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ABSTRACT

Wrinkling of stiff film on semi-infinite compliant substrates has attracted at-

tentions recently due to its important applications in stretchable electronics and

micro-pattern metrology. However, wrinkling of a stiff film on a compliant thin film

substrate has not been well understood. The composite bilayer comprised with a

stiff film and a stretched film has a critical application in developing advanced thin

film solar cells for long duration stratosphere balloons.

The presented thesis focuses on wrinkling of stiff films with finite widths on

stretched compliant thin sheet via experimental and theoretical approach. Polyester

films and low density polyethylene films have been utilized as the surface films and

substrate films, respectively. Flexible polyvinyl chloride films has also been employed

to serve as the surface layer for better understanding the physics behind the phenom-

ena. The experiments reveal wrinkling phenomena of the film on the stretched thin

sheet are very similar to that of a stiff film on a semi-infinite elastic foundation. A

theoretical model considering finite width effect is formulated based on the concept of

effective elastic foundation observed from the experiments via variational approach

and principle of minimum potential energy. The results predicted by the theoretical

model is validated via experiments and the finite width effect is also investigated and

discussed.

In summary, the presented study shows the stretched film plays the role as a

virtual semi-infinite elastic foundation for the surface film. The experimental ob-

servations and theoretical prediction of the phenomena has been achieved. It may

provide a physics-based foundation for technology adventures in thin-film solar cell

powered scientific balloon.
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NOMENCLATURE

LDPE Low density polyethylene

PVC Polyvinyl chloride

A wrinkling or buckling amplitude

Bc Bending rigidity of composite bilayer beam

Df Flexural rigidity of plate/film

Ei Elastic modulus or Young’s modulus, where i = f, s, c

denoting film, substrate, and composite bilayer, respectively

Ēi plane-strain elastic modulus

hi film thickness, where i = f, s, denoting film, substrate, respectively

Ke effective stiffness of the virtual elastic foundation

L1 Width of the substrate film and length of the surface film

L2 Length of the substrate film

Nij Axial force (i = j) in i-direction or shear force (i 6= j)

T3 Normal traction at the interface of the two layers

W Width of the surface film

εij strain component follows Nij

εcr critical buckling strain

κ Bending curvature

λ wrinkling or buckling wavelength

νi Poisson’s ratio, where i = f, s, denoting film, substrate, respectively

ψb Bending energy density in film

ψm Membrane energy density in film if any
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1. INTRODUCTION

The first chapter of this thesis introduces background, motivation, and wrinkling

phenomena for the current study. A large literature exists reporting short wavelength

buckling/post-buckling wrinkles of compressed thin film attached to thick complaint

substrate. However, very limited studies have been done on compressed film rested

on thin soft substrate, especially compressed film bonded to stressed/stretched film.

The goal of this thesis is to understand the mechanical behaviors of a stiffer elastic

film bonded to a stretched soft elastic film with the potential to promote advances of

new technology in developing sustainable energy system for long duration scientific

balloons.

1.1 Background and Motivation

Membrane and film structures are widely used in deployable space structure ap-

plications such as stratospheric balloons, airships, solar sails and inflatable reflectors

(Deng, 2012; Khoury, 2012; Zheng, 2009). Such type of structures can also be widely

found in energy applications, especially in solar energy harvesting systems (Chopra

et al., 2004; Lee et al., 2012), as well as in flexible and stretchable electronics (Khang

et al., 2006; Kim et al., 2010), just to mention a few. Figure 1.1 shows several

examples of the applications mentioned above.

Employing scientific balloon to Mars and Titan as a low cost approach to conduct

cutting edge science has been studied for years (Hall et al., 2007; Hall, 2011). Another

innovative idea of operating a network of high altitude balloons as effective as a

network of satellites for certain communication objectives was proposed recently

(Azevedo et al., 2011). However, one big challenge for such tasks would be how

to provide sustainable power supply to the devices carried by a balloon. Based on

1



a b
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e

Figure 1.1: Application of membrane and film structures. (a) Zero pressure strato-
spheric balloon (courtesy of NASA), (b) Lockheed Martin hybrid airship (courtesy
of Lockheed Martin),(c) super pressure stratospheric balloon prototype (courtesy of
NASA), (d) stretchable electronics (Kim et al., 2010), (e) thin film solar sticker (Lee
et al., 2012).
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the working environment of the balloon, the most convenient energy resource is solar

energy which is clean and sustainable. To meet the light-weight requirement, and

to collect enough power for balloon and device operation, there will be a minimum

surface area required for the solar cell. Therefore, to balance these aspects mentioned,

thin-film solar cell has attracted attentions. An effective approach proposed by the

author is to stick thin strip of solar cell (Lee et al., 2012) onto the surface of balloon.

The set of strip-like thin-film solar cells can be placed along either the longitude

direction (referred to as machine direction) or the latitude direction (called transverse

direction).

The solar film and balloon together comprise a composite bilayer system. Varia-

tion in thermal and mechanical loading condition (i.e. film temperature and pressure)

will change the volume of the balloon and vary the strain in the bilayer. A distinct

buckling phenomenon may occur when the shape of balloon changes due to applied

loads. Sufficiently large compressive strain induced by the balloon membrane would

generate surface wrinkling on the top layer due to the difference in the stiffness of

the two layers. As a result, buckling of the thin-film solar cell may decrease the

performance or even damage the solar cell. Understanding the formation of wrinkles

and their incremental deformation with the increase of compressive strain on the

film attached on stretched film is highly desirable to evaluate the proposed bilayer

system.

1.2 Critical Review of Wrinkling Phenomena

Wrinkling is a phenomenon commonly observed in nature and industrial appli-

cations. Understanding this phenomenon from the point of view on instability dates

back to several decades. In the middle of the last century, wrinkling analysis was

applied to laminates in the form of sandwich panels comprised of two stiffer thin

3



sheets bonded to a thick soft core (Allen, 1969). In fact, the exploration of wrinkles

in nature and in the art is an old subject, but the scientific study of wrinkles is

a more recent developing area as it involves instabilities and large deformations in

multiple-length-scales, as shown in Figure 1.2.

Wrinkling phenomena have been recently studied extensively both experimentally

and theoretically (Brau et al., 2011, 2013; Cao and Hutchinson, 2012; Huang, 2005;

Huang et al., 2005; Jiang et al., 2007, 2008; Pocivavsek et al., 2008; Sun et al.,

2012). Among all classes of wrinkling phenomena, wrinkling of stretched/sheared

sheet (Cerda and Mahadevan, 2003; Davidovitch et al., 2011; Puntel et al., 2011;

Wong and Pellegrino, 2006a,b) and wrinkling of stiff film on complaint substrate

(Cao and Hutchinson, 2012; Chen and Hutchinson, 2004; Groenewold, 2001; Huang

et al., 2005; Huang, 2005; Shield et al., 1994; Song et al., 2008; Zang et al., 2012) are

two representative categories.

1.2.1 Wrinkling of Stretched Sheet

Thin films are among the ubiquitous examples of flexible structures widely ap-

plied in aerospace, biomedical, and civil engineering. Tensional/stretching wrinkling

in thin sheet, as shown in Figure 1.2(a), is intensively investigated and experimen-

tally, analytically, and numerically (Cerda et al., 2002; Cerda and Mahadevan, 2003;

Davidovitch et al., 2011; Puntel et al., 2011; Nayyar et al., 2011). In addition, pure

shearing induced wrinkling also attracts attentions and has been studied recently

(Massabò and Gambarotta, 2007; Wong and Pellegrino, 2006a,b). Pure shearing of

an infinitesimal body can be considered as stretching in its two principal directions.

Hence, shearing induced wrinkles have a similar mechanism as stretching induced

wrinkles.

To understand wrinkling, two approaches, tension field theory (Coman, 2007;

4
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e f

Figure 1.2: Multiple-length-scales in wrinkling phenomena. (a) Wrinkles in a
polyethylene sheet (Cerda et al., 2002). (b) Pattern of folds obtained for a rub-
ber curtain (Vandeparre et al., 2011). (c) Polyester film on water with wave length
of 1.6 cm (Pocivavsek et al., 2008). (d) A thin coloured stiff PDMS film rested on
a thick soft PDMS substrate (Brau et al., 2011). (e) Wrinkles in single-crystal Si
ribbons attached to a PDMS substrate (Jiang et al., 2007). (f) Trilayer of colloidal
gold nanoparticles on water with wavelength of 10µ m (Pocivavsek et al., 2008).
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Steigmann, 1990) and bifurcation analysis (Nayyar et al., 2011; Zheng, 2009), have

been commonly employed to analyze wrinkling of elastic membranes. Typically,

tension field theory method can provide the prediction of the stress distribution and

wrinkling regions. However, it may not provide wrinkle wavelength and amplitude.

The bifurcation analysis are typically performed via nonlinear finite element method

using thin shell theory. By employing this approach, critical condition for buckling

and post-buckling may be obtained. For some simple cases, analytical solution can

be obtained (Puntel et al., 2011; Wong and Pellegrino, 2006b).

Additionally, Cerda and Mahadevan (2003) provided the simple scaling analysis

for uniaxial stretched polyethylene film and extended it for a wide range of wrinkling

phenomena. Their approach has a distinguishing feature that the potential energy

is minimized under a geometric constraint to solve the boundary value problem for

the stretched sheet. The wrinkle wavelength λ and amplitude A were found to be

λ = 2
√
π

(
B

T

)1/4

L1/2 ∼
(
B

T

)1/4

, (1.1)

and

A = λ

√
2

π

(
∆

W

)1/2

∼ λ

(
∆

W

)1/2

. (1.2)

where B is the bending stiffness, T is the applied tensile load, L and W are the

length and width of the film, respectively, ∆ is the imposed compressive transverse

displacement. Eq.(1.1) shows that wavelength of wrinkles decreases with the increase

of applied strain. It is in good agreement with later numerical studies (Zheng, 2009;

Nayyar et al., 2011). However, these later studies showed that the amplitude of

wrinkles exhibits a non-monotonic dependence on the applied longitudinal strain.

Comparing the above equations with the corresponding solutions of beam buck-
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ling on elastic foundation (Kármán and Biot, 1940), it is indicated that tensile force

T plays a role as the ”effective” elastic foundation for the stretched sheet. With the

increase of T , the ”effective” stiffness of the elastic foundation increases monotoni-

cally. Cerda and Mahadevan (2003) also suggested that the effective stiffness of this

”virtual” foundation can be scaled as K ∼ T/L2. Details on the effective stiffness

will be discussed in Chapter 3.

1.2.2 Wrinkling of Stiff film on Compliant Substrate

Stiff thin film rested on complaint substrate may suffer from wrinkling induced

by the in-plane compression. It is similar to a classical problem in soil-structure

interaction, buckling of beam/plate on elastic foundation. It has been pointed out

that wrinkling may cause interfacial delamination (Mei et al., 2011; Shield et al.,

1994; Vella et al., 2009). Most of the studies on this type of wrinkling assumes

that the bonding between surface layer and substrate is sufficiently strong, such that

buckling induced delamination is avoided. In the conventional analysis on wrinkling

of stiff film bonded to compliant substrate, surface effects are neglected. However,

it should be noted that surface properties will play an important role in nano-scale

analysis (Huang et al., 2007).

Wrinkling of stiff film on soft substrate can be described using either an equi-

librium approach (Huang, 2005; Huang and Suo, 2002; Im and Huang, 2005) or

an energy method (Brau et al., 2011, 2013; Jiang et al., 2008; Pocivavsek et al.,

2008; Song et al., 2008). It involves a balance of force/energy between film bend-

ing which suppresses short wavelengths, and substrate deformation which suppresses

large wavelength. Most examples in the literature formulate the problem as a thin

plate (Föppl von Kármán plate theory) or an Euler beam (considering large deflec-

tion) attached to a semi-infinite substrate (plain-strain condition), as illustrated in

7



Figure 1.3.

Figure 1.3: Schematic of an elastic film wrinkling on a compliant substrate (Huang
et al., 2007)

The governing equation for the bending of a stiff film on a more complaint elastic

substrate shown in Figure 1.3 is

Ēfh
3

12

d4w

dx4
+N

d2w

dx2
+Kww = 0 (1.3)

Ēi = Ei

(1−ν2i )
is the plain-strain modulus, where the subscript i can be replaced by f or

s, denoting the film and substrate, E is the Young’s modulus; h is the thickness of the

film, ν is the Poisson’s ratio, Kw is the Winkler’s modulus of an elastic semi-infinite

foundation (Biot, 1937), Kw = Ēsπ/λ, N is the applied compressive force, and λ

is the wrinkle wavelength. The x-axis is defined to be parallel to the compression

direction and the z-axis is perpendicular to the film surface. The solution of above

equation has a sinusoidal form, thus, it is reasonable to assume that the deflection

of the film can be described as:

w(x) = Acos
2πx

λ
(1.4)

where A is the amplitude of wrinkle, 2π/λ is the so-called wave number. Substituting

8



Eq.(1.4) into Eq.(1.3) and solving for the applied force N yields

N =
Ēfh

3

3

(π
λ

)2
+
Ēsλ

4π
(1.5)

From Eq.(1.5), it is clear that F is a function of λ. Setting ∂F/∂λ = 0 gives the

wavelength which minimizes the applied force N . The initial wrinkling (buckling)

wavelength and its corresponding critical strain is the following.

λc = 2πh

(
Ēf
3Ēs

)1/3

(1.6)

and

εc =
1

4

(
3Ēs
Ēf

)2/3

(1.7)

It is noted that the critical strain of wrinkling (εc) only depends on the modulus

ratio of the substrate to film. When the applied strain exceeds the critical strain

of initial wrinkling, post-buckling behavior will involve in the wrinkling process.

For post-buckling, further strain is accommodated by increasing wrinkle amplitude,

while wavelength remains constant. Although it has been shown that wavelength

will decrease with increase of applied strain (Jiang et al., 2007), above conclusion is

still valid and has been widely applied for film with small deformation. As indicated

in Eq.(1.5), λ is independent of ε. When this holds true, at the instability threshold,

the release of strain in the bilayer is represented by ε−εc, and a kinetic relation over

one period of the wavelength can be expressed as

ε− εc =
1

λ

∫ λ

0

√
1 +

(
dw

dx

)2

dx− 1. (1.8)

Here, dw/dx is small. Expanding the above equation and only keeping the
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quadratic term, and inserting in Eq.(1.4), gives

ε− εc =
1

λ

∫ λ

0

(
1 +

1

2

(
dw

dx

)2

+ ...

)
dx− 1 =

π2A2

λ2
. (1.9)

Then, the expression connecting wrinkle amplitude and applied strain is obtained

by combining Eq.(1.6), Eq.(1.7), and equation above, as

A(ε) = h

√
ε

εc
− 1. (1.10)

The critical strain at which wrinkling occurs, wrinkle amplitude and wavelength

as a function of applied strain characterize the physics of the surface wrinkling phe-

nomena. The above derivation and solutions for critical wavelength and strain are

referred to as the conventional analysis for buckling of stiff film on complaint sub-

strate without pre-stretching (Chung et al., 2011).

In the conventional analysis, the nonlinearity and incremental stiffness of the

substrate is accounted by taking Es as a function of λ. However, the nonlinearity

due to pre-stretch has not been described. With pre-stretched substrate, the in-

cremental modulus has a significant effect on the nonlinearity relevant to wrinkling

(Hutchinson, 2013; Sun et al., 2012). Hutchinson (2013) investigated the role of non-

linear substrate elasticity in the wrinkling of thin films. The incremental modulus

is precisely described. It identifies two dimensionless parameters that control the

stability and mode shape of evolution of the bilayer. One parameter specifies ar-

bitrary uniform substrate pre-stretch. Another is a stretch-modified modulus ratio.

The effect of pre-stretch on bilayer of neo-Hookean material has been discussed by

Cao and Hutchinson (2012). Song et al. (2008) studied wrinkling of elastic film on

pre-stretched neo-Hookean substrate under large deformation. The nonlinearity of

10



the substrate can also be introduced by taking viscous layer (Huang and Suo, 2002)

or viscoelastic layer (Huang, 2005; Im and Huang, 2005) as the substrate.

In addition to the initial wrinkling (buckling) described above, post-buckling

behavior such as creasing, folding, and periodic doubling may occur (Brau et al.,

2011, 2013; Sun et al., 2012). Brau et al (2013) also investigated the influence of the

substrate nonlinearity on wrinkle to fold transition.

A complete review of the different types of wrinkling phenomena is out the scope

of the thesis. Only the relevant of the background for the presented thesis is described

here. Some detailed review on previous studies are discussed in each chapter.

1.3 Goal and Outline of the Thesis

The goal of the thesis is to investigate the wrinkling of compressed thin film

bonded to a stretched film and to develop an approximate theoretical model to

predict the phenomena. The compressive strain in the bilayer film is generated by

Poisson contraction effect.

The thesis is organized as follows. Chapter 2 elaborates in situ experimental

investigations of the wrinkling phenomenon in several bilayer systems using different

polymeric materials. The physics-based theoretical model is developed via varia-

tional method and principle of minimum potential energy in Chapter 3. In Chapter

4, comparisons between prediction of wavelength from the theoretical model and

experimental measurement are performed. Finally, conclusions are drawn from the

findings, with recommendations for the future directions given in Chapter 5.
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2. EXPERIMENTAL OBSERVATIONS

Buckling and post-buckling wrinkle patterns are generated experimentally in a

group of polyester films as well as a group of flexible polyvinyl chloride (PVC) film

attached to a stretched low density polyethylene (LDPE) thin film. The lateral com-

pressive strain induced by Poisson effect is provided by stretching the substrate film.

Wrinkle patterns are observed with significant differences compared with wrinkling

of the stretched sheet, and exhibit a similar behavior as wrinkling of stiff film on

compliant substrate. It is also found that the width of the surface layer significantly

affects the formation of wrinkle patterns.

2.1 Experimental Description

The aim of the presented experiments is to observe the wrinkling phenomena

when a stiff elastic film is attached to a stretched soft elastic film. The experimental

observations may provide a foundation for physics-based modeling or simulation.

Two groups of surface film are tested. One is flexible polyvinyl chloride (PVC)

film purchased from 3M R© and another is polyester film. The substrate layer is low

density polyethylene (LDPE) film. Both polyester and LDPE film are purchased

from McMaster-Carr R©. Materials are selected based on the differences in elastic

modulus that EflexiblePV C < ELDPE < Epolyester. Table 2.2 and Table 2.1 summarize

the material properties and geometries of the films used in the experiments.

It is known that wrinkles can be introduced by stretching a thin sheet, which is

undesired in the current experiments. It is favorable that wrinkles appearing on the

surface layer are generated by buckling of surface layer rather than induced by the

buckling of the substrate layer. A recent study (Nayyar et al., 2011) indicated that

wrinkling of stretched rectangular sheet can be suppressed by controling the thickness
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Table 2.1: Geometries of utilized thin films

Material Length (mm) Width (mm) Thickness (mm)
LDPE 145 40 0.1

Polyester 40 2.5, 10, 20, 40 0.05
Flexible PVC 40 2.5, 10 0.15

Table 2.2: Material properties of the employed films

Materials Young’s Modulus (GPa) Poisson’s Ratio
LDPE 0.3 0.44

Polyester 4.9 ∼ 5.1 (select 5.0) 0.38
Flexible PVC � 0.3 N/A

and the aspect ratio (ratio of length over width). Their results suggested that wrinkle

amplitudes will be much smaller than the thickness of the film if width/thickness'

1000 and the aspect ratio ' 3.2. Thus, sizes of the substrate film shown in Table 2.1

were carefully selected based on the conclusions drawn from Nayyar et al. (2011),

such that wrinkles are aimed to be suppressed.

Figure 2.1 shows simple wrinkling tests on two stretched LDPE films. Both

films have the same material properties and geometry except thickness. Along the

transverse direction, black lines are marked using marker pen for clear observation.

It is observed that upon the stretch ratio reach 1.2 (current length/original length),

no wrinkles can be observed in the sheet with 0.1 mm thickness and an aspect ratio

of 3.6. However, wrinkles are clearly observed in the one with 0.05mm thickness.

Therefore, the substrate film is selected as listed in Table 2.1.

A built-in-house uniaxial stretching apparatus was employed to perform the test,

as shown in Figure 2.2. Film was clamped at its ends. It was found in previous

works that stress field and deformation in clamped film under uniaxial stretching

13



a b

Figure 2.1: Wrinkling suppression of stretched rectangular LDPE film. (a) LDPE
film with 145 mm long, 40 mm wide and 0.1 mm thick. (b) LDPE film with 145 mm
long, 40 mm width and 0.05 mm thick.

is inhomogeneous (Cerda et al., 2002; Nayyar et al., 2011). Therefore, the lateral

contraction due to Poisson effect is also inhomogeneous. The mid-section of the

substrate along the longitude direction has the largest lateral contraction. Thus,

the surface film will be attached on the mid-section of the substrate as shown in

Figure 2.2. In the experiments, displacement was applied by manually controlling

the sliding block via the screw.

The substrate film was cut into pieces and gently cleaned and flattened. Then,

surface film was mounted on the mid-section of the substrate. After that, bilayer was

clamped at the two ends on the test apparatus. There was no pre-stretch induced

during the process. Then, the film/substrate composite was subjected to incremental

compression by increasing the longitude displacement. During the tests, measure-

ments on displacement, wavelength and lateral contraction were carried out by a

14



Figure 2.2: Experimental setup

precision vernier caliper with the accuracy of 0.25 mm.

Tensile or compressive strain mentioned in the thesis are defined as nominal

strain or overall strain, ε22 = L2−L02

L02
and ε11 = L1−L01

L01
, where L2 and L1 are the

current length and width, respectively, and L02 and L01 are the original length and

width, respectively. After wrinkles formed, the evolution of wrinkle wavelength with

increasing compressive strain was recorded via a digital SLR camera. The influence

of width effect on wrinkle patterns was also investigated.

2.2 Formation and Evolution of Wrinkles

Formation of wrinkles, called initial wrinkling here, is considered as buckling

phenomena, while evolution of wrinkles is considered as a post-buckling behavior. In

the experiments, it was found that the employed polyethylene film remains elastic

until the tensile nominal strain reaches approximately 20%. Observations from the

experiments are displaced in Figure 2.3 and Figure 2.4.

Figure 2.3 shows wrinkle formation and evolution on the flexible PVC/LDPE

composite bilayer. The wavelength decreases with increases in compressive strain,

while the wrinkle amplitude increases with the growth of compressive strain. These
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a b

c d

Figure 2.3: Wrinkling of 2.5 mm wide flexible PVC film. (a) initial wrinkles at
ε11 = 7.1%, (b) wrinkles at ε11 = 8.8%, (c) wrinkles at ε11 = 10.7%, (d) wrinkles at
ε11 = 12.4% (top view).

a b

c d

Figure 2.4: Wrinkling of 2.5 mm wide polyester film. (a) initial wrinkles at ε11 =
0.31%, (b) wrinkles at ε11 = 1.6%, (c) wrinkles at ε11 = 2.1%, (d) wrinkles at
ε11 = 6.1% (top view).
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observations agree well qualiyatively with the finite deformation analysis of buckled

film on complaint substrate by Jiang et al. (2007). In Figure 2.3 (d), deformation

has exceeded the elastic range, and slight interfacial debonding can be observed. Due

to experimental limitations, it was not possible to perform amplitude measurements

in addition to wavelength measurement.

The polyester films purchased here are transparent. Hence, they are colored

manually by blue marker pen along their length for clear observations. Similar to the

previous case, the wavelength decreases with increases in compressive strain, while

the wrinkle amplitude increases with the growth of compressive strain. Comparing

Figure 2.4 with Figure 2.3, it is found that the critical strain at which wrinkle forms

for polyester/LDPE bilayer is much smaller than that of flexible-PVC/LDPE bilayer.

This is due to the different elastic modulus of two materials. It can be concluded

that film with a lower elastic modulus will have a higher critical buckling strain.

This conclusion again agrees with the conventional analysis indicated in Eq.(1.7).

Another interesting phenomenon one may observe is that the wrinkle in the center

has a larger amplitude than its neighbours’. Evolution of wrinkles starts from the

center of the surface layer, then propagates along the length. This phenomenon can

also be observed in wider films discussed later.

2.3 Finite Width Effect

In the previous chapter, it was mentioned that the conventional analysis involved

a critical assumption that the surface film width is much larger than the wavelength

such that the deformation was under plain strain condition. However, this may not

hold for a stripe-like film. Recent works (Jiang et al., 2008; Tarasovs and Andersons,

2008) pointed out that the wrinkle wavelength and amplitude also depends on the

film width when the film is moderately narrow. In this section, the width effects are
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a b

c d

Figure 2.5: Wrinkling of 10 mm wide polyvinyl film. (a) initial wrinkles at ε11 =
4.8%, (b) wrinkles at ε11 = 6% (top view), (c) wrinkles at ε11 = 8.9%, (d) wrinkles
at ε11 = 10.7%.

experimentally investigated for the two composite bilayers. Two cases (one for each)

are photographed as typical cases for illustration.

Evolution of wavelength and amplitude follows the same trend as found in the

narrower film observed in previous section. Comparing Figure 2.5 with Figure 2.3,

it can be observed that the narrower film has a higher critical strain, whereas, the

wider film has a larger wrinkling wavelength. This also agrees with the experimental

observations and theoretical analysis by Jiang et al. (2008) and Tarasovs and Ander-

sons (2008) on semi-infinite substrate. The buckling occurs starting from the center

of the film which is similar to what was observed in the narrower film. As shown

in Figure 2.5 (b), wrinkle in the center has a larger amplitude than its neighbours.

With the increase of compressive strain, the neighbour wrinkles grow at the expense

of delaying the central wrinkle’s growth. Finally, amplitude and wavelength of each

wrinkle approach the same value through the length of the surface layer. Note that,

slight delamination can be observed at the edge far from the view in Figure 2.5

(d). In addition, wrinkling of 10 mm wide polyester film behaves the same way as
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a b

c d

Figure 2.6: Wrinkling of 10 mm wide polyester film. (a) initial wrinkles at ε11 = 0.4%,
(b) wrinkles at ε11 = 1.9%, (c) wrinkles at ε11 = 4.1%, (d) wrinkles at ε11 = 6.7%.

wrinkling of 10 mm wide flexible PVC shown in Figure 2.6.

2.4 Summary of Observations

In the beginning of this chapter, it was motioned that EflexiblePV C < ELDPE <

Epolyester. Thus, two bilayer systems were: a compliant film on a stiff substrate and

another a stiff film on a complaint substrate. Wrinkle wavelength as a function of

compressive strain for each surface layer with varying width is plotted in Figure 2.7

From Figure (2.7), observations can be summarized as the following. Wavelength

decreases with increase of compressive strain monotonically in each case studied. For

the same width, a film with smaller elastic modulus has a smaller wrinkle wavelength

and larger critical buckling strain. For the same material, a wider film has a larger

wavelength at the same strain. These conclusions agree well with the conventional

analysis on wrinkling of stiff film bonded to compliant substrate by many previous

works as mentioned in Chapter 1.

Results from the experiments show that wrinkling mechanism of thin-film on

stretched thin-film is very similar to wrinkling of thin-film attached on semi-infinite

elastic substrate. And these observations may suggest that the stretched film or the

tensile strain in the substrate may play a role as an equivalent elastic foundation.
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The analogy on the effective elastic foundation for a stretched sheet suggested by

Cerda and Mahadevan (2003) is experimentally shown in this chapter.

0 2 4 6 8 10 12 14
4

6

8

10

12

14

16

18

20

22

Compressive Nominal Strain ε
11

 (%)

W
av

el
en

gt
h 

λ 
(m

m
)

 

 
FPVC+LDPE W=2.5 mm
FPVC+LDPE W=10 mm
PET+LDPE W=2.5 mm
PET+LDPE W=10 mm
PET+LDPE W=20 mm
PET+LDPE W=40 mm

Figure 2.7: Wrinkle wavelength as a function of applied compressive strain for
specimens with varying width (FPVC represents flexible PVC, and PET represents
polyester).
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3. MODEL FORMULATION

A theoretical model is formulated in this chapter. Lagrangian description is uti-

lized to describe the deformation of the material points of the film. The surface layer

is modeled as a nonlinear von Kármán plate with small strain but large deflection.

The substrate is modeled as a thin elastic sheet under uniaxial tension. Here, the

tension is considered quasi-statically applied. The governing equation of the wrin-

kle formation is then obtained by variational approach. Corresponding solutions for

critical conditions are achieved by minimization of potential energy.

3.1 Kinematics

The problem is formulated in the continuum scale. It is assumed that the com-

posite bilayer film can be viewed as having a continuous distribution of matter in

space and time. The bilayer is imagined as being composition of a continuous set of

material points. The deformation of the bilayer film is illustrated in Figure 3.1.

x(x1, x2, x3) is the position vector, and u(x) is the displacement field (u1, u2, u3) or

Figure 3.1: Deformation of the composite bilayer by continuum mechanics
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(u, v, w).The corresponding displacement gradient (grad u) and deformation gradient

(Fij) are formulated by classical continuum theory (Bower, 2010)

grad u =
∂ui
∂xk

, Fik = δik +
∂ui
∂xk

(3.1)

where, δik is the Kronecker delta and subscripts i, j, k take values 1, 2, and 3. In the

presented problem, Lagrange strain tensor is utilized.

Eij =
1

2
(FkiFkj − δij) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xj

∂uk
∂xi

)
(3.2)

Consider the substrate is a rectangular sheet with width of L1, length of L2, and

thickness of hs. And the surface film is also a rectangular sheet with width of W ,

length of L1, and thickness of hf . Choose a reference coordinate such that

x1 ∈ [−L1

2
,
L1

2
], x2 ∈ [−L2

2
,
L2

2
], x3 ∈ [−hs, hf ] (3.3)

Figure 3.2 shows the mid cross-section, in (x1, x3) plane, of the bilayer in the

deformed configuration. Assume that the buckled film is inextensible and the deflec-

tion is w(x1), where x1 denotes the coordinate in the reference configuration. Let φ

denotes the angle between horizontal (dash line) and tangent (t) at a point of the

deformed surface film. Lagrangian description is adapted here, such that x1 labels

each material point in the deformed configuration. Because the problem is symmetric

zbout the axis of symmetry, only half of the wrinkled bilayer is illustrated in Figure

3.2. Let sinφ = ∂w/∂x1
.
= w,1, then, cosφ(∂φ/∂x1) = w,11, the following kinematic

relations will hold.

κ =
∂φ

∂x1
=

w,11√
1− w,21

(3.4)
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Figure 3.2: Schematic illustration of wrinkled bilayer. a pre-buckling state at top
and a wrinkling state at the bottom

u∗ =
L1

2
−
∫ L1

2

0

√
1− w,21dx =

∫ L1
2

0

(1−
√

1− w,21)dx (3.5)

Here, κ denotes the curvature. u∗, shown in Figure 3.2 is the compressed dis-

placement along horizontal direction. Eq.(3.5) imposes the condition of extensibility

to the composite system. This constraint for the system plays an important role in

potential energy minimization.

3.2 Deformation of the Surface Film

The nonlinear von Kármán plate theory (Timoshenko and Woinowsky-Krieger,

1987; Landau and Lifshitz, 1959) for large deflection of thin elastic plate under in-

plane and out-of-plane loads is employed for modeling of the surface layer. The

two layers are considered to be bonded perfectly, such that delamination will be

avoided. Then, the surface film is subject to the normal traction T3, as well as, the

shear traction T1 and T2. The displacement components are adapted as (u, v, w) as

described in previous section. The in-plane strain is connected to the displacement
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via Lagrange strain tensor, Eq.(3.2).

Since the material is assumed to be linear elastic material, the in-plane force and

strain can be connected via linear elastic constitutive relations.

Nαβ = Efhf

(
εαβ

1 + νf
+

νf
1− ν2f

εγγδαβ

)
(3.6)

where subscript f denotes film, subscripts α, β, γ take values 1 and 2. Ef is elastic

(Young’s) modulus, νf is Poisson’s ratio, hf is the thickness. The normal traction T3

and shear traction Tαβ at the interface of two layers can be obtained from the force

equilibrium.

T3 = Df
∂4w

∂xα∂xα∂xβ∂xβ
−Nαβ

∂2w

∂xα∂xβ
− Tα

∂w

∂xα
(3.7)

Tα =
∂Nαβ

∂xβ
(3.8)

where Df = Efh
3
f/12(1 − ν2f ) is the flexural rigidity or bending stiffness of the

surface film. The elastic energy in the deformed film includes two parts, membrane

energy from in-plane deformation and energy generated by out-of-plane bending.

The corresponding energy density equations are

ψm =
1

2
Nαβεαβ, (3.9)

and

ψb =
Df

2

[(
∂2w

∂x21
+
∂2w

∂x22

)2

− 2(1− νf )
(
∂2w

∂x21

∂2w

∂x21
−
(

∂2w

∂x1∂x2

))]
. (3.10)

The total energy density is obtained by adding Eq.(3.9) and Eq.(3.10).

It is noted that if there is no variation in vertical displacement w along the width,
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the partial differential equations became ordinary differential equations. Such that,

the nonlinear plate theory reduces to the large deflection beam theory. Plane strain

modulus is then replaced by Young’s modulus. Then, the in-plane membrane force

in the beam is

N11 = WEfhfε11, (3.11)

with membrane strain

ε11 =
du1
dx1

+
1

2

(
dw

dx1

)2

. (3.12)

The normal traction and shear traction between the two layers are

T3 =
EfWh3

12

d4w

dx41
−N11

d2w

dx21
− T1

dw

dx1
, (3.13)

and

T1 =
dN11

dx1
. (3.14)

The energy density functions become

ψm =
1

2
N11ε11, (3.15)

and

ψb =
Df

2

(
d2w

dx21

)2

. (3.16)

If the film thickness is much smaller than any other characteristic lengths in

the film, such as wrinkling wavelength, film width or length, then the film can be

modeled using large deflection beam theory (Song et al., 2008; Zang et al., 2012).

In the presented study, the thickness of both films are much smaller than other

characteristic length, and there is no significant variation in the width direction of
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the film, as been observed experimentally. Thus, the beam model can be adapted to

adequately model the deformation of the surface film.

3.3 Stiffness of the Effective Elastic Foundation

As introduced in Chapter 1, Cerda and Mahadevan (2003) firstly developed a

simple scaling law to describe the wrinkling phenomena of a stretched sheet. The

sheet is shown in Figure 1.2 (a). Their analysis employed the principle of mini-

mum potential energy. The bending energy due to deformation is predominant in

the transverse direction along width. And the stretching energy due to applied ten-

sion is restored and released along the longitude direction. The selection of wrinkle

wavelength is balanced between the bending energy and the stretching energy.

The stretching energy presented in their paper has the form of

Us =
1

2

∫
A

T (x)(
∂ζ

∂x
)2dA (3.17)

where ζ(x, y) is the vertical deflection of the sheet, T is the tensile load, A denotes the

sheet area. It is analogous to the form the energy in an elastic foundation supporting

sheet (Landau and Lifshitz, 1986; Timoshenko and Woinowsky-Krieger, 1987),

UF ∼
1

2

∫
A

Kζ2dA. (3.18)

where K is the stiffness of the foundation. Therefore, one may consider the following

scale relation may hold.

Ke ∼
T

L2
2

(3.19)

Here, Ke is designated as the stiffness of the ”effective” elastic foundation. Then the

stretched sheet can be imaged as a sheet rested on a virtual elastic foundation with
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stiffness Ke. Here, the tensile load T (N22 in the presented work) can be scaled as

T ∼ L1Eshsε22. Therefore, the stiffness of the ”effective” elastic foundation will be

finally formed as

Ke = c0
L1Eshsε22

L2
2

= c0
L1Eshsε11
νsL2

2

(3.20)

where c0 is the scale factor need to be determined, the minus sign ”-” in conventional

definition of Poisson’s ratio is omitted. Inserting Eq.(3.11) into Eq.(3.20), the stiff-

ness of effective elastic foundation can be obtained in terms of the lateral compressive

force.

Ke = c0
L1EshsN11

L2
2Ec(hs + hf )Wνs

= c0αN11 (3.21)

where, α = L1Eshs
L2
2Ec(hs+hf )Wνs

.

It is noted that Ke is a linear function of the lateral compressive strain ε11 or

force N11. However, Eq.(3.12) indicates that Ke is a nonlinear function of the vertical

deflection w(x1) or wavelength λ.

3.4 Formation of Wrinkles

With the preliminaries presented in the previous sections, the problem can be

considered as a composite beam resting on a virtual elastic foundation. The equiva-

lent bending modulus Ec and bending rigidity Bc of the composite beam are obtained

as

Ec =
1 +m2n4 + 2mn(2n2 + 3n+ 2)

(n+ 1)3(1 +mn)
Ef (3.22)

and

Bc = Ec
W (hs + hf )

3

12
=

(Efh
2
f − Esh2s)2 + 4EfhfEshs(hs + hf )

2

12(Efhf + Eshs)
W, (3.23)
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where, m = Es/Ef , n = hs/hf . Following the approach of Koiter’s instability

analysis (van der Heijden, 2009), the potential energy per wavelength in the system

shown in Figure 3.2 can be expressed as

Π =
1

λ

∫ λ

0

(
1

2
Bc

w′′2

1− w′2
+

1

2
c0αN11w

2

)
dx1 (3.24)

−1

λ

∫ λ

0

N11(1−
√

1− w′2)dx1

The first integral represents the energy from the system deformation, and the second

integral represents the work done by the external load. It can also be considered

as minimization of the deformation energy
(

1
2
Bc

w′′2

1−w′2 + 1
2
c0αN11w

2
)

subjected to

the kinematic constraint 1 −
√

1− w′2 with the Lagrange multiply N11. Taylor’s

expansion gives

1

1− w′2
= 1 + w′2 + w′4 + ... (3.25)

and
√

1− w′2 = 1− 1

2
w′2 − 1

8
w′4 + ... (3.26)

Substitute the Taylor’s expansion into Eq.(3.24), the potential energy functional then

can be written as a summation of polynominal series with respect to w. It is sufficient

to consider only the second order term in the polynominal, such that if the second

order term Π2 is positive-defined, the system will be stable. The limiting case that

Π2(w) = 0 for a nonzero displacement field is the critical case of neutral equilibrium.

The second variation of the potential energy functional Π2 are then given by

Π2[w;N11] =
1

λ

∫ λ

0

(
1

2
Bcw

′′2 +
1

2
c0αN11w

2 − 1

2
N11w

′2
)
dx1 (3.27)

Consider a small variation ξ, and set the first variation of Π2 to be zero, δΠ2/δξ =
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0, this gives the Euler-Lagrange Equation of the system as

Bcw
′′′′ +N11w

′′ + c0αN11w = 0, (3.28)

which is the governing equation of the presented problem. Solution of the governing

equation can be expressed by a Fourier sine/cosine series. From the experimental

observations, it is reasonable to assume one solution of Eq.(3.28) has a simple form

of

w(x1) = Acos

(
2πx1
λ

)
= Acos(kx1), (3.29)

where k = 2π/λ is the wrinkling wave number. The above solution is also the

assumed profile in many previous studies mentioned in Chapter 1. Substituting

Eq.(3.29) into the governing equation gives

Bck
4 −N11k

2 + c0αN11 = 0. (3.30)

Solving above equation for the compressive force N11 yields,

N11 =
Bck

4

k2 − c0α
. (3.31)

By chain role,

dN11

dλ
=
dN11

dk

dk

dλ
, (3.32)

therefore,

dN11

dλ
= 0 ⇒ dN11

dk
= 0. (3.33)

This will lead to a wave number or wavelength that minimizes N11. The admissible
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critical wave number kcr is then obtained as

kcr =
√

2c0α (3.34)

And the corresponding wavelength of initial wrinkling is

λcr =
2π

kcr
= π

√
2

c0α
. (3.35)

Substituting Eq.(3.34) into Eq.(3.31) gives,

Ncr = 4Bcc0α. (3.36)

And taking Eq.(3.11) into above equation, where Ef and hf are replaced by Ec and

hs+hf , respectively. Then, the critical compressive strain at which wrinkling occurs

can be obtained as

εcr =
4Bcc0α

WEc(hs + hf )
, (3.37)

which can be expressed as

εcr = c0
L1Eshs(hf + hs)

3L2
2WEcνs

. (3.38)
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4. MODEL VALIDATION

The developed theoretical model is validated here by physical experiments. A set

of polyester films with different widths but with the same length and thickness are

employed as the surface layer. LDPE film is still used as the substrate. Experimental

setup and procedures are the same as in Chapter 2. Width effects on wrinkling profile

are discussed. The prediction of the analytical model agrees with the experimental

observations in scale without data fitting.

4.1 Experiment Measurements

Experiments were performed on polyester/LDPE bilayer. The substrate film has

the exact dimensions as used in Chapter 2 (145 mm in length, 40 mm in width, and

0.1 mm in thickness). The surface layer, polyester film, was cut precisely with the

exact geometry as Chapter 2 except variations in width. The widths of polyester film

selected here are 2.5 mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. Materials

used in the experiments have the properties as listed in Table 2.2.

In the experiments, width is the only variable. Based on the width of each

polyester film, tests were divided into six sets. To increase the sampling number,

in each set of tests, initial wrinkling (buckling) wavelength and critical strain were

measured for 5 to 7 times following the sequence, loading→ measuring→ unloading

→ relaxing → loading... The root mean square (RMS) value of each test set is

considered as the representing value. Due to experiment limitations, only buckling

wavelength can be measured accurately to some extent. Initial wrinkling wavelength

was measured by measuring the peak-to-peak distance of the formed ”valley or ridge”.

Such that, initial wrinkling wavelength can be obtained as a function of film width.
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4.2 Validation

Recalling the expression derived for buckling (initial wrinkling) wavelength and

critical strain in Eq.(3.35) and Eq.(3.37) respectively, the scale factor has not been

determined yet. However, the scale factor can be eliminated by considering the ratio

of two critical wavelengths or critical strains for two cases with different widths. Such

that, model validation is independent of experiment. Due to experiment limitations,

it is impossible to measure the critical strain accurately. The validation is only per-

formed for validating the buckling wavelength. The ratio of two critical wavelengths

for two systems with different surface film width is expressed as

λ

λref
=

√
αref√
α

=

(
W

Wref

) 1
2

, (4.1)

where α is a function of width. The scale factor c0 is cancelled out.

Each film width is selected once as reference width Wref . The corresponding

buckling wavelength is considered as the reference wavelength λref . Ratio of the

width, W/Wref or Wref/W , is calculated by using the rest widths divided by the

reference width or using the reference width divided by the rest of them. Ratio of

the buckling wavelength is obtained follows the same procedure. The dimensionless

width W/Wref versus the dimensionless wavelength λ/λref is plotted in Figure 4.1

(a)-(f).

Figure 4.1 shows the wrinkling wavelength versus the film width for the analytical

model presented in Chapter 3 as well as for the experimental results given in this

section. Experimental data in Figure 4.1 has been post-processed in each figure.

For each case, the mean value is represented by the quadratic mean obtained via

root mean square with an assumption that the error distribution follows Gaussian

distribution. Standard deviation has been employed to quantify the error bars. It is
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Figure 4.1: Buckling wavelength as a function of the width of surface film, experimen-
tal and analytically solution. (a) Wref = 2.5 mm, (b) Wref = 5 mm, (c) Wref = 7.5
mm, (d) Wref = 10 mm, (e) Wref = 12.5 mm, (f)Wref = 15 mm.
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observed clearly that the analytical solution agrees with the experimental results in

scale.

By defining λ∗ = λ/λref and W ∗ = W/Wref , it can be observed that

λ∗ = (W ∗)
1
2 . (4.2)

Eq.(4.2) is a dimensionless equation which reveals the nature of the finite width effect

of the buckling wavelength for the presented problem.

Due to measurement limitations, the lateral compressive strain can not be mea-

sured accurately. Therefore, no experimental comparison is provided here. The

analytical solution for the ratio of two critical strains is expressed as

ε

εref
=

(
Wref

W

)
(4.3)

By defining ε∗ = ε/εref , the dimensionless form of Eq.(4.3) which describes the

nature of the influence by finite width on critical buckling strain is obtained as

ε∗ =

(
1

W ∗

)
(4.4)

The analytical solution of critical buckling strain ratio as a function of film width

ratio is shown in Figure 4.2.

The reference film width selected here follows the same way as shown in the

previous figure. Following Tarasovs and Andersons’ (2008) work, the x-axis is plotted

in log scale. It is seen that critical strain decreases dramatically with the increase of

film width. For a narrow film (stripe), the critical strain can be much higher than

that of an wide film. The trend observed here is similar to that of Tarasovs and

Andersons’ (2008) work on buckling of a finite width strip bonded to semi-infinite
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elastic foundation.

Therefore, it is clear that the wrinkling profile depends strongly on the film width.

Only small compression is needed to generate wrinkles on a relative wide film with

finite width. For strip-like thin film on substrate, the model needs to be established

carefully with consideration on finite width effect.
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Figure 4.2: Analytical solution of buckling critical strain as a function of the width
of surface film.
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5. CONCLUSIONS

The presented study investigates the buckling phenomenon of stiff films bonded on

stretched thin sheets experimentally and theoretically. Compressive load is provided

by lateral contraction due to Poisson effect. Phenomena observed in the experiments

include initial wrinkling of the bilayer (buckling) and the wrinkle evolution (post-

buckling). The observed behavior of the growth of the wrinkles is very similar to

that of the films rested on elastic foundations.

Based on the experimental observations and previous studies, a theoretical model

has been developed. The model considers a virtual elastic foundation or an effective

elastic foundation on which the composite bilayer rested. The effective stiffness of

that elastic foundation is related to the applied load in stretching direction. A scaling

analysis is utilized to connect the effective stiffness to the applied load quantitatively.

Variational method and principle of minimum potential energy are employed to ob-

tain the governing equation and corresponding buckling wavelength and critical load.

The model also considered finite width effect on the formation of the wrinkle

patterns as observed in the experiments. The developed model successfully predicts

the buckling wavelength of polyester film on stretched low density polyethylene thin-

film. The results agree with the experimental data in scales without additional data

fitting.

Further steps may lie in investigating wrinkle evolution and possible delamination.

Viscoelastic effect may also need to be addressed in the future works. In addition,

influence on wrinkling formation and evolution by pre-stretching may also need to

be accounted for the further studies.
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