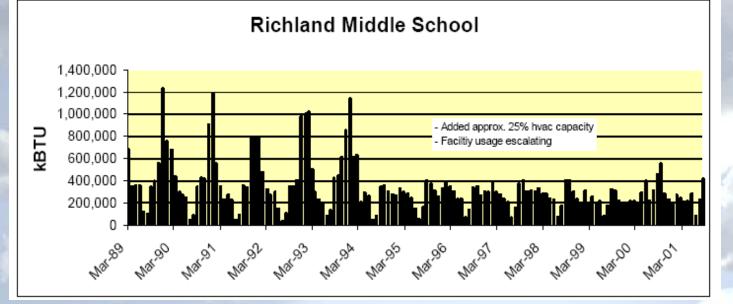

Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools

Jeff Haberl, Hyojin Kim, Jaya Mukhopadhyay, Juan-Carlos Baltazar-Cevantes, Sung Lok Do, Kee Han Kim, Cyndi Lewis, Bahman Yazdani – Energy Systems Laboratory

James Yarborough, U.S.E.P.A.

Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System

Why care about energy efficiency-renewable energy in schools?


- Lower energy costs
- May help avoid tax hikes, may provide more funds for instruction
- Cushions the district from any future energy price "shocks" or shortages
- SB 300 requires ISD energy plans
- May be able to obtain assistance grants or low-cost loans
- Reduces air pollutants, particularly ozone and greenhouse gases

Energy efficiency and renewable energy in schools – Texas ISDs are already doing great things

Birdville ISD: ground source heat pumps

Geothermal System Installed in 1995

More great Texas examples...

Irving ISD: Nation's largest net-zero energy school

Irving Independent School District

Lady Bird Johnson Middle School

ndependent School Distric

2621 W. Airport Freeway Irving, TX 75062

- Geothermal air conditioning and heating
- Solar photovoltaic panels
- Wind turbine devices
- Efficient thermal envelope (high levels of insulation for walls and root)
- Daylight harvesting and light shelves
- Energy efficient lighting and kitchen equip
- **Energy S**Reduced plug load for computers

Background.

- Texas A&M University's Energy Systems Lab, under contract from EPA, modeled 18 different ee/re measures for schools throughout Texas, by climate zone.
- It assumed a 79,430 sq. ft. 1-story primary school in the modeling
- Looked at both retrofitting and new construction

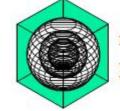
Outputs: Electricity, gas, and total energy savings; initial costs and payback periods for retrofits; initial costs and payback periods for those features in new construction; also, air pollution emissions savings

> Classroom Admin Cafe Gym

Ν

Background

 Results published in Report now available from Texas A&M University's Energy Systems Lab

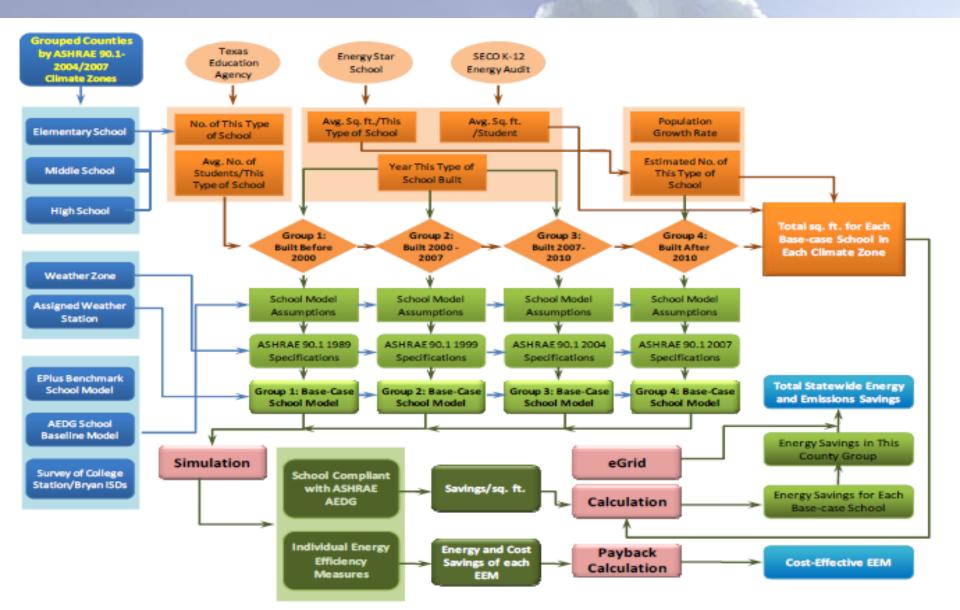

ENERGY EFFICIENCY, COST-EFFECTIVENESS, AND AIR POLLUTANT REDUCTION ANALYSIS FROM ENERGY EFFICIENCY AND RENEWABLE ENERGY (EE/RE) PROJECTS IN TEXAS PUBLIC SCHOOLS

ESL-TR-10-08-01

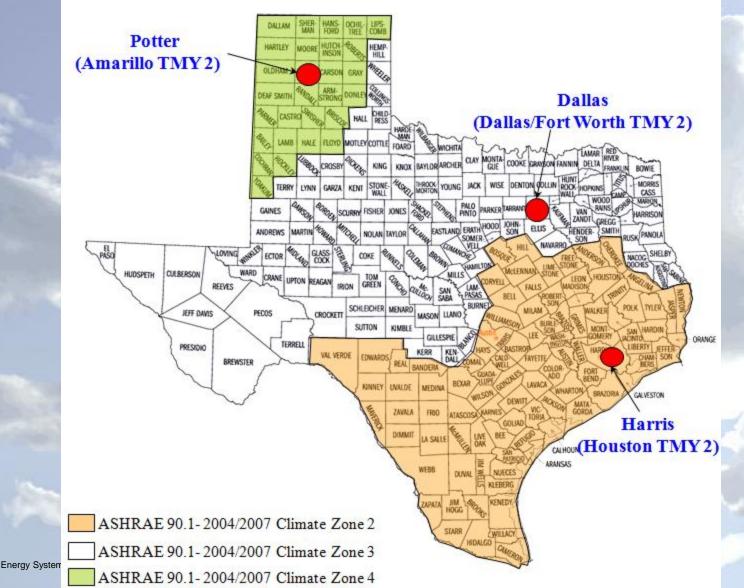
A Report to the U.S. EPA Through the Laboratory's Center of Excellence on Displaced Emission Reduction (CEDER)

> Jeff S. Haberl, Ph.D., P.E. Charles Culp, Ph.D., P.E. Bahman Yazdani, P.E. Hyojin Kim Zi Liu, Ph.D. Jaya Mulkhopadhyay Sunglok Do Keehan Kim Juan-Carlos Baltazar, Ph.D.

> > August 2010 (Revised: June 2011)



ENERGY SYSTEMS LABORATORY


Texas Engineering Experiment Station Texas A&M University System

Analysis Methodology

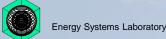
Texas climate zones used in the modeling

18 EE/RE Measures

Envelope

- Increased Roof Insulation
- Decreased Glazing U-Value
- Decreased Infiltration

Lighting


- Decreased Lighting Power Density
- Occupancy Sensor for Lighting Control
- Daylight Dimming Controls
- Skylights

DHW

- Improved DHW Heater Efficiency
- Tankless Water Heater

HVAC System

- OA Demand Control
- Improved AC Efficiency (EER)
- Improved Heating System Efficiency
- Decreased Supply Fan Power Consumption
- PVAVS with VFD for Fan Control
- PVAVS with Variable Speed for HW Pump
 Renewable
- Solar PV
- Solar DHW
- Ground Source Heat Pump

BASE-CASE SCHOOL MODEL

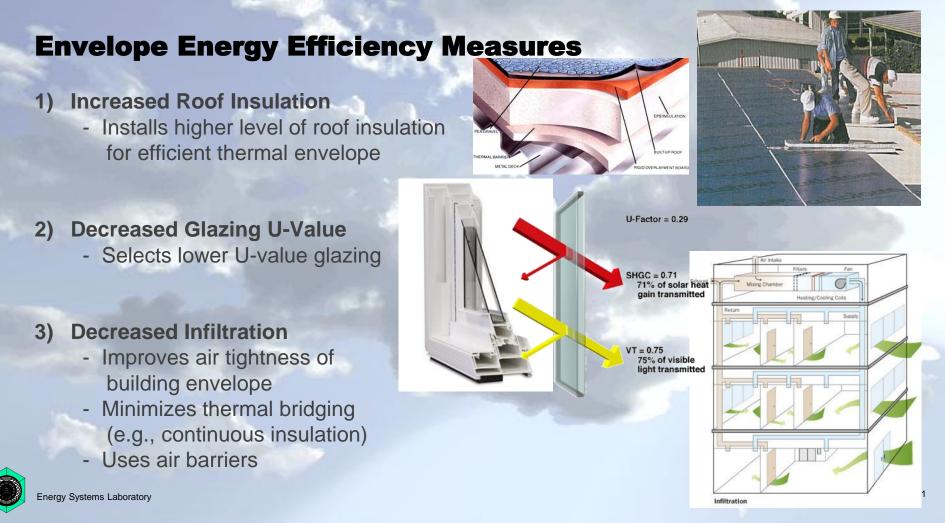
Characteristics of Base-Case Model

The following characteristics were used for the base-case school model:

- **Building Envelope**
 - 1-story, 79,430 ft²
 - 10% WWR

Space Condition

- Heating: 70 F (60.8 F setback)
- Cooling: 77 F (87.8 F setup)


HVAC System Characteristics

- 30 ton PVAVS for Classrooms
- 10 ton PSZ for Admin/Café/Gym
- 80% eff. gas boilers and furnaces
- **DHW System Characteristics**
 - **Two Gas Storage Water Heaters**

		A			
		Assumptions			
Characteristics	Harris County	Dallas county	Potter county	Information Source	
	(Climate Zone 2)	(Climate Zone 3)	(Climate Zone 4)		
Building					
Building Type		Primary School			
Gross Area (sq. ft.)		79,430	TEA Survey: Primary School		
Number of Floors		1		Energy Plus Benchmark	
Ceiling-to-Floor Height (ft.)	10 ft (Classroom, Admin, Café, Gym) E			Energy Plus Benchmark	
Orientation	South facing				
Construction					
Wall Construction	4" st	Steel-Framed with uds spaced at 16" on c	Energy Plus Benchmark		
Roof Configuration	Flat built-1	p, Insulation entirely	bove deck	Energy Plus Benchmark	
Foundation Construction	4" C	oncrete slab-on-grade f	Energy Plus Benchmark		
Wall Absorptance		0.55		DOE 2.1E BDL SUMMARY, Page 12	
Wall Insulation (hr-sq.ft°F/Btu)		R-13		ASHRAE 90.1-1999 Appendix B	
Roof Absorptance		0.7		ASHRAE 90.1-1999 11.4.2	
Roof Insulation (hr-sq.ft°F/Btu)		R-15 ci		ASHRAE 90.1-1999 Appendix B	
Slab Perimeter Insulation		None		ASHRAE 90.1-1999 Appendix B	
Ground Reflectance		0.24		DOE 2.1E BDL SUMMARY, Page 20	
U-Factor of Glazing (Btu/hr-sq.ft°F)	1.1	22	0.57	ASHRAE 90.1-1999 Appendix B	
Solar Heat Gain Coefficient (SHGC)	0.25	0.	39	ASHRAE 90.1-1999 Appendix B	
Window Area	10	0% Window to wall rat	io	Bryan/College Station School Survey	
Exterior Shading		None		ASHRAE 90.1-1999 11.4.2	
Space Conditions				1	
Space Heating Set point	70 F(O	ccupied), 60.8 F(Unoc	cupied)		
Space Cooling Set point		ccupied), 87.8 F(Unoc	-	Energy Plus Benchmark	
Lighting Power Density (W/ft^2)	1.5			ASHRAE 90.1-1999 Table 9.3.1.1	
Equipment Power Density (W/ft^2)	1.06			AEDG	
Mechanical Systems					
		PVAVS: Classroom			
HVAC System Type	1	PSZ: Admin/Café/Gym	L	Energy Plus Benchmark	
Air Conditioning System Efficiency		PVAVS: 9.5 EER PSZ: 10.3 EER		ASHRAE 90.1-1999 Table 6.2.1A	
Heating System Efficiency (%)		80%		ASHRAE 90.1-1999 Table 6.2.1F	
Cooling Capacity (Btu/hr)		Autosized			
Heating Capacity (Btu/hr)		Autosized			
Economizer		No		ASHRAE 90.1-1999 6.3.1	
Ventilation		15 % of design flow			
	C	lassroom: 1.00 cfm/sq.:	ì		
		Admin: 1.03 cfm/sq.ft.			
Supply Air Flow (cfm/sq.ft)		Cafe: 1.69 cfm/sq.ft. Simplified School Model (Im 2009)		Simplified School Model (Im 2009)	
		Gym: 1.72 cfm/sq.ft.			
	PVAVS: 1.7 hp/1000cfm				
Supply Fan Power (hp/1000cfm)		PSZ: 1.2 hp/1000cfm	ASHRAE 90.1-1999Table 6.3.3.1		
DHW System Type	Two gas storage w	ater heaters (125 gallo	n, 199,000 Btu/hr)	Energy Plus Benchmark	
DHW Heater Efficiency (%)	80 % Et			ASHRAE 90.1-1999Table 7.2.2	
DHW Temperature Setpoint (F)		140 F		Energy Plus Benchmark	

18 EE/RE measures were simulated. These include measures for the building envelope, lighting, HVAC, DHW, and renewable energy systems.

Lighting Energy Efficiency Measures

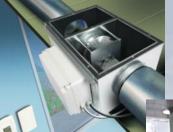
4) Decreased Lighting Power Density- Uses T8 lamps instead of T12

5) Occupancy Sensor for Lighting Control

- Utilizes occupancy sensors for indoor lighting controls
- 6) Daylight Dimming Controls
 - Adjusts lighting levels by the level of daylight detected using photo sensors

7) Skylights

 Skylights in the cafeteria and gymnasium



HVAC System Energy Efficiency Measures (1/2)

8) OA Demand Control

- Utilizes CO₂ sensors to ventilate the building by actual occupancy

- 9) Improved AC Efficiency (EER)
 - High EER rating AC (e.g.10.6 EER PVAVs & 12.2 EER PSZ systems)

10) Improved Heating System Efficiency

- Higher than 90% AFUE
- Condensing boilers

HVAC System Energy Efficiency Measures (2/2)

11) Decreased Supply Fan Power Consumption

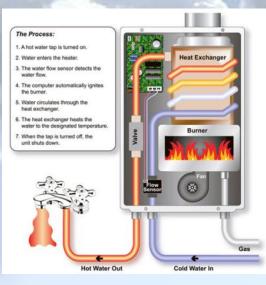
- Low power consumption supply fan

12) PVAVS with VFD for Fan Control

 Variable speed control for fans using Variable Frequency Drives (VFDs)

13) PVAVS with Variable Speed for HW Pump

- Variable speed control for hot water pumps using Variable Frequency Drives (VFDs)


DHW Energy Efficiency Measures

14) Improved DHW Heater Efficiency

- Higher than 95% thermal efficiency
- Condensing water heater

15) Tankless Water Heater

- Provides hot waters as needed
- Eliminates standby energy losses

Renewable Energy Efficiency Measures

16) Solar PV

- Simple sustainable energy technology
- Converts sunlight into electricity

17) Solar DHW

- Converts sunlight into useful thermal energy for water heating systems

18) Ground Source Heat Pump

- Pumps heat from/to the ground
- Utilizes constant ground temperature
- Provides both heating and cooling

Individual ECRMs Studied vs Basecase



Figure 8. Energy Use of Individual EE/RE Measures for ASHRAE 90.1-2007 Compliance Base-Case School: Harris County (Climate Zone 2)

Some Notable Highlights for Retrofitting – Dallas climate zone

Measure	Initial Co	ost % Ener S		back
Solar PV	\$1,679,333	21.0%	36 years	
Ground source heat pump	\$120,000	11.2%	25 years	
Daylighting control	\$85,085	6.0%	4.4 years	
Variable frequency drive in fan control	\$39,780	5.5%	3.0 years	
Lighting upgrade – change out fixtures and ballast from T12 to T8	\$79,430	5.0%	4.7 years	
Demand control ventilation	\$37,360	4.4%	6.3 years	8

Some Notable Highlights for Retrofitting – Houston climate zone

Measure	Initial Co	ost % Ener S		back
Solar PV	\$1,679,333	18.8%	40 years	
Ground source heat pump	\$120,000	7.6%	80 years	
Daylighting control	\$85,085	6.6%	4.2 years	
Variable frequency drive in fan control	\$39,780	5.6%	3.1 years	
Lighting upgrade – change out fixtures and ballast from T12 to T8	\$79,430	5.4%	4.6 years	
Demand control ventilation	\$37,360	4.6%	5.0 years	9

Some Notable Highlights for Retrofitting – **Amarillo climate zone**

Measure	Initial Co	ost % Ene S	rgy Payl Savings P	
Ground source heat pump	\$120,000	24.2%	12 years	
Solar PV	\$1,679,333	20.0%	33 years	
Demand control ventilation	\$37,360	9.2%	6.7 years	
Decreased infiltration	\$16,250	5.8%	3.6 years	
Variable frequency drive in fan control	\$39,780	4.3%	2.9 years	
Decreased supply fan power consumption	\$17,500	3.3%	2.0 years	p. 20

Summary

- If all the EE measures recommended in the ASHRAE AEDG for K-12 Schools were installed in new and existing schools, savings would be over 10.5 million MMBTUs/year and 2.2 million tons/year of CO₂ emissions.
- The shortest payback periods (2.0 to 3.2 years for existing) schools; 0 to 4.5 for new schools) from decreased supply fan power, tankless water heater, VFD for fan control, and VFD for hot water pumping.
- The second shortest payback periods (4.2 to 5.8 years for existing schools; 3.1 to 7.5 for new schools) from lighting measures, including decreased lighting power density, occupancy sensor for lighting control, daylight dimming controls.

Summary

- For new school buildings, short payback periods were also expected from improved AC efficiency (1.6 to 2.8 years) and improved DHW efficiency (3.1 to 3.3 years).
- Renewable energy options (solar photovoltaics, ground source heat pumps) resulted in the highest annual energy savings.
- The lowest initial costs were from variable speed drive for hot water pumping, tankless water heater, solar hot water heaters, and improved DHW efficiency.

Questions?

ESL-TR-10-08-01

3

ENERGY EFFICIENCY, COST-EFFECTIVENESS, AND AIR POLLUTANT REDUCTION ANALYSIS FROM ENERGY EFFICIENCY AND RENEWABLE ENERGY (EE/RE) PROJECTS IN TEXAS PUBLIC SCHOOLS

> A Report to the U.S. EPA Through the Laboratory's Center of Excellence on Displaced Emission Reduction (CEDER)

> > Jeff S. Haberl, Ph.D., P.E. Charles Culp, Ph.D., P.E. Bahman Yazdani, P.E. Hyojin Kim Zi Liu, Ph.D. Jaya Mukhopadhyay Sunglok Do Keehan Kim Juan-Carlos Baltazar, Ph.D.

> > > August 2010 (Revised: June 2011)

Texas Engineering Experiment Station Texas A&M University System