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ABSTRACT 

Analyzing Aqueous Solution Imbibition into Shale and the Effects of Optimizing Critical 

Chemical Additives. (May 2014)  

 

Matthew Wiese, Sammazo Plamin and Maha Qureshi 

Department of Petroleum Engineering 

Texas A&M University 

 

Research Advisor: Dr. Robert Lane 

Department of Petroleum Engineering 

 

Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil 

reservoirs are “gelled fracturing” and “slick-water fracturing”. Both methods utilize up to several 

million gallons of water-based fluid per well in a series of stages pumped into direct contact with 

subsurface rock. Shale can absorb water through a process called capillary imbibition when the 

two come in contact. Additionally, since a common component of shale rock is clay, water may 

intercalate into clay structures in the shale causing them to swell and/or break off from a fracture 

face, potentially plugging the desired fluid conductivity of the created fractures. Currently the 

extent of water-based fluid imbibition and intercalation in major shale plays is not known; 

however it is not uncommon for only 15 – 30% of pumped fracture fluid to return to the surface 

during production from a well. How these issues affect fracture conductivity and thus production 

from unconventional oil and natural gas wells is poorly understood. Additionally, it is not known 

how various fracturing fluid additives affect the magnitude of water-based fluid imbibition 

and/or intercalation into shale. The work our group is conducting seeks to quantify the effects of 

pertinent chemical additives on fluid imbibition and intercalation into shale samples. We do this 

with the hope that we will eventually be able to determine how natural phenomena and additives 

affect long term resource production from unconventional oil and natural gas wells. 
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CHAPTER I 

INTRODUCTION 

 

Interactions between shale and water 

The abundance of natural gas that has recently begun entering the US market has created a stir 

throughout the energy industry. The reason for the recent increased supply has been the 

development of upstream operations that give oil and gas operators the ability to produce 

resources from previously inaccessible reservoirs made up of a rock called shale.  

 

The two primary technologies that have made exploitation of shale reservoirs economic are 

horizontal drilling and hydraulic fracturing. When accessing shale resources, wellbores are 

drilled vertically to near the top of the target interval, then re-directed to follow horizontally 

along the length of rock formations underground. Hydraulic fracturing techniques are then 

utilized to provide flow pathways for previously untapped reserves of petroleum. Two primary 

hydraulic fracturing methods, singly or in combination, are used on unconventional oil and gas 

wells. These are “gelled” fracturing and “slick-water” fracturing. Fracturing is initiated by 

pumping enormous volumes of water into the subsurface at high pressures. This cracks reservoir 

rock and creates flow paths known as fractures that are fractions of an inch wide and hundreds of 

feet long and high. Propping materials carried in the fracture fluid prevent the created fractures 

from completely closing after pumping ceases. After fracturing petroleum liquids and gases that 

were previously trapped in rock can migrate through the propped fractures to a well where they 

can be produced.
[1]
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Through pervious research primarily in drilling applications it is widely documented that water 

based fluid interacts with shale in two main ways.
[2]
 First, because much of the shale pore 

structure is water wet (the mineral surfaces are polar or ionic) water is absorbed water into its 

pore matrix when the two come in contact through a process called capillary imbibition. Second, 

if layered clays are present in the shale, water can intercalate into clay structures causing the clay 

structures to swell and lose structural integrity. During drilling operations companies have 

historically attempted to limit imbibition and intercalation as much as possible using chemical 

additives to preserve wellbore integrity. However, to produce gas from shale wells industry 

operators are pumping large volumes of water into direct contact with subsurface formations, 

without using sophisticated shale stabilization technology. Considering the well documented fact 

that interactions between shale and water based fluid occur, it is highly likely that imbibition and 

intercalation affect induced fractures, potentially having an adverse impact on natural gas or 

liquids production and estimated ultimate recovery from unconventional wells. 

 

Field observations indicate that interaction between shale reservoirs and fracturing fluid is 

definitely occurring. The amount of fracture fluid returned to the surface when wells are brought 

on production, known as load recoveries, are low industry-wide; recovery of only 15 – 30% of 

the total fluid volumes pumped is typical.
[3, 4]  

Thus massive volumes of water are now being 

forced into rock formations that are known to react in possibly adverse ways when the two come 

in contact.  Water-based fluid may be drawn into the reservoir rock matrix through capillary 

forces and/or clay intercalation or it may be trapped in un-propped fractures created during 

fracturing where it remains due to limited available permeability pathways as these fractures 

close when pressure is no longer applied to the formation. What is yet to be determined is the 
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extent of each of these processes and their impact on water losses and fracture performance 

impairment.  

  

There are currently two primary schools of thought related to fracturing fluid imbibition and 

intercalation in shale-gas reservoirs. Some believe that preventing or minimizing fluid absorption 

by subsurface shale is the proper course of action. These operators believe that returning the 

most fracturing fluid possible minimizes fluid volumes absorbed by shale formations and 

decreases any productivity damage from the water used in a fracturing operation. A decrease in 

fluid absorption by subsurface rock post-fracturing could be a significant effort in the future that 

delivers more production with less water loss from the hydrologic cycle.
[5] 
While decreased 

absorption appeals to a more environmentally friendly viewpoint, the impact of increased water 

return on long-term natural gas production from a well is not presently known.  

 

Others hypothesize that water-based fracturing fluid is not causing any harm to productivity 

when it is absorbed by shale in the subsurface. These operators have now begun attempting to 

increase the amount of fluid absorbed by shale after hydraulic fracturing operations.
[6]
 By doing 

so, they can decrease water disposal costs and theoretically increase the initial production of 

natural gas from their wells by removing water that could lead to liquid loading of a well. This 

being said, a decrease in returned fluid also signifies a loss of surface water to the subsurface and 

could potentially harm long term production. These general viewpoints have provided the basis 

for a large amount of industry and academic research currently being conducted. 
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CHAPTER II 

METHOD 

 

Project objectives 

Based on the criteria outlined in chapter one, we have determined primary and supplementary 

objectives in order to highlight the direction for our work. 

 

Our plan includes development of a method for testing aqueous solution imbibition and 

intercalation into shale in order to determine impacts on load flowback. This can be used to test 

effects of various potential additives that could minimize load water losses to source rock 

formations and improve water returns from hydraulic fracturing processes.  We believe limiting 

imbibition could have a positive effect on production flows by minimizing formation and/or 

propped fracture blockages; helping to answer the question of where water goes when it is 

injected during fracturing; and lessen the amount of water that is being removed from the surface 

hydrologic cycle. Objectives supportive of that end are included in the bulleted list below. 

 

• Determine the rate of deionized water imbibition into shale samples from different plays 

of interest. 

o Shale outcrop samples currently being tested: 

� Barnett 

� Marcellus 

� Eagle Ford 

o Cylindrical Core Sample Dimensions: 



7 

 

� 1.5’’ Diameter 

� 1.0’’ Length 

• Identify chemical additives that have the potential to affect water-rock interactions 

through a literature review or by using accepted industry conventions. 

o Chemicals presently identified for testing: 

� Potassium Chloride 

� Dodecylbenzenesulfonic Acid (Anionic Surfactant) 

� Dodecyltrimethyl – Ammonium Bromide (Cationic Surfactant) 

� Arquad 2NT – 32EUN (Oil Wetting Surfactant) 

• Proprietary chemical from AkzoNobel 

� Surface Modified Silica Nanoparticles (5 nm) 

• Proprietary material from 3M 

• Offered with varying degrees of surface modification 

• Three levels of modification currently available for testing 

� Unmodified Silica Nanoparticles (5nm) 

 

Experimental procedure 

To begin we developed have developed a way to test imbibition and intercalation under ambient 

laboratory conditions. The experimental procedure we have developed in conjunction with our 

advisor to complete our work is included the bulleted listed below. 

 

1) Dry cylindrical shale core plugs (1.5” diameter, 1.0’’ length) in a drying oven at 250 

degrees Fahrenheit for 24 hours to remove residual water. 



8 

 

2) Weigh cores after drying using an analytical balance and record their mass. 

3) Prepare deionized water or the desired solution with the correct concentration of chemical 

additive.  

a. Additive concentrations are based on accepted industry convention or determined 

from literature review. Experimental results are then interpreted and 

concentrations are adjusted as necessary. 

b. Currently Tested Chemicals and Concentrations: 

i. Potassium Chloride (KCl): 4 wt. % and 6 wt. % 

ii. Dodecylbenzenesulfonic Acid (Anionic Surfactant): 0.1 wt.% 

iii. Dodecyltrimethyl – Ammonium Bromide (Cationic Surfactant): 0.1 wt.% 

iv. Arquad 2NT – 32EUN (Oil Wetting Surfactant): 0.1 wt.% 

v. Unmodified and Three Levels of Surface Modified Silica Nanoparticles 

(5nm): 2 wt. % and 0.5 wt. % 

c. Use 200 mL of deionized water when preparing solutions or completing 

experiments with water alone. 

4) Reweigh the core right before starting an experimental trial to determine how much water 

vapor from the air has been absorbed 

5) Wrap the side and top of the core with Teflon tape, leaving the bottom open to contact the 

solution of interest. This is done to decrease the amount of fluid evaporated from sample 

pore spaces throughout the trial and to minimize the volumes of fluid lost when it 

imbibes out the top and sides of the sample. 

6) Attach a hanging apparatus made of string and a cable tie to the sample. 
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7) In a purpose-built chamber that minimizes air movement and solution evaporation, hang 

the core from the bottom of an elevated balance using a weighing hook and position the 

prepared solution on a laboratory scissors jack below the hanging shale sample. See 

Figure 1 in Appendix A for an example of an experiment in progress. 

8) Raise the beaker using the jack until the surface of the solution comes into contact with 

the uncovered face of the shale core. 

9) As soon as the surface of the solution reaches the bottom of the core start a data 

collection program to record sample weight over time. 

10) A data collection program is set to record the weight of the sample every second for the 

first five minutes. This is done to get a better snapshot of how the sample’s mass is 

affected right as it comes in contact with the water. 

11) After five minutes, pause the experiment and change the settings on the program so that it 

records sample mass every minute for the remaining. 

12) Close the chamber door to prevent fluid evaporation and other interference that could 

cause skewed mass readings. 

13) Resume the data collection program. 

14) Leave to sit for the enough time to allow the imbibition rate to stabilize (12-24 hours) 

while the mass is periodically recorded on an Excel spreadsheet. 

15) Return, lower the beaker of solution and remove the core after the desired amount of time 

have passed. 

16) Remove Teflon wrapping from the core. 

17) Re-weigh and record the new mass of the core for reference. 
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18) Return the core to the oven and dry for 24 hours at 250 degree Fahrenheit to determine if 

it returns to its original mass. 

19) Plot core sample mass vs. time to determine the magnitude of imbibition and intercalation 

of the fluid. 

20) Use a linear trend line to analyze data and determine how fluid additives effect fluid 

uptake rate by each sample based on comparison to trials conducted with pure water. 

21) Report findings so that promising candidate fluid additives can be used in further 

investigations. 
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CHAPTER III 

BARNETT SHALE 

 

Tests with Barnett shale and multiple additives 

Upon developing our methodology and acquiring the necessary materials we began testing the 

magnitude and rate of imbibition for pure, deionized water into Barnett shale samples. Early 

experiments indicated that a twenty four hour time window for each trial was sufficient. A one 

day trial time allows for a reasonable amount of experiments to be completed in a given amount 

of time while still providing adequate data from each experiment. All the following data is the 

result of experiments on Barnett shale samples. 

 

Data from our first group of experiments using deionized water as a test fluid are displayed in 

Figure 2 in Appendix A. Figure 2 indicates that results from nearly every trial using pure water 

show a relatively constant rate of sample mass increase over the course of each experiment and a 

final mass change of between 1.8 g and 2.6 g. Also, in nearly every case a positive mass change 

is seen at close to 3 hours. A surprising trend is that in all cases except one, sample mass 

decreased for close to an hour before it began to increase, returning to its original mass after 

close to 3 hours of exposure. This initial mass decrease is a phenomenon we have observed in 

varying magnitudes after nearly every experiment we have conducted where the sample only has 

one exposed face in contact with fluid. Some degree of sample mass decrease for the first hour of 

nearly every experiment has been present regardless of shale type or the presence of additives in 

solution. We are still attempting to determine the cause of the observed mass loss and anticipate 
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it is related to experimental design as opposed to an actual significant decrease in the bulk mass 

of each sample. 

 

To date, we have completed experiments with 4.0 and 6.0 weight percent Potassium Chloride 

(KCl) solution, cationic surfactant, anionic surfactant, proprietary oil-wetting surfactant and two 

different concentrations of surface modified silica nanoparticles. Trials with results that were 

indicative of those seen for each additive are listed in Table 1 in Appendix A for comparison. 

Imbibition rate was calculated using a trend line for each data set. Our control, deionized water, 

had a solution uptake rate of 0.116 g/hr.  

 

Trial 10 was completed with a 4 percent weight Potassium Chloride (KCl) solution and yielded 

an uptake rate 0.027 g/hr less than pure deionized water. The observed decrease in imbibition 

rate was expected in KCl experiments because Potassium Chloride is already an accepted 

industry convention for clay stabilization in drilling fluid applications.
[6]
 Comparison of 4 and 6 

percent weight KCl solution experiments indicates that a 2 percent increase in additive 

concentration only decreased imbibition rate by 0.001 g/hr. The small rate decrease observed 

indicates that increasing the concentration of KCl past a certain point could have a diminishing 

effect on imbibition inhibition in our application. Further tests at higher concentrations of KCl 

and smaller concentration intervals must be completed in the future to support or refute this 

assertion. 

 

The initial focus of our additive research was three surfactants we identified for testing through 

literature review and recommendation. Currently, we have tested two surfactants that had 
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previously been used in a group of experiments related to shale fracture behavior.
[7]
 One of the 

surfactants is anionic and one is cationic. Also, we have tested a proprietary, oil-wetting 

surfactant manufactured by AkzoNobel. The anionic surfactant displayed a minimal decrease in 

imbibition rate (0.016 g/hr) relative to deionized water. Experiments with cationic and oil-

wetting surfactants displayed small rate increases of 0.010 g/hr and 0.004 g/hr relative to water. 

None of the rate effects from any of the surfactants is considered substantial. Additionally, trials 

with oil-wetting surfactant required modification to our experimental method in order to achieve 

adequate additive dissolution. The addition of a magnetic stirrer was necessary to achieve 

sustained additive dissolution and could have possibly affected results. 

 

Recently, we have identified nanoparticles as additives of interest due to current research on their 

application as imbibition inhibitors in drilling fluids.
[8]
 To date, we have tested surface modified 

silica nanoparticles (5 nanometers diameter) at concentrations of 0.5 and 2 percent weight on 

Barnett shale samples. Trial 25 in Table 1 was completed with a 0.5 percent weight 

concentration and displays an imbibition rate much lower than the control. The nanoparticle 

induced rate decrease is also 0.016 g/hr lower than KCl which marks them as the only additives 

that have been able to decrease imbibition rate more than the test industry convention. The 

relatively large decrease in uptake rate induced by nanoparticles indicates that these additives 

might be a viable way to decrease fluid uptake by shale.  

 

Additionally, further results have indicated that the any imbibition impeding effects 

nanoparticles have could be heavily dependent on additive concentration and level of surface 

modification. When nanoparticle concentration was increased from 0.5 to 2.0 percent weight, the 
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rate of imbibition increased from 0.073 g/hr to 0.087 g/hr. The observed rate increase was 

contrary to what was expected and the cause is currently unclear. Iterative experimentation with 

nanoparticles at different concentrations and levels of surface modification will allow us to 

examine observations about this group of additives further. 

 

One final observation that can be made based on our preliminary data is related to the drying of 

each Barnett sample. Each sample we use is dried before and after testing. In every case, the 

mass of a shale sample at the beginning of a trial is more than it is right after it is pulled from the 

oven. This can be attributed to samples absorbing residual water from the air between when all 

the samples are first dried and when they are individually selected for experimentation. Each 

sample is dried individually after experimentation to determine if it returns to its original mass. 

In every case where a sample has been dried after an experiment its mass has been less than it 

was right after the first cycle of drying. This indicates that some form of mass loss is occurring 

during each trial possibly due to the dissolution of one or more compounds in the rock. We have 

begun saving water samples from each trial for testing in the future shed light on this 

observation. 
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CHAPTER IV 

CURRENT AND FUTURE WORK 

 

Barnett and Marcellus shale comparison 

Immediately after finishing our original set of experiments with Barnett shale we moved to 

complete the same battery of tests on Marcellus shale cores for comparison to one another. 

Initially, we set about changing any steps of the experiment there was trouble with. Also, graph 

and chart formatting began being consistently updated at the beginning of each experiment to 

help ensure the consistency of results. 

 

On the topic of data collection, we began displaying our results in a way that reflects the average 

distance an amount of fluid has imbibed into a rock and not just the rate at which that fluid is 

absorbed. While this is simply another way of looking at the same results, it works as an 

effective form of data normalization, making results comparison from experiments with different 

types of shale more accurate. Shale is, by its nature, extremely heterogeneous. Shale samples 

from different geologic formations and even different parts of the same formation can have 

variable petrophysical properties that affect a number of the rock’s hydrocarbon baring 

characteristics. Since our calculations for imbibition length include porosity and core dimensions 

we believe distance, as opposed to rate, will offer a more consistent representation of the data we 

have and will be collecting. By studying the distance an imbibition front moves into a rock 

sample we can begin to establish a basis for the fate of fracturing fluid as it moves from the 

fracture to the matrix of a reservoir. Also, knowing imbibition distance allows for more accurate 



16 

 

analysis when comparing results from different trials. In the future, it is our group’s hope that a 

law or empirical representation can be derived that can universally describe average imbibition 

distance as a function of time and rock/chemical properties. By using length of imbibition in this 

way, it would be theoretically possible to determine the extent of fluid imbibition in previously 

fractured wells using information about the fracturing fluid and properties of a shale formation in 

a specific area.
[7]
 Calculations could then be used to help determine total imbibition and its effect 

on petroleum production. Figure 3 in Appendix A shows how the final length of imbibition for 

each trial was calculated. 

 

Also, it was at this point that we chose to modify our experimental design further. We no longer 

just touch the face of the shale sample to the surface of the fluid we are testing. Now, one quarter 

inch of the Teflon wrapped sample is submerged with the rest remaining out of the solution. We 

have determined that submerging the sample face in this way removes the initial mass decrease 

we had consistently observed in previous trials believed to result from displace air that was 

trapped under the face of the shale. Also, in an effort to complete more experiments, we have 

adopted a twelve hour trial period. Twelve hours allows for twice as many experiments to be 

completed while still allowing for imbibition rate stabilization. These two modifications have 

allowed for us to collect results with more speed and accuracy. 

 

Twelve hour trials have now been repeated with Barnett shale and compared to our previous 

twenty four hour tests. Results from these trials are similar but not exactly the same because of 

the modification to how far we dip our samples in the solution being tested. As a result, we are 
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now using our modified experimental method to re-do trials with Barnett shale and our most 

promising additives from pervious experiments. Currently, we are also testing Marcellus shale 

for comparison to Barnett. Additionally, we are completing a more comprehensive analysis with 

our most promising additives to better determine their range of imbibition inhibition 

effectiveness. Preliminary results from these trials are listed in Table 2 in Appendix A. 

Table 2 shows the effect of low coverage nanoparticles and Potassium Chloride on imbibition 

rate in Barnett and Marcellus shale samples using our modified experimental method. Overall, 

the Marcellus shale cores show a noticeably lower imbibition rate compared to Barnett. We 

believe the reason for this noticeable decrease is the difference in geologic and petrophysical 

properties in the two samples. As previously noted, shale is extremely heterogeneous from 

formation to formation. Some of this heterogeneity is highlighted in Table 3 and Table 4 in 

Appendix A which list common mineralogical compositions and porosities for Barnett and 

Marcellus shale in comparison with one another. 

 

The difference in imbibition rates between the two formations seen in our experiment was 

expected and is the reason we’ve cited a need to test rock samples from a multitude of different 

shale plays. We believe that the reason for this particular rate discrepancy stems from a higher 

presence of what are called “swelling” clays in Barnett. These clays imbibe water very quickly 

and swell, creating structural integrity issues in the rock when drilling through shale using water 

based mud. That being said these, clays direct effect on petroleum production from 

unconventional shale gas and oil resources still currently remains to be seen and will hopefully 

come to light as industry research moves forward. 
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For experiments in the near future, we have obtained four different types of nanoparticles 

(unmodified, low-coverage, mid-coverage and high coverage) and plan on completing an 

iterative evaluation of each different particle’s effect on imbibition. We do this with the hope that 

we can identify the nanoparticle that melds noticeable imbibition inhibition characteristics with 

potential cost effectiveness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

 

CHAPTER V 

CONCLUSIONS 

 

Accomplishments and determinations from current data sets 

• Developed an experimental methodology that is effective at determining the mass of fluid 

imbibed into a sample of shale after a given period of time under ambient conditions. 

• A 12 hour trial window allows for a reasonable amount of experiments to be completed 

in a given amount of time while still providing adequate data for analysis. 

• Deionized water imbibes into Barnett shale samples at a relatively constant rate under 

ambient conditions. 

• The imbibition of water-based fluid might be due to two potential mechanisms: Capillary 

imbibition and clay intercalation/swelling. 

• As expected, Potassium Chloride (KCl) decreases the uptake rate of water-based fluid 

into Barnett shale. KCl effectiveness as a shale stabilizer is believed to be due to the 

inhibition of clays which inhibits fluid uptake by clay intercalation. 

• Equal increases of KCl concentration do not have equal impact on imbibition rate. 

• Identified anionic, cationic and oil-wetting surfactants do not have a substantial effect on 

imbibition rate. 

• Surface modified silica nanoparticles have shown to be more effective than KCl as 

uptake inhibitors at a concentration of 0.5 percent weight. We are not yet certain of its 

mechanism, but hypothesize that it inhibits capillary imbibition rather than clay 

intercalation. 
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• A 2.0 percent weight concentration of surface modified nanoparticles increased as 

opposed to decreased imbibition rate relative to a 0.5 percent weight concentration. 

• Cores dried after each trial at the same temperature and for the same amount of time 

consistently record masses below their initial dry mass, indicating dissolution of minerals 

into the bulk fluid. 

• Depth of imbibition into a shale sample as opposed to total mass gain offers an 

interesting representation of our data and could play a part in developing imbibition 

prediction models. 

• Marcellus shale absorbs fluid at half the rate of Barnett which is believed to be a result of 

the presence of swelling clays in Barnett. 
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APPENDIX A 

 

 

 

Figure 1: Experimental setup including computer for collection, balance, chamber, scissors jack, 

and sample in contact with a solution of interest. 
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Figure 2: Mass change of cylindrical 1.5’’diameter, 1.0’’ length Barnett shale cores contacting 

deionized water for a period of 24 hours. 

 

Composition of 

Imbibition Solution 
Trial Number 

Weight of Dried Core 

Sample Before Trial (g) 

Rate of Solution 

Uptake (g/hr) 

Deionized Water, No 

Additives 
3 54.814 0.116 

4% wt. KCl 10 54.614 0.089 

6% wt. KCl 44 58.140 0.088 

0.1% wt. Anionic 

Surfactant 
22 55.730 0.100 

0.1% wt. Cationic 

Surfactant 
13 55.631 0.126 

0.1% wt. Oil-Wetting 

Surfactant 
36 and 37 --- 0.120 

0.5% wt. Surface 

Modified Nanoparticles 
25 54.510 0.073 

2.0% wt. Surface 

Modified Nanoparticles 
24 55.250 0.087 

Table 1: Initial mass and rate of Solution uptake for Barnett shale samples in the presence of 

different chemical additives dissolved in deionized water. 
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Composition of Imbibition 

Solution 

Marcellus Shale Rate of 

Solution Uptake (g/hr) 

Barnett Shale Rate of 

Solution Uptake (g/hr) 

Deionized Water, No 

Additives 
0.26 0.54 

4% wt. KCl 0.275 0.344 

0.5% wt. Surface Modified 

Nanoparticles 
0.234 0.383 

Table 2: Rates of pure water and additive solution uptake for Barnett and Marcellus shale 

samples in comparison to one another 

 

Length of Fluid Invasion into a Sample 

During  Experimentation

19

L = Calculated length 

of fluid invasion into 

the matrix 

A = Cross sectional area of 

core samples = 11.401 cm2

• Δm = Mass change of the a sample over the course of a trial

• Vf = Volume of fluid imbibed into the sample during a trial

• ρf = Density of fluid being tested

• φ = Shale sample porosity (Barnett: ~7.00%)

 

Figure 3: How to turn observed rate (dSo/dL) into an implied average distance (L) away from a 

fracture face an imbibition front has traveled in an unconventional resource for a given value of 

time. 
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Porosity, φ 

Barnett Shale Marcellus Shale 

0.01 – 0.07 0.06 – 0.10 

Table 3: Common Barnett and Marcellus shale porosity ranges 

 

Mineral Barnett (%) Marcellus (%) 

Quartz 35-50 10-60 

Clays (primarily Illite) 10-50 10-35 

Calcite (Dolomite, 

Siderite) 
0-30 3-50 

Feldspars 7 0-4 

Pyrite 5 5-13 

Phosphate (Gypsum) Trace Trace 

Mica 0 0-30 

Table 4: Typical Barnett and Marcellus shale mineralogy 


