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ABSTRACT 

Expert systems are computer systems which are capable of imitating the reasoning of a human expert within 

a particular area of knowledge. This reasoning is used to make decisions which solve problems in a particular 

domain. Applications of expert systems to industrial utility equipment have included fault detection and 

diagnosis (FDD), automated commissioning and optimisation. Substantial work has been carried out to date in 

the application of expert systems to the optimisation of HVAC and refrigeration equipment. This paper outlines 

other industrial technologies which display potential for deployment of remotely based expert systems tools for 

whole system improvement of operation. An analysis of the suitability of different expert system approaches 

toward identification of opportunities for improvement in each technology is detailed.  

1 INTRODUCTION 

Expert systems have been used in the past to 

solve problems for industrial utilities, with 

applications including automated fault detection and 

diagnosis (AFDD) (Bruton et al 2014), automated 

commissioning (Choinière 2008) and optimisation 

(Choinière 2008). 

For an expert system to fault find or optimise an 

item of equipment a multi stage process is involved 

comprising; data extraction from existing systems, 

fault finding or optimisation through rule based or 

model based approaches, and typically some 

feedback or fault correction control action.   

The range of Building Management Systems 

(BMS), Supervisory Control and Data Acquisition 

Systems (SCADA) and Programmable Logic 

Controllers (PLC) that exist in an industrial facility, 

coupled with the differing ability of each to archive 

data drawn from equipment, has led to the 

development of cloud-based data-extraction 

processes for analysis with expert systems (Bruton et 

al 2014). Remotely based systems present a number 

of key considerations including security of both 

facilities and data (Igure et al 2006). 

The key industrial utilities examined in this 

paper as showing potential for deployment of expert 

system tools are Boilers, HVAC, Air Compressors 

and Chillers. These technologies have been chosen as 

many of the opportunities for improvement identified 

by human experts in the course of review are generic 

and repeatable. Improvement of these utilities using 

expert system tools will lead to continued energy and 

maintenance savings, along with benefits regarding 

enhanced operation, control and diagnostics. 

Furthermore expert system tools lend themselves to 

measurement and verification of the energy 

performance of utility equipment. 

Section 2 of this paper presents some of the 

primary objectives which expert system 

implementations aim to achieve. This is followed by 

a discussion of previous applications of expert 

systems to industrial utilities and other relevant areas, 

categorised by the approach taken. The merits and 

drawbacks of each approach are discussed.  

Section 3 of this paper discusses various utilities 

in modern industry which are typically managed 

locally; presenting opportunities for improvement 

using expert system approaches. Some typical modes 

of equipment failure and/or increased energy 

consumption are presented, which show potential for 

improvement using an expert system implementation. 

Section 4 of this paper outlines future work to be 

carried out regarding the application of expert 

systems to industrial optimisation, and the benefits 

achievable by these applications. 

2 PREVIOUS APPLICATIONS OF EXPERT 

SYSTEMS TO INDUSTRIAL UTILITIES 

Expert System Applications: Objectives 

When an expert system is deployed with the aim 

of improving the operation of utility equipment, the 

ESL-IC-14-09-37

Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014



higher level focus and objective can take several 

forms. In this paper, the objectives referred to are 

AFDD, Commissioning, and Optimisation. 

AFDD is taken in the context of this paper to 

refer to the automatic recognition of when an issue of 

concern, or fault, is present in a physical system. 

AFDD furthermore identifies the cause which 

effected this fault condition. In (Bruton et al 2014), a 

rule based expert system tool for a HVAC system 

was developed and deployed in industry, with a key 

goal or focus being AFDD. 

Commissioning in the context of this paper is 

taken to refer to a process for achieving, verifying, 

and documenting that the performance of systems 

meets defined objectives and criteria (“The 

Commissioning Process” 2005). In (Pacas and 

Villwock 2008), a model based expert system using a 

frequency response analysis method was developed 

for a primary purpose of commissioning electrical 

drives.  

In the context of this paper, optimisation refers to 

achieving the goal of best possible operation of a 

system with respect to some defined criteria (e.g. 

minimal energy consumption), under a given set of 

circumstances or constraints. In (Zhang et al 2011), a 

decision support system (DSS), with a model based 

expert system reasoning mechanism was developed 

and trialled at an iron and steel enterprise. The 

objective of this system was to optimise the blend of 

ore for producing iron in blast furnaces, with the 

criteria to be optimised being lowest cost.  

Expert System Applications: Methods 

Industrial utilities have been shown in the past to 

be suitable for problem solving using expert systems. 

Methods used by expert system implementations 

include rule-based systems (Bruton et al 2014); 

model-based systems (Afgan et al 1998); neural 

networks (Palau et al 1999), artificial immune 

systems (Wojdan and Świrski 2007), and signed 

directional graphs (SDG) (Lee et al 1997). In other 

relevant areas requiring system improvement, 

methods used  have included Bayes belief networks 

(Lee 2001) (automotive FMEA). 

Rule-Based Systems. 

In (Bruton et al 2014), an AFDD tool was 

developed using a rule-based approach, with the 

intended goal of detecting faults and their causes in 

Air Handling Units (AHUs). This detection of faults 

allows for on-going commissioning of an AHU, 

removing potential degradation in performance. 

Degradation in the performance of an AHU can go 

un-noticed for significant periods of time, during 

which desired supply air conditions are maintained. 

Despite achieving these desired conditions, the 

conditions of operation may give rise to energy 

wastage. 

An example of this form of energy wastage 

which could occur in an AHU would be the 

continuous operation of a frost protection setting on a 

heating coil. Allowing excessively low temperature 

air to pass through the initial stage of an AHU can 

cause issues within the unit, including coil tube 

failure. To prevent this occurrence, the initial stage of 

an AHU often includes a frost heating coil, which 

serves to heat the incoming air to a specified 

minimum temperature. 

In practice, an operator may be unwilling to rely 

on the ability of the frost coil valve controller to react 

quickly enough to prevent excessively low 

temperature air entering the AHU. A means to 

remove this risk is to manually apply a minimum 

open setting to the frost coil valve. This manual 

setting is typically applied if the unit is to be 

unsupervised during a period of expected cold 

weather. As the operator may be responsible for 

many other aspects of plant operation, this manual 

setting may be forgotten about, and remain in place. 

While desired delivered air conditions are 

maintained, heating energy wastage takes place due 

to the continuous, potentially unnecessary (if no 

heating is required) operation of the frost coil. If the 

minimum open setting is allowed to remain during 

periods of hot weather, energy wastage may also 

occur at the cooling coil of the AHU, to counteract 

the frost coil. This degradation in AHU performance, 

caused by human error, can be flagged by an AFDD 

tool, removing energy wastage. 

The rule-based approach of (Bruton et al 2014) 

began with the usage of the 28 previously defined 

AHU performance assessment rules (APAR) (House 

et al 2001). These expert rules require 11 data 

measurements (e.g. supply air temperature, return air 

temperature) for the AHU to be assessed. By 

calculations on the retrieved data, the 28 rules are 

assessed as either True or False. If any rule is found 

to be True, a fault in operation is defined. This fault 

can then be attributed to a limited number of 

component failures. 

(Bruton et al 2014) expanded on the APAR 

rules, to incorporate additional data measurements 

where available, allow for alternative configurations 

of AHUs, and to calculate virtual data measurements 

in the case of poorly instrumented AHUs.  The output 

from the calculation of rules was altered from 

True/False to a numerical value, to allow for 

determination of the degree of a fault, and to predict 

potential future failures. 

The key advantage of rule-based expert systems 

is their efficiency when assessing a system which 

operates within a defined set of conditions (Angeli 
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2010). Software is commonly written using IF-

THEN-ELSE statements, which lend themselves to 

the implementation of defined rule sets. If the 

original system is required to be altered, e.g. to 

incorporate new rules, an expert working with a 

software engineer can relatively easily re-structure 

the expert system, provided software is structured 

and specified in accordance with normal procedures 

(e.g. Unified Modelling Language (UML). 

A drawback of rule-based expert systems is the 

potential for an incomplete rule base (Bernard 1988). 

A rule-based expert system is incapable of detecting 

where the rule base may be incomplete, or of noticing 

where the expert system itself is making errors in 

calculation, which could be learnt from (Widman and 

Loparo 1990). Novel situations cannot be dealt with 

effectively (Angeli 2010), and require modification to 

the original expert system. 

Rule-based systems have also been applied to 

steam boilers (Cantú-Ortiz and García-Espinosa 

1992), chillers (Dexter and Pakanen 2001), and air 

compressors (Batanov et al 1993).  

Model-Based Systems. 

In (Afgan et al 1998), an expert system was 

developed to detect tube leakage in a power plant 

boiler using a model-based approach. Tube leakage is 

cited as the most probable cause of power plant boiler 

failure. 

As the tubes of a boiler are located internally, 

they are inaccessible for inspection during normal 

operation. A power plant boiler is typically of water 

tube type. This configuration of boiler is comprised 

of vertical tubes containing water, adjacent to fuel 

burners. The heat applied by the fuel burners causes 

the water to boil, and steam to rise to a steam drum. 

Boiler tubes are subjected to extreme 

temperature gradients through their surfaces. While 

the materials used in construction are typically 

designed to allow for certain temperature gradients, 

inadequate operation and maintenance of the boiler 

can cause mechanical failure of the tubes. If a tube 

ruptures, the water/steam within will pass from the 

water side to the fire side of the boiler. This type of 

failure typically results in downtime, to allow for 

tube replacement. 

Boiler tube failure is typically detected at a stage 

when there is an imminent risk of an accident, and 

urgent action is required (Afgan et al 1998). If boiler 

tube failure can be detected in advance, the benefits 

will include minimising the damaging effects of 

leakage, and improved maintenance planning.  

(Afgan et al 1998) developed an expert system, 

which used heat flux measurements within the fire 

side of the boiler to detect when internal tube failure 

was present. When boiler tubes fail, the pattern of 

heat flux in the boiler will change, due to the lower 

temperature of the water/steam with respect to the 

normal fire side temperature. The value of heat flux 

at each point in the boiler relative to the value with 

no leak present (standard operation) was defined as 

the relative heat flux. If this relative heat flux was 

lower than a predetermined set point, it was 

indicative of a leak at that location. 

By arranging heat flux sensors in a grid on the 

boiler walls, a heat flux pattern could be obtained. 

Heat flux patterns were stored in the knowledge base 

of the expert system, using an object oriented 

structure. A leakage class was defined, with two 

major sub-classes: Case and Sensor. The Case class 

defined the location and intensity of the tube leakage. 

The Sensor class defined the pattern of readings of 

the heat flux sensors. 

By storing the information regarding heat flux 

patterns and leakages in the knowledge base, new 

instances of leakage could be attributed to a specific 

location and intensity. However, as the actual values 

defined in previous cases were usually different to 

those encountered in new instances, a fuzzification of 

the diagnostic variables drawn from sensor readings 

was required. This fuzzification was used to draw 

semantic variables from the diagnostic variables 

obtained from sensors, to allow inference of likely 

tube failure. 

In order to obtain a confidence level for the 

diagnostic variables with regard to the sensitivity in 

detecting a minimum level of leakage, three-

dimensional mathematical modelling was used. A 

previously defined model (Carvalho et al 1987) 

defined the expected heat flux in the boiler, and was 

compared to actual measurements taken in an 

operational boiler for validation of results (Coelho 

and Carvalho 1995). 

 While this particular expert system focussed on 

one single point of failure within a boiler, it 

demonstrates an advantage of model-based systems 

in its accuracy. The equations used in the model for 

sensitivity analysis regarding flow, combustion, and 

heat transfer allow confirmation that the expert 

system will detect a minimum level of leakage. The 

compilation of a detailed object oriented knowledge 

base of potential leakage locations and intensities will 

in theory encompass all potential future leakage 

incidents. 

A drawback of this expert system is the detailed 

level of calibration which is required for each 

application. The sensitivity analysis which was 

carried out to ensure the expert system could detect a 

minimum level of leakage required an extensive 

mathematical model of the boiler in question to be 

run. This would be difficult to repeat across varying 
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ranges of boilers, due to differing geometries and 

configurations of different boiler types. It would 

therefore not lend itself to a “plug-and-play” solution. 

The expert system, while useful for determining 

the location and intensity of tube failures, defines 

both location and intensity in the knowledge base and 

diagnostic variable as discrete parameters. Intensity is 

defined as a mass flow rate of steam of Low, 

Medium, or High (each with corresponding discrete 

values). Location is determined according to a 3*3 

grid on each wall of the boiler. While this is 

sufficient for leakage detection, it could be argued 

that the level of mathematical modelling required for 

the sensitivity analysis was extremely intensive for a 

relatively low resolution result. It is clear that due to 

expected deviations between model-predicted values 

and actual diagnostic variables, fuzzification of 

variables is required to obtain meaningful semantic 

results. 

(Soyguder and Alli 2009) used fuzzy modelling 

as one technique, in conjunction with artificial neural 

networks, in the development of an expert system for 

HVAC humidity and temperature control. 

(Grimmelius et al 1995) used a regression analysis 

model to predict healthy behaviour of a compression 

refrigeration plant, as part of a failure diagnosis 

expert system. This expert system again required 

fuzzification of variables to allow the recognition of 

failure modes. The more simplistic regression 

analysis modelling approach taken by (Grimmelius et 

al 1995) did not allow for complete modelling of the 

system, e.g. fault recognition during transient 

operation was not possible. Neural networks were 

used for system modelling of an air compressor in 

(Kim and James Li 1995). While not explicitly an 

expert system, the modelling obtained using neural 

networks allowed for fault diagnosis of common 

issues regarding the air compressor. 

Neural Networks. 

(Tassou and Grace 2005) developed an expert 

system for fault diagnosis of a refrigeration system, 

specifically regarding refrigerant leak detection. In 

this paper artificial neural networks (ANNs) were 

used to predict the expected values of key parameters 

pertaining to the chiller in question. 

In a refrigeration unit or chiller, maintaining the 

optimum level of refrigerant is crucial for effective 

system performance. Due to the refrigerant pressure 

being higher than atmospheric pressure, there is a 

potential for refrigerant to leak, reducing the level of 

refrigerant in the system. In addition, failure of key 

control instrumentation can cause refrigerant to build 

up and overcharge in the system. 

If refrigerant is lost from a chiller, the 

consequences include a reduction in coefficient of 

performance (COP), increased maintenance costs, 

and the potential for system failure (Tassou and 

Grace 2005). It is noted that leak detection systems 

are available which use refrigerant sensors, however 

they display a number of inherent drawbacks. A 

crucial drawback of refrigerant sensor based systems 

is their inability to detect slow refrigerant leaks, 

which is cited by (Tassou and Grace 2005) as the 

most common case of refrigerant loss. 

(Grimmelius et al 1995) were mentioned 

previously as developers of a model-based expert 

system for failure diagnosis in chillers. (Tassou and 

Grace 2005) cited model-based efforts such as this as 

being capable of accurate predictions of system 

performance. However, it is noted that this method 

requires a new approach for individual units, and is 

therefore difficult to propose on a broad scale. 

(Tassou and Grace 2005) used a test rig chiller 

which was instrumented to measure temperatures, 

pressures, and flows at key points in the refrigeration 

circuit (e.g. condenser inlet, evaporator outlet, etc.). 

The key parameters of coolant inlet temperatures to 

the evaporator and condenser were used as the 

primary input data to the expert system. A fault-free 

operation of the chiller was then performed to allow 

for training of the ANNs. Ten ANNs were used in the 

prediction module, correlating to ten prediction 

parameters. The ANNs were trained using the 

primary input parameters, and the observed 

conditions of ten parameters within the refrigeration 

system. Following this training, the ANNs were 

capable of predicting the expected fault-free values of 

the ten parameters throughout the chiller. 

Following this training period, the predicted 

values for the ten parameters were available in the 

knowledge base of the expert system for a range of 

operational coolant inlet temperatures. Comparing 

actual observed values during operation for the ten 

parameters, and those predicted by the ANNs, 

enabled the calculation of residuals. These residuals 

were assigned semantic values ranging from Low to 

High, and formed a residual pattern. 

The expert system included a rule set which was 

able to diagnose the condition of the refrigerant level 

based on the residual pattern observed. These rules 

allowed for detection of both under and over charge 

of refrigerant, which is not readily implemented 

using sensor based systems. 

It was recognised that during implementation of 

this expert system in the field, a training period for 

the ANNs during fault-free operation would be 

required. Since it may be unknown whether the 

chiller in question is indeed running in fault-free 

operation, a validation procedure was proposed. This 

concerned monitoring the degree of sub cooling and 

superheat of the refrigerant, and comparing these 

parameters to normal acceptable limits. 
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In this work, the expert system was concerned 

with FDD for refrigerant leakage only. Therefore the 

two critical predicted values were compressor 

discharge pressure and evaporator coolant 

temperature. It was acknowledged however that by 

developing rules which could detect other faults, 

based on the other key predicted parameters, a more 

comprehensive chiller FDD system could be 

developed. 

This expert system approach has the key 

advantage of being readily deployable across a large 

population of installed equipment in industry. Its 

ability to train itself to predict the expected 

parameters for an individual chiller, removes the 

issue of individuality between equipment types which 

arises when taking a model based approach. 

However, it is noted that this approach is 

extremely suitable for deployment on refrigeration 

equipment, but may not be so for other categories of 

industrial utility. The vapour compression 

refrigeration cycle is relatively generic between 

chillers, and it is likely that the required parameters 

for expert system training and operation would be 

present on the majority of installed equipment. 

Where the required instrumentation is not installed, 

pressure, temperature and flow measurement sensors 

are in general readily possible to be fitted after 

market.  

For other categories of industrial utility however, 

generic characteristics are not always the case. Air 

compressors, for example, have many different 

configurations (e.g. screw, reciprocating, centrifugal) 

each of which is significantly different in operation. 

A generic set of parameters which can be trained on, 

and then used for residual calculation with an ANN 

based expert system may therefore not be as readily 

repeatable across other categories of utility. For this 

reason, future FDD applications to chillers using 

ANNs may be restricted from generic rollouts due to 

different compressor types within the chiller. 

A neural network approach for evaluating 

biomass boiler behaviour, specifically with regard to 

fouling, was presented by (Romeo and Gareta 2006). 

This paper is indicative of a general trend for neural 

network applications to focus on one single aspect of 

utility operation, rather than a comprehensive system 

wide approach. 

An FDD system for an AHU was proposed using 

general regression neural networks in (Lee et al 

2004). This paper again used residuals generated with 

neural networks, and an expert rule set, to identify 

subsystem level faults in AHUs. The comprehensive 

rule set was able to identify faults including stuck 

coil valves, fouled coils, leaking valves, stuck 

dampers, and a decrease in fan performance. 

(Kim and James Li 1995) presented a fault 

diagnosis tool for screw compressors which used 

neural networks to generate indications of common 

compressor failures. While not explicitly an expert 

system, the neural network approach was used not 

only to diagnose faults, but was also able to indicate 

the severity of issues which arose. 

The approaches of expert system applications to 

industrial utilities discussed in this section are 

summarised in Table 1. 

Table 1: Summary of approaches of expert system 

applications to industrial utilities 

Industrial 

Utility 

Expert System Approach 

Rule 

Based 

Model 

Based 

Neural 

Networks 

Boilers (Cantú-

Ortiz and 

García-

Espinosa 

1992) 

(Afgan et al 

1998) 

(Romeo 

and 

Gareta 

2006) 

HVAC (Bruton 

et al 

2014) 

(Soyguder 

and Alli 

2009) 

(Lee et al 

2004) 

Air 

Compressors 

(Batanov 

et al 

1993) 

(Kim and 

James Li 

1995) 

(Kim and 

James Li 

1995) 

Chillers (Dexter 

and 

Pakanen 

2001) 

(Grimmelius 

et al 1995) 

(Tassou 

and 

Grace 

2005) 

3 INDUSTRIAL UTILITIES WITH POTENTIAL 

FOR IMPROVEMENT USING EXPERT 

SYSTEMS 

For the purposes of this paper, four utilities will 

be discussed, namely: Boilers, HVAC, Air 

Compressors and Chillers. These utilities are 

typically managed at site level, with operator 

supervision of building management systems (BMS), 

supervisory control and data acquisition systems 

(SCADA), or local control panels. 

While operator expertise is generally capable of 

reacting to faults and performing corrective 

measures, guidance using expert systems will 

improve operation and reduce downtime. The move 

toward condition based maintenance (CBM) of 

utilities from planned maintenance systems (PMS) 

can be assisted by expert systems detecting when 

utility components’ performance is below expected 

norms. 
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Boilers 

Steam systems are common across a vast range 

of industries, including food and beverage, oil 

refining, chemical production, pharmaceuticals, 

primary metal processing, and pulp and paper. 

Thirty-seven percent of fossil fuels burnt in industry 

is attributable to steam production (Einstein et al 

2001). 

Steam boilers can take various forms, with one 

of the most common types used in industry today 

being the package boiler. A package boiler is a boiler 

which is shipped to a facility pre-assembled, and only 

requires connections for fuel, electricity and feed 

water.  

Package boilers are often run with less than 

optimal operating characteristics. This may be due to 

equipment wear and tear, poor operational 

methodology, or a lack of maintenance. In general, 

poor operation of a boiler will result in a reduction in 

efficiency, increasing energy consumption. In drastic 

cases, poor boiler operation may result in equipment 

failure, and may pose a risk to site safety. 

Many of the issues which arise leading to 

ineffective boiler operation are common across 

industry. These issues are not typically picked up 

until a comprehensive energy review or audit takes 

place. The implementation of an expert system to 

highlight these issues before they impact on energy 

consumption would allow for increased energy 

efficiency and improved operation. 

As previously discussed in Section 2, boiler 

tubes can rupture or fail, causing leakage between the 

water side and fire side of the boiler. Operational 

means by which failure can occur include chemical 

corrosion, erosion, mechanical fatigue, and material 

failure (Bamrotwar and Deshpande 2014). Boiler 

tube failure can lead to boiler shut down, and serious 

safety concerns. The ability to detect and supply 

prognostics for boiler tube failures would reduce 

downtime and maintenance. 

Boiler blow down is typically used to control the 

level of dissolved solids within the boiler water. By 

steam generation in the boiler, the level of dissolved 

solids increases over time. Surface blow down 

operates by removing boiler water in order to achieve 

a desired level of total dissolved solids. However, in 

practice blow down is often observed to be excessive, 

representing an unnecessary loss of energy from the 

boiler. An expert system implementation could 

recognise excessive levels of blow down, and 

diagnose the reason, which could be related to feed 

water conductivity, or component issues. 

A boiler should ideally be fed with water that is 

free of oxygen. Oxygen present in boiler feed water 

accelerates the rate of corrosion of internal boiler 

water side surfaces. In practice, oxygen is typically 

removed using a mechanical de-aerator. This de-

aerator operates by sparging steam through the boiler 

feed water before it enters the feed tank. The steam 

supply is typically regulated to maintain a feed tank 

temperature of approx. 105 °C. In practice, boiler 

feed water may be at a lower temperature than this, 

but the operation of the steam boiler will remain as 

expected. Highlighting drops in de-aerator 

performance using an expert system implementation 

will reduce energy consumption and decrease 

corrosion within the boiler. 

Boilers are typically tuned at commissioning to 

have a certain level of excess O2 in the exhaust gases. 

This level, which varies according to the fuel burnt, is 

indicative of overall combustion efficiency. Over 

time, boiler fouling and deviations from original 

operating conditions can cause this excess O2 level to 

drift from its ideal level, causing a drop in efficiency. 

While automatic combustion tuning systems can 

modulate dampers in the boiler to maintain the 

desired O2 level, an expert system implementation 

could establish the root cause of a drift, allowing 

rectification in a way that does not impact on other 

operational characteristics of the boiler.  

These are a few characteristic issues which 

commonly arise during steam boiler operation. Due 

to the measurability of the parameters involved in 

each case, they lend themselves to being diagnosed 

using an expert system implementation. 

HVAC 

HVAC is a utility which is common across 

industrial, commercial, and office environments. In 

clean environments such as the pharmaceutical 

industry, HVAC can be critical to ensuring product 

quality and safety. In a report on reducing HVAC 

energy usage in industry (SEAI 2010), of the nine 

companies involved in the study, on average HVAC 

accounted for 35% of site electrical usage, and 60% 

of site thermal usage. This demonstrates that HVAC 

is a significant energy user in industry, and should be 

focussed on with regard to improving energy 

performance. (Pérez-Lombard et al 2008) cites 

HVAC as accounting for 10-20% of total energy 

consumption in developed countries. 

As with other industrial utilities, degradation in 

performance is often noted in HVAC systems. This 

degradation in performance invariably leads to 

increased energy consumption, which is typically 

rectified following individual health assessments of 

AHUs, to ensure individual components are operating 

as expected. Expert system approaches to HVAC 

have been able to diagnose areas of poor 

performance, and failed components, through 

intelligent assessment of key monitored parameters 

(Bruton et al 2014). 
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HVAC serves to provide air at a condition which 

is desirable for the space served. In order to achieve 

this condition, invariably some heating and/or 

cooling must take place within the AHU. This is 

typically achieved using heating and cooling coils, 

which are supplied with steam/hot water and chilled 

water. The valves which control the flow of the 

heating/cooling medium can over time deteriorate in 

condition, and may leak or become stuck open. 

Modulation of the amount of fresh air which is drawn 

by an AHU can also be used for temperature control. 

The quantity of fresh air used is typically regulated 

by modulating dampers, which over time can leak, 

allowing fresh air to be used when it is not required.  

If either of these leakage cases occurs, energy 

consumption of the AHU will unnecessarily increase, 

but the desired supply air condition may be 

maintained. FDD tools using an expert system 

approach can identify when valves or dampers leak 

or pass, and highlight this issue in order that 

increased energy consumption does not go unnoticed 

for extended periods. 

For quality requirements, air is normally filtered 

during conditioning. Over time, the filters used can 

become clogged, which increases the electrical load 

on a variable speed drive (VSD) fan drawing air into 

the AHU. At many facilities, filter replacement is 

carried out on a scheduled basis, based on expected 

service life of a filter. While this practice normally 

ensures that filters will be replaced before becoming 

clogged, it does not take into account the condition of 

the filter at the time of the replacement. Ambient air 

conditions can have an effect on how rapidly the 

filter clogs, and this can be detected by a differential 

pressure sensor across the filter. An expert system 

implementation could diagnose when a filter is 

clogged, and issue an alert for replacement. 

Diagnosis could be based on differential pressure 

measurement across the filter, or by electrically 

fingerprinting the AHU VSD fan to allow for 

detection of an increase in load from the relevant 

electrical distribution board. 

Air Compressors 

Compressed air is a common utility in many 

areas of industry, particularly in the manufacturing 

sector. It is recognised as an expensive form of 

energy delivery, as the majority of the energy 

required for generation is lost as heat of compression. 

Compressed air has been cited as accounting for 10% 

of industrial electricity usage in the EU (Saidur et al 

2010). 

Many different configurations of compressor are 

common in industry, the most common of which are 

centrifugal, screw, reciprocating and scroll. A 

common means for improved energy efficiency in 

compressed air plants is heat recovery, which can 

tend to take first priority in energy reviews. There are 

however, numerous operational improvements which 

can be undertaken to reduce the energy consumption 

of a compressed air system. 

In a typical compressed air system, accepted 

normal practice for compressed air leaks is 

approximately 10%. However in many facilities the 

level of leakage can account for 25% of compressor 

output (Kaya et al 2002). While many facilities 

undertake periodic compressed air leak detection 

exercises, these are typically schedule based. A 

comprehensive expert system implementation for a 

compressed air system would balance compressor 

output with system flows, and advise when leakage 

rates were too high and possible locations. This 

would enable leakage detection exercises to be 

carried out more efficiently, with efforts concentrated 

on areas with expected highest loss. 

Mechanical and/or electrical failure of 

compressor components is a key cause for deviations 

from normal operation, and increased maintenance 

requirements and energy consumption. It can often be 

difficult to determine without a complete overhaul of 

the compressor which is the exact point of failure 

(Chen and Ishiko 1990). An example given in 

(Batanov et al 1993) of a compressor failing to start 

has many possible causes, including damaged 

transformers, circuit breakers, and incorrectly 

configured control switches. The expert system 

described uses a set of 154 rules to effectively 

manage the maintenance requirements of an air 

compressor. 

Chillers 

Refrigeration systems in industry are 

widespread, with chilled water used for both process 

needs and HVAC cooling. Refrigeration systems can 

account for a large proportion of total energy usage in 

a facility, particularly in industries such as cold 

storage (90%), retail (70%) and ice cream 

manufacturing (70%) (“Refrigeration Systems” 

2011). 

Due to the varying types of compressor normally 

installed in a chiller, the configuration of a 

refrigeration system can vary as with compressors. A 

survey of common faults in chillers was carried out in 

(Comstock et al 2002), encompassing centrifugal and 

screw chillers (water and air cooled). The faults in 

this paper were categorised at system or subsystem 

level. 

As discussed previously, refrigerant leak from a 

chiller can have consequences impacting on service 

life of equipment and energy consumption. (Tassou 

and Grace 2005) proposed an expert system 

implementation which is able to identify refrigerant 

leakage in situations where normal, refrigerant sensor 

based leakage detection systems would not. As 

refrigerant leakage is a leading cause of chiller issues, 
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expert systems implementations should include 

allowance for leak detection. 

The fouling of a heat exchanger on the 

evaporator or condenser of a chiller will cause a 

reduction in heat transfer, giving a reduction in 

system COP. The ability to detect degradation in heat 

exchanger performance would allow for action to be 

taken to clean the heat exchangers, and highlight 

when water quality may be a concern. 

Slow, degradational faults on chillers such as 

these, as opposed to immediate mechanical or 

electrical failure of components, are more suited to 

detection and diagnosis using an expert system 

implementation. (Comstock et al 2002) cited this 

degradation category of faults as representative of 

42% of service calls made and 26% of service costs 

in a sample study of chiller services. The ability to 

provide prognostic information regarding these faults 

would assist in reducing downtime, and more 

effectively planning maintenance. In the case of 

faults such as fouled heat exchangers, the chiller may 

be able to provide the desired output, but will have a 

higher electrical power requirement. Detecting 

fouling and other energy impacting faults would 

reduce total energy usage. 

4 CONCLUSIONS AND FUTURE WORK 

This paper discussed three approaches taken 

when applying expert systems to the improvement of 

industrial utility equipment operation. It is concluded 

that each has its merits and drawbacks. 

Rule based systems are efficient when operating 

within a defined domain, but do not allow for novel 

situations not accounted for in the rule set. Model 

based systems address this issue by normally 

providing an all-encompassing physical model of a 

system. This however is more difficult to deploy 

across large ranges of industrial equipment, due to 

the individual nature of modelling required. Work 

carried out in the area of machine learning models for 

fault diagnosis (Murphey et al 2006) attempts to 

address this individuality issue by automatically 

learning about the system in question. 

Neural networks based systems attempt to 

address some of the issues presented by rule based 

and model based systems, as they are capable of 

characterising an individual piece of equipment using 

a training period and a defined list of variables. They 

do however need to be supported by a rule set to 

distinguish between residual patterns, which could 

present the same issue as with rule based systems. 

It is the intention of the authors to develop an 

expert system for industrial utility optimisation using 

as diverse an approach as possible, drawing from the 

benefits of all methods. It is acknowledged that many 

neural network applications focus on one single 

aspect of equipment operation, and it is envisaged 

that incorporating neural networks from previous 

works together into a more complete system would 

allow for whole system improvements in energy 

performance. It is also noted that the majority of 

expert system implementations focus on individual 

pieces of primary equipment as their highest level. 

Development of an expert system which takes into 

consideration parameters from associated auxiliaries 

of the primary equipment (e.g. considering the pumps 

associated with a chiller), might allow for whole 

facility improvements, and may highlight issues 

which impact on decisions made regarding 

improvements in the primary plant. 
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