the applications of per-frame facial registration algorithm

to high-quality 3D facial performance capture and photo-realistic facial video editing.

We have tested our system on acquiring 3D facial performances of four subjects.

We use a Minolta VIVID 910 laser scanner to record high resolution static facial

geometry of an actor as the template mesh. In our implementation, we utilize the

temporal coherence to speed up the facial tracking process. The algorithm usually
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converges quickly as we initialize the solution using the result from the previous

frames. Figure 2.19 shows some performance capture results.

Our reconstructed 3D facial models allow the user to edit underlying geometry

and/or texture data of facial subjects at any frame across the entire video sequence

and propagate the effects of editing to the whole sequence. Figure 2.20 shows our

video editing results on several facial performance sequences. For one sequence, we

edit its geometry of neutral expression and transfer the reconstructed deformation

data to animate the a different geometry model via deformation transfer technique

described by [31]. We further texture map the registered image at each frame on

the deformed target model throughout the whole motion (Figure 2.21). We also edit

the registered texture at the first image by adding a beard onto the texture image;

and the texture editing result is then automatically propagated to every frame of the

entire sequence, by utilizing the correspondences obtained from our reconstruction

facial data.

2.7 Conclusion and Future Work

We present an end-to-end system for acquiring 3D facial performances using a

single Kinect camera. The proposed system combines the power of automatic facial

feature detection and image-based nonrigid facial registration. Our results show that

the system can capture a variety of 3D facial performances using low-resolution image

and depth data obtained from a single Kinect camera. The combination of facial

feature detection and facial deformation registration makes our system capable of

capturing accurate 3D facial performance automatically. The two components also

benefit from each other. On the one hand, we can utilize facial feature detection

data to provide good initialization of the face pose and locations and utilize it as

effective constraints. On the other hand, the use of image registration reconstruct
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dense and consistent correspondences between meshes across frames. Therefore, our

reconstructed mesh sequence can be easily edited by the user or artists.

Our system is genera because it requires no prior 3D faces or blendshapes and

can easily be used for common users. All it needs is a template model, which in our

case, is a face scan under neutral expression. Building a template model directly by

using a single Kinect camera is also possible [36]. The template mesh doesn’t need to

have exactly the same position, orientation, or pose with the first frame. Our system

will register the template by doing rigid transformation and non-rigid deformation

to fit the mesh to the observed data.

Our system is Robust for its single-frame analysis framework. It does not suffer

from drifting error and also ensure the process is fully automatic, together with

our proposed robust facial detection method. Last but not the least, our result

is accurate because facial feature detection provides locations for significant facial

features to avoid misalignments, and our image-based registration method achieves

down to sub-pixel accuracy.

The quality of the reconstructed facial performances also depends on the quality

of the observed data. The depth images from Kinect camera is noisy, in which case

we adjust the weight of Ereg to ensure smooth and stable result of facial geometry,

which also constrain the freedom of deformation and the model may not fit the

data perfectly. One possibility is to filter the noise before fetching into the system.

Another solution is to encode temporal coherence to refine the geometry.

While this work focuses on capturing facial performance generally and robustly

with accurate rigid transformation and large-scale facial geometry, in the future we

are interested in reconstructing realistic dynamic wrinkles and fine-scale facial details.

45



Frame 0 Frame 38 Frame 136 Frame 482 Frame 567 Frame 618

Figure 2.15: Comparison against nonrigid ICP registration on synthetic data gener-
ated by high quality facial performance data from Huang et al. [18]. Row (1) shows
ground truth facial performances, row (2) shows ICP registration results, row (3)
shows correspondence error maps, row (4) shows our reconstruction results, and row
(5) shows correspondence error maps of our reconstruction results.
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Frame 679 Frame 795 Frame 907 Frame 975 Frame 1066 Frame 1200

Figure 2.16: Comparison against nonrigid ICP registration on synthetic data gen-
erated by high quality facial performance data from Huang et al. [18] (continued).
Row (1) shows ground truth facial performances, row (2) shows ICP registration
results, row (3) shows correspondence error maps, row (4) shows our reconstruction
results, and row (5) shows correspondence error maps of our reconstruction results.
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Figure 2.17: Comparisons against Weise et al. [36] and Microsoft Kinect Facial SDK
[25]. Row (1) shows the reference images, row (2) shows our results, row (3) shows
the results from Weise et al. [36], and row (4) shows the results from Microsoft
Kinect Facial SDK [25].
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Figure 2.18: Evaluation of our per-frame facial registration process by dropping off
each term on synthetic data. Row (1) shows ground truth mesh, row (2) shows
reconstructed result without depth term, row (3) shows reconstructed result without
facial feature term, row (4) shows reconstructed result without boundary term, and
row (5) shows our result.
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Figure 2.19: Results of our high-quality performance capture system. Rows (1)–(2),
rows (3)–(4), and rows (5)–(6) show the reference images and the captured facial
performances for Rock, Muscle, and Matt, respectively.
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Figure 2.20: Our video editing result of editing the geometry of the first frame
(demonstrated in first column) and apply deformation transformation to the rest
frames. Row (1) shows the reconstructed meshes, row (2) shows the input reference
images, row (3) shows the edited meshes after applying deformation transformation
from the reconstructed meshes, and row (4) shows the edited images.
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Figure 2.21: Our video editing result of adding a beard onto the texture image at the
first frame (demonstrated in first column). Row (1) shows the reference images, Row
(2) shows our results of the corresponding images, and row(3) shows the underlying
result meshes with chessboard pattern.
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3. ACQUIRING HIGH-QUALITY FACIAL PERFORMANCES USING A

SINGLE KINECT CAMERA

Capturing detailed 3D facial performances remains challenging because it requires

capturing spatial-temporal facial performances involving both large-scale facial de-

formations and fine-scale geometric details (e.g. wrinkles). We propose a markerless

performance capture framework for acquiring high-fidelity facial performances with

realistic dynamic wrinkles and fine-scale facial details (Figure 3.1). The key idea of

our acquisition system is to leverage image and depth data obtained by a single Kinect

camera and high-fidelity 3D face scans constructed by a high-resolution 3D scanning

system. We choose Kinect cameras for facial performance acquisition because they

are low-cost, portable, and require no markers or no controlled illumination.

Figure 3.1: Our system captures a variety of facial performances with a single Kinect
Camera: (top) image data; (bottom) the reconstructed facial performances.

We start the process by recording facial performances of an actor using a single
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Kinect camera. Similar to the facial performance capture system presented in Chap-

ter 2, which deforms a 3D template mesh model to match observed data at each

frame individually, here we track the whole sequence of image and depth data by

incorporating temporal coherence to ensure the reconstructed facial performance is

smooth. We then perform automatic facial analysis on the facial tracking data and

thereby obtain a minimal set of face scans required for accurate facial reconstruction.

We introduce a novel registration process that utilizes image and depth data across

the entire sequence to automatically build dense and consistent surface correspon-

dences between all the face scans. Lastly, we combine depth and image data with the

minimal set of registered face scans to reconstruct high-fidelity facial performances

in a keyframe interpolation framework.

Our high-fidelity facial performance acquisition is made possible by a number of

technical contributions:

• A novel facial tracking framework that automatically translates, rotates and

deforms a template mesh model to match image and depth data obtained from

a single Kinect camera.

• An automatic facial analysis technique that determines a minimal set of face

scans required for accurate facial performance reconstruction. This not only

improves the accuracy of 3D facial reconstruction but also significantly reduces

the time and effort required for 3D face scanning.

• A new registration process that automatically builds dense, consistent surface

correspondences across all the face scans using image and depth data obtained

from a Kinect camera. This is nontrivial because face scans often contain high

resolution facial details such as pores and wrinkles, and a small misalignment

between any two scans will result in unpleasant visual artifacts in the captured
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facial performance.

• Finally, an efficient facial reconstruction method that uses observed image and

depth data as well as a minimal set of registered face scans to accurately re-

construct facial performances in a keyframe interpolation framework.

3.1 Background

Our system acquires high-fidelity facial performance by leveraging image and

depth data captured by a single kinect camera and high-resolution face scans obtained

by 3D scanning technology. Therefore, we will focus our discussion on methods and

systems developed for acquiring 3D facial performances.

One appealing approach to capturing 3D dynamic faces is image-based facial cap-

ture, which deforms a 3D template mesh model to sequentially match input image

sequences [15, 14, 29]. Recent effort in this area has been focused on using prior mod-

els (e.g., [8, 35]) to reduce the ambiguity of image-based facial deformations. Because

these methods make use of generic templates or example-based priors models, the

reconstructed geometry and motion do not approach the quality of person-specific

captured data. More recent research has been focused on using multi-view stereo

reconstruction techniques to improve the resolution and details of captured facial ge-

ometry. For example, Bradley and his colleagues [10] reconstructed initial geometry

using multi-view stereo reconstruction and used it to capture 3D facial movement

by tracking the geometry and texture over time. While their approach produces

much higher resolution than previous passive methods, their results still lack such

details as pores and wrinkles. Beeler and his colleagues [5] presented an impressive

multi-view stereo reconstruction system for capturing the 3D geometry of a face in a

single shot and late extended it to acquiring dynamic facial expressions using multi-

ple synchronized cameras [6]. Their system produces fine-scale facial details but the
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geometry that is recovered is qualitative and not metrically correct.

An alternative approach for 3D facial capture is to use marker-based motion

capture systems [38, 17, 7], which robustly and accurately track a sparse set of facial

markers and use them to deform a pre-scanned 3D facial mesh. Recent technological

advances in motion capture equipment (e.g., [26]) have made it possible to acquire

3D motion data with stunningly high temporal resolution (up to 2000 Hz), but

due to their low spatial resolution (usually less than 200 markers) they are not

capable of capturing fine facial details such as wrinkles and bulges. Bickel and his

colleges [7] recently augmented the marker-based motion capture system with face

paints and two synchronized video cameras for tracking medium-scale expression

wrinkles. However, their approach, while powerful, is not appropriate for capturing

small wrinkles (e.g., nose wrinkles) and the fine-scale stretching and compression

targeted in this system. Most recently, Huang and his colleagues [18] proposed a

system that combines the power of marker based motion capture and 3D scanning

technology for acquiring fine-scale geometric details in facial performances. Our

system is also capable of capturing both large-scale and fine-scale facial deformation.

However, our system is based on image and depth data obtained from a single kinect

camera instead of marker-based motion capture and therefore is more portable and

far less expensive and intrusive.

Structured light systems are capable of capturing 3D models of dynamic faces in

real time [40, 23, 21]. One notable example is the spacetime facial capture system

developed by Zhang and his colleagues [40]. They captured 3D facial geometry and

texture over time and built the correspondences across all the facial geometries by

deforming a generic face template to fit the acquired depth data using optical flow

computed from image sequences. Ma and his colleagues [23] achieved high-resolution

facial reconstructions by interleaving structured light with spherical gradient pho-
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tometric stereo using the USC Light Stage. Recently, Li and his colleagues [21]

captured dynamic depth maps with their realtime structured light system and fit

a smooth template to the captured depth maps using embedded deformation tech-

niques [32]. More recently, Weise and his colleagues [36] presented a realtime facial

performance acquisition sysem that combines image and depth data obtained from a

Kinect camera with animation priors retargeted from prerecorded facial data. Their

system, while powerful for avatar animation and control, cannot capture fine-scale fa-

cial details such as wrinkles because it is based on example-based priors from generic

subjects.

A number of commercial systems have been developed for 3D facial performance

capture in the entertainment industry. For example, Borshukov and his colleagues [9]

developed the Universal Capture system to recreate actors for The Matrix Reloaded.

Their system deformed a laser-scanned 3D facial model by using optical flow fields

computed from multiple image sequences. Alexander and his colleagues [2] created

a photo realistic facial modeling and animation system in the Digital Emily Project.

Among all the systems, our approach is most similar to [2]. Both systems utilized

a number of preselected face scans for high-fidelity facial performance capture. Our

approach, however, is different in that we perform quantitative analysis on image and

depth data obtained by a single Kienct camera and use it to automatically select a

minimal set of facial expressions required for 3D facial performance capture, thereby

minimizing the effort and time involved in the scanning process. In addition, we

develop an efficient registration process that utilizes image and depth data as well as

facial tracking data to automatically build consistent dense surface correspondences

across all the scans, which significantly reduces the time and effort required to align

all the face scans for facial performance interpolations.
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3.2 Overview

Our system acquires high-fidelity facial performances with realistic dynamic wrin-

kles and fine-scale facial details. The key idea of our system is to leverage im-

age/depth data captured by a single Kinect camera and high-resolution 3D face

scans for 3D facial performance acquisition. We choose Microsoft Kinect cameras for

facial performance acquisition because it is low cost, portable and non-intrusive. It

simultaneously captures depth maps with a resolution of 320× 240 and color images

with a resolution of 640× 480 at 30 frames per second based on infrared projection.

We start the process by recording facial performances of an actor using a Mi-

crosoft Kinect camera. We track facial expressions across the entire sequence by

deforming a 3D template mesh model to match observed color and depth data. This

allows us to obtain both rigid transformations and large-scale facial deformations at

each frame. We then perform automatic facial analysis on the facial tracking data

and scan a minimal set of keyframe face shapes required for accurate facial recon-

struction. We build consistent dense surface correspondences between the keyframe

face scans using observed data at intermediate frames. Lastly, we combine observed

data with the minimal set of the registered face scans to reconstruct high-fidelity

facial performances in the keyframe interpolation framework.

We choose to formulate the facial acquisition and reconstruction process in a

keyframe interpolation framework because keyframe interpolation is one of the most

popular and successful animation techniques [27]. Mathematically, we model high-

fidelity facial performances zt, t = 1, ..., T as a weighted interpolation of high-resolution

keyframe face meshes bk, k = 1, ..., K:

st = (1− wt)bk + wtbk+1, tk ≤ t < tk+1, wt ≥ 0, (3.1)
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where the scalar wt represents the weight for interpolating two corresponding key

frames located at frame tk and tk+1. One major benefit of this representation is to

decouple spatial details bk, k = 1, ..., K from temporal details wt, t = 1, ..., T . This

allows us to obtain high-resolution static facial geometry bk, k = 1, ..., K using 3D

scanning systems and model high-quality temporal details w(t), t = 1, ..., T using

color and depth data obtained from Kinect cameras.

One of the potential problems in using keyframe interpolations for facial modeling

and acquisition is that interpolation weights might not be sufficient to capture all the

facial details at intermediate frames, thereby requiring a large number of key frames

for interpolations. To address this challenge, we apply both rigid transformations

and nonrigid deformation to interpolated facial performances to model the residual

differences between keyframe interpolations and ground truth facial data. Our final

representation for 3D facial performances is therefore formulated as follows:

zt = ((1− wt)bk + wtbk+1)⊕ ρt ⊕ gt, tk ≤ t < tk+1, wt ≥ 0, (3.2)

where the vectors ρt and gt represent rigid transformations and nonrigid deformation

at frame t.

The key challenge for our process is how to accurately reconstruct interpolation

weights wt, rigid transformations ρt and nonrigid deformation gt from image and

depth data Ot obtained by the Kinect camera. In the following, we highlight the

issues that are critical for the success of this endeavor and summarize our approach

for addressing them.

The first challenge is to scan a minimal set of keyframe face scans bk, k = 1, ..., K

required for facial performance reconstruction. Minimizing the number of face scans

(K) is important because it reduces the time and effort spent on the scanning pro-
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cess. This problem, however, is challenging because ground truth facial performance

data zt, t = 1, ..., T are not available. To address this challenge, we propose an

efficient nonrigid registration algorithm to automatically track dynamic facial ex-

pressions across the entire sequence. We then introduce an automatic facial analysis

process that selects a minimal set of keyframe shapes required for accurate keyframe

reconstruction. We scan the 3D geometry of the selected facial shapes by asking the

actor to perform the same expressions as shown in the selected key frames. We also

register face scans to image and depth data at key frames, which is required by facial

performance interpolations.

Keyframe interpolations require building dense, consistent surface correspon-

dences across all the face scans bi, i = 1, ..., K. This task is challenging because

keyframe face scans often display extreme facial expressions and geometric details

which appear in one scan might disappear in another one. In addition, face scans

often contain high-resolution facial details such as pores and wrinkles. Even a small

misalignment will result in unpleasant visual artifacts in the reconstructed facial per-

formance. We propose a novel registration algorithm for aligning all the face scans.

Our idea is to utilize facial tracking results at intermediate frames to build dense

and consistent correspondences between keyframe shapes.

Our last challenge is how to combine image and depth data with registered

keyframe face scans to reconstruct the high-fidelity facial performances across the

entire sequence. We formulate the problem in an optimization framework by maxi-

mizing the consistency between the reconstructed facial performances zt, t = 1, ..., T

and observed data Ot. We present an efficient optimization process to estimate in-

terpolation weights, rigid transformations, and nonrigid deformation from observed

data. We describe these components in more detail in the following sections.
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3.3 Keyframe Extraction and Scanning

This section describes the process of constructing a minimal set of high-resolution

face scans for facial performance interpolations. Given a sequence of color and depth

images obtained from a Kinect camera, we first track 3D facial expressions by de-

forming a template face model to match observed data at each frame (Section 3.3.1).

We then select a minimal set of key shapes based on facial tracking results and use

them to obtain high-resolution face scans (Section 3.3.2). Lastly, we identify all the

key frames from the entire sequence and obtain high-resolution facial meshes by reg-

istering high-resolution face scans to observed color and depth images at each of key

frames (Section 3.3.3).

3.3.1 Template-based facial Tracking

Our system automatically tracks 3D dynamic facial expression by deforming a

template mesh model, s0, to match observed color and depth data at each frame,

Ot = [It, Dt], t = 1, ..., T . We obtain the template mesh model s0 by scanning

facial geometry of the subject under a neutral expression. The system sequentially

estimates both rigid transformations (ρ) and nonrigid deformation (g) at each frame

by registering deformed template meshes to observed data.

We model nonrigid deformation g using embedded deformation representation

developed by Sumner and his colleagues [32]. Embedded deformation builds a space

deformation represented by a collection of affine transformations organized in a graph

structure. One affine transformation is associated with each node and induces a

deformation on the nearby space. The influence of nearby nodes is blended by the

embedded deformation algorithm in order to deform the vertices or the graph nodes

themselves. We choose embedded deformation because it allows us to model the

deformation in a reduced subspace, thereby significantly reducing the ambiguity for
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facial tracking.

In embedded deformation, the affine transformation for individual node is defined

by a 3-by-3 matrix Ai and a 3-by-1 translation vector ti. In this way, the collection

of all per-node affine transformations, denoted as g = {Ai, ti}i=1,...,M , expresses a

non-rigid deformation of the template mesh model in a reduced deformation space.

In our experiment, graph nodes are chosen by uniformly sampling vertices of the

template mesh model in the frontal facial region. We have found 300 graph nodes

are often sufficient to model large-scale deformation of facial expressions.

We formulate the facial tracking process in a model-based registration framework

and adopt the “analysis-by-synthesis” strategy to sequentially register the template

mesh model to observed data. Let q = [ρ,g] denote the state of our tracking process.

The 3D representation of facial performances at frame t is thus defined as st = s0⊕qt.

We have

min
qt

αrotErot + αregEreg + M(Ot, s0 ⊕ qt), (3.3)

where the first term Erot ensures that local graph nodes deform as rigidly as possible.

The second term Ereg serves as a regularizer for the deformation by indicating that

the affine transformations of adjacent graph nodes should agree with one another.

For details of Erot and Ereg, please refer to [32]. The last term is the data fitting term

that measures how well the reconstructed facial performance matches the observed

data. In our experiment, we define the data fitting term M(O, s0) as a weighted

combination of image term, depth data and facial feature term:

αimgEimg + αdepthEdepth + αaamEaam, (3.4)

where Eimg, Edepth, and Eaam ensure the transformed template mesh is consistent
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with observed data, including both image and depth data, as well as important

facial features automatically extracted by Active Appearance Models (AAM) tech-

niques [13, 24]. In our experiment, we set αrot, αreg, αimg, αdepth, αaam to 1.0, 0.5,

0.001, 0.1 and 3.0.

The image term, Eimg, measures how well the reconstructed facial performances

match observed image data. Let p = [x; y; z] be the 3D coordinates of a point on the

reconstructed face mesh and x = [u; v] be the 2D coordinates of the corresponding

pixel on the image plane. We have

Eimg =
∑
‖Irender(x(p;q))− Iobserve‖2, (3.5)

where x(p;q) maps a 3D point p on the reconstructed facial mesh to a 2D pixel x in

the “rendered” image space. The reconstructed face mesh is specified by the tracking

state q, which includes both rigid transformations ρ and non-rigid deformation q.

Since our system runs in a sequential mode, the colors of rendered pixels can be

retrieved from registered images in a previous registered frame.

The depth term, Edepth, ensures that the reconstructed face mesh is consistent

with observed depth data D. We render the depth data using the reconstructed face

mesh and evaluate the difference between the rendered and observed depth data.

The cost function is defined as follows:

Edepth =
∑
‖Drender(x(p;q),q)−Dobserve‖2, (3.6)

where x(p;q) = (u, v)T is a column vector containing the pixel coordinates of “ren-

dered” depth images and is computed in the same way as the image term evaluation.

However, unlike the image term, pixel values Drender in the depth term are not fully
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dependent on pixel coordinates x(p;q) because they also directly vary with trans-

formations q. This is due to reparameterization of 3D depth data using 2D depth

images.

The feature term, Eaam, measures how well facial features in a rendered image

match facial features in the observed image. This term minimizes the sum of squared

distances between the rendered and observed features:

Eaam =
∑
i

‖x(q;pi)− fi‖2, (3.7)

where the vector fi are 2D coordinates of observed facial features, which are automat-

ically detected by Active Appearance Models (AAM) techniques [24]. The vector pi

are 3D coordinates of facial features on the template mesh model. We annotate facial

features on the template mesh model in advance. This allows us to automatically

locate facial features in the rendered images.

To ensure the reconstructed facial performance is smooth, we add an extra term,

Esmooth, to penalize the sudden changes of the tracking states between two consecu-

tive frames:

Esmooth = ‖qt − qt−1‖2, (3.8)

where qt and qt−1 represent tracking states in the current frame and previous frame,

respectively.

Reconstruction of facial meshes at each frame requires minimizing a sum of

squared nonlinear function values. Our solution is to extend the Lucas-Kanade al-

gorithm [4] to solve the non-linear least squares problem. Lucas-Kanade algorithm,

which is a Gauss Newton gradient descent non-linear optimization algorithm, as-

sumes that a current estimate of q is known and then iteratively solves for increments
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to the parameters δq using linear system solvers. In our implementation, we initialize

the current pose using the previous reconstructed pose and iteratively update q until

the change of the state q is smaller than a specified threshold. The algorithm usu-

ally converges within fifteen iterations as we initialize the solution using the previous

tracking poses.

In our experiments, we have observed that a direct estimation of rigid transfor-

mations and embedded deformation is prone to local minima and often produces

poor results. We thus decouple rigid transformations from nonrigid deformation and

solve them in two sequential steps. In the first step, we drop off Erot and Ereg from

the objective function and estimate the rigid transformation ρ using iterative linear

solvers. In the second step, we keep the estimated rigid transformation constant and

estimate the nonrigid transformation g iteratively based on the complete objective

function defined in Equation (3.4). We denote the estimated rigid transformation

and nonrigid deformation as ρ̃ and g̃, respectively.

3.3.2 Key Shape Selection and Scanning

We now discuss how to use facial tracking data, q̃t = [ρ̃t, q̃t], t = 1, ..., T , to select

a minimum set of face scans bk, k = 1, ...K for keyframe interpolations. This task

is nontrivial because it requires determining not only the minimal number of key

shapes (K) but also the corresponding key shapes (b1, ...,bK) for 3D scanning.

We formulate key shape selection as a data clustering problem and select key

shapes based on the centers of each cluster. The intuition here is that by cluster-

ing facial performances at all the frames and choosing a key shape in each cluster,

coverage of the entire range of motion is ensured. In our implementation, we choose

K-medoids techniques for data clustering because we want to ensure that cluster

centers are selected based on original frames instead of centroids of the frames. K-
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medoids is also more robust to noise and outliers as compared to standard K-means

clustering techniques because it minimizes a sum of general pairwise dissimilarities

instead of a sum of squared Euclidean distances.

We define the distance between two frames, e.g. frame i and frame j, as follows:

H(i, j) = α1Hdef (i, j) + α2Haam(i, j) + α3Himg(i, j), (3.9)

where the first term Hdef (i, j) measures the similarity of nonrigid deformation at

frame i and j. The nonrigid deformation at each frame is specified by embedded

deformation g̃ obtained from facial tracking process. Specifically, the function Hdef

evaluates the average vertex distance between the two deformed meshes, s0⊕ g̃i and

s0⊕ g̃j. The second term Haam(i, j) considers the average distance of corresponding

facial features on the deform meshes located at frame i and j. Similar to tracking

process, AAM features are used to evaluate this term. The third term Himg(i, j)

evaluates the average differences of the colors for corresponding vertices located on

the deformed meshes as frame i and j, where vertex colors are obtained by texturing

mapping the registered image data onto the deformed meshes. In our experiment,

the weights α1, α2 and α3 are set to 0.1, 0.001 and 3 respectively. Note that we

remove the effect of rigid transformations ρ̃ when evaluating all three terms.

One remaining issue is to determine a minimal number of key shapes (K) for 3D

scanning because clustering processes such as K-medoids often assume the number of

clusters is known in advance. We address this challenge by obtaining initial clusters

via K-medoids and recursively merging or splitting clusters until clustering errors

fall below a threshold. Two clusters are merged if their distance is smaller than the

threshold. A cluster is split when the clustering error is higher than the threshold.

This process continues recursively until no further splits or merges are possible. In
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Figure 3.2: Key shape extraction and key frame identification: (top) the blue and
red curve show the original and smoothed tracking errors across the entire sequence,
respectively. Note that the same key shapes might appear at different times and
be associated with different a number of key frames in the sequence. (bottom) the
whole sequence is then divided into multiple segments using all the identified key
frames. Facial performance reconstruction is achieved by keyframe interpolations
and refinement in each segment.

our implementation, initial clusters are obtained by applying K-medoids to a selected

set of input frames instead of all the input frames. The initial cluster number and

the threshold are experimentally set to 5 and 20. We limit the initial clusters to

extreme facial expressions because key frames/shapes are often corresponding to

extreme poses of the animation. The system automatically detects all extreme facial

expressions based on the tracking errors obtained from facial tracking process. To

achieve this, we smooth the entire tracking error curve and extract all local minima

or maxima of the curve1. Figure 3.2 shows the original and smoothed tracking error

curve as well as the locations of all the key shapes on the timeline via clustering

process. Figure 3.3 and Figure 3.4 show the grouped keyframes, while Figure 3.5

shows the final key shapes.

Given a minimal set of key shapes located at frames, t1, ..., tK , we can look up the

1The first and last frame of the input sequence are always included in the extreme facial expres-
sions set.
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Frame 0 Frame 119 Frame 214 Frame 333 Frame 412 Frame 487

1:670 1:820

Figure 3.3: Key frames that are grouped to the same cluster of frame 0.

corresponding images It1 , ..., ItK and use them as references to scan high-resolution

facial meshes b1, ...,bK . We use a Minolta VIVID 910 laser scanner to record high-

resolution static facial geometry of an actor (see Figure 3.6). During each scan,

VIVID 910 acquires a face mesh with 100k to 200k vertices in about 2.5 seconds and

achieves an accuracy of 0.008 mm on the x-y plane and 0.1 mm along the Z-axis.

The scanned meshes bk, k = 1, ..., K are high-resolution and display subtle spatial

details such as pores and wrinkles.

3.3.3 Keyframe Identification and Registration

To reconstruct facial performances using keyframe interpolations, we need to

identify the start and end key frames for every input frame. For nonrepetitive facial

performances, the scanned faces b1, ...,bK define all the key frames t1, ..., tK required

for interpolations. In practice, facial performances often contain repetitive facial

expressions and poses. As a result, the same key shapes might appear at different
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Frame 754 Frame 774

Figure 3.4: Key frames that are grouped to the same cluster of frame 754.

Frame 0 Frame 70 Frame 154 Frame 253 Frame 379

Frame 455 Frame 517 Frame 599 Frame 718 Frame 774

Figure 3.5: Final key shapes.
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(a) (b) (c)

Figure 3.6: Key shape scanning: (a) a reference facial expression selected by key
shape selection process; (b) scanning static facial geometry of an actor use a Minolta
VIVID 910 laser scanner; (c) the scanned high-resolution facial mesh.

times and be associated with different frames in the sequence. This section focuses

on how to identify all the key frames and how to register the scanned key shapes to

them.

Our idea is to utilize the clustering results to identify all the frames which are

associated with key frames and include them into the list of key frames for facial in-

terpolations. Specifically, we segment the whole sequence into multiple subsequences,

each of which consists of a window of frames assigned to the same cluster. For each

subsequence, we extract the frame corresponding to the smallest clustering error and

include it into key frames. Once we obtain all the key frames, we can use them to

divide the whole sequence into multiple segments (see Figure 3.2). For each segment,

we interpolate facial expressions at intermediate frames using key shapes associated

with the start and end frames of the segment.

Keyframe interpolation also requires registering face scans with observed data

at key frames. This registration process involves not only rigid transformations

between the two capturing systems but also non-rigid deformation caused by possible

differences between the “reference” expressions and the “performed” expressions. We
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solve the registration problem in a similar way as template-based facial registration

described in Section 3.3.1, except that we initialize the rigid transformations by

aligning AAM features on face scans with corresponding features at keyframe images.

3.4 Face Scans Registration

After registering face scans with image and depth data at every key frame, we

obtain a set of face scans required for keyframe interpolations. However, keyframe

interpolations require dense, consistent surface correspondences across all the scans.

This section describes a novel two-step registration algorithm that achieves this goal.

3.4.1 Mesh Registration and Resampling

Our goal herein is to build dense, consistent correspondences across all the face

scans bk, k = 1, ..., K. To achieve this goal, we select one of the face scans s0 as a

template mesh and deform the template mesh to precisely matches the face scans

bk. The deformed template meshes, denoted as dk, k = 1, ..., K, preserve all the fine

details in the face scans bk. However, unlike the target meshes bk, k = 1, ..., K, the

deformed meshes dk, k = 1, ..., K have the same topology as the template mesh s0

and therefore are amenable for keyframe interpolations. We call this process as mesh

resampling.

Mathematically, we obtain the resampled meshes dk by minimizing the following

objective function:

arg min
dk

w1dist
2(dk,bk) + w2‖L(vd)− L(vs0)‖2, (3.10)

where the first term measures how well vertices on the deformed template mesh dk

are mapped to the corresponding vertices on the target mesh bk. The second term

is the Laplacian term, which preserves the fine details of the original template mesh
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s0 and is mainly used to regularize the solution space. The operator L is the Laplace

operator of the mesh model [1, 30]. The weights w1 and w2 control the importance of

each term, respectively. Note that we factor out the rigid transformation of each scan

before we perform the large-scale mesh registration process. This process, however,

requires dense correspondences between the template mesh s0 and face scans bk

because the deformed template dk has the same topology as the template mesh s0.

So how can we build dense correspondences between the template mesh and

the face scans? Our solution is to register both the template mesh and face scans

with observed images at key frames. Note that we have already obtained dense

correspondences between the template mesh and observed images at each frame via

the template-based facial tracking process described in Section 3.3.1. And dense

correspondences between the face scan and the keyframe images can be obtained by

keyframe registration step described in Section 3.3.3. Specifically, for each vertex on

the template mesh s0, we project it onto the 2D image space to find a corresponding

pixel at a key frame tk, k = 1, ..., K. We then ray cast the pixel into 3D space to

find its corresponding point on the face scans bk, k = 1, ..., K. For vertices invisible

to the camera, we find the corresponding points between the two by searching the

closest points between the face scan bk and the deformed template s0⊕gtk obtained

from the template based facial tracking process.

To solve the optimization defined in Equation (3.10), we initialize the deformed

mesh dk by deforming the template mesh s0 to match corresponding 3D points

on the target mesh bk via Laplacian deformation techniques (see Figure 3.7(b)).

After that, we iteratively find the closest points between the deformed mesh dk

and the target mesh bk and use them to deform the template mesh with least-

squares techniques. We experimentally set the weights of w1 and w2 to 1 and 30,

respectively. The optimization typically converges in three iterations because of
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(a) (b) (c) (d)

Figure 3.7: Mesh registration deforms the template mesh to fit every face scan:
(a) the template mesh s0; (b) the initial deformed template mesh dk; (c) the final
deformed mesh dk; (d) the target mesh bk. Note that the final deformed mesh
dk preserves all the fine details in the target mesh bk while still having the same
topology as the template mesh s0.

very good initializations. During the iterations, we gradually decrease the weight

for the second term (w2) from 30, to 20, to 10, to 1 in order to ensure that the

final deformed mesh can precisely match the target mesh without triangle flipping

artifacts. Figure 3.7(c) and (d) show a side-by-side comparison between the final

deformed mesh and the target mesh.

3.4.2 Registration Refinement

Mesh registration and resampling ensures all the face scans are topologically

consistent. Meanwhile, we have built dense surface correspondences between all the

face scans. But the quality of mesh registration is highly dependent on the accuracy

of the template-based facial tracking process. A single template mesh, however, often

cannot be deformed to match fine-scale facial expressions such as wrinkles. This is

because geometric details such as wrinkles are expression dependent–the geometric

details that appear in one face scan might disappear in another one. As a result, mesh

registration and resampling often fails to register fine-scale geometric details on the
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Figure 3.8: Testing on synthetic data: (a) ground truth facial performances; (b) our
final facial reconstruction results; (c) the facial tracking results obtained from the
template-based facial tracking described in Section 3.3.1.

face scans, thereby producing unpleasant visual artifacts in keyframe interpolations.

We propose to improve facial tracking results by utilizing all the keyframe face scans

and then use the improved tracking results to refine mesh registration.

Based on all the key frames obtained from Section 3.3.3, we first divide the whole

sequence into multiple segments and then track facial expressions in each segment

using the start key frame of the segment. More specifically, for each segment, we

track facial expressions across the entire segment by deforming the start and end key

frames to match observed data at each frame. In addition, we deform the end key

frame to match observed data at each frame in reverse order.
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We now discuss how to refine mesh registration results using forward and back-

ward tracking results at each segment. We formulate the process as the following

per-vertex optimization problem:

min
d′

1,...,d
′
K

K∑
k=1

Nk∑
m=1

G(Ukm , Vkm ;d′k,d
′
km), d′k ∈ Surf(dk), (3.11)

where d′k represents the refined mesh for the k-th face scan dk. Two face scans

are neighbors if they are the start or end key frames of the same segment. d′km is

the m-th neighbor of the k-th face scan d′k and Nk is the total number of neighbors

for the k-th face scan dk. A face scan could have more than two neighbors because

facial performances might contain repetitive expressions. Note that the goal here is to

refine the correspondences across all the face scans rather than change the underlying

geometry and topology of the face scans. As a result, we keep the topology of the

original face scans dk and constrain the new vertices d′k to a point on a surface of

the old face scan dk: d′k ∈ Surf(dk).

Intuitively, the objective function G measures the alignment inconsistency be-

tween face scans and their neighbors. We use both forward and backward tracking

results, denoted as Ukm and Vkm , to evaluate the discrepancy between the k-th face

scan dk and its m-th neighbor dkm . Assume dk and dkm are the start and end key

frames of one segment, respectively. For a vertex p located on the surface of the start

key frame dk, we can utilize the forward tracking results to find its corresponding pix-

els on the 2D image space across the entire segment. Similarly, for the corresponding

vertex p′ on the surface of the end key frame dk, we can use the backward tracking

results to obtain its corresponding pixels on the 2D image space. The inconsistency

between the two face scans is therefore measured by the distance of corresponding

pixels across the entire segment.
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Given forward and backward tracking results obtained from keyframe based track-

ing, we solve the optimization described in Equation (3.4.2) iteratively with the over-

relaxing algorithm. We initialize each refined mesh with the face scans obtained from

large-scale mesh registration: d′k = dk, k = 1, ..., K. In each iteration, we sequen-

tially update all the face meshes d′k, k = 1, ..., K one by one. For each mesh d′k,

we update vertex positions of d′k by fixing all the other meshes and minimizing the

inconsistency between the current mesh d′k and its neighboring meshes:

min
d′

i

Nk∑
m=1

G(Ukm , Vkm ;d′k,d
′
km), d′k ∈ Surf(dk). (3.12)

Due to the topology consistency between the different face scans d′k, adjusting

vertex positions on one mesh changes the correspondences across all the meshes.

The algorithm converges quickly. One remaining issue is how to update the mesh

d′k by minimizing the inconsistency between the current mesh and its neighboring

meshes based on forward and backward tracking results.

We update the vertex positions of the current mesh with forward and backward

tracking results. For simplicity, we focus our discussion on updating the mesh align-

ment based on one single segment, including frames 1, ..., L. For each vertex v on the

current face mesh d′k as well as the corresponding vertex v′ on the neighboring mesh

d′km , we project them onto the 2D image space and obtain the corresponding pixel

coordinates x1, ...,xL and x′1, ...,x
′
L and obtain an offset vector δp = x′ − x on the

image space. We project the offset vector δp from the image space back to the mesh

surface to obtain the 3D offset vector δv. During the projection process, we ensure

the updated vertices are located on the original mesh dk (i.e. d′k ∈ Surf(dk)). In

our experiment, we adopt a weighted combination of 3D offset vectors in order to

sum the contributions of offset vectors computed from every frame. We also consider
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the visibility of each vertex in computing offset vector. When a vertex or its corre-

sponding vertex is not visible at a particular frame, its corresponding offset vector

from that frame is not computed.

We now can update the mesh by moving its vertices v to the new positions

v + δv. To avoid triangle flips, we update the vertex positions by constraining

the mesh update step with Laplacian deformation. We again solve a least-squares

Laplacian deformation problem. Thus, we generate the final mesh by solving the

following quadratic optimization problem:

argminv′‖v′ − v− δv‖2 + α‖Lv′ − Lv‖2, (3.13)

where v and v′ are vertex positions on the current mesh and the refined mesh,

respectively. L is the cotangent Laplacian matrix. We experimentally set the weight

α to 1.0.

3.5 Facial Performance Reconstruction

We now discuss how to combine image and depth data with registered keyframe

shapes to reconstruct facial performances across the entire sequence. Here we focus

our discussion on facial performance reconstruction in one segment because we apply

the same reconstruction process to each segment. Given the start and end key frames

(d′s and d′e) as well as observed data (Ot, t = 1, ..., L), our goal herein is to reconstruct

facial performances (mt, t = 1, ..., L) across the entire segment.

The key of our facial performance reconstruction process is to construct dynamic

template meshes for facial registration via keyframe interpolations: st = (1−wt)d′s+

wtd
′
e, t=1,...,L. Linear interpolations between the start and end key frames allow us to

preserve fine details captured in face scans. Similarly, we apply rigid transformations

to the dynamic templates to match observed image and depth data. The transformed
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dynamic template at an intermediate frame t is described as follows:

zt = ((1− wt)d′s + wtd
′
e)⊕ ρt, (3.14)

where zt represents the translated and rotated dynamic template at frame t and

ρt models rigid transformation of the dynamic templates. In our experiment, rigid

transformations are estimated by the template-based tracking process described in

Section 3.3.1. The next challenge is how to estimate interpolation weights wt from

observed image and depth data Ot.

We formulate this as an optimization problem by minimizing the inconsistency

between the transformed dynamic templates and observed data:

w̃t = arg min{wt}t=1,...,L

∑
tM(Ot, zt) + α1‖wt − wt−1‖2,

s.t. w1 = 1, wL = 0,
(3.15)

where the first term is the data term that measures the inconsistency between the

facial performances zt and observed data Ot. The function D is evaluated in the

same way as the objective function used for facial tracking (see Equation (3.4)). The

second term is the smoothness terms that penalizes sudden changes of the dynamic

template meshes between two consecutive frames. We initialize weights by linear

interpolations of the start and end frames. We optimize weights via iterative linear

solvers, in a similar way as the template-based tracking process described in Section

3.3.1.

After we optimize the weights for each frame, we obtain the dynamic template

meshes required for deformation registration: s(t) = (1 − w̃t)d
′
s + w̃td

′
e. We can

then deform the dynamic template meshes to match observed data at each frame.

This requires solve the same optimization problem defined in Equation (3.4), except
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Table 3.1: Statistics of our data set.

Subject # of frames # of keyframes # of scans Mesh resolution

Darren 958 21 12 80K
Muscle 719 97 21 80K
Rock I 820 19 11 80K
Rock II 910 23 14 80K

that we now deform the dynamic template meshes st instead of a constant template

mesh s0 to match observed data. Again, we optimize nonrigid deformations at each

frame in the same way as facial tracking described in Section 3.3.1. We denote the

estimated deformation as g̃t, t = 1, ..., L.

Finally, we obtain 3D facial performances of each segment using the estimated

interpolation weights and deformation:

z̃t = ((1− w̃t)d′s + w̃td
′
e)⊕ ρ̃t ⊕ g̃t, (3.16)

where rigid transformations ρ̃t are obtained from the template-based facial tracking

described in Section 3.3.1. Face scans d′s and d′e are registered in Section 3.4. And

interpolation weights w̃t are computed by dynamic template estimate process and

deformation g̃t are constructed by deformation refinement step in this section.

3.6 Experimental Results

We have tested our system on acquiring 3D facial performances of three subjects.

Table 3.1 lists the parameters of all the data sets, including the number of frames

in each sequence, the number of keyframes used in performance reconstruction, the

number of face scans required for 3D reconstruction, and the resolution of the scanned

meshes.

We validate our facial data analysis method with one set of facial performance
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data captured by [18], which consists of 1388 frames. We first synthesize a sequence

of color and depth images based on a setting similar to a Kinect camera. The resolu-

tions of image and depth data, therefore, are 640 × 480 and 320 × 240, respectively.

We then apply our facial reconstruction process to reconstruct the facial perfor-

mances across the entire sequence. The result shows that the facial performances

reconstructed from low resolution depth and image data capture both large scale

deformations and fine-scale facial details in the ground truth facial performances. In

Figure 3.8, we also show comparisons of sample frames between the ground truth

data and our final reconstruction data, as well as the results obtained from the

template-based tracking process described in Section 3.3.1.

Our system can capture realistic dynamic wrinkles and fine-scale facial details.

Figure 3.9 shows several sample frames from our reconstruction results. We also

show a side-by-side comparison between the captured 3D facial performance and the

recorded image data. Our experimental results show that the reconstructed facial

performance is consistent with the recorded video data and well retains a lot of

spatial facial details captured by 3D scans.

We implemented our system in C++ on a PC with an Intel 3.4GHZ Core i7-2600K

CPU and 16GB memory. The template-based tracking code is implemented in CUDA

and executed on a GeForce GTX Graphics card. For a typical data set that contains

1000 frames and 12 face meshes with 80K vertices, our system takes about 1.0 hours

for facial data analysis, including template based tracking, key shape selection, and

keyframe identification, 0.5 hours for registering face scans to the observed data at

all the key frames, about 1.0 hours for face scan registrations, and about 1.0 hours

for facial performance reconstruction. After the data is acquired, the high-fidelity

face geometry for each frame can be rendered in real time.
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Figure 1

1

Figure 3.9: Sample frames from our reconstruction results. Rows (1)–(2) show the
captured facial performances for Rock. Rows (3)–(4) show the captured facial perfor-
mance for Darren. Rows (5)–(6) show the captured facial performances for Muscle.
For each result, the first row shows the reference images, while the second row shows
the reconstruction results.
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3.7 Conclusion and Discussion

We present an end-to-end system for acquiring high-fidelity 3D facial perfor-

mances using a single Kinect camera. The proposed system combines the power

of automatic facial tracking and 3D scanning. The quantitative analysis of image

and depth data allows us to obtain a minimal set of face scans required for spatial-

temporal facial performance reconstruction, thereby minimizing the time and effort

for 3D scanning. Our results show that the system can capture high-fidelity 3D fa-

cial performances using low-resolution image and depth data obtained from a single

Kinect camera.

Static high-resolution face scans and dynamic facial tracking data are comple-

mentary to each other as they capture different aspects of the facial performances.

In addition, they also benefit from each other. On the one hand, we can utilize facial

tracking data to automatically build dense and consistent correspondences between

the face scans. On the other hand, the use of multiple face scans for facial tracking

can significantly improve the accuracy of the facial tracking process.

The final quality of the reconstructed facial performances highly depends on both

spatial resolution of the face scans and quality of observed image and depth data.

The current system uses a Minolta VIVID 910 laser scanner to record high-resolution

static facial geometry of an actor. We believe the quality of the final results can be

further improved with a more accurate and higher resolution 3D scanning system

such as XYZ RGB systems [39] or Light Stage [2]. In addition, we expect the quality

of the tracking results, as well as the final reconstructed results, can be further

improved with a higher resolution depth/color camera.

The quality of the reconstructed facial performances also depends on the accuracy

of the face scans registration process because even a small misalignment will result in
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unpleasant visual artifacts in the captured facial performance. Our experiments show

that the current mesh registration algorithm, which minimizes the misalignments of

image and depth data across all the face scans, is effective for retaining fine-scale

geometric features obtained from high-resolution face scans. In the future, we will

continue to improve the accuracy of our mesh registration process. One possibility

is to extract geometric features from static face scans and integrate them into the

current registration framework.

While this work focuses on capturing high-fidelity facial performances with real-

istic dynamic wrinkles and fine-scale facial details, in the future we are interested in

modifying the captured facial data for new applications. For example, the captured

facial performance data can be interactively edited to generate new facial expres-

sions with direct manipulation interfaces or sketching interfaces [19], interpolated to

match low-dimensional signals extracted from vision-based interfaces [12], or retar-

geted to animate a different human avatar model [22]. Direct applications of previous

techniques might not work well for high-fidelity facial performance datasets because

they are mainly focused on prerecorded facial data without dynamic wrinkles or fine

scale facial details. One of the immediate directions for future work is, therefore, to

investigate new methods for editing, retargeting, interpolating, and understanding

high-fidelity facial data with 801 dynamic winkles and fine-scale facial details.

Believable facial animation also requires realistic movements of the eyes and lips

synchronized with expressive speech. The current system, however, is not suitable

for accurately capturing such eye and lip movements synchronized with expressive

speech. In the future, we are interested in extending the current system to capture

eye behavior and lip synchronization.
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4. CONCLUSION AND FUTURE WORK

Capturing quality facial performance for common users by only using a single low-

cost capturing device is challenging but will bring broad and potential impacts in

many fields. This dissertation presents two systems focusing on different aspects for

common users to choose from depending on their needs. The proposed two systems

could be used to reconstruct different levels of details of facial performances by using

a single Kinect camera only or combining with a 3D scanning system.

In chapter 2, we propose an end-to-end system for acquiring 3D facial perfor-

mances using a single Kinect camera. The proposed system is general for common

users for it requires no prior 3D database or statistic models, which is more expen-

sive to retrieve comparing to 2D RGBD priors. The performance capture system

combines the power of automatic facial feature detection and image-based nonrigid

facial registration, which makes it capable of capturing 3D facial performance auto-

matically, robustly, and accurately. Our results show that the system can capture

a variety of 3D facial performances using low-resolution image and depth data ob-

tained from a single Kinect camera. The two components actually benefit from each

other. We utilize facial feature detector to provide good initialization of the face pose

and locations, and moreover use the detected facial features as effective constraints

to guide through the registration process. However, facial features component itself

only gives us discrete and sparse information of facial movement; while the image

registration component reconstruct dense and consistent correspondences of result

meshes. Therefore, our reconstructed meshes are suitable of being used in many ap-

plications, such as video editing, sequential tracking, and model editing, etc. We also

demonstrate that our result is comparable to the commercial Vicon motion capture
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system, which uses 12 expensive cameras to track marker positions on the faces.

We further extend our performance capture system for acquiring high-fidelity

3D facial performances. The proposed system combines the power of automatic

facial tracking and 3D scanning. The goal here is to incorporate high-resolution 3D

facial priors into the system to reconstruct facial details with minimum extract user

efforts and also keep the possibility of using a single Kinect camera to reconstruct

facial performance (by reusing the face scans). Static high-resolution face scans

and dynamic facial tracking data are complementary to each other as they capture

different aspects of the facial performances. In addition, they also benefit from each

other. We utilize facial tracking data to automatically build dense and consistent

correspondences between the face scans. On the other hand, the use of multiple

face scans for facial tracking can significantly improve the accuracy of the facial

tracking process. The result meshes will fit better to the observed data comparing

to that by using a single deformable template model as proposed in Chapter 2. The

quantitative analysis of the observed data, as well as the tracking mesh sequence,

allow us to obtain a minimal set of face scans required for spatial-temporal facial

performance reconstruction, thereby minimizing the time and effort for 3D scanning.

The tracking process also provides good reference for registering face scans. Our

results show that the system can capture high-fidelity 3D facial performances using

low-resolution image and depth data obtained from a single Kinect camera.

The final quality of the reconstructed facial performances highly depends on both

the quality of observed data, as well as the spatial resolution of the face scans. We

expect the quality of the tracking results, as well as the final reconstructed results,

can be further improved with a higher resolution depth/color camera. Moreover,

the current system uses a Minolta VIVID 910 laser scanner to record high-resolution

static facial geometry of an actor, and we also use the face scan of the subject
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under neutral expression as the template. This ensures the reconstructed results

encodes personal static facial details, such as pores or scars. To fully get rid of using

a 3D scanning system in the performance capture system, one possible solution is

constructing an initial template directly from the point cloud that captured from

a Kinect camera [36]. A 3D template mesh could be reconstructed directly from a

single RGBD camera as well. By recording a sequence of RGBD images by asking

the subject to rotate the head in front of a kinect, we could automatically deform a

morphable model to fit the recorded RGBD images using an objective function similar

to our nonrigid registration step. Even though a template model can be reconstructed

directly by using a Kinect camera, we believe the quality of the final results can be

further improved with a more accurate and higher resolution 3D scanning system.

The quality of the reconstructed high-detailed facial performances depends on the

accuracy of the face scans registration process. A small misalignment will result in

visual artifacts in the captured facial performance. Our experiments show that the

current mesh registration algorithm, which minimizes the misalignments of image

and depth data across all the face scans, is effective for retaining fine-scale geometric

features obtained from high-resolution face scans. In the future, we will continue

to improve the accuracy of our mesh registration process. One possibility is to

extract geometric features from static face scans and integrate them into the current

registration framework. Another possible extension of this work is to design an

iterative learning and evaluation scheme, which evaluates the best quality of the

reconstruction result from the existing scan faces and gives suggestions of next few

possible scan faces and estimate the quality improvement to iteratively guide the

user to add face scans.

We are also interested in modifying the captured facial data for new applica-

tions. For example, the captured facial performance data can be interactively edited
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to generate new facial expressions with direct manipulation interfaces or sketching

interfaces [19], interpolated to match low-dimensional signals extracted from vision-

based interfaces [12], or retargeted to animate a different human avatar model [22].

Direct applications of previous techniques might not work well for high-fidelity facial

performance datasets because they are mainly focused on prerecorded facial data

without dynamic wrinkles or fine scale facial details. One of the immediate direc-

tions for future work is, therefore, to investigate new methods for editing, retargeting,

interpolating, and understanding high-fidelity facial data with dynamic winkles and

fine-scale facial details.

Our system does not capture the movements of eyes, inner mouth, and hair,

though they also play important role in realistic facial performance. The current

system, however, is not appropriate to capture accurate movements of those parts.

In the future, we are interest in extending the current system to capture eye behavior

and do lip movement synchronization with expressive speech.
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