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ABSTRACT

Inferring gene regulatory networks (GRNs) is of profound importance in the field

of computational biology and bioinformatics. Understanding the gene-gene and gene-

transcription factor (TF) interactions has the potential of providing an insight into

the complex biological processes taking place in cells. High-throughput genomic and

proteomic technologies have enabled the collection of large amounts of data in order

to quantify the gene expressions and mapping DNA-protein interactions.

This dissertation investigates the problem of network component analysis (NCA)

which estimates the transcription factor activities (TFAs) and gene-TF interactions

by making use of gene expression and Chip-chip data. Closed-form solutions are

provided for estimation of TF-gene connectivity matrix which yields advantage over

the existing state-of-the-art methods in terms of lower computational complexity and

higher consistency. We present an iterative reweighted ℓ2 norm based algorithm to

infer the network connectivity when the prior knowledge about the connections is

incomplete.

We present an NCA algorithm which has the ability to counteract the presence

of outliers in the gene expression data and is therefore more robust. Closed-form

solutions are derived for the estimation of TFAs and TF-gene interactions and the

resulting algorithm is comparable to the fastest algorithms proposed so far with the

additional advantages of robustness to outliers and higher reliability in the TFA

estimation.

Finally, we look at the inference of gene regulatory networks which which essen-

tially resumes to the estimation of only the gene-gene interactions. Gene networks

are known to be sparse and therefore an inference algorithm is proposed which im-
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poses a sparsity constraint while estimating the connectivity matrix. The online

estimation lowers the computational complexity and provides superior performance

in terms of accuracy and scalability.

This dissertation presents gene regulatory network inference algorithms which

provide computationally efficient solutions in some very crucial scenarios and give

advantage over the existing algorithms and therefore provide means to give better

understanding of underlying cellular network. Hence, it serves as a building block

in the accurate estimation of gene regulatory networks which will pave the way for

finding cures to genetic diseases.
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1. INTRODUCTION

The post-genomic era is marked by the availability of a deluge of genomic data

that has enabled researchers to look towards new dimensions for understanding the

complex biological processes governing the life of a living organism [22,32,36,82,83].

The various life-sustaining functions are performed via a collaborative effort involving

DNA, RNA and proteins. Genes and proteins interact with themselves and each

other and orchestrate the successful completion of a multitude of important tasks.

Understanding how they work together to form a cellular network in a living organism

is extremely important in the field of molecular biology. Two important problems

in this considerably nascent field of computational biology are the inference of gene

regulatory networks and the estimation of transcription factor activities (TFAs).

Gene regulation is one of the many fascinating processes taking place in an living

organism whereby the expression and repression of genes are controlled in a system-

atic manner. With the help of the enzyme RNA polymerase, DNA transcribes into

mRNA which may or may not translate into proteins. It is found that in certain

special cases mRNA is reverse transcribed to DNA. The processes of transcription

and translation are schematically represented in Fig. 1.1, where the interactions in

black show the most general framework and the interactions depicted in red occur

less frequently. Transcription factors (TFs), which are a class of proteins play the

significant role of binding onto the DNA and thereby regulate their transcription.

Since the genes may be coding for TFs and/or other proteins, a complex network of

genes and proteins is formed. The level of activity of a gene is measured in terms

*Part of this section is reprinted from “An Overview of the Statistical Methods Used for Infer-
ring Gene Regulatory Networks and Protein-Protein Interaction Networks,” Amina Noor, Erchin
Serpedin, Mohamed Nounou, Hazem Nounou, Nady Mohamed, and Lotfi Chouchane, Advances in
Bioinformatics, 2013, doi:10.1155/2013/953814, 2013. Copyright 2013, Amina Noor et al.
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Figure 1.1: Central dogma of molecular biology

of the amount of resulting functional products, and is referred to as gene expres-

sion. The recent high-throughput genomic technologies are able to measure the gene

expression values and have provided large scale data sets, which can be used to ob-

tain insights into how the gene networks are organized and operated. One of the

most encountered representations of gene regulatory networks is in terms of a graph,

where the genes are depicted by its nodes and the edges represent the interactions

between them. The gene regulatory network (GRN) inference problem consists of

understanding the underlying system model [7, 20, 27, 38, 54]. Simply stated, given

the gene expression data, the activation or repression actions by a set of genes on the

other genes need to be identified. There are several issues associated with this prob-

lem, including the choice of models that capture the gene interactions sufficiently

well, followed by robust and reliable inference algorithms that can be used to derive

decisive conclusions about the network. The inferred networks vary in their sophis-

tication depending on the extent and accuracy of the prior knowledge available and

the type of models used in the process. It is also important that the gene networks

thus inferred should possess the highly desirable quality of reproducibility in order

to have a high degree of confidence in them. A sufficiently accurate picture of gene

2



interactions could pave the way for significant breakthroughs in finding cures for

various genetic diseases including cancer.

Many statistical methods have been applied extensively to solving gene regula-

tory network inference problems. We first look at the biological data available for

inferencing and then explore the different ways in which the data is utilized.

1.1 Available Biological Data

The post-genomic era is distinguished by the availability of huge amount of bio-

logical data sets which are quite heterogenous in nature and difficult to analyze [82].

It is expected that these data sets can aid in obtaining useful knowledge about the

underlying interactions in gene-gene networks and estimating the TFAs. In the se-

quel, some of the main types of data used for inference of genomic networks are

discussed.

1.1.1 Gene Expression Data

Of all the available datasets, gene expression data is the most widely used for

gene regulatory network inference. Gene expression is the process that results in

functional transcripts, e.g., RNA or proteins, while utilizing the information coded

on the genes. The level of gene expression is an important indicator of how active a

gene is and is measured in the form of gene expression data. Similarity in the gene

expression profiles of two genes advocates some level of correlation between them.

1.1.1.1 cDNA-Microarray Data

One way of generating cDNA-microarray data is via the DNA microarray tech-

nology, which is by far the most popular method employed for this purpose. The

number of data samples is in general much smaller than the number of genes. A main

drawback associated with cDNA-microarray data is the noise in the observed gene

3



expressions. Although the gene expression values should be continuous, the inability

to measure them accurately suggests the use of discretized values.

1.1.1.2 RNA-Seq Data

The recent advancement of sequencing technologies has provided the ability to

acquire more accurate gene expression levels [42]. RNA-Seq is a novel technology for

mapping and quantifying transcriptomes, and it is expected to replace all the contem-

porary methods because of its superiority in terms of time, complexity and accuracy.

The gene expression estimation in RNA-Seq begins with the reverse transcription of

RNA sample into cDNA samples, which undergo high throughput sequencing, re-

sulting into short sequence reads. These reads are then mapped onto the reference

genome using a variety of available alignment tools. The gene expression levels are

estimated using the mapped reads, and several algorithms have been proposed in the

recent literature to find efficient and more accurate estimates of the gene expression

levels. The gene expression data obtained in this manner have been found to be

much more reproducible and less noisy as compared to the cDNA microarrays. The

expression estimation process using RNA-Seq is depicted in Fig. 1.2.

1.1.2 ChIP-chip Data

ChIP-chip data, which is an abbrevation of Chromatin immunoprecipitation and

microarray (chip), investigates the interactions between DNA and proteins. This

data provides information about the DNA-binding proteins. Since some of the genes

encode for transcription factors (TFs) which in turn regulate some other genes and/or

proteins, this information comes in handy for the inference of gene networks [54] and

TFA estimation. However, generating the ChIP-chip data for large genome would

be technically and financially difficult.

4
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Figure 1.2: Expression estimation in RNA-Seq

1.1.3 Other Data Sets

Apart from the data sets described above, gene deletion and perturbation data

are worth mentioning here. Perturbation data set is generated by performing an

initial perturbation and then letting the system to react to it [75]. The gene expres-

sion values at the following time instants and at steady-state are measured thereby

obtaining the response of the genes to the specific perturbation which could be the

increase or decrease of the expression level of all or certain genes. Gene deletion

dataset, as the name indicates, involves deleting a gene and measuring the result-

ing expression level of other genes. This data may effectively uncover simple direct

relationships [75].

1.2 Modeling and Inferring Gene Regulatory Networks

Gene regulatory networks capture the interactions present among the genes. Ac-

curate and reliable estimation of gene networks is significantly crucial and can reap

far-reaching benefits in the field of medicinal biology, e.g., in terms of developing per-

5



sonalized medicines. Several statistical methods have been used for inference of gene

regulatory networks of which probabilistic graphical models is the most important

one.

1.2.1 Probabilistic Graphical Modeling Techniques

Probabilistic graphical models have emerged as a useful tool for reverse engineer-

ing gene regulatory networks. A gene network is represented by a graph G = (V,E),

where V represents the set of vertices (genes), and E denotes the set of edges con-

necting the vertices. The vertices of the graph are modeled as random variables

and the edges signify the interaction between them. The expression value of gene

i is denoted by Xi and the total number of genes in the network is denoted by N .

Bayesian networks, dynamic Bayesian networks, and Markov networks, are some of

the methods representative of this class.

1.2.2 Information Theoretic Methods

Information theoretic methods have provided some of the most robust and reliable

algorithms for gene network inference, and form the basis of a standard in this

field [37,52,79]. A particular advantage associated with these methods is their ability

to work with minimal assumptions about the underlying network. This is in contrast

with the probabilistic graphical modeling techniques, e.g., a Markov network provides

an undirected network, while Bayesian networks are not able to incorporate cycles or

feedback loops. These drawbacks are not present in the case of information theoretic

methods.

1.2.3 State-space Representation Models

One of the earliest and widely used methods of modeling gene networks is by

employing the state-space representation models [71]. As opposed to other classes,

6



all the methods belonging to this class model the dynamic evolution of the gene

network. These models generally consist of two sets of equations, the first set of

equations representing the evolution of the hidden state variables denoted by z(t),

and the second set of equations relating the hidden state variables with the observed

gene expression data, denoted by x(t).

The simplest model for state-space equations is the linear Gaussian model given

by [71], [69]

z(t) = Az(t− 1) + v(t)

x(t) = Cz(t) +w(t) , (1.1)

where A is a matrix representing the regulatory relations between the genes and t

stands for the discrete time points. Difference equations are used in place of differ-

ential equations because discrete observations are available in the gene expression

data. The noise components v(t) and w(t) represent the system and the measure-

ment noise, respectively, and are assumed to be Gaussian. The noise models the

uncertainty present in the estimated gene expression data. The matrix C is gener-

ally considered to be an identity matrix. Inference in gene networks modeled by the

state space representation (1.1) can be performed using standard Kalman filter up-

dates. The simplicity of the state-space model avoids over-fitting of the network, and

therefore, it provides reliable results. Use of more sophisticated state-space models

to infer gene networks will be studied in this dissertation.

1.3 TFA Estimation Using Network Component Analysis

As opposed to looking at the gene-gene interactions only, it is important to un-

derstand the impact of proteins on the gene expression as well, and to deal with an

7



G1

TF1 TF2 TF3

G2

G3

G4

P1P2

P3

P4
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integrated cellular network as shown in Fig. 1.3. Transcription factor activity (TFA),

which is defined as the concentration of its subpopulation with DNA binding ability,

controls the transcriptional regulation [25]. The correlation between TFAs and TF

expression level is modified at the post-transcriptional and post-translational stage.

It is, therefore, much harder to measure TFA profiles experimentally, and scientists

have resorted to computational methods for their estimation [74]. Hence, in addition

to looking at the gene-gene interactions, it is imperative to understand how the genes

and proteins such as transcription factors are interacting. The relationship between

TFAs and mRNA degradation is modeled by a power-law rate expression [28,63]

dEi(t)

dt
= kpromoter

∏
TFAj(t)

CSij − kdegradation
∏

DFAk(t)
CSik .Ei(t) , (1.2)

where Ei(t) is the gene expression level, TFAj is the jth TF activity, DFAk is the

kth degradation factor activity and CS denotes the control strength of TF j on gene

i. Assuming that the time scale allows for a quasi-steady state approximation, (1.2)
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can be expressed as

Ei(t) =
kpromoter

∏
TFAj(t)

CSij

kdegradation ×
∏

DFAk(t)CSik
. (1.3)

Without loss of generality, denoting both TFAj(t) and DFAj(t) as TFAj(t), (1.3)

can be re-written as

Ei(t) =
kpromoter

kdegradation

∏
TFAj(t)

CSij . (1.4)

A log-linear relationship is obtained between the TF and genes by dividing (1.4) by

a reference point:

Ei(t)

Ei(0)
=

L∏
j=1

[
TFAj(t)

TFAj(0)

]CSij

Taking logartithm on both sides, the above equation can be expressed in matrix form

as:

log[Er] = [CS]log[TFAr] . (1.5)

Several statistical techniques including principal component analysis (PCA) [26]

and independent component analysis (ICA) [12] have been used to deduce useful

information from sets of biological data. However, the successful application of these

algorithms hinges on the assumptions of orthogonality and independence between the

signals, which do not hold for biological signals in practice [10]. In fact, some prior

information is usually available for many systems, and it should be incorporated in

the system model, e.g., ChIP-chip data indicates which TFs and genes are known to

interact.
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1.3.1 Network Component Analysis

Network Component analysis deals with making use of the prior information

available about the TF-gene interactions. Using (1.5), the gene regulatory network

can be modeled linearly as follows [34]

Y = AS + Γ , (1.6)

where Y is the N×K gene expression data matrix, A is the N×M control strength

or connectivity matrix, and S is the M × K matrix denoting the TFAs. The un-

certainties in the observation data are assumed to be Gaussian [10, 24], and are

represented by the entries of the noise matrix Γ. Genes and TFs are known to inter-

act in a dynamic and non-linear manner; however, a log-linear relationship provides

a good approximation. Since a particular TF regulates only a few other genes, the

connectivity matrix A is expected to be sparse. The problem then boils down to

estimating S and A, where Y is available and some a-priori information about the

matrix A is known.

Network component analysis (NCA), proposed by [34], provides a more accurate

model for TF-gene regulation and makes use of the related prior information avail-

able. It was shown that provided certain conditions are met, the NCA algorithm

produces a unique solution of the aforementioned estimation problem in the absence

of noise. The NCA criteria require that:

1. The matrix A is full column-rank.

2. If a node is removed from the regulatory layer as well as the output elements

connected to it, the updated control strength matrix should still be of full

column-rank.
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3. The TFA matrix S should have a full row-rank. These criteria ensure that the

solution obtained is unique up to a scale ambiguity [24,34].

When the NCA criteria are satisfied, the optimization problem reduces to:

min
A,S

||Y −AS||2F s.t. A(I) = 0 , (1.7)

where ∥.∥F denotes the Frobenius norm and I is the set of all indices where the

entries of matrix A are known to be zero.

1.3.2 Related Work

The significance of the NCA problem can be judged by its successful and effective

application in various scenarios e.g., [66] proposed an algorithm that incorporates the

motif information in the NCA algorithm and [62] modified the NCA algorithm by

trimming the network connectivity to keep the important TF-gene interactions. The

algorithm in [15] allows the recovery of source signals when the microarray data

consists of fewer data points.

The first solution to the estimation problem (1.7) was proposed in [34], where

alternating least squares (ALS) was employed to estimate both the matrices A and

S. However, since the ALS solution requires solving a high dimensional matrix opti-

mization problem at each iteration, it entails prohibitive computational complexity

for large data sets, which often need to be handled in gene networks. Moreover, the

solution to ALS can result in multiple local minima and ill-conditioned matrices. To

alleviate the latter problems [63] proposed the use of Tikhonov regularization on the

TFA matrix S. In order to lower the computational burden, FastNCA was proposed

which provides a much faster solution by making use of singular value decomposition

(SVD) techniques [10], and is several tens of times faster than the ALS algorithm.
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The authors in [24] propose a non-iterative version of NCA, herein referred to as

NINCA, which offers greater consistency in terms of TFA estimation at the cost of

much higher computational complexity than FastNCA.

1.4 Main Contributions of This Research

The main contributions in this research are as follows:

• Non-iterative network component analysis (NINCA), proposed by [24], em-

ploys convex optimization methods to estimate the transcription factor control

strengths and transcription factor activities. While NINCA provides good es-

timation accuracy and higher consistency, the costly optimization routine used

therein renders a high computational complexity. Section 2 presents a closed

form solution to estimate the connectivity matrix which is tens of times faster,

and provides similar accuracy and consistency, thus making the closed form

NINCA (CFNINCA) algorithm useful for large data sets encountered in prac-

tice. The proposed solution is assessed for accuracy and consistency using

synthetic and yeast cell cycle data sets by comparing with the existing state-

of-the-art algorithms. The robustness of the algorithm to the possible inaccu-

racies in prior information is also analyzed and it is observed that CFNINCA

and NINCA are much more robust to erroneous prior information as compared

to FastNCA.

• The algorithms currently available for network component analysis crucially de-

pend on the completeness of this prior information. However, inaccuracies in

the measurement process may render incompleteness in the available knowledge

about the connectivity matrix. Hence, computationally efficient algorithms

are needed to overcome the possible incompleteness in the available data. We

present a sparse network component analysis algorithm (sparseNCA) [51] in
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Section 3, which incorporates the effect of incompleteness in the estimation of

TRNs by imposing an additional sparsity constraint using the ℓ1 norm, which

results in a greater estimation accuracy. In order to improve the computational

efficiency, an iterative re-weighted ℓ2 method is proposed for the NCA problem

which not only promotes sparsity but is hundreds of times faster than the ℓ1

norm based solution. The performance of sparseNCA is rigorously compared

to that of FastNCA and NINCA using synthetic data as well as real data. It

is shown that sparseNCA outperforms the existing state-of-the-art algorithms

both in terms of estimation accuracy and consistency with the added advantage

of low computational complexity. The performance of sparseNCA compared

to its predecessors is particularly pronounced in case of incomplete prior infor-

mation about the sparsity of the network. Subnetwork analysis is performed

on the E. coli data which reiterates the superior consistency of the proposed

algorithm.

• Most of the contemporary algorithms for NCA either exhibit the drawback

of inconsistency and poor reliability, or suffer from prohibitive computational

complexity. In addition, the existing algorithms do not possess the ability

to counteract the presence of outliers in the microarray data, which degrades

the accuracy of the estimates. Hence, there is a need for algorithms that are

not only robust in the presence of outliers, but also lower the computational

burden to enable practical applications. In Section 4, we present ROBust Net-

work Component Analysis (ROBNCA) [45], a novel iterative algorithm that

explicitly models the possible outliers in the microarray data. An attractive

feature of the ROBNCA algorithm is the derivation of a closed form solution for

estimating the connectivity matrix, which was not available in prior contribu-

13



tions. The ROBNCA algorithm is compared to FastNCA and NINCA. Since

it is well equipped to handle the presence of outliers by estimating them at

each step, ROBNCA estimates the TF activity profiles as well as the TF-gene

control strength matrix with a much higher degree of accuracy than FastNCA

and NINCA, irrespective of varying noise, correlation and/or amount of out-

liers in case of synthetic data. The ROBNCA algorithm is also tested on

Saccharomyces cerevisiae data and it is observed to outperform the existing al-

gorithms. A similar analysis is also performed for Escherichia coli data which

further corroborates the superior performance of the ROBNCA algorithm. The

run time of the ROBNCA algorithm is comparable to that of FastNCA, and

is hundreds of times faster than NINCA, which makes ROBNCA a suitable

candidate for gene network reconstruction.

• Section 5 proposes a novel algorithm for inferring gene regulatory networks

which makes use of cubature Kalman filter (CKF) and Kalman filter (KF)

techniques in conjunction with compressed sensing methods [50]. The gene

network is described using a state-space model. A non-linear model for the

evolution of gene expression is considered, while the gene expression data is

assumed to follow a linear Gaussian model. The hidden states are estimated

using CKF. The system parameters are modeled as a Gauss-Markov process

and are estimated using compressed sensing based KF. These parameters pro-

vide insight into the regulatory relations among the genes. The Cramer-Rao

lower bound of the parameter estimates is calculated for the system model and

used as a benchmark to assess the estimation accuracy. The proposed algo-

rithm is evaluated rigorously using synthetic data in different scenarios which

include different number of genes and varying number of sample points. In
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addition, the algorithm is tested on the DREAM4 in silico data sets as well

as the in vivo data sets from IRMA network. The proposed algorithm shows

superior performance in terms of accuracy, robustness and scalability.
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2. A CLOSED-FORM SOLUTION FOR TRANSCRIPTION FACTOR

ACTIVITY ESTIMATION USING NETWORK COMPONENT ANALYSIS*

2.1 Introduction

A convex optimization based non-iterative NCA method: NINCA was proposed

in [24] to estimate the signals with higher consistency even in the presence of high

correlation. However, this algorithm estimates the connectivity matrix A by resort-

ing to a costly optimization routine, and the resulting high computational complexity

may limit its usefulness for large data sets encountered in practice. In order to al-

leviate the computational load, this section presents a closed-form solution to the

optimization problem, herein referred to as Closed-Form NINCA (CFNICA), exhibit-

ing a significantly reduced complexity. Simulations are performed over synthetic as

well as real data to test the performance of the proposed CFNICA solution. It is

observed that the CFNICA solution for the estimation of connectivity matrix A

presents the same superior estimation performance as that offered by NINCA and

leads to a significant reduction in computational complexity.

2.2 CFNINCA: NINCA with Closed Form Solutions

CFNINCA is a two step algorithm which first estimates the matrix A and once

it is available, the problem of estimating S is reduced to a simple least-squares

algorithm. The following subsections explain the estimation of the two matrices.

*Part of this section is reprinted with persmission from “ROBNCA: Robust Network Compo-
nent Analysis for Recovering Transcription Factor Activities,” Amina Noor, Aitzaz Ahmad, Erchin
Serpedin, Mohamed Nounou and Hazem Nounou, Bioinformatics, 29(19):2410-2418, Aug 2013.
Copyright 2013 by Oxford University Press.
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2.2.1 Estimating Connectivity Matrix A

In order to estimate A, the signal and noise subspaces are separated from Y .

Rewriting (1.6) in the form of columns as

yk = Ask + γk k = 1, 2, ..., K , (2.1)

where γk denotes the kth measurement noise vector consisting of i.i.d Gaussian ran-

dom variables with zero mean and variance σ2
γ. Let Rs denote the autocorrelation of

the TFA vector sk. Then the autocorrelation of the microarray data can be written

as

Ry = E{yky
T
k } = ARsA

T + σ2
γI . (2.2)

This autocorrelation matrix Ry is factorized using eigenvalue decomposition to rep-

resent it in terms of its eigenvalues and eigenvectors as

Ry = U (Λ+ σ2
γI)U

T , (2.3)

where U = [Us U0] is the unitary matrix consisting of eigenvectors of Ry, and

Λ denotes a diagonal matrix with eigenvalues of Ry as the diagonal entries. The

matrices Us and U0 denote the eigenvectors spanning the signal and noise subspaces,

respectively, and are orthogonal to each other by virtue of principle of subspace

separation [10,24]. Using the NCA criteria, it follows that

UT
0 ARsA

T = 0 ⇒ UT
0 A = 0 , (2.4)
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which can be expressed column wise as

UT
0 am = 0 , m = 1, ...,M . (2.5)

Any A that lies in the signal subspace will satisfy (2.4). However, NCA makes

use of the prior information about the connectivity matrix A. Suppose that the

set of indices where the entries of the connectivity matrix are known to be zero is

denoted by I, then it was shown in [24], that the solution to the following constrained

subspace problem is unique up to a scale ambiguity

UT
0 A = 0, A(I) = 0 . (2.6)

Let Lm denote the number of known zeros in a column of am, then since the rows

of Y and A can be interchanged, each column of A can be rearranged as

am =

 ām

0Lm×1

 . (2.7)

It was shown in [24], that under NCA conditions (1) and (2), the subspace constrained

solution to UT
0 am = 0 is unique subject to am given in (2.7). Moreover, the solution

can be obtained by estimating the columns individually rather than the complete

matrix, thereby reducing the complexity. In order to avoid the trivial solution am =

0, a normalization constant is also added in the optimization problem.

This subspace approach requires the ensemble average of the correlation matrix

Ry which is difficult to obtain because of limited gene expression data. Therefore,

the signal and noise subspaces are determined by factorizing the matrix Y using
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SVD as

Y = UΣV T ,

where U can be partitioned as previously, into the signal and noise subspaces. Then,

the constrained optimization problem is given by [24]

min
am

||UT
0 am||p s.t. am =

 ām

0Lm×1

 , 1T .am = 1 , (2.8)

where p ∈ (1, 2,∞) denotes a parameter used to choose the norm.

Remark 1. The optimization problem in (2.8) was solved using convex optimization

algorithms for p = 1, 2 in [24]. However, for real data sets, the vector am is usually

large and its optimization entails significant computational complexity. Hence, a

closed form solution is desired to improve the complexity and efficiency of the subspace

based approach.

In this correspondence, we derive a closed form solution for p = 2 using convex

optimization techniques. Define an Lm ×N matrix Cm such that

Cm =

[
0Lm×(N−Lm) ILm

]
. (2.9)

Using the above definition, the optimization problem (2.8) can be equivalently writ-

ten as

âm = argmin
am

||UT
0 am||22

such that Cmam = 0, 1Tam = 1 (2.10)
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Define now the substitute vector ām via the following equation:

am = Dmām , (2.11)

where the N ×Lm matrix Dm is constructed such that it lies in the null space of the

matrix Cm, i.e., CmDm = 0. The matrix Dm is, therefore, given by

Dm =

 I(N−Lm)

0Lm×(N−Lm)

 . (2.12)

Upon substituting am from (2.11) in (2.10), we note that the first constraint is always

satisfied by virtue of the construction of matrix Dm. The resulting optimization

problem can be rewritten as

ˆ̄am = argmin
ām

1

2
āT
mD

T
mQDmām

such that 1T ām = 1, (2.13)

where Q = U0U
T
0 . The Lagrangian function can be expressed as

L =
1

2
āT
mD

T
mQDmām − µ

(
1T ā− 1

)
. (2.14)

The Karush-Kuhn-Tucker (KKT) conditions can be written as

DT
mQDmām − µ1 = 0

1T ām = 1. (2.15)

It can be shown that the KKT conditions are necessary and sufficient [4]. It follows
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from the first condition that

ām = µ
(
DT

mQDm

)−1
1 (2.16)

where the matrix DT
mQDm is indeed invertible since Dm has full column rank and

Q is a product of unitary matrices. Substituting (2.16) into (2.15), the Lagrange

multiplier can be expressed as

µ =
1

1T (DT
mQDm)

−1 1
. (2.17)

The symmetric invertible matrix Q is partitioned as follows

Q =

Q11 Q12

Q21 Q22

 ,

where the invertible matrix Q11 stands for the upper left-corner (N−Lm)×(N−Lm)

submatrix of Q. From the structure of Dm, the matrix DT
nQDm can be reduced to

DT
mQDm

=

[
I(N−Lm) 0(N−Lm)×Lm

]Q11 Q12

Q21 Q22


 I(N−Lm)

0Lm×(N−Lm)


= Q11 . (2.18)

The constrained solution for ām is therefore given by

ām =
Q−1

11 1

1TQ−1
11 1

. (2.19)
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Remark 2. The closed form solution (2.19) only requires the inversion of the (N −

Lm)×(N−Lm) submatrix Q11, which is typically a much smaller matrix, since there

are a few non-zero entries in am. The matrix inversion requires O ((N − Lm))
3 op-

erations. The numerator in (2.19) requires O ((N − Lm))
2 operations. The denom-

inator requires O ((N − Lm))
2 +O ((N − Lm)) operations. Hence, the complexity of

the closed form solution is approximately O ((N − Lm))
3 for large (N − Lm).

2.2.2 Estimating the TFA Matrix S

Once an estimate Â is available, S can now be estimated using a least squares

criterion. The optimization problem can be expressed as

S = arg min
S

∥X − ÂS∥2F . (2.20)

By setting the derivative of (4.4) equal to zero and solving for S, the estimate is

obtained as

S =
(
ÂT Â

)−1

ÂTX . (2.21)

Since closed form solutions are available for the estimates of both A and S, CFN-

INCA exhibits much lower computational complexity than NINCA.

2.3 Simulation Results

In this section, the performance of the proposed algorithm is evaluated in com-

parison with the existing state-of-the-art algorithms ALS [34], FastNCA [10] and

NINCA [24] for synthetic as well as real yeast cell cycle data set.

2.3.1 Synthetic and Hemoglobin Test Data

The algorithm is first investigated for the Hemoglobin test data set used by the

original NCA paper [34] and modified in [24], which assumed spectroscopy data ob-
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Figure 2.1: Normalized mean square error for the estimation of A and S using
CFNINCA (green), NINCA (blue), FastNCA (red), and ALS (magenta).

tained by mixing Hemoglobin solutions. This data set is used because the underlying

network structure follows the gene network very closely. Moreover, knowledge of the

original source solutions aids in the performance evaluation of the algorithms. The

data set consists of M = 3 source solutions which result into N = 7 mixtures where

the spectra are measured for K = 321 data points. The presence of a source solution

in the mixture solutions indicates the presence of the respective connection in the

network connectivity matrix A.

This data set is used to evaluate the estimation performance of the algorithms

with mean square error (MSE) as the fidelity criterion for A and S matrices. Exper-

iments are performed for low and high correlated data over varying signal-to-noise

ratio (SNR), and the Normalized MSEs are depicted in Fig. 2.1. The noise is as-

sumed to be additive white Gaussian (AWGN). For the estimation of A, CFNINCA,

NINCA and FastNCA perform comparably and provide lower NMSE than the ALS

algorithm. CFNINCA and NINCA yield the lowest NMSE for the estimation of S
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as well, however, the performance of FastNCA and ALS deteriorates significantly.

For the estimation of A, the MSE decreases with the increase in SNR for all the

algorithms, however, FastNCA and ALS exhibit an error floor for estimation of S.

The better performance of these algorithms in estimating A can be attributed to the

availability of prior information.

2.3.2 Subnetwork Analysis

Subnetwork analysis is performed here to assess the consistency of the algorithms,

where the data set is divided into four overlapping subsets similar to [74], [10], and

[24]. The core idea behind this analysis is to divide the set of transcription factors into

a number of smaller subsets, which are not mutually disjoint, where the intersection

of these subsets contain the TFs of interest. The subnetworks were constructed to

satisfy the gNCA criteria [63] which require that the number of TFAs M should be

less than the number of sample points K. These sub-networks are used to estimate

the transcription factor activities independent of each other. These TFA estimates

are then compared and a smaller disagreement between these estimates is a measure

of consistency of the algorithm. This indicates that the results obtained are reliable

despite of the presence or absence of certain genes or TFs from the experiment. The

disagreement can be quantified as:

disagreement(i) =
1

K

∑
i

[
max

n
sn,i(k)−min

n
sn,i(k)

]
(2.22)

where s indicates the rows of matrix S, i is the TF index and n is the sub-network

index.
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2.3.3 Results Using S. cerevisiae Cell Cycle Data

This section compares the previously mentioned algorithms in the presence of

Yeast cell cycle data [33] and [60]. The Yeast cell-cycle data set consists of results

from three different synchronization experiments. The first experiment is the syn-

chronization by elutriation which is composed of one cell cycle from 0 to 390 mins.

The data consist of 14 points sampled at 30 min intervals. The second experiment

performs the synchronization by α−factor arrest and contains two cell cycles from

0 to 119 mins. A total of 18 samples are taken every 7 mins. The synchronization

in the third set is the result of cdc15 temperature sensitive mutant with samples

taken every 20 min from 0 to 300 mins. The data from the three experiments are

concatenated to form one large dataset. The Yeast cell cycle study has eleven TFs

of interest [10] which are Ace2, Fkh1, Fkh2, Mbp1, Mcm1, Ndd1, Skn7, Stb1, Swi4,

Swi5, and Swi6. This section compares the performance of the NCA algorithms for

these TFs and the related genes.

Subnetwork analysis is performed here to assess the consistency of the algorithms,

where the data set is divided into four overlapping subsets similar to [74]. Each subset

consists of 40 TFs, while the 11 TFs under consideration are present in all of them.

The number of genes is set to be between 921 to 1247. TFAs are estimated using

the four subsets and the difference in their estimation indicates higher degree of

inconsistency. This enables us to analyze the robustness of the algorithm to minor

modifications in the TFs and genes under consideration [74]. The average of the

TFAs estimated using the four subsets is plotted in Fig. 2.2. The rows depict the

results of the three synchronization experiments. It is observed that CFNINCA and

NINCA result in estimating the same TFA profiles and recovering one, two and three

cycles for the three cycles, respectively. FastNCA yields estimates that are either

25



0 200 400
−0.5

0

0.5
Ace2

el
ut

ra
tio

n

0 50 100
−0.5

0

0.5

α−
fa

ct
or

0 100 200 300
−0.5

0

0.5

cd
c−

15

0 200 400
−0.05

0

0.05
Fkh1

0 50 100
−0.1

0

0.1

0 100 200 300
−0.1

0

0.1

0 200 400
−0.2

0

0.2
Fkh2

0 50 100
−0.2

0

0.2

0 100 200 300
−0.5

0

0.5

0 200 400
−0.5

0

0.5
Mbp1

0 50 100
−0.5

0

0.5

0 100 200 300
−0.5

0

0.5

0 200 400
−0.1

0

0.1
Mcm1

0 50 100
−0.5

0

0.5

0 100 200 300
−0.5

0

0.5

0 200 400
−0.5

0

0.5
Ndd1

0 50 100
−1

0

1

0 100 200 300
−1

0

1

0 200 400
−0.2

0

0.2
Skn7

0 50 100
−0.5

0

0.5

0 100 200 300
−0.2

0

0.2

0 200 400
−0.2

0

0.2
Stb1

0 50 100
−0.1

0

0.1

0 100 200 300
−0.2

0

0.2

0 200 400
−0.5

0

0.5
Swi4

0 50 100
−0.5

0

0.5

0 100 200 300
−0.5

0

0.5

Figure 2.2: TFAs reconstruction: Estimation of 11 TFAs (9 shown) of cell-cycle
regulated yeast TFs. Average values of the TFs are shown for the four subnetworks.
The results offered by CFNINCA (black), FastNCA (red) and NINCA (blue) are
displayed.

opposite to the other algorithms for most TFAs or it does not reveal their periodicity.

In order to further corroborate the results, a consistency comparison study is

performed and the disagreement between the subset estimates is shown in Fig. 2.3.

It is observed that FastNCA yields much larger disagreement, and therefore, it is less

consistent than CFNINCA and NINCA. Therefore, it can be stated that CFNINCA

is able to estimate the TFAs with a higher degree of accuracy and consistency. It
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Figure 2.3: Consistency evaluation for S. cerevisiae data: Average disagreement from
the subsets for TFA estimation.

should also be mentioned that the large size of data set in this experiment prohibits

the use of ALS for comparison due to its high computational complexity.

2.3.4 Robustness to Errors in Prior Information

The prior information about connectivity matrix A helps in obtaining a unique

solution. However, it is important to study the reliability of the results in case of

inaccuracies present in prior knowledge which is a possible scenario [67]. In this

analysis, we consider the missed connections only. Suppose that the prior for con-

nectivity matrix erroneously misses some of the true connections and is denoted by

A∗. Then, the mth column of this matrix is given by

a∗
m =

 ā∗
m

0L∗
m×1

 , (2.23)
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where L∗
m denotes the number of zeros in a∗

m. The constrained optimization solution

can now be stated as

min
a∗
m

||UT
0 a

∗
m||p s.t. a∗

m =

 ā∗
m

0L∗
m×1

 , 1T .a∗
m = 1, (2.24)

Following the same steps as in Section 2.2.1, the solution for this problem is obtained

as

ā∗
m =

Q−1∗
11 1

1TQ−1∗
11 1

, (2.25)

whereQ∗
11 is (N−L∗

m)×(N−L∗
m). Let the error in themth column be em = am−a∗

m.

Then the errors in estimating A and S are calculated as

EA =
M∑

m=1

||em||22 , (2.26)

and

ES = ||S − S∗||2F , (2.27)

respectively. The SNR for this experiment is kept at 30dB. The estimation perfor-

mance for FastNCA, NINCA and CFNINCA is evaluated using the same Hemoglobin

data used in the previous subsection. It is noted in Fig. 2.4, that as the probability of

error in the prior increases, the MSEs of all the algorithms increase for A. However,

NINCA and CFNINCA give much lower MSE than FastNCA for estimation of TFA

matrix S. NINCA and CFNINCA, therefore, show more robustness to imperfect

knowledge of prior. However, CFNINCA offers these advantages at a much lower

computational cost.
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Figure 2.4: Robustness to imperfect prior: Error in the estimation of A and S
matrices with missed connections in prior.

Table 2.1: Average computational time in seconds for S. cerevisiae.

Subset 1 2 3 4

FastNCA 0.2 0.2 0.24 0.2
CFNINCA 6 3 3 6
NINCA 71 30 125 97
ALS Exceeds memory limit

2.3.5 Run Time Comparison

Gene regulatory networks require working with large data sets and therefore a

lower computational time for the algorithms is a very appealing feature. We compare

the average run time for the algorithms discussed previously for the four subsets of

the real data set and the results are given in Table 2.1. These simulations were

carried out using Matlab 7.10.0 on a Windows 7 system with a 1.90 GHz Intel Core

i7 processor. It is observed that CFNINCA is tens of times faster than NINCA.

FastNCA exhibits a clear advantage in terms of lower complexity. However, as
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noted in the previous simulations, FastNCA suffers from poor estimation accuracy

and consistency. The complexity of ALS is known to be prohibitive and is added

here only for comparison. Hence, the CFNINCA algorithm avoids the drawback

of high computational complexity of the NINCA algorithm by providing a closed

form solution to estimate A, while maintaining the same estimation accuracy and

consistency. This makes CFNINCA well suited for TFA estimation using the large

data sets encountered in practice.

2.4 Summary

This section presented a closed form solution to a non-iterative network com-

ponent analysis algorithm which uses convex optimization techniques to estimate

the control strength matrix [24]. The NINCA algorithm exhibits superior consis-

tency in terms of TFA estimation but suffers from high computational complexity.

The proposed closed form CFNINCA solution considerably speeds up the algorithm

while offering comparable estimation accuracy and consistency to NINCA. The per-

formance of CFNINCA is compared to NINCA, FastNCA, and ALS over synthetic

data and yeast cell cycle data. The conducted simulations confirm CFNINCA’s ad-

vantages in terms of lower run time, robustness to imperfect prior and comparable or

better estimation accuracy with respect to the existing state-of-the-art algorithms.
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3. SPARSE NETWORK COMPONENT ANALYSIS FOR RECOVERING

TRANSCRIPTION FACTOR ACTIVITIES WITH INCOMPLETE PRIOR

INFORMATION

3.1 Introduction

A crucial underlying assumption of all the NCA algorithms is the availability of

complete prior knowledge of the connectivity matrix. Due to potential errors intro-

duced during the measurement process, Chip-chip data are also highly dependent on

the environmental factors [5], and therefore, may not provide the complete informa-

tion about the TF-gene interactions [84]. The algorithms proposed thus far assume

that the zero indices, signifying the absence of a connection, are completely known

and the rest of the indices are considered non-zero. However, it is possible that due to

the incomplete information, the number of zeros is larger than those provided by the

Chip-chip data, as it is known that the TRNs are highly sparse [41, 48]. Therefore,

it is imperative to incorporate the incompleteness of the prior information about

the connectivity matrix in deriving the NCA solution. It is this very avenue that is

investigated in this section.

3.2 Main Contributions

The main contributions in this section can be summarized as follows:

1. We propose sparse network component analysis (sparseNCA), which incorpo-

rates the effect of incomplete prior information about the connectivity matrix

by introducing additional sparsity constraints in the underlying NCA problem.

2. Sparsity is enforced by making use of an ℓ1 norm for the estimation of A

matrix. In order to derive a closed form expression, an iterative re-weighted
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ℓ2 minimization algorithm is used to estimate the sparse connectivity matrix

which is hundreds of times faster than the ℓ1 norm based solution.

3. SparseNCA algorithm is compared with the state-of-the-art algorithms, and it

is shown to outperform NINCA [24] and FastNCA [10] for Hemoglobin syn-

thetic and test data in terms of accuracy and consistency for varying noise,

concentration of outliers, correlation of data and amount of prior information.

Simulations are also performed with Escherichia Coli data and it is observed

that sparseNCA recovers the TFAs with a high degree of accuracy and relia-

bility.

3.3 SparseNCA

SparseNCA is a two step algorithm which first estimates the connectivity matrix

A by making use of a subspace based method [24] while incorporating the effect

of incomplete prior information by imposing a sparsity constraint. A closed form

solution is derived which considerably reduces the computational complexity. Once

the matrixA is available, the TFA matrix S is estimated by minimizing least squares.

3.3.1 Estimating Connectivity Matrix A

It is clear from the above formulation that any solution to the aforementioned

constrained optimization problem will fundamentally depend on the prior informa-

tion about the connectivity matrix. We now consider the scenario where this prior

information about the zeros may be incomplete due to errors in the measurement

process, and there may be additional zeros in the connectivity matrix not known

to us [84]. Towards this end, it is imperative to impose an additional constraint

on the vector am which exploits sparsity. This is achieved by solving the following
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combinatorial optimization problem:

min
am

||UT
0 am||22 + λ||ām||0 s.t. am =

 ām

0Lm×1

 , 1T .am = 1 .

where ||.||0 denotes the number of non-zero elements in ām and λ > 0 is the regular-

ization parameter. However, it is commonly known that this problem is non-convex

and requires a combinatorial search which renders it computationally prohibitive [64].

Therefore, the following alternative problem is commonly solved:

min
am

||UT
0 am||22 + λ||ām||1 s.t. am =

 ām

0Lm×1

 , 1T .am = 1 . (3.1)

where ||ām||1 =
∑N−Lm

i=1 |āmi| denotes the ℓ1 norm of ām.

Remark 3. While the introduction of an ℓ1 norm promotes sparsity, a closed form

solution of (3.1) does not exist, and optimization algorithms, e.g., interior point

methods must be used. Since gene regulatory networks usually deal with high dimen-

sional data and this computation is typically costly, a simpler algorithm is required.

3.3.2 Iterative Re-weighted ℓ2 Minimization for SparseNCA

Instead of constraining the vector using ℓ1 norm, several alternatives have been

proposed which provide a more efficient solution than the interior point method

needed to solve (3.1) [70]. We employ an iterative re-weighted least squares method

[11, 70] which iteratively solves the following optimization problem at the (j + 1)th
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iteration:

am(j + 1) → min
am

||UT
0 am||22 + λ

∑
i

wi(j)ā
2
mi

s.t. am =

 ām

0Lm×1

 , 1T .am = 1 , (3.2)

where wi, i = 1, ..., N − Lm are positive weights. The weights in (3.2) are updated

as [11]

wi(j + 1) =
[(
ā2mi(j + 1) + ϵ(j + 1)

)]−1
. (3.3)

where ϵ(j + 1) ∈ (0, 1) is a regularizing parameter. Initially a large value is selected

for ϵ(j + 1) which is then decreased upon every iteration. It was observed in [11]

that the algorithm converges to a unique solution as ϵ(j + 1) → 0.

In the sequel, we derive a closed form solution to (3.2) by employing convex

optimization methods. We construct an Lm ×N matrix Gm such that

Gm =

[
0Lm×(N−Lm) ILm

]
. (3.4)

Then the optimization problem (3.2) can be equivalently expressed as

am(j + 1) = argmin
am

||UT
0 am||22 + λ

∑
i

wi(j)ā
2
mi

such that Gmam = 0, 1Tam = 1 . (3.5)

We further construct an N×Lm matrix Hm which lies in the null space of Gm, given
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by

Hm =

 I(N−Lm)

0Lm×(N−Lm)

 . (3.6)

Defining the substitution

am = Hmām , (3.7)

and Q = U0U
T
0 , then the problem (3.5) can be expressed as

ˆ̄am(j + 1) = argmin
ām

1

2
āT
mH

T
mQHmām + λ

1

2
āT
mWm(j)ām

such that 1T ām = 1 , (3.8)

whereWm(j) is a diagonal matrix for jth iteration with the vector w , [w1, . . . , wN−Lm ]

on the diagonal. The Lagrange dual function for (3.8) can be written as

L(ām, µ) =
1

2
āT
mH

T
mQHmām + λ

1

2
āT
mWm(j)ām + µ

(
1T ā− 1

)
,

where µ ≥ 0 is the Lagrange multiplier. The Karush-Kuhn Tucker (KKT) conditions

can be expressed as [4]

HT
mQHmām + λWm(j)ām + µ1 = 0 (3.9)

1T ām = 1. (3.10)

The KKT conditions can be easily shown to be necessary and sufficient for the

optimization problem (3.8) due to the presence of equality constraints and a convex

objective function. Solving (3.9), it follows that

ām = −µ
(
HT

mQHm + λWm(j)
)−1

1 (3.11)

35



Plugging (3.11) in (3.10), the Lagrange multiplier µ can be obtained as

µ = − 1

1T (HT
mQHm)

−1 1
. (3.12)

Substituting (3.12) back in (3.11), the solution for ām can now be expressed as

ām(j + 1) =
(HT

mQHm + λWm(j))
−11

1T (HT
mQHm + λWm(j))−11

. (3.13)

The special structure of the matrix Hm can be used to further simplify the compu-

tation of HT
mQHm as follows:

HT
mQHm

=

[
I(N−Lm) 0(N−Lm)×Lm

]Q11 Q12

Q21 Q22


 I(N−Lm)

0Lm×(N−Lm)


= Q11 . (3.14)

The constrained solution for ām at the (j + 1)th iteration is therefore given by

ām(j + 1) =
(Q11 + λWm(j))

−11

1T (Q11 + λWm(j))−11
. (3.15)

The iterative process is continued until the difference between the estimated value

and the estimate at the previous iteration falls below a threshold. The connectivity

matrix is hence estimated column wise and is used for estimating the TFA matrix

S.

Remark 4. The closed form solution (3.15) requires the addition of (N − Lm) ×

(N −Lm) matrices Q11 and λW and inversion of the (N −Lm)× (N −Lm) matrix
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(Q11 + λW ), which is typically a much smaller matrix, since there are a few non-

zero entries in am. The matrix addition and inversion requires O (N − Lm)
2 nd

O (N − Lm)
3 operations, respectively. The numerator in (5.23) requires O (N − Lm)

2

operations. The denominator requires O (N − Lm)
2+O (N − Lm) operations. Hence,

the complexity of the closed form solution is approximately O (N − Lm)
3 for large

(N − Lm).

3.3.3 Estimating the TFA Matrix S

With the estimate of A in hand, the TFA matrix S is estimated by minimizing

the least squares and the optimization problem is given by

S = arg min
S

∥Y −AS∥2F . (3.16)

The solution is simply obtained by taking the derivative of (3.16) w.r.t S and equat-

ing it to zero yielding

S =
(
ATA

)−1
ATY , (3.17)

where the matrix ATA is indeed invertible by virtue of the linear independence of

columns of A (NCA criterion 1).

The sparseNCA algorithm is summarized in Algorithm 1.

3.4 Results and Discussion

This section evaluates the performance of the sparseNCA algorithm in compar-

ison with FastNCA [10] and NINCA [24]. The sparseNCA algorithm has been im-

plemented in MATLAB. The sparseNCA software is available at http://people.

tamu.edu/~amina/sparsenca. The source codes for FastNCA and NINCA algo-

rithms are downloaded from http://www.seas.ucla.edu/~liaoj/download.htm

and http://www.ece.ucdavis.edu/~jacklin/NCA.
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Algorithm 1 sparseNCA

1: Input: Y , Initialize: A(0) = I.
2: for n = 1, 2, ..., N do
3: for j = 1, 2, ..., do
4: Update ān(j) using (5.23).
5: Update weight vector using (3.3).
6: end for
7: end for
8: Form updated matrix A = [aT

1 aT
2 . . . aT

N ]
T .

9: Update S =
(
ATA

)−1
ATY .

10: return

3.4.1 Synthetic and Hemoglobin Test Data

The performance of sparseNCA algorithm is first tested using the synthetic data

downloaded from http://www.ece.ucdavis.edu/~jacklin/NCA which was also de-

scribed in the previous section. This data was obtained by mixing M = 3 pure

components of Hemoglobin solutions to form N = 7 different mixtures. The con-

nectivity matrix in this case denotes the presence or absence of a particular solution

in the mixtures. The absorption spectra consist of K = 321 points which are mea-

sured for wavelengths in the range of 380-700 nm. This dataset has been widely

used to assess the performance of NCA algorithms including the original work on

NCA [34], FastNCA [10], NINCA [24] and ROBNCA [45]. The system model for

the spectroscopy data follows the gene regulatory network model very closely and

is captured by the Beer-Lambert Law: Abs = Cϵ where Abs gives the absorbance

spectra, C is the connectivity matrix and ϵ denotes the pure spectra. The prior

knowledge of the pure Hemoglobin solutions aids us in evaluating the accuracy of

the algorithms.

The robustness of the algorithms is assessed in case of incomplete prior knowledge

about the zeros in the connectivity matrix. In addition, the performance is evaluated
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for varying degrees of correlation in the signals and amounts of outliers present in the

data. The outliers are artificially added to the Hemoglobin using the Bernoulli model

while assuming a small probability of occurrence as they are expected to be sparse.

The noise is assumed to be Gaussian for all the simulations and the normalized mean

square error (NMSE) is used as the fidelity criterion for estimating the connectivity

matrix, and it is expressed as NMSE =
||A−Â||2F
||A||2F

. The results are averaged over 100

iterations. These scenarios provide a very thorough analysis of the performance of

the algorithms.

3.4.1.1 Impact of Incomplete Prior Information

First, a comparison is performed in case of incomplete prior information about

the connectivity matrix A. While keeping the same matrix structure, simulations are

performed by assuming ζ = {100, 65, 35}, where ζ denotes the percentage information

about the zeros. The results are depicted in Figure 3.1 and 3.2 for different values of

ζ. The figures from left to right are plotted for decreasing prior information about

the zeros and signal to noise ratio (SNR) is varied from 0 to 20 dBs. For all the

simulations, the regularizer parameter ϵ is initialized to 1 and then decreased by

a factor of 10 at each iteration following the heuristic approach used in [11]. It

is noted from Figures 3.1a and 3.2a that when the prior information is complete,

NINCA and sparseNCA give similar performance. However, as the prior information

is decreased to 65% and 35%, the performance of NINCA is adversely impacted.

On the other hand, sparseNCA results in a much lower NMSE than NINCA due

to its incorporation of the incomplete information about the connectivity matrix.

FastNCA, however, gives a higher NMSE for all these scenarios. Moreover, the

absence of complete prior information makes the estimation by NINCA and FastNCA

quite unreliable. It is also observed that the poor estimation of A for both NINCA
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and FastNCA severely degrades the estimation of S, while sparseNCA consistently

outperforms both FastNCA and NINCA in estimating the TFA matrix S. Hence,

sparseNCA has clear advantages over its predecessors when the prior information

about the connectivity matrix is incomplete.

3.4.1.2 Impact of Correlation

The simulations are also carried out on the same modified Hemoglobin dataset

with low and high correlation. The estimation using low correlation is shown in

Figure 3.1 and 3.2, while the results in case of high correlation data are relegated

to Figure 1 in Supplementary material. The SNR is varied from 0dB to 20dB for

this part of the simulation as well. FastNCA and NINCA are highly inconsistent

for the estimation of A and S matrices, respectively, and increasing the SNR does

not increase the estimation accuracy. On the other hand, the NMSE for SparseNCA

decreases with the increase in SNR. Although, NINCA performs somewhat better

than FastNCA, however, the two algorithms perform very poorly when the prior

information is incomplete for both low and high correlation datasets compared to the

proposed sparseNCA algorithm. A similar trend in the performance of the algorithms

is also observed in the case of highly correlated datasets.

3.4.1.3 Impact of Outliers

It is important to test the algorithms in the presence of outliers because real

data consist of outlying measurements as well [45]. The results for 0.1% outliers

are depicted in Figures 3.1a, 3.1b, and 3.1c. Increasing the outliers to 3% show the

sensitivity of FastNCA and NINCA to these inaccuracies as shown in Figures 3.2a,

3.2b, and 3.2c. In general, the algorithms estimate the A matrix better than S. The

reason for this is that some of the prior information for A is available. As the amount

of outliers increases, estimation accuracy for sparseNCA decreases for both A and
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Figure 3.1: Impact of incomplete prior and outliers: Normalized mean square error
(NMSE) for FastNCA, NINCA and sparseNCA for different datasets with level of
outliers: 0.001 against varying signal to noise ratio (SNR) dB for low correlation
data.
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Figure 3.2: Impact of incomplete prior and outliers: Normalized mean square error
(NMSE) for FastNCA, NINCA and sparseNCA for different datasets with level of
outliers: 0.03 against varying signal to noise ratio (SNR) dB for low correlation data.
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S matrices, however, the NMSE decreases with the increase in SNR. The other two

algorithms, however, do not show consistent behavior and increase in SNR does not

help in improving their estimation performance.

3.4.1.4 Comparison between ℓ1 Norm Solution and sparseNCA Algorithm

The results for estimation of connectivity matrixA using ℓ1 norm and sparseNCA

are shown in Figure 3.3. The simulations are performed for low correlated data by

varying the SNR from 0dB to 25dB. The amount of prior information is set to

ζ = 100, 65, 35. It is noted that sparseNCA performs as good as or better than

ℓ1 norm solution when the available prior information is 100% and 65%. When

the available prior information drops to 35%, there is a small gap between the two

algorithms. Therefore, sparseNCA is able to recover the sparsity quite accurately at

a much lower computational complexity as will be shown in the next subsection.

By performing these simulations on different degrees of correlation and amount

of outliers in the data, it is noted that sparseNCA yields good estimation accuracy if

some prior knowledge about the connectivity matrix is missing. Since the transcrip-

tional networks are expected to be sparse, a large number of entries would be zero.

Due to inaccuracies in the measurement process, knowledge of these entries may be

absent. It can therefore be stated from these simulation results, that sparseNCA

yields superior performance than FastNCA and NINCA in case of varying correla-

tion, different degrees of outliers and amounts of available prior information.

3.4.2 Results for E. coli Data

SparseNCA algorithm is now used to estimate TFAs for E. coli data [28] and the

estimates are compared with those obtained from FastNCA and NINCA. In addi-

tion, subnetwork analysis is performed to ascertain the reliability of the estimates.

The dataset for this experiment is downloaded from http://www.seas.ucla.edu/
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Figure 3.3: Comparison between the ℓ1 norm solution and the sparseNCA algorithm:
Estimation of matrix A for a varying amount of prior information.

~liaoj/download.htm.

The gene expression data is measured during the transition of sole carbon source

from glucose to acetate and a total of 296 genes were found to be affected during

this process. The connectivity matrix A was tested to satisfy the NCA criteria

and subsequently, a set of 100 genes and 16 TFs were selected. The TFs consist of

ArcA, CRP, CysB, FadR, Cra, GatR, IcIR, LeuO, Lrp, NarL, PhoB, PurR, RPoE,

RpoS, TrpR and TyrR. The gene expression data consists of 25 time points which

contain repeated measurements as well. The consistency in the TFA estimation

can be measured using subnetwork analysis which has been employed previously as

well [10, 45, 74]. Subnetwork analysis is based on dividing the dataset into smaller

networks, each containing the TFs of interest. TFAs are then estimated using these

subnetworks and a smaller disagreement among the estimates indicates a higher

consistency of the algorithm. For the E. coli data, the data is divided into four

subnetworks containing 81 to 88 genes and 20 TFs.
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Figure 3.4: TFA estimation for E. coli data using FastNCA (black), NINCA
(blue), and sparseNCA (green) for the sixteen TFAs of interest. The estimation
by sparseNCA and NINCA are in agreement with each other.
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Figure 3.5: Consistency evaluation: Standard deviation in the TFA estimation using
sparseNCA. The average values of the four subnetworks formed during subnetwork
analysis are shown.
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Figure 3.6: Consistency evaluation: Disagreement in the TFA estimation using Fast-
NCA, NINCA, and sparseNCA.

The average of the four subnetworks is plotted in Figure 3.4 and the estimates

from FastNCA and NINCA are also shown. It is observed that the estimates of

sparseNCA agree with NINCA for all the TFAs. Moreover, they also agree with

those reported in [28] except for a few TFAs. In particular, the estimate for CRP

has been validated by measuring it experimentally in [28] and sparseNCA provides

the same result. The disagreement in the TFA estimation for the three algorithms

is calculated using (2.22) and the results are plotted in Figure 3.6. Moreover, the

standard deviation observed in estimating the TFAs is also plotted in Figure 3.5 for

all the algorithms and it can be seen that sparseNCA results in a very low variability

in the estimates. It can therefore be concluded that sparseNCA estimates the TFA

with a high degree of reliability and consistency.

SparseNCA is also applied to the yeast cell-cycle data [33] discussed in Section 2

and compared with NINCA and FastNCA. Subnetwork analysis is performed as ex-

plained previously and the average of TFA estimates are shown in Figure B.1. These
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Table 3.1: Average computational time for various methods in seconds for E. coli
dataset.

Subset 1 2 3 4

FastNCA 0.014 0.007 0.007 0.008
ℓ1 norm 5.8 5.2 5.01 5.2
sparseNCA 0.05 0.04 0.03 0.03
NI-NCA LP 0.93 0.76 0.73 0.83
NI-NCA QP 0.59 0.13 0.13 0.13

simulations further validate the high estimation accuracy of sparseNCA compared

to its predecessors, FastNCA and NINCA.

3.4.2.1 Computational Complexity Comparison

Gene regulatory network inference often deals with high dimensional biological

datasets. Therefore, an important feature of the network inference algorithms is low

computational complexity while sacrificing little on estimation accuracy. In order to

compare the computational complexity of sparseNCA with FastNCA and NINCA,

the run time complexity of the algorithms is calculated for the four subnetworks of

E. coli data. Matlab 7.10.0 was used to perform these simulations on a Windows 7

system with a 1.90 GHz Intel Core i7 processor and the run times are given in Table

3.1. It is noted that the solution with ℓ1 has a very high run time but the closed form

solution for sparseNCA is many times faster. The sparseNCA is tens of times faster

than NINCA and is comparable to FastNCA which has the lowest computational

complexity among the existing NCA algorithms.

Therefore, it can be concluded from these experiments on synthetic and real

data that sparseNCA not only offers higher estimation accuracy, particularly in case

of incomplete prior information, and yields higher consistency but provides these

benefits at a very low computational cost.
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3.5 Summary

Transcriptional regulatory networks (TRNs) are known to be sparse and the in-

formation about the zeros in the connectivity matrix, which signify the absence of

connections among genes, may not be completely available. The algorithms proposed

thus far crucially rely on the completeness of this information. In order to account for

incompleteness in the prior information, this section proposes sparseNCA algorithm

which imposes a sparsity constraint on the connectivity matrix using ℓ1 norm. Addi-

tionally, an iterative re-weighted ℓ2 minimization algorithm is proposed for NCA by

deriving a closed form solution for estimation of the connectivity matrixA, which not

only promotes sparsity but also significantly reduces the computational complexity.

The proposed algorithm is compared with the existing algorithms including NINCA

and FastNCA for synthetic data using normalized mean square error (NMSE) as the

fidelity criterion. The simulations are performed for varying signal to noise ratio

(SNR), correlation of data, concentration of outliers and amount of prior informa-

tion available, and sparseNCA is shown to outperform the current state-of-the-art

algorithms. Experiments on E. coli data corroborate the superior performance of

sparseNCA in terms of higher consistency and estimation accuracy. These benefits

make sparseNCA well suited for the inference of gene regulatory networks.
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4. ROBNCA: ROBUST NETWORK COMPONENT ANALYSIS FOR

RECOVERING TRANSCRIPTION FACTOR ACTIVITIES*

4.1 Introduction

It is commonly known that the microarray data are very noisy and are cor-

rupted with outliers because of erroneous measurements and/or abnormal response

of genes, and robust algorithms are required for gene network inference [14]. The

decomposition techniques used to derive several NCA algorithms including FastNCA

and NINCA are susceptible even to the presence of a small amount of outliers [39]

and their performance is expected to deteriorate significantly when the data points

are corrupted by outliers. Therefore, it is imperative to develop an NCA algorithm

which has an inherent ability to mitigate the effect of outliers, and also entails low

computational costs and provides good consistency and accuracy. It is precisely this

avenue which is the focus of this section.

4.2 Main Contributions

The main contributions in this section can be summarized as follows:

1. A novel algorithm, ROBust Network Component Analysis (ROBNCA) [46], is

proposed which has the inherent ability to counteract the presence of outliers

in the data Y by explicitly modeling the outliers as an additional sparse ma-

trix. The iterative algorithm estimates each of the parameters efficiently at

each iteration, and delivers superior consistency and greater accuracy for TFA

estimation.

*Reprinted with permission from “ROBNCA: Robust Network Component Analysis for Recov-
ering Transcription Factor Activities,” Amina Noor, Aitzaz Ahmad, Erchin Serpedin, Mohamed
Nounou and Hazem Nounou, 2013, Bioinformatics, 29(19):2410-2418, Aug 2013., Copyright 2013
by Oxford University Press.
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2. A particularly attractive feature of the ROBNCA algorithm is the derivation of

a closed form solution for the estimation of the connectivity matrix A, a major

source of high computational complexity in contemporary algorithms. In order

to further lower the computational burden, a still faster closed form solution

is derived that requires matrix inversion of much smaller size. The resulting

algorithm is comparable to FastNCA in terms of computational complexity,

and is hundreds of times faster than NINCA.

3. The performance of ROBNCA is tested on Hemoglobin test data from [24] for

both low and highly correlated source signals. ROBNCA is seen to outper-

form the state-of-the-art algorithms for estimating both A and S in terms of

mean square error (MSE). In addition, ROBNCA is applied to yeast cell cycle

data [33] and E. coli data [28] and by plotting the standard deviation of esti-

mates, it is observed that ROBNCA offers better consistency than FastNCA

and NINCA.

4.3 NCA with Outliers

Most of the contemporary algorithms have studied the gene network construc-

tion problem using NCA with Gaussian noise models. However, inaccuracies in

measurement procedures and abnormal gene responses often render heavier tails to

the gene expression data, and Gaussian noise models may no longer be a natural fit

in these cases. The decomposition techniques employed in the available algorithms

are highly sensitive to the presence of outliers, i.e., the samples that do not conform

to the Gaussian noise model, and their estimation capabilities are extremely suscep-

tible to outliers. As a consequence, the gene network inference becomes unreliable for

practical purposes. Therefore, we focus on deriving computationally efficient NCA

algorithms which are robust to the presence of outliers.
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Towards this end, we take the approach of explicitly modeling the outliers as

an additional matrix that corrupts the data points. From (1.6), it follows that the

complete system model that accounts for the presence of outliers as well as noise can

be expressed as

Y = AS +O + Γ , (4.1)

where the matrix O denotes the outliers. The outlier matrix O is a column sparse

matrix since there are typically a few outliers. The joint optimization problem for

the estimation of the three parameters, that also allow for controlling outlier sparsity,

can be formulated as

{
Â, Ŝ, Ô

}
= arg min

A,S,O
∥Y −AS −O∥2F + λ0∥O∥0

such that A(I) = 0 , (4.2)

where the non-convex l0 norm ∥O∥0 denotes the number of nonzero columns in O,

and the extent of sparsity in the columns of O is controlled by the tuning param-

eter λ0. The optimization problem in (4.2) is reminiscent of compressive sampling

techniques based on the l0 norm, and are known to be NP-hard [64]. Therefore,

some relaxation is needed in order to solve the joint optimization problem without

incurring exponentially increasing computational complexity. A viable alternative

is the column-wise l2 sum, i.e., ∥O∥2,c =
∑K

k=1 ∥ok∥2, which is the closest convex

approximation of ∥O∥0 [64]. With this relaxation, the resulting joint optimization

problem can be expressed as

{
Â, Ŝ, Ô

}
= arg min

A,S,O
∥Y −AS −O∥2F + λ2∥O∥2,c

such that A(I) = 0 . (4.3)
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Our goal is to estimate the three parameters A, S and O by solving the optimization

problem (4.3). However, it can be noticed that the optimization problem is not

jointly convex with respect to (w.r.t) {A,S,O}. Therefore, we resort to an iterative

algorithm that alternately optimizes (4.3) w.r.t one parameter at a time.

4.4 ROBNCA Algorithm

The update of each of the parameters, S(j), A(j) and O(j), at an iteration j is

next presented.

4.4.1 Update of the TFA Matrix

At iteration j, the value of the parameter S(j) is updated by minimizing the

objective function (4.3) w.r.t S, while fixing the parameters A and O to their re-

spective values at iteration (j − 1). By defining the matrix X(j) = Y −O(j − 1),

the optimization problem can be written as

S(j) = arg min
S

∥X(j)−A(j − 1)S∥2F . (4.4)

Since the connectivity matrix A(j − 1) has full column rank (by virtue of NCA

criterion 1), the matrix AT (j − 1)A(j − 1) is invertible. Therefore, an estimate of

the TFA matrix S at the jth iteration can be readily expressed as

S(j) =
(
AT (j − 1)A(j − 1)

)−1
AT (j − 1)X(j) . (4.5)

The estimate S(j), so obtained, is used in the upcoming steps to determine A and

O.
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4.4.2 Update of the Connectivity Matrix

The next step in the iterative algorithm is to solve the optimization problem (4.3)

w.r.t the matrix A, while fixing the values of the parameters S and O to S(j) and

O(j − 1), respectively. The resulting optimization problem can be written as

A(j) = arg min
A

∥X(j)−AS(j)∥2F

such that A(I) = 0 . (4.6)

Remark 5. The optimization problem (4.6) was also considered in the original work

on NCA by Liao et. al. [34]. However, a closed form solution was not provided and

the proposed algorithm relied on costly optimization techniques to update the matrix

A. Since this minimization needs to be performed at each iteration until convergence,

the ALS algorithm is known to be extremely slow for large networks, and the required

computational resources may be prohibitive [24]. Hence, it is imperative that a closed

form solution is obtained for the optimization problem in (4.6) so that the algorithm

is faster and efficient.

Without loss of generality, we can consider the transposed system

X̃ = S̃Ã+ Γ̃ , (4.7)

where X̃, S̃, Ã, and Γ̃ denote the transpose of the original matrices, respectively.

The resulting equivalent optimization problem can now be stated as

Ã(j) = arg min
Ã

∥X̃(j)− S̃(j)Ã∥2F

such that Ã(Ĩ) = 0 , (4.8)
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where Ĩ is the set of all indices where the entries of the matrix Ã are known to be

zero. The following theorem presents a closed form solution for the optimization

problem (4.8), herein referred to as ROBNCA 1.

Theorem 1. The solution of (4.8) at the jth iteration is given by

ãn(j) = Q−1(j)
[
w̃n(j)−CT

nΨ
−1(j)CnQ

−1(j)w̃n(j)
]
, (4.9)

where Ψ(j) = CnQ
−1(j)CT

n , w̃n(j) = S̃T (j)x̃n(j), the symmetric matrix Q(j) =

S̃T (j)S̃(j), and ãn and x̃n represent the nth columns of matrices Ã and X̃, respec-

tively. The Ln ×M matrix Cn is a matrix of zeros except Cn(Ĩn) = 1, where Ĩn is

the set of indices where the entries of ãn are zero, and Ln denotes the number of

zero entries in ãn.

Proof. We begin the proof by first noting that the objective function is separable

in terms of the columns of the optimization variable Ã. Using its definition, the

Frobenius norm of an M ×N matrix Z can be written as

∥Z∥2F = Tr
(
ZTZ

)
=

N∑
n=1

∥zn∥2 (4.10)

where zn is the nth column of Z. The nth column of (4.7) can be written as

x̃n = S̃ãn + γ̃n . (4.11)

The objective function in (4.8) can be equivalently expressed as

∥X̃(j)− S̃(j)Ã∥2F =
N∑

n=1

∥x̃n(j)− S̃(j)ãn∥2 . (4.12)
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The constraint Ã(Ĩ) = 0 can be written as a set of n constraints Cnãn = 0 for

n = 1, . . . , N . The Ln × M matrix Cn is constructed such that it consists of all

zeroes except Cn(Ĩn) = 1. For instance, if M = 6, and ãn = [an1 , an2 , 0, an4 , 0, an6 ]
T ,

the 2× 6 matrix Cn consists of all zeroes except Cn(1, 3) = Cn(2, 5) = 1. It can be

easily verified that the matrix Cn so constructed has full row rank.

The optimization problem in (4.8) can now be written as

Ã(j) = arg min
Ã

N∑
n=1

∥x̃n(j)− S̃(j)ãn∥2

such that Cnãn = 0, ∀n = 1, . . . , N . (4.13)

The optimization problem is, therefore, separable in terms of columns of Ã, and can

be equivalently solved by considering one column at a time. This also reduces the

computational complexity of estimating the connectivity matrix Ã. Henceforth, we

will employ convex optimization techniques to derive a closed form solution of the

separable optimization problem. For the nth column, we have

ãn(j) = arg min
ãn

1

2
ãT
nQ(j)ãn − w̃T

n (j)ãn

such that Cnãn = 0 , (4.14)

where the objective function is re-scaled and terms independent of ãn are neglected.

The Lagrangian dual function can be expressed as

L(ãn,µ) =
1

2
ãT
nQ(j)ãn − w̃T

n (j)ãn + µTCnãn .
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The Karush-Kuhn-Tucker (KKT) conditions can be written as [4]

Q(j)ãn − w̃n(j) +CT
nµ = 0 (4.15)

Cnãn = 0 . (4.16)

Lemma 1. The KKT conditions are necessary and sufficient for the optimization

problem (4.14).

Proof. Since the optimization problem (4.14) contains linear equality constraints, the

KKT conditions are necessary for optimality [4]. Let any ã∗
n be a local minimum.

Then, since the KKT conditions are necessary, there exists a Lagrange multiplier µ∗

such that (ã∗
n,µ

∗) is the solution to the system of equations in (4.15) and (4.16). Now

since the objective function is convex, it follows that ã∗
n is also a global minimum [4].

This implies that the KKT conditions are also sufficient for optimality.

Hence, a solution to (4.14) can be obtained by solving the KKT system of equa-

tions. Using (4.15), it follows that

ãn = Q−1(j)
(
w̃(j)−CT

nµ
)
, (4.17)

where the matrix Q(j) is indeed invertible by virtue of the linear independence of

the rows of S (NCA criterion 3). Substituting (4.17) into (4.16), we have

CnQ
−1(j)CT

nµ = CnQ
−1(j)w̃(j) .

Since the matrix Cn has full row rank, the matrix Ψ(j) , CnQ
−1(j)CT

n is invertible.
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The Lagrange multiplier can, therefore, be expressed as

µ = Ψ−1(j)CnQ
−1(j)w̃(j) . (4.18)

Upon substituting (4.18) into (4.17), the solution ãn in Theorem 1 readily follows.

Therefore, using Theorem 1, an estimate of Ã(j) can be efficiently obtained and

this approach results in substantial reduction in computation complexity compared

to the ALS algorithm.

Remark 6. While the aforementioned closed form solution provides a significant

advantage in terms of computational complexity over the ALS algorithm, we note

that the solution requires inverting the matrix Q. For large networks, this can poten-

tially be a large matrix, whose inverse incurs computational load, and may lead to

inaccuracies as well. In the following discussion, we derive a still faster algorithm,

ROBNCA 2, that takes advantage of the special structure of the column vector ãn

and provides added savings over the closed form solution derived in Theorem 1.

We begin by noting that the rows of X̃ and Ã can always be reordered in (4.7).

Hence, without loss of generality, the vector ãn can be partitioned as

ãn =

 ān

0Ln×1

 , (4.19)

where ān ∈ R(M−Ln)×1 is a vector consisting of the non-zero entries in ãn. Construct

an Ln ×M matrix Un such that

Un =

[
0Ln×(M−Ln) ILn

]
. (4.20)
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With the above definition, the optimization problem (4.14) can be equivalently rep-

resented as

ãn(j) = arg min
ãn

1

2
ãT
nQ(j)ãn − w̃T

n (j)ãn

such that Unãn = 0 . (4.21)

Define the substitution

ãn = Vnān , (4.22)

where the M × Ln matrix Vn is constructed such that it lies in the null space of the

matrix Un, i.e., UnVn = 0. The matrix Vn is, therefore, given by

Vn =

 I(M−Ln)

0Ln×(M−Ln)

 . (4.23)

By substituting ãn from (4.22) into (4.21), and noting that the constraint is al-

ways satisfied due to the construction of Vn, we have an unconstrained optimization

problem in the variable ān given by

ān(j) = arg min
ān

1

2
āT
nV

T
N Q(j)VN ān − w̃T

n (j)VN ān . (4.24)

The solution of the aforementioned unconstrained quadratic optimization problem

can be easily obtained as

ān(j) =
(
V T

n Q(j)Vn

)−1
V T

n w̃n(j) , (4.25)

where the matrix V T
n Q(j)Vn is invertible since Vn has full column rank.
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The symmetric invertible matrix Q(j) can be partitioned as

Q(j) =

Q11(j) Q12(j)

Q21(j) Q22(j)

 ,

where the invertible matrix Q11(j) is the upper (M − Ln)× (M − Ln) submatrix of

Q(j). From the structure of Vn, the matrix V T
n Q(j)Vn can be reduced as

V T
n Q(j)Vn

=

[
I(M−Ln) 0(M−Ln)×Ln

]Q11(j) Q12(j)

Q21(j) Q22(j)


 I(M−Ln)

0Ln×(M−Ln)


= Q11(j) . (4.26)

Similarly, by partitioning w̃n(j) as

w̃n(j) =

w̄n(j)

ŵn(j)

 ,

it follows that

V T
n w̃n(j) = w̄n(j) , (4.27)

where w̄n(j) is the upper (M − Ln) × 1 vector of w̃n(j). Collecting all the terms,

the solution ān can now be compactly represented as

ān(j) = Q−1
11 (j)w̄n(j) . (4.28)

Once all columns ãn(j) are determined, the connectivity matrix A(j) can be easily

updated.
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Remark 7. By comparing the closed form solution derived in (4.9) with (4.28), it is

clear that the latter only requires inverting the submatrix Q11(j) of Q(j). Since the

connectivity matrix is usually sparse and the number of non zero entries (M − Ln)

in the nth column is usually very small, inverting the (M − Ln)× (M − Ln) matrix

Q11(j) results in a considerable reduction in computational complexity and ensures

a much faster implementation of the iterative algorithm.

The respective computational times incurred in calculating (4.9) and (4.28) will

be quantified in Section 4.5 to emphasize the usefulness of deriving (4.28).

4.4.3 Update of the Outlier Matrix

The last step in the iterative algorithm pertains to the estimation of the outlier

matrix O by using the values S(j) and A(j) obtained in the preceding steps. It

is straightforward to notice that the optimization problem (4.3) w.r.t O decouples

across the columns and results in K subproblems, each of which being expressed as

follows:

ok(j) = argmin
ok

∥bk(j)− ok∥22 + λ2∥ok∥2 , (4.29)

where bk(j) = yk −A(j)sk(j). The solution to (4.29) is given by [31]

ok(j) =
bk(j)

(
∥bk(j)∥2 − λ2

2

)
+

∥bk(j)∥2
, k = 1, . . . , K (4.30)

where (g)+ , max(0, g). The solution (4.30) is intuitively satisfying since it sets the

outlier ok(j) to zero whenever ∥bk(j)∥2 fails to exceed the threshold λ2/2, where λ2

is the sparsity-controlling parameter. Several approaches have been identified in the

literature for selecting λ2 which depend on any a-priori information available about

the extent of sparsity [17]. If the concentration of outliers is unknown, a typical rule

of thumb is to take λ2 = 0.7 where this value has been determined to provide 95%
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asymptotic efficiency of the estimator [31]. If a rough estimate of the concentration

of outliers is available, (4.29) can be solved for a grid of values and selecting the λ2

giving the expected number of outliers which can be performed efficiently using the

Group-LARS algorithm [76]. It is noted, that the performance of the algorithm is

insensitive to minor variations in the value of the parameter. Since the subproblems

at each iteration have unique minimizers, and the non-differentiable regularization

affects only the outlier matrix O, the convergence of the ROBNCA algorithm is

established using the results in [65].

Proposition 2. As j → ∞, the iterates generated by the ROBNCA algorithm con-

verge to a stationary point of (4.3).

It is important to point out that ROBNCA is significantly different from NINCA

algorithm. NINCA, as the name suggests, is a non-iterative algorithm which uses a

subspace based method for the estimation of the connectivity matrix A using eigen-

decomposition and relies on solving a constrained quadratic optimization problem,

which has high computational cost. On the other hand, in ROBNCA, we propose two

closed form solutions for the estimation of the connectivity matrix A which result

in considerable reduction in computational complexity. The steps of the ROBNCA

algorithm are summarized in Algorithm 2. The iterations of the ROBNCA algorithm

are stopped when the update in the objective function in (4.3) is less than ϵ% of its

value at the previous iteration.

4.5 Results and Discussion

This section investigates the observed performance of ROBNCA, in comparison

with the state-of-the-art algorithms including FastNCA, NINCA, and ALS in terms of

MSE using both synthetic and real data. The efficiency and consistency of ROBNCA

in estimating the TFAs under various scenarios is also illustrated. The data sets for

all of the experiments as well as the MATLAB implementation of FastNCA and
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Algorithm 2 ROBNCA

1: Initialize A(0) = I and O(0) = 0.
2: Set λ2 and ϵ.
3: for j = 1, 2, ..., do

4: Update S(j) =
(
AT (j − 1)A(j − 1)

)−1
AT (j − 1)X(j).

5: for n = 1, 2, ..., N do
6: Update ān(j) = Q−1

11 (j)w̄n(j) using (4.28).
7: end for
8: Form updated matrix A(j) = [ãT

1 (j) ãT
2 (j) . . . ã

T
N(j)]

T .
9: for k = 1, ..., K do

10: Update the outlier column ok(j) =
bk(j)(∥bk(j)∥2−λ2

2 )+
∥bk(j)∥2

11: end for
12: end for
13: return

NINCA are downloaded from http://www.seas.ucla.edu/~liaoj/download.htm

and http://www.ece.ucdavis.edu/~jacklin/NCA, respectively.

4.5.1 Synthetic and Hemoglobin Test Data

First, in order to evaluate the performance of various algorithms, test data from

[34] is used. The spectroscopy data consists of M = 7 hemoglobin solutions formed

by mixing up N = 3 pure hemoglobin components. The connectivity matrix in this

case represents the concentration and presence or absence of each component in the

mixture. In addition, the structure of this matrix is validated to comply with the

NCA criteria. The absorbance spectra are taken for wavelengths in the range of

380nm to 700nm with 1nm increments to get K = 7 observation points which is

defined as Abs = Cϵ [34], where the rows of Abs give the absorbance spectra for

the range of wavelengths, C denotes the connectivity matrix and ϵ gives the spectra

of the pure components. The importance of using this dataset is that this experiment

mimics the gene regulatory network very closely and contains all of its key properties.

Knowledge of the pure spectra helps us to effectively evaluate the performance of
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various NCA algorithms. In addition, using the data from [34] and [24] ensures a

fair comparison.

The proposed algorithm is tested against varying noise for two very important

scenarios: (a) when the source signals are correlated, and (b) the observed data is

corrupted with outliers. Using the same connectivity matrix, source signals were

generated with low, moderate and high correlation [24]. The outliers were artificially

added to the data by modeling them as a Bernoulli process. The success probability

indicates the concentration of outliers present and is assumed to be the same for all

the genes. Since only a few points are expected to be corrupted in the real data,

the outliers are assumed to be sparse and therefore the success probability for the

presence of outliers is kept small.

The performance of ROBNCA, FastNCA, and NINCA is evaluated in the afore-

mentioned scenarios. ROBNCA algorithm is implemented in MATLAB. Since the

observed data matrix Y is expected to contain outlying points, the algorithms are

assessed by computing the MSE incurred in estimating the matrices A and S, in-

stead of fitting error for Y . The comparison with ALS is omitted here because it

takes much longer to run as will be shown in the next subsection.

4.5.1.1 Impact of Correlation

The algorithms are first tested for low and highly correlated source signals by

varying the signal-to-noise ratio (SNR). The noise is modeled as Gaussian in all

the experiments. The results are averaged over 100 iterations and are depicted in

Figure 4.1. It is observed that the presence of a small amount of outliers makes the

estimation using FastNCA very unreliable and inconsistent for both low and highly

correlated signals. On the other hand, NINCA is able to estimate S better than

FastNCA, and the estimation of A is quite accurate and consistent as well. It can
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Figure 4.1: Impact of correlation: Normalized mean square error (NMSE) (dB) for
different algorithms and different data sets against varying signal-to-noise (SNR)
ratio(dB) with the level of outliers set to 0.05.
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be observed that the overall estimation performance for A is much better and more

consistent than that of S. The reason for this could be attributed to the availability

of some prior information for the former. Since ROBNCA takes into account the

presence of outliers in the observed data, it outperforms the other two algorithms

for estimating both A and S and its consistent performance should be contrasted

with the unboundedness and unpredictability exhibited by the other two algorithms.

In general, the performance of all the algorithms improves with the increase in SNR

and degrades with the increase in correlation of the source signals.

4.5.1.2 Impact of Outliers

As noted earlier, the presence of outliers can severely affect the performance of

algorithms. It is therefore, important to investigate the impact of the presence of

outlying points in the observation matrix Y . Comparison performed for low and

high concentration of outliers is depicted in Figure 4.2. It is observed from Figure

4.2a that in the case of low concentration of outliers, NINCA provides good accuracy

for A and estimates it quite consistently. The estimation of S gives a small MSE as

well and generally performs consistently. FastNCA, however, is not able to estimate

both the matrices even for high SNRs. This indicates its high vulnerability to the

presence of even a small number of outliers. In case of a higher concentration of

outliers, the performance of NINCA degrades a little bit as depicted in Figure 4.2b.

It is observed that ROBNCA is able to estimate the two matrices for both low and

high outliers, and outperforms the other two algorithms.

The estimation of O matrix is shown in Figure 4.3, which depicts the outliers

present in the synthetic data and their estimates using ROBNCA algorithm. It is

noted that ROBNCA is able to identify the outliers very well. Figure 4.4 shows the

recovered signal AS after subtracting the outlier matrix O from the data matrix X.

65



−10 0 10 20
−10

0

10

20

30
FastNCA

A
 N

M
S

E

−10 0 10 20
−30

−25

−20

−15

−10

−5
NI−NCA

−10 0 10 20
−30

−25

−20

−15

−10

−5
ROBNCA

−10 0 10 20
−10

0

10

20

30

S
 N

M
S

E

FastNCA

−10 0 10 20
−30

−25

−20

−15

−10

−5
NI−NCA

SNR (dB)
−10 0 10 20

−30

−25

−20

−15

−10

−5
ROBNCA

(a) level of outliers = 0.01

−10 0 10 20
0

10

20

30

A
 N

M
S

E

FastNCA

−10 0 10 20
−30

−25

−20

−15

−10

−5
NI−NCA

−10 0 10 20
−30

−25

−20

−15

−10

−5
ROBNCA

−10 0 10 20
−20

−10

0

10

20
FastNCA

S
 N

M
S

E

−10 0 10 20
−30

−25

−20

−15

−10

−5
NI−NCA

SNR (dB)
−10 0 10 20

−30

−25

−20

−15

−10

−5
ROBNCA

(b) level of outliers = 0.1

Figure 4.2: Impact of outliers: Normalized mean square error (NMSE) (dB) for
different algorithms and different data sets against varying signal-to-noise (SNR)
ratio(dB) for a highly correlated data set.
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It can be observed that the recovered signal is a good match with the original signal.

These experiments indicate that ROBNCA solves the estimation problem with

much more accuracy than NINCA and FastNCA. It is important to emphasize here

that the MSE for NINCA is always higher than that of ROBNCA and its compu-

tational complexity is many times greater than the latter which can prove to be a

bottle-neck in case of large data sets.
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Figure 4.3: Estimation of outlier matrix O: ROBNCA estimates for three out of the
seven signals in the synthetic data are shown here. It is noted that ROBNCA is able
to capture the outliers well.

4.5.2 Results for Real Data

We now turn our attention to the comparison of these algorithms on real data.

Two datasets are considered for this purpose which are the S. cerevisiae cell cycle

data [33] and E. coli data [28]. The transcription factor activities are estimated for

the TFs of interest in each experiment and the results are compared for different

algorithms. In addition, the variability of the estimates is evaluated using the sub-
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Figure 4.4: Outlier removal from the signal using ROBNCA: Three out of the seven
signals in the synthetic data are shown here. The resulting AS after subtracting the
O matrix from gene expression data matrix X is shown here.

network analysis [74] which will be explained in the following subsections.

4.5.2.1 S. cerevisiae Cell Cycle Data

The algorithms discussed in this paper are applied to the yeast cell cycle data from

[33] and [60]. In order to assess the performance and variability of the various NCA

algorithms, sub-network analysis is performed which has also been used previously

in [10], [74] and [24] and the details of which have been given in Section 2.

The original network is divided into four subnetworks each consisting of 40 TFs

and the number of genes varies from 921 to 1247. The aforementioned 11 TFs are

included in each of the subsets. The structure of A is verified to satisfy the NCA

criterion (2) for all of the sub-networks. The reconstruction of the eleven TFAs, which

is the average of the four sub-networks, using ROBNCA, FastNCA, and NINCA is

depicted in Figure 4.5. The TFA estimation using ALS algorithm is skipped here

because the algorithm takes very long to run for this large data set. The results
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Figure 4.5: TFAs reconstruction: Estimation of 11 TFAs (9 shown) of cell-cycle
regulated yeast TFs. Average values of the TFs are shown for the four subnetworks.
The results of ROBNCA (black), FastNCA (red) and NINCA (blue) are given.
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for the three experiments are shown separately in the three columns. The TFAs

for these experiments are expected to have a periodic behavior with one, two and

three cycles in elutriation, α−factor and cdc-15, respectively, which can easily be

corroborated from the figure. The results from ROBNCA differ from FastNCA in

some of the instances. On the other hand, NINCA provides very similar estimates to

that of ROBNCA. It can be inferred that the results of these two algorithms are more

reliable as compared to FastNCA because the former reveal the periodic behavior in

almost all of the TFs.

We now look to investigate the consistency of the algorithms. The disagreement

between the TFA estimates of the four sub-networks is calculated using (2.22) and

the results are shown in Figure 4.6. Out of the three algorithms considered, ROB-

NCA incurs the smallest disagreement. The performance of NINCA is somewhat

comparable, however, FastNCA shows a high degree of inconsistency.

The simulations for standard deviation for TFAs are presented in Figures C.1,

C.2 and C.3 for ROBNCA, NINCA and FastNCA, respectively. It is noted that

ROBNCA yields the lowest variation whereas FastNCA shows much higher variation

in the TFA estimates than both the other algorithms. It can therefore be concluded

that ROBNCA outperforms NINCA both in terms of estimating the TFAs as well

as in terms of consistency for Yeast cell-cycle data.

4.5.2.2 E. coli Data

The performance of NCA algorithms is now tested for E. coli data. This dataset

contains the gene expression profiles obtained during transition of the sole carbon

source from glucose to acetate [28]. Out of 296 genes found to be of relevance during

the carbon source transition, 100 genes were separated so that the resulting network

satisfies the NCA criteria. A total of 16 TFs were identified to be related to this
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Figure 4.6: Average disagreement for different algorithms across the subsets for
TFAs. X-axis indicates the TFA index. Consistency comparison for S. cerevisiae
data.

experiment which are ArcA,CRP, CysB, FadR, FruR, GatR, IcIR, LeuO, Lrp, Narl,

PhoB, PurR, RpoE, RpoS, TrpR, TyrR. We perform sub-network analysis onto this

dataset in order to estimate the transcription factor activities for the 16 TFs of

interest. The downloaded network is divided into four subnetworks containing 81,

82, 85 and 88 genes, respectively. The number of TFs in each subnetwork is fixed

to 20, where the aforementioned 16 TFs are included in all of them. The samples

are taken at 5, 15, 30, 60 mins and then every hour until 6 hours. Multiple samples

are taken at these instances which make a total of 25 time points. The advantage of

using this data is that the ALS algorithm can be added to the performance evaluation

because of its smaller subnetworks. ALS is known to have prohibitive computational

complexity [24] and is included here only for the comparison of estimation accuracy.

The reconstruction of TFAs is performed using the four algorithms and the average

of the TFA estimates from four subnetworks is depicted in Figure 4.7. The results

from ROBNCA, NINCA and ALS are in agreement for almost all of the TFAs. In

addition, these estimates are also similar to those found in [28] except for a few TFAs.

The reason for this small dissimilarity could be that, in this paper the estimates are
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Figure 4.7: TFAs Reconstruction: Estimation of 16 TFAs of E. coli. Average values
of TFs are shown. The results of ROBNCA (black), FastNCA (red), NINCA (blue)
and ALS (green) are given.
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Figure 4.8: Average disagreement for different algorithms across the subsets for
TFAs. X-axis indicates the TFA index. Consistency comparison for E. coli data.

obtained using the subnetworks whereas [28] use the complete network of 100 genes.

For 5 out of the 16 TFs, namely GatR, Lrp, NarL, TrpR and TyrR, FastNCA is not

able to recover the TFAs. Moreover, the TFAs predicted by ROBNCA are similar

to those predicted by ALS which is the original solution as shown in Figure 5. It

can therefore be inferred that ROBNCA estimates the TFAs more accurately than

FastNCA.

The consistency of the algorithms is assessed for this experiment as well and the

respective disagreement for each of the four algorithms is shown in Figure 4.8.

FastNCA is again seen to incur the maximum disagreement. NINCA and ALS

perform better than FastNCA, however, ROBNCA yields the least disagreement

for the four estimates of TFAs and performs the most consistently out of all the

algorithms.

4.5.2.3 Computational Complexity Comparison

An important feature of all gene network reconstruction algorithms is the compu-

tational complexity incurred in their implementation. The computational complexity

of estimatingA in (4.28) at a particular iteration is approximatelyO(
∑N

n=1 (M − Ln)
3
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+ (M − Ln)
2), where (M − Ln) is the number of non-zero unknowns in the nth col-

umn, which is usually very small. We now compare the computational complexity

of the four algorithms using the subnetwork data from Yeast and E. coli. Average

runtime calculated in seconds is summarized for the four subnetworks of each data

in Table 4.1. These experiments were performed on a Windows 7 system with a 1.90

GHz Intel Core i7 processor on a Matlab 7.10.0. It is noted that the run time of ROB-

NCA is comparable to that of FastNCA and is hundreds of times faster than NINCA

algorithms for both of its implementations, i.e., involving linear programming and

quadratic programming. Moreover, the run time for ROBNCA is far superior to that

of the ALS, a direct consequence of the closed form solution derived for estimating

the connectivity matrix. It can also be observed that the faster closed form solution

for estimating A (4.28) provides additional savings over its predecessor (4.9).

Therefore, it can be inferred from these experiments on synthetic and real data

sets that ROBNCA renders superior performance than the contemporary algorithms

not only on the yardsticks of accuracy and reliability, but also in terms of computa-

tional complexity. The high computational complexity of NINCA far outweighs the

benefits it offers in terms of consistency. FastNCA has the smallest run time out of

all the algorithms but has poor reliability and is the least robust to the presence of

outliers in the data.

4.6 Summary

In this section, we presented ROBNCA, an algorithm for robust network com-

ponent analysis for estimating the TFAs. The ROBNCA algorithm accounts for the

presence of outliers by modeling them as an additional sparse matrix. A closed form

solution available at each step of the iterative ROBNCA algorithm ensures faster

and reliable performance. The performance of the proposed ROBNCA algorithm
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Table 4.1: Average computational time for various methods in seconds.

S. cerevisiae E. coli

Subset 1 2 3 4 1 2 3 4

FastNCA 0.2 0.2 0.24 0.2 0.014 0.007 0.007 0.008
ROBNCA 2 0.2 0.2 0.25 0.2 0.016 0.010 0.008 0.008
ROBNCA 1 1.0 0.8 0.99 0.8 0.020 0.018 0.016 0.023
NINCA LP 67 36 56.2 33 0.93 0.76 0.73 0.83
NINCA QP 71 30 125 97 0.59 0.13 0.13 0.13
ALS Exceeds memory limit 5.3 6.0 7.1 3.5

is compared with NINCA and FastNCA for synthetic as well as real data sets by

varying SNR, degrees of correlation and outlier concentration. It is observed that

while FastNCA is computationally simpler, yet the TFA recovery is inaccurate and

unreliable, a direct consequence of the sensitivity of its decomposition approach to

the presence of outliers. The NINCA algorithm offers performance somewhat com-

parable to the ROBNCA algorithm, however, the ROBNCA algorithm is much more

computationally efficient and does not require solving costly optimization problems.

Therefore, the cumulative benefits of robustness to the presence of outliers, higher

consistency and accuracy compared to the existing state-of-the-art algorithms, and

much lower computational complexity make ROBNCA well-suited to the analysis of

gene regulatory networks which invariably requires working with large data sets.
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5. REVERSE ENGINEERING SPARSE GENE REGULATORY NETWORKS

USING CUBATURE KALMAN FILTER AND COMPRESSED SENSING*

5.1 Introduction

Various methods for gene network modeling have been proposed recently in the

literature with varying degrees of sophistication [20, 27, 44, 59]. These techniques

can be broadly classified as static and dynamic modeling schemes. Static modeling

includes the use of correlation and statistical independence for clustering [6, 18, 19],

and information theoretic criteria [13, 79, 81]. On the other hand, dynamic models

provide an insight into the temporal evolution of gene expressions and hence, yield

a more quantitative prediction on gene network behavior [40, 56, 78, 80]. In order

to incorporate the stochasticity of gene expressions, statistical techniques have been

applied [6]. A rich literature is also available on the Bayesian modeling of gene

networks [3,23,35,43,55,77]. Promoted in part by the Bayesian methods, the state-

space approach is a popular technique to model the gene networks [1,21,48,57,58,71,

73], whereby the hidden states can be estimated using the Kalman filter. In case of

nonlinear functions, the extended Kalman filter (EKF) and particle filter represent

feasible approaches [48, 49, 68]. However, the EKF relies on the first order linear

approximations of nonlinearities, while the particle filter may be computationally

too complex. A comprehensive review of these methods can be found in [53].

In this work, the gene network is modeled using a state-space approach and the

cubature Kalman filter (CKF) is used to estimate the hidden states of the non-

linear model [2,47]. The gene expressions are assumed to evolve following a sigmoid

*Reprinted from “Reverse Engineering Sparse Gene Regulatory Networks using Cubature
Kalman Filter and Compressed Sensing,” Amina Noor, Erchin Serpedin, Mohamed Nounou and
Hazem Nounou, Advances in Bioinformatics, 2013, doi:10.1155/2013/205763, 2013. Copyright 2013,
Amina Noor et al.
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squash function whereas a linear function is considered for the expression data. The

noise is assumed to be Gaussian for both the state evolution and gene expression

measurements. As the gene network is assumed sparse, any simple mean square er-

ror minimization technique will not suffice for the estimation of static parameters.

Therefore, a compressed sensing based Kalman filter (CSKF) [29] is used in conjunc-

tion with CKF for reliable estimation of parameters. In case of statistical inference,

it is essential to obtain some guarantees on the performance of estimators. In this

regard, the Cramer-Rao lower bound (CRB) of the parameter estimates is used as a

benchmarking index to assess the mean square error (MSE) performance of the pro-

posed estimator which is evaluated here for a parameter vector. The performance

of the proposed algorithm is tested on synthetically generated random Boolean net-

works in various scenarios. The algorithm is also tested using DREAM4 data sets

and IRMA networks [9, 54]

5.2 Main Contributions

The main contributions of this section can be summarized as follows.

1. CKF is proposed for the estimation of states and a compressed sensing based

Kalman filter is used for the estimation of system parameters. The genes are

known to interact with few other genes only necessitating the use of sparsity

constraint for more accurate estimation. The proposed algorithm carries out

online estimation of parameters and is therefore computationally efficient and

is particularly suitable for large gene networks.

2. The Cramer-Rao lower bound is calculated for the estimation of unknown pa-

rameters of the system. The performance of the proposed algorithm is com-

pared to CRB. This comparison is significant as it shows room for improvement

in the estimation of parameters.
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3. The proposed algorithm is compared with the EKF algorithm. Using the false

alarm errors, true connections and Hamming distance as fidelity criteria, rig-

orous simulations are carried out to assess the performance of the algorithm

with the increase in the number of samples. In addition, receiver operating

characteristic (ROC) curves are plotted to evaluate the algorithms for different

network sizes. It is observed that the proposed algorithm outperforms EKF in

terms of accuracy and precision. The proposed algorithm is then applied to

the DREAM4 10-gene and 100-gene data sets to assess the algorithm accuracy.

The underlying gene network for the IRMA data sets is also inferred.

5.3 System Model

Gene regulatory networks can be modeled as static or dynamical systems. In this

work, state-space modeling is considered which is an instance of a dynamic modeling

approach, and can effectively cope with time variations. The states represent gene

expressions and their evolution in time, in general, can be expressed as

xk = g(xk−1) +wk k = 1, ..., K, (5.1)

where K is the total number of data points available, wk is assumed to be a zero-

mean Gaussian random variable with covariance Qk = σ2
wI, and the function g(.)

represents the regulatory relationship between the genes and is generally non-linear.

The microarray data is a set of noisy observations and is commonly expressed as a

linear Gaussian model [22]

yk = h(xk) + vk, (5.2)

where vk is Gaussian distributed random variable with zero mean and covariance

Sk = σ2
vI and incorporates the uncertainty in the microarray experiments. In order
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to capture the gene interactions effectively, the following non-linear state evolution

model is assumed [48,68]

xk,n =
N∑

m=1

bnmf(xk−1,m) + wk,n

k = 1, ..., K, n = 1, ..., N, (5.3)

where N is the total number of genes in the network and f(.) is the sigmoid squash

function

f(xk−1,m) =
1

1 + e−xk−1,m
. (5.4)

This particular choice for the non-linear function ensures that the conditional distri-

bution of the states remains Gaussian [22]. The multiplicative constants bnm quantify

the positive or negative relations between various genes in the network. A positive

value of bnm implies that the mth gene is activating the nth gene, whereas a negative

value implies repression [68, 69]. The absolute value of these parameters indicates

the strength of interaction.

The model given in (5.3) and (5.4) in the absence of any constraints may be

unidentifiable and result into over-fitted solutions [72]. Assumptions on network

structures are, therefore, necessary to obtain a connectivity matrix that agrees with

the biological knowledge. In a gene regulatory network (GRN), the genes are known

to interact with few other genes only. To this end, the coefficients bnms are estimated

using sparsity constraints, as explained in the next section.

A discrete linear Gaussian model for the microarray data is considered which can

be expressed at the kth time instant as [22]

yk = xk + vk. (5.5)
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Stacking the unknown parameters together, the parameter vector to be estimated is

b
∆
= [ϕ1, ϕ2, . . . , ϕN ], (5.6)

where ϕn = [bn1, . . . , bnN ]. Plugging the values of states from (5.3) into (5.5), it

follows that

yk = Rkb+ ek. (5.7)

where

Rk
∆
=



f̃k 0 0 0

0 f̃k 0 0

0 0
. . . 0

0 0 0 f̃k


(5.8)

and

f̃k
∆
= [f(xk−1,1) . . . f(xk−1,N)].

Thus, the gene network inference problem boils down to the estimation of system

parameters b using the observations yk where the effective noise ek is the sum of

system and observation noises. The next section describes the proposed inference

algorithm for sparse networks.

5.4 Method

In this section, the methodology proposed to infer the system parameters in (5.3)

is described. The proposed cubature Kalman filter with sparsity constraints (CKFS)

approach is succinctly illustrated in Fig. 5.1. The specific details of this algorithm

are as next presented.

80



Input time series data y

CKF CSKF

k = K

Output

yk

No

bk

xk

Initialize

b0,x0

Yes

Figure 5.1: Block diagram of network inference methodology CKFS

5.4.1 Cubature Kalman Filter

Kalman filter is a Bayesian filter which provides the optimal solution to a gen-

eral linear state space inference problem depicted by (5.1) and (5.2), and assumes

a recursive predictive-update process. The underlying assumption of Gaussianity for

the predictive and the likelihood densities simplifies the Kalman filter algorithm to

a two step process, consisting of prediction and update of the mean and covariance

of the hidden states. However, the presence of nonlinear functions in the state and

measurement equations requires calculation of multidimensional integrals of the form

non-linear function × Gaussian density [2], which in general is computationally pro-

hibitive. Several solutions to this problem have been proposed including the EKF,

which linearizes the non-linear function by taking its first order Taylor approxima-

tion, and the unscented Kalman filter (UKF), which approximates the probability

density function (PDF) using a non-linear transformation of the random variable.

Recently, a new approach, CKF, has been proposed which evaluates the integrals
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numerically using spherical-radial cubature rules [2].

The next two subsections briefly explain the working of Bayesian filtering and

the CKF solution for the non-linear multidimensional integrals.

5.4.1.1 Time Update

Let the observations up to the time instant k be denoted by dk, i.e., dk
∆
=

[yT
1 , . . . ,y

T
k ]

T . In the prediction phase, also called the time update of the Bayesian

filter, the mean and covariance of the Gaussian posterior density are computed as

follows

x̂k|k−1 = E [f(xk−1)|dk−1]

Pxx,k|k−1 = E
[
f(xk)f

T (xk)
]
− x̂k|k−1x̂

T
k|k−1 +Qk−1, (5.9)

where E denotes the expectation operator and xk−1 is normally distributed with

parameters (x̂k−1|k−1,Pxx,k−1|k−1). The third equality is a consequence of the zero

mean nature of Gaussian noise w and its independence from dk. The estimates

x̂k−1|k−1 and Pxx,k−1|k−1 are assumed to be available from the previous iteration.

Here, Pxx,k|k−1 is an estimate of the error covariance matrix.

5.4.1.2 Measurement Update

Since the measurement noise is also Gaussian, the likelihood density is given by

yk−1|dk−1 ∼ N (zk−1; ŷk|k−1,Pxx,k|k−1). As the measurements become available at the

kth time instant, the mean and covariance of the likelihood density are calculated as

follows:

ŷk|k−1 = E [yk|dk−1]

Pyy,k|k−1 = E
[
xkx

T
k )
]
− ŷk|k−1ŷ

T
k|k−1 + Sk−1. (5.10)
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The updated posterior density, obtained from the conditional joint density of states

and the measurements can be expressed as

([xT
k y

T
k ]

T |dk−1) ∼ N


 ˆxk|k−1

ˆyk|k−1

 ,

Pxx,k|k−1 Pxy,k|k−1

P T
xy,k|k−1 Pyy,k|k−1




where

Pxy,k|k−1 = E
[
xkx

T
k

]
− x̂k|k−1ŷ

T
k|k−1

is the cross-covariance matrix between the states and the measurements. Hence, the

states and the corresponding error covariance matrix are updated by calculating the

innovation zk − ẑk|k−1 and the Kalman gain KG,i:

x̂k|k = x̂k|k−1 +KG,k(yk − ŷk|k−1)

Pxx,k|k = Pxx,k|k−1 −KG,kPyy,k|k−1K
T
G,k

KG,k = Pxy,k|k−1P
−1
yy,k|k−1. (5.11)

The next subsection briefly describes the computation of high-dimensional integrals

present in the equations above.

5.4.1.3 Computation of Integrals Using Spherical-Radial Cubature Points

In order to determine the expectations in (5.9) using a numerical integration

method, a spherical-radial cubature rule is applied. This method calculates the

cubature points, Xj,k−1|k−1 as follows [2]

Xj,k−1|k−1 = Uk−1|k−1ζj + x̂k−1|k−1,
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where ζj =
√

ℓ
2
[1]j, j = 1, ..., ℓ, ℓ = 2N denotes the total number of cubature points,

and Uk−1|k−1 stands for the square-root of the error covariance matrix, i.e.,

Pxx,k−1|k−1 = Uk−1|k−1U
T
k−1|k−1.

The cubature points are updated via the state equation

X∗
j,k|k−1 = g(Xj,k−1|k−1). (5.12)

The propagated cubature points yield the state and error covariance estimates:

x̂k|k−1 =
1

ℓ

ℓ∑
j=1

X∗
j,k|k−1

Pxx,k|k−1 =
1

ℓ

ℓ∑
j=1

X∗
j,k|k−1X

∗T
j,k|k−1 − x̂k|k−1x̂

T
k|k−1 +Qk−1. (5.13)

The integrals in (5.10), (5.11) can be evaluated in a similar manner. The next

subsection explains the estimation of parameters in the system.

5.4.2 Estimation of Sparse Parameters Using Kalman Filter

The state estimates are obtained using the CKF as described in the previous sub-

section. In order to estimate the unknown parameters in the system model, one of

the most commonly used methods involves stacking the parameters with the states

and estimating them together. The estimation process performed in this manner is

called joint estimation. Another method for the estimation of parameters consists

of a two step recursive process which is termed dual estimation. This process esti-

mates the states in the first step and with the assumption that states are known,

parameters are estimated in the second step. These steps are repeated until the
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algorithm converges to the true values or until the amount of available observations

is exhausted. Here we make use of the latter technique.

The vector b as defined in (5.6) is assumed to be evolving as a Gauss-Markov

model. As discussed previously, the states are assumed known at this step. The

system evolution equations can therefore, be expressed as

bk = bk−1 + ηk−1

yk = Rkbk + ek, (5.14)

where ηk stands for the i.i.d Gaussian noise and Rk is as defined in (5.8). It is

observed that (5.14) is a system of linear equations with additive Gaussian noise,

and therefore, the Kalman filter is the optimal choice for the estimation of param-

eter vector. The standard predict and update steps involved in Kalman filter are

summarized as follows:

b̂k|k−1 = b̂k−1|k−1 + ηk

Pbb,k|k−1 = Pbb,k−1|k−1 +Σηk

uk = yk −Rfk b̂k

KG = Pbb,k|k−1R
T
fk
(RfkPbb,k|k−1R

T
fk
+ σ2

eI
−1

b̂k|k = b̂k|k−1 +KGuk

Pbb,k|k = (I −KGRfk)Pbb,k|k−1, (5.15)

where KG denotes the Kalman gain and P represents the error covariance matrix.

The Kalman filter algorithm is based on a l2-norm minimization criterion. As

the gene networks are known to be highly sparse, the parameter vector is expected

to have only a few non-zero values. A more accurate approach for estimating such a
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vector would be to introduce an additional constraint on its l1-norm which is the core

idea in compressed sensing [29, 61]. Such an l1-norm constraints provides a unique

solution to the under-determined set of equations [8]. Therefore, instead of a simple

l2 norm minimization, the following constrained optimization problem is considered:

min
b̂k

||b̂k − bk||22 s.t. ||b̂k|| ≤ ϵ. (5.16)

The importance of this constraint can be judged by the fact that without it, the

system would be rendered unidentifiable [72].

The problem (5.16) can be solved using a pseudo-measurement (PM) method

which incorporates the inequality constraint (5.16) in the filtering process by assum-

ing an artificial measurement ||bk||1 − ϵ = 0. This is concisely expressed as

0 = R̄b̂k − ϵ, R̄τ = [sign(b̂τ (1)), . . . , sign(b̂τ (N))].

The value of the covariance matrix Σϵ = σ2
ϵI of the pseudo-noise ϵ is selected in a

similar manner as the process noise covariance in the EKF algorithm. However, it is

found that large values of variances, i.e., σ2
ϵ ≥ 100 prove sufficient in most cases [29].

Further details on selecting these parameters can be found in [16, 29]. The PM

method solves (5.16) in a recursive manner for Kτ iterations using the following

steps:

Kτ
G = PτR̄

T
τ (R̄τPτR̄

T
τ +Σϵ)

−1

b̂τ+1 = (I −Kτ
GR̄τ )b̂τ

Pτ+1 = (I −Kτ
GR̄τ )Pτ . (5.17)

86



At each kth time instant, Pbb,k|k and b̂k|k obtained from (5.15) are considered as initial

values i.e., b̂1 = b̂k|k and P1 = Pbb,k|k which is the error covariance matrix. The value

of Kτ is equal to the number of constraints i.e. the expected number of non-zero

bmns in the system. Possible ways for calculating Kτ include minimum description

length (MDL) principle and Bayesian information criterion (BIC).

5.4.3 Inference Algorithm

The network inference algorithm is summarized in Algorithm 3. The algorithm

consists of a recursive process which repeats itself for the number of observations

present in the time series data. For each time sample, the state estimate is obtained

using the CKF and the parameter estimate is obtained using the KF. Since the

parameters are expected to be sparse, the estimates are then refined further using the

CSKF algorithm. This iterative process results in a simple and accurate algorithm

for gene network inference while considering a complex non-linear model.

Algorithm 3 Network Inference - CKFS

1: Input time series data set y.
2: Initialize I,K, ϕ0,x0.
3: for k = 1, ..., K do
4: Find the state estimates using CKF following the time and measurement up-

date steps in Section 3.
5: Estimate parameters b̂k from xk and yk using (5.15).
6: for τ = 1, ..., Kτ do
7: Update the parameters b̂k using (5.17).
8: end for
9: end for
10: return
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5.5 Cramér-Rao Bound

The performance of an estimator can be judged by comparing it with theoretical

lower bounds proposed in parameter estimation theory. The CRB establishes a lower

bound on the MSE of an unbiased estimator [30]. In particular, the CRB states that

the covariance matrix of the estimator b̂ is lower bounded by

E
[(

b̂− b
)(

b̂− b
)T]

≽ [I (b)]−1 , (5.18)

where the matrix inequality ≽ is to be interpreted in the semi-definite sense and

I (b) is the Fisher information matrix (FIM):

I (b) = E

[(
∂ ln f (y|b)

∂b

)(
∂ ln f (y|b)

∂b

)T
]
. (5.19)

The CRB for gene network inference can be calculated as follows. By stacking all

the observations for k = 1, . . . , K, (5.7) can be written compactly in the matrix form

y = Rb+ e, (5.20)

where y =
[
yT
1 , . . . ,y

T
K

]T
, R =

[
RT

1 , . . . ,R
T
K

]T
and e =

[
eT
1 , . . . , e

T
K

]T
. The PDF

p (y|b) is expressed as

p (y|b) = C exp

(
−(y −Rb)T (y −Rb)

2σ2
e

)
, (5.21)
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where C is a constant. The derivative of ln p (y|b) can be expressed as

∂ ln p (y|b)
∂b

= − ∂

∂b

[
(y −Rb)T (y −Rb)

σ2
e

]

=
RTy −RTRb

σ2
e

.

It now follows that

(
∂ ln p (y|b)

∂b

)(
∂ ln p (y|b)

∂b

)T

=

RT (y −Rb) (y −Rb)T R

σ4
e

. (5.22)

By taking the expectation of (5.22), the FIM in (5.19) is given by

I (b) =
RTR

σ2
e

. (5.23)

The inverse of the FIM in (5.23) can be used to place a lower bound on the estimation

error of the parameter vector b. Fig. 5.2 shows the comparison of MSE of CKFS

algorithm with CRB as a function of number of samples K for one representative

gene from the eight-gene network considered in Section 5.1. It is observed that the

MSE of the estimated parameters decreases with increasing number of samples.

5.6 Results and Discussion

The simulation results of the CKFS algorithm are discussed in this section. The

performance is first tested on synthetic data obtained from randomly generated

Boolean networks under various scenarios and performance metrics. The algorithm

is then assessed on the DREAM4 networks and the IRMA network.
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Figure 5.2: Cramer Rao bound on the estimation of parameters. The MSE for one
of the representative θ is shown here for a network consisting of 8 vertices.

5.6.1 Synthetic Data

Time series data is produced from randomly generated Boolean networks using

the system model (5.3) and (5.5). Two scenarios are considered for this purpose.

First, the comparison is performed by varying the number of sample size while

keeping the network size fixed. The gene network consists of 8 genes and 20 vertices.

In terms of network estimation, if the algorithm predicts an edge between two nodes

which may not be present in reality, an error, referred to as false alarm error (F),

is said to have occurred. Another situation is the indication of the absence of a

vertex in the graph which in fact is present in the real network. This kind of error

is termed missed detection (M). The summation of these two errors normalized over

the total number of vertices in the network yields the Hamming distance. It is also

important to consider the probability of predicting the true connections correctly

which will be assessed by the true connections (T) metric. An algorithm with low

Hamming distance and small false alarm error is particularly desirable as predicting

an edge erroneously can be troublesome for biologists. True connections indicate the
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Figure 5.3: Left to right: False alarm errors, Hamming distance and true connections.
The synthetic networks consist of 8 vertices and 20 edges. The metric is normalized
over the number of edges. CKFS gives lower error and predicts more true connections
with the increase in the sample size of data.

reliability of the predictions. Figure. 5.3 illustrate the performance of the CKFS

algorithm and that of the EKF algorithm proposed in [68] in terms of the metrics

described above. It is important to mention here that the same system model is

assumed by both CKFS and EKF algorithms for the purpose of this simulation.

These metrics are the same as those used in [79]. The variances of both the system

and measurement noises, σ2
w and σ2

v , respectively are taken to be 10−5 in all the
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Figure 5.4: ROC curves for the performance of CKFS and EKF using synthetic
data. (N,E,K) Left to right: (5,10,20), (10,12,20),(15,19,20). The area under the
ROC curve for CKFS is more than that for EKF for various sized networks.

simulations and are assumed to be known. It is noticed that EKF has a slightly lower

false alarm rate when the number of samples is small, however, as the number of

samples increases, CKFS yields a lower false alarm error. The Hamming distance for

CKFS is also smaller than EKF indicating lesser cumulative error. True connections

show a consistent behavior for the two algorithms when the number of samples

is increased where CKFS is able to predict connections more accurately. These

experiments show the superiority of CKFS in terms of lower error rate.
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To obtain a more rigorous evaluation, the performance of algorithms is then

compared in a scenario which considers the sample size to be fixed and assumes

networks of different sizes. The receiver operating characteristic (ROC) curves are

plotted as performance measures. A higher area under the ROC curve (AUROC)

shows more true-positives for a given false-positive, and therefore, indicates better

classification. The performance of CKFS(N,E,K) and EKF(N,E,K)is shown in

Fig. 5.4, where N stands for the number of nodes, E represents the number of edges

and K denotes the time points. It is observed that the CKFS exhibits superior

performance than the EKF for networks of different sizes.

The complexity of the two algorithms is compared for synthetically generated

networks with number of genes equal to 10, 20, 30 and 40. The sample size is kept

to 50 time points for each of these networks and the run time for EKF and CKFS

algorithms is calculated as shown in Table 5.1. It is noted that EKF is faster for

smaller network sizes but as the network size increases, the run time gets much larger

than that for CKFS. The main reason for this is that EKF [68] estimates the states

and parameters by stacking them together which requires large sized matrix multi-

plications at each iteration. The benefit associated with performing dual estimation,

as in CKFS, is that the parameters are estimated separately from the states. Since

the system is linear and one-to-one for parameters, inversion of much smaller ma-

trices can be performed reducing the computational complexity of CKFS algorithm.

CKFS, is therefore, particularly attractive for large sized networks.

5.6.2 DREAM4 Gene Networks

Several in silico networks have been produced in order to benchmark the per-

formance of gene network inference algorithms. DREAM (Dialogue on Reverse En-

gineering Assessment and Methods) in silico networks serve as one of the popular
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Table 5.1: Run time in seconds for EKF and CKFS algorithms for varying network
sizes for synthetically generated data. The number of sample points is fixed to 50.

Number of Genes 10 20 30 40
EKF 0.16 1.9 16.5 84
CKFS 1.2 4.3 11.5 24.1

Table 5.2: Area under the ROC curve (AUROC) and area under the PR curve
(AUPR) for DREAM4 10-gene networks for the five different networks.

Algorithm network 1 network 2 network 3 network 4 network 5
ODE [54] 0.62 (0.27) 0.63 (0.32) 0.58 (0.21) 0.63 (0.23) 0.68 (0.25)
CKFS 0.63 (0.40) 0.67 (0.50) 0.72 (0.50) 0.75 (0.49) 0.81 (0.42)
random
[54]

0.55 (0.18) 0.55 (0.19) 0.55 (0.17) 0.57 (0.17) 0.56 (0.16)

Table 5.3: Area under the ROC curve (AUROC) and area under the PR curve
(AUPR) for DREAM4 100-gene networks for the five different networks.

Algorithm network 1 network 2 network 3 network 4 network 5
ODE [54] 0.55 (0.02) 0.55 (0.03) 0.60 (0.03) 0.54 (0.02) 0.59 (0.03)
CKFS 0.67 (0.13) 0.57 (0.08) 0.60 (0.10) 0.62 (0.10) 0.60 (0.07)
random
[54]

0.50 (0.002) 0.50 (0.002) 0.50 (0.002) 0.50 (0.002) 0.50 (0.002)
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methods used for this purpose [54]. In this section, the performance of the CKFS

algorithm is evaluated using the 10-gene and 100-gene networks released online by

the DREAM4 challenge. Five networks are produced using the known GRNs of

Escherichia coli and Saccharomyces cerevisiae. The data sets for each of 10-gene

network consists of 21 data points for five different perturbations. The inference is

performed by using all the perturbations. The 100-gene network consists of data sets

for ten perturbations. AUROC and area under the precision-recall curve (AUPR)

are calculated for the five networks of both the data sets and shown in Table 5.2

and Table 5.3, respectively. The quantities: precision and recall are defined as

P = T/(T + F ) and R = T/(T + M), respectively. For comparison purposes, the

values of the two quantities for time-series network identification (TSNI) algorithm

that exploits ordinary differential equations are also given [54]. The CKFS algorithm

is found to perform significantly better than the TSNI algorithm.

5.6.3 IRMA Gene Network

In addition to synthetic data, it is imperative to test the algorithms using real bi-

ological data. In this sub-section, the performance of the CKFS algorithm is assessed

using the in vivo reverse-engineering and modeling assessment (IRMA) network [9].

This network consists of five genes. Galactose activates the gene expression in the

network whereas glucose deactivates it. The cells are grown in the presence of galac-

tose and then switched to glucose to obtain the switch-off data which represents the

expressive samples at 21 time points. The switch-on data consisting of 16 sample

points and is obtained by growing the cells in a glucose medium and then chang-

ing to galactose. The system and measurement noise variances for the CKFS are

assumed to be identical as in the previous simulations. Fig. 5.5 shows the inferred

network, the gold standard and the network inferred using TSNI. It is observed that
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Figure 5.5: The inferred IRMA networks. Left to right: gold standard, inferred
network using CKFS, inferred network using ODE [9,54]. Black arrows indicate true
connections, blue arrows indicate the edges that are correct but their directions are
reversed, and red arrows indicate false positives.

the CKFS algorithm succeeds to predict most of the interactions while giving lower

false positives.

5.7 Summary

This section presented a novel algorithm for inferring gene regulatory networks

from time series data. Gene regulation is assumed to follow a non-linear state evolu-

tion model. The parameters of the system, which indicate the inhibitory or excita-

tory relationships between the genes, are estimated using compressed sensing based

Kalman filtering. The sparsity constraint on the parameters is crucial because the

genes are known to interact with few other genes only. The use of CKF and the dual
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estimation of states and parameters renders the algorithm computationally efficient.

The performance of CKFS is evaluated for synthetic data for different network sizes

as well as varying sample points. ROC curves, Hamming distance and True positives

are used for comparing the accuracy of inferred network with EKF. It is observed

that CKFS outperforms the EKF algorithm. In addition, CKFS gives advantages

over EKF in terms of smaller run time for large networks. The Cramer-Rao lower

bound is also determined for the parameters of the model and compared with the

MSE performance of the proposed algorithm. Assessment using DREAM4 10-gene

and 100-gene networks and IRMA network data corroborate the superior perfor-

mance of CKFS. Future research directions include incorporating the estimation of

model order in the network inference algorithm.
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6. CONCLUSIONS AND FUTURE WORK

Precise and accurate inference of gene regulatory networks is imperative in un-

derstanding the roles of complicated biological processes. These networks can aid

in understanding which genes cause a particular disease and how its harmful effects

can be warded off. Gene expression data available from high-throughput technolo-

gies measure the response of genes to various other genes and transcription factors

(TFs). In addition, Chip-chip data provide knowledge about TF-gene interactions.

This dissertation investigates transcription factor activity estimation using network

component analysis (NCA) and the inference of gene regulatory networks.

First, a closed form solution is presented for a NINCA algorithm using convex

optimization methods which reduces the computational complexity by tens of times

while giving the same estimation accuracy. Next, this dissertation investigated how

to overcome the challenge of incomplete prior information about the TF-gene in-

teractions. An iterative reweighted ℓ2 norm based algorithm was proposed which

estimates the connectivity matrix with higher accuracy and lower complexity when

the connectivity information could be missing. Another important extension treated

in this dissertation was to find computationally efficient algorithms which are robust

to the presence of outliers in the gene expression data. An attractive feature of all

these algorithms was the derivation of a closed-form solution for the connectivity

matrix. Finally, a novel gene regulatory network inference algorithm was presented

which makes use of the knowledge that gene networks are known to be sparse.

An interesting scenario that remains open for future investigation is the case

of imperfect prior knowledge of the TF-gene interactions, as the biological data is

known to have errors. Fast and robust algorithms should be studied which handle
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the uncertainty in the prior information by employing a Bayesian framework. Using

the replicated gene expression data can also provide useful information that can be

exploited in the inference problem.
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APPENDIX A

SPARSENCA IN HIGH CORRELATION DATA
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Figure A.1: Impact of incomplete prior and outliers: Normalized mean square error
(NMSE) for FastNCA, NINCA and sparseNCA for different datasets with level of
outliers: 0.001 against varying signal to noise ratio (SNR) dB for high correlation
data.
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Figure A.2: Impact of incomplete prior and outliers for high correlation dataset:
Normalized mean square error (NMSE) for FastNCA, NINCA and sparseNCA for
different datasets with level of outliers: 0.03 against varying signal to noise ratio
(SNR) dB for high correlation data.
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APPENDIX B

TFA RECONSTRUCTION BY SPARSENCA
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Figure B.1: TFAs reconstruction using Yeast cell-cycle dataset: Estimation of 11
(9 shown) TFAs of cell-cycle regulated yeast TFs. Average values of the TFs are
shown for the four subnetworks. The results of FastNCA(black), NINCA (blue)
and sparseNCA (red) are given. NINCA and sparseNCA are able to identify the
periodicity of almost all the TFs and their results agree with each other.
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APPENDIX C

STANDARD DEVIATION FOR TFA ESTIMATION
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Figure C.1: Standard deviation in TFAs reconstruction for ROBNCA: Estimation
cof 11 TFAs of cell-cycle regulated yeast TFs. Average values of the TFs are shown
for the four subnetworks.
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Figure C.2: Standard deviation in TFAs reconstruction for NINCA: Estimation of
11 TFAs of cell-cycle regulated yeast TFs. Average values of the TFs are shown for
the four subnetworks.
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Figure C.3: Standard deviation in TFAs reconstruction for FastNCA: Estimation of
11 TFAs of cell-cycle regulated yeast TFs. Average values of the TFs are shown for
the four subnetworks.
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