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ABSTRACT 

 

In recent history, no other dog breed has grown in popularity and/or population size in 

such a short period of time as is the case for the Chinese Shar Pei in North America. 

After being introduced to North America in the 1970s, the breed suffered from rushed 

breeding carried out by inexperienced breeders. This resulted not only in a dramatically 

different look for the Chinese Shar Pei breed, but also in a large number of health 

problems. A report from 1991 revealed that Chinese Shar Pei have a predisposition for 

cobalamin deficiency. In this context, a comparison of serum cobalamin concentrations 

between dogs of different breeds would help to better understand this condition in the 

Chinese Shar Pei. Cobalamin-deficient Chinese Shar Peis show several clinical signs, 

which can be characterized by inflammatory markers, markers for chronic intestinal 

disease, and immunological markers. Other serum markers of cobalamin-related cellular 

biochemistry include homocysteine and methylmalonic acid, which are a reflection of 

intracellular cobalamin availability and thus might provide insights in the intracellular 

cobalamin metabolism in Chinese Shar Peis with cobalamin deficiency. The Chinese 

Shar Pei phenotype changed over the last few decades and a survey would identify 

which of the two types (i.e., traditional type vs. meatmouth type) is more commonly 

affected with cobalamin deficiency. Genetically speaking, genome-wide scans can be 

used to identify potential regions on the canine chromosome that are linked to cobalamin 

deficiency in Chinese Shar Peis. Further sequencing may identify the actual mutation 

responsible for the condition in this breed. 
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1. INTRODUCTION 

 

1.1 Cobalamin (vitamin B12) 

Cobalamin is a water-soluble organometallic molecule and represents the most 

chemically complex vitamin. In 1947, Karl Folkers and co-workers first crystallized 

cobalamin (Rickes et al., 1948). The three-dimensional structure of cobalamin was then 

ascertained in 1956 by Hodgkin and coworkers (Hodgkin et al., 1956). Cobalamin 

contains cobalt as a centrally located metal ion, for which there are six coordination 

sites. Four of these are provided by the corrin ring, whereas the fifth is supplied by a 

dimethylbenzimidazole group. The sixth coordination site is variable, and the specific 

functional groups attached to this site determine the type of cobalamin. 

 

Cobalamin sources 

Humans, animals, and plants do not have the capability to synthesize cobalamin, but 

cobalamin can be absorbed from certain dietary sources. In general, dietary sources high 

in cobalamin include meat, dairy products, and fish (especially shellfish), whereas 

vegetables do not contain any significant amounts of dietary cobalamin (Herbert, 1988). 

Studies investigating the cobalamin concentration in various mammalian tissues 

revealed high concentrations of cobalamin in the liver and kidney, with a higher 

concentration in the liver compared to the kidney (Retey, 1982), indicating that the main 

storage site for cobalamin is the liver (Glass, 1959; Beedholm-Ebsen et al., 2010). 
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Absorption and transport of cobalamin 

The absorption of dietary cobalamin and its conversion to an intracellularly active co-

enzyme is complex and involves many physiological processes, including gastric release 

of protein-bound cobalamin, intestinal uptake by a carrier-mediated transport process, 

intravascular transport, cellular uptake, intracellular release, and intracellular 

compartmentalization (Hall, 1979). The entire process of cobalamin absorption and 

transport depends on numerous proteins, including R-binder, intrinsic factor, 

transcobalamin, cell membrane receptors, and intracellular binding proteins. Hansen 

characterized three main classes of cobalamin transport proteins (Hansen, 1990). 

R-binders (also called haptocorrins and transcobalamin I) are glycoproteins with a 

high affinity for cobalamin, and have been isolated from plasma, tissue extracts, 

secretions (e.g., saliva and bile), and the cytoplasm of erythrocytes, granulocytes, and 

platelets (Fenton & Rosenberg, 1989; Cooper & Rosenblatt, 1987). Following its 

ingestion, cobalamin is removed from dietary components and thought to bind to 

salivary and gastric R-binders (Fenton & Rosenberg, 1989). Within the proximal 

duodenal lumen cobalamin is released from these R-binders by pancreatic proteolytic 

enzymes. 

Intrinsic factor is also a glycoprotein that mediates the uptake of cobalamin in the 

gastrointestinal lumen. In humans, intrinsic factor is exclusively synthesized by gastric 

parietal cells (Fenton & Rosenberg, 1989), whereas in dogs, intrinsic factor is mainly 

synthesized and secreted by pancreatic acinar cells and only to a much smaller degree 

from the gastric mucosa (Batt et al., 1989; Simpson et al., 1993). Upon the binding of 
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cobalamin, intrinsic factor molecules decrease in size, resulting in an increased affinity 

of the intrinsic factor-cobalamin complex for specific receptors located within the brush 

border membrane of ileal enterocytes (Levine et al., 1985; Gueant et al., 2001). Within 

the brush border membrane of the ileum, a specific receptor recognizes the intrinsic 

factor-cobalamin complex and allows for receptor-mediated endocytosis (Fyfe et al., 

2004). Thus, the intrinsic factor-cobalamin complex is crucial for the absorption of 

cobalamin via receptor-mediated endocytosis into the ileal mucosa (Fyfe et al., 2004). 

The absorption of cobalamin from the enterocyte into the circulation is accomplished 

by passage across the basal membrane of enterocytes, after which cobalamin is bound to 

transcobalamin II and enters the portal circulation. Transcobalamin II represents the 

third class of molecular cobalamin binders and is expressed by many additional tissues 

and body fluids (Fenton & Rosenberg, 1989). In humans, it has been reported that 

transcobalamin II is synthesized by intestinal villi in areas where the vascular 

endothelium is abundant (Quadros et al., 1999). Transcobalamin II binds only a small 

percentage (about 20 %) of the total circulating cobalamin, but only transcobalamin II-

cobalamin complexes can be internalized by peripheral tissue cells (Seetharam & Alpers, 

1985; Allen, 1975). After the binding of the transcobalamin II-cobalamin complex to its 

cellular membrane receptor, the complex is absorbed by way of endocytosis. The 

transcobalamin II-cobalamin complex is degraded in the lysosome to yield free 

cobalamin, which is converted to methylcobalamin within the cytosol and/or to 

adenosylcobalamin inside the mitochondria. Cobalamin within the cell is bound to 

proteins, which are mainly cobalamin-dependent enzymes, such as methionine synthase 
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and methylmalonyl-CoA mutase and both bind more than 95 % of the intracellular 

cobalamin (Mellman et al., 1977; Kolhouse & Allen, 1977). Neither transcobalamin I 

nor II have been specifically reported in dogs so far. 

Methionine synthase – Intracellular cobalamin undergoes a methylation to 

methylcobalamin, which represents the active form of cobalamin that is required for the 

conversion of homocysteine to methionine that is catalyzed by methionine synthase 

(Fenton & Rosenberg, 1989). Methionine synthase requires the presence of the co-factor 

cobalamin as well as a methyl group. The methyl group is provided through the 

conversion of 5-methyltetrahydrofolate to tetrahydrofolate, which is the biologically 

active form of vitamin B9. 5-tetrahydrofolate is required for purine and pyrimidine 

biosynthesis and is thus important for the de novo synthesis of DNA and RNA. 

Methylmalonyl-CoA mutase – Methylmalonyl-CoA mutase is the second enzyme 

that requires cobalamin. It catalyzes the final isomerization step in the metabolism of 

propionyl-CoA to succinyl-CoA in mammalian cells (Cannata et al., 1965; Chandler et 

al., 2006). Propionyl-CoA results from the catabolism of certain amino acids, such as 

valine, isoleucine, methionine, and threonine. In the pathway from propionyl-CoA to 

succinyl-CoA the conversion of L-methylmalonyl-CoA to succinyl-CoA can only occur 

when sufficient amounts of cobalamin are available within the cell. In turn, succinyl-

CoA is incorporated into the tricarboxylic acid cycle (Krebs’ cycle), which fuels cellular 

energy production. In summary, cobalamin serves as an essential co-factor for both 

methylmalonyl-CoA mutase and methionine synthase in mammalian cells. 
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1.2 Disorders of cobalamin absorption, transport, and intracellular metabolism 

 

Disorders of cobalamin absorption and transport 

The absorption of dietary cobalamin is complex and involves many steps, including 

gastric release of protein-bound cobalamin, intestinal uptake by a carrier-mediated 

transport process, intravascular transport, and cellular uptake. This process of cobalamin 

absorption and transport depends on numerous proteins including R-binder, intrinsic 

factor, transcobalamin, and cell membrane receptors. Disorders affecting the 

aforementioned proteins have been described in both the human and veterinary 

literature. 

R-binder deficiency – Only a few case reports of human patients with R-binder 

deficiency have been described (Carmel et al., 2003). Affected individuals usually have 

decreased serum cobalamin concentrations but no clinical signs of cobalamin deficiency. 

Intrinsic factor deficiency – Humans with an inherited intrinsic factor deficiency 

show megaloblastic pernicious anemia, and have decreased serum cobalamin 

concentrations (Shevell & Rosenblatt 1992). However, clinical signs of cobalamin 

deficiency are absent for the first few months of life, which might be due to an 

alternative pinocytic absorption mechanism for cobalamin, leading to an overall 

sufficient cobalamin absorption (Fenton & Rosenblatt, 1989). 

Cobalamin malabsorption – Imerslund-Gräsbeck syndrome in humans is a selective 

cobalamin malabsorption by enterocytes, and is caused by a defect of the cobalamin-

intrinsic factor complex receptor, the internalization of cobalamin-receptor complexes, 
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or the transfer of cobalamin to transcobalamin II (Burman et al., 1985; Fyfe et al., 1991). 

In humans, the clinical findings in affected patients include megaloblastic anemia, low 

serum cobalamin concentrations, and proteinuria (Gräsbeck, 1972 and Gräsbeck, 2006). 

A similar syndrome of cobalamin malabsorption with an absence of ileal intrinsic factor-

cobalamin complex receptors has also been described in a family of Giant Schnauzers 

(Fyfe et al., 1991a). It has been suggested that the receptor for intrinsic factor-cobalamin 

complexes is not being expressed in the brush border membrane of these dogs. 

Transcobalamin II deficiency – Transcobalamin II deficiency in humans is generally 

characterized by megaloblastic anemia, vomiting, failure to thrive, pancytopenia, and 

eventually the development of immunologic and neurologic abnormalities (Shevell & 

Rosenblatt, 1992). Usually, clinical symptoms can be observed within the first two 

months of life. Transport of cobalamin into the cells is hindered in the absence of 

transcobalamin II. However, due to the presence of R-binder proteins, the majority of 

which are in the vascular space (about 80%), patients with transcobalamin II deficiency 

may have a normal serum cobalamin concentration (Frisbie & Chance, 1993). However, 

the absorption of cobalamin is usually affected in these patients, suggesting that, at least 

in humans, transcobalamin II to be essential for cobalamin entering cells (Cooper & 

Rosenblatt, 1987; Seetharam & Yammani, 2003). 

 

Disorders of intracellular cobalamin metabolism 

In general, methylmalonic acidemia/aciduria is a metabolic consequence of cobalamin 

deficiency and is characterized by an accumulation of large amounts of methylmalonic 
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acid (MMA) in serum, and as a result, excretion of MMA in the urine of affected 

individuals (Cooper & Rosenblatt, 1987; Fenton & Rosenblatt, 1978). This is caused by 

an intracellular failure of the conversion of methylmalonyl-CoA to succinyl-CoA and the 

accumulation of the metabolite MMA in the vascular space, which in turn is excreted in 

the urine and can be used as a marker for cobalamin deficiency at the cellular level. In 

healthy animals, only small amounts of MMA are detectable in blood, urine, or 

cerebrospinal fluid. 

In humans and dogs with methylmalonic acidemia the characteristic laboratory 

findings include secondary hyperammonemia, increased concentrations of ketones, and 

MMA in the urine (Cooper & Rosenblatt, 1987; Fyfe et al., 1991). In human patients, 

response to parenteral administration of cobalamin is variable. These differences in 

response to therapy suggest that different intracellular forms of cobalamin deficiency can 

lead to methylmalonic acidemia/aciduria. 

 

Metabolic consequences of intracellular cobalamin deficiency – Cobalamin A to G 

diseases 

Biochemical studies have described human patients with selective or combined 

deficiencies of adenosylcobalamin and methylcobalamin. Patients with such selective or 

combined deficiencies have been grouped into 7 groups: cobalamin A to cobalamin G 

disease, which provide insights into the pathways of intracellular cobalamin transport 

(Gravel et al., 1975; Willard et al., 1978; Shevell & Rosenblatt, 1992). 
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Cobalamin A and cobalamin B disease are characterized by a deficient activity of L-

methylmalonyl-CoA mutase, which leads to methylmalonic aciduria (Cooper & 

Rosenblatt, 1987). Human patients with cobalamin A disease have a selective deficiency 

of adenosylcobalamin, but have normal concentrations of methylcobalamin 

intracellularly and no homocysteinuria (Cooper & Rosenblatt, 1987). In contrast, 

patients with cobalamin B disease were shown to lack adenosylcobalamin, indicating 

normal cobalamin reduction but a deficiency in cobalamin I ATP-adenosyltransferase 

(Fenton & Rosenblatt, 1981). Neither cobalamin A or B disease have been specifically 

reported in dogs so far. 

Cobalamin C and cobalamin D disease are associated with a decreased synthesis of 

adenosylcobalamin and methylcobalamin, resulting in both methylmalonic aciduria and 

homocystinuria (Rosenblatt & Cooper, 1987). However, serum concentrations of 

cobalamin are usually within the reference interval because affected patients have 

normal intestinal absorption and vascular transport of cobalamin, leading to a normal 

serum cobalamin concentration (Rosenblatt & Fenton, 1989). Symptoms of cobalamin C 

disease become evident within the first year of life or during adolescence (Shinnar & 

Singer, 1984). The clinical findings in human patients usually are a failure to thrive, 

lethargy, inappetence, developmental delay, microcephaly, seizures, hypotonia, and 

hypomethioninemia (Cooper & Rosenblatt, 1987). In general, the ability to exchange the 

cyanide group for a hydroxyl group can be used to distinguish patients with cobalamin C 

disease from those with cobalamin D disease (Mellman et al., 1978). Furthermore, 

different studies have shown that cobalamin D disease is similar to cobalamin C disease, 
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but it is associated with less severe abnormalities compared to those found in patients 

with cobalamin C disease. Neither cobalamin C or D disease have been specifically 

reported in dogs so far. 

Cobalamin F disease has been described only in a few human patients. One of the 

patients reported was an infant with developmental delay, cobalamin responsive 

methylmalonic aciduria, but no indication of megaloblastic anemia or homocysteinuria 

(Rosenblatt et al., 1986; Rosenblatt et al., 1985). The defect in patients with cobalamin F 

disease has been suggested to affect the release of lysosomal cobalamin into the 

cytoplasm (Rosenblatt, 1992). Cobalamin F disease has not been specifically reported in 

dogs so far. 

Cobalamin E and cobalamin G diseases are characterized by a failure of methionine 

biosynthesis and the accumulation of homocysteine in the urine. In patients with 

cobalamin E or cobalamin G disease, serum cobalamin concentrations are usually within 

the reference interval (Fenton & Rosenberg, 1989). In most patients, the disease 

becomes apparent within the first year of life, but it has also been diagnosed in a 21 year 

old patient (Carmel et al., 1988). Patients usually present with homocysteinemia and 

hypomethioninemia, but not with methylmalonic aciduria (Cooper & Rosenblatt, 1987; 

Rosenblatt & Cooper, 1989; Watkins & Rosenblatt, 1989). Cobalamin E and cobalamin 

G disease both represent a heterogeneous group of patients characterized by a functional 

methionine synthase deficiency due to a decreased methionine biosynthesis, leading to 

decreased intracellular concentrations of methylcobalamin (Rosenblatt, 1992; Rosenblatt 
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et al., 1984). Neither cobalamin E or G disease have been specifically reported in dogs 

so far. 

 

1.3 Canine genetics 

During the last decade, the domestic dog, Canis lupus familiaris, has frequently been 

used as a model for the study of hereditary diseases and gene expression in humans. The 

dog is believed to be the oldest domesticated animal species. Selective breeding over the 

last centuries has created more than 300 different dog breeds with a certain number of 

genes that have not been characterized for each breed. These dog breeds represent 

isolated, inbred populations as most of them have developed more than 250 years ago 

(Ostrander & Giniger, 1999). Therefore, these breeds demonstrate genotypic and 

phenotypic homogeneity, giving rise to founder effects (e.g., color and height) and 

population bottlenecks. One effect of such breeding practices appears to be the large 

number of genetic diseases observed in dogs. Approximately 450 hereditary diseases 

have been described in dogs in the Online Mendelian Inheritance in Animals database 

(OMIA 2003). Many of these diseases resemble clinical syndromes of similar hereditary 

diseases in humans, and some even share the mutation of a gene that is responsible for 

the disease (Ostrander & Giniger, 1997; Ostrander et al., 2000). These spontaneous 

mutations in the dog offer the possibility to study canine spontaneous diseases as a 

model of human diseases (Kijas et al., 2002). 
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Linkage analysis 

The unique population structure of the dog lends itself to the study of hereditary diseases 

that appear to be similar to human hereditary diseases, but it should be pointed out that 

there are many diseases unique to the dog. It has been suggested that about two-thirds of 

hereditary diseases in dogs are transmitted by autosomal recessive traits (Ostrander & 

Kruglyak, 2000). Therefore, elimination of the respective alleles represents a challenge 

for breeder clubs and breeders. 

With hereditary diseases the clinical symptoms can occur in either young or older 

dogs, which should be considered for planning association studies. Linkage analysis is 

aimed at the identification of markers that associate with a particular disease by identity-

by-descent, which allows for subsequent development of a PCR-based test to identify 

potential carriers and affected animals prior to the onset of clinical signs. 

 

Linkage analysis strategies 

Causative disease factors may be investigated using two different approaches. Many 

diseases in dogs have a significant genetic basis, and one commonly used technique to 

identify genetic risk factors for complex disorders is the candidate gene approach, which 

directly tests the effects of genetic variants of a potentially contributing gene in an 

association study. The candidate gene approach is used where genes are known to 

control the physiologic function that is affected in diseased patients. These candidate 

genes are usually chosen based on known mutations in similar syndromes in different 

species or genes that code for proteins that might play an important role in the disease 
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process of interest. However, there are diseases where the underlying disease process 

does not allow for the selection of a suitable candidate gene and a genome wide scan is 

needed. For instance, cobalamin deficiency in the Shar Pei has not shown any 

similarities to the various forms of hereditary cobalamin deficiency in humans or similar 

conditions in veterinary patients (Fyfe et al., 1991a; Carmel, 2000; Fordyce et al., 2000). 

This may suggest that the genetic basis for the disease in Shar Peis is different from the 

one identified in humans with cobalamin deficiency. Thus, a genome-wide scan would 

hold more promise for the evaluation of cobalamin deficiency in the Shar Pei than a 

candidate gene approach. Regardless, both a candidate gene approach as well as 

genome-wide scan requires the construction of pedigrees. 

 

MSS-2 and SNPs 

For studies where a specific condition, such as cobalamin deficiency, is suspected to be 

hereditary and where the aim of that study is to identify a locus or loci that co-segregate 

with the disease, performing a genome wide scan using the canine minimal screening 

set-2 (cMSS-2) and/or a SNP map are both considered suitable approaches. 

Microsatellite markers have been used successfully to locate mutations in humans with 

genetic disorders (Holmes, 1994). More recently, the 327 microsatellite markers 

contained in the cMSS-2 set have been used to identify genetic regions of interest in 

various canine hereditary diseases (Lowe et al., 2003; Clark et al., 2006; Lippmann et 

al., 2007). On the other hand, SNP arrays have been used to identify a locus or loci that 

co-segregate with a disease in humans (e.g., carcinogenesis) and also in veterinary 
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studies (multiple diseases of the German Shepherd Dog) (Liang et al. 2012; Tsai et al. 

2012). Furthermore, SNP arrays would cover the dog genome in more detail and thus 

might provide a better likelihood of detecting associated effects (Fukuda et al. 2009). 

Genome-wide association studies using the cMSS-2 and SNP array would help to 

further identify regions on the canine chromosome that co-segregate with cobalamin 

deficiency in Shar Peis. After identifying those regions a targeted resequencing 

approach, which has been successfully applied and described by Seabury et al., (2011) or 

Olsson et al., (2011), would be useful to pinpoint the locus or loci that co-segregate with 

the phenotype (cobalamin deficiency) in Shar Peis and may ultimately aid in deciphering 

the likely defect(s) causing and/or resulting in cobalamin deficiency in Shar Peis. 

 

1.4 Chinese Shar Peis 

The Shar Pei is a dog breed that comes originally from the Guangdong province of 

China. For many years, the Shar Pei was used for hunting, protecting and herding 

livestock, and guarding the home and family in the Chinese countryside. During that 

time, the Shar Pei was bred for intelligence, strength, and a scowling face, but not for the 

amount of wrinkles. 

In the 1970s, the Shar Pei was considered by The Guinness Book of Records to be the 

rarest dog in the world. The Shar Pei population dwindled dramatically because of the 

communist revolution in China. Matgo Law, a Hong Kong businessman, rescued several 

Shar Peis and brought them to North America. In an attempt to save the breed, he 

smuggled an estimated 200 Shar Peis into North America. The current American Shar 
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Pei population stems mainly from these Shar Peis, which, genetically speaking, is a 

classic example of the bottleneck phenomenon. In other words, this small group of Shar 

Peis represents the limited source of genetic material in the current American Shar Pei 

population. 

After being introduced to North America in the 1970s, the breed suffered from 

rushed breeding by inexperienced breeders. This resulted not only in a dramatically 

different look for the Shar Pei (as its most characteristic features, including its wrinkles 

and rounded snout, were greatly exaggerated), but also in a large number of health 

problems. 

As of August 1992, the breed began competing in the nonsporting group at AKC 

shows. Back then the registration figures showed that in the Shar Pei Club of America a 

total of 75,000 individual Shar Peis and 47,000 litters were registered. In the same year 

the Shar Pei breed became the 134th recognized AKC dog breed. Interestingly, over the 

last 5 years, the Shar Pei has been ranked around position 50 in the list of most common 

registered dog breeds by the AKC. In recent history, no other dog breed has grown in 

popularity and/or population size in such a short period of time as has the Shar Pei. 

 

Cobalamin deficiency in Chinese Shar Peis 

In Shar Peis subnormal serum cobalamin concentrations were first reported in 1991 

(Williams, 1991). In a small group of Shar Peis (n=26) evaluated, 21 dogs were reported 

to have subnormal serum cobalamin concentrations and in 19 of these dogs serum 
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cobalamin concentration was undetectable (Williams, 1991). This study led to the 

hypothesis that Shar Peis have a predisposition for cobalamin deficiency. 

Often times, cobalamin deficiency in the Shar Pei is associated with clinical signs of 

chronic small intestinal disease (small bowel diarrhea and weight loss), and can also be 

associated with gastrointestinal protein loss (Williams 1991; Peterson & Willard 2003). 

In 2007, another study confirmed a high prevalence of cobalamin deficiency in the 

Shar Pei (Bishop et al., 2007). In that study, about 64% (n=89) of serum samples from 

Shar Peis submitted to the Gastrointestinal Laboratory at Texas A&M University (2002 

to 2006) had a cobalamin concentration below the lower limit of the reference interval 

and 38.1% of those dogs had serum cobalamin concentrations below the detection limit 

of the assay (Bishop et al., 2007). Compared to dogs of other breeds, Shar Peis were 7.6 

times more likely to have a serum cobalamin concentration below the lower limit of the 

reference interval (i.e., < 249 ng/L) and were 55.6 times more likely to have an 

undetectable serum cobalamin concentration (i.e., < 100 ng/L). However, there was no 

statistically significant difference between serum cobalamin concentrations in healthy 

Shar Peis and healthy dogs of other breeds (Bishop et al., 2007). These findings suggest 

that cobalamin deficiency occurs frequently in Shar Peis, but it also suggests that not all 

individuals within this breed are affected. 

Based on a genome-wide scan using the cMSS-2, cobalamin deficiency in the Shar 

Pei has recently been linked to a genomic locus in close proximity to two microsatellite 

markers (DTR13.6 and REN13N11) on canine chromosome 13 (Grützner et al. 2010). 

However, the previous study does not conclusively narrow down the region on 
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chromosome 13 as the major locus for a gene or genes responsible for cobalamin 

deficiency in the Shar Pei. In this context, a cSNP array would cover the dog genome in 

more detail and thus might provide a better likelihood of detecting associated effects 

(Fukuda et al. 2009). 

In both, human medical (Stabler et al. 1986) and veterinary studies (Ruaux et al. 

2009; Berghoff et al. 2011), an increased serum MMA concentration has been suggested 

to reflect cobalamin deficiency at the cellular level. A combination of decreased serum 

cobalamin and increased serum MMA concentrations might therefore represent stronger 

evidence for cobalamin deficiency at the cellular level than a decreased serum cobalamin 

concentration alone. Thus, a phenotypic re-classification based on serum cobalamin and 

MMA concentrations may lead to identification of a different region on chromosome 13 

or even a location on a different chromosome. 

 

Other diseases commonly seen in Chinese Shar Peis 

Two other conditions are frequently reported in Shar Peis, Shar Pei fever and cutaneous 

mucinosis, both of which are also suspected to be hereditary. Shar Pei fever describes an 

autoimmune syndrome that causes periodic flare-ups associated with joint pain and 

fever. Cutaneous mucinosis, is a disorder characterized by the deposition of excessive 

amounts of mucin in the dermis of the skin, a condition that primarily occurs in Shar 

Peis. To our knowledge, serum cobalamin concentrations have not been reported in 

studies investigating Shar Pei fever and/or cutaneous mucinosis. Thus, further studies are 
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necessary to test the hypothesis of a potential association between cobalamin deficiency 

and these other two common diseases in the Shar Pei. 

 

1.5 Hypotheses and research objectives 

 

Hypotheses 

The hypotheses of this project are that: a) Chinese Shar Peis (Shar Peis) have a higher 

prevalence of decreased serum cobalamin concentrations and a higher occurrence of 

increased methylmalonic acid concentrations than other breeds; b) due to longstanding 

gastrointestinal disease, serum concentrations of inflammatory markers, markers for 

chronic intestinal disease, and immunological markers are altered in cobalamin-deficient 

Shar Peis; c) serum homocysteine and methylmalonic acid concentrations, which reflect 

intracellular cobalamin availability, differ between cobalamin-deficient Shar Peis and 

cobalamin-deficient dogs of other breeds; and d) genome scans using canine single 

nucleotide polymorphism array and canine minimal screening set-2 will provide 

potential regions on the canine chromosome that are linked with cobalamin deficiency in 

Shar Peis. 

 

Research objectives 

The objectives of this study are: 1) to compare proportions of dogs with a decreased 

serum cobalamin concentration and to compare the number of submissions (to the 

Gastrointestinal Laboratory) for serum cobalamin analysis by breed to the American 
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Kennel Club (AKC) breed ranking list of 2009, 2) to evaluate serum concentrations of 

inflammatory markers, markers for chronic intestinal disease, and immunological 

markers in Shar Peis with and without cobalamin deficiency, 3) to assess serum 

homocysteine (HCY) and methylmalonic acid (MMA) concentrations in cobalamin-

deficient Shar Peis and cobalamin-deficient dogs of 6 other breeds, 4) to determine if 

cobalamin deficiency predominates in one of the two types of Shar Peis (i.e., traditional 

type and meatmouth type), 5) to quantify serum cobalamin and MMA concentrations in 

cobalamin-deficient Shar Peis at initial testing and after parenteral cobalamin 

supplementation, 6) to analyze the MYC_CANFA gene, which is the closest known 

gene to the microsatellite marker DTR13.6 on canine chromosome 13 that has been 

linked to cobalamin deficiency in Shar Peis by using the canine minimal screening set-2 

(cMSS-2), and 7) to perform genome-wide scans using canine single nucleotide 

polymorphism (cSNP) array and cMSS-2 to identify potential regions of the canine 

genome that are linked with cobalamin deficiency in Shar Peis. 
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2. EVALUATION OF SERUM COBALAMIN CONCENTRATIONS                    

IN DOGS OF 164 DOG BREEDS (2006-2010)* 

 

2.1 Overview 

Altered serum cobalamin concentrations have been observed in dogs with gastro-

intestinal disorders such as exocrine pancreatic insufficiency (EPI) or gastrointestinal 

inflammation. The aims of the current study were 1) to identify breeds with a higher 

proportion of dogs with a decreased serum cobalamin concentration, 2) to determine 

whether dogs with such decreased concentrations tend to have serum canine trypsin-like 

immunoreactivity (cTLI) concentrations diagnostic for EPI, and 3) to compare the 

number of submissions for serum cobalamin analysis by breed to the American Kennel 

Club (AKC) breed ranking list of 2009. In this retrospective study, results of 28,675 

cobalamin tests were reviewed. Akitas, Chinese Shar Peis, German Shepherd Dogs, 

Greyhounds, and Labrador Retrievers had increased proportions of serum cobalamin 

concentrations below the lower limit of the reference interval (<251 ng/L; all p < 

0.0001). Akitas, Chinese Shar Peis, German Shepherd Dogs, and Border Collies had 

increased proportions of serum cobalamin concentrations below the detection limit of the 

assay (<150 ng/L; all p < 0.0001). Akitas, Border Collies, and German Shepherd Dogs 

with serum cobalamin concentrations <150 ng/l were more likely to have a serum cTLI 

concentration considered diagnostic for EPI (≤2.5 µg/L; all p ≤ 0.001). 

________________________________________
*Reprinted with permission from Grützner N, Cranford SM, Norby B, Suchodolski JS, Steiner JM. 2012. 
“Evaluation of serum cobalamin concentrations in dogs of 164 dog breeds”. Vet J 197, 420-426, Copyright 
(2012) by SAGE Journals. 
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The breed with the highest proportion of samples submitted for serum cobalamin 

analysis in comparison with the AKC ranking list was the Greyhound (odds ratio: 84.6; p 

< 0.0001). In Akitas and Border Collies, further investigations are warranted to clarify if 

a potentially breed-specific gastrointestinal disorder is responsible for the increased 

frequency of decreased serum cobalamin and cTLI concentrations. 

 

2.2 Introduction 

Cobalamin (vitamin B12) is essential for a wide variety of metabolic processes in many 

tissues and organs. Immunoassays for the measurement of cobalamin concentrations in 

serum from human beings, cats, and dogs are routinely used to diagnose cobalamin 

deficiency. 

In dogs, cobalamin deficiency can be caused by exocrine pancreatic insufficiency 

(EPI; Simpson et al., 1989), severe and longstanding ileal disease, small intestinal 

dysbiosis, or an inherited condition (Fyfe et al., 1991). Cobalamin deficiency can also be 

associated with systemic metabolic complications such as central and peripheral 

neuropathies (Battersby et al., 2005) and immunodeficiencies (Cook et al., 2009), and is 

also associated with intestinal changes, such as villous atrophy (Rutger et al., 1995) or 

malabsorption of vitamins and other nutrients. 

In cases of longstanding ileal disease, low serum cobalamin concentrations have 

been documented in both human and canine patients with chronic enteropathies such as 

inflammatory bowel disease (Yakut et al., 2010; Allenspach et al., 2007). Chronic 

enteropathies have been commonly described in canine patients of different breeds such 
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as the Basenji (MacLachlan et al., 1988), Boxer (German et al., 2000a), German 

Shepherd Dog (German et al., 2000b), Irish Setter (Batt, 1985; Garden et al., 2000), and 

Soft Coated Wheaten Terrier (Littman et al., 2000). A comparison with data from the 

American Kennel Club (AKC), which shows the number of dogs of various breeds that 

are registered based on popularity, could help identify additional breeds with 

disproportionately high numbers of serum submissions (e.g., to the Gastrointestinal 

Laboratory at Texas A&M University [GI Lab], College Station, TX) for serum 

cobalamin analysis. 

Low serum cobalamin concentrations have been observed in dogs with EPI, which is 

recognized as a potential cause of cobalamin deficiency (Simpson et al., 1989). The 

measurement of serum canine trypsin-like immunoreactivity (cTLI) is considered the 

gold standard test for the diagnosis of canine EPI (Batt, 1993). An investigation of serum 

cTLI concentrations in dogs with low serum cobalamin concentrations could help to 

identify breeds where EPI is associated with cobalamin deficiency. 

In the past decade, cases of cobalamin deficiency have been reported in several dog 

breeds. For instance, a family of Giant Schnauzers (Fyfe et al., 1991), a Beagle (Fordyce 

et al., 2000), 2 juvenile Border Collies (Battersby et al., 2005; Morgan & McConnell, 

1999), juvenile Australian Shepherds (Morgan & McConnell, 1999), and Chinese Shar 

Peis [Shar Peis] (Williams, 1991; Bishop et al., 2012) have been described with selective 

malabsorption of cobalamin and deficiency of this vitamin. A breed predisposition for 

cobalamin deficiency has been described for Shar Peis in North America (Bishop et al., 

2012). In the United Kingdom, cobalamin deficiency has been described for the Shar 
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Pei, Staffordshire Bull Terrier, as well as a group of mixed-breed dogs (Dandrieux et al., 

2010). 

Due to the variety of breeds that were represented at GI Lab, serum cobalamin 

concentrations of 164 breeds (based on the AKC breed ranking list of 2009) were 

investigated. The first aim of the study was to identify breeds with higher proportions of 

decreased serum cobalamin concentrations. The second aim was to look for serum cTLI 

concentrations that were diagnostic for EPI in the dogs with decreased serum cobalamin 

concentrations to identify breeds in which EPI is associated with cobalamin deficiency. 

Finally, the study compared the number of serum submissions for cobalamin analysis by 

breed with the AKC breed ranking list of 2009 to identify breeds with disproportionately 

high numbers of serum submissions for serum cobalamin analysis. A trend or discovery 

of a high number of serum submissions for serum cobalamin analysis in a certain dog 

breed could help to identify a clinical problem in a specific breed perceived by 

veterinarians and may help to direct future investigations. 

 

2.3 Materials and methods 

Selection of serum cobalamin data 

The current retrospective study covered a period of 4 years (from March 1, 2006 through 

February 28, 2010). Information on canine serum samples in the database of the GI Lab 

was reviewed. Serum samples that had been submitted for evaluation of serum 

cobalamin concentration were selected, but the clinical history and disease status of the 

dogs were not provided by the referring veterinarian. A total of 28,675 canine 
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submissions (belonging to 164 breeds, represented by the AKC ranking list of 2009) for 

analysis of serum cobalamin concentration were reviewed, and sex and age were 

identified where reported on the submission form. Resubmissions and duplicates were 

excluded. The concentrations of serum cobalamin had been measured using an 

automated chemiluminescence assay (Immulite 2000, Vitamin B12; Siemens Healthcare 

Diagnostics Inc., Deerfield, IL). The reference interval for canine serum cobalamin 

concentration had previously been established as 251-908 ng/L (Gastrointestinal 

Laboratory at Texas A&M University, College Station, TX; http://vetmed.tamu.edu/ 

gilab/service/assays/b12folate; accessed May 1, 2012). The frequency of decreased 

(<251 ng/L) and undetectable (<150 ng/L) serum cobalamin concentrations recorded in 

the GI Lab database were compared between breeds by calculating the odds ratio (OR) 

and the 95% confidence interval (CI) for 164 breeds that were listed in the AKC breed 

ranking list of 2009 (American Kennel Club breed ranking list of 2009; http://www.akc. 

org/reg/dogreg_stats.cfm; accessed November 1, 2010). Serum cobalamin 

concentrations between 251 ng/L and 150 ng/L were excluded for the proportion 

analyses of dogs with serum cobalamin concentration <150 ng/L. Only breeds with at 

least 30 submitted samples were included in the calculation. However, the 5 breeds, 

Giant Schnauzer, Beagle, Border Collie, Australian Shepherd, and Shar Pei, that had 

been mentioned in case reports of cobalamin deficiency over the past two decades 

(1990-2010) were reported regardless of the OR. 

Breeds with a significantly higher odds of having samples with serum cobalamin 

concentrations <150 ng/L were subsequently investigated for proportions of dogs with a 
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serum cTLI concentration that is considered diagnostic for EPI (≤2.5 μg/L as measured 

at roughly the same time as serum cobalamin concentration; i.e., serum cTLI may have 

been measured up to 48 hr before or after serum cobalamin concentration due to 

logistical reasons, but would have been measured on the same serum sample). The 

concentration of serum cTLI was measured using a commercially available 

radioimmunoassay (Canine TLI Double Antibody Radioimmunoassay, Siemens 

Healthcare Diagnostics Inc., Deerfield, IL), and the reference interval has previously 

been established as 5.7-45.2 µg/L (Gastrointestinal Laboratory at Texas A&M 

University, College Station, TX; http://vetmed.tamu.edu/gilab/service/assays/tli; 

accessed May 1, 2012). Breeds that were identified as having a significant OR for a 

serum cTLI concentration ≤2.5 µg/L were considered to have an association of 

undetectable serum cobalamin concentration and EPI. Only breeds that showed a 

significant OR were reported for all analyses. However, data for the 5 breeds that had 

been mentioned in case reports of cobalamin deficiency over the past two decades were 

reported regardless of the OR. 

 

Comparison of submissions for serum cobalamin measurement with the 2009 AKC 

breed ranking list 

Due to possible annual variation of submissions, the average number of serum samples 

submitted for cobalamin analysis to GI Lab over a 4-year period was calculated for each 

breed. Thus, a total of 7,203 canine submissions, the calculated average number of 

serum samples submitted for cobalamin analysis to GI Lab for 1 year, were compared by 
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calculating the OR and the 95% CI to the AKC breed ranking list of 2009 to identify 

breeds with higher proportions of submissions for serum cobalamin analysis. Again, 

only breeds with at least 30 sample submissions were included in the calculation. The 

AKC ranking list of 2009 contained a total of 649,677 registered dogs. Subsequently, for 

all breeds with a higher proportion of serum sample submissions for serum cobalamin 

analysis, the serum cobalamin concentrations and age were compared among the breeds 

(averaged across the 4 years). Also, serum cTLI concentrations were subsequently 

investigated in breeds with significantly higher proportions of serum samples submitted 

for cobalamin analysis. 

 

Statistical analyses 

A commercially available software (JMP version 8, SAS Institute Inc., Cary, NC) was 

used to perform statistical analyses. All variables, the breed proportion of dogs with a 

serum cobalamin concentration of <251 ng/L, those with a serum cobalamin 

concentration <150 ng/L, and those with a cobalamin concentration within the reference 

interval, were compared by using a Fisher’s exact test. Breeds for which the 95% CI of 

breed distribution of submissions to the GI Lab database population and those in the 

AKC ranking list of 2009 differed were considered potentially overrepresented or 

underrepresented in the population of dogs for the respective group. Because of multiple 

comparisons between 164 dog breeds of the AKC ranking, statistical significance level 

for a difference was adjusted from p < 0.05 to p < 0.0003 using a Bonferroni correction 

for multiple statistical comparisons (Bonferroni correction for multiple statistical 
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comparisons; http://www.quantitativeskills.com/sisa/calculations/bonfer.htm; accessed 

May 1, 2012). Breeds with significantly higher proportions of samples with undetectable 

serum cobalamin concentrations and those with higher proportions of serum sample 

submissions for cobalamin analysis were subsequently investigated for proportions of 

dogs with a serum cTLI diagnostic for EPI using a Fisher’s exact test; statistical 

significance was set at p < 0.05. A Kruskal–Wallis test with a Dunn post test was used to 

compare serum cobalamin concentrations and age in breeds with a higher proportion of 

submissions for serum cobalamin analysis over the 4-year period (p < 0.05). 

 

2.4. Results 

Data from the GI Lab database showed that the Akita, Shar Pei, German Shepherd Dog, 

Greyhound, and Labrador Retriever had significantly higher proportions of dogs with 

serum cobalamin concentrations <251 ng/L (OR > 1; all p < 0.0001; Table 1). In 

contrast, the Belgian Malinois, Boxer, Golden Retriever, Great Dane, Miniature 

Schnauzer, and Standard Poodle had significantly lower proportions of dogs with serum 

cobalamin concentrations <251 ng/L (OR < 1; all p < 0.0001; Table 1). 
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Table 1. Over- and underrepresented dog breeds with regard to serum cobalamin concentration below the lower limit of the 

reference interval (<251 ng/L) using data from the GI Lab (Texas A&M University, College Station, Texas) database. 

 

Breed* 
2009 AKC 

ranking position Age† 

Cobalamin‡ 

Odds ratio§ <251 ng/L 251-908 ng/L 

1. Odds ratio > 1 
Chinese Shar Pei 47 6.0 (8.5) 82/5,646 71/21,428 4.4 (3.2–6.0)¦ 
Akita 50 7.0 (3.3) 43/5,685 59/21,440 2.8 (1.9–4.1)¦ 
Greyhound 140 9.0 (5.1) 174/5,554 262/21,237 2.5 (2.1–3.1)¦ 
German Shepherd Dog 2 5.0 (8.8) 1,095/4,633 2,767/18,732 1.6 (1.5–1.7)¦ 
Labrador Retriever 1 7.0 (6.9) 738/4,990 2,098/19,400 1.4 (1.3–1.5)¦ 

2. Odds ratio < 1 
Golden Retriever 4 8.0 (8.5) 224/5,504 1,152/20,347 0.7 (0.6–0.8)¦ 
Boxer 6 6.0 (5.6) 126/5,602 930/20,569 0.5 (0.4–0.6)¦ 
Great Dane 21 5.0 (10.0) 40/5,688 310/21,189 0.5 (0.4–0.7)¦ 
Standard Poodle 9 7.0 (1.8) 56/5,672 469/21,030 0.4 (0.3–0.6)¦ 
Miniature Schnauzer 11 8.0 (11.3) 62/5,666 597/20,902 0.4 (0.3–0.5)¦ 
Belgian Malinois 81 9.0 (0.0) 3/5,725 73/21,426 0.2 (0.1–0.5)¦ 

3. Case reports 
Australian Shepherd 28 8.0 (6.3) 64/5,664 187/21,312 1.3 (1.0–1.7)¶ 
Beagle 5 8.0 (9.0) 89/5,639 357/21,142 0.9 (0.7–1.2)¶ 
Giant Schnauzer 89 8.0 (0.0) 7/5,721 9/21,490 2.9 (1.1–7.9)¶ 
Border Collie 52 5.0 (4.8) 104/5,624 295/21,204 1.3 (1.1–1.7)# 
Chinese Shar Pei 47 See above    

 

* Table shows the dog breeds with a higher (1.) or lower (2.) proportion of decreased serum cobalamin concentrations (<251 
ng/L). Also shown are data for 5 breeds that had previously been reported in case reports describing cobalamin deficiency in a 
group of dogs of a single breed (3. Case reports). 
† Median age (in years) for all dogs of each breed. Dogs where age was not reported is shown in parentheses. Both values are 
in percentages. 
‡ Number of dogs of a particular breed/number of dogs of the remaining dog breeds in which decreased serum cobalamin 
concentrations (<251 ng/L) and normal serum cobalamin concentrations (251-908 ng/L) were identified. 
§ Calculated odds ratio, 95% confidence interval (in parentheses) for each breed, and the corresponding p values (¦ = < 0.0003, 
# = < 0.05, ¶ = > 0.05). 
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Furthermore, the Akita, Border Collie, Shar Pei, and German Shepherd Dog had 

significantly higher proportions of dogs with serum cobalamin concentrations <150 ng/L 

(OR > 1; all p < 0.0001; Table 2). In contrast, the Boxer, Golden Retriever, Miniature 

Schnauzer, and Standard Poodle had significantly lower proportions of dogs with serum 

cobalamin concentrations <150 ng/L (OR < 1; all p < 0.0001; Table 2). Also, for the 

Akita, Border Collie, and German Shepherd Dog, but not for the Shar Pei, submissions 

with undetectable serum cobalamin concentrations were more likely associated with a 

serum cTLI concentration considered diagnostic for EPI than those submissions with a 

normal serum cobalamin concentration (all p ≤ 0.001; Table 3). 

A total of 19 breeds were found to have disproportionately higher proportions of 

serum samples submitted for serum cobalamin analysis (all p < 0.0001, Table 4) relative 

to the AKC breed ranking list of 2009. The breed with the highest proportion of serum 

samples submitted for serum cobalamin analysis was the Greyhound (Table 4). In 

contrast, 7 breeds were found to have disproportionately lower proportions of serum 

samples submitted for serum cobalamin analysis (all p < 0.0001, Table 4). For the Cairn 

Terrier, Cardigan Welsh Corgi, Cocker Spaniel, Dalmatian, Wire Fox Terrier, West 

Highland White Terrier, and Australian Shepherd (1 of the 5 breeds previously reported 

in a case series with cobalamin deficiency), submissions with undetectable serum 

cobalamin concentrations were more likely to be associated with serum cTLI 

concentrations considered diagnostic for EPI than those with normal cobalamin 

concentrations (all p < 0.05; Table 3). 
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Table 2. Over- and underrepresented dog breeds with regard to undetectable serum 

cobalamin concentrations (<150 ng/L) using data from the Gastrointestinal Laboratory 

(Texas A&M University, College Station, Texas) database.* 

 

Breed* 
2009 AKC 

ranking position Age† 

Cobalamin‡ 

Odds ratio§ <150 ng/L 251-908 ng/L 

1. Odds ratio > 1 
Chinese Shar Pei 47 5.0 (1.6) 63/1,670 71/21,428 11.4 (8.1–16.0)¦ 
Akita 50 6.8 (22.2) 18/1,715 59/21,440 3.8 (2.2–6.5)¦ 
Border Collie 52 4.5 (4.0) 50/1,683 295/21,204 2.1 (1.6–2.9)¦ 
German Shepherd Dog 2 5.0 (7.3) 354/1,379 2,767/18,732 1.7 (1.5–2.0)¦ 

2. Odds ratio < 1 
Golden Retriever 4 8.0 (6.8) 44/1,689 1,152/20,347 0.5 (0.3–0.6)¦ 
Boxer 6 7.0 (12.1) 33/1,700 930/20,569 0.4 (0.3–0.6)¦ 
Miniature Schnauzer 11 8.0 (20.0) 20/1,713 597/20,902 0.4 (0.3–0.6)¦ 
Standard Poodle 9 7.0 (0.0) 10/1,723 469/21,030 0.3 (0.1–0.5)¦ 

3. Case reports 
Australian Shepherd 28 7.0 (0.0) 19/1,714 187/21,312 1.3 (0.8–2.0)¶ 
Beagle 5 8.5 (7.7) 26/1,707 357/21,142 0.9 (0.6–1.3)¶ 
Giant Schnauzer 89 6.5 (0.0) 1/1,732 9/21,490 1.4 (0.2–11.0)¶ 
Border Collie 52 See above    
Chinese Shar Pei 47 See above    

 
* Table shows the dog breeds with a higher (1.) or lower (2.) proportion of undetectable 
serum cobalamin concentrations (<150 ng/L). Also shown are data for 5 breeds that had 
previously been reported in case reports describing cobalamin deficiency in a group of 
dogs of a single breed (3. Case reports). 
† Median age (in years) for all dogs of each breed. Dogs where age was not reported is 
shown in parentheses. Both values are in percentages. 
‡ Number of dogs of a particular breed/number of dogs of the remaining dog breeds with 
undetectable serum cobalamin concentrations (<150 ng/L) and normal serum cobalamin 
concentrations (251-908 ng/L) were identified. 
§ Calculated odds ratio, 95% confidence interval (in parentheses) for each breed, and the 
corresponding p values (¦ = < 0.0003, # = < 0.05, ¶ = > 0.05). 
 

 

 

 

 

 



30 
 

Table 3. Breeds with proportions of serum samples submitted to the Gastrointestinal 

Laboratory (GI Lab; Texas A&M University, College Station, Texas) for serum 

cobalamin analysis when compared with the American Kennel Club (AKC) ranking list 

of 2009. 

Breed* AKC ranking position GI Lab† (n) AKC† (n) Odds ratio‡ 

1. Odds ratio > 1 

Greyhound 140 110/7,093 119/649,358 84.6 (65.2–110.0) 
Parson Russell Terrier 87 121/7,082 691/648,786 16.0 (13.2–19.5) 
Standard Schnauzer 99 58/7,145 559/648,918 9.4 (7.2–12.4) 
American Eskimo Dog 118 23/7,180 318/649,159 6.5 (4.3–10.0) 
Cardigan Welsh Corgi 83 43/7,160 818/648,659 4.8 (3.5–6.5) 
Border Collie 52 102/7,101 2,009/647,468 4.6 (3.8–5.7) 
Wire Fox Terrier 94 28/7,175 622/648,855 4.1 (2.8–6.0) 
Soft Coated Wheaten Terrier 62 58/7,145 1,367/648,110 3.8 (3.0–5.0) 
Keeshond 102 20/7,182 542/648,935 3.3 (2.1–5.2) 
Irish Setter 73 39/7,164 1,044/648,433 3.4 (2.5–4.7) 
English Setter 95 22/7,181 622/648,855 3.2 (2.1–4.9) 
Dalmatian 75 35/7,168 1,001/648,476 3.2 (2.3–4.4) 
Cairn Terrier 56 54/7,149 1,791/647,686 2.7 (2.1–3.6) 
Bichon Frise 35 113/7,090 4,161/645,316 2.5 (2.1–3.0) 
Australian Shepherd 67 34/7,169 1,271/648,206 2.4 (1.7–3.4) 
German Shepherd Dog 2 976/6,227 40,938/608,539 2.3 (2.2–2.5) 
Lhasa Apso 54 49/7,154 1,932/647,545 2.3 (1.7–3.1) 
West Highland White Terrier 36 98/7,105 4,096/645,381 2.2 (1.8–2.7) 
Cocker Spaniel 23 171/7,032 8,282/641,195 1.9 (1.6–2.2) 

2. Odds ratio < 1 
Labrador Retriever 1 722/6,481 89,599/559,878 0.7 (0.6–0.8) 
Standard Poodle 9 138/7,065 18,601/630,876 0.7 (0.6–0.8) 
Pomeranian 14 76/7,127 11,415/638,062 0.6 (0.5–0.8) 
French Bulldog 24 36/7,167 7,381/642,096 0.4 (0.3–0.6) 
Beagle 5 117/7,086 30,672/618,805 0.3 (0.3–0.4) 
English Springer Spaniel 29 21/7,182 5,896/643,581 0.3 (0.2–0.5) 
Bulldog 7 54/7,149 23,248/626,229 0.2 (0.2–0.3) 

 
* Shown are 19 dog breeds with a higher proportion of samples submitted for serum 
cobalamin analyses that were considered overrepresented (1.), and 7 breeds with a lower 
proportion of samples submitted for serum cobalamin analysis that were considered 
underrepresented (2.). 
† Number of dogs of a particular breed/number of dogs of the remaining dog breeds that 
had been identified by the GI Lab database and in the AKC ranking list of 2009. 
‡ Calculated odds ratio and 95% confidence interval (in parentheses) for each breed (p 
values for all < 0.0003). 
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Table 4. Comparison of dog breeds with a higher proportion of dogs with decreased 

serum canine trypsin-like immunoreactivity (cTLI; ≤2.5 μg/L) concentrations and 

undetectable serum cobalamin (COB) concentrations (<150 ng/L) and those with a higher 

proportion of decreased serum cTLI (≤2.5 μg/L) concentrations but a normal serum 

cobalamin concentration (251–908 ng/L). 

Breed* 
2009 AKC 

ranking position 

cTLI ≤2.5 μg/L 
and 

COB <150 ng/L† 

cTLI ≤2.5 μg/L 
and 

COB 251-908 ng/L† Odds ratio‡ p value‡ 

A. Cobalamin < 150 ng/l 
Chinese Shar Pei 47 0/53 3/49 NA 1.0 
Akita 50 10/16 7/50 8.6 (2.3–31.3) 0.001 
Border Collie 52 9/37 8/198 7.6 (2.7–21.4) 0.0002 
German Shepherd Dog 2 131/316 335/2,024 3.6 (2.8–4.6) <0.0001 

B. Cobalamin submissions 
Greyhound 140 0/1 29/209 NA 1.0 
Parson Russell Terrier 87 2/14 17/214 1.9 (0.4–9.3) >0.05 
Standard Schnauzer 99 1/7 1/78 12.8 (0.7–231.8) >0.05 
American Eskimo Dog 118 ¼ 1/31 10.0 (0.5–204.1) >0.05 
Cardigan Welsh Corgi 83 4/7 9/76 9.9 (1.9–51.7) <0.05 
Border Collie 52 See above See above 
Wire Fox Terrier 94 2/4 2/55 26.5 (2.4–296.7) <0.05 
Soft Coated Wheaten Terrier 62 0/5 0/138 NA 1.0 
Keeshond 102 0/1 0/42 NA 1.0 
Irish Setter 73 0/6 1/91 NA 1.0 
English Setter 95 0/3 0/55 NA 1.0 
Dalmatian 75 2/7 1/77 30.4 (2.3–395.4) <0.05 
Cairn Terrier 56 12/20 24/91 4.2 (1.5–11.5) <0.01 
Bichon Frise 35 0/16 0/180 NA 1.0 
Australian Cattle Dog 67 3/8 7/57 4.2 (0.8–22.0) >0.05 
German Shepherd Dog 2 See above See above 
Lhasa Apso 54 1/10 6/88 1.5 (0.2–14.1) >0.05 
West Highland White Terrier 36 8/22 30/200 3.2 (1.3–8.4) <0.05 
Cocker Spaniel 23 4/34 8/331 5.4 (1.5–18.9) <0.05 

C. Case reports 
Australian Shepherd 28 4/18 4/109 7.5 (1.7–33.4) <0.05 
Beagle 5 0/22 3/235 NA 1.0 
Giant Schnauzer 89 NA NA NA NA 
Border Collie 52 See above See above 
Chinese Shar Pei 47 See above See above 

 
* Shown are dog breeds (A) from Table 2: with a higher proportion of undetectable 
serum cobalamin concentrations (<150 ng/L), (B) from Table 4: with a higher proportion 
of samples submitted for serum cobalamin analysis, and (C) dog breeds reported in case 
reports of cobalamin deficiency and their calculated proportion of low serum cTLI 
concentrations (≤2.5 μg/L) diagnostic for exocrine pancreatic insufficiency when 
compared to normal cobalamin concentrations (251-908 ng/L). 
† Number of dogs that had a serum cTLI concentration ≤2.5 μg/L and serum cobalamin 
concentrations <150 ng/L/total number of dogs or a serum cTLI concentration ≤2.5 μg/L 
and serum cobalamin concentrations 251-908 ng/L/total number of dogs. NA = not 
applicable. 
‡ Calculated odds ratio, 95% confidence interval (in parentheses) for each breed, and the 
corresponding p values. NA = not applicable. 
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Among the 19 breeds with higher proportion of serum sample submissions, serum 

cobalamin concentrations as well as ages were significantly different (both: p < 0.0001; 

Figure 1 and 2, respectively; Table 5). Dunn post test showed that serum cobalamin 

concentrations in the Greyhound were significantly lower than those in the other 18 

breeds (all p ≤ 0.01; Figure. 1). Also, the ages differed significantly among the 19 breeds 

(p < 0.0001; Figure 2). Post test revealed that German Shepherd Dogs were significantly 

younger than those other 17 breeds, but not the Irish Setter (all p ≤ 0.05; Figure 2). 

Furthermore, Dunn post test showed that the age in the Irish Setters differed significantly 

from those in 16 other breeds, but not the German Shepherd Dog or Soft Coated Wheaten 

Terrier (all p ≤ 0.05; Figure 2). The American Eskimo Dog, Dalmatian, and Keeshond 

had a median age of 10 years, which differed significantly from the Border Collie, Cairn 

Terrier, Cardigan Welch Corgi, German Shepherd Dog, Irish Setter, and Soft Coated 

Wheaten Terrier (all p ≤ 0.05; Figure 2). 
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Table 5. Gastrointestinal Laboratory (GI Lab; Texas A&M University, College Station, 

Texas) data set for a period of 4 years (2006-2010) for 19 breeds with their corresponding 

sex, median age, and median serum cobalamin concentration.* 

Breed* 
2009 AKC 

ranking position GI Lab† (n) Age‡ Cobalamin§ (ng/L) 

1. Odds ratio > 1 
Greyhound 140 441 8.0 (4.5) 286 
Parson Russell Terrier 87 484 8.8 (7.8) 518 
Standard Schnauzer 99 231 8.0 (6.0) 575 
American Eskimo 118 91 10.0 (11.0) 422 
Cardigan Welsh Corgi 83 171 6.0 (4.1) 416 
Border Collie 52 409 6.0 (8.3) 368 
Wire Fox Terrier 94 111 8.0 (9.9) 515 
Soft Coated Wheaten Terrier 62 230 5.6 (9.6) 409 
Keeshond 102 80 10.0 (7.5) 392 
Irish Setter 73 154 4.0 (6.5) 391 
English Setter 95 86 7.0 (3.5) 520 
Dalmatian 75 141 10.0 (3.5) 346 
Cairn Terrier 56 214 6.0 (5.1) 411 
Bichon Frise 35 452 8.0 (7.3) 526 
Australian Cattle Dog 67 136 7.0 (7.4) 379 
German Shepherd Dog 2 3,905 3.0 (8.9) 342 
Lhasa Apso 54 195 8.0 (9.2) 443 
West Highland White Terrier 36 393 7.0 (5.3) 458 
Cocker Spaniel 23 684 9.0 (7.9) 472 

 
* Table shows the dog breeds with a higher (1.) proportion of serum samples submitted to 
GI Lab. 
† Number of dogs per breed in which higher proportion of serum samples were submitted 
to GI Lab. 
‡ Median age (in years) for all dogs of each breed. Dogs where age was not reported is 
shown in parentheses. Both values are in percentages. 
§ Median serum cobalamin concentrations (in ng/l) for all breeds. 
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Figure 1. Serum cobalamin concentrations in 19 dog breeds. Serum cobalamin concentrations differed significantly among 

these 19 breeds (p < 0.0001). Furthermore, serum cobalamin concentrations in Greyhounds differed significantly from those in 

the other 18 dog breeds (p ≤ 0.01). Order of listed breeds in the figure is the same as in Tables 3 and 4. 
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Figure 2. Ages of dogs of 19 dog breeds. The ages among the 19 breeds differed significantly (p < 0.0001). Also, the ages of 

German Shepherd Dogs differed significantly from those of the 17 dog breeds other than the Irish Setter (p ≤ 0.05). The 

American Eskimo Dog, Keeshond, and Dalmatian (median age: 10 years) were significantly older than the Cardigan Welsh 

Corgi, Border Collie, Soft Coated Wheaten Terrier, Cairn Terrier, Irish Setter, and German Shepherd Dog (p ≤ 0.05). Order of 

the listed breeds in the figure is the same as in Figure 1 and Tables 3 and 4. 
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2.5 Discussion 

In the present retrospective study, 5 breeds (the Akita, Shar Pei, German Shepherd Dog, 

Greyhound, and Labrador Retriever) were observed to be overrepresented, and 6 breeds 

(Belgian Malinois, Boxer, Golden Retriever, Great Dane, Miniature Schnauzer, and 

Standard Poodle) were underrepresented with regard to a serum cobalamin concentration 

below the lower limit of the reference interval. Furthermore, 4 breeds (Akita, Border 

Collie, Shar Pei, and German Shepherd Dog) were overrepresented with regard to 

undetectable serum cobalamin concentrations, and 4 breeds (Boxer, Golden Retriever, 

Miniature Schnauzer, and Standard Poodle) were underrepresented in this regard. 

The GI Lab database results also revealed that the Akita, Border Collie, and German 

Shepherd Dog, but not the Shar Pei, with undetectable serum cobalamin concentrations, 

were more likely to also have a serum cTLI concentration considered diagnostic for EPI 

than dogs with a normal cobalamin concentration. Of the 5 breeds that were mentioned 

in previous reports regarding cobalamin deficiency during the past two decades, the 

Border Collie and the Shar Pei were the only breeds in the current study that showed an 

association with undetectable serum cobalamin concentrations. Of these 5 breeds, the 

Border Collie and Australian Shepherd, with undetectable serum cobalamin 

concentrations, revealed an association with serum cTLI concentrations considered 

diagnostic for EPI. In contrast, the Beagle showed no such association in the present 

study, which could indicate that the case report of cobalamin deficiency was an isolated 

case and not a reflection of a breed predilection. Because there were less than 30 serum 
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submissions for the Giant Schnauzer (1 dog with undetectable serum cobalamin 

concentration), that breed was excluded from the analysis. 

The findings of the current study suggest that the Akita, Australian Shepherd, Border 

Collie, and German Shepherd Dog, but not the Shar Pei, may have a higher prevalence 

of cobalamin deficiency due to exocrine pancreatic insufficiency. Pancreatic secretions 

play an important role in the intestinal absorption of cobalamin in the dog (Simpson et 

al., 1989). Intrinsic factor, which is essential for cobalamin absorption, is secreted 

mainly from pancreatic acinar cells in dogs (Batt et al., 1985). Therefore, in the Akita, 

Australian Shepherd, Border Collie, and German Shepherd Dog with decreased serum 

cobalamin concentration and serum cTLI concentration considered diagnostic for EPI, 

further investigations of the findings are warranted. 

Nineteen breeds had disproportionately high numbers of serum samples submitted 

for cobalamin analysis relative to the AKC breed ranking list of 2009. For some breeds, 

such as the Cairn Terrier, Cardigan Welsh Corgi, Cocker Spaniel, Dalmatian, West 

Highland White Terrier, and Wire Fox Terrier, submissions with undetectable serum 

cobalamin concentrations were associated with a serum cTLI concentration considered 

diagnostic for EPI, suggesting that in these breeds cobalamin deficiency is due to EPI. In 

contrast, 10 breeds with undetectable serum cobalamin concentrations showed no 

association with a serum cTLI concentration considered diagnostic for EPI. 

Consequently, this suggests that cobalamin deficiency in these breeds was most likely 

independent of EPI. 
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The ages of dogs for which serum was submitted for cobalamin analysis differed 

significantly among the 19 breeds for which disproportionate numbers of samples were 

submitted. Veterinarians requested serum cobalamin analysis more frequently in 

younger German Shepherd Dogs and Irish Setters, which suggests that early in life both 

breeds are susceptible to gastrointestinal disease. It has been shown in North America 

and in Europe that EPI in German Shepherd Dogs (Batchelor et al., 2007) is a disease 

that occurs early in life and is suspected to be hereditary. The same applies for the 

gluten-sensitive enteropathy in Irish Setters, but this condition has been reported only in 

the United Kingdom (Batt, 1985; Garden et al., 2000). In contrast, American Eskimo 

Dogs, Dalmatians, and Keeshonds were significantly older than Border Collies, Cairn 

Terriers, Cardigan Welsh Corgis, German Shepherd Dogs, Irish Setters, and Soft Coated 

Wheaten Terriers, which could suggest that the former breeds have a predilection to late-

onset gastrointestinal disease that is associated with cobalamin malabsorption. 

The Greyhound, which was 1 of 19 breeds with a higher proportion of serum sample 

submissions for cobalamin measurement, had by far the highest proportion of serum 

samples submitted for serum cobalamin analysis and the lowest serum cobalamin 

concentration, suggesting that cobalamin deficiency is frequently suspected in this breed. 

It also suggests that cobalamin deficiency is common in this breed or that serum 

cobalamin concentrations in Greyhounds are lower than those in other breeds and that a 

breed-specific reference interval should be investigated. 

It should be noted that there were several limitations of the current study. For 

instance, mixed-breed dogs might have been included if a dog owner reported the dog to 
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be pure bred. Also, it is possible that animal hospitals did not correctly report the dog 

breeds. In addition, veterinarians might have submitted samples from certain breeds 

more frequently because a disease is associated with a particular breed. Also, it might be 

possible that dog-breeding clubs are aware of certain gastrointestinal diseases in their 

breed of interest and due to breed-club initiatives submissions rates by breeds can be 

influenced. 

Serum cobalamin concentrations below the lower limit of the reference interval have 

previously been described in the German Shepherd Dog (Rutger et al., 1995) and Shar 

Pei (Bishop et al., 2012) but not in the Akita, Greyhound, or Labrador Retriever. 

Undetectable serum cobalamin concentrations have been reported in the Border Collie 

(Morgan & McConnell, 1999), Shar Pei (Bishop et al., 2012), and German Shepherd 

Dog (Batt, 1993), but not in the Akita. An association of undetectable serum cobalamin 

concentration and a serum cTLI concentration considered diagnostic for EPI has been 

previously identified in the German Shepherd Dog (Batt, 1993), but not in the Akita or 

Border Collie. In contrast, the Shar Pei did not show an association with a serum cTLI 

concentration considered diagnostic for EPI. Therefore, it appears that only some breeds 

with undetectable serum cobalamin concentration have an association with EPI. In the 

Shar Pei, for which a high prevalence of cobalamin deficiency has previously been 

described in North America (Bishop et al., 2012) and the United Kingdom (Dandrieux et 

al., 2010), it appears that the cobalamin deficiency is not associated with EPI but rather 

with a defect in cobalamin metabolism (Bishop et al., 2012; Grützner et al., 2013). 



40 
 

Nineteen breeds had higher proportions of samples submitted for serum cobalamin 

analysis. Breeds such as the American Eskimo, Keeshond, and Standard Schnauzer with 

undetectable serum cobalamin concentrations did not show an association with EPI. 

Those breeds might have been overrepresented in the present study because they have 

been identified in another study as having abnormal findings on SpecCPL testing 

(Bishop et al., 2010). SpecCPL is a test used to diagnose pancreatitis in dogs (Huth et al., 

2010), and therefore veterinarians might have submitted serum samples from those 

breeds more frequently to GI Lab for concurrent serum cobalamin analysis. 

The Chinese Shar Pei, Staffordshire Bull Terrier, and a mixed-breed dog have been 

described in the United Kingdom as having a higher risk of low serum cobalamin 

concentration, while the Boxer, Bullmastiff, English Setter, Flat-Coated Retriever, 

Golden Retriever, Old English Sheepdog, and Weimaraner have a low risk for low 

serum cobalamin concentration (Dandrieux et al., 2010). In the current retrospective 

study, the Staffordshire Bull Terrier did not show a higher risk of low serum cobalamin 

concentration. On the other hand, breeds such as the Boxer and Golden Retriever were 

underrepresented in both North America and the United Kingdom with regard to 

decreased cobalamin concentration, which suggests that neither breed is predisposed to 

cobalamin deficiency. 

In conclusion, results of the present retrospective study indicate that the Akita, Shar 

Pei, German Shepherd Dog, Greyhound, and Labrador Retriever had an increased 

proportion with regard to a serum cobalamin concentration below the lower limit of the 

reference interval. Akitas, Shar Peis, German Shepherd Dogs, and Border Collies had an 
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increased proportion of serum cobalamin concentrations below the detection limit of the 

assay. Furthermore, undetectable serum cobalamin concentrations were associated with a 

serum cTLI concentration considered diagnostic for EPI in the Akita, Australian 

Shepherd, Border Collie, German Shepherd Dog, Cairn Terrier, Cardigan Welsh Corgi, 

Cocker Spaniel, Dalmatian, West Highland White Terrier, and Wire Fox Terrier. 

However, in the Shar Pei, undetectable serum cobalamin concentrations were not 

associated with serum cTLI concentrations suggestive of EPI. Greyhounds had the 

highest proportion of serum samples submitted for serum cobalamin analysis. Further 

investigations are warranted in the breeds identified in this study to clarify if any breed-

specific gastrointestinal disorders may exist. 
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3. INFLAMMATORY, IMMUNOLOGICAL, AND OTHER BIOMARKERS        

IN COBALAMIN-DEFICIENT CHINESE SHAR PEIS 

 

3.1 Overview 

Chinese Shar Peis (Shar Peis) have a high prevalence of cobalamin deficiency and 

commonly present with clinical signs suggestive of severe and longstanding 

gastrointestinal disease. Cutaneous mucinosis and Shar Pei fever are also prevalent in 

this breed, and their potential association with cobalamin deficiency has not been 

investigated. Therefore, the goal of this study was to evaluate serum concentrations of 

inflammatory markers, immunological markers, and markers for intestinal disease in 

Shar Peis with and without cobalamin deficiency. Serum concentrations of inflammatory 

markers (i.e., C-reactive protein [CRP], calprotectin [CP], and S100A12), hyaluronic 

acid, parameters commonly altered in chronic intestinal diseases (i.e., albumin, zinc, 

canine alpha1-proteinease inhibitor [cα1PI], IgA, and IgM), and creatinine were 

compared between Shar Peis with and without cobalamin deficiency. Serum 

concentrations of CRP, CP, S100A12, hyaluronic acid, zinc, and cα1-PI concentrations 

did not differ between the groups of Shar Peis (p > 0.05). Concentrations of serum 

albumin and creatinine were significantly lower in cobalamin-deficient Shar Peis than in 

normocobalaminemic Shar Peis (both p < 0.0001). Higher serum IgA concentrations and 

lower serum IgM concentrations were observed in cobalamin-deficient Shar Peis than in 

normocobalaminemic Shar Peis (both p < 0.0001). In conclusion, between the two 

groups of Shar Peis differences were only found in parameters that may be altered in 
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patients with chronic enteropathies (e.g., albumin and IgA). The findings of this study 

might suggest that cobalamin deficiency in Shar Peis is not associated with other highly 

prevalent diseases in Shar Peis; however, further studies are needed before definitive 

conclusions can be drawn. 

 

3.2 Introduction 

In both North America and the United Kingdom the Chinese Shar Pei (Shar Pei) has 

been described as having a high prevalence of cobalamin (vitamin B12) deficiency 

(Bishop et al, 2012; Dandrieux et al., 2013). Cutaneous mucinosis and Shar Pei fever are 

also prevalent in this breed, and their potential association with cobalamin deficiency has 

not been investigated. 

Shar Peis with cobalamin deficiency commonly present with clinical signs 

suggestive of severe and longstanding gastrointestinal disease such as diarrhea, 

vomiting, and/or weight loss (Bishop et al., 2012). It has been shown that cobalamin 

deficiency in Shar Peis is associated with hyperhomocysteinemia, which suggests that 

the function of the intracellular cobalamin-dependent enzyme (i.e., methionine synthase) 

is impaired in cobalamin-deficient Shar Peis (Grützner et al., 2013). In this context, 

hyperhomocysteinemia has been described in humans with chronic inflammatory 

diseases such as rheumatic disease (Szekanecz & Koch, 2008), cardiovascular and end-

stage renal disease (van Guldener et al., 2007), and inflammatory bowel disease (IBD) 

(Romagnulo et al., 2001). 
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Serum concentrations of C-reactive protein (CRP), a recognized acute phase reactant 

(Baykal et al., 1993); calprotectin (CP), a marker of granulocytic inflammation 

(Heilmann et al., 2012; Lügering et al., 1995); and S100A12, a sensitive marker of 

neutrophilic inflammation (Kallinich et al., 2010), have recently been described in dogs 

with chronic gastrointestinal diseases and were observed to be altered in dogs with 

chronic enteropathies (e.g., IBD) (Jergens et al., 2003; Heilmann et al., 2012; Heilmann 

et al., 2011). However, to the authors’ knowledge such inflammatory markers (i.e., CRP, 

CP, and S100A12) have not yet been reported in Shar Peis with cobalamin deficiency. 

Hyaluronan (also called hyaluronic acid [HA]) has been suggested as another 

potential marker for inflammation by Hascall et al. (2004). Interestingly, increased 

serum HA concentrations have been described in Shar Peis with cutaneous mucinosis 

when compared to healthy controls and it has been proposed that this condition is a 

consequence of a genetic defect involving HA (Hascall et al., 2004; Muller, 1990; Zanna 

et al., 2008). Therefore, it appears reasonable to measure serum HA concentrations in 

Shar Peis with cobalamin deficiency to evaluate if a potential association between 

cutaneous mucinosis and cobalamin deficiency in Shar Peis might exists. 

A higher production of cell surface hyaluronan has been documented on mucosal 

endothelial cells in human patients with IBD when compared to healthy controls 

(Kessler et al., 2008). Along those lines, low serum cobalamin concentrations have also 

been documented in both human and canine patients with chronic enteropathies such as 

IBD (Allenspach et al., 2007; Yakut et al., 2010). We hypothesize that certain serum 

parameters (e.g., albumin [Allenspach et al., 2007], zinc [Gingerich et al., 2008], and 



45 
 

canine alpha1-proteinease inhibitor [Heilmann et al., 2013; Grützner et al., 2013]), which 

have been reported to be affected in dogs with severe and longstanding intestinal disease 

might be altered in Shar Peis with cobalamin deficiency. 

In humans, immunoglobulin A (IgA) has been suggested to play a role in the 

pathogenesis of chronic intestinal diseases leading to cobalamin deficiency (Baz et al., 

2004). In dogs, decreased concentrations of IgA and IgM in serum have been observed 

in Shar Peis with a suspected primary immunodeficiency syndrome (Moroff et al., 1986; 

Rivas et al., 1995). However, to the authors knowledge those two immunoglobulins have 

not been documented in Shar Peis with cobalamin deficiency. 

Shar Pei Fever is an autoimmune disorder causing periodic flare-ups, which 

predisposes Shar Peis to systemic reactive amyloidosis causing renal failure (DiBartola 

et al., 1989; Segev et al., 2012). A study that investigated renal amyloidosis in dogs 

demonstrated that serum creatinine concentrations were higher in Shar Peis with renal 

amyloidosis when compared to non-Shar Peis with renal amyloidosis (Segev et al., 

2012). Also, dogs affected with Shar Pei fever frequently show clinical signs such as 

anorexia and weight loss, which have also been reported in cobalamin-deficient Shar 

Peis. However, to the best of our knowledge neither serum cobalamin concentrations 

have been reported in Shar Peis with Shar Pei Fever nor serum creatinine concentrations 

have been evaluated in Shar Peis with cobalamin deficiency. 

Several conditions have frequently been reported in Shar Peis but a potential 

association between those conditions has not been investigated. Therefore, the aims of 

this study were to compare serum concentrations of inflammatory markers, markers for 
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chronic intestinal disease, and immunological markers in Shar Peis with and without 

cobalamin deficiency, and to evaluate if an inflammatory phenotype exists in Shar Peis 

with cobalamin deficiency. 

 

3.3 Materials and methods 

Sample Collection 

For the purpose of this study, serum samples from Shar Peis were collected between 

March 1st of 2006 and December 1st of 2009. The protocol for collection of serum 

samples from healthy dogs was reviewed and approved by the Clinical Research Review 

Committee at Texas A&M University (CRRC#2003-51, CRRC#2007-30). These serum 

samples had been collected from Shar Peis from various parts of the United States, and 

the owner of each dog completed a questionnaire, which included questions concerning 

the signalment and the current health status of the dog. Some of the samples were 

collected from dogs that also had been used for a genome-wide association study of 

cobalamin deficiency in the Shar Pei as reported elsewhere (Grützner et al., 2010). Not 

all parameters were evaluated in all samples (Table 6). 

 

Concentrations of serum cobalamin 

Serum cobalamin concentrations in Shar Peis were measured using an automated 

chemiluminescence assay (Immulite®2000; Siemens Healthcare Diagnostics Inc., 

Deerfield, IL, USA) with a reference interval of 251-908 ng/L. Only dogs were included 

that either were normocobalaminemic or that had an undetectable serum cobalamin 
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concentration (<150 ng/L; these dogs were considered to be cobalamin-deficient; Table 

6). Shar Peis with cobalamin deficiency had clinical signs suggestive of severe and 

longstanding gastrointestinal disease such as diarrhea, vomiting, and/or weight loss. 

Whereas Shar Peis with normal cobalamin concentrations were apparently health based 

on the study questionnaires which were filled out by primary care veterinarian and pet 

owners. 

 

Concentrations of serum inflammatory markers 

Concentrations of serum CRP were quantified in Shar Peis with and without cobalamin 

deficiency (Table1) using a commercial ELISA kit (Tridelta, Maynooth, Ireland) with a 

reference interval of 0-7.6 mg/L (Gastrointestinal Laboratory at Texas A&M University; 

College Station, TX, USA; http://vetmed.tamu.edu/gilab/service/assays/canine-c-

reactive-protein.; Accessed August 5, 2013). Serum calgranulin concentrations were 

measured using an in-house ELISA for canine CP (reference interval: 0.9-11.9 mg/L; 

[Heilmann et al., 2011]) and an in-house radioimmunoassay for canine S100A12 

(reference interval: 33.0-233.0 μg/L; [Heilmann et al., 2010]). 

 

Concentrations of serum HA 

Serum HA concentrations were measured in samples from Shar Peis (Table 1) with and 

without cobalamin deficiency by use of a commercially available ELISA kit (Echelon 

Biosciences, Salt Lake City, USA). Due to the lack of an in-house control interval for 

canine serum HA concentrations, serum from 7 healthy German Shepherd Dogs was 



48 
 

used to provide an approximate control range. Because of the small sample size, serum 

HA concentrations of healthy control dogs were compared to measurements of healthy 

control dogs of other studies (Zanna et al., 2008; Seki et al., 2008). The protocol for 

collection of serum samples from healthy German Shepherd Dogs was reviewed and 

approved by the Clinical Research Review Committee at Texas A&M University 

(CRRC#2005-35). 

 

Concentrations of serum chronic intestinal diseases markers 

Concentrations of serum albumin (reference interval: 2.4-4.5 g/dL) were measured for 

Shar Peis with and without cobalamin deficiency using an automated clinical chemistry 

analyzer (Stanbio Laboratory, Boerne, TX, USA). An external laboratory (Texas A&M 

Veterinary Medical Diagnostic Laboratory) was used to measure serum zinc 

concentrations (reference interval: 0.7-2.0 ppm; Texas Veterinary Medical Diagnostic 

Laboratory; College Station, TX, USA; http://tvmdl.tamu.edu.; Accessed August 5, 

2013) in Shar Peis with and without cobalamin deficiency. Finally, serum cα1PI 

concentrations were measured using an in-house radioimmunoassay (reference interval: 

732-1,802 mg/L; [Heilmann et al., 2013]). 
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Table 6. Number (n) and proportion of cobalamin-deficient (COB deficient) Shar Peis and normocobalaminemic (normal 

COB) Shar Peis that were included in this study are listed for each test performed (hyaluronic acid [HA], canine C-reactive 

protein [CRP], canine calprotectin [CP], canine S100A12 [A12], albumin, creatinine, zinc, canine alpha1-proteinease inhibitor 

[cα1PI], canine IgA [IgA], and canine IgM [IgM] concentration). The remaining columns show the number of female and male 

dogs and the median age (in years) for all dogs of each group. 

 

  Chinese Shar Peis 

Tests 
n # COB 

deficient 
♀ /age ♂ /age 

# normal 
COB 

♀ /age ♂/age 

HA 46 16   9 / 6.0   7 / 6.0 30 17 / 3.0 13 / 4.0 

CRP 68 24 13 / 7.0 11 / 6.0 44 24 / 5.0 20 / 5.0 
CP 39 14   8 / 6.5   6 / 6.0 25 13 / 4.0 12 / 4.0 
A12 39 14   8 / 6.5   6 / 6.0 25 13 / 4.0 12 / 4.0 

Albumin 66 22 11 / 7.0 11 / 6.0 44 26 / 5.0 18 / 4.0 
Creatinine 66 22 11 / 7.0 11 / 6.0 44 26 / 5.0 18 / 4.0 
Zinc 40 15   7 / 6.0   8 / 5.0 25 10 / 9.0 15 / 4.0 
cα1PI 50 18  9 / 7.0   9 / 5.0  32 18 / 5.0 14 / 4.0 

IgA 71 23 12 / 7.5 11 / 5.0 48 30 / 5.0 18 / 4.0 

IgM 71 23 12 / 7.5 11 / 5.0 48 30 / 5.0 18 / 4.0 
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Concentrations of serum Immunoglobulins markers 

Serum IgA and immunoglobulin M (IgM) concentrations were quantified by ELISAs 

using commercial kits (Bethyl Laboratories, Montgomery, TX, USA). 

 

Concentrations of serum creatinine 

Concentrations of serum creatinine (reference interval: 0.5-1.4 mg/dL) were measured in 

Shar Peis with and without cobalamin deficiency using an automated clinical chemistry 

analyzer (Stanbio Laboratory, Boerne, TX, USA). 

 

Data analysis 

To conduct statistical analyses, a commercial software package (GraphPad Prism5, 

GraphPad Software, La Jolla, CA, USA) was used. A Mann-Whitney U test for non-

parametric data was used to compare serum HA, CRP, CP, S100A12, albumin, 

creatinine, zinc, cα1PI, IgA, and IgM concentrations between cobalamin-deficient Shar 

Peis and normocobalaminemic Shar Peis. In addition, a Kruskal-Wallis test with a 

Dunn’s post test for non-parametric data was used to compare serum HA concentrations 

between cobalamin-deficient Shar Peis, normocobalaminemic Shar Peis, and healthy 

controls. A Fisher’s exact test was used to evaluate if cobalamin deficiency in Shar Peis 

is associated with decreased serum albumin concentrations and the odds ratio (OR) and 

the 95% confidence interval (CI) were calculated. Significance for all tests was set at p < 

0.05. 
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3.4 Results 

Serum inflammatory markers concentrations 

Concentrations of serum CRP, CP, and S100A12 were not significantly different 

between cobalamin-deficient Shar Peis (medians: 6.3 mg/L, 13.6 mg/L, and 196.3 μg/L, 

respectively) and normocobalaminemic Shar Peis (medians: 2.8 mg/L [p = 0.3011], 10.8 

mg/L [p = 0.5581], and 144.5 μg/L [p = 0.4914], respectively; Figure 3, Table 7). Fifty 

percent of cobalamin-deficient Shar Peis had serum CP concentrations above the upper 

limit of the reference interval, 43% had serum S100A12 concentrations above the 

suggested upper limit of the reference interval, and 29% of cobalamin-deficient Shar 

Peis had a serum CRP concentration above the upper reference limit. 

 

Serum HA concentrations 

No significant difference of serum HA concentrations was identified between 

cobalamin-deficient Shar Peis (medians: 597 ng/ml) and normocobalaminemic Shar Peis 

(medians: 672 ng/ml; p = 0.8087). However, serum HA concentrations were 

significantly higher in both cobalamin-deficient Shar Peis (median: 597 ng/ml) and 

normocobalaminemic Shar Peis (median: 672 ng/ml) when compared to healthy controls 

(median: 227 ng/ml; p = 0.0156; Figure 4; Table 7). 
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Table 7. This table shows the medians, ranges, and the p values for comparison of the different parameters between 

cobalamin-deficient (COB deficient) and normocobalaminemic (normal COB) Shar Peis. Parameters are listed in the same 

order as in table 1. 

 

 Chinese Shar Peis 

Tests COB deficient normal COB p value 

   HA  (ng/ml)      597 (195-3086)      672 (100-2759) 0.8087 

  CRP (mg/L)       6.3 (0.0-55.6)       2.8 (0.0-86.4) 0.3011 
  CP    (mg/L)     13.6 (3.8-41.0)     10.8 (2.8-41.0) 0.5581 
  A12  (μg/L)   196.3 (49.3-1315.0)   144.5 (51.6-628.7) 0.4914 

  Albumin (g/dL)       2.5 (1.3-3.2)       2.9 (1.9-3.7) <0.0001 
  Creatinine (mg/dL)       1.0 (0.5-1.8)       1.2 (0.6-2.9) 0.0095 
  Zinc  (ppm)       0.9 (0.5-1.2)       1.0 (0.6-2.7) 0.0963 
  cα1PI (mg/L)    1706 (1033-3210)    1494 (904-3258) 0.1270 

  IgA   (g/L)       1.7 (0.4-4.0)       0.6 (0.2-2.5) <0.0001 
  IgM  (g/L)       0.9 (0.3-2.5)       2.0 (0.4-5.0) <0.0001 
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Figure 3. Comparison of serum A) C-reactive protein (CRP), B) calprotectin (CP), and C) S100A12 (A12) concentrations 

between cobalamin-deficient (COB deficient) and normocobalaminemic (normal COB) Shar Peis (median: [CRP: 6.3 mg/L 

and 2.8 mg/L, p = 0.3011; CP: 13.6 mg/L and 10.8 mg/L, p = 0.5581; A12: 196.3 μg/L and 144.5 μg/L, p = 0.4914; 

respectively). The reference interval for CRP (0.0-7.6 mg/L), CP (0.9-11.9 mg/L), and A12 (33.0-233.0 μg/L) are indicated by 

the dashed horizontal lines. 
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Figure 4. Comparison of serum hyaluronic acid (HA) concentrations between 

cobalamin-deficient (COB deficient) Shar Peis, normocobalaminemic (normal COB) 

Shar Peis, and healthy control dogs of other breeds (median: 597 ng/ml, 672 ng/L, and 

227 ng/mL, respectively; p = 0.0156). 
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Serum markers of chronic intestinal disease 

Concentrations of serum albumin were significantly lower in cobalamin-deficient Shar 

Peis (median: 2.5 g/dL) compared to normocobalaminemic Shar Peis (median: 2.9 g/dL; 

p < 0.0001; Figure 5). Approximately 57% (n=8) cobalamin-deficient Shar Peis had a 

serum albumin concentration below the lower limit of the reference interval (<2.4 g/dL), 

and cobalamin deficiency was significantly associated with hypoalbuminemia (OR: 12.0, 

CI: 2.8-63.4, p = 0.0015). Cobalamin-deficient Shar Peis had lower median serum zinc 

concentrations (median: 0.9 ppm) than normocobalaminemic Shar Peis (median: 1.0 

ppm), but this difference was not significant (p = 0.0963; Figure 6; Table 7). Serum 

concentrations of cα1PI were not different between cobalamin-deficient Shar Peis 

(median: 1,706 mg/L) and normocobalaminemic Shar Peis (median: 1,494 mg/L; p = 

0.1270). 

 

Serum Immunoglobulins concentrations 

Serum IgA concentrations were significantly higher in cobalamin-deficient Shar Peis 

(median: 1.705 g/L) than in normocobalaminemic Shar Peis (median: 0.6339 g/L; p < 

0.0001; Figure 7). In contrast, serum IgM concentrations were significantly lower in 

cobalamin-deficient Shar Peis (median: 0.9217 g/L) than in normocobalaminemic Shar 

Peis (median: 1.958 g/L; p < 0.0001; Figure 7; Table 7). The IgA-to-IgM ratio was 

significantly higher in cobalamin-deficient Shar Peis (median: 1.329) than in 

normocobalaminemic Shar Peis (median: 0.238; p < 0.0001). 
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Serum creatinine concentrations 

Concentrations of serum creatinine were significantly lower in cobalamin-deficient Shar 

Peis (median: 1.0 mg/dL) compared to normocobalaminemic Shar Peis (median: 1.2 

mg/dL; p = 0.0095; Figure 6; Table 7). Approximately 5% (n=1) cobalamin-deficient 

Shar Peis had a serum creatinine concentration above the upper limit of the reference 

interval (>1.4 g/dL), and cobalamin deficiency was not significantly associated with 

increased creatinine concentrations (data not shown). Furthermore, both groups of Shar 

Peis had a median serum creatinine concentration within the reference interval. 
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Figure 5. Comparison of serum A) albumin and B) creatinine concentrations between cobalamin-deficient (COB deficient) 

and normocobalaminemic (normal COB) Shar Peis (median: [albumin: 2.5 g/dL and 2.9 g/dL, p < 0.0001; creatinine: 1.0 

mg/dL and 1.2 mg/dL, p = 0.0095, respectively]). The reference interval for albumin (2.4–4.5 g/dL) and creatinine (0.5-1.4 

mg/dL) are indicated by the dashed horizontal lines. 
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Figure 6. Comparison of serum zinc concentrations between cobalamin-deficient (COB 

deficient) and normocobalaminemic (normal COB) Shar Peis (median: 0.9 ppm and 1.0 

ppm, respectively; p = 0.0963). The dashed horizontal lines indicate the reference 

interval (0.7-2.0 ppm) for serum zinc concentrations in dogs. 
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Figure 7. Comparison of serum A) IgA and B) IgM concentrations between cobalamin-deficient (COB deficient) and 

normocobalaminemic (normal COB) Shar Peis (median: [IgA: 1.7 g/L and 0.6 g/L; IgM: 0.9 g/L and 2.0 g/L, respectively; 

both p <0.0001). 
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3.5 Discussion 

The Shar Pei has been described as having a high prevalence of cobalamin (vitamin B12) 

deficiency and clinical signs of cobalamin-deficient Shar Peis are suggestive of severe 

and longstanding gastrointestinal disease such as diarrhea, vomiting, and/or weight loss. 

The current study assessed serum concentrations of inflammatory markers, markers for 

chronic intestinal disease, and immunological markers in Shar Peis with and without 

cobalamin deficiency and if an inflammatory phenotype exists in Shar Peis with 

cobalamin deficiency. 

Serum concentrations of the inflammatory markers CRP, the calgranulins (i.e., CP 

and S100A12), and HA, did not differ significantly between cobalamin-deficient Shar 

Peis and normocobalaminemic Shar Peis. This finding might suggest that cobalamin 

deficiency in Shar Peis is not associated with other potential disease in Shar Peis (e.g., 

cutaneous mucinosis) because increased serum HA concentrations have been described 

in Shar Peis with cutaneous mucinosis. However, further studies are needed to determine 

serum cobalamin concentrations in Shar Peis with confirmed cutaneous mucinosis. 

It is interesting to note that all three inflammatory markers (CRP, and the 

calgranulins [i.e., CP and S100A12]) were increased in both cobalamin-deficient Shar 

Peis and normocobalaminemic Shar Peis. Serum CRP concentrations were increased 

above the upper limit of the reference interval in 29% and 31%, respectively, whereas 

50% and 44% of the cobalamin-deficient Shar Peis and normocobalaminemic Shar Peis, 

respectively, had serum CP concentrations above the suggested upper reference limit. In 

contrast, we found serum S100A12 concentrations to be more frequently increased 
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above the suggested reference limit in cobalamin-deficient Shar Peis (43%) compared to 

normocobalaminemic Shar Peis (24%), although this difference did not reach 

significance (p > 0.05; data not shown). The increase in inflammatory markers in this 

study in both cobalamin-deficient and normocobalaminemic Shar Peis would suggest 

that an inflammatory phenotype exists in both groups of Shar Peis and is not associated 

with cobalamin deficiency in this breed. The high proportion of dogs with a serum CP 

concentration above the reference interval in the groups of Shar Peis with and without 

cobalamin deficiency is interesting because increased serum CP concentrations have also 

been observed in dogs with chronic enteropathies (Heilmann et al., 2012). However, 

further studies to investigate serum CRP and calgranulins in dogs (e.g., Shar Peis) with 

chronic intestinal diseases are needed and are currently underway. 

Hyperhyaluronic academia was not associated with cobalamin deficiency in Shar 

Peis in this study. It is possible that the increased HA concentrations in both Shar Peis 

with and without cobalamin deficiency reflect a high production of cell surface 

hyaluronan on mucosal endothelial cells as has been documented in human patients with 

IBD (Kessler et al., 2008). Although only a few control dogs were used in this study, 

serum HA concentrations in these dogs were comparable to historical controls (median: 

244.12 μg/L) and dogs with hepatic diseases (median: 59.17 ng/ml), while Shar Peis 

with and without cobalamin deficiency had much higher serum HA concentrations 

similar to those reported by others (Zanna et al., 2008; Seki et al., 2008). Elevated serum 

HA concentrations together with increased concentrations of the calgranulins, and 

especially CP, in serum from both Shar Peis with and without cobalamin deficiency 
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might reflect compromised gastrointestinal health. However, further studies are needed 

to confirm this hypothesis. 

Cobalamin-deficient Shar Peis had lower serum albumin concentrations and 

hypoalbuminemia was more frequently detected in cobalamin-deficient compared to 

normocobalaminemic Shar Peis. This result appears of significance given that hypo-

cobalaminemia in dogs with chronic enteropathies has been shown to be associated with 

hypoalbuminemia (Allenspach et al., 2007; Heilmann et al., 2012). Hypoalbuminemia 

could also occur due to renal protein-loss (Cook & Cowgill, 1996), and chronic kidney 

disease is frequently associated with an increased serum creatinine concentration. 

Chronic kidney disease as a cause of hypoalbuminemia cannot be definitively ruled out 

but seems rather unlikely given that in 21 (95%) cobalamin-deficient Shar Peis the 

serum creatinine concentration was within the reference interval. In humans, 

hypoalbuminemia has also been associated with the inflammatory process or 

amyloidosis (Shin et al., 2013) and an increased concentration of protease inhibitors 

(e.g., α1PI) has been hypothesized to contribute to the pathogenesis of amyloidosis 

(Vaden, 2010). Along these lines, we have shown that hypoalbuminemia is associated 

with a decreased serum cα1PI concentration in cobalamin-deficient Yorkshire Terriers 

and hypothesized that serum cα1PI concentrations might have prognostic implications in 

dogs with chronic small intestinal disease (Grützner et al., 2013). However, in the 

present study, serum concentrations of cα1PI were not significantly different between 

cobalamin-deficient Shar Peis and normocobalaminemic Shar Peis suggesting that 

cobalamin deficiency in Shar Peis is not associated with altered serum cα1PI 
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concentrations. Because albumin and α1PI are lost at the same rate, the altered 

availability of albumin and cα1PI in serum raises the question whether another source of 

cα1PI (such as inflammatory cells) might have an impact on the serum cα1PI 

concentration. Therefore, further studies are needed to investigate the relationship of 

serum albumin and serum/fecal cα1PI in Shar Peis and in dogs with chronic 

gastrointestinal disease and gastrointestinal protein loss. 

Serum concentrations of creatinine were significantly lower, albeit numerically only 

slightly different, in cobalamin-deficient Shar Peis compared to normocobalaminemic 

Shar Peis. However, the median serum creatinine concentrations were within the 

reference interval in both groups. Increased serum creatinine concentrations have been 

observed in 1 (5 %) cobalamin-deficient Shar Peis and in 9 (20%) normocobalaminemic 

Shar Peis. A study that investigated renal amyloidosis in dogs showed that serum 

creatinine concentrations were 3-fold higher in Shar Peis with renal amyloidosis 

compared to non-Shar Peis with renal amyloidosis (Segev et al., 2012). Furthermore, this 

study revealed that hypoalbuminemia occurs more often in non-Shar Peis with renal 

amyloidosis than in Shar Peis with renal amyloidosis (Segev et al., 2012). Based on the 

results of the present study it might be speculated that cobalamin deficiency in Shar Peis 

is likely not associated with renal amyloidosis taking into account the findings by Segev 

et al. (2012). However, given the lack of urine samples and/or renal biopsies for analysis 

and further phenotypic characterization of the Shar Peis enrolled in this study, the results 

of the present study do not allow any definitive conclusions. 
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Amyloid deposition has been reported in Shar Peis and non-Shar Peis with renal 

amyloidosis (Segev et al., 2012). Because extra-renal amyloid depositions have been 

shown to more commonly occur in Shar Peis compared to non-Shar Peis with renal 

amyloidosis it is possible that amyloid deposition in the gastrointestinal tract, pancreas, 

and central nervous system (Segev et al., 2012) affects cobalamin metabolism and/or 

malabsorption of nutrients such as cobalamin and zinc. In line with this, serum zinc 

concentrations were also numerically lower in cobalamin-deficient Shar Peis compared 

to normocobalaminemic Shar Peis, although this difference was not significant. Thus, 

investigation of the effect of intramural amyloid and HA deposition within the 

gastrointestinal tract on malabsorption of certain nutrients in Shar Peis with chronic 

enteropathies warrants further research. 

Cobalamin-deficient Shar Peis had higher serum IgA concentrations and, in contrast, 

lower serum IgM concentrations than in normocobalaminemic Shar Peis. The results of 

this study are in contrast to lower serum IgA concentrations in Shar Peis as reported by 

Rivas et al. (1995) and Moroff et al. (1986). This finding supports that IgA deficiency 

(Moroff et al., 1986) and the primary immunodeficiency syndrome in Shar Peis (Rivas et 

al., 1995) are not associated with cobalamin deficiency in Shar Peis. Interestingly, in 

human patients with plasma cell dyscrasias, a link between serum IgA and the 

pathogenesis of cobalamin deficiency has been suggested in that IgA may have an anti-

intrinsic factor-like activity or be involved in other mechanisms that have an impact on 

normal cobalamin absorption (Baz et al., 2004). In dogs, high serum IgA concentrations 

have been observed in patients with inflammatory diseases such as meningitis-arteritis 
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(Schwartz et al., 2011). Although speculative, an increased serum IgA concentration 

may argue for an inflammatory phenotype in cobalamin-deficient Shar Peis. Along these 

lines, increased serum IgA and decreased IgM concentrations have been described in 

humans with type 2 diabetes mellitus when compared to healthy controls, and this 

finding was considered to be due to low-grade systemic inflammation (Cai et al., 2013). 

Similar trends for these two immunoglobulins, best reflected by the IgA-to-IgM ratio, 

were seen in cobalamin-deficient Shar Peis in this study. However, these results warrant 

further investigation of the gastrointestinal immunoglobulin secretion in Shar Peis with 

cobalamin deficiency. 

In conclusion, Shar Peis have a high prevalence of cobalamin (vitamin B12) 

deficiency and clinical signs are suggestive of severe and longstanding gastrointestinal 

disease such as diarrhea, vomiting, and/or weight loss. No difference was found in serum 

concentrations of CRP, the calgranulins (CP and S100A12), and HA, between Shar Peis 

with and without cobalamin deficiency. However, the results of this study suggest that 

an inflammatory phenotype exists in both Shar Peis with and without cobalamin 

deficiency. In contrast, cobalamin-deficient Shar Peis had higher serum IgA 

concentrations and lower serum IgM, albumin, and creatinine concentrations when 

compared to normocobalaminemic Shar Peis. These findings might suggest that 

cobalamin deficiency in Shar Peis is not associated with other highly prevalent diseases 

in Shar Peis (such as cutaneous mucinosis and Shar Pei Fever) although all three 

diseases in Shar Peis have been suspected to be hereditary in a dog breed classified as 

being rare. However, further studies are needed to determine serum cobalamin 



66 
 

concentrations in Shar Peis with confirmed cutaneous mucinosis and/or Shar Pei Fever 

and to investigate gastrointestinal immunoglobulin secretion in Shar Peis with cobalamin 

deficiency. 
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4. SERUM HOMOCYSTEINE AND METHYLMALONIC ACID 

CONCENTRATIONS IN CHINESE SHAR PEIS                                               

WITH COBALAMIN DEFICIENCY* 

 

4.1 Overview 

Cobalamin deficiency is suspected to be hereditary in Chinese Shar Peis (Shar Peis), and 

inherited causes of cobalamin deficiency may affect the cellular processing of 

cobalamin. In humans, a defect of the two main cobalamin-dependent intracellular 

enzymes (i.e., methionine synthase and methylmalonyl-CoA mutase) may lead to 

hyperhomocysteinemia and hypermethylmalonic acidemia. The aim of this retrospective 

study was to evaluate serum homocysteine (HCY) and methylmalonic acid (MMA) 

concentrations in cobalamin-deficient Shar-Peis and dogs of six other breeds. Serum 

samples (n = 297) from cobalamin-deficient dogs (Shar Peis, German Shepherd Dogs, 

Labrador Retrievers, Yorkshire Terriers, Boxers, Cocker Spaniels, and Beagles) were 

analyzed for serum HCY and MMA concentrations. A Fisher’s exact test was used to 

evaluate if cobalamin deficiency in Shar Peis is associated with hyperhomocysteinemia. 

Serum HCY and MMA concentrations were higher in cobalamin-deficient Shar Peis 

compared to cobalamin-deficient dogs of the six other breeds (p < 0.0001). Hyper-

homocysteinemia was associated with cobalamin deficiency in Shar Peis (p = 0.009).  

 

________________________________________
*Reprinted with permission from Grützner N, Heilmann RM, Stupka KC, Rangachari VR, Weber K, 
Holzenburg A, Suchodolski JS, Steiner JM. 2013. “Serum methylmalonic acid and homocysteine 
concentrations in Chinese Shar Peis with cobalamin deficiency” Vet J 197, 420-426, Copyright (2013) by 
Elsevier. 
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In addition, serum HCY and MMA concentrations did not differ between cobalamin-

deficient German Shepherd Dogs with and without exocrine pancreatic insufficiency 

(EPI), a potential cause of secondary cobalamin deficiency. These findings suggest that 

the function of the two intracellular cobalamin-dependent enzymes is impaired in Shar 

Peis with cobalamin deficiency. 

 

4.2 Introduction 

A breed disposition for cobalamin deficiency has been described for the Chinese Shar 

Pei (Shar Pei) in North America and in the United Kingdom, and this condition is 

speculated to be hereditary (Bishop et al., 2011; Dandrieux et al., 2010). Inherited causes 

of cobalamin deficiency have been reported in humans and may affect the absorption, 

transport, or cellular processing of cobalamin. 

In humans, various defects of the intracellular cobalamin metabolism have been 

reported and summarized by Froese and Gravel (2010). The net result of these defects is 

a deficient function of methionine synthase or methylmalonyl-CoA mutase, the two 

main cobalamin-dependent enzymes, which may lead to hyperhomocysteinemia and 

hypermethylmalonic acidemia, respectively. In humans, hyperhomocysteinemia can 

occur as a result of deficiencies of folic acid (vitamin B9), pyridoxine (vitamin B6), or 

cobalamin (vitamin B12) (Iqbal et al., 2009; Acharya et al., 2008). It has also been shown 

in humans that increased serum homocysteine (HCY) concentrations are associated with 

cardiovascular, thrombotic, and neurodegenerative diseases (Refsum et al., 2004; 

Stanger et al., 2003). Rossi et al. (2008) measured serum HCY concentrations in dogs 
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with various diseases, such as heart disease, gastrointestinal disease, or renal failure. 

This study showed that dogs with gastrointestinal diseases have low serum HCY 

concentrations; however, to the authors’ knowledge, serum HCY concentrations have 

not been reported in dogs with cobalamin deficiency. 

Hypermethylmalonic acidemia has been described in humans and dogs (Bjørke 

Monsen and Ueland, 2003; Berghoff et al., 2012). Based on human and veterinary 

studies, an increased serum methylmalonic acid (MMA) concentration can occur due to 

cobalamin deficiency and has been suggested to reflect cobalamin deficiency at the 

cellular level (Stabler et al., 1986; Ruaux et al., 2009; Berghoff et al., 2012). In this 

context, it has been shown in humans that MMA concentrations are higher in patients 

with genetic disorders affecting intracellular processing than in patients with genetic 

defects affecting the gastrointestinal processing and the extracellular transport of 

cobalamin (Fowler et al., 2008). 

The aim of this study was to evaluate serum HCY and MMA concentrations in Shar-

Peis and dogs of other breeds with cobalamin deficiency. We hypothesized that serum 

HCY and/or MMA concentrations differ between cobalamin-deficient Shar Peis and 

cobalamin-deficient dogs of other breeds suggesting a defect of intracellular cobalamin 

metabolism in Shar Peis. This might provide further insight whether cobalamin 

deficiency in Shar Peis represents an inherited disorder. 
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4.3 Materials and methods 

Sample collection 

For the purpose of this retrospective study, which covered a 3-year period (2008-2011), 

we reviewed information on canine serum samples in the database of the Gastrointestinal 

Laboratory, Texas A&M University. Serum samples (n = 297, belonging to Shar Peis 

and dogs of six other breeds) with an undetectable serum cobalamin concentration (<150 

ng/L; i.e., below the minimum detection limit of the assay) were identified. Sex and age 

of the dogs from which the samples had been collected from were identified (Table 8). 

The serum samples had been submitted by the primary care veterinarian to the 

Gastrointestinal Laboratory for evaluation of gastrointestinal function; however, the 

clinical history and disease status of the dogs were not provided. 

To ensure an adequate number of samples per group, the six non-Shar Pei dog 

breeds, namely, German Shepherd Dogs (GSDs), Labrador Retrievers (Labradors), 

Yorkshire Terriers, Boxers, Cocker Spaniels, and Beagles, were selected based on the 

popularity of the breed according to the American Kennel Club ranking list of 2009 (all 

among the first 23 breeds) and the estimated number of samples that had been submitted 

to the Gastrointestinal Laboratory over a 2-year period (2006–2008). A study in humans 

showed that the compounds measured for the purpose of this study, including cobalamin, 

HCY, MMA, and creatinine, are stable in serum samples for several years (Hustad et al., 

2012). While this does not definitively prove that these stability data translate to dogs, it 

is reasonable to assume that they do. Only serum samples from dogs were included into 
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this study where a sufficient amount of serum (>500 μL) was available for the 

measurement of serum concentrations of HCY and MMA. 

 

HCY assay 

Serum HCY concentrations were measured in samples from the seven different dog 

breeds using a gas chromatography–mass spectrometry method (GC/MS) as described 

by Stabler et al. (1987) (Table 8). Due to the lack of a published reference interval for 

canine serum HCY concentrations, a reference interval was established from HCY 

concentrations in 35 healthy pet dogs using the robust method with a Box–Cox 

transformation (Geffré et al., 2011). This non-parametric robust method was chosen 

because the number of reference individuals in this study did not reach 120, which is 

generally accepted as a bar for a parametric calculation of the reference interval (Geffré 

et al., 2011). 
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Table 8. Breed, age (median, in years), and sex distribution of all dogs that were 

included in this study. The last column shows the number of dogs for which information 

about sex or age were not available. 

 

Breed n female/age male/age 
sex/age 

unknown 

Chinese Shar Pei 30     17 /   7.5   13 /   5.0 -/1 
German Shepherd Dog 95     50 /   4.8   45 /   4.0 -/1 
Labrador Retriever 76     39 /   6.5   36 /   7.0 1/2 
Yorkshire Terrier 41     18 / 10.0   23 /   8.0 -/1 
Boxer 20     12 /   7.0     8 /   7.0 -/1 
Cocker Spaniel 20       9 / 10.0   10 / 11.0 1/1 
Beagle 15       8 /   5.5     7 / 11.0 -/- 
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The healthy pet dogs had a median age (range) of 5.2 (1.3–13.5) years. The sex 

distribution of the healthy pet dogs was 17 males and 18 females. The healthy pet dog 

group included the following dog breeds: mixed-breeds (n = 10), Labradors (n = 4), 

GSDs (n = 4), Border Collies (n = 4), Boxers (n = 3), Yorkshire Terriers (n = 3), 

Dachshunds (n = 2), and one each of Pug, Beagle, Australian Heeler, Brittany Spaniel, 

and Miniature Schnauzer. The protocol for collection of serum samples from healthy 

dogs was reviewed and approved by the Clinical Research Review Committee at Texas 

A&M University (CRRC 2010-07). 

In addition, left-over serum specimens from a previous association study of 

cobalamin deficiency in the Shar Pei (Grützner et al., 2010) were used to compare serum 

HCY concentrations between cobalamin-deficient Shar Peis (n = 10; median age [range]: 

4.5 [1.5–11.0] years; sex: 5 females and 5 males) and normocobalaminemic Shar Peis (n 

= 28; median age [range]: 4.0 [2–12] years; sex: 15 females and 13 males). These serum 

samples had been collected from Shar Peis from various parts of the United States, and 

the owner of each dog completed a questionnaire, which included information about the 

signalment and the current health status of the dog. 

 

MMA assay 

Serum MMA concentrations (reference interval: 415–1193 nmol/L; Berghoff et al., 

2012) were measured in samples from dogs belonging to one of the seven different dog 

breeds using a GC/MS method described by Ruaux et al. (2001) (Table 8). 
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Creatinine assay 

Serum creatinine (CRE) concentrations (reference interval: 0.5–1.4 mg/dL) were 

measured using an automated clinical chemistry analyzer (Sirrus Clinical Chemistry 

Analyzer, Stanbio Laboratory) and were used to normalize serum HCY and MMA 

concentrations for evaluation of HCY/CRE and MMA/CRE ratios, respectively. In 

humans, both serum HCY and MMA concentrations are affected by chronic kidney 

disease like serum CRE concentrations (Rasmussen et al., 1990). Therefore, serum 

MMA and HCY concentrations were normalized to serum CRE concentrations for the 

purpose of this study to account for changes in renal excretion expected to be reflected 

by an increase in serum CRE concentration (Hyas et al., 2000; Rasmussen et al., 1990). 

 

Trypsin-like immunoreactivity (TLI) assay 

Low serum cobalamin concentrations are frequently detected in dogs with exocrine 

pancreatic insufficiency (EPI), making EPI an important cause of cobalamin deficiency 

in the dog (Simpson et al., 1989). If available, the concentration of canine trypsin-like 

immunoreactivity (cTLI) in serum, which is considered the gold standard test for the 

diagnosis of EPI (Batt, 1993), was used for identifying dogs with EPI. The reason was to 

compare serum HCY and MMA concentrations between cobalamin-deficient GSDs and 

Labradors with a serum cTLI concentration diagnostic for EPI (≤2.5 μg/L) and with a 

cTLI concentration within the reference interval (5.7–45.2 μg/L). The remaining five 

dog breeds were not investigated for a potential association with EPI due to the small 
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number of dogs (n ≤ 2 dogs per breed) with a serum cTLI concentration that was 

diagnostic for EPI. 

 

Data analysis 

To perform statistical analyses, a commercially available software package (GraphPad 

Prism5, GraphPad Software) was used. A Kruskal–Wallis test with a Dunn’s post-test 

for non-parametric data was used to compare age, HCY, MMA, HCY/CRE, and 

MMA/CRE between the seven dog breeds. A Mann–Whitney U test for non-parametric 

data served to compare age, HCY, MMA, HCY/CRE, and MMA/ CRE between male 

and female dogs of each breed. A Fisher’s exact test was used to evaluate the relation 

between cobalamin deficiency and hyperhomocysteinemia in Shar Peis. A Mann–

Whitney U test served to compare serum HCY concentrations between cobalamin-

deficient Shar Peis and normocobalaminemic Shar Peis and to compare serum HCY, 

MMA, HCY/CRE, and MMA/CRE in cobalamin-deficient GSDs and Labradors with 

EPI and those without EPI. Significance for all tests was set at p < 0.05. 

 

4.4 Results 

There were no sex-specific differences (p > 0.05; Table 8) among Shar Peis, GSDs, 

Labradors, Yorkshire Terriers, Boxers, Cocker Spaniels, and Beagles with an 

undetectable serum cobalamin concentration. Ages were different among the seven 

breeds (p < 0.0001); the post-test showed that GSDs were younger than Yorkshire 
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Terriers or Cocker Spaniels (p < 0.001) and that Shar Peis were younger than Cocker 

Spaniels (p < 0.05). 

Serum HCY concentrations were higher in cobalamin-deficient Shar Peis than in 

cobalamin-deficient dogs of the six other breeds, except for the Boxer (p < 0.0001; 

Figure 8; Table 9). GSDs, Labradors, and Boxers had higher serum HCY concentrations 

compared to both the group of Yorkshire Terriers and Cocker Spaniels (p < 0.05). For all 

seven breeds, serum HCY concentrations were not different between males and females. 

Serum HCY concentrations ranged from 5.2 to 25.9 μmol/L (median: 10.3 μmol/L) in 

healthy pet dogs and the reference interval for serum HCY was established as 5.0-22.1 

μmol/L (Figure 9). Only Shar Peis had a median serum HCY concentration above the 

reference interval, with about two-thirds of the dogs showing hyperhomocysteinemia. 

Serum HCY concentrations in cobalamin-deficient Shar Peis (median [range]: 25.4 

[4.6-241.1] μmol/L; n = 40) were higher than in normocobalaminemic Shar Peis (median 

[range]: 13.7 [8.6-51.9] μmol/L; n = 28; p < 0.05; Figure 10), and cobalamin deficiency 

in Shar Peis was associated with hyperhomocysteinemia (p < 0.001). The majority of 

normocobalaminemic Shar Peis (83%) had a serum HCY concentration within the 

reference interval (Figure 10). More than half of the cobalamin-deficient Shar Peis were 

hyperhomocysteinemic, whereas only a small proportion (0-20%) of dogs of the 

remaining six breeds had a serum HCY concentration above the upper limit of the 

reference interval (Figure 8). 
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Table 9. Medians (ranges) for serum homocysteine (HCY; μmol/L), methylmalonic acid (MMA; nmol/L), and creatinine 

(CRE; mg/dL) concentrations and the HCY/CRE (μmol/g) and MMA/CRE ratios (μmol/g) for dogs included in this study. 

 

Breed HCY MMA CRE HCY / CRE MMA / CRE 

Chinese Shar Pei 
33.6        

(4.6-241.1)
29,145        

(2,330-420,709) 
1.1         

(0.6-1.6) 
34.9           

(5.2-160.8) 
28,546          

(1,664-280,473) 

German Shepherd Dog 
10.0        

(2.1-31.8) 
2,341            

(465-31,322) 
1.0         

(0.3-3.5) 
9.8            

(1.9-86.2) 
2,614            

(179-50,425) 

Labrador Retriever 
10.4        

(2.5-53.7) 
1,733           

(500-21,076) 
1.1         

(0.6-4.3) 
9.6            

(2.3-171.9) 
1,737            

(147-35,361) 

Yorkshire Terrier 
3.8         

(1.0-42.3) 
1,229            

(528-11,252) 
0.6         

(0.2-1.6) 
5.5            

(2.4-26.4) 
2,028            

(836-22,503) 

Boxer 
12.0        

(3.7-108.1)
2,275            

(530-7,217) 
0.9         

(0.2-1.4) 
12.1           

(5.3-108.1) 
2,243            

(663-8,136) 

Cocker Spaniel 
5.0         

(2.0-20.2) 
1,073           

(383-2,244) 
0.6         

(0.3-1.3) 
8.0            

(1.8-40.3) 
1,622            

(519-6,698) 

Beagle 
8.4         

(2.5-27.0) 
1,115            

(329-14,279) 
0.6         

(0.3-0.8) 
15.0           

(5.0-64.0) 
1,891           

(657-28,559) 
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Figure 8. Serum homocysteine (HCY) concentrations (left) and HCY/CRE ratios (right) were higher in cobalamin-deficient 

Shar Peis than in cobalamin-deficient dogs of 6 other breeds (p < 0.0001; y-axis in a log 2 scale). The solid black lines indicate 

the median for each breed. The area between the two dotted lines represents the reference interval (5.0−22.1 µmol/L). 
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Figure 9. Serum homocysteine (HCY) concentrations ranged from 5.2-25.9 μmol/L 

(median: 10.3 µmol/L; solid line) in 35 healthy pet dogs; the reference interval for serum 

HCY concentration was calculated as 5.0-22.1 µmol/L (area between the two dotted 

lines). 
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Table 10. Medians (ranges) of serum homocysteine (HCY; μmol/L) and methylmalonic acid (MMA; nmol/L) concentrations 

and the HCY/CRE (μmol/g) and MMA/CRE ratios (μmol/g) for German Shepherd Dogs and Labrador Retrievers with a cTLI 

concentration that is considered diagnostic for EPI (≤2.5 µg/L) or a cTLI concentration within the reference interval (RI: 5.7–

45.2 µg/L). 

 

Breeds HCY MMA HCY / CRE MMA / CRE p value 

German Shepherd Dog     >0.05 

cTLI ≤ 2.5 µg/L 
12.4 

(2.9-0.3) 
1,711 

(559-24,382) 
12.8 

(4.8-30.8) 
1,988 

(430-30,478) 
 

 cTLI in RI 
9.5 

(3.3-31.8) 
2,533 

(465-31,322) 
9.8 

(1.9-86.2) 
2,789 

(179-50,424) 
 

Labrador Retriever     >0.05 

cTLI ≤ 2.5 µg/L 
12.1 

(2.5-38.0) 
1,674 

(500-3,152) 
11.7 

(6.2-40.4) 
1,907 

(786-6,624) 
 

 cTLI in RI 
10.5 

(3.8-53.7) 
1,944 

(514-21,076) 
9.1 

(2.3-44.8) 
1,739 

(147-17,563) 
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Serum MMA concentrations were higher (~10 times) in cobalamin-deficient Shar 

Peis when compared to the other investigated breeds (p < 0.0001; Figure 11; Table 9). 

All cobalamin-deficient Shar Peis, but only a proportion (33-88%) of cobalamin-

deficient dogs of the other six breeds had a serum MMA concentration above the upper 

limit of the reference interval. In addition, MMA concentrations in serum samples from 

both Yorkshire Terriers and Cocker Spaniels were lower when compared to GSDs (p < 

0.01). Serum MMA concentrations showed sex-specific differences in both Beagles 

(medians: males 3714 nmol/L, females 881 nmol/L; p = 0.02) and Boxers (medians: 

males 3041 nmol/L, females 1688 nmol/L; p = 0.02), but not for the remaining five 

breeds. 

Serum CRE concentrations (median and ranges) from all seven breeds are 

summarized in Table 9. HCY/CRE ratios were higher in cobalamin-deficient Shar Peis 

than in cobalamin-deficient dogs of the six other breeds, except for the Boxer and the 

Beagle (p < 0.0001; Figure 8 and Table 9). In addition, GSDs, Labradors, Boxers, and 

Beagles had higher serum HCY/CRE ratios than Yorkshire Terriers (p < 0.05). 

MMA/CRE ratios were substantially higher in cobalamin-deficient Shar Peis when 

compared to the other investigated breeds (p < 0.0001; Figure 11 and Table 9), which 

was similar to serum MMA concentrations not adjusted for serum CRE concentrations. 

In addition, MMA/CRE ratios in serum samples from GSDs were higher than those of 

Labradors (p < 0.05). 
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Serum HCY and MMA concentrations as well as HCY/CRE and MMA/CRE ratios 

did not differ between GSDs with a cTLI concentration diagnostic for EPI (n = 24) and 

GSDs with a cTLI concentration within the reference interval (n = 54; p > 0.05; Table 

10). No differences were observed for Labradors with a cTLI concentration diagnostic 

for EPI (n = 10) and Labradors with a cTLI concentration within the reference interval 

when comparing serum HCY and MMA concentrations, as well as HCY/CRE and 

MMA/CRE ratios (n = 53; p > 0.05; Table 10). Serum MMA concentrations in 

cobalamin-deficient GSDs and Labradors with low and normal cTLI concentrations 

were above the reference interval in more than 80% and more than 70% of dogs, 

respectively. 
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Figure 10. Serum homocysteine (HCY) concentrations in 40 cobalamin-deficient Shar 

Peis (COB deficient; median: 25.4 µmol/L, solid line) and 28 normocobalaminemic Shar 

Peis (normal COB; median: 13.7 µmol/L, solid line) were significantly different (p < 

0.05). 

 

 

 

COB deficient normal COB
0

15

30

45

60

75

90

105

200

250

Chinese Shar-Peis

se
ru

m
 H

C
Y

 c
on

ce
nt

ra
tio

n 
(

m
ol

/L
)



84 
 

Figure 11. Serum methylmalonic acid (MMA) concentrations (left) and MMA/CRE ratios (right) were higher in cobalamin-

deficient Shar Peis than in cobalamin-deficient dogs of 6 other breeds (p < 0.0001; y-axis on a log 10 scale). Solid lines 

indicate the median for each breed. The area between the two dotted lines represents the reference interval (415-1,193 nmol/L). 
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Figure 12. Function of the two main intracellular cobalamin-dependent enzymes, methionine synthase and methylmalonyl-
CoA mutase. (1) The methionine synthase reaction, which is required for the conversion of homocysteine to methionine 
(Fenton et al. 1989), occurs in the cytoplasm and requires methylcobalamin. For this active form of cobalamin to be available, 
cobalamin has to undergo a methylation to methylcobalamin. (2) The reaction catalyzed by methylmalonyl-CoA mutase takes 
place in the mitochondrion and requires adenosylcobalamin. Within the mitochondrion, a 5’-deoxyadenosyl group is 
transferred to cobalamin generating this active form of cobalamin. 
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4.5 Discussion 

In this retrospective study, 297 previously archived serum samples from Shar Peis, 

GSDs, Labradors, Yorkshire Terriers, Boxers, Cocker Spaniels, and Beagles with an 

undetectable serum cobalamin concentration were used to evaluate differences of serum 

HCY and MMA concentrations in cobalamin-deficient dogs between these breeds. In 

general, cobalamin-deficient dog breeds were found to have a high frequency of 

hypermethylmalonic acidemia, and especially Shar Peis showed a high frequency of 

hyperhomocysteinemia. Both conditions may be the net results of the malfunction of the 

two main intracellular cobalamin-dependent enzymes, methionine synthase in the 

cytosol and mitochondrial methylmalonyl-CoA mutase. The availability of cobalamin as 

a cofactor is essential for the reactions catalyzed by these two enzymes and depends on 

cobalamin in complex with transcobalamin entering the cell via receptor-mediated 

endocytosis, followed by its release from this complex and, in the case of 

methylmalonyl-CoA mutase subsequent transport into the mitochondrion (Figure 12). 

In dogs, the measurement of serum cobalamin concentrations is routinely used to 

diagnose cobalamin deficiency, and archives of laboratories that offer this test can be 

helpful to collect left-over serum samples from a variety of dog breeds with a certain 

condition, such as cobalamin deficiency. The present study showed that serum HCY 

concentrations were higher in cobalamin-deficient Shar Peis than in cobalamin-deficient 

dogs from other breeds. Considering the established reference interval for healthy pet 

dogs, only Shar Peis had a median serum HCY concentration above the reference 

interval. Although the HCY/CRE ratios showed differences between the seven 
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cobalamin-deficient dog breeds compared to the serum HCY concentrations, the overall 

picture of the comparison did not change. Taking both serum HCY concentrations and 

HCY/CRE ratios into account, the results of this study showed that cobalamin-deficient 

Shar Peis have higher HCY values than cobalamin-deficient dogs of the six other breeds 

studied. This suggests that adjusting serum HCY concentrations for serum creatinine 

concentrations would not have had a considerable impact on the results of this study. 

The comparison of serum HCY concentrations between cobalamin-deficient Shar 

Peis and normocobalaminemic Shar Peis indicated that cobalamin deficiency in Shar 

Peis is associated with hyperhomocysteinemia. The normocobalaminemic Shar Peis had 

serum HCY concentrations within the reference interval, which suggests that not all Shar 

Peis are equally affected, if at all, by a putative genetic cause of cobalamin deficiency. 

The same was demonstrated by Bishop et al. (2011) for serum MMA concentrations in 

Shar Peis with and without cobalamin deficiency. In addition, our study (data not shown) 

and Bishop et al. (2011) described that Shar Peis with and without cobalamin deficiency 

had no differences in serum vitamin B9 concentrations, which suggests that 

hyperhomocysteinemia in cobalamin-deficient Shar Peis results mainly from the lack of 

cobalamin. However, to rule out completely that only the lack of cobalamin is 

responsible for hyperhomocysteinemia in cobalamin-deficient Shar Peis, the impact of 

vitamin B6 should be investigated, because hyperhomocysteinemia can also be due to 

vitamin B6 deficiency (Iqbal et al., 2009). 

Interestingly, serum MMA concentrations were approximately 10 times higher in 

cobalamin-deficient Shar Peis than in cobalamin-deficient dogs of the six other breeds. 
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The MMA/CRE ratios showed a similar pattern compared to the serum MMA results. 

Comparing the HCY and MMA results of this study, it seems that serum MMA 

concentrations in cobalamin-deficient Shar Peis compared to the cobalamin-deficient 

dogs of the six other breeds have a bigger difference compared to serum HCY 

concentrations. We hypothesize that this bigger difference between hypocobalaminemic 

Shar Peis and cobalamin-deficient dogs of the six other breeds for serum MMA 

concentrations is due to the fact that methylmalonyl-CoA mutase is only dependent on 

cobalamin, while methionine synthase is cobalamin, vitamin B9, and vitamin B6 

dependent. Comparing the non-normalized serum HCY and MMA concentrations, the 

HCY/CRE and MMA/CRE ratios showed differences between cobalamin-deficient dogs 

of the six other breeds, which may indicate that serum creatinine concentration should be 

considered when evaluating serum MMA and HCY concentrations in dogs. 

The results of this study showed that cobalamin-deficient Shar Peis have higher 

serum HCY and MMA concentrations than cobalamin-deficient dogs of six other breeds. 

Thus, the current study provides further evidence that cobalamin deficiency in Shar Peis 

is considerably different compared to cobalamin-deficient dogs of other breeds. In 

addition, the current results help to further pinpoint the intracellular compartment and 

the pathways affected by the lack of their cofactor and may ultimately facilitate the 

detection of the defect(s) causing and/or resulting in cobalamin deficiency in Shar Peis. 

It appears that the two main intracellular cobalamin-dependent enzymes (methionine 

synthase and methylmalonyl-CoA mutase) do not have a sufficient amount of cobalamin 

available for both enzymatic reactions. However, it is possible that the defect occurs in 
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the mitochondrial pathway, because the serum MMA concentrations in cobalamin-

deficient Shar Peis compared to the cobalamin-deficient dogs from other breeds showed 

more severe alterations than the serum HCY concentrations. Consistent with higher 

serum MMA concentrations in humans with genetic disorders affecting the intracellular 

processing of cobalamin (Fowler et al., 2008), this leads us to speculate that a defect 

may be located intracellularly and may affect the mitochondrial pathway. However, 

further studies are needed to investigate the intracellular processing of cobalamin in Shar 

Peis with cobalamin deficiency. 

Serum HCY concentrations have been measured previously in dogs by use of an 

enzymatic method (Rossi et al., 2008). In that study, dogs with gastrointestinal disorders 

(i.e., pyloric stenosis, intestinal obstruction, or gastric stenosis) had decreased serum 

HCY concentrations, whereas the highest serum HCY concentrations were reported in 

dogs with heart or kidney disease. Interestingly, Galler et al. (2011) showed that serum 

cobalamin concentrations were not different between dogs with and without chronic 

kidney disease, whereas no serum HCY and MMA concentrations were investigated. 

Therefore, further studies are needed to investigate serum HCY and MMA 

concentrations in dogs with gastrointestinal diseases and concurrent disease of the heart 

and/or kidneys. 

Variations of serum HCY and MMA concentrations have been observed between 

breeds (e.g., GSDs and Cocker Spaniels). These differences may be due to the minimum 

detection limit of the cobalamin assay (i.e. 150 ng/L), such that dogs categorized as 

cobalamin-deficient in the current study could have different serum cobalamin 
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concentrations. However, to address this possibility, an assay more sensitive than the 

automated chemiluminescence assay (which is routinely used in North America and in 

Europe) would be needed. Furthermore, cobalamin-deficient Shar Peis had a median 

serum HCY concentration above the upper limit of the reference interval, whereas the 

remaining six breeds evaluated (except the cobalamin-deficient Yorkshire Terriers) had 

median serum HCY concentrations within the reference interval. Interestingly, 

cobalamin-deficient Yorkshire Terriers had a median HCY concentration below the 

reference interval, which indicates that the cytoplasmic cobalamin pathway is less 

affected in cobalamin-deficient Yorkshire Terriers compared to the six other dog breeds. 

In this present study, five dog breeds (except for the Cocker Spaniel and the Beagle) 

with undetectable serum cobalamin concentrations had a median serum MMA 

concentration above the upper limit of the reference interval, which suggests a lack of 

cobalamin at the level of the mitochondrial pathway (Stabler et al., 1986; Ruaux et al., 

2009). 

We only identified sex-differences for serum MMA concentrations in Beagles and 

Boxers. Male cobalamin-deficient Beagles were older (median, 11 years) than their 

female counterparts (median, 5.5 years), but this difference was not significant. To 

investigate whether male Beagles might have an impaired absorption of cobalamin later 

in life, it would be necessary to compare a greater number of cobalamin-deficient Beagle 

dogs. As a breed, the Boxer has been suggested to have a higher risk of developing 

inflammatory bowel disease (IBD), which can be accompanied by low serum cobalamin 

concentrations, but no sex differences were reported in that particular study (Kathrani et 
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al., 2011). Further investigation regarding serum cobalamin and MMA as well as HCY 

concentrations are warranted in a larger group of cobalamin-deficient Beagles and 

Boxers, since in humans some studies have shown age and sex differences in biomarkers 

related to cobalamin (Carmel et al., 2012). 

EPI (Batt et al., 1993) and IBD (Kathrani et al., 2011) in GSDs have been shown to 

be associated with low serum cobalamin concentrations. Intrinsic factor, which is almost 

exclusively secreted in pancreatic juice, plays an important role in the intestinal 

absorption of cobalamin in the dog (Batt et al., 1993) and cobalamin absorption is often 

dramatically decreased in dogs with EPI. Interestingly the comparison of serum HCY 

and MMA concentrations in both cobalamin-deficient GSDs and Labradors, with and 

without cTLI concentrations diagnostic for EPI, showed no significant difference. 

Nevertheless, the majority of cobalamin-deficient GSDs and Labradors with low or 

normal cTLI concentrations had a serum MMA concentration above the reference 

interval. In contrast, only a small proportion of both cobalamin-deficient GSDs and 

Labradors with low or normal cTLI concentrations had a serum HCY concentration 

above the upper limit of the reference interval. These results suggest that cobalamin-

deficient GSDs and Labradors with EPI or other gastrointestinal diseases such as IBD 

have a similar lack of cobalamin at the cellular level. However, further investigations are 

needed to confirm these findings. 

In conclusion, cobalamin-deficient Shar Peis have higher serum HCY concentrations 

compared to cobalamin-deficient dogs from six other breeds, and also have a higher 

frequency of hyperhomocysteinemia than normocobalaminemic Shar Peis. Cobalamin-



92 
 

deficient Shar Peis had 10-fold higher median serum MMA concentration compared to 

cobalamin-deficient dogs from other dog breeds. In addition, serum HCY and MMA 

concentrations did not differ between cobalamin-deficient GSDs with and without EPI, a 

potential cause of secondary cobalamin deficiency. These findings suggest that the 

function of the two main cobalamin-dependent enzymes (i.e., methionine synthase and 

methylmalonyl-CoA mutase) is impaired in cobalamin-deficient Shar Peis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

5. ASSOCIATION OF SKIN PHENOTYPE AND COBALAMIN        

DEFICIENCY IN CHINESE SHAR PEIS 

 

5.1 Overview 

Three conditions have frequently been reported in Chinese Shar Peis (Shar Peis): Shar 

Pei fever, cutaneous mucinosis, and cobalamin deficiency, all of which are suspected to 

be hereditary. Recently, two genome wide association studies (GWAS) have been 

conducted for these conditions in Shar Peis and all three conditions have been linked to 

canine chromosome 13 in an area that is also associated with skin thickness. Therefore, a 

survey was conducted to evaluate if cobalamin deficiency predominates in one of these 

two types of Shar Peis (i.e., traditional type versus meatmouth type). Normo-

cobalaminemic Shar Peis with normal serum methylmalonic acid (MMA) concentrations 

(Shar Peis considered to have a normal cobalamin status) and cobalamin-deficient Shar 

Peis were surveyed using a standardized questionnaire showing illustrations of 

meatmouth and traditional type Shar Peis to ensure consistent responses from the owners 

of Shar Peis enrolled. To test for an association between cobalamin deficiency and the 

type of Shar Pei (i.e., meatmouth versus traditional type), a Fisher’s exact test was used, 

and the odds ratio (OR) and the 95% confidence interval (CI) were calculated. A p < 

0.05 was considered significant. Responses to the survey were obtained for 16 

cobalamin-deficient Shar Peis and 33 Shar Peis with a normal cobalamin status. 

Cobalamin-deficient Shar Peis were 20 times (95%CI: 3.5-113.3; p = 0.0002) more 

likely to belong to the traditional type than the meatmouth type Shar Pei. Cobalamin 
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deficiency in Shar Peis was found to occur more frequently in the traditional type (i.e., 

the original Shar Pei, which originated from China) than in the meatmouth type of this 

breed. However, overlaps between both types existed. 

 

5.2 Introduction 

Three conditions have frequently been reported in Chinese Shar Peis (Shar Peis): Shar 

Pei fever, cutaneous mucinosis, and cobalamin deficiency, all of which are suspected to 

be hereditary. Two genome wide association studies (GWAS) for these conditions have 

recently been conducted in the Shar Pei: 

The first GWAS was performed in Shar Peis with Shar Pei fever and cutaneous 

mucinosis and revealed that both conditions are linked to the hyaluronic acid synthase 2 

(HAS2) gene on canine chromosome 13 (Olsson et al., 2011). This gene encodes 

hyaluronan, the main component of mucin, which accumulates in the thickened skin of 

affected Shar Peis. A high copy number of a 16.1 kb duplication close to the HAS2 gene 

was found to be associated with the thickened skin in meatmouth type Shar Peis, 

whereas a high copy number of a 14.3 kb duplication close to the HAS2 gene was found 

to be associated with the traditional type Shar Pei (Figure 13; Olsson et al., 2011). 

The second GWAS showed that cobalamin deficiency in Shar Peis is also linked to 

the area of the HAS2 gene on canine chromosome 13 (Figure 14; Grützner et al., 2010). 

HAS2 has been reported to be located on canine chromosome 13 in the region of location 

23,348,773-23,364,912 bp, with a distance of approximately 0.42 Mb and 0.47 Mb to the 
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canine single nucleotide polymorphisms (cSNP) and cMSS-2 marker that were 

associated with cobalamin deficiency in this breed in previous studies, respectively. 

Both human and veterinary studies have suggested that an increased serum 

methylmalonic acid (MMA) concentration reflects cobalamin deficiency at the cellular 

level (Stabler et al., 1986; Ruaux et al., 2009; Berghoff et al., 2012). A combination of 

the measurement of serum cobalamin and serum MMA concentration might therefore be 

considered to be stronger evidence of cobalamin deficiency at the cellular level than a 

decreased serum cobalamin concentration alone. Thus, a phenotypic re-classification 

based on serum cobalamin and MMA concentrations may lead to identification of a 

stronger phenotype in Shar Peis with cobalamin deficiency. 

Therefore, the aim of this study was to conduct a survey to evaluate 1) if cobalamin 

deficiency, based on undetectable serum cobalamin concentrations, and 2) if cobalamin 

deficiency based on undetectable serum cobalamin and increased MMA concentrations, 

predominates in one of these two types of Shar Peis (i.e., traditional type versus 

meatmouth type). 

 



 

Figure 13. 

degrees of th

 

 

 

 

 

Meatmouth and

he meatmouth ty

d traditional typ

ype Shar Pei (A

pe Shar Peis. Th

A, B, and C) as o

96 

he picture (Olss

opposed to the t

son et al., 2011)

traditional type S

) shows the thic

Shar Pei (D). 

ckened skin of 

 

various 



 

Figure 14. 

HAS2 gene 

proximity to

 

Ideogram of ca

are shown at th

o the microsatell

anine chromoso

heir respective 

lite and cSNP m

ome 13. The mi

locations on ca

markers associate

97 

icrosatellite ma

anine chromoso

ed with cobalam

arker FH3619, t

me 13. Note th

min deficiency.

the two cSNP a

hat the HAS2 ge

array markers, 

ene is located i

and the 

in close 



98 
 

5.3 Materials and methods 

Sample population 

Unrelated pure-bred Shar Peis, previously enrolled in the GWAS, were surveyed using a 

standardized questionnaire. Both Shar Peis with a normal cobalamin status (both serum 

cobalamin and MMA concentrations within the reference intervals; cobalamin: 251-908 

ng/L; Gastrointestinal Laboratory at Texas A&M University; http://vetmed.tamu.edu 

/gilab/service/assays/b12folate; accessed December 19, 2011); MMA: 415-1,193 nmol/L 

(Berghoff et al., 2011) and cobalamin-deficient Shar Peis (cobalamin <150 ng/L, the 

detection limit of the assay and MMA >1,193 nmol/L) were enrolled. 

 

Survey analysis 

The questionnaire included illustrations of the meatmouth and traditional type Shar Pei 

(Figure 13) to ensure consistent responses from the Shar Pei owners. Associations 

between cobalamin-deficiency based on 1) undetectable serum cobalamin concentrations 

and 2) undetectable serum cobalamin and increased serum MMA concentration) and the 

type of Shar Pei (i.e., meatmouth vs. traditional type) were tested. However, it was not 

possible to measure serum MMA concentrations for all Shar Peis so that less numbers of 

dogs were used for second analysis (Table 11). Fisher’s exact test was used and the odds 

ratio (OR) and the 95% confidence interval (CI) were calculated and a p < 0.05 was 

considered significant. 
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Table 11. Number of dogs, sex distribution, and age (median, in years) of the 

cobalamin-deficient Shar Pei (A) and the normocobalaminemic Shar Pei (B) that were 

included in the two parts of this study. The last two columns show the medians (ranges) 

for serum cobalamin (COB; ng/L) and methylmalonic acid (MMA; nmol/L) 

concentrations for included Shar Pei dogs. 

 

  n female/age male/age COB (ng/L) MMA (µmol/L) 

Part 1 

 A 20 7 / 3.5 13 / 5.0 <150 N/A 

B 41 24 / 4.8 17 / 3.0 529 (251-908) N/A 

Part 2 

A 16 7 / 3.5 9 / 5.0 <150 14,742 (1,533-262,969) 

B 33 21 / 4.0 12 / 2.5 529 (251-908) 777 (372-1,177) 
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5.4 Results 

Part 1 – Responses to the survey were obtained for 20 cobalamin-deficient Shar Peis 

and 41 normocobalaminemic Shar Peis. Cobalamin-deficient Shar Peis were 19 times 

(95%CI: 4.4-83.2; p < 0.0001) more likely to be of the traditional type than the 

meatmouth type (Table 11, Figure 15). 

 

Part 2 – Responses to the survey were obtained for 16 cobalamin-deficient Shar Peis 

with increased serum MMA concentrations and 33 normocobalaminemic Shar Peis with 

a normal serum MMA concentration. Cobalamin-deficient Shar Peis with an increased 

serum MMA concentration were 20 times (95%CI: 3.5-113.3; p = 0.0002) more likely to 

belong to the traditional type than the meatmouth type (Table 11, Figure 16). 
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Figure 15. This bar graph shows the proportions of cobalamin-deficient Shar Peis and 

normocobalaminemic Shar Peis that are of either the traditional or the meatmouth type. 

The traditional type Shar Peis was more frequently observed in cobalamin-deficient 

(COB deficient) Shar Peis (60.0 %) compared to normocobalaminemic (normal COB) 

Shar Peis (7.3 %; p < 0.0001). 
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Figure 16. Bar graph showing the distribution of cobalamin-deficient Shar Peis with 

increased serum MMA concentrations and normocobalaminemic Shar Peis with normal 

serum MMA concentrations regarding the traditional versus meatmouth type. Traditional 

type Shar Peis were more frequently observed in cobalamin-deficient (COB deficient) 

Shar Peis with increased serum MMA concentrations (56.3 %) compared to 

normocobalaminemic (normal COB) Shar Peis with normal serum MMA concentrations 

(6.1 %; p = 0.0002). 
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5.5 Discussion 

In this study we evaluated Shar Peis with an undetectable serum cobalamin 

concentrations and normocobalaminemic Shar Peis to determine if any specific type of 

Shar Pei (i.e., traditional type versus meatmouth type) predominates in regards to 

cobalamin deficiency. Cobalamin deficiency in Shar Peis was found to occur more 

frequently in the traditional type than in the meatmouth type of this breed. However, 

there were overlaps for both types. 

Three conditions have frequently been reported in Shar Peis (i.e., Shar Pei fever, 

cutaneous mucinosis, and cobalamin deficiency), all of which are suspected to be 

hereditary. GWAS for these conditions have shown linkage to the HAS2 gene on canine 

chromosome 13. A high copy number of a 16.1 kb duplication close proximity to the 

HAS2 gene was found to be associated with the thickened skin in meatmouth type Shar 

Peis, whereas a high copy number of a 14.3 kb duplication close proximity to the HAS2 

gene was found to be associated with the traditional type Shar Pei (Figure 13; Olsson et 

al., 2011). Based on the results of the present study it would be interesting to determine 

whether cobalamin-deficient Shar Peis have a low copy number of a 16.1 kb duplication 

and a high copy number of a 14.3 kb duplication close proximity to the HAS2 gene 

(Olsson et al. (2011). 

A small number of Shar Peis have been introduced to North America, which reflects 

a classical example for a bottleneck phenomenon. Due to the breeding of the Shar Pei in 

North America, which was potentially aimed at increasing the wrinkles, resulted not 

only in a dramatically different look for the Shar Pei (as its most characteristic features, 
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including its wrinkles and rounded snout, were greatly exaggerated), but also in a large 

number of health problems. Therefore, it is possible that the three aforementioned 

conditions in Shar Peis (i.e., Shar Pei fever, cutaneous mucinosis, and cobalamin 

deficiency) have arisen due to the same limited source of genetic material and a 

differentiation could potentially be made based on the copy numbers of a 16.1 kb 

duplication and a 14.3 kb duplication close to the HAS2 gene (Olsson et al., 2011). 

However, the present study showed an overlap between both types (traditional and 

meatmouth type), which could be explained by the objective description of the Shar Pei 

by the dog owners based on the pictures provided (Figure 13). 

Several studies have suggested that an increased serum MMA concentration reflects 

cobalamin deficiency at the cellular level and a combination of the measurement of 

serum cobalamin and serum MMA concentrations might therefore be considered to be 

stronger evidence for cobalamin deficiency at the cellular level than a decreased serum 

cobalamin concentration alone (Stabler et al., 1986; Ruaux et al., 2009; Berghoff et al., 

2012). Based on our study, both phenotypes (cobalamin deficiency with [part 2] and 

without [part 1] serum MMA concentrations) showed a similar occurrence of cobalamin 

deficiency in the traditional type of Shar Pei. However, one limitation of this study was 

that the number of Shar Peis in the second part of the study was lower than that in the 

first part, which may have led to a larger difference for the part of the study with a 

higher number of Shar Peis enrolled. 

In conclusion, cobalamin-deficient Shar Peis more commonly belonged to the 

traditional type Shar Pei, which originated from China, than the meatmouth “thickened 
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skin” type of this breed. Further studies are needed to determine the copy numbers of the 

two duplications that were shown close to the HAS2 gene by Olsson et al. (2011) for 

Shar Peis with cobalamin deficiency. 
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6. SERUM COBALAMIN AND METHYLMALONIC ACID 

CONCENTRATIONS IN COBALAMIN-DEFICIENT CHINESE SHAR PEIS 

FOLLOWING COBALAMIN SUPPLEMENTATION 

 

6.1 Overview 

Chinese Shar Peis (Shar Peis) have a high prevalence of cobalamin deficiency. 

Following supplementation with cobalamin, a complete resolution of methylmalonic 

acidemia coupled with an increase in serum cobalamin concentration has been shown in 

both human and veterinary patients with selective enterocyte cobalamin malabsorption, 

but has not previously been shown in Shar Peis with cobalamin deficiency. Therefore, 

this study was aimed at comparing serum cobalamin and methylmalonic acid (MMA) 

concentrations in cobalamin-deficient Shar Peis at initial testing and after parenteral 

cobalamin supplementation. Serum samples were collected from 8 cobalamin-deficient 

Shar Peis. All 8 Shar Peis repeatedly received cobalamin subcutaneously and a follow-

up serum sample was obtained from each dog 22 to 66 days after the initial testing. 

Serum cobalamin and MMA concentrations were compared to baseline values using a 

Wilcoxon matched pairs test. Following parenteral cobalamin supplementation, serum 

cobalamin concentrations were significantly higher (median: 243 ng/L) compared to 

baseline values (median: 149 ng/L; p = 0.0156). In 3 of these Shar Peis, serum 

cobalamin was within the reference interval or higher after cobalamin supplementation. 

Serum MMA concentrations were found to be significantly decreased after cobalamin 

supplementation (median: 2,085 nmol/L vs. 21,602 nmol/L; p = 0.0078). In 5 of these 
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Shar Peis, serum MMA was within the reference interval after cobalamin 

supplementation. Cobalamin-deficient Shar Peis showed an increase of serum cobalamin 

concentrations and a decrease of serum MMA concentrations after supplementation with 

cobalamin. These data suggest that parenteral cobalamin supplementation in Shar Peis 

with cobalamin deficiency reaches the cellular level. 

 

6.2 Introduction 

A high prevalence of cobalamin (vitamin B12) deficiency in Shar Peis has previously 

been reported (Williams, 1991; Bishop et al., 2011). Recently, cobalamin-deficient Shar 

Peis were also shown to have a significantly higher serum methylmalonic acid (MMA) 

concentration compared to cobalamin-deficient dogs of six other dog breeds (Grützner et 

al., 2011 and 2012), suggesting cobalamin deficiency on a cellular level. A complete 

resolution of methylmalonic aciduria/methylmalonic acidemia, coupled with an increase 

in serum cobalamin concentration has been shown following supplementation of 

cobalamin in veterinary patients with selective enterocyte cobalamin malabsorption 

(Battersby et al., 2005). Variable responses to cobalamin supplementation have been 

reported in human patients that are deficient in intracellular adenosyl- and/or 

methylcobalamin due to disturbances of cobalamin metabolism at the cellular level 

(Matsui et al., 1983). 

Undetectable and decreased serum cobalamin concentrations have been documented 

in dogs with chronic gastrointestinal diseases (Allenspach et al., 2007; Berghoff et al., 

2013). Cobalamin measurements are recommended in dogs with gastrointestinal diseases 
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to assess the need for cobalamin supplementation. However, no data have been reported 

about the effectiveness of parenteral cobalamin supplementation in Shar Peis with 

cobalamin deficiency. Therefore, this study was aimed at comparing serum cobalamin 

and MMA concentrations in cobalamin-deficient Shar Peis at initial testing and after 

parenteral cobalamin supplementation and to evaluate if parenterally supplemented 

cobalamin reaches the cellular level. 

 

6.3 Materials and methods 

Sampling population 

Pure-bred Shar Peis were investigated (n=8; 3 males and 5 females [age: 2–10 years]). 

All 8 Shar Peis were considered cobalamin-deficient based on an undetectable serum 

cobalamin concentration (<150 ng/L) and an increased serum MMA concentration 

(>1,193 nmol/L; Table 12). 

 

Data Collection 

Serum samples were collected from each dog and study questionnaires were completed 

for each dog. The clinical signs for cobalamin-deficient Shar Peis consisted of diarrhea 

(8/8), weight loss (8/8), and vomiting (5/8). Serum cobalamin and MMA concentrations 

were measured in all dogs, respectively. Cobalamin-deficient Shar Peis received 

cobalamin subcutaneously - one dose weekly for 6 weeks (dosage was roughly 

dependent on body weight; Figure 17; Table 13). A follow-up serum sample was 
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obtained from each dog 22 to 66 days after the initial testing and 5 to 7 days after the last 

serum cobalamin injection (Table 12). 

 

Sample analysis 

Serum cobalamin concentration was measured in all 8 dogs using an automated 

chemiluminescence assay (Immulite®2000; Siemens Healthcare Diagnostics Inc., 

Deerfield, IL, USA) with a reference interval of 251-908 ng/L. Serum MMA 

concentration was measured in all 8 dogs using a stable isotope dilution gas 

chromatography-mass spectrometry assay with a reference interval of 415-1,193 nmol/L 

(Berghoff et al., 2011; Stabler et al., 1986). Serum cobalamin and MMA concentrations 

were compared between time points using a Wilcoxon matched pairs test and significant 

difference set at p < 0.05. 
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Table 12. The table shows the cobalamin-deficient Shar Peis (n=8) that were included in this study and the tests (cobalamin 

and methylmalonic acid measurements) that were performed before and after cobalamin supplementation. The remaining 

columns show the days between testing, sex (F: female and M: male), and age (in years) for all cobalamin-deficient Shar Peis. 

 

Cobalamin (ng/L) MMA (nmol/L) 

 
Cobalamin supplementation 

Dogs Before After Before After Days between testing  Age Sex 

1 <150 313 24,613 3,090 48 3 F 

2 <150 158 16,066 4,408 66 2 F 

3 <150 149 74,479 24,627 35 10 F 

4 <150 968 29,212 705 38 6 M 

5 <150 292 18,591 1,067 55 6 M 

6 <150 200 6,680 989 22 5 F 

7 <150 193 29,896 1,000 41 3 M 

8 <150 185 2,775 1,162 32 4 F 
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Table 13. The table shows the current recommendations for subcutaneous cobalamin injections in dogs (http://vetmed. 

tamu.edu/gilab/research/cobalamin-information). 

 

Body weight of dogs 
< 5 kg 5-10 kg 10-20 kg 20-30 kg 30-40 kg 40-50 kg > 50 kg 

Dose of cobalamin 
250 μg 400 μg 600 μg 800 μg 1000 μg 1200 μg 1500 μg
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6.4 Results 

In the 8 Shar Peis evaluated in this study serum cobalamin concentrations were 

significantly higher following parenteral cobalamin supplementation (median: 197 ng/L 

[range: 149-968 ng/L]) compared to baseline values (median: 149 ng/L [ for all 8 Shar 

Peis]; p = 0.0156; Figure 18). In 3 of these 8 Shar Peis serum cobalamin was within the 

reference interval or higher after cobalamin supplementation. 

Serum MMA concentrations were measured in 8 Shar Peis and were found to be 

significantly lower after cobalamin supplementation (median: 1,115 nmol/L [range: 705-

24,627]) than at baseline (median: 21,602 nmol/L [range: 2,775-74,480]; p = 0.0078; 

Figure 19). In 5 of these 8 Shar Peis serum MMA concentrations were within the 

reference interval after cobalamin supplementation. 
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Figure 18. Comparison of serum cobalamin concentrations of 8 cobalamin-deficient 

Shar Peis before and after cobalamin supplementation. Serum cobalamin concentrations 

were significantly higher after cobalamin supplementation (median: 197 ng/L) compared 

to baseline values (median: 149 ng/L; p = 0.0156). The reference interval for serum 

cobalamin concentrations (251-908 ng/L) is indicated by the dashed horizontal lines. 
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Figure 19. Comparison of serum MMA concentrations in 8 cobalamin-deficient Shar 

Peis before and after cobalamin supplementation. Serum methylmalonic acid (MMA) 

concentrations were significantly lower (median: 1,115 nmol/L) after cobalamin 

supplementation compared to baseline values (median: 21,602 nmol/L; p = 0.0078). The 

reference interval for serum MMA concentrations (415-1193 µmol/L) is indicated by the 

dashed horizontal lines. 
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6.5 Discussion 

This study was conducted to determine if parenterally supplemented cobalamin has an 

impact on cobalamin metabolism on the cellular level in cobalamin-deficient Shar Peis 

by comparing serum cobalamin and MMA concentrations at initial testing and after 

parenteral cobalamin supplementation. Cobalamin-deficient Shar Peis showed an 

increase in serum cobalamin concentrations and a decrease in serum MMA 

concentrations after parenteral cobalamin supplementation. Based on human and 

veterinary studies, serum MMA concentrations have been suggested to reflect cobalamin 

status at the cellular level (Berghoff et al., 2011; Stabler et al., 1986). Therefore, these 

data suggest that in Shar Peis with cobalamin deficiency, parenterally supplemented 

cobalamin reaches the cellular level. 

This study had several limitations. For instance, it would have been ideal to measure 

serum cobalamin and MMA concentrations in all cobalamin-deficient Shar Peis weekly 

to evaluate when the cells are saturated with cobalamin (vitamin B12) and when the 

circulating cobalamin reaches the reference interval. Also, it was not possible to include 

cobalamin-deficient dogs of other breeds to compare their response to parenteral 

cobalamin supplementation. In addition, it would have been optimal to evaluate 

parenteral cobalamin supplementation in normo-cobalaminemic Shar Peis and 

normocobalaminemic dogs of other breeds. Regardless, this is the first study that 

investigated parenteral cobalamin supplementation in Shar Peis with cobalamin 

deficiency. Further studies to investigate pharmacokinetics of cobalamin (vitamin B12) in 

healthy dogs are needed and are currently underway. 
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It should be noted that it is possible that some of the owners and breeders may have 

independently supplemented their Shar Pei with cobalamin in an effort to improve their 

dog’s general health, which may have resulted in an effect on serum cobalamin and 

MMA concentrations at the time of retesting of these dogs. For instance, oral 

supplementation of foods high in cobalamin, such as meat, fish [especially shellfish], or 

a cobalamin supplement) could have had an effect on serum cobalamin and MMA 

concentrations in the enrolled cobalamin-deficient Shar Peis. However, based on the 

veterinary literature no studies have been reported that would suggest that oral 

cobalamin supplementation has an impact on serum cobalamin or MMA concentrations 

in dogs with cobalamin deficiency. 

In conclusion, Shar Peis with cobalamin deficiency showed an increase in serum 

cobalamin concentrations and a decrease in serum MMA concentrations after cobalamin 

supplementation. These data suggest that in Shar Peis with cobalamin deficiency, 

parenterally supplemented cobalamin reaches the cellular level. 
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7. EVALUATION OF THE MYC_CANFA GENE IN SHAR PEIS                   

WITH COBALAMIN DEFICIENCY* 

 

7.1 Overview 

A recent genome wide scan using the canine minimal screening set 2 (MSS-2) showed 

that cobalamin deficiency appears to be hereditary in Chinese Shar Peis (Shar Peis) and 

is linked to the microsatellite markers DTR13.6 and REN13N11 on canine chromosome 

13. The goal of this study was to evaluate the MYC_CANFA gene, which is the closest 

known gene with a distance of approximately 0.06 Mega bases (Mb) to the microsatellite 

marker DTR13.6, for any mutations in this breed. Microsatellite markers (Myc and 

G15987) for genotyping and primers for sequencing were used to evaluate the 

MYC_CANFA gene. The genotype and gene sequence were compared between 

cobalamin-deficient Shar Peis, Shar Peis with normal serum cobalamin concentrations, 

and the DNA sequences published as part of the Ensemble Genomic map. Neither the 

microsatellite markers (Myc and G15987) nor the sequences of the MYC_CANFA gene 

showed a significant difference among both groups of Shar Peis and the published 

canine DNA sequence. The data presented here suggest that cobalamin deficiency in 

Shar Peis is not related to any mutations of the MYC_CANFA gene according to the 

genotyping and sequencing results in this study. 

 

________________________________________
*Reprinted with permission from Grützner N, Bishop MA, Suchodolski JS, Steiner JM, 2013. “Evaluation 
of the MYC_CANFA gene in Chinese Shar Peis with cobalamin deficiency.” Vet Clin Path 42, 61-65, 
Copyright (2013) by Wiley. 
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Further investigations are warranted to find a potential genomic locus in proximity to 

DTR13.6 and REN13N11 that shows mutations in cobalamin-deficient Shar Peis. 

 

7.2 Introduction 

It has been reported in both North America and the United Kingdom that Chinese Shar 

Peis (Shar Peis) have a high prevalence of cobalamin deficiency (Bishop et al., 2011; 

Dandieux et al., 2010). A genome wide scan using the canine minimal screening set 2 

(MSS-2) has previously shown that cobalamin deficiency appears to be hereditary in 

Shar Peis and is linked to the microsatellite markers DTR13.6 and REN13N11 on canine 

chromosome 13 (Grützner et al., 2010). This study provided the first evidence of an 

association between cobalamin deficiency and a region located on canine chromosome 

13. In this region, there are no previously identified genes reported to be associated with 

cobalamin deficiency in dogs or any other species. Interestingly and according to the 

Ensemble Genome Browser, the MYC_CANFA gene is located between the two 

microsatellite markers, approximately 0.06 Mega base (Mb) from microsatellite marker 

DTR13.6 and 1.01 Mb from REN12N11 (Figure 20). 
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Figure 20. Ideogram of canine chromosome 13. The microsatellite markers DTR13.6, REN13N11, G15987, and Myc are all 

located in proximity to the MYC_CANFA gene (distances in bp are illustrated). 
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The MYC gene family encodes a group of transcription factors that control cell 

proliferation and differentiation and are conserved on certain chromosomes in both 

clinically normal and diseased animals, but are associated with different binding motifs 

(Grandori & Eisenman, 1997; Atchley & Fitch, 1995; Miyoshi et al., 1991). The 

physiologic control of cell proliferation has been shown to be altered in cancer patients 

due to a dysregulation of the MYC gene as a result of retroviral transduction and 

insertional mutagenesis, chromosomal translocation, or gene amplification (Cowley et 

al., 1987). Thus, dysregulation of the MYC gene may be associated with a variety of 

malignant neoplasms (Cowley et al., 1987). A study in people showed that the 

transcobalamin II gene has at least one binding site (motif) for the myc protein, the 

product of the MYC gene (Regec et al., 1995). This may explain why human patients 

with abnormal transcobalamin II concentration had a variety of different malignant 

disorders, but especially multiple myeloma and lymphoproliferative disease (Areekul et 

al., 1995; Vreugdenhil et al., 1992; Kaikov et al., 1991). In this context, human studies 

have shown that patients with transcobalamin II deficiency have a normal total 

circulating serum cobalamin concentration (Kaikov et al., 1991; Sacher et al., 1983). 

However, one human case report describes a congenital transcobalamin II deficiency 

that was associated with a low serum cobalamin concentration (Carmel & Ravindranath, 

1984). Low or undetectable serum cobalamin concentration in people and Shar Peis 

could be due to abnormalities of cobalamin-binding proteins such as transcobalamin II in 

the serum because of an altered binding reaction of the myc protein on the 

transcobalamin II gene. 
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Thus, the goal of this study was to evaluate the MYC_CANFA gene, the closest 

known gene on chromosome 13 in the region of the microsatellite markers DTR13.6 and 

REN12N11, for any mutations in the Shar Pei breed. 

 

7.3 Materials and methods 

Samples were used from the association study of cobalamin-deficient and 

normocobalaminemic Shar Peis (Grützner et al., 2010). All owners signed informed 

client consent before enrolling the dogs into this study. Briefly, whole blood and serum 

samples had been collected from 42 Shar Peis from various parts of the United States. 

The owners of the Shar Peis completed a questionnaire about their dog (including sex, 

age, and health status). 

The canine genomic map was used to identify microsatellite markers, which are 

specific for the MYC_CANFA gene. Two stable microsatellite markers (Myc and 

G15987; NCBI map database: Canis familiaris (CanFam 2.0 [2005]). Available at: 

http://www.ncbi.nlm.nih.gov/map view/map_search.cgi?taxid=9615. Accessed October 

2011) were identified (Figure 20) to investigate whether certain alleles of both markers 

are associated with cobalamin deficiency in Shar Peis, supporting the hypothesis that the 

MYC_CANFA gene might be a candidate gene for cobalamin deficiency. To the 

author’s knowledge, both markers have not been evaluated in dogs and therefore, the 

informativeness of each marker by using the polymorphic information content (PIC) 

value is not known. However, Myc and G15987 were amplified and genotyped in 14 

cobalamin-deficient Shar Peis and in 28 Shar Peis with serum cobalamin concentrations 
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within the reference interval. The most frequent allele of microsatellite markers Myc and 

G15987 in Shar Peis with cobalamin deficiency was identified. A Fisher’s exact test was 

used to determine a possible association of this allele with cobalamin deficiency in Shar 

Peis. Evidence of genetic association was defined as p < 0.05. 

In addition, primers for the MYC_CANFA gene were chosen to amplify exons I and 

II. Two primer pairs (I-a and I-b) were used for sequencing exon I, which is 757 base 

pairs (bp) long, and one primer pair (II-a) for sequencing exon II with a size of 563 bp 

(Table 14). Additional primer pairs (I-c and II-b, respectively) were designed to reach 

approximately 25 bp into the intron/exon boundary area of both borders of exon I and 

approximately 50 bp into the intron/exon boundary area of both borders of exon II 

(Table 14). DNA samples from three cobalamin-deficient Shar Peis and three 

normocobalaminemic Shar Peis were used for sequencing of the MYC_CANFA gene. 
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Table 14. Primer sequences used for genotyping microsatellite markers Myc and G15987, and PCR amplification of both 

exons I and II of the MYC_CANFA gene (5’end- to-3’end). 

 

Primer Forward Reverse 

Myc CGCGCCCAGTGAGGATATC CCACATACAGTCCTGGATGAT 

G15987 TCTTCCAGATATCCTCGCTG TATGACCTCGACTACGACTCG 

Exon I-a CCCGTAACTCAAGATCGCCC TCCAGACCTAACGTTTCCCTTCCT 

Exon I-b TCCAGGACTGCATGTGGAGCGGCT AGCCGCTCCACATGCAGTCCTGGA 

Exon I-c TACCCGCTCAATGACAGCAGCTCG ATCCTCGCTGGGCGCCGGCGGCTG 

Exon II-a TCATCTGGTCACTGGTGGCTTGAA TTCCAGTTCCTCCCTCCAATAGGT 

Exon II-b CGTGATCAGATCCCGGAGTTGGAA TGGGTGGACACATGGCATCTCTTA 
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The PCR reaction was performed in a Mastercycler (Eppendorf North America, 

Westbury, NY). For exon I the following cycling program was utilized: 3 min at 94°C 

followed by 35 cycles of 30s at 94°C, 30s at 59°C, and 30s at 72°C. The same cycling 

conditions as practiced for the multiplex PCR for markers of the cMSS-2 set were also 

used for amplification of exon II (Clark et al., 2004). The PCR products were purified 

(Purification, DNA Clean & Concentrator – 5TM, Zymo Research Corporation, Orange, 

CA) and visualized on a 1% agarose electrophoresis gel (Gel, Fisher BioReagents, 

Pittsburgh, PA) using a horizontal gel electrophoresis system (Gel electrophoresis 

system, Horizon® 58, Whatman Inc., Florham Park, NJ). The identity of the product was 

then further verified by direct sequencing on a Genetic Analyzer (ABI 3130x/ Genetic 

Analyzer, Applied Biosystem, Foster City, CA). The sequencing results were compared 

between the cobalamin-deficient Shar Peis and normocobalaminemic Shar Peis, the 

published canine sequence, and the cDNA sequence (Ensemble Genome Browser Web-

site. Canis Familiaris (CanFam 2.0 [2005]). Available at: http://useast.ensemble.org/ 

canis_familiaris/Gene/Summary?g=ENSCAFG00000001086;r=13:2824010328242545;t

=ENSCAFT00000001656. Accessed October 2011). 

 

7.4 Results 

Allele 275 of microsatellite marker Myc and allele 199 of microsatellite marker G15987 

occurred most often in both cobalamin-deficient Shar Peis and normocobalaminemic 

Shar Peis (Table 15). Both markers (Myc and G15987) have probably a low PIC value 

because the allele distribution within the Shar Peis population is limited to one or four 
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alleles, respectively. Using Fisher’s exact test for linkage analysis of alleles 275 and 199 

in cobalamin-deficient Shar Peis revealed a p-value of 1.0 and 0.2, respectively. No 

statistically significant difference was reached, revealing no association of allele 275 and 

199 with cobalamin deficiency in Shar Peis. 

The MYC_CANFA gene was analyzed with primer pairs designed for exon I and II, 

and an agarose gel electrophoresis of the purified PCR products showed a single clear 

band with the same product size for both exons. This gel was performed with two 

cobalamin-deficient Shar Peis and two normocobalaminemic Shar Peis. Subsequently, 

DNA samples from three cobalamin-deficient Shar Peis and three normocobalaminemic 

Shar Peis were sequenced. No difference was found in the entire exonic and intron 

boundaries of the DNA sequence of the MYC_CANFA gene for any of the dogs in this 

study or in the published canine sequences. 
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Table 15. Observations for alleles 275 bp and 199 bp for microsatellite markers Myc 

and G15987, respectively, in cobalamin-deficient (CD) Shar Peis and control Shar Peis 

(p-values of 1.0 and 0.2, respectively). Note that the allele distribution within the Shar 

Peis population is limited to one or four alleles, respectively. 

 

 
CD 

Shar Peis 
Control 

Shar Peis 
Σ 

Myc 
Allele 275 28 (100%) 56 (100%) 84 (100%) 

other 
Alleles 

0 0 0 

Σ 28 56 84 

G15987 

Allele 199 28 (100%) 50 (89.3%) 
78 

(92.9%) 
other 

Alleles 
0  6 (10.7%) 6 (7.1%) 

Σ 28 56 84 
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7.5 Discussion 

A previous genome wide scan showed that cobalamin deficiency appears to be 

hereditary in Shar Peis and linked to the microsatellite markers DTR13.6 and 

REN13N11 on canine chromosome 13 (Grützner et al., 2010). The only known gene in 

the region between these two microsatellite markers on canine chromosome 13 is the 

MYC_CANFA gene. In this study, both microsatellite markers Myc and G15987, 

specific for the MYC_CANFA gene, revealed no association of allele 275 or 199 with 

cobalamin deficiency in Shar Peis. In addition, the sequenced MYC_CANFA gene 

showed no differences when compared to the published canine sequence, the cDNA 

sequence, cobalamin-deficient Shar Peis, and Shar Peis with normal serum cobalamin 

concentrations. The data presented here would suggest that cobalamin deficiency in Shar 

Peis is not related to any mutations of the MYC_CANFA gene. Further investigations 

are warranted to find a potential genomic locus in proximity to DTR13.6 and 

REN13N11 that shows mutations in cobalamin-deficient Shar Peis. 

In mammalian species, cell proliferation and differentiation are fundamental to 

growth, development, and also evolution. The MYC gene family encodes a group of 

transcription factors that control cell proliferation and differentiation (Grandori & 

Eisenman, 1997; Atchley & Fitch, 1995). The identification of at least one binding site 

for the myc protein, a product of the MYC gene, on the human transcobalamin II gene 

(Regec et al., 1995), showed a possible role of these two gene products in patients with 

abnormal transcobalamin II concentration and various malignant disorders (Areelkul et 

al., 1995; Vreugdenhil et al., 1992; Kaikov et al., 1991). Nevertheless, the data presented 
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here suggest that cobalamin deficiency in Shar Peis is not related to any mutations of the 

MYC_CANFA gene. 

The success of a genetic association study is dependent on the correct assignment of 

the phenotypes. The exclusion criteria in a genome wide association study were that 

cobalamin-deficient Shar Peis had undetectable serum cobalamin concentrations 

(Grützner et al., 2010). However, cobalamin has been shown to be involved in many 

enzymatic reactions in mammalian cells. Human and veterinary studies have suggested 

that an increased serum methylmalonic acid concentration reflects cobalamin deficiency 

at the cellular level (Stabler et al., 1986; Ruaux et al., 2009; Berghoff et al., 2012). A 

combined evaluation of serum cobalamin and serum methylmalonic acid concentrations 

might therefore provide stronger evidence of cobalamin deficiency at the cellular level 

than a decreased serum cobalamin concentration alone. Thus, a phenotypic re-

classification based on serum cobalamin and methylmalonic acid concentrations may 

lead to the identification of a different region on chromosome 13 or even on a different 

chromosome. 

Both, this present report and the previous genome wide association study could be 

inconclusive because the cMSS-2 set contains only 327 microsatellite markers with an 

average marker spacing of 9 Mb, leaving large gaps and a chance of missing potential 

mutations. To narrow down the potential mutated regions on chromosome 13 as the 

major locus or primary gene responsible for cobalamin deficiency in the Shar Pei, 

refined mapping by single nucleotide polymorphism (SNP) determination is currently 

under way. Hopefully this will allow both, verifying and providing a refined map of the 
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region associated with cobalamin deficiency in the Shar Pei and lead to the identification 

of additional candidate genes for further investigation. 

At the time this study was conducted no other genes had been identified in the region 

approximately 1 Mb up- or down-stream of the microsatellite markers DTR13.6 and 

REN13N11. However, the HAS2 gene, which is located approximately 5 Mb 

downstream of the region from the microsatellite markers (DTR13.6 and REN13N11) 

and the MYC gene which could be a potential candidate gene. An increased HAS2 

expression has been shown in Shar Peis with cutaneous mucinosis, a highly prevalent 

and suspect hereditary condition in Shar Peis (Zanna et al., 2009). So far, serum 

cobalamin concentrations have not been reported in studies that investigated Shar Peis 

with cutaneous mucinosis. 

In people and cats it has been reported that the MYC gene consists of three exons, 

whereas in dogs no third exon has been identified yet according to the Ensemble 

Genome Browser Web-site. The third exon of the MYC gene in cats consists of three 

nucleobases. A general investigation with regard to the MYC_CANFA gene in the 

canine genome is required to determine whether there is an additional exon of the 

MYC_CANFA gene in dogs, and whether it is a candidate for clinically relevant 

mutations. The present study focused on and used sequences of the published exons of 

the canine genome sequence. 

A limitation of the study was that only a small section was sequenced while it might 

have been helpful to sequence a larger proportion (approximately 2 Mb) of the 

microsatellite marker DTR13.6 and REN13N11 region. An association can be dependent 
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upon the respective size of a population, for instance a linkage disequilibrium can occur 

in the range of kb in popular breeds (e.g., Labrador Retriever, Yorkshire Terrier, and 

German Shepherd Dog), whereas in a rare breed like the Shar Pei (ranked 50th by the 

American Kennel Club in 2011; http://www.akc.org/reg/dogreg_stats.cfm; accessed 

March 1st, 2012) it can occur in the range of Mb (Sutter et al., 2004). As mentioned 

above, a canine SNP would be useful to both verify and fine map this region that is 

associated with cobalamin deficiency in Shar Peis. 

In conclusion, the DNA sequence of the MYC_CANFA gene determined in this 

present study revealed no differences when compared to the published canine sequence, 

the cDNA sequence, and Shar Peis of both groups. Consequently, cobalamin deficiency 

in Shar Peis does not appear to be related to a mutation of the MYC_CANFA gene 

according to the genotyping and sequencing results in this study. Further investigations 

are warranted to find a potential genomic locus in proximity to DTR13.6 and 

REN13N11 microsatellite markers that shows mutations in cobalamin-deficient Shar 

Peis. 
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8. GENOME-WIDE SCANS IN COBALAMIN-DEFICIENT                             

CHINESE SHAR PEIS 

 

8.1 Overview 

Cobalamin deficiency in Chinese Shar Peis (Shar Peis) has been linked to canine 

chromosome 13 using the canine minimal screening set-2 (cMSS-2), but because of an 

average marker spacing of 9 megabases, this genome scan might be inconclusive. 

Therefore, study aims were 1) to corroborate previous results from genome scans using 

the canine single nucleotide polymorphism (cSNP) array in cobalamin-deficient Shar 

Peis, 2) to evaluate the candidate gene, HAS2, located on canine chromosome 13, for 

mutations in Shar Peis with cobalamin deficiency, and 3) to ascertain whether 

cobalamin-deficient Shar Peis have a low or high copy number of the duplications close 

to the HAS2 gene. First, the cSNP analysis of cobalamin-deficient Shar Peis and 

normocobalaminemic Shar Peis revealed 2 markers (21,600,902 bp and 22,937,592 bp; p 

< 1.0×10-6). Allele 283 of the cMSS-2 marker FH3619 was found significantly more 

frequently in cobalamin-deficient Shar Peis than normocobalaminemic Shar Peis (p = 

1.8×10-6). Second, the sequencing of the 3 exons of HAS2 gene revealed no differences 

between Shar Peis with and without cobalamin deficiency. Third, cobalamin-deficient 

Shar Peis had a higher copy number of a 14.3 kb duplication and a lower copy number 

of a 16.1 kb duplication that are close proximity to the HAS2 gene than 

normocobalaminemic Shar Peis, and cobalamin deficiency was associated with higher 

copy number of a 14.3 kb duplication and with lower copy number of a 16.1 kb 
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duplication (p ≤ 0.0001). In conclusion, cSNP and cMSS-2 analyses revealed a cluster of 

cSNP markers on canine chromosome 13 that co-segregate with cobalamin deficiency in 

Shar Peis. The copy number assay analysis suggests that cobalamin deficiency in Shar 

Peis is associated with the traditional type Shar Pei (i.e., the original Shar Peis that 

originated from China). The findings of this study provide further evidence that a region 

of chromosome 13 contains one or more genes responsible for this condition in the Shar 

Pei. 

 

8.2 Introduction 

Cobalamin (vitamin B12) deficiency is a common disorder in the Chinese Shar Pei (Shar 

Pei) and is suspected to be hereditary (Bishop et al. 2011). Based on a genome-wide scan 

using the canine minimal screening set-2 (cMSS-2), cobalamin deficiency in the Shar 

Pei has recently been linked to a genomic locus in close proximity to two microsatellite 

markers (DTR13.6 and REN13N11) on canine chromosome 13 (Grützner et al. 2010). 

The cMSS-2 contains 327 microsatellite markers with an average marker spacing of 9 

megabases (Mb), but no gaps larger than 17.1 Mb (Clark et al. 2004). Thus, the previous 

study does not conclusively narrow down the region on chromosome 13 as the major 

locus for a gene or genes responsible for cobalamin deficiency in this breed. Also, not all 

genes that have been associated with cobalamin deficiency in humans or genes encoding 

for cobalamin binding proteins have been identified in the dog (Tanner et al. 2005; 

Hauck et al. 2008). In this context, a single nucleotide polymorphism (SNP) array would 

cover the dog genome in more detail and thus might be more informative for such an 
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association study (Fukuda et al. 2009). Therefore, the first aim of the current study was 

to scan the whole genome using canine SNPs (cSNP) to identify genes or regions that 

may be associated with cobalamin deficiency in the Shar Pei. 

In human (Stabler et al. 1986) and veterinary studies (Ruaux et al. 2009; Berghoff et 

al. 2011), an increased serum methylmalonic acid (MMA) concentration has been 

suggested to reflect cobalamin deficiency at the cellular level. A combination of 

decreased serum cobalamin and increased serum methylmalonic acid concentrations 

might therefore be stronger evidence of cobalamin deficiency at the cellular level than a 

decreased serum cobalamin concentration alone. Thus, a phenotypic re-classification 

based on serum cobalamin and methylmalonic acid concentrations may lead to 

identification of a different region on chromosome 13 or even on a different 

chromosome. Therefore, the second aim of this study was to re-evaluate results from the 

previous cSNP array and the cMSS-2 results based on a comparison of Shar Peis with 

decreased serum cobalamin and increased serum MMA concentrations to those with 

serum cobalamin and MMA concentrations within the respective reference intervals. 

In addition, it has previously been shown that Shar Peis have a high prevalence of 

cutaneous mucinosis, which is also suspected to be hereditary. Cutaneous mucinosis in 

Shar Peis is a condition that has been shown to be associated with an increased 

hyaluronan synthase gene (HAS2) expression, a gene that is located within the genomic 

region of canine chromosome 13 (Olsson et al., 2011). HAS2 gene has been reported to 

be located on canine chromosome 13, at location 23,348,773-23,364,912 bp, with a 

distance of approximately 0.42 Mb and 0.47 Mb to the cSNP and cMSS-2 markers that 
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have previously been reported to be associated with cobalamin deficiency in this breed 

(Figure 21; Grützner et al., 2010). The aim of this part of the study was to evaluate the 

candidate gene HAS2 located on canine chromosome 13 for any mutations in Shar Pei 

with cobalamin deficiency based on a decreased serum cobalamin and an increased 

serum MMA concentrations. 

Olsson et al., has reported a link of Shar Pei fever and cutaneous mucinosis with the 

HAS2 gene on canine chromosome 13 (Olsson et al., 2011). A high copy number of a 

16.1 kb duplication close proximity to the HAS2 gene was found to be associated with 

the thickened skin in the meatmouth type Shar Pei, while a high copy number of a 14.3 

kb duplication close proximity to the HAS2 gene was suggested to be associated with the 

traditional type Shar Pei (Olsson et al., 2011). Therefore, the copy number assay analysis 

was conducted to ascertain whether cobalamin-deficient Shar Peis have a low or high 

copy numbers of the two duplications close proximity to the HAS2 gene (Olsson et al. 

2011). 

 

8.3 Materials and methods 

First study aim 

Part A – 42 pure-bred Shar Peis that had previously been used in an association study of 

cobalamin deficiency in Shar Peis by using the cMSS-2 set were investigated (Grützner 

et al. 2010; Table 16). 

Part B – The Shar Peis from part A of the study and an additional 19 pure-bred Shar 

Peis were investigated (Table 16). 
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For both parts of the study, the protocol for collection of blood samples from Shar Peis 

was reviewed and approved by the Clinical Research Review Committee at Texas A&M 

University (CRRC# 2007-30). Owners were asked to complete a questionnaire 

requesting information concerning their dogs, including age, sex, sexual status, health 

status (including current medications and vaccination status), and history of any prior 

supplementation with cobalamin alone or as a vitamin B complex preparation. Food was 

withheld from the dogs for at least 12 hours before collection of blood samples. 

For both parts of the study, serum and blood samples were collected from each dog. 

Serum cobalamin concentration and serum cobalamin and MMA concentrations, 

respectively, were measured in each serum sample. Whole blood was used for 

subsequent DNA extraction and analysis. 
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Table 16. The table lists the number (n) and proportion of cobalamin-deficient (COB 

deficient) Shar Peis and normocobalaminemic (normal COB) Shar Peis that were 

included for each part of the study (1. Part A: cSNP and microsatellite marker FH3619; 

Part B: cSNP and microsatellite marker FH3619; 2. sequencing of the HAS2 gene and 

C/T deletion; 3. copy number assays: CNV-Eastern and CNV_23.759; with and without 

increased MMA concentration). The remaining columns show the number of female and 

male dogs and the median age (in years) for all dogs of each group. 

 

Study aims n 
# COB 

♀/age ♂/age 
# normal 

♀/age ♂/age 
Deficient COB 

1. Genome scans  
            

  Part A 
cSNP 42 14   9 / 6.0   5 / 6.0 28 17 / 3.0 13 / 4.0 

FH3619 69 28 16 / 6.5 12 / 6.0 41 21 / 4.0 20 / 4.0 

  Part B                              with increased MMA 
cSNP 34 10   5 / 6.5   5 / 6.0 24 13 / 4.0 11 / 4.0 

FH3619 56 20 12 / 6.5   8 / 6.0 36 16 / 4.0 19 / 4.0 

2. Sequencing 
HAS2 gene 8 4   2 / 7.0   2 / 6.0 4   2 / 5.0   2 / 4.0 

C/T deletion 26 12   7 / 6.0   5 / 5.0 14   6 / 9.0   8 / 4.0 

3. Copy number assays 
CNV-Eastern 69 28 16 / 7.5 12 / 5.0 41 21 / 5.0 20 / 4.0 
CNV_23.759 69 28 16 / 7.5 12 / 5.0 41 23 / 5.0 18 / 4.0 

                                          with increased MMA 
CNV-Eastern 56 20 12 / 7.5   8 / 5.0 36 16 / 5.0 19 / 4.0 

CNV_23.759 56 20 12 / 7.5   8 / 5.0 36 16 / 5.0 19 / 4.0 
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Part A – Serum cobalamin concentration was measured in each dog using an automated 

chemiluminescence assay (Immulite®2000; Siemens Healthcare Diagnostics), with a 

reference interval of 252-908 ng/L (Gastrointestinal Laboratory at Texas A&M 

University, College Station, TX; http://vetmed.tamu.edu/gilab/service/assays/b12folate; 

accessed May 1, 2012). DNA was extracted from whole blood using a commercial DNA 

extraction kit (Gentra Systems). Spectrophotometry was used to evaluate purity and 

quantity of the DNA extracted prior to further analysis. A total of 49,633 SNPs were 

genotyped using the Affymetrix v2 Platinum cSNP array. The analysis of the genotype 

data was conducted using a whole genome association analysis toolset (Plink v1.05) and 

compared to the CanFam 2.0 (2005). Bonferroni correction for multiple statistical 

comparisons was used to evaluate the significance of any potential association (alpha 

level for each individual test adjusted to 0.05). Significance was set at p value <0.000001 

(P < 1.0×10-6). 

 

Part B – Serum cobalamin concentration was measured as for part A. Serum MMA 

concentration was measured in each dog by using a stable isotope dilution gas 

chromatography-mass spectrometry method, with a reference interval of 415-1,193 

nmol/L (Berghoff et al. 2012). DNA was handled as described above. cSNP results were 

re-analyzed with the combined measurements of cobalamin and MMA concentration and 

the analysis was conducted as for the first part of the study (comparison to CanFam 2.0 

[2005]). In addition, 313 microsatellite markers from the cMSS-2 were re-analyzed and 
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genotyped with both serum parameters using an ABI 3130 series capillary 

electrophoresis-based Genotyper (Applied Biosystems) and Gene-Mapper® software 

(version 3.7; Applied Biosystems). Fisher’s exact test was used for statistical analysis to 

evaluate for a potential association. Significance was set at p value of < 1.0×10-4. 

 

Second aim of the study 

For sequencing of the HAS2 gene, 8 pure-bred Shar Peis were investigated (4 

normocobalaminemic Shar Peis with a serum methylmalonic acid (MMA) concentration 

within the reference interval and 4 cobalamin-deficient Shar Peis with an increased 

serum MMA concentration [Table 16]). Serum and blood samples were collected from 

each dog. Serum cobalamin concentrations using an automated chemiluminescence 

assay (Immulite®2000; Siemens Healthcare Diagnostics Inc., Deerfield, IL, USA), with a 

reference interval of 252-908 ng/L and MMA concentrations using a gas 

chromatography-mass spectrometry assay, with a reference interval of 415-1,193 nmol/L 

(Berghoff et al., 2012) were measured in each serum sample. 

Whole blood was used for subsequent DNA extraction and analysis. Primers for 

amplification for all three exons of the HAS2 gene were chosen (Table 17). DNA was 

extracted from whole blood using a commercial DNA extraction kit (Gentra Systems, 

Inc., Minneapolis, MN, USA). PCR reaction was performed in a Mastercycler 

(Eppendorf North America, Westbury, NY, USA). For all exons the same cycling 

program was used: 3 min at 94°C followed by 35 cycles of 30s at 94°C, 30s at 59°C, and 

30s at 72°C. PCR products were purified (Purification, DNA Clean & Concentrator-5TM, 
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Zymo Research Corporation, Orange, CA, USA), and visualized on a 1% agarose 

electrophoresis gel (Gel, Fisher BioReagents, Pittsburgh, PA) using a horizontal gel 

electrophoresis system (Horizon® 58, Whatman Inc., Florham Park, NJ, USA). The 

identity of the product was then further verified by direct sequencing on a genetic 

analyzer (ABI 3130x/ Genetic Analyzer, Applied Biosystem, Foster City, CA, USA). 

Sequencing results were compared between cobalamin-deficient Shar Peis and Shar Peis 

with normal serum cobalamin and methylmalonic acid concentrations and published 

DNA sequences for this gene as published in the Ensemble genomic map. 

Further evaluation of the intronic region following exon 2 of the HAS2 gene was 

evaluated in DNA samples from 26 unrelated Shar Peis (Table 17). Genomic DNA was 

extracted from whole blood from each dog and a primer pair was chosen to amplify the 

intron region following exon 2 of the HAS2 gene (Forward: GGATGCTCAATGTTGA 

CTGC and / Reverse: TCAGCCAAAACAGACAAGAA and the PCR products were 

analyzed by direct sequencing. Occurrence of the C/T deletion within the intron 

following exon 2 of the HAS2 gene was compared between Shar Peis with and without 

cobalamin deficiency (phenotype) and based on allele 283 of microsatellite marker 

FH3619. Fisher’s exact test was used and the odds ratio (OR) and the 95% confidence 

interval (CI) were determined. 
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Table 17. This table shows the chosen forward and reverse primers for the amplification 

of exon 1 (1a and 1b), exon 2 (2a), and exon 3 (3a, 3b, and 3c) of the canine HAS2 gene. 

 

Exon Forward Reverse 

1a  CCAAGTGCTTCTCGTCCAAT CCCAGGGTAGGTTAGCCTCT 

1b  TGCAAATGAGCAAACCTGAG ATAGGCAGCGATGCAAAGAG 

2a  GCACATCACTTCAGCTGGTC GTGGGTCCAAGGCACATACT 

3a CGCATGCACACAATTTATCA CATCGCATTGTACAGCCACT 

3b TTCCTGGATCTCCTTCCTCA AGCTGGCAAAGGAGGATTTT 

3c GGGGTAAAATTTGGAACATCC GTTCAAGTCCCAGCAGCAGT 
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Third aim of the study 

Previously, researcher from Uppsala University conducted the duplication genotyping by 

using two assay sets: 1) CNV-Eastern assay estimates the copy numbers of a 14.3 kb 

duplication 0.4 Mb away from the HAS2 gene (related to the traditional type of Shar 

Peis) and 2) CNV_23.759 assay estimates the copy number of a 16.1 kb duplication 0.3 

Mb away from the HAS2 gene (related to the meatmouth type of Shar Peis). Both assay 

sets were used for the comparison of cobalamin-deficient Shar Peis and 

normocobalaminemic Shar Peis, and cobalamin-deficient Shar Peis with an increased 

serum MMA concentration and normocobalaminemic Shar Peis with a normal serum 

MMA concentration using a Mann-Whitney U test (Table 16). A Fisher’s exact test was 

used to evaluate whether cobalamin deficiency in Shar Peis is associated with a low or 

high copy numbers of the two duplications close proximity to the HAS2 gene exist 

(Table 16). For all tests statistical significance was set at a p value of 0.05. 

 



143 
 

value of < 1.0×10-6. These four markers were located between 26,440,885-28,178,693 

bp on chromosome 13 (Figure 21). 

8.4 Results 

 

First study aim 

Part A – Serum cobalamin concentrations were undetectable (< 150 ng/L) in 14 of 42 

(33.3%) Shar Peis enrolled. Serum cobalamin concentrations were within the reference 

interval in the other 28 dogs (66.7%). The cSNP analysis revealed 4 markers with a p-
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Figure 21. Ideogram of canine chromosome 13. The microsatellite markers DTR13.6, REN13N11, and FH3619 are shown at 

their respective locations in mega bases (Mb) and the closely located HAS2 gene is also shown.  The cSNP array analysis for 

the first part of the study revealed four markers that are located between 26,440,885-28,178,693 bp on chromosome 13 and 

illustrated as cSNP (A) (p = <1.0×10-6). The analysis of the cSNP array for the second part of the study revealed two 

significant markers located in close proximity to microsatellite marker FH3619 on chromosome 13 and illustrated as cSNP (B) 

(p = 4.1×10-7 and 4.5×10-7, respectively). 

 

 

 

Mb
cSNP (A)

DTR13.6FH3619
29.189.076- 29.189.385cSNP (B) 

21.600.902- 22.937.592

REN13N11
28.175.350- 28.175.70222.877.770- 22.887.965

26.440.885- 28.178.693

23.348.773- 23.364.912
HAS 2 gene
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Part B – 61 Shar Peis were included in this part of the study, with 19 Shar Peis (32.8%) 

having an undetectable serum cobalamin concentration (<150 ng/L) and an increased 

serum MMA concentration (>1,193 nmol/L). Data from the cSNP array (part A) were 

available for 34 of these dogs, with 10 (29.4%) having an undetectable serum cobalamin 

concentration and an increased serum MMA concentration. The other 24 (70.6%) dogs 

had serum cobalamin and MMA concentrations within the reference intervals. The 

analysis of the cSNP array revealed two significant markers (21,600,902 bp; p = 4.1×10-

7 and 22,937,592 bp; p = 4.5×10-7, respectively) located in close proximity to 

microsatellite marker FH3619 (from cMSS-2) on chromosome 13 (Figure 21). 

cMSS-2 data from the previously conducted association study of cobalamin 

deficiency in the Shar Pei (Grützner et al., 2010) plus additional pure-bred Shar Peis 

were investigated for cMSS-2 marker FH3619, which is located between the significant 

cSNP array markers. Allele 283 of the cMSS-2 marker FH3619, located on chromosome 

13 (22,877,770 bp), was found significantly more frequently in the 28 cobalamin-

deficient Shar Peis (30 of 56 alleles, 53.6%) than in the 41 normocobalaminemic Shar 

Peis (12 of 82 alleles, 14.6%; p = 1.1×10-6; Table 18; Figure 21). Allele 283 of the 

cMSS-2 marker FH3619 was found significantly more frequently in the 20 cobalamin-

deficient Shar Peis with increased MMA concentrations (25 of 40 alleles, 62.5%) than in 

the 36 normocobalaminemic Shar Peis with normal serum MMA concentrations (12 of 

72 alleles, 16.7%; p = 1.8×10-6; Table 18; Figure 21). 
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Table 18. Frequencies for allele 283 bp for microsatellite marker FH3619 in A) 

cobalamin-deficient (COB deficient) Shar Peis and normocobalaminemic (Control) Shar 

Peis (p value = 1.2×10-6) and B) cobalamin-deficient (COB deficient) Shar Peis with 

increased serum MMA concentrations and normocobalaminemic (Controls) Shar Peis 

with normal serum MMA concentrations (p value = 1.8×10-6). 

 

 
COB deficient 

Shar Peis 
Control 

Shar Peis 
Σ 

A) FH3619 
   Allele 283 30 (53.6%) 12 (14.6%) 42 (30.4%) 

 other 
Alleles 

26 70 96 

   Σ 56 82 138 

B) FH3619    
      Allele 

283 
25 (62.5%) 12 (16.7%) 37 (33.0%) 

other Alleles 15 60 75 
   Σ 40 72 112 
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Second aim of the study 

The sequencing of the 3 exons of the HAS2 gene revealed no differences between any of 

the dogs belonging to either of the two groups of Shar Peis as well as the published 

sequence for this gene in the dog. Interestingly, the intron region following exon 2 

showed a deletion of two nucleobases (cytosine and thymine) located at intron positions 

87 bp and 88 bp, respectively, in all four Shar Peis with undetectable serum cobalamin 

and increased serum MMA concentrations, but none of the healthy control dogs (Figure 

22). 

Furthermore, the sequencing results of the intron region following exon 2 of the 

HAS2 gene were compared between 12 cobalamin-deficient Shar Peis with normal 

serum MMA concentrations and 14 normocobalaminemic Shar Peis with normal serum 

MMA concentrations. Five of 12 (41.7%) cobalamin-deficient, but only 3 of 14 (21.4%) 

normocobalaminemic Shar Peis had the C/T deletion within the intron following exon 2 

of the HAS2 gene. However, this numerical difference was not statistically significant (p 

= 0.4004; OR=1.8 [95%CI: 0.6-5.5]; Figure 23). In contrast, a significant association 

was found between allele 283 of microsatellite marker FH3619 and the C/T deletion in 

both groups of Shar Peis (p = 0.0147; OR=7.8 [95%CI: 1.5-41.0]; Figure 23). 
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Figure 23. Bar graph showing the proportions of cobalamin-deficient Shar Peis and normocobalaminemic Shar Peis with and 

without C/T deletion within the intron following exon 2 of the HAS2 gene. A) C/T deletions were no more frequently observed 

in cobalamin-deficient (COB deficient) Shar Peis (50.0%) than in normocobalaminemic (normal COB) Shar Peis (35.7%; p = 

0.4004). B) C/T deletions were associated with allele 283 of microsatellite marker FH3619 in both groups of dogs: cobalamin-

deficient (COB deficient) Shar Peis (37.5%) and normocobalaminemic (normal COB) Shar Peis (7.1%; p = 0.0147). 
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Third study aim 

Higher copy numbers of the CNV-Eastern assay (traditional type of Shar Peis) and lower 

copy numbers of the CNV_23.759 assay (meatmouth type of Shar Peis) were observed 

in cobalamin-deficient Shar Peis than in normocobalaminemic Shar Peis (for both: 

p<0.0001; Figure 24). The CNV-Eastern assay showed that approximately 57% (n=16) 

of the cobalamin-deficient Shar Peis had higher copy numbers (≥4), and cobalamin 

deficiency was associated with a higher copy number (OR: 7.8 [CI: 2.5-24.4]; p = 

0.0004; Figure 25). Whereas, for the CNV_23.759 assay approximately 71 % (n=20) of 

the cobalamin-deficient Shar Peis had lower copy numbers (<4) and cobalamin 

deficiency was associated with a lower copy number (OR: 14.5 [CI: 4.4-48.1]; p < 

0.0001; Figure 25). 

Similarly, higher copy numbers of the CNV-Eastern assays and lower copy numbers 

of the CNV_23.759 assay were observed in cobalamin-deficient Shar Peis with 

increased serum MMA concentrations than in normocobalaminemic Shar Peis with 

serum MMA concentrations within the reference intervals (for both: p<0.0001; Figure 

26). The CNV-Eastern assay revealed that approximately 70% (n=14) of the cobalamin-

deficient Shar Peis with increased serum MMA concentrations had higher copy numbers 

(≥4) and cobalamin deficiency was associated with a higher copy number (OR: 11.7 [CI: 

3.2-42.7]; p = 0.0001; Figure 27). Whereas, for the CNV_23.759 assay revealed that 

approximately 75% (n=15) of the cobalamin-deficient Shar Peis with increased serum 

MMA concentrations had lower copy numbers (<4) and cobalamin deficiency was 

associated with a lower copy number (OR: 15.0 [CI: 3.9-57.2]; p < 0.0001; Figure 27). 
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Figure 24. Copy number assay (CNV-Eastern and CNV_23.759) results for 28 

cobalamin-deficient Shar Peis and 41 normocobalaminemic Shar Peis. A) CNV-Eastern 

assay showed that cobalamin-deficient (COB deficient) Shar Peis (median: 4.5; range: 

1.8-7.0) had higher copy numbers than normocobalaminemic (normal COB) Shar Peis 

(median: 2.5; range: 1.7-7.1; p < 0.0001). B) The CNV_23.759 assay showed that 

cobalamin-deficient (COB deficient) Shar Peis (median: 2.5; range: 1.0-9.7) had lower 

copy numbers than normocobalaminemic (normal COB) Shar Peis (median: 5.4; range: 

2.4-11.6; p < 0.0001). 
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Figure 25. Bar graph showing the proportions of cobalamin-deficient Shar Peis and normocobalaminemic Shar Peis with low 

and high copy numbers using both assays (CNV-Eastern and CNV_23.759). A) The CNV-E assay revealed that high copy 

numbers (≥4) were more frequently observed in cobalamin-deficient (COB deficient) Shar Peis (57.0%) than in 

normocobalaminemic (normal COB) Shar Peis (14.6%; p = 0.0004). B) In contrast, the CNV_23.759 assay showed that low 

copy numbers (<4) were found more frequently in cobalamin-deficient (COB deficient) Shar Peis (71.4%) than in 

normocobalaminemic (normal COB) Shar Peis (14.6%; p < 0.0001). 
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Figure 26. Copy number assay (CNV-Eastern and CNV_23.759) results for 20 

cobalamin-deficient Shar Peis with an increased serum MMA concentration and 36 

normocobalaminemic Shar Peis with normal serum MMA concentrations. A) The CNV-

Eastern assay showed that cobalamin-deficient (COB deficient) Shar Peis with increased 

serum MMA concentrations had higher copy numbers (median: 5.0; range: 2.0-7.0) than 

normocobalaminemic (normal COB) Shar Peis with normal serum MMA concentrations 

(median: 2.5; range: 1.7-7.1; p = 0.0001). B) In contrast, the CNV_23.759 assay showed 

that cobalamin-deficient (COB deficient) Shar Peis with increased serum MMA 

concentrations had lower copy numbers (median: 2.1; range: 1.0-8.6) than 

normocobalaminemic (normal COB) Shar Peis with normal serum MMA concentrations 

(median: 5.3; range: 2.4-11.6; p < 0.0001). 
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Figure 27. Bar graph showing the proportions of cobalamin-deficient Shar Peis with increased serum MMA concentration and 

normocobalaminemic Shar Peis with normal serum MMA concentrations with low and high copy numbers using both assays 

(CNV-Eastern and CNV_23.759). A) The CNV-Eastern assay revealed that high copy numbers (≥4) were more frequently 

observed in cobalamin deficient (COB deficient) Shar Peis with an increased serum MMA concentration (70.0%) than in 

normocobalaminemic (normal COB) Shar Peis with normal serum MMA concentrations (16.7%; p = 0.0001). B) In contrast, 

the CNV_23.759 assay showed that low copy numbers (<4) were found more frequently in cobalamin-deficient (COB 

deficient) Shar Peis with increased serum MMA concentrations (75.0%) than in normocobalaminemic (normal COB) Shar Peis 

with normal serum MMA concentrations (16.7%; p < 0.0001). 

 
COB deficient normal COB

0

5

10

15

20

25

30

35

40

copy number ( 4)
copy number (< 4)

66

14

30

Shar Peis

co
py

 n
um

be
rs

 C
N

V-
Ea

st
er

n 
as

sa
y

COB deficient normal COB
0

5

10

15

20

25

30

35

40

copy number (< 4)
copy number ( 4)

30

65

15

Shar Peis

co
py

 n
um

be
rs

 C
N

V_
23

.7
59

 a
ss

ay

A) B)



155 
 

8.5 Discussion 

This genome wide association study was conducted using cSNP arrays and the cMSS-2 

to corroborate previous results and to analyze Shar Peis with cobalamin deficiency based 

on two different phenotypes. First, the cSNP analysis revealed a cluster of cSNP markers 

on chromosome 13, which were significantly associated with undetectable serum 

cobalamin concentrations in this group of Shar Peis. Interestingly, previous results from 

the association study using the cMSS-2 had pointed to the same region of chromosome 

13 (Grützner et al. 2010). Second, the analysis of the cSNP array and cMSS-2 revealed 

one region on chromosome 13 that is significantly associated with cobalamin deficiency 

(based on a combination of an undetectable serum cobalamin concentration and an 

increased serum MMA concentration). The cSNP and cMSS-2 markers are 

approximately 5 Mb downstream from those identified in the first part of this study and 

the previously conducted association study by using the cMSS-2 (Grützner et al., 2010). 

Thus, the findings of this study provide further evidence that this region of chromosome 

13 contains the causative gene or genes for this condition. 

However, the phenotypic re-classification based on serum cobalamin and 

methylmalonic acid concentrations led to the identification of a slightly different region 

on chromosome 13, but no other region on any other canine chromosome. Since 

measurement of a combination of serum cobalamin and methylmalonic acid 

concentrations may provide a stronger phenotype than a decreased serum cobalamin 

concentration alone, this newly identified region maybe more accurately reflect the 

region of interest. The identified region on chromosome 13 approximately 5 Mb 
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downstream from a previously identified region warrants further investigation with 

regard to candidate genes for this condition. 

Other conditions that are reported to occur frequently in Shar Peis could help to 

identify a candidate gene. For instance, two other conditions have been described 

extensively in Shar Peis, cutaneous mucinosis and Shar Pei fever. Cutaneous mucinosis 

is a skin disorder that has been reported frequently in Shar Peis and is also suspected to 

be hereditary in this breed (Muller, 1990; von Bomhard & Kraft, 1998, Zanna et al. 

2008). This condition in Shar Peis is associated with an increased HAS2 gene expression 

(Zanna et al. 2009). Interestingly, the HAS2 gene is located on canine chromosome 13, at 

location 23,348,773-23,364,912 bp, which is in close proximity to the cSNP and cMSS-2 

markers that have been identified in this study as a region of interest for cobalamin 

deficiency. 

Shar Pei fever has been shown to be associated with renal amyloidosis and renal 

failure in several studies. In affected Shar Peis, amyloid deposits have been found in 

tissues such as the liver, spleen, stomach, small intestine, lymph nodes, and the pancreas 

(DiBartola et al. 1990). The clinical signs of Shar Peis fever, include vomiting, anorexia, 

fever, and weight loss (DiBartola et al. 1990; May et al. 1992; Rivas et al. 1992; 

Clements et al. 1995), which have also been reported in cobalamin-deficient Shar Peis. 

Interestingly, another research group found an unstable duplication close to the HAS2 

gene with a preferred skin and a fever syndrome phenotype in Shar Peis (Olsson et al. 

2011). However, to our knowledge, serum cobalamin concentrations have never been 

reported in dogs with Shar Pei fever. 
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Higher production of cell surface hyaluronan (also called hyaluronic acid) has been 

reported on mucosal endothelial cells in human patients with inflammatory bowel 

disease than in healthy controls (Kessler et al. 2008). Additionally, low serum cobalamin 

concentration has been documented in both human and canine patients with chronic 

enteropathies such as inflammatory bowel disease (Yakut et al. 2010; Allenspach et al. 

2007). It is thus reasonable to hypothesize that cutaneous mucinosis in Shar Peis may be 

related to cobalamin deficiency in this breed. Further investigation of the gene is 

warranted, for any mutations in this breed because to our knowledge, there are no 

previously published reports regarding any mutation of the HAS2 gene and the regions 

around the HAS2 gene in Shar Peis with cobalamin deficiency. 

The results of the second part of the study suggest that undetectable serum cobalamin 

and increased serum MMA concentrations in Shar Peis do not appear to be due to a 

mutation within the three exonic regions of the HAS2 gene. However, the deletion of the 

two nucleotides in the intron region following exon 2 of the HAS2 gene were associated 

with allele 283 of the microsatellite marker FH3619, which has been linked to Shar Peis 

with cobalamin deficiency. This genetic variation within the region following exon 2 of 

the HAS2 gene was also recognized by Olsson et al. (2011). However, further studies 

would be needed to ascertain whether the intron region following exon 2 of the HAS2 

gene plays a role in cobalamin-deficient Shar Peis and/or in Shar Peis with cutaneous 

mucinosis. 

The third part of the study revealed high copy numbers of a 14.3 kb duplication and 

low copy numbers of a 16.1 kb duplication close proximity to the HAS2 gene in 
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cobalamin deficient (based on a decreased serum cobalamin concentration and an 

increased serum MMA concentration) Shar Peis. Olsson et al. described that a high copy 

number of the of a 14.3 kb duplication close proximity to the HAS2 gene was found to 

be associated with the traditional type Shar Pei. On the other hand a high copy number 

of a 16.1 kb duplication close proximity to the HAS2 gene was found to be associated 

with the thickened skin in the meatmouth type Shar Pei and with Shar Pei fever and 

cutaneous mucinosis (Olsson et al., 2011). In this current study the copy number assay 

analysis suggests that cobalamin deficiency in Shar Peis is associated with the traditional 

type Shar Pei as described by Olsson et al. (2011). 

To date, possible associations between cobalamin deficiency and either cutaneous 

mucinosis or Shar Pei fever in Shar Peis have not been investigated. However, a link 

between these diseases in a breed classified as being rare (the Shar Pei has been ranked 

50th by the American Kennel Club in 2010) cannot be ruled out (http://www.akc.org/reg 

/dogreg_stats.cfm; accessed November 10th, 2011), and therefore, further investigations 

are warranted. 

In conclusion, cSNP analysis revealed a cluster of cSNP markers on canine 

chromosome 13 that co-segregate with cobalamin deficiency in Shar Peis. Previous 

results from an association study using the cMSS-2 have pointed to the same region of 

chromosome 13. The cSNP array analysis and cMSS-2 revealed a region of chromosome 

13 that is significantly associated with the combination of an undetectable serum 

cobalamin concentration and an increased serum MMA concentration. The region 

identified in the second part of study is approximately 5 Mb downstream of the 
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previously identified region associated with an undetectable serum cobalamin 

concentration alone. The findings of this study provide further evidence that a region of 

chromosome 13 contains one or more genes responsible for this condition in the Shar 

Pei. Undetectable serum cobalamin and increased serum MMA concentrations in Shar 

Peis do not appear to be due to a mutation within the three exonic regions of the HAS2 

gene. However, the deletion of the two nucleotides in the intron region following exon 2 

of the HAS2 gene was associated with allele 283 of the microsatellite marker FH3619. 

Lastly, the copy number assay analysis suggests that cobalamin deficiency in Shar Peis 

is associated with the traditional type Shar Pei (i.e., the original Shar Peis that originated 

from China). 
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9. CONCLUSIONS OF RESEARCH OBJECTIVES 

 

In recent history, no other dog breed has grown in popularity and/or population size in 

such a short period of time as is the case for the Chinese Shar Pei in North America. 

After being introduced to North America in the 1970s, the breed suffered from rushed 

breeding carried out by inexperienced breeders. This resulted not only in a dramatically 

different look for the Shar Pei breed, but also in a large number of health problems. A 

report from 1991 revealed that Shar Peis have a predisposition for hypocobalaminemia, 

indicating a likely increased predisposition for cobalamin deficiency. 

A comparison of serum cobalamin concentrations between dogs of different breeds 

indicated that most significantly the Shar Pei, but also the Akita, German Shepherd Dog, 

and Border Collie had an increased proportion of serum cobalamin concentrations below 

the detection limit of the assay. Furthermore, undetectable serum cobalamin 

concentrations were associated with a serum cTLI concentration considered diagnostic 

for EPI in the Akita, Australian Shepherd, Border Collie, German Shepherd Dog, Cairn 

Terrier, Cardigan Welsh Corgi, Cocker Spaniel, Dalmatian, West Highland White 

Terrier, and Wire Fox Terrier. However, in the Shar-Pei, undetectable serum cobalamin 

concentrations were not associated with serum cTLI concentrations suggestive of EPI. 

The Shar Pei has been described as having a high prevalence of cobalamin 

deficiency and clinical signs are suggestive of severe and longstanding gastrointestinal 

disease such as diarrhea, vomiting, and/or weight loss. No difference was found in serum 

concentrations of HA, CRP, and the calgranulins (i.e., calprotectin and S100A12) 
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between Shar Peis with and without cobalamin deficiency. However, this study also 

showed that an inflammatory phenotype does exist in some Shar Peis with and some 

without cobalamin deficiency. In contrast, cobalamin-deficient Shar Peis showed higher 

serum IgA concentrations and lower serum IgM, albumin, and creatinine concentrations 

when compared to normocobalaminemic Shar Peis. The findings of this study might 

suggest that Shar Peis with and without cobalamin deficiency are not associated with 

other potential diseases in Shar Peis such as cutaneous mucinosis and Shar Pei Fever. 

However, further studies are needed to determine if serum cobalamin concentrations are 

affected in Shar Peis with confirmed cutaneous mucinosis or Shar Pei Fever. 

Other serum markers of cobalamin-related cellular biochemistry include 

homocysteine and methylmalonic acid, which can be used to assess intracellular 

cobalamin availability. A comparison showed that cobalamin-deficient Shar-Peis had a 

higher serum HCY concentration compared to cobalamin-deficient dogs from six other 

breeds, and also had a higher frequency of hyperhomocysteinemia than 

normocobalaminemic Shar-Peis. Cobalamin-deficient Shar-Peis had a 10-fold higher 

median serum MMA concentration compared to cobalamin-deficient dogs from other 

dog breeds. In addition, serum HCY and MMA concentrations did not differ between 

cobalamin-deficient German Shepherd Dogs with and without EPI, a potential cause of 

secondary cobalamin deficiency. These findings suggest that the functions of the two 

main cobalamin-dependent enzymes (i.e., methionine synthase and methylmalonyl-CoA 

mutase) are impaired in cobalamin-deficient Shar-Peis. 
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The Shar Pei phenotype changed over the last few decades and a survey showed that 

cobalamin deficiency in Shar Peis was found to occur more frequently in the traditional 

type (i.e., the original Shar Pei that originated from China) than in the meatmouth type 

of this breed. However, overlaps between both types existed. Due to the breeding of the 

Shar Pei in North America, which was aimed at increasing the wrinkles, it is 

understandable that an overlap between both types (traditional and meatmouth type) 

existed. 

Variable responses to cobalamin supplementation have been reported in human 

patients that are deficient in intracellular adenosyl- and/or methylcobalamin due to 

disturbances of cobalamin metabolism at the cellular level. In this part of the study, 

cobalamin-deficient Shar Peis showed an increase in serum cobalamin concentrations 

and a decrease in serum MMA concentrations after cobalamin supplementation. Based 

on human and veterinary studies, an increased serum MMA concentration has been 

suggested to reflect cobalamin deficiency at the cellular level. Therefore, these data 

suggest that in Shar Peis with cobalamin deficiency, parenteral cobalamin 

supplementation does successfully reach the cellular level. 

The initial genome scan by Grützner et al. (2010) showed that cobalamin deficiency 

appears to be hereditary in Shar Peis and is linked to the microsatellite markers DTR13.6 

and REN13N11 on canine chromosome 13. The DNA sequence of the MYC_CANFA 

gene, which represents the closest known gene with a distance of approximately 0.06 

Mega bases (Mb) to the microsatellite marker DTR13.6, determined in this present study 

revealed no differences when compared to the published canine sequence, the cDNA 
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sequence, and Shar Peis of both groups. Consequently, cobalamin deficiency in Shar 

Peis does not appear to be related to a mutation of the MYC_CANFA gene according to 

the genotyping and sequencing results in this study. 

Genome-wide scans can be used to identify potential regions on the canine 

chromosome that are linked with cobalamin deficiency in the Shar Pei. Further 

sequencing may identify the actual mutation responsible for the condition in this breed. 

The cSNP analysis revealed a cluster of cSNP markers on canine chromosome 13 that 

co-segregate with cobalamin deficiency in Shar Peis. As mentioned above, previous 

results from an association study using the cMSS-2 had pointed to the same region on 

chromosome 13. The cSNP array analysis and cMSS-2 revealed a region of chromosome 

13 that is significantly associated with the combination of an undetectable serum 

cobalamin concentration and an increased serum MMA concentration. The region 

identified in this part of study is approximately 5 Mb downstream of the previously 

identified region associated with undetectable serum cobalamin concentration alone. 

Thus, the findings of this study provide further evidence that a region of chromosome 13 

contains one or more genes responsible for this condition in the Shar Pei. 

The HAS2 gene, is a gene that is located within the genomic region of interest of 

canine chromosome 13, and has been linked to Shar Peis with Shar Pei fever and 

cutaneous mucinosis. However, no studies had previously been conducted in Shar Peis 

with cobalamin deficiency. In our study the undetectable serum cobalamin and increased 

serum MMA concentrations in Shar Peis do not appear to be due to a mutation within 

the three exonic regions of the HAS2 gene. However, the deletion of the two nucleotides 



164 
 

in the intron region following exon 2 of the HAS2 gene was associated with allele 283 of 

the microsatellite marker FH3619. 

Olsson et al. (2011) had previously linked Shar Pei fever and cutaneous mucinosis to 

the HAS2 gene on canine chromosome 13. A high copy number of a 16.1 kb duplication 

close to the HAS2 gene was found to be associated with the thickened skin in meatmouth 

type Shar Peis, while a high copy number of a 14.3 kb duplication close to the HAS2 

gene was suggested to be associated with the traditional type Shar Peis (Olsson et al., 

2011). Our copy number assay analysis suggest that cobalamin deficiency in the Shar 

Pei with or without increased serum MMA concentrations is associated with the 

traditional type Shar Pei (i.e., the original Shar Peis that originated from China). This 

might suggest that the markers identified on chromosome 13 are simply markers of coat 

and skin type in Chinese Shar Peis, rather than markers for cobalamin deficiency. Thus, 

further investigations of traditional type Shar Peis with cobalamin deficiency are 

warranted. 
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