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Stress driven nucleation of nanocrystals in amorphous alloys has been a subject of intensive debate in the past decade. It has long been
postulated that nanocrystals form succeeding the occurrence of shear bands in deformed amorphous alloys. In this study, we show, via
in situ nanoindentation of amorphous Cu44Zr44Al12 alloy in a transmission electron microscope that the formation of nanocrystals
occurred at an ultra-low stress of 0.25 GPa in the elastic deformation regime, accompanied by load-drops without evidence of shear
bands. Furthermore, during successive loading, repetitive nanocrystal nucleation events were observed, and the stress required for
nucleation kept on increasing to ∼0.54 GPa, implying the occurrence of a ‘hardening’ effect in the amorphous alloy. This study
provides direct evidence to advance our understanding on deformation-induced nanocrystallization of amorphous alloys.
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Highlights

• First in situ observation of ultra-low stress-induced
nanocrystallization of amorphous alloys without
evidence of shear bands.

• Successive loading leads to repetitive nucleation
events, but nucleation requires increasing stress,
i.e. a hardening effect is observed in deformed
amorphous alloys.

Since the discovery of amorphous Au–Si [1] in
1960, amorphous alloys (also referred to as metallic
glasses) have been investigated intensively.[2,3] Recent
reviews have covered glass-forming ability,[4] mechan-
ical properties,[5–7] and the microstructure–property
relationship.[8] Compared with crystalline materials,
amorphous alloys often exhibit close to theoretical
strength and a large elastic strain,[9,10] good corrosion
and wear resistance.[11,12] However, a major drawback

∗Corresponding authors. Emails: zhangx@tamu.edu; jiangjz@zju.edu.cn

of these alloys is their limited room temperature ductility
and toughness because of shear localization in discrete
shear bands.[13,14] There are two major atomic-scale
mechanisms in the literature on shear localization or shear
band formation: deformation-induced dilatation or free
volume production [15,16]; and local events of coop-
erative shearing of atomic clusters, referred to as shear
transformation zones (STZs).[17–19]

Numerous mechanisms have been proposed to
improve the ductility and toughness of amorphous alloys,
including shear band interaction and multiplication,[20–
22] nanocrystallization,[23] and shear band–nanocrystal
interaction.[24] Das et al.[25] showed substantial work
hardening, and compressive strain can be achieved in
amorphous CuZrAl compared with amorphous CuZr,
owing to nanocrystallization. Liu et al.[26] discovered
superplastic deformation in ZrCuNiAl bulk metallic
glass (BMG) under compression due to the introduction
of structural heterogeneity which prohibits catastrophic

© 2014 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the
named author(s) have been asserted.
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failure. Dalla Torre et al.[27] observed a sharp drop in vis-
cosity (shear softening) in deformed glassy ZrTiCuNiAl,
where the appearance of serrated plastic flow was
ascribed to the facilitation of additional flow in shear
bands.

As the formation of nanocrystals in or along shear
bands in amorphous alloys could potentially improve
their ductility, stress-induced nanocrystallization has
raised significant attention. Yoo et al.[28] observed
indentation-induced nanocrystals on Zr-based metallic
glasses by both Berkovich and cube-corner indenters.
Chen et al.[29] observed nanocrystals in shear bands
through a bending experiment, and ascribed nanocrystal-
lization to a large strain accumulated in shear bands. Kim
et al.[30] found (through post-indentation microscopy)
nanocrystals in shear bands surrounding ex situ indented
zone in Zr-based amorphous alloys and the authors
attributed nanocrystallization to flow dilatation that rad-
ically enhanced atomic diffusional mobility inside shear
bands. Jiang and Atzmon [31] reported that nanocrystals
can form in shear bands only on the compressive side but
not on the tensile side of bended amorphous alloys. Chen
et al.[32] explained the tension–compression asymmetry
of crystallization in amorphous alloys. These classical
post-deformation studies deem shear bands necessary (as
precondition) for nanocrystallization.

As most of the previous studies focused on post-
deformation microstructural analysis, some major issues
remain poorly understood. (1) What is the nucleation
stress for nanocrystallization? (2) Do nanocrystals form
preceding or succeeding the formation of shear bands?
(3) How do nanocrystals contribute to work harden-
ing of amorphous alloys? Techniques such as in situ
deformation in a transmission electron microscope have
recently been used to directly probe the structure–
property relationship in metallic materials.[33–37] In
situ tension studies on amorphous alloys revealed:
large elastic strain limit,[9] remarkable ductility,[38]
and nanocrystal-induced delocalization of shear bands
and blunting of crack tips.[24] In situ nanoindentation
studies on Zr-based metallic glass pillars revealed sig-
nificant load-drops (when applied stress exceeded yield
strength) accompanied by the formation of large shear
bands.[39,40]

In this study, in situ nanoindentation in a transmis-
sion electron microscope was conducted on a traditional
amorphous Cu44Zr44Al12 alloy which exhibited a large
compressive strain and work-hardening behavior in the
plastic regime.[25] Our in situ nanoindentation study on
sputtered amorphous films shows clear evidence of ultra-
low stress (∼15% of yield strength) induced nanocrystal-
lization accompanied by discrete load-drops. Shear bands
were not observed during indentation. Successive loading
of the films (at the same location) reveals that a substan-
tial increase in stress is necessary to continue triggering
nucleation of nanocrystals.

Thin films were deposited on Si wafers in a DC
magnetron sputtering system (DCMS, JZCK-400) by
using a crystalline Cu45Zr48Al7 target. The composition
of the films examined by electron-dispersive X-ray
spectroscopy in a field-emission scanning electron micro-
scope (FE-SEM, Hitachi S-4800) was Cu44Zr44Al12.
The amorphous microstructure was confirmed by X-ray
diffraction (XRD, PANalytical X’Pert PRO), and syn-
chrotron radiation XRD at beamline BL14B1 of the
Shanghai Synchrotron Radiation Facility at a wave-
length of 0.12398 nm. The glass transition temperature Tg
(716 K) and peak crystallization temperature Tx (795 K)
were measured by high-precision differential scanning
calorimetry (DSC) on a Netzsch DSC-404 instrument.
Metallic glass ribbons with the same composition were
fabricated by the melt-spinning technique and examined
in DSC for comparison. As shown in Supplementary
Figure S1, the metallic glass ribbons had similar Tg
(718 K) and slightly lower Tx (784 K). The film den-
sity was measured to be 6.652 g/cm3, nearly identical
to that of metallic glass ribbons. Indentation modulus
of the amorphous film measured by ex situ nanoinden-
tation with a Berkovich tip is 91 GPa, nearly identical
to that of bulk amorphous alloys with similar composi-
tions, 89 GPa in amorphous Cu46Zr46Al8 measured by
uniaxial tension studies.[41] In situ nanoindentation was
performed by using a transmission electron microscopy
(TEM) sample holder manufactured by NanoFactory
Inc. on a JEOL 2010 transmission electron microscope
operated at 200 kV with a point-to-point resolution of
0.23 nm.

During in situ nanoindentation, a spherical shape
nanoindenter tip was used with a tip radius of ∼1,500 nm.
Indentation stress was estimated using the Hertzian con-
tact estimation for the spherical tip [42] (see supplemen-
tary information for the calculation method in detail).
TEM specimen thickness at the edge was measured
to be ∼30 nm by using cross-section scanning elec-
tron microscopy (SEM) micrographs (Supplementary
Figure S2).

Evidence of in situ nanoindentation-induced nanocry-
stallization in amorphous Cu44Zr44Al12 film was observed
by comparing the microstructure of as-deposited and
indented films. The bright field (BF) TEM micrograph
and the selected area diffraction (SAD) pattern inserted
in Figure 1(a) shows that as-deposited film was fully
amorphous. Dark field (DF) TEM micrographs (by select-
ing different portions of the diffuse diffraction ring) in
(a-1) and (a-2) show no evidence of nanocrystals. After
indentation, the diffraction ring in Figure 1(b) remains
diffuse. However, DF-TEM micrographs taken from the
deformed specimen ((b-1) and (b-2)) reveal the formation
of numerous nanocrystals, ∼5 nm in diameter. The high-
resolution TEM (HRTEM) micrograph in Figure 1(c)
shows lattice fringes from several nanocrystals as delin-
eated by dotted lines in the deformed specimens. The
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Figure 1. Evidence of in situ nanoindentation-induced nanocrystallization in the amorphous Cu–Zr–Al film. (a) As-deposited film
was fully amorphous as shown in the BF TEM micrograph and confirmed by the inserted SAD pattern. The corresponding DF
TEM micrographs (a1 and a2) show no evidence of nanocrystals before indentation. (b) BF TEM micrograph shows the formation
of nanocrystals after in situ nanoindentation. The maximum applied stress was ∼0.6 GPa. The inserted SAD pattern did not show
noticeable variation in intensity. However, the corresponding DF-TEM micrographs (b1 and b2) clearly reveal the formation of
numerous nanocrystals in the deformed region. (c) HRTEM and corresponding FFT (c1) of the image show the evidence of
nanocrystals (outlined by dotted lines) with grain size of several nm on deformed surface.

fast Fourier transform (FFT) of the micrograph in (c-1)
reveals distinctive diffraction dots. No evidence of shear
bands was observed during or after indentation through
an extensive microscopy survey over a much broader area
of indented specimens.

During the first loading cycle (L1) in Figure 2(a),
the indentation stress–displacement curve reveals two
consecutive load-drop events (labeled as a-2 and a-3) at
∼0.25 GPa. The corresponding DF-TEM micrographs in
Figure 2(a2)–(a3) captured the formation of nanocrys-
tals during each load-drop (Supplementary video S1
and Figure S3(a)). The location of the indenter is
outlined in Figure 2(a1). A similar load-drop event
was observed during the second loading cycle (L2) in
Figure 2(b). The load-drop labeled as b-2 took place at
∼0.3 GPa, accompanied by the formation of nanocrys-
tals as shown in Figure 2(b-2) (Supplementary video S2
and Figure S3(b)). The concurrent load-drop and the for-
mation of nanocrystals were also confirmed by in situ
nanoindentation experiments under the BF-TEM mode
(Supplementary video S3 and Figure S4).

Successive loading was performed at the same
location up to 12 cycles. As shown in Figure 3(a),
load-drops were observed repetitively for the first nine
loading cycles, after which the load-drop phenomenon
was absent. The stress at the onset of the load-drop
increased gradually from 0.25 to 0.54 GPa (Figure 3(b)).
Meanwhile the displacement at the occurrence of the

load-drop increased rapidly during the first few initial
loading cycles, reached a plateau (∼40 nm) during the
fourth to eighth cycle, and increased again for the ninth
indentation cycle. To rule out the possibility that amor-
phous films were at very different glassy state compared
with casted metallic glasses, we performed numerous in
situ nanoindentation experiments on melt-spun metallic
glass ribbons of identical compositions. These studies
(Supplementary video S4, Figures S5 and S6) show
a very similar phenomenon: low stresses can trigger
nanocrystallization.

Load-drop events were frequently identified in our
in situ nanoindentation study. During deformation of
brittle BMG, shear softening (a sudden drop of vis-
cosity) typically occurs due to the existence of fine
shear bands (10 nm thick), and highly localized defor-
mation in shear bands may lead to consequent catas-
trophic failure of BMG.[13] Shear softening may be
explained by the excess free volume model [15,16] or
STZ mechanisms.[19] In ductile BMG, serrated plastic
flows observed on the compressive stress–strain curves
and during ex situ nanoindentation were attributed to
shear band formation and propagation events.[7] In the
current study, nanocrystals were formed during in situ
nanoindentation in the elastic deformation regime and
no shear bands were detected. The load-drop may be
associated with the local variation of specific density. It
is well adopted that amorphous alloys have excess free
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Figure 2. Stress–displacement plots recorded during (a) the first and (b) the second in situ nanoindentation cycles show multiple
load-drops at low stresses during loading process. (a1–a3) Snapshots captured in the DF TEM mode show the formation of two
different nanocrystals during the first loading cycle, corresponding to two distinct load-drop events labeled as a-2 and a-3 in (a) at
a stress level of ∼0.25 GPa (see Supplementary Figure S2(a) and video S1). (b1–b3) Similarly during the second loading cycle,
another nanocrystal was identified coinciding with the load-drop (b-2) as indicated in (b) when reaching a stress of ∼0.3 GPa.
These snapshots show simultaneous formation of nanocrystals and occurrence of load-drops (see Supplementary Figure S2(b) and
video S2).

volume and lower density than their crystalline counter-
parts. Thus, when atoms transform from short or medium
range order (amorphous state) to long range order (crys-
talline state) during indentation, a load-drop event is
captured.

Stress-induced nucleation of nanocrystals has pre-
viously been observed in amorphous alloys by ex situ
bending,[29] indentation,[10,30] and compression.[31]
Churyumov et al.[43] reported ex situ observation of
crystallization in Zr-based BMG subjected to cyclic
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Figure 3. Repetitive loading cycles (up to 12 cycles) to probe in situ nanoindentation-induced nanocrystallization. (a) Load-drop
was identified repetitively during the first nine loading cycles. After nine cycles, load-drops appeared absent in succeeding cycles.
(b) The stress at the onset of load-drop increased gradually from 0.25 to 0.54 GPa. The displacement at the occurrence of load-drop
increased gradually during the first few loading cycles, reached a plateau (∼40 nm), and eventually increased again to ∼55 nm.

stress, 1, 000 ± 200 MPa, slightly below the typical yield
strength, ∼1.6 GPa.[44] Crystallization was observed
after 100 cycles of fatigue tests. This observation
is consistent with previous ex situ studies of stress-
induced crystallization.[29,30] However, these obser-
vations mostly showed the coexistence of shear bands
and nanocrystallites. A recent in situ nanoindentation
study on pillars (∼200 nm in diameter) of the Cu–
Zr–Al amorphous alloy of nearly identical composition
(yield strength of 2 GPa) showed that load-drop occurred
at ∼1–2 GPa stress level, concurrently with the gen-
eration of shear off-sets (shear bands).[40] In another
in situ nanoindentation study of Zr-based metallic glass
pillars (200 nm in diameter), the stress for shear-band-
induced load-drop is also ∼2 GPa (comparable to yield
strength).[39] It has long been postulated that nanocrys-
tals form succeeding the formation of shear bands,
which contain significantly localized plastic deforma-
tion. Furthermore, the nucleation stress for nanocrystals
is unknown. Our study shows that the nucleation stress
of nanocrystals on virgin amorphous films is very low,
∼0.25 GPa, compared with the yield strength of typi-
cal Cu–Al–Zr amorphous alloys (∼1.8 GPa).[25] Thus,
nanocrystallization occurs during the elastic deforma-
tion regime, preceding the formation of shear bands, in
large contrast to the well-adopted concept. The low stress
required for nanocrystallization is to some degree con-
sistent with the observation of simple bending-induced
crystallization on the compressive side of metallic glass
ribbons.[29]

To understand the activation of nanocrystallization
under such a low nucleation stress, we start from the
thermodynamics point of view. Fernandez et al.[45] stud-
ied amorphous (Cu50Zr50)100−xAlx (x = 0–10 at%). The
crystallization temperature of these amorphous alloys
was estimated to be 750–800 K. The kinetic energy

(provided by heating) of an atom needed to overcome
the amorphous-to-crystalline transition energy barrier at
room temperature (TR) is estimated to be k · (T − TR) =
(770 − 300 K) × 8.6 × 10−5 eVK−1 ≈ 40 meV, where
k is the Boltzmann constant and T is the absolute tempera-
ture of crystallization. Under stress during in situ nanoin-
dentation of amorphous Cu44Zr44Al12 alloy, the activa-
tion energy barrier for nucleation of nanocrystals could
be reduced. Lee et al.[46] have studied thermodynamics
of the nucleation of nanocrystal in an amorphous matrix
under hydrostatic compression. Their analyses showed
that the applied hydrostatic pressure could enhance the
formation of nanocrystals as free energy required to pro-
duce a critical nucleus size decrease with increasing
pressure.

Shear softening (stress-induced reduction of vis-
cosity), a frequently observed event, may occur during
indentation of our films. The reduction in viscosity may
facilitate the local rearrangement of atoms. Shuffling of
atoms may eliminate excess free volume locally and thus
achieve medium–long range order in neighboring atoms
and, consequently, the formation of nanocrystals. Such
a hypothesis could be validated by molecular dynamics
simulations.

Note that growth of the nucleated nanocrystals might
also occur during successive loading. However, such
an event was not prominent (or convincingly detected)
during the current studies. In some previous studies,
stress-induced grain growth has indeed been observed in
nanocrystalline metals.[47,48] Under stress, grain growth
typically occurs via grain rotation so that nanograins adja-
cent to each other might combine into larger grains. Thus,
stress that induced grain growth in nanocrystalline metals
is somewhat different from thermally driven coarsening
of nanograins, which is mostly dominated by a diffusion
process. In the current study, although stress can induce
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Figure 4. Schematic of stress-driven nanocrystal nucleation processes during indentation of amorphous CuZrAl. (a) In the first two
loading cycles, nanocrystals are easily formed on the surface of the virgin matrix. (b) During the third loading cycle, pre-existing
nanocrystals in the amorphous matrix will provide extra resistance to the nucleation of new nanocrystals. Thus, the indenter tip has
to propagate deeper under greater stress to trigger nanocrystallization of new grains. A ‘hardening’ effect appears. (c) Such a process
repeats in succeeding (fourth–fifth) cycles, and greater stress is required for the nucleation of nanocrystals at a deeper region in the
specimens.

nanocrystals in amorphous metals, the population of these
nanocrystals remains low. Hence, the probability for these
nanocrystals to combine into larger grains is low. Grain
growth by detaching atoms from the amorphous matrix
and reattaching these atoms to nanocrystal seeds could
occur during indentation, but such a diffusion process is
very slow (sluggish at room temperature under stress)
and hence the magnitude of the grain growth may be
insignificant during the short duration of nanoindentation
experiments.

Finally, we examine the ‘hardening’ effect–
requirement of higher stress to trigger nucleation of
nanocrystals during repetitive loading experiments. Some
recent studies on wear and fatigue response of metal-
lic glasses have shown a similar phenomenon. For
instance, Packard et al.[49] reported the hardening of
Fe-based metallic glass after cyclic loading at the elastic
regime. Launey et al.[50,51] observed enhanced fatigue
endurance strength in the same Zr-based metallic glass
with less free volume, a phenomenon attributed to resid-
ual stress tailored by free volume. Packard et al.[49]
reported frequent pop-in events and hardening revealed
from repetitive indentation experiments on Fe-based
metallic glasses. Nanocrystallization could be a plausible
mechanism behind such a hardening phenomenon. How-
ever as their study was performed ex situ, a conclusive
answer could not be arrived. Compared with ex situ
nanoindentation, our in situ experiment has greater sen-
sitivity to microstructure evolution. This is because the
volume probed under the indenter tip is very small (spec-
imen thickness is tens of nm), and hence any microstruc-
ture evolution (including nucleation of dislocations) can
be accurately captured.[52] Nanocrystallization during in
situ nanoindentation involves the formation of numer-
ous nanocrystals with dimensions of ∼5 nm, comparable
to the film thickness, ∼30 nm. Volume (and film den-
sity) change due to nanocrystallization could thus be

detected during in situ nanoindentation. Note that repeti-
tive stress-drops observed in this study did not arise from
the formation of shear bands as no shear bands were
observed after in situ nanoindentation. In fact if shear
bands were formed, the magnitude of stress-drops will
be much more substantial than what we observed here.
In other words, the rapid nucleation and propagation of
shear bands will lead to reduction of stresses to a very low
level (probably near zero stress), which was not observed
in this study.

Figure 4 provides a hypothetical explanation to
illustrate the formation of nanocrystals during succes-
sive indentation cycles. During the first two indentation
cycles (Figure 4(a)), low stress and shallow indenta-
tion induced a layer of nanocrystals under the indenter.
The formation of nanocrystals in the amorphous matrix
has been shown to increase the strength of amorphous
alloys.[23] Such a hardened matrix makes it difficult to
form new nanocrystals during successive loading events.
The excess free volume has been depleted from the sur-
rounding nanocrystals, making it difficult to form new
nanocrystals in the adjacent region. Consequently, it is
more difficult to trigger nanocrystallization under stress.
At higher stress, the indenter penetrates deeper into the
amorphous alloy, hence probes more virgin areas that are
available for nanocrystallization as shown in Figure 4(b)–
(c). A stress level of 0.5–0.6 GPa may be sufficient to
overcome the nucleation energy barrier for nanocrystal-
lization. The formation of nanocrystals preceding shear
bands makes it difficult to deform surrounding regions.
Consequently, greater stress is required to nucleate more
nanocrystals.

In conclusion, via in situ nanoindentation of the
amorphous Cu44Zr44Al12 alloy, we revealed that the for-
mation of nanocrystals occurred at an ultra-low stress
level of 0.25 GPa in the elastic deformation regime,
accompanied by load-drops without evidence of shear
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bands. During successive loading, repetitive nanocrys-
tal nucleation events were observed at increasing stress,
up to ∼0.54 GPa, implying the occurrence of a ‘hard-
ening’ effect in the amorphous alloy. Of course it is
premature and inappropriate to assume that nanocrys-
tallization always occurs prior to the formation of shear
bands in all metallic glasses. Extensive in situ nanoin-
dentation studies across a broad range of metallic glasses
system will help to construct a comprehensive view on the
relationship between nanocrystallization, shear band for-
mation and eventually plasticity in metallic glasses. This
study provides important evidence and a forward step
to advance our understanding on deformation-induced
nanocrystallization of an important class of Cu–Zr-based
amorphous alloys.

Supplementary online material. A more detailed
information on experiments is available at http://dx.doi.
org/10.1080/21663831.2014.911778.
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