

EXPLORING SHAPE GRAMMAR OPTIMIZATION

AS A TOOL FOR AUTOMATED DESIGN

An Undergraduate Research Scholars Thesis

by

JORDAN ALEXANDER CAZAMIAS

Submitted to Honors and Undergraduate Research

Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by

Research Advisor: Dr. Dylan Shell

May 2014

Major: Computer Science

 Applied Mathematics

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. 2

CHAPTER .. 3

I INTRODUCTION .. 3

Objectives ... 7

II METHODS ... 8

Optimization Framework Proposal ... 8
Pilot Experiment ... 12

III RESULTS ... 17

IV DISCUSSION ... 19

REFERENCES ... 23

1

ABSTRACT

Exploring Shape Grammar Optimization as a Tool for Automated Design. (May 2014)

Jordan Alexander Cazamias

Department of Computer Science & Engineering

Texas A&M University

Research Advisor: Dr. Dylan Shell

Department of Computer Science & Engineering

Shape grammars are quite effective at representing the structure of objects, thus raising the

question of whether they could be utilized for design automation or related techniques like

procedural generation. However, refining these grammars requires tediously adjusting its many

hard-coded parameters. This research serves to answer whether a sub-optimal shape grammar

could instead be adjusted using grammar induction and optimization techniques. A general

optimization framework for shape grammars was defined to address this question. From this

framework, a specific optimization process was also created and its effectiveness was tested in a

pilot experiment. To carry out this experiment, a program was written to take a textual design

grammar as input and, after several rounds of training by the user, adjust the grammar’s

parameters such that it outputs higher-quality designs. After collecting data on the mean

grammar design quality per round, it was found that the quality of the designs was, in fact,

significantly higher in later rounds than in earlier rounds. This provides an encouraging first step

into the potential for applying this optimization framework to design grammars in general.

2

ACKNOWLEDGEMENTS

I would like to thank Dr. Dylan Shell; he has been a great mentor and guide throughout this

process. I would also like to thank Ben Fine, my current graduate student mentor, for his

encouragement and contribution to the inspiration for this project idea. Without both of these

people’s support, my project would not have taken the promising turn that it has so far.

The 3D building models in Figure 1 were created in Structure Synth and provided by yhancik at

http://www.flickr.com/photos/yhancik/3179604858/ under a Creative Commons license.

http://www.flickr.com/photos/yhancik/3179604858/

3

CHAPTER I

INTRODUCTION

A staggering number of real-world objects, both natural and man-made, follow a certain

structure in their design or form. Cars, for example, may be widely varied but share many

commonalities in their overall structure and design: they all have headlights and tail-lights,

wheels, windshields, etc., and all in relatively similar positions. This hidden, common structure

is essentially a collection of de facto rules for how objects should be built, which allows them to

be separated into classes. Understanding these rules, then, can help one to understand an object’s

design at its core. Taking this one step further, if there exists a way to encode these rules so that

a computer could analyze them, these rules could be easily modified on the fly, which would

potentially allow for novel ways to classify, generate, and even optimize object designs with

minimal human interaction.

Many industries already employ the shape grammar (a set of primitive shapes and a set of rules

for constructing a complex object out of primitive shapes) as a model for an object. It is a useful

method for the procedural generation of urban landscapes, since buildings (while they are not

uniform) follow a well-defined structure [1]. Shape grammars are also quite straightforward to

build using existing software tools. Context Free (available at http://contextfreeart.org) has been

designed to allow the creation of 2D art and designs by building shape grammars, and Structure

Synth (available at http://structuresynth.sourceforge.net) is an equivalent program for 3D

http://contextfreeart.org/
http://structuresynth.sourceforge.net/

4

models. Both of these programs define a simple language used to create these shape grammars

and only require basic programming experience. Figure 1 demonstrates some of the examples of

user-generated art using this software, all of which are generated from relatively simple

programs (on the order of tens of lines).

Figure 1: Examples of designs created by users of the Context Free and Structure Synth programs.

All of these designs are created with random variation, and so will be different every time they are

generated.

Not only are these grammars powerful, but they are fairly straightforward to build, at least with

regard to their basic structure. However, refining these grammars, or creating more complex

grammars, typically requires manually adjusting the grammar's numerous obscure parameters, a

time-consuming and frustrating process of trial and error (see Figure 2). Furthermore, since the

5

objects in question follow a structured generation process, it begs the question of whether shape

grammars could instead be improved by a computer, through optimization techniques. If so, the

benefits of using shape grammars as a model for structured objects, and even as a tool for

Computer-Automated Design, could be made much more accessible to designers, artists, and

programmers alike.

Figure 2: Making a few small changes to the rule probabilities, or other attributes, of a shape

grammar can result in drastic changes in the resulting designs’ structure. The effect that changing

these attributes will actually have, however, is typically hard to predict.

A process, related to this research, has been developed to take fully formed objects as input and

construct a grammar that can regenerate these input objects. This is known as grammar

induction. This induction process assumes that there exists some optimal grammar that captures

the input objects and tries to find a grammar as close to this optimal grammar as possible. At the

moment, the lion’s share of grammar induction research has been applied to textual grammars,

though recent work has been performed on the application of grammar induction to shape

6

grammars. Most of this research, however, is geared toward specific applications. Several of the

referenced papers [1,2,5] use induction specifically for the generation of urban buildings and

facades. Talton et al. [3] take a large step towards a more general approach by inducing

grammars to capture certain design patterns, but the objects in question—buildings, trees, and

HTML documents—are still rather specialized and typically require complex starting pieces.

Furthermore, there is a large drawback to all the aforementioned induction strategies: they not

only require training examples, but the examples themselves must be labeled in a way that

illustrate their derivation process [7]. This task of labeling may not be much trouble to a resident

expert in the fields of formal grammars and natural language processing, but it is a high barrier to

entry for any common user. Without labels, however, creating a grammar from scratch using

induction becomes an enormously difficult challenge.

Instead of relying on full grammar induction, this research proposes a framework for grammar

optimization that draws from induction techniques. This framework could serve as a viable tool

for anyone with basic programming knowledge because it does not require any domain-specific

expertise, unlike a pure induction strategy. It should also be oriented towards a more general

goal: that of creating a grammar that can generate objects to achieve a predefined utility or

purpose. This purpose may be any that the designer deems necessary for the designs to have, be

it a capability to perform a certain task, a fundamental design pattern, an appealing aesthetic, or a

combination of several features. Most importantly, the utility does not have to actually relate to

an object’s shape, or even be any measure that is easily quantifiable by a computer, so long as an

object can be tested for the utility in some way. For example, if a designer has created a shape

7

grammar that generates images of clouds, such as in Figure 2, an appropriate criterion for the

cloud designs is that they appear to be of a certain cloud type, such as cirrus or cumulonimbus.

This criterion is not easily measured by a computer without various machine learning techniques

(this point will be further discussed in Chapter IV). However, a human could certainly

distinguish between clouds that fit a certain type and clouds that do not.

In theory, a more general treatment of shape grammar optimization will cover many more

applications, some of which are inconceivable today. The ultimate goal for this research (a goal

that is outside the scope of this thesis) is to make the idea of automated design a reality for

anyone with the most basic programming knowledge, even that which is reasonable for artists

and designers to be able to learn with minimal hassle. Whether this is possible, and how well

this could be carried out with the proposed system, will be the focus of exploration in this

project.

Objectives

The primary goal is to propose a strategy for achieving shape grammar optimization in an

induction context. I hypothesize that shape grammar optimization is not only possible, but can

be used to create grammars of a quality that surpasses that of grammars created manually within

a reasonable amount of time.

8

CHAPTER II

METHODS

 One particular challenge with relating grammar induction to shape grammar optimization is that

most induction research has been focused on textual grammars rather than more design-oriented

grammars, and applying the same assumptions and principles from textual grammar induction

would not be the ideal way to approach design grammar optimization. Both types of grammars

are used for vastly different purposes. Traditional textual grammars are built mainly for the

purpose of parsing natural language (or to formally define programming languages). Essentially,

the goal of these grammars is to closely mimic a human's ability to recognize the structure of

valid sentences within the language. This is a task with a clear metric of quality (i.e. a grammar

can be considered high-quality if it can parse a sentence almost exactly how that sentence would

have been parsed by a human). Accuracy is the key goal, and this accuracy is easily measured.

Few textual grammars are created with the purpose of generating natural human-sounding

sentences, although there are some notable exceptions [6]. Design grammars, on the other hand,

are used primarily to generate new designs rather than parse existing designs. Accuracy is still

important—a design for a house is no good when the goal is a design for a car, for instance—but

it is not paramount and it is more loosely defined. Essentially, the key goals for design

grammars are novelty and creativity, which are not as easily quantifiable.

Optimization Framework Proposal

Figure 3 illustrates the top level operation of the created optimization framework:

9

Figure 3: Top level design of the induction-based grammar optimization framework

As input, a grammar G is provided. This grammar has various attributes that can be changed by

the user, which should change the output of the grammar. In this case, Context Free uses a

stochastic grammar, and so each rule has an associated rule probability that can be set by the

user. For this project, the only grammar attributes that will be considered for modification are

each of the grammar's rule probabilities 𝜋1, … , 𝜋𝑛. These parameters affect how often a rule will

be selected, and can drastically change the structure of the resulting designs. An appropriate

10

next step in this research should be expanding the optimization algorithm to allow for other

attributes to be modified, such as the shapes’ transformation parameters.

From grammar G, the grammar variants 𝐺1, … , 𝐺𝑘 are created. These are copies of grammar G

where some of the rule probabilities have been modified. How these rule probabilities are

modified is one of the many points of generalization within this optimization framework; there

are many ways to approach this question, and anyone using the framework should be able to

customize how it occurs. Perhaps the simplest (and most likely fastest) approach is to scramble

the rule probabilities for each grammar variant. However, for more fine-tuned control, the rule

probabilities can be more systematically changed. For instance, grammar 𝐺1 can be a variant of

G where only 𝜋1 is modified, and so on. This would also help to isolate the rule probabilities

that make the largest impact on the quality of the grammar. After the grammar variants are

created, each variant generates one or more exemplar designs, all with potentially different

levels of quality. This design “quality” may or may not be easily quantifiable by a computer.

However, the criteria used to judge exemplars should be well-defined enough that a human user

should definitely be able to make judgments on an exemplar’s quality. Therefore, these

exemplars will be scored by a human user. The structure of this scoring system is another point

of generalization, though it is suggested to include two important features:

 The score should be weighted, meaning that a user should be able to segregate exemplars

that have a weakly-positive quality and a strongly-positive quality; i.e. the scoring is not a

binary yes/no answer.

11

 The score should be signed, meaning that negative scores should be possible. This would

allow a user to isolate exemplars that are so low-quality that they would weaken the

quality of the overall grammar and, thus, should be discouraged. The score may not need

an actual negative value, so long as some balance point between “good” and “bad” scores

exists; for example, a scoring system from 1 to 5 can be used, with 3 as the balance point.

Using the scored exemplars, the grammar G and all of the grammar variants will be plotted

within the configuration space for grammar G. The configuration space is the n-dimensional

vector space where a grammar G is represented as the vector containing all of its non-fixed

parameters; in this case, 〈𝜋1, 𝜋2, … , 𝜋𝑛〉. In essence, the configuration space contains all of the

possible variants of grammar G. The goal for optimization using the configuration space is to

take grammar G and calculate an offset to move G to a new position in the space, in order to find

a more optimal grammar G'. The details for how to calculate this offset is yet another point of

generalization, and perhaps the most important one. One potential solution involves each

grammar variant exerting a "force" on the offset grammar G. In other words, each grammar

variant 𝐺𝑖 will contribute an influence to the offset of grammar G, dependent on the vector 𝛿𝑖 =

𝑘
𝐺−𝐺𝑖

‖𝐺−𝐺𝑖‖
, where 𝑘 ∈ ℝ and

𝐺−𝐺𝑖

‖𝐺−𝐺𝑖‖
 is the unit vector starting at 𝐺𝑖 and oriented toward G.

Whether 𝑘, the weight of this offset vector, is positive or negative depends on whether the

grammar variant 𝐺𝑖 was positively or negatively scored, and the magnitude of 𝑘 will depend on

many factors including the score of 𝐺𝑖, its distance from grammar G, etc. In general, positively-

12

scored grammar variants will exert an attractive force on grammar G, encouraging grammar G'

to be closer to these variants. The opposite goes for negatively-scored variants.

All of these offset vectors are combined into a total offset Δ = ∑𝛿𝑖, which is then added to the

configuration vector for grammar G. This new vector will be considered a new grammar G'.

This new grammar should have rule probabilities that are closer to those of the "high-quality"

grammar variants than those of the "low-quality" variants. Thus, if the model is well-formed,

grammar G' should be more likely than grammar G to create high-quality designs, and should

therefore be considered more optimal.

Pilot Experiment

The goal of creating an entire software package with full 2D shape grammar support was not

feasible given the allotted time. To demonstrate the optimization potential of this framework,

however, a pilot experiment was created to serve as a precursor. This experiment is essentially a

specific implementation of the aforementioned optimization framework, with the following extra

simplifications:

 Rather than optimize a shape grammar, the experiment will attempt to optimize a text

grammar. One important distinction to make, however, is that this text grammar will be

used to generate words rather than parse human text. So, this grammar will be

considered a design grammar rather than a textual grammar (based on the definition of

“textual grammar” mentioned earlier).

13

 Instead of a full configuration space analysis, the grammar variants will simply be

derived from the highest-scoring grammar variant to date, and simulated annealing will

be performed so that the variants converge on a locally optimal grammar [8].

Again, a design grammar should be optimized based on how well its designs achieve the criteria

of the designer. These criteria may be virtually any factor, so long as a generated design can

easily be judged by a human scorer based on how well it fits these criteria. For this experiment,

the criterion was chosen to be that something that is easily determined by humans and also

something most people are already familiar with.

The criterion chosen was: How well would this word fit as the name of a spell or incantation

from the Harry Potter series? Besides having the previously mentioned benefits, the Harry

Potter criterion is a favorable one because it has a distinct, but not binary, success state. Most

incantations from Harry Potter are derived from Latin; as such, words that sound like they are

derived from Latin or related languages should fit the criterion much better than words derived

from unrelated languages such as Japanese. One may ask, then, why not make the criterion

“How well does the word sound like Latin or one of its derivative languages?” The entire Latin

vocabulary, however, encompasses an enormously wide and varied palette of words, which

would make judgments along this criterion ambiguous and more difficult to keep consistent.

Harry Potter spells, on the other hand, draw from a much more targeted subset of Latin words; as

a result, they have a more unified feel, which will hopefully aid human scorers greatly in the

judging process and reduce unwanted variance.

14

It was specifically hypothesized for this experiment that the grammar variants created in later

rounds of optimization would have a higher quality overall than those created in the earlier

rounds. To test this hypothesis, a textual grammar interpreter program was created to enable the

generation of words from a simple, user-defined context free text grammar. A feature was also

added to allow the user to specify which rules they would like to recalculate probabilities for

using optimization and which rules should remain fixed. Other than this feature, however, the

program’s function was designed to closely match that of Context Free in order for the

experiment’s results to be as relevant as possible to discussions on the potential of optimizing

shape grammars, especially those created using Context Free.

Several of the most commonly used Harry Potter spells were analyzed to determine how the

grammar for a typical “spell” should be structured. In the grammar, a spell was restricted to a

single word that consisted of three parts: the beginning segment (from 0 to 2 syllables long), the

penultimate (i.e. second-to-last) syllable, and the final syllable. Each of these parts had their

own probability distribution for individual letters as well as for the types of syllable used. For

instance, most words started with a vowel or consonant and simply alternated VCVC… or

CVCV…, respectively, while some words occasionally contained a syllable with a double

consonant or double vowel. The rules that determined the balance of syllable types were marked

for probability recalculation, and the rest were left fixed.

To optimize the grammar, a simplified version of the aforementioned process was used.

15

 First, the designer decides to hold 𝑖 rounds of optimization.

 During each round, 𝑗 grammar variants are generated. These variants are derived from

the most optimal grammar variant that has been found up to this point (or, for the first

round, the original grammar). These grammar variants have their non-fixed rule

probabilities randomized, but in a way that is centered on the corresponding rule

probability from their derived grammar. More specifically, for every probability 𝜋𝑖 in the

derived grammar, the variant probability 𝜋𝑖′ should be chosen from some probability

distribution where 𝜋𝑖 is the median value.

 To evaluate each of these variants, 𝑘 exemplar designs are generated by each variant and are

subsequently evaluated by a human scorer. The overall score for a variant is simply the average

of its exemplars’ scores.

 After scoring each variant in the round, they are all compared to the most optimal

grammar found. If one of these variants has a higher overall score than that of the most

optimal grammar found, it becomes the new optimal grammar.

 With subsequent rounds, simulated annealing is employed to decrease the random

variation in the variants’ rule probabilities. Thus, the variants should converge towards

the most optimal grammar found.

 After all the rounds, the most optimal grammar is returned as G’, the new grammar.

For this experiment specifically, 5 optimization rounds were carried out, each with between 5

and 8 variants. Each variant was used to generate 25 words, which were rated on a 1-5 scale by

16

human evaluators (a score of 0 was also allowed if the word contained a nonsensical

combination of letters; for instance, ccaneva was an exemplar that was given a score of 0).

To emulate the function of Context Free as closely as possible, the text grammar interpreter

utilized the same approach towards rule probabilities by using a weight system. Therefore, for a

nonterminal symbol 𝑁1, suppose rules 𝑟1, … , 𝑟𝑛 are all the rules where 𝑁1 is on the left hand side,

meaning they encompass are all the possible ways 𝑁1 can be converted to other symbols during

the design generation process. Each rule 𝑟𝑖 has an associated weight 𝑤𝑖 > 0. Then, the

probability 𝜋𝑖 that 𝑟𝑖 will be selected whenever one of 𝑁𝑖’s rules is chosen is:

𝜋𝑖 =
𝑤𝑖

∑ 𝑤𝑗
𝑛
𝑗=1

The only requirement for a weight is that it is positive, so it can be any positive floating point

number. However, weights are typically relatively small (on the order of 1 or 2 digits), and

changes in smaller weights have a larger impact than changes in larger weights. Thus, for a

weight 𝑤𝑖, the new weight 𝑤𝑖
′ was determined by drawing a random variable from the lognormal

distribution with a mean value of 𝜇 = ln⁡(𝑤𝑖) and a predetermined standard deviation 𝜎.

Because of the value of 𝜇, the distribution will have a median of 𝑤𝑖. To optimize the grammars

via simulated annealing, the value for 𝜎 was decreased with each round, eventually converging

to 0.

17

CHAPTER III

RESULTS

After gathering the scores for each of the variants (with 800 words evaluated in total), the overall

round scores (i.e. the mean of all the variant scores per round) for the Harry Potter criterion were

compared. The results are shown below.

Figure 4: Overall mean scores per round, with ANOVA and Tukey's Procedure included

18

The graph shows the mean diamonds for each of the overall round scores; they demarcate the

upper and lower bounds for the 95% confidence intervals for each of these scores. Using One-

way ANOVA to compare the overall round scores, it can be stated with almost 99% confidence

that these mean scores are not all the same. To determine which round scores can be considered

different, Tukey’s Procedure was used to compare each pair of scores. According to Tukey’s,

there is a significant difference between the scores for the elements in pairs (Round 1, Round 4)

and (Round 1, Round 5) with at least 95% confidence. Drawing from this result, it can be

inferred that the quality of the words in the later rounds (4 and 5) is higher overall than that of

the words in the first round. This suggests that the optimization process is improving the quality

of the grammar variants over several rounds.

19

 CHAPTER IV

DISCUSSION

The data obtained from the pilot experiment suggests that the optimization process used was

indeed successful in improving the Harry Potter grammar over time, and is an encouraging first

step. Perhaps with further improvements to the algorithm, such as more optimization rounds and

more fine-tuned changes in the random variation used, the variants could have the opportunity to

converge even further and achieve even more optimized results. Regardless, it will be said that

the hypothesis was supported.

This pilot experiment, of course, is only the first step in exploring the potential for using this

framework to optimize shape grammars based on a designer’s criteria. There are a few

directions that future research can take from here, many of which could be studied

independently. The first and foremost of these directions is expanding the use of the

optimization framework to actual shape grammars in Context Free to further support its

effectiveness. This would also tie into the need to develop an open-source optimization tool for

designers, as well as researchers, to use. With 2D shape grammars, other parameters are

introduced other than just the rule probabilities; these parameters should also be studied for their

potential in improving the structure of the generated designs. From 2D shape grammars, the

natural extension would be to explore the possibility of applying similar techniques to 3D shape

grammars. This should not pose too much difficulty once 2D grammar optimization is achieved,

20

as 3D grammars are essentially 2D grammars with a few extra parameters such as new

transformations.

Another direction to take, perhaps just as important as the first, is attempting to use machine

learning techniques to replace the need for human evaluation. Grammar optimization is a data-

oriented goal, and as such, its major limitations will primarily stem from the availability and

reliability of this data. Human evaluation, while fairly reliable en masse, is a much slower

process and one that is prone to much more variance than a purely computer-based technique.

For instance, say a designer wanted to optimize a shape grammar that generates images of clouds

and, instead of relying on human evaluators to rate the cloud exemplars, he or she could compile

a training set made up of real images of clouds and have the computer compare the exemplars to

the training designs. This would be more challenging to achieve, but would enormously speed

up the evaluation time needed to optimize the grammar and eliminate much of the variance that

arises from human-centered studies. Plus, in order for the designer to test the exemplars for

specific criteria (for example, if the designer wanted the cloud grammar shown in Figure 1 to

only generate cumulonimbus clouds), the training corpus would simply need to consist of

designs that strongly achieve these criteria (in this case, it would simply need pictures of

cumulonimbus clouds).

From the ability to quickly mine this data, other opportunities could open to further improve the

optimization process used. For example, the standard deviation for the random variable used to

scramble rule probabilities is currently the same for all rules; it only decreases with each

21

successive optimization round. However, some rules may be much more sensitive to alterations

in their probabilities than others. If a grammar contains some of these high-precision rules, and

all of the rules’ probabilities are changed a similar amount, then the effect of changing the highly

sensitive rules could overshadow that of other, less sensitive rules. To avoid this effect and

allow for more fine-tuned control of the grammar variant creation process, the standard deviation

could be customized for each rule to account for its sensitivity. To do so quickly would require a

computer evaluating the quality of exemplar designs rather than humans. Assuming this was

possible, then the computer could run a set of preliminary evaluation trials where the rule

probabilities are systematically changed and their effects on the resulting designs are measured.

From these measurements, a gradient can be approximated to describe the “sensitivity” of rules

and recommend appropriate standard deviations for the optimization trials.

Finally, another potential direction deals with addressing a caveat with the proposed optimization

framework. Namely, the proposed method relies on constructing a configuration space for all

possible variants of grammar G and finding an optimal place for grammar G' within the

configuration space, which makes the assumption that the positive and negative exemplars are

located in easily separable clusters. If this assumption is met, then Grammar G' should be

located closer to the cluster of positive variants than negative variants. However, what happens

if not all of these variants are easily separable?

22

Figure 5: Examples of possible configuration space outcomes. a) High Decoupling: the positive and

negative variants are in easily separable clusters, and thus the direction that the properties of

Grammar G need to be adjusted are apparent. b) Low Decoupling: the positive and negative

variants are not easily separable, given the current dimension of the configuration space. This

indicates that another dimension needs to be added, which is achieved by adding another rule (and

thus another parameter) to Grammar G. With a well-formed new rule, these variants should

become more easily separable.

 If the positive and negative grammar variants are not easily separable, as shown in Figure

5b, then the "force" model will not work very well, because the forces from the positive and

negative variants partially cancel each other out. A way to address this is to change the

configuration space by changing the structure of grammar G itself. This would require the

addition, deletion, and restructuring of rules. Adding a rule to grammar G, for example, would

add another rule probability and thus another variable to G, increasing the dimension of grammar

G's configuration space. Then, variants that were hard to separate before would hopefully be

more easily separable in this new dimension. Figuring out which new rules to add, modify, or

delete, however, is a tricky problem, and one that requires much further study to address.

23

REFERENCES

[1] A. Martinović and L. Gool. Bayesian Grammar Learning for Inverse Procedural Modeling. In

Proceedings of the Conference on Computer Vision and Pattern Recognition, June 2013.

[2] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios. Shape Grammar Parsing

via Reinforcement Learning. In Proceedings of the Conference on Computer Vision and Pattern

Recognition, 2011.

[3] J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman, and R. Měch. Learning Design Patterns

with Bayesian Grammar Induction. In ACM Symposium on User Interface Software and

Technology, 2012.

[4] K. Vanlehn and W. Ball. A Version Space Approach to Learning Context-free Grammars.

In Machine Learning, 2(1), 1987.

[5] J. Beirão, J. Duarte, and R. Stouffs. An Urban Grammar for Praia: Towards Generic Shape

Grammars for Urban Design. In Conference on Education and Research in Computer Aided

Architectural Design in Europe, 2009.

[6] SCIgen - An Automatic CS Paper Generator. Retrieved March 3, 2014, from Computer

Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology:

http://pdos.csail.mit.edu/scigen/.

[7] A. Hwa. Supervised Grammar Induction Using Training Data with Limited Constituent

Information. In ACM Computing Research Repository, 1999.

[8] D. Bertsimas and J. Tsitsiklis. Simulated Annealing. In Statistical Science, 8(1), 1993.

[9] M. Christensen. Structural Synthesis using a Context Free Design Grammar Approach. In

Generative Art International Conference, 2009.

http://pdos.csail.mit.edu/scigen/

