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ABSTRACT 

 Hypoxia in the neonate is one of the leading causes of encephalopathy and 

seizures. Sadly, a significant subset of these children will acquire epilepsy, as their risk 

increases several-fold even with recovery from the initial encephalopathy. Epilepsy can 

be debilitating and potentially fatal, and can be considered as a condition of hyper-

excitable and hyper-synchronistic neural circuitry. Cellular and molecular changes 

consequent to neonatal seizure-inducing hypoxia are not fully understood, but multiple 

pro-epileptogenic candidate mechanisms exist. For example, acutely decreased 

inhibition has been shown at 1 hour post-hypoxia induced seizures, but it is unknown 

whether this effect is persistent.  Such persistent effects on inhibition could promote the 

development of epilepsy. We designed three specific aims to determine mechanisms of 

persistently decreased inhibition of area CA1 of the hippocampus following perinatal 

hypoxia-induced seizures. 

  Specific Aim One was to determine whether the acute (P10) decrease in GABA 

mediated inhibitory currents, IPSCs, persists beyond the initial 24 hours reported 

previously. We hypothesized that there would be a persistent increase in inhibition at 

least one week post hypoxia.  Whole-cell voltage-clamp data indicates persistently 

decreased action potential-dependent GABA-mediated inhibitory post synaptic currents 

that may possibly be due to decreased interneuron firing. 

Specific Aim Two was to determine whether there are persistent changes to the 

composition/expression of the GABAA receptor in hippocampus. We hypothesized that 

there would be persistent decreases in the overall expression and or composition of the 
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GABAA receptor. Western blot analysis suggests that no change in the expression of α1, 

α2, β2/3 or γ2 GABAA subunits occurs, at any time point studied, following perinatal 

hypoxia-induced seizures. 

Specific Aim Three was to determine whether there are persistent changes in 

calcineurin expression/activity. We hypothesized that there would be an increase in 

hippocampal calcineurin expression and/or activity persistently following hypoxia-

induced seizures.  Western blot data suggests that no change in the expression of 

calcineurin occurs beyond the initial 24 hours post hypoxia-induced seizures previously 

reported. Furthermore, calcineurin activity did not increase at 24 hours and 48 hours post 

hypoxia-induced seizures. Preliminary data suggests activation of an alternative 

enzymatic pathway, possibly Interleukin-1 receptor dependent activation of casein 

kinase II, possibly contributing to altered GABAergic inhibition of area CA1 of the 

hippocampus. 
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CHAPTER I 

INTRODUCTION 

Significance 

The incidence of seizures is highest in the neonatal period and most commonly 

caused by hypoxic encephalopathy (Volpe 2001). Clinically, infants are exposed to 

hypoxia during a number of potential conditions, including perinatal asphyxia, 

respiratory arrest, near-miss sudden infant death syndrome, and during corrective heart 

surgery. Perinatal cerebral hypoxia greatly increases the risk of developing cerebral 

palsy, developmental delay and seizure disorders (Volpe 2001, Bernes and Kaplan 1994, 

Bergamasco et al 1984). Unfortunately, neonatal hypoxia induced seizures can be 

refractory to conventional anti-epileptic drug treatment. Understanding how perinatal 

cerebral hypoxia occurs and increases the susceptibility to develop epilepsy is critical if 

we hope to successfully treat seizures in this setting and prevent the sequence of events 

that lead to increased seizure susceptibility later in life.  

 In the early 1990s, researchers developed a neonatal animal model of global 

central nervous system hypoxia (Jensen et al 1991). This animal model replicates the 

human condition in key elements including; (ɪ) age dependent susceptibility to hypoxia 

induced seizures, (ɪɪ) refractoriness to anti-epileptic drug treatment, and (ɪɪɪ) long-term 

increases in seizures susceptibility (Rakhade et al 2011, Jensen et al 1991). In 2005, 

Sanchez et al, demonstrated that following hypoxia-induced seizures at P10, rats 

exhibited decreased frequency and amplitudes of GABA-mediated inhibitory post-

synaptic potentials (IPSCS) in CA1 hippocampal pyramidal neurons. Furthermore, 
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antagonism of calcineurin and or blockade of AMPA receptors (a type of glutamate 

receptor) caused an increase in the frequency and amplitudes of GABA-mediated 

inhibitory post synaptic currents in area CA1 of the hippocampus, apparently opposing 

the effects of hypoxia. During this same time period the phosphorylation of the β2/3 

subunit of the GABA receptor  was decreased suggesting that calcineurin may act on 

GABA mediated IPSCs by dephosphorylation of the GABAA receptors, causing 

increased internalization, and hence decreased amplitudes and frequency of IPSCs.  

Probably the most interesting aspect of this paper was that pre administration of FK-506, 

an antagonist of calcineurin, significantly inhibited hypoxia-induced perinatal seizures, 

emphasizing the importance of this pathway in this model.  

Many unknowns remain to be explored in this animal model. For example, 

whether or not GABA mediated inhibition remains persistently decreased beyond the 

first day following hypoxia-induced seizures is unknown. Furthermore, since acute 

changes occur in both amplitude and frequency of IPSCs, the potential for pre- and post-

synaptic mechanisms is probable. Finally, it remains to be determined whether 

calcineurin activity/expression remains increased. We have proposed 3 specific Aims to 

address these questions. 

Specific Aim One will determine whether the acute (P10) decrease in GABA 

mediated inhibitory currents, IPSCs, persists beyond the initial 24 hours reported 

previously (Sanchez 2005). We hypothesized that a persistent increase in inhibition 

would occur at least one week post-hypoxia. Specific Aim Two will determine whether 

there are persistent changes to the composition/expression of the GABAA receptor in 
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hippocampus. We hypothesized that a persistent decrease in the overall expression and 

or composition of the GABAA receptor would occur. Specific Aim Three will determine 

whether persistent changes in calcineurin expression/activity occur. We hypothesized 

that an increase in hippocampal calcineurin expression and/or activity would occur 

following hypoxia-induced seizures.  

The following chapters will contain a discussion of the results and the 

implications of those results in the context of increased seizure susceptibly in the rat 

model of hypoxia-induced seizures. The introductory chapter will explain, in more 

depth, the importance of each component of which this dissertation is focused, in order 

to better understand the unique nature of neonatal hypoxia-associated epilepsy. 
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Background 

Epilepsy 

Epilepsy is a common neurological disorder, affecting approximately 1% of the 

world’s population (Theodore et al 2006). Epilepsy is a pathological condition of 

hyperexcitable and hypersynchronous neural circuitry that manifests itself clinically as 

seizures. Seizures can cause neuronal cell loss, rewiring of neural circuitry, and 

redistribution of ion channels when excessive electrical activity occurs for long periods. 

This has been shown in numerous animal models and among others, altered GABAA and 

hyperpolarization activated cyclic nucleotide gated ion channels (HCN channels) may be 

involved in promoting epilepsy.  For example, the expression of HCN channel has been 

shown to be modified in many animal models of epilepsy (Chen 2001, Budde 2005, and 

Shah et al 2004). HCN2 knockout mice display an altered IH and an absence-like seizure 

phenotype (Ludwig et al 2003). Also, decreased neocortical HCN1 expression has been 

found to be associated with a rat genetic absence epilepsy model (Strauss et al 2004). 

Our laboratory recently showed that IH is attenuated in pyramidal neurons in a neonatal 

hypoxia model of epilepsy (Zhang et al 2006). Although several studies have indicated 

an indirect role of HCN channels in regulating inhibition (Macaferri and McBain 1996, 

Lupica et al 2001), this is beyond the scope of this dissertation. This dissertation will 

focus on direct regulatory GABAergic mechanisms.  

Alterations in GABAergic inhibition have been implicated in both human 

epilepsies and rat models of epilepsy. The expression and localization of several GABAA 

receptor subunits have been reported to be altered by seizures (. The functional 



5 

 

 

consequences of these alterations include changes in phasic and tonic GABA currents, as 

well as, alterations in pharmacological sensitivity to benzodiazepines (Mtchedlishviliet 

al 2001, Kapur and Macdonald 1997). Despite GABA’s well-established role in 

epilepsy, the regulatory mechanisms governing pathological GABAergic inhibition are 

still being elucidated. 

Neonatal Hypoxia 

As mentioned above, hypoxia in the neonate is one of the leading causes of 

encephalopathy and seizures (Volpe et al 1989) and a significant subset of these children 

will acquire epilepsy, as their risk increases five-fold even with recovery from the initial 

encephalopathy (Bergamasco et al 1984, Connell et al 1989, Volpe et al 1989).  Cellular 

and molecular neural changes consequent to neonatal seizure-inducing hypoxia are not 

fully understood, but multiple pro-epileptogenic candidate mechanisms exist.  In the 

early 1990s Jensen et al began characterizing an animal model of neonatal hypoxia-

induced seizures that mimics the acute and long-term epileptogenic effects of neonatal 

hypoxia observed clinically (Jensen et al 1991).  

Rat pups exposed to global hypoxia (5-7% O2 for 15 minutes) on postnatal day 

10 exhibit spontaneous seizures and later exhibit chronically increased seizure 

susceptibility. Hippocampal slices obtained from these animals several days after the 

hypoxia-induced seizures exhibit an increased propensity for electrographic seizure-like 

activity, thus providing a convenient in vitro preparation to identify cellular mechanisms 

that underlie this hippocampal hyperexcitability. For example, acutely decreased 

inhibition has been shown in slices 1 hour post-hypoxia induced seizures, but it is 
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unknown whether this effect is persistent (Sanchez et al 2005). Such persistent effects on 

inhibition could promote the development of epilepsy.  

Decreases of inhibitory neurotransmission could be due to several mechanisms 

including changes in the release of GABA from presynaptic stores, the 

composition/expression of the GABAA receptor, and the state of GABAA receptor 

modulation through various post-translational processes, especially calcineurin, a highly 

conserved Ca2+ and  calmodulin-dependent serine/threonine phosphatase, which has 

been shown to be acutely up-regulated after hypoxia-induced seizures (Sanchez et al 

2005). Altered GABAA receptor subunit expression and pharmacological sensitivity 

have been reported in neonatal, as well as, adult rodent models of seizures and human 

epileptic hippocampi (Zhang et al 2004, Schwarzer et al 1997, Bouilleret et al 2000, 

Raol et al 2006, Loup et al 2000). However, it is not known whether changes in 

expression of GABA receptor subunits occur following neonatal hypoxia-induced 

seizures.  

Calcineurin is a serine threonine specific phosphatase involved in many essential 

cellular processes. Calcineurin is a key phosphatase involved in neonatal hypoxia-

induced seizures, as demonstrated by an acute increase in calcineurin expression/activity 

following neonatal hypoxia-induced seizures and most importantly, blockade prevented 

hypoxia-induced neonatal seizures (Sanchez et al 2005). This increased calcineurin 

activity was associated with decreased phosphorylation of the β2/3 subunit of the 

GABAA (Sanchez et al 2005). Still, whether calcineurin expression/activity persists and 

whether post-synaptic changes occur to GABAA receptors are unknown. 
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Hippocampus 

The hippocampus, Greek for sea horse, is a specialized area of the brain whose 

main function is short-term memory processing. Since memory is involved with so many 

different types of human diseases and disorders including Alzheimer’s, epilepsy 

(including many pharmacologically intractable varieties), head injuries that cause 

amnesia and age associated memory loss, it is a very highly researched area of the brain. 

The basic circuitry of the hippocampus begins with the perforant pathway arising from 

the entorhinal cortex projecting glutamatergic synaptic boutons on the cell dendrites and 

soma of granule neurons lying in an area known as the dentate gyrus. These cells not 

only receive excitatory input from the entorhinal cortex but also GABAergic inhibitory 

synapses from hilar polymorophic neurons located within the hilus. The mossy fiber 

pathway is the next in this looping pathway also sending glutamatergic projections but 

this time from the dentate gyrus granule neurons to pyramidal neurons located in area 

CA3. These pyramidal neurons then send afferent glutamatergic projections to area CA1 

pyramidal neurons through an axonal pathway called the schaeffer collaterals. Excitatory 

principal cells in each region are under the control of local inhibitory GABA-secreting 

interneurons. In area CA1,pyramidal neurons receive inhibitory input primarily from 

stratum radiatum and stratum oriens. Finally, these CA1 pyramidal neurons send afferent 

projections through the subiculum back to the entorhinal cortex, completing a loop. This 

looping network, once compromised, can lead to high frequency synchronized 

oscillations of action-potential bursting groups of neurons innervating themselves 

through a polysynaptic feedback loop. 
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Interneurons of the Hippocampus  

The interneurons of the hippocampus, like the neocortex, are highly specialized 

and highly diverse class of neurons that provide inhibition to neural networks. Unlike 

their principal cell counterparts, these cells have highly diverse morphological and 

biochemical attributes. Interneurons are characterized by the synthesis and release of the 

neurotransmitter GABA and exert their inhibitory control on the activity of 

glutamatergic neurons through the activation of postsynaptic GABAA receptors, thereby 

creating inhibitory currents in their target cells. A number of interneurons of the 

hippocampus have been described based on numerous different criteria over the years. 

However, as researchers began to classify interneurons it was found that no single 

subtype could be definitively identified as many of the different markers used to separate 

them overlapped, and an adequate classification system that is universally accepted is 

still needed to this day (Buzsaki 2004, Baraban and Tallent 2004, Cossart 2005, Jonas  

2004). 

The morphological and physiological characteristics of adult hippocampal 

interneurons have been extensively reviewed (Freund and Buzsaki 1996, Somogyi and 

Klausberger 2005). GABAergic interneurons provide local feed-forward and feed-back 

inhibitory circuits. The axonal arborization of interneurons allows one interneuron to 

contact several hundreds of pyramidal neurons and provides them with the capability to 

synchronize the activity of glutamatergic neurons and therefore play a fundamental role 

in shaping the temporal pattern of various types of neural oscillations (Freund and 

Buzsaki 1996, Somogyi and Klausberger 2005). Hippocampal interneurons have been 
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classified into several subgroups according to their axonal projection pattern, rather than 

by cell morphology. Basket cells make synapses specifically with the cell bodies and 

proximal dendrites of principal cell, while chandelier or axo-axonic cells contact the 

axon initial segment of principal neurons (Somogyi et al 1983). Furthermore, basket 

cells establish synapses not only with the cell bodies and proximal dendrites of principal 

neurons but also with other basket cells (Fukuda and Kosaka 2000). Other interneurons 

target specific parts of the dendrites of pyramidal neurons. For example, oriens-

lacunosum moleculare(O-LM) cells are located in the stratum oriens but contact the 

distal-most part of the apical dendrites of pyramidal neurons in the stratum lacunosum-

moleculare. These various interneuron subtypes may differentially affect the activity of 

excitatory neurons. Inhibitory synapses on cell bodies or axon initial segments are 

ideally located to control the genesis of action potentials, while interneurons targeting 

the dendrites of pyramidal neurons may control dendritic calcium spikes (Miles et al 

1996). Interneurons with specific projection patterns also express particular calcium-

binding proteins or neuropeptides (Freund and Buzsaki 1996).  

GABA Receptors 

Many receptors are named after the primary activating agonist. This is mainly 

due to the historical context from which they were researched. For example, GABAA 

(and GABAC) and GABAB are related only by the activating agonist GABA, gamma 

amino butyric acid. Both receptor types are widely distributed, but differ both in modes 

of action and molecular composition. While GABAB nomenclature matches GABAA and 

GABAC, it is not part of the same superfamily. The GABAA receptor is the most widely 
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distributed and important inhibitory molecules in the central nervous system where it is 

responsible for IPSCs, inhibitory postsynaptic potential currents in many cell types from 

a diverse phylogenetic tree. Since the explosion of molecular techniques in the early 

1990s we now know that the GABAA system is a member of a superfamily proteins 

coined Cys-loop ligand-gated ion channels (LGIC), named for their characteristic loop 

formed by a disulfide bond between two cysteine residues. Members of this superfamily 

include nicotinic acetylcholine receptors, glycine receptors, as well as the GABAA 

receptor. All members of this superfamily are composed of 5 subunits that form 

heteromeric proteins with an integrated ion pore. In the case of the GABAA receptor, this 

ion pore conducts chloride ions following the binding of GABA. This increases the 

chloride conductance, providing an inhibitory current (and hyperpolarization of the 

membrane) to the neuron, that if great enough ceases action potential firing.  

GABAA Receptor Subunits 

GABAA receptors are members of the ligand-gated ion channel superfamily. The 

GABAA receptor protein is a pentamer with an integrated ion channel pore formed by 

the heteromeric assembly of various GABAA receptor subunits. Several subunits can 

combine to form pharmacologically distinct receptor subtypes. These subunits include 

the following, α1-6, β1-3, γ1-3, d, ε, π, θ, ρ1-3 (Simon et al 2004). Of most interest to 

our study are primary synaptic GABAA receptors that are composed of 2 α subunits, 2 β 

subunits, and a single γ subunit. Mutations of the genes that encode GABAA receptors 

have delitarious effects. For example, humans that have mutations in genes for these 

subunits suffer from various forms of epilepsy. 
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Benzodiazepines 

Status epilepticus is a syndrome consisting of a very prolonged seizure with 

continuous evolution of neurological state, worsening cerebral metabolism, a steady rise 

in core temperature, a rise in blood pressure, lactic acidosis, hyperglycemia and 

increased catecholamine levels (Simon et al 1984; Meldrum et al 1973).In humans, 

status epilepticus is treated with benzodiazepines, including diazepam, lorazepam, and 

midazolam and barbiturates, including phenobarbital and pentobarbital, all of which 

exert an anticonvulsant effect by acting on the GABA receptors (Macdonald and Kelly 

1995).Once bound to the GABAA receptor, diazepam locks the receptor protein complex 

into a conformation which has a greater affinity for the endogenous neurotransmitter 

GABA. This increases the frequency of the opening of the associated chloride ion 

channel and hyperpolarizes the membrane of the associated neuron thereby inhibiting the 

neuron and decreasing action-potential firing resulting in decreased neuronal network 

excitability. The net effect being anticonvulsant, sedatory and/or anxiolytic effects 

depending on the chemical structure of the benzodiazepine and specific combination of 

GABA receptor subunits, as well as the region of the brain affected. Interestingly, both 

in humans and in experimental animals, benzodiazepines are efficacious in early, but not 

late status epilepticus (Yaffe and Lowenstein 1993, Walton and Treiman 1988). Thus, 

both experimental animal and human data suggest that the functional properties of 

hippocampal GABA receptors are rapidly modified during status epilepticus. This 

refractoriness to diazepam resulted from the loss of diazepam potency but not of 

diazepam efficacy. These studies suggested that refractoriness of seizures to diazepam 
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may result from altered GABA receptor function in the hippocampus (Kapur et al 1989, 

Kapur and Macdonald 1996, 1997, Kapur and Coulter 1995, Lothman et al 1991, Van 

Landingham et al 1991). 

Benzodiazepines bind at the interface of α and γ GABAA receptor subunits. 

Diazepam sensitivity of GABA receptors requires the presence of the γ2 subtype with a 

β subtype and either α1, α2, α3, or α5 subtypes (Pritchett et al 1989, Macdonald and 

Olson 1994). Recombinant GABA receptors expressed without the γ2 subtype are highly 

sensitive to zinc (Zn), whereas GABA receptors expressed with the γ2 subtype are 

relatively insensitive to Zn (Draguhn et al 1990, Smart et al 1991). Therefore, one 

explanation for acute reduction of diazepam sensitivity of hippocampal dentate granule 

cell GABA receptors after seizures would be a loss of the γ2 subtype from the receptor; 

however this would not explain diminished Zn sensitivity of these receptors. Another 

potential explanation for diminished diazepam and Zn sensitivity would be an altered α 

subtype expression, because α subtypes are known to alter both Zn and diazepam 

sensitivity of the GABA receptors. More recently, GABAA receptor subunit specific 

surface trafficking has been shown in epileptic rats (Brooks-Kayal et al 1998). Seizures 

may alter GABA receptor function by other mechanisms such as posttranslational 

modification of GABA receptors or release of endogenous benzodiazepine-like 

substances. Modification of GABA receptors by phosphorylation is also well 

documented (Lin et al 1994, Macdonald and Olson 1994, MacDonald and Kelly 1995). 

For instance, seizures are known to modulate activity of calcineurin, which plays a role 

in GABA receptor function (Jope et al 1992, Perlin et al 1992). 
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Calcineurin 

Interestingly, calcineurin is acutely up regulated following hypoxia-induced 

seizures in the neonatal rat. In this model, rats postnatal day 10-13 are susceptible to 

hypoxia-induced tonic-clonic and myoclonic seizures that later predisposes the animal to 

a lower seizure threshold and spontaneous seizures.. Calcium influx through GLUR2 

negative AMPA receptors causes the acute activation of calcineurin, a highly conserved 

Ca2+ and calmodulin-dependent serine/threonine phosphatase. Following hypoxia-

induced seizures, CA1 pyramidal neurons exhibit a down-regulation of GABAA 

receptor-mediated inhibition with a concomitant dephosphorylation of the β2/3 subunit 

that was reversed by calcineurin inhibitors. This study did not explore any other possible 

effects that calcineurin may have had on other ion channels. Recently, calcineurin was 

reported to regulate the hyperpolarization-activated current (IH). 

 The pathological decrease in IH in CA1 pyramidal neurons maybe due post-

translational modification of the channel (Jung et al 2010). Acutely, calcineurin may 

cause dephosphorylation of the HCN channel (Jung et al 2010). However, this is 

unknown and the specific dephosphorylation site(s) have not been identified yet. 

Furthermore, the study associating calcineurin and IH modulation used FK506, which 

may directly modulate other ion channels (Jung et al 2010). Finally, this study did not 

refute the hypothesis that FK506 may act by dephosphorylation of another HCN 

regulating protein.  

 This dissertation aims to broaden the characterization of altered GABAergic 

inhibition and elucidate underlying molecular mechanisms. 
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CHAPTER II 

PERSISTENTLY DECREASED INHIBITION OF AREA CA1 OF THE 

HIPPOCAMPUS FOLLOWING PERINATAL HYPOXIA-INDUCING 

SEIZURES* 

Introduction 

Hypoxia is the most common cause of neonatal seizures and can lead to epilepsy, 

but the epileptogenic mechanisms are not yet understood. We have previously shown 

that hypoxia- induced seizures in the neonatal rat result in acutely decreased amplitudes 

and frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs 

and mIPSCs see appendixes A and B respectively) in hippocampal CA1 pyramidal 

neurons. In the current study, we asked whether such changes persist for several days 

following hypoxia-induced seizures. Similar to the acute findings, we observed 

decreased frequency and amplitudes of sIPSCs and decreased mIPSC amplitudes in CA1 

pyramidal neurons at 3–5 days after hypoxia. However, in contrast to the acute findings, 

we observed no differences between hypoxia-treated and control groups in mIPSC 

frequency. Additionally, by 7 days after hypoxia, sIPSC amplitudes in the hypoxia group 

had recovered to control levels, but sIPSC frequency remained decreased. These data 

indicate that the persistently decreased sIPSC frequency result from decreased firing of 

presynaptic inhibitory interneurons, with only transient possible changes in postsynaptic 

responses to GABA release. 

Cerebral hypoxia is the most common cause of neonatal seizures, and can lead to 

epilepsy, mental retardation, and cerebral palsy (Bergamasco et al 1984, Bernes and 

*Reprinted with permission from S. Karger AG, Medical and Scientific Publishers, Allschwilerstrasse 
10, 4009 Basel, Switzerland (Sanchez R.M. et al: Dev Neurosci 2007;29:159-167) 
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Kaplan 1994, Volpe 2001). Seizure-inducing global hypoxia in neonatal rats results in 

long-term increases in seizure susceptibility (Jensen et al 1991 and 1992) and can lead  

to learning deficits (Yang et al 2004), thus mimicking clinical aspects of neonatal 

hypoxia-induced seizures. Although such seizures in the neonate may be neocortical in 

origin, c-Fos immunocytochemistry several hours after hypoxia-induced seizures 

indicates involvement of the hippocampus (Jensen et al 1993), and electrophysiological 

studies in hippocampal slices from animals that experienced neonatal hypoxia-induced 

seizures have demonstrated consequent acute and chronic pathological increases in 

network excitability (Jensen et al 1998, Sanchez et al 2001). Thus, a single episode of 

hypoxia associated with seizures in the perinatal period can have adverse consequences 

for hippocampal function that may promote epileptogenesis, as well as disrupt cognitive 

function, in the long term.  

The mechanisms that critically contribute to hippocampal dysfunction after 

perinatal hypoxia-induced seizures are yet poorly understood, but likely include 

pathological changes in synaptic inhibition. Inhibitory signaling mediated by γ-

aminobutyric acid type A (GABAA) receptors has been observed to be altered in the 

hippocampus and neocortex by various mechanisms in several experimental seizure 

models (for a review, see Cossart et al 2005). In the immature brain specifically, the 

developmental pattern of GABAA receptor subunit mRNA expression was shown to be 

disrupted throughout the hippocampus as early as 6 h after kainate-induced status 

epilepticus in postnatal day 9 (P9) rats (Lauren et al 2005), and pilocarpine-induced 

status in P10 rats was found to alter GABAA receptor subunit mRNA expression and 
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GABAA receptor function in dentate granule cells into adulthood (Zhang et al 2004). 

Additionally, hyperthermia-induced seizures in P10 rats resulted in increased evoked and 

miniature GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) within 1 

week, changes that depend on pathological modulation of mechanisms that govern 

presynaptic GABA release (Chen et al 1999). Thus, although their precise contribution 

to possible hippocampal dysfunction and epileptogenesis remains under investigation, 

multiple mechanisms of GABA-mediated inhibition have been found to be 

pathologically altered acutely and chronically by seizures in the developing brain. 

 Using a rat model, we have previously demonstrated an acute decrease in basal 

synaptic inhibition of hippocampal area CA1 pyramidal neurons after hypoxia-induced 

seizures in the immature brain (Sanchez et al 2005). Specifically, we observed 

significantly decreased amplitudes and frequency of both spontaneous and miniature 

GABAA receptor-mediated IPSCs (sIPSCs and mIPSCs) in CA1 pyramidal neurons 

recorded in slices prepared 10 minutes after hypoxia-induced seizures at P10, and further 

found that these changes were associated with strong activation of the neuronal 

phosphatase calcineurin and dephosphorylation of GABAA receptors (Sanchez et al 

2005). Notably, previous work demonstrated that hippocampal slices prepared as early 

as 10 minutes following hypoxia-induced seizures already exhibit hyperexcitability in 

area CA1 (Jensen et al 1998). Thus, perinatal hypoxia-induced seizures can dysregulate 

hippocampal synaptic inhibition through very rapid biochemical events, and this 

dysregulation may help to promote an immediate pathological increase in network 

excitability. Given the persistence of hippocampal hyperexcitability after hypoxia-
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induced seizures, however, these early biochemical events must precede more permanent 

changes that are likely mediated by mechanisms other than kinase/ phosphatase 

signaling. 

 In the current study, we asked whether the acutely decreased basal synaptic 

inhibition of CA1 pyramidal neurons after hypoxia-induced seizures in P10 rat pups 

could be observed several days after hypoxia treatment, as we had previously found 

pathologically increased hippocampal excitability to persist during this period (Sanchez 

et al 2001). Our findings indicate that decreased inhibition persists for at least 1 week 

following hypoxia-induced seizures. However, whereas the immediate decreases may 

depend on both pre- and postsynaptic changes, the longer-lasting decrease appears to be 

mediated largely by pathologically decreased spontaneous firing of presynaptic 

inhibitory interneurons.  
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Methods 

Animals 

Long-Evans rat pups (Charles River), at an age of P10–P17, were used for these 

experiments. Litters were housed with their dam in the UTHSC (University of Texas 

Health Science Center at San Antonio) animal facility on a 12-hour light/12-hour dark 

cycle. All procedures were approved by the Institutional Animal Care and Use 

Committee and were in accordance with NIH guidelines on the ethical use of 

experimental animals.  

Hypoxia Treatment 

Seizures were induced in male Long-Evans rat pups on P10 by a 14–16-minute 

exposure to 5–7% O2. Pairs of littermates were removed from their dam and each placed 

into a custom-made airtight chamber on heating pads to maintain a rectal temperature of 

33–34° C. One chamber (control) was left uncovered and continuously exposed to room 

air, while the other (hypoxia) was covered and the O2 concentration lowered by infusion 

of nitrogen gas into the chamber. The O2 concentration was lowered to 6–7% for 4 

minutes, then 5–6% for 8 minutes, and then lowered by 1% per minute until the animal 

became apneic for 30 seconds. The chamber was then uncovered and exposed to room 

air.  

Using this protocol, spontaneous seizures typically began within 2–4 minutes of 

hypoxia, and occurred repeatedly throughout the hypoxia duration until apnea, and most 

animals continued to exhibit behavioral seizures for several minutes after returning to 

room air. At the end of hypoxia treatment, both animals in a pair were ear-marked with 
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sharp scissors and returned to their dam. Thus, control animals were handled identically 

to hypoxia-treated animals except for hypoxia exposure. All animals in the hypoxia-

treated group used for this study exhibited a minimum of three tonic-clonic seizures. 

Hippocampal Slice Preparation 

Hippocampal slices were prepared 3–7 days after hypoxia treatment. Rat pups 

were killed by decapitation under isoflurane anesthesia. The brains were removed and 

immediately placed into ice-cold oxygenated artificial cerebrospinal fluid (ACSF) that 

contained (in mM): sucrose 201, KCl 3.2, Na2PO4 1.25, MgCl2 2, CaCl 2 2, Na2HCO3 

26, and D-glucose 10, bubbled with 95% O2 /5% CO2. The brains were blocked by 

making a razor cut along the coronal plane just anterior to the cerebellum, and the cut 

end was glued to the stage of a vibratome (Leica 1000 S). Coronal sections (350 µM) of 

slices were cut in cold, continuously oxygenated sucrose ACSF, and then incubated for 

at least 1 h in a custom-made holding chamber filled with continuously oxygenated 

recording ACSF that contained (in mM): NaCl 126, KCl 3.3, Na2PO4 1.25, MgSO4 1.3, 

CaCl2 2, Na2HCO3 26, and D-glucose 10, bubbled with 95% O2 /5% CO2 at room 

temperature. 

Electrophysiological Recordings 

Slices were transferred to a submersion chamber (Warner Instruments) that was 

superfused continuously with oxygenated ACSF at room temperature for recordings. 

Whole-cell patch-clamp recordings were obtained from CA1 pyramidal neurons under 

visual guidance using infrared differential interference contrast microscopy (Zeiss 

Axioskop FS2 with a Dage-MTI camera). The standard recording pipette solution 
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contained (in mM): Cs-gluconate 123, NaCl4, MgCl2 2, EGTA 10, HEPES 10, Na-ATP 

4, GTP 0.3, pH 7.2. For experiments to study GABA-mediated currents at –70 mV, we 

used a pipette solution with approximately equimolar chloride to the extracellular 

solution that contained (in mM): CsCl 129, MgCl2 2, EGTA 10, HEPES 10, Na-ATP 4, 

GTP 0.3, pH 7.2. Filled recording pipettes had resistances of 1–3 megaohms, and series 

resistances were less than 20 megaohms. 

 Voltage clamp recordings were obtained using a Multiclamp 700A amplifier 

(Axon Instruments) and digitized with a Digidata 1322A (Axon) for acquisition to 

computer. Data were filtered at 2 kHz and digitized at 10 kHz. Input resistance and 

series resistance were monitored intermittently throughout experiments by applying –10 

mV voltage steps and observing the capacitative transient of the current response. Input 

resistances ranged from 540 to 800 megaohms and did not differ significantly between 

groups.  

Initial series resistances were estimated to be less than 20 megaohms, and data 

were discarded if series resistance changed by more than 30%. sIPSCs and mIPSCs were 

detected and analyzed off-line using Mini-Analysis (Synaptosoft) on a Windows-based 

computer, or using the event detection package with a variable amplitude template in 

Axograph 4.9 (Axon) on a Macintosh computer. Detected events were visually scanned 

and obvious artifacts were excluded. For sIPSCs, the first 500 events, and for mIPSCs, 

the first 150–200 events detected for each cell were used for analysis. Complex events 

(consisting of two or more IPSCs) detected by Mini-Analysis were included in the 

analyses of inter-event intervals and amplitudes (the Mini- Analysis algorithm calculates 
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event amplitudes from a baseline determined by the extrapolated decay of the preceding 

event), but were excluded from analyses of rise and decay times. Given the somewhat 

subjective nature of spontaneous event detection, these analyses were corroborated using 

Axograph 4.9 by a second experimenter blinded to the experimental condition. 

Exponential fits to averaged IPSCs were done using Igor Pro Carbon (Wavemetrics).  

Except where noted, the numbers of cells given in statistical analyses represented 

one cell per animal. NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-

sulfonamide),APV(DL-2-amino-5-phosphonovaleric acid), bicuculline and tetrodotoxin 

(TTX) were diluted from stock solutions to final concentrations in ACSF and applied by 

bath superfusion. All drugs were purchased from Sigma. 
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Results 

sIPSC Amplitudes and Frequency Remain Decreased Days after Hypoxia-Induced 

Seizures 

We initially examined sIPSCs in CA1 pyramidal neurons in hippocampal slices 

prepared 3–5 days after hypoxia treatment, and in slices from age-matched littermate 

control-handled animals. IPSCs were recorded at a holding potential of +10 mV, the 

approximate reversal potential for glutamate receptors, so that spontaneous GABAergic 

events could be isolated without blocking excitatory transmission in the slice. Figure 1 

shows outward sIPSCs recorded under these conditions. The identification of these as 

GABAA receptor-mediated synaptic currents was confirmed by their complete blockade 

with 20 µM bicuculline at the end of experiments (not shown). As illustrated in figure 1, 

at 3–5 days after hypoxia, we observed a significant decrease in both the amplitudes and 

frequency of sIPSCs. Mean sIPSC amplitudes in the hypoxia-treated group were 

significantly diminished to 63.7% of control (mean amplitudes = 19.89 8 2.2 pA for the 

control group; 12.67 8 1.4 pA for the hypoxia group; n = 10 per group; p = 0.013, 

Student’s t test), and the mean sIPSC frequency was decreased to 63.8% of control 

(mean frequency = 3.56 ± 0.26 Hz for the control group; 2.27 ± 0.32 Hz for the hypoxia 

group; p = 0.006). No differences in rise times were observed between groups (10– 90% 

rise times = 2.81 ± 0.11 ms for the control group; 2.92 ± 0.19 ms for the hypoxia group; 

p = 0.63). These data indicate that the acute decrease in basal synaptic inhibition persists 

at least for several days after hypoxia-induced seizures. We next examined possible pre- 

and post-synaptic mechanisms that maybe involved with this decrease in inhibition. 
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Decreased mIPSC Amplitudes but Not Frequency Days after Hypoxia-Induced Seizures  

We next examined mIPSCs under the same conditions by adding 1 µ M TTX to 

the bath. Similarly to sIPSCs, the mIPSC amplitudes were significantly decreased in the 

hypoxia-treated group    to  65.8%  of control  (figure2; mean mIPSC  amplitudes = 

18.36 ± 2 pA for the  control  

 

 

Figure1. sIPSCs. Basal synaptic inhibition of CA1 pyramidal neurons is decreased at 3-
5 days after hypoxia-induced seizures at P10. A1. An example of sIPSCs recorded by 
whole-cell voltage clamping of a control hippocampal area CA1 pyramidal neuron. A2. 
sIPSCs from pyramidal cell recorded from the hypoxia-treated group. Insets a and b 
show expanded 10- second segments from each of the longer traces. Summary data are 
illustrated by the bar graphs in B. sIPSC amplitudes and frequency were significantly 
decreased (*P=0.013 and 0.006 respectively).There was no difference in sIPSC rise 
times between groups. 
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group, n = 7; 12.08 ± 0.9 pA for the hypoxia group, n = 8; p = 0.01). However, in 

contrast to sIPSCs, the frequency of mIPSCs after hypoxia was 97.6% of control, and 

was not significantly different from the control group (mean mIPSC frequency = 1.02 ± 

0.13 Hz for the control group; 1.0  ±  0.06  Hz for  the  hypoxia  group;  p = 0.84). The 

finding of unchanged mIPSC frequency suggested that at 3–5 days after hypoxia there 

were no persistent changes in the number of  GABAergic synapses or in the probability 

of GABA release at inhibitory synapses.  

 

Figure 2: mIPSCSs. mIPSCs recorded 3-5 days after hypoxia-induced seizures 
exhibited decreased amplitudes compared to sIPSCs, but there was no difference in 
mIPSC frequency between groups. A. Sample raw traces of mIPSCs. B. Summary data 
for mIPSC amplitudes (left) and frequency (right). P= 0.04.  
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These observations further suggested that the decreased sIPSC frequency at this phase 

resulted from decreased spontaneous firing of presynaptic inhibitory interneurons, and 

not from altered release mechanisms at the presynaptic terminals. Conversely, decreased 

sIPSC and mIPSC amplitudes likely resulted from altered responses of postsynaptic 

GABAA receptors to synaptic GABA release. 

 Pharmacological Sensitivity of Postsynaptic GABAA Receptors Is Unchanged 

 To further characterize possible alterations in postsynaptic GABAA receptor 

properties at 3–5 days after hypoxia, we next examined their kinetics and 

pharmacological sensitivity. Notably, previous work by others showed that kainate-

induced status epilepticus in neonatal (P9) rats resulted in decreased γ2 mRNA 

expression throughout the hippocampus as early as 6 hours and at 3 days following 

kainate treatment (Lauren et al 2005). Given that the γ2 subunit confers benzodiazepine 

sensitivity, this suggested that decreased benzodiazepine sensitivity might be an early 

consequence of neonatal seizures (Sieghart et al 1999). To examine this possibility, we 

recorded mIPSCs 3–4 days after hypoxia treatment at a more physiological holding 

potential of –70 mV with glutamate receptors blocked by NBQX (20 µM ) and APV (50 

µM ), and with 1 µM TTX in the bath. As shown in figure 3, mIPSCs recorded under 

these conditions again exhibited decreased amplitudes in the hypoxia-treated group to 

67.2% of control (mean amplitudes = 44.1 ± 4 pA for the control group, n = 6 cells from 

4 animals; 30.14 ± 4.3 pA for the hypoxia group, n = 5 cells from 4 animals; p = 0.04, 

Student’s t test) with no differences in rise times (10–90% rise times = 0.93 ± 0.11 ms 

for the control group; 1.02 ± 0.14 ms for the hypoxia group; p = 0.6). mIPSC decays 
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were well fit by a single exponential function, and decay time constants estimated from 

these fits indicated no significant differences between groups despite a trend toward 

increased decay times in the hypoxia-treated group compared to controls (decay time = 

25.6 ± 2.4 ms for the control group; 33.2 ± 4 ms for the hypoxia group; p = 0.15). As 

shown in figure 3, application of the positive GABAA receptor modulator diazepam (200 

nM) significantly prolonged mIPSC decay times in both groups. There was no difference 

in the percent increase in decay times between the control and hypoxia-treated groups 

(percent increase = 48 ± 7.2 for the control group; 48.7 ± 8 for the hypoxia group). 

Though not exhaustive, these data indicate that the pharmacological and kinetic 

properties of postsynaptic GABAA receptors were unchanged at 3–4 days following 

hypoxia-induced seizures, and suggest that any changes in postsynaptic GABAA receptor 

properties were likely not due to altered subunit composition.  

Recovery of sIPSC Amplitudes but Not Frequency at 7 Days after Hypoxia 

To further characterize the time course of changes in sIPSC parameters following 

hypoxia-induced seizures, we again recorded sIPSCs at a holding potential of +10 mV in 

CA1 pyramidal neurons in slices obtained at 7 days after hypoxia-induced seizures at 

P10. As shown in figure 4, by 7 days sIPSC amplitudes in the hypoxia treated group had 

recovered to 93.7% of control (sIPSC amplitudes = 33 ± 1.8 pA for the control group; 

30.9 ± 3.4 pA for the hypoxia group; n = 4 per group; p = 0.61). However, sIPSC 

frequency remained consistently decreased in the hypoxia-treated group at 64.4% of 

control (sIPSC frequency = 7.1 ± 0.64 Hz for the control group; 4.57 ± 0.79 Hz for the 

hypoxia group; p = 0.048). This divergence confirmed that the decrease in sIPSC 
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amplitude was mediated by different mechanisms than those responsible for the 

decreased sIPSC frequency, and further suggested that the decrease in sIPSC frequency 

may be a chronic consequence of perinatal hypoxia-induced seizures. 

Since this article was published we have begun to explore possible mechanisms 

of persistently decreased sIPSC frequency following neonatal hypoxia-induced seizures. 

To this date, we have identified two antiepileptic drugs that counter this effect. 

 

 

 
 
Figure 3: No Change in Diazepam Sensitivity.  mIPSCs recorded at a holding 
potential of -70mV at 3-5 days after hypoxia-induced seizures exhibited decreased 
amplitudes with no changes in rise and decay times and responsiveness to diazepam. A. 
The traces shown are averages of 50 mIPSCs from sample neurons in control and 
hypoxia-treated groups under each condition. B. Bar graphs showing summary data for 
all cells. mIPSC amplitudes again were significantly smaller in hypoxia-treated group 
compared to controls (*P=0.04). No differences were observed between groups in rise 
and decay times and in the enhancement of decay times by 200 nM diazepam.  
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Figure 4: Persistently Decreased sIPSC Frequency. sIPSC amplitude and mIPSC 
frequencies recover by 7 days post hypoxia-induced seizures (P10) but sIPSC frequency 
remains decreased to approximately 60% of control. 
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Conclusions 
 

Our previous work demonstrated an acute decrease in both the amplitudes and 

frequency of sIPSCs and mIPSCs in CA1 pyramidal neurons recorded in slices prepared 

immediately following perinatal hypoxia-induced seizures in vivo (Sanchez et al 2005). 

In the current study, we examined further the ‘subacute’ time course of these changes at 

3–5 and 7 days after hypoxia. We observed that the decreases in sIPSC frequency and 

amplitudes persisted at 3–5 days after hypoxia. Additionally, mIPSC amplitudes 

remained decreased at this time, comparably to the decrease in sIPSC amplitudes. 

Interestingly, however, mIPSC frequency recovered to control levels. This last finding is 

significant in that it indicates that several days following neonatal hypoxia-induced 

seizures, basal synaptic inhibition of CA1 pyramidal neurons is decreased despite no loss 

of GABAergic synapses or apparent long-lasting changes in the probability of 

spontaneous GABA release.  

Although we did not record directly from presynaptic interneurons, this indicates 

that the persistent decrease in sIPSC frequency is most likely entirely due to decreased 

spontaneous firing of interneurons that provide synaptic inhibition to CA1 pyramidal 

neurons. Notably, a similar (yet not identical) scenario has been reported for layer II 

neurons of the entorhinal cortex at 3–7 days after pilocarpine-induced status epilepticus 

in adult rats (Kobayashi et al 2003) (see below).Examination of the pharmacological and 

kinetic properties of mIPSCs at 3–5 days after hypoxia also indicated no changes in 

these, although there was a trend toward longer decay times in the hypoxia-treated 

group. These properties of GABAA receptors can be post-translationally modulated, but 
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are largely determined by their specific subunit composition (Hevers and Luddens 1998, 

Mehta and Ticku 1999, Sieghart et al 1999), and dramatic changes in GABAA receptor 

subunit expression have been observed in hippocampal neurons acutely and chronically 

after neonatal status epilepticus in rats (Zhang et al 2004, Lauren et al 2005). The lack of 

significant changes at 3–5 days after hypoxia-induced seizures is thus consistent with a 

lack of altered GABAA receptor subunit expression in this seizure model, and suggests a 

posttranslational mechanism of IPSC amplitude down-modulation. 

Our previous work indicated that dephosphorylation of postsynaptic GABAA 

receptors was at least partly responsible for decreased amplitudes and increased decay 

times of sIPSCs immediately following hypoxia induced seizures, and further showed 

that calcineurin expression was significantly increased in the hippocampus at 24 hours 

after hypoxia, suggesting a persistence of increased calcineurin signaling (Sanchez et al 

2005). It is conceivable that the decreased amplitudes and trend toward increased decay 

times of mIPSCs we observed at 3–5 days after hypoxia in the current study reflected a 

persistent increase in basal calcineurin-mediated dephosphorylation of GABAA 

receptors, although we have yet to explore this as a possible mechanism during this 

phase. GABA-mediated synaptic inhibition of principal neurons has been reported to be 

pathologically altered in multiple neuron types in several experimental seizure models 

(Cossart et al 2005).  

Whereas many studies have focused on seizure-induced changes in GABAA 

receptor subunit expression and function (Clark et al 1994, Gibbs et al 1997, Schwarzer 

et al 1997, Tsunashima et al 1997, Brooks-Kayal et al 1998) or loss of GABAergic 
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neurons (Andre et al 2001, Dinocourt et al 2003,  Kobayashi and Buckmaster 2003, 

Sloviter et al 2003), recent work has underscored the importance of the regulation of 

intrinsic excitability and spontaneous firing of GABAergic interneurons (Kobayashi and 

Buckmaster 2003, Shao and Dudek 2005), in addition to mechanisms of GABA release 

(Chen et al 1999; Hirsch et al 1999), in controlling network excitability. For example, 

(Shao and Dudek 2005) reported that mIPSC frequency in dentate granule cells was 

significantly decreased at 4–7 days (and remained so for 3 months) after kainate-induced 

status epilepticus, yet they observed no differences between groups in the frequency of 

sIPSCs. These authors proposed that increased spontaneous firing of GABAergic 

interneurons may have been a compensatory response to the loss of GABAergic 

synapses or decreased GABA release probability indicated by the lower mIPSC 

frequency. In contrast, (Kobayashi et al 2003) reported that at 3–7 days after pilocarpine-

induced status epilepticus, layer II entorhinal cortical neurons exhibited no changes in 

mIPSC frequency, but significantly decreased sIPSC frequency. These data were similar 

to our observations after hypoxia, and indicated a functional decrease in basal synaptic 

inhibition despite no apparent loss of GABAergic synapses or reduction in the 

probability of action potential-independent GABA release, which could be attributed to 

decreased spontaneous firing of presynaptic interneurons.  

Although dysregulation of GABAergic transmission may be a general 

consequence and mechanism of seizure and epileptogenesis, it clearly is not restricted to 

alterations that occur at GABAergic synapses, as the intrinsic excitability and synaptic 

drive of GABAergic neurons are dynamically regulated and can profoundly affect 
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inhibition. It is worth noting that (Kobayashi and Buckmaster 2003) reported no 

difference between control and pilocarpine-treated groups in mIPSC amplitudes (in 

addition to frequency), despite decreased sIPSC amplitudes in the pilocarpine treated 

group. The altered amplitudes of only action potential- dependent IPSCs suggested that 

changes in action potential-dependent synaptic GABA release could also have impacted 

sIPSC frequency.  

In our study, the comparable decreases in both sIPSC and mIPSC amplitudes at 

3–5 days after hypoxia are more consistent with a common (as yet unidentified) 

postsynaptic mechanism of altered amplitudes, and the decreased sIPSC frequency in the 

hypoxia-treated group was most likely due entirely to decreased spontaneous firing of 

GABAergic interneurons. The apparent recovery of sIPSC amplitudes but not frequency 

by 7 days after hypoxia also argues for separate mechanisms of modulation of these two 

IPSC parameters. These observations further suggest that decreased interneuron 

excitability, due to decreased excitatory synaptic drive and/or altered intrinsic membrane 

properties, may be a long-term consequence of neonatal seizures induced by hypoxia, 

and may contribute to the chronic increase in hippocampal excitability and seizure 

susceptibility. Whether this effect is truly chronic has yet to be investigated. However, 

given that depolarizing responses to GABA during this early postnatal period contribute 

to activity-driven maturational processes (Ben-Ari 2002), even transient alterations in 

pre- and postsynaptic GABAergic transmission may have chronic consequences for 

hippocampal function by profoundly altering physiological maturation, and one would 
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expect that the longer the duration of each pathophysiological alteration, the more 

profound will be the chronic consequences. 

 In summary, we have identified persistent decreases in basal inhibitory synaptic 

transmission to hippocampal CA1 pyramidal neurons up to 1 week following hypoxia 

induced seizures in P10 rat pups. Whereas the acute decreases identified previously may 

be mediated by mass activity of the phosphatase calcineurin and rapid dysregulation of 

pre- and postsynaptic components of inhibitory synaptic transmission (Sanchez et al 

2005), the persistent decrease appears gradually to depend more on decreased 

spontaneous firing of presynaptic inhibitory interneurons. Direct examination of the 

intrinsic membrane properties of GABAergic interneurons in hippocampi from animals 

that experienced neonatal hypoxia induced seizures may elucidate the underlying 

mechanism(s) of this decreased spontaneous activity, and ultimately determine if and 

how this contributes to epileptogenesis and other hippocampal pathologies in this 

setting. 
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CHAPTER III 

GABAA RECEPTOR SUBUNIT EXPRESSION FOLLOWING PERINATAL 

HYPOXIA-INDUCING SEIZURES 

Introduction 

          The GABAA receptor is the most widely distributed and important inhibitory 

receptor in the central nervous system where it mediates, inhibitory postsynaptic currents 

in many cell types. The GABAA receptor is a member of a superfamily of proteins 

coined Cys-loop ligand-gated ion channels (LGIC), named for their characteristic loop 

formed by a disulfide bond between two cysteine residues. Members of this superfamily 

include 5-HT3 receptors, nicotinic acetylcholine receptors, glycine receptors, as well as 

the GABAA receptor. All members of this superfamily are composed of 5 subunits that 

form heteromeric proteins with an ion pore. In the case of the GABAA receptor, this pore 

conducts chloride following the binding of GABA.  

          This increases the chloride conductance and hyperpolarizes the membrane, 

thereby blocking action potential firing. There are several different subunits that impart a 

great deal of pharmacologically distinct receptor subtypes. These subunits include the 

following, α1-6, β1-3, γ1-3, d, ε, π, θ, ρ1-3 (Simon et al 2004). Of most interest to our 

study are synaptic GABAA receptors that are composed of 2 α subunits, 2 β subunits, 

and a single γ subunit. 

           Humans that have mutations in these genes for these subunits suffer from various 

forms of epilepsy. A decrease in γ2 subunits has been associated with decreased 

benzodiazepine and zinc (Zn) sensitivity in acquired partial epilepsy models (Houser et 
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al 2012), and thus, decreased  γ2 could suggest additional changes to the endogenous 

activity-dependent regulation of inhibition that are more complex. Changes in GABAA 

receptor subunit expression could explain our finding of transiently decreased IPSC 

amplitudes reported in chapter II, especially if the subunit expression follows the same 

time course. Such a finding would warrant further electrophysiological and 

pharmacological experiments to determine the functional consequences of altered 

GABAA receptor subunit expression. Here we examined the expression of several 

GABAA subunits involved with synaptic GABAA receptors, specifically α1, α2, β2/3, 

and γ2.  

          We hypothesized, based primarily on our findings of decreased IPSC amplitudes 

as far out as 5 days following neonatal hypoxia-induced seizures, that there would be 

decreased expression of the GABAA receptor subunits listed above. 
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Methods 

Animals 

Long-Evans rat pups (Charles River), at an age of P10–P16, were used for these 

experiments. Litters were housed with their dam in the TAMHSC animal facility in 

Temple, TX. Animals were kept on a 12-hour light/12-hour dark cycle. All procedures 

were approved by the Institutional Animal Care and Use Committee and were in 

accordance with NIH guidelines on the ethical use of experimental animals.  

Hypoxia Treatment 

Seizures were induced in male Long-Evans rat pups on P10 by a 14–16-minute 

exposure to 5–7% O2. Pairs of littermates were removed from their dam and each placed 

into a custom-made airtight chamber on heating pads to maintain a rectal temperature of 

33–34° C. One chamber (control) was left uncovered and continuously exposed to room 

air, while the other (hypoxia) was covered and the O2 concentration lowered by infusion 

of N2 gas into the chamber. The O2concentration was lowered to 6–7% for 4 minutes, 

then 5–6% for 8 minutes, and then lowered by 1% per minute until the animal became 

apneic for 30 seconds. The chamber was then uncovered and exposed to room air. Using 

this protocol, spontaneous seizures typically began within 2–4 minutes of hypoxia, and 

occurred repeatedly throughout the hypoxia duration until apnea, and most animals 

continued to exhibit behavioral seizures for several minutes after returning to room air. 

At the end of hypoxia treatment, both animals in a pair were ear-marked with sharp 

scissors and returned to their dam. Thus, control animals were handled identically to 
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hypoxia-treated animals except for hypoxia exposure. All animals in the hypoxia-treated 

group used for this study exhibited a minimum of five tonic-clonic seizures. 

Tissue and Sample Preparation 

Animals from 2 groups (hypoxia-vs.-control) at 3, 6 and 7 days post-hypoxia for 

a total of 6 groups were sacrificed at the same time each day. Rat pups were killed by 

decapitation under isoflurane anesthesia. The brains were removed and immediately 

placed into ice-cold oxygenated (with 95% O2 / 5% CO2) artificial cerebrospinal fluid 

(ACSF) that contained (in mM): NaCl 126, KCl 3.3, Na2PO4 1.25, MgSO4 1.3, CaCl22, 

Na2HCO3 26, and D-glucose 10.The hippocampi were quickly dissected and placed into 

ice cold 1x RIPA buffer complete with protease inhibitors. The hippocampi were rapidly 

homogenized by sonification with brief quick pulses while on ice. A Bradford 

colorometric assay was performed on all samples. The samples were aliquoted and 

stored at -80°C until Western blots were performed. 

Western Blot 

Antibodies were acquired from various vendors but most were acquired from the 

Ticku laboratory in San Antonio at UTHSCSA. We thank Dr. Ticku’s laboratory for 

kindly providing us with access to his antibody supplies. Western blot analysis of α1, α2, 

β2/3 and γ2 GABAA receptor subunit expression were conducted on whole hippocampal 

homogenates from 2 groups at 3 different time points: 24 hours, 48 hours and 6 days 

post-hypoxia (6 group’s total).  Samples were run on ready-made gels (BIORAD 

anyKD) at 200 Volts for 40 minutes. Transfer to PVDF membrane was performed at 90 

volts for 90 minutes in an ice bath.  
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The blots were then blocked with Licor blocking solution 1x for a minimum of 2 

hours at room temperature. Blots were incubated overnight with primary antibodies to 

GABAA receptor subunits (SOURCE)at 1:500-1:1000 dilutions and 1:10000 dilution 

anti-GAPDH (SOURCE). We used enhanced chemiluminescence for detecting most of 

the GABAA subunits, but detection of the β2/3 subunit was performed using both ECL 

and Licor. The quality of Licor Western blots is much greater than that of ECL and we 

performed separate β2/3 Western blots for both technologies and found no difference in 

the result. Optical density for each band was then measured by NIH software ImageJ. 

Finally, each band was background subtracted and normalized to GAPDH. 

 Normalized data were analyzed by student’s t-test or ANOVA where 

appropriate. We found no significant changes in the expression of any of the GABAA 

receptor subunits at any of the time points studied by either statistical method. 
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Results 

          To characterize possible alterations in postsynaptic GABAA receptor subunit 

expression we examined several GABAA receptor subunits known to mediate most 

postsynaptic GABA mediated currents called IPSCs. 

GABAA α1 Receptor Subunit Expression 

          We measured at 3 days post hypoxia-induced seizures (P13) the GABAA subunit 

α1. As can be seen in figure 5, there are no statistically significant changes in the 

expression of α1 following neonatal hypoxia-induced seizures at P13.  p = 0.40, 

Student’s t test. Since GABA receptors are composed of several different types of 

subunits, we further examined the most common subunits found in area CA1 of the 

hippocampus. 

 

 

GABAA α2 Receptor Subunit Expression 

              P13 
Figure 5: Hippocampal GABAA α1 Subunit Expression. Samples were 
normalized to GAPDH. No significant change in α1 expression was found at 
P13. Student’s T-test P>0.05 N=5-7 animals. 
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          We measured at 3, 6 and 7 days post hypoxia-induced seizures (P13, P16, P17) the 

GABAA subunit α2. As can be seen in figure 6, there are no statistically significant 

changes in the expression of α2 following neonatal hypoxia-induced seizures at P13.  p = 

0.40, ANOVA. We next looked at the β2/3 subunit known to be responsible for binding 

GABA to the receptor itself. 

 

  

Figure 6: Hippocampal GABAA α2 Subunit Expression. Samples were 
normalized to GAPDH. No significant change in α2 expression was found at 
P13. ANOVA  P>0.05 N=5-7 animals. 
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GABAA Receptor β2/3 Subunit Expression 

          We measured at 3 and 7 days post hypoxia-induced seizures (P13 and P17) the 

GABAA subunit β2/3. As can be seen in figure 7, there are no statistically significant 

changes in the expression of the GABAA receptor subunit β2/3 following neonatal 

hypoxia-induced seizures at P13, P16, P17. Student’s t test p=0.38. We next looked at 

the γ2 subunit known to play a key role in benzodiazepine regulation of the GABAA 

receptor. 

 

 

 

Figure 7: Hippocampal GABAA β2/3 Subunit Expression. Samples were 
normalized to GAPDH. No significant change in β2/3 expression was found at 
P13. ANOVA  P>0.05 N=5-7 animals. 
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GABAA Receptor γ2 Subunit Expression 

          We measured at 3 days post hypoxia-induced seizures (P13) the GABAA subunit 

γ2. As can be seen in figure 8, there are no statistically significant changes in the 

expression of the GABAA receptor subunitγ2 following neonatal hypoxia-induced 

seizures at P13 and P17.  p=0.58 Student’s t test.  

 

 

  

 

 

Figure 8: Hippocampal GABAA γ2 Subunit Expression. Samples were 
normalized to GAPDH. No significant change in γ2 expression was found at 
P13. Students t-test  P>0.05 N=5-7 animals. 
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Summary 

 The combined Western blot results from all GABAA subunits suggest that there 

are no significant changes to the protein expression of the GABAA receptor (see figure 

9). Since, in chapter 2 we measured possible changes in diazepam sensitivity and found 

none, the data support the same conclusion, that there are no changes in subunit 

composition of the GABAA receptors in area CA1 of the hippocampus following 

neonatal hypoxia-induced seizures. 

 

  
Figure 9: GABAA SUBUNIT EXPRESSION.  Summary of hippocampal 

GABAA subunit expression. Samples were normalized to GAPDH. No 

significant change in subunit at any time point studied. ANOVA  P>0.05 N=5-7 

animals. 
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Conclusions 

           Altered GABAA receptor subunit expression and pharmacological sensitivity have 

been reported in neonatal as well as adult rodent models of seizures and human epileptic 

hippocampi (Zhang et al 2007, Schwarzer et al 1997, Bouilleret et al 2000, Raol et al 

2006, Loup et al 2000). Pyramidal neurons in the rat hippocampus express phasic 

GABAA receptors composed of 2αs 2βs and one γ subunit(s). Human patients with 

temporal lobe epilepsy display decreased GABAA receptor subunit expression in 

hippocampal neurons (Loup et al 2000). Although there is no substantial loss of neurons 

in the neonatal hypoxia rat model as in other models of acquired epilepsies there still 

may be changes in the expression of various GABAA receptor subunits, especially 

considering the decrease in IPSC amplitudes reported in chapter II.  

          We aimed to determine whether decreased inhibition after neonatal hypoxia-

induced seizures is associated with changes in expression of postsynaptic GABAA 

receptors. Based on acute changes in IPSC amplitudes, we hypothesized that α1, α2, 

β2/3, and γ2 subunit expression would be decreased after hypoxia-induced seizures, 

compared to age matched control littermates. Previously, we had shown that the chronic 

decreases of sIPSC frequency after hypoxia-induced seizures were likely due to 

decreased firing of presynaptic interneurons. However, we also observed that s- and 

mIPSC amplitudes were transiently decreased during this critical maturational window 

after hypoxia-induced seizures. Changes in GABAA subunit expression could explain 

our finding of transiently decreased s- and mIPSC amplitudes, especially if the subunit 

expression follows the same time course, decreasing initially but recovering by 7 days 
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post hypoxia-induced seizures. For example, a decrease in the γ2 subunit of the GABAA 

receptor has been associated with decreased benzodiazepine and zinc sensitivity in 

acquired partial epilepsy models (Houser et al 2012), and thus, decreased γ2 could 

suggest additional changes to the endogenous activity-dependent regulation of inhibition 

that are more complex. Such a finding would warrant further electrophysiological and 

pharmacological experiments to determine the functional consequences of altered 

GABAA receptor subunit expression.  

          Western blot analysis of key GABAA subunits is an important experiment to 

conduct and seizure-dependent changes in subunit expression have been reported in   

animal models of acquired epilepsy and epileptic humans. For example, GABA-

mediated synaptic inhibition of principal neurons has been reported to be pathologically 

altered in multiple neuron types in several experimental seizure models (Cossart et al 

2005). Importantly, although numerous studies have focused on seizure-induced changes 

in GABAA receptor subunit expression and function or loss of GABAergic neurons, 

much of the evidence is not from actual protein expression but rather changes in mRNA. 

Changes in GABAA subunit expression could explain our finding of transiently 

decreased IPSC amplitudes, especially if the subunit expression follows the same time 

course, decreasing initially but recovering by 7 days post hypoxia-induced seizures. We 

found no changes in the expression of α1, α2, β2/3, and γ2 GABAA receptor subunits up 

to a week following hypoxia induced seizures compared to age-matched littermate 

controls (See figure 9). Although this contradicts our hypothesis, the Western blot data 

confirms our finding of no change in diazepam sensitivity following hypoxia-induced 
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seizures and supports our conclusion that no change in GABAA subunit expression 

occurs following hypoxia-induced seizures. Finally, combined with our 

electrophysiology data, the Western blot data tends to support the concept that no 

significant changes in composition of the post synaptic GABAA receptor within the first 

few days following hypoxia-induced seizures. This strongly suggests a post-translational 

mechanism, such as enzymatic modification of GABAA channel function. For example, 

calcineurin was shown to be acutely up regulated and when blocked can overcome the 

loss of both IPSC amplitudes and frequency we report in chapter one. We will address 

calcineurin mediated regulation of GABAA receptor inhibition as reported in Chapter 4. 

          Although these findings are consistent with electrophysiology data reported in 

chapter II, it is possible that by using whole hippocampus homogenates, we lost the 

ability to detect regionally specific changes in protein expression. Another way to 

perform this experiment is by micro-dissecting out area CA1, since this is the area we 

have been recording and found our effects on GABAA mediated inhibition. Also, 

utilizing other methodological approaches such as FACS or the Nano-pro system could 

be performed in a cell specific manner. Thus, future experiments using more sensitive 

technologies could identify more subtle cell-specific mechanisms. Nonetheless, the 

combined electrophysiology and Western blot results suggest that persistently altered 

GABAA receptor expression is not a mechanism of decreased GABAergic inhibition in 

this setting. 
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CHAPTER IV 

THE ROLE OF CALCINEURIN IN DECREASED INHIBITION FOLLOWING 

NEONATAL HYPOXIA-INDUCING SEIZURES 

Introduction 

During postnatal day 10-13 rats are susceptible to hypoxia-induced tonic-clonic 

and myoclonic seizures that later predisposes the animal to a lower seizure threshold and 

spontaneous seizures. These hypoxia-induced seizures appear to depend on AMPA 

receptor activation, since pharmacological blockade prevents them. Interestingly during 

this time period, many AMPA receptors lack the GLUR2 subunit that confers calcium 

impermeability. Calcium influx through GLUR2 negative AMPA receptors causes the 

acute activation of calcineurin, a highly conserved Ca2+ and calmodulin-dependent 

serine/threonine phosphatase, which has been shown to be acutely up-regulated after 

pilocarpine- and hypoxia-induced seizures. Emphasizing the importance of the 

calcineurin pathway, a 30 minute pre-application of FK-506 blocked hypoxia-induced 

seizures (Sanchez et al 2005). Interestingly, following hypoxia-induced seizures, CA1 

pyramidal neurons exhibited a down-regulation of GABAA receptor mediated inhibition 

with a concomitant dephosphorylation of the β2/3 subunit that was reversed by the 

calcineurin inhibitor FK-506, suggesting a possible proepileptogenic mechanism. 

Furthermore, application of FK-506 increases both spontaneous IPSC amplitudes and 

frequency following hypoxia-induced seizures. 

   Calcineurin activity has been shown to be increased following other models of 

epilepsy. For example, in the rat pilocarpine model, calcineurin activity was found to be 
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increased as measured by the phosphorylation status of the protein DARPP-32, a specific 

substrate of calcineurin’s phosphatase activity (Jung et al 2010). Another pilocarpine 

study reported a significant status epilepticus-dependent increase in hippocampal 

calcineurin activity, as measured by dephosphorylation of p-nitrophenol phosphate. 

However, the increase in calcineurin activity was not associated with an increase in 

calcineurin enzyme levels (Kurz et al 2001). This suggests that the increase in enzyme 

activity may be due to another mechanism, such as post-translational modification of the 

enzyme, or increased Ca2+/CaM binding to the enzyme following SE (Kurz et al 2001, 

2008). This provides yet another possible mechanism of decreased inhibition of CA1 

pyramidal neurons by calcineurin and demonstrates the need to determine whether 

calcineurin activity increases following neonatal hypoxia-induced seizures. A persistent 

increase in calcineurin expression and/or activity following neonatal hypoxia-induced 

seizures may provide long lasting effects on inhibition of area CA1 of the hippocampus, 

as well as other areas of the brain, and may promote the development of epilepsy in 

susceptible individuals.  

In this study we aimed to determine whether or not calcineurin activity remained 

increased past the 24 hours reported previously (Sanchez et al 2005). Based on our 

finding of persistently decreased GABAergic inhibition reported in Chapter One above, 

we hypothesized that calcineurin expression and or activity remained increased beyond 

24 hours post hypoxia-induced seizures. Therefore, in this study we measured both 

calcineurin expression as well as activity following neonatal hypoxia-induced seizures. 

This was accomplished by western blot analysis of calcineurin and DARPP-32. 
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Methods 

Animals 

Long-Evans rat pups (Charles River), at an age of P10–P16, were used for these 

experiments. Litters were housed with their dam in the TAMHSC animal care facility 

Temple, Texas on a 12-hour light/12-hour dark cycle. All procedures were approved by 

the Institutional Animal Care and Use Committee and were in accordance with NIH 

guidelines on the ethical use of experimental animals.  

Hypoxia Treatment 

Seizures were induced in male Long-Evans rat pups on P10 by a 14–16-min 

exposure to 5–7% O2. Pairs of littermates were removed from their dam and each placed 

into a custom-made airtight chamber on heating pads to maintain a rectal temperature of 

33–34° C. One chamber (control) was left uncovered and continuously exposed to room 

air, while the other (hypoxia) was covered and the O2 concentration lowered by infusion 

of N2 gas into the chamber. The O2 concentration was lowered to 6–7% for 4 min, then 

5–6% for 8 min, and then lowered by 1% per minute until the animal became apneic for 

30 s. The chamber was then uncovered and exposed to room air. Using this protocol, 

spontaneous seizures typically began within 2–4 min of hypoxia, and occurred 

repeatedly throughout the hypoxia duration until apnea, and most animals continued to 

exhibit behavioral seizures for several minutes after returning to room air. At the end of 

hypoxia treatment, both animals in the pair were ear-marked with sharp scissors and 

returned to their dam. Thus, control animals were handled identically to hypoxia-treated 

Figure 9: GABAA Subunit Expression.  Summary of hippocampal GABAA 
subunit expression. Samples were normalized to GAPDH. No significant 
change in subunit at any time point studied. ANOVA  P>0.05 N=5-7 animals. 
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animals except for hypoxia exposure. Animals in the hypoxia-treated group used for this 

study exhibited an average of eight tonic-clonic seizures. 

Tissue and Sample Preparation 

Animals from 2 groups (hypoxia-vs.-control) at 3 different time points – 24 

hours, 48 hours and 6 days post-hypoxia for a total of 6 groups were sacrificed at the 

same time each day. Rat pups were sacrificed by decapitation under isoflurane 

anesthesia. The brains were removed and immediately placed into ice-cold oxygenated  

(with 95% O2 / 5% CO2)  artificial cerebrospinal fluid (ACSF) that contained (in m M): 

NaCl 126, KCl 3.3, Na2PO4 1.25,  MgSO4 1.3, CaCl2 2, Na2HCO3 26, and D-glucose 10  

.The hippocampi were quickly dissected and placed into ice cold 1x RIPA buffer 

complete with protease inhibitors. Both hippocampi were rapidly homogenized by 

sonification with brief quick pulses while on ice. A Bradford colorometric assay was 

performed on all samples. The samples were aliquoted and stored at -80C until Western 

blots were performed. 

Western Blots (calcineurin) 

Western Blot analysis of calcineurin expression was conducted on whole 

hippocampal homogenates from 2 groups at 3 different time points: 24 hours, 48 hours 

and 6 days post-hypoxia (6 group’s total).  Samples were run on ready-made gels 

(BIORAD anyKD) at 200 Volts for 40 minutes. Transfer to PVDF membrane was 

performed at 90 volts for 90 minutes in an ice bath. The blots were then blocked with 

Licor blocking solution 1x for a minimum of 2 hours at room temperature. Primary anti-

rabbit Calcineurin antibody (obtained from Sigma) 1:1000 and mouse anti-GAPDH 
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antibody 1:10,000 was then used and the blot was allowed to incubate overnight at 4 

Degrees Celsius with constant movement. Optical density for each band was then 

measured by NIH software ImageJ. Finally, each band was background subtracted and 

normalized to GAPDH. Normalized data were then analyzed by ANOVA. 

Western Blots (DARPP-32) 

          Western Blot analyses of total DARPP-32 to phosphorylated DARPP-32 THR34 

and SER97 were conducted on whole hippocampal homogenates from 2 groups at 3 

different time points – 24 hours, 48 hours and 6 days post-hypoxia (6 groups total). 

Samples were run on ready-made gels (BIORAD anyKD) at 200 Volts for 40 minutes. 

Transfer to nitrocellulose membrane was performed using the BIORAD Trans-Blot 

Turbo Transfer System. The blots were then blocked with Licor blocking solution 1x for 

a minimum of 2 hours at room temperature. Primary anti-rabbit DARPP-32 antibody 

(obtained from Cell Signaling Technologies) at 1:1000 dilution, primary anti-rabbit 

phospho (THR34) DARPP-32 (obtained from Cell Signaling Technologies)1:1000 

dilution, primary anti-rabbit phospho (SER97)DARPP-32 (obtained from Cell Signaling 

Technologies) 1:1000 dilution and anti-mouse α-tubulin (Sigma) antibody 1:15,000 

dilution was then used and the blot was allowed to incubate overnight at 4 Degrees 

Celsius with constant movement. Secondary antibodies were used at room temperature 

for 30 minutes anti-rabbit 680 CW (Licor) and anti-mouse 800 CW (Licor) 1:20,000. 

Optical density for each band was then measured by NIH software ImageJ. Finally, each 

band was then background subtracted and normalized to α-tubulin. Normalized data was 

then analyzed by 2-way ANOVA. 
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Results 

Calcineurin Expression 

We measured the protein expression of calcineurin by Western blot analysis. As 

illustrated by figure 10, only the first 24 hours post hypoxia-induced seizures did 

calcineurin expression remain increased (P11 n= 17 control group and hypoxia group, 

p=0.0007;  P12 n=12 control group and hypoxia group, p=0.63; P17 n=10 control group 

and hypoxia group p=0.91). This result matches the results published previously by the 

Jensen laboratory (Sanchez 2005) Since an increase in the expression of calcineurin does 

not necessarily result in increased activity, we also measured the phosphorylation status 

of Threonine 34 (THR34) of DARPP-32 which is directly dephosphorylated by 

calcineurin and used as a measure of calcineurin enzymatic activity in previously 

published studies (Jung 2010).  

Calcineurin Activity (Threonine 34 Phosphorylation Status of DARPP-32 [THR34]) 

The Western blot results for THR 34 phosphorylation failed to support our 

hypothesis of increased calcineurin activity. Interestingly we found no calcineurin 

specific dephosphorylation of THR34 ofDARPP-32, but instead we found a mild 

increase (1.5-1.8 fold) in THR 34 PHOSPHO-DARPP-32 in the hypoxia group (See 

figure 11). The number of animals used in this study were; P11 n= 7 control group and 

n=7 hypoxia group, P12 n=4 control group and n=5 hypoxia group. A 2-way analysis of 

variance ( 2 Way-ANOVA) was used to analyze statistical significance between control 

and hypoxia as well as days post hypoxia-inducing seizures on P10 (hypoxia treatment 

p=0.012, no age-dependence).  
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Figure 10: Calcineurin Expression. Summary of calcineurin expression. ANOVA was 
used to analyze results. Calcineurin expression increased at 24 hours post hypoxia-
induced seizures and recovered by 48 hours post hypoxia-induced seizures and remained 
so at 6 days post hypoxia-induced seizures. P< 0.01 (N=17-18 each group). 

 

DARPP-32 (Regulation of Threonine 34 Phosphorylation via Serine 97 Phosphorylation 

Status [SER 97]) 

Phosphorylation of DARPP-32 at SER97 indirectly increases the phosphorylation of 

THR34 by protein kinase A (Hamada et al 2005). Therefore, we also measured SER97 

phosphorylation using Western blot analysis. At the same time points, we found a mild 

but significant increase in SER97 phosphorylation in the hypoxia group as well (see 

* 
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figure 12). The number of animals used in this study were; P11 n=8 control group and 

n=5 hypoxia group, P12 n=4 control group and n=4 hypoxia group. A 2-way analysis of 

variance (ANOVA) was used to analyze statistical significance (hypoxia treatment 

p=0.006, no age-dependence). 

 

 

Figure 11: Threonine-34 DARPP-32. The ratio of THR34 phospho-DARPP-32 to total 
DARPP-32 within each sample is significantly increased following hypoxia-induced 
seizures at 24 hours and up to 48 hours post hypoxia-induced seizures. * P<0.05 (N=5-6 
each group). 

* 
* 
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Figure 12: Serine-97 DARPP-32. Summary of average ratio of phosphorylated Serine 
97 of DARPP-32 to total DARPP-32 within each sample. The ratio of Serine 97 of 
phospho-DARPP-32 to total DARPP-32 within each sample is significantly increased 
following hypoxia-induced seizures at 24 hours and up to 48 hours post hypoxia-induced 
seizures. * P<0.05 (N=5-6 each group).   

 

 

 

 

 

 

* 
* 
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Conclusions 

An acute increase in calcineurin expression has been reported to coincide with a 

decrease in the phosphorylated form of the β2/3 subunit of the GABAA receptor 

(Sanchez et al 2005). This was interpreted as a decrease in the functional membrane 

associated GABAA receptor and maybe responsible for the acutely decreased IPSCs we 

recorded from P10-P11 animals. It was not known whether or not calcineurin expression 

remained increased beyond P11. Since we reported changes in GABAergic inhibition up 

to a week post-hypoxia, we focused on measuring calcineurin expression from P11-P17. 

The mechanisms by which hypoxia may increase calcineurin expression and or activity 

most likely differs short term (24 hours) versus long term (7 days). Since it would 

require translation of a significant amount of enzyme in a relatively short amount of 

time, it is unlikely that the short term effects are due to increased calcineurin protein 

expression.  For example, no increase in total calcineurin protein concentration was 

detected by Western blot analysis of cerebellum, cortex or hippocampus homogenates 

taken from rats 60 minutes post pilocarpine-induced seizures compared to age-matched 

controls from rats 60 minutes post pilocarpine-induced seizures, compared to age-

matched controls (Kurz et al 2001). Short-term increases in calcineurin activity may 

occur due to pathological loss of Ca2+ homeostasis and chronic stimulation of 

converging Ca2+ enzymatic pathways that either directly or indirectly activates the 

catalytic and or regulatory domains of the calcineurin molecule. 

 Calcineurin is a Ca2+ and calmodulin-stimulated serine/threonine phosphatase. 

The enzyme consists of two subunits, a catalytic subunit and a regulatory subunit. The 
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catalytic subunit, calcineurin A, contains two auto-inhibitory domains. Calcineurin B is 

the regulatory subunit that binds Ca2+ (Klee et al 1998). Calcineurin is inhibited by 

phosphorylation at the same location by both protein kinase C and CaM kinase II 

(Hashimoto and Soderling 1989, Martensen et al. 1989). Both calcineurin and CaM 

kinase II share a similar distribution in the brain supporting the notion of CaM kinase II 

regulation (Sola et al. 1999). Calcineurin regulates NFAT-mediated and CREB-mediated 

gene transcription important in modulating the function of both the GABA and the 

NMDA receptors, affects cytoskeletal architecture through dephosphorylation of 

microtubules and associated proteins, regulates neurotransmitter release, and may be 

involved in the initiation of apoptosis (Ankarcrona et al 1996, Huang and Dillon 1998, 

Krupp et al 2002, Goto et al 1985, Cordeiro et al 2000). All of these processes may play 

a role in the pathology of SE.  

More recently, calcineurin has been implicated in modulating HCN channel 

function (Jung et al 2010). Calcineurin expression has been shown to increase following 

pilocarpine and hypoxia-induced seizures. Furthermore, FK-506 a calcineurin 

antagonist, was demonstrated to reversibly inhibit seizures in neonatal hypoxia and 

amygdaloid kindled rats and ascomycin prevented seizures at higher dosages (Kurz et al 

2001; Sanchez et al 2005, Vazquez-Lopez et al 2006). It has also been demonstrated 

calcineurin activity is enhanced in hippocampal area CA1 from chronically epileptic 

animals, and that pharmacological reversal of this abnormal phosphorylation signaling 

restores pyramidal neuron excitability to control levels (Jung et al 2010). Recently, 

calcineurin was implicated in the regulation of dendritic spines via dephosphorylation of 
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cytoskeletal actin (Kurz et al 2008). Dendritic spines are small projections of the 

membrane located on the dendrites of neurons, which are thought to be a critical 

modulatory compartments of neurotransmission that provide increased surface area for 

synaptic connectivity and a relatively isolated compartment for modulation, especially 

Ca2+-dependent enzymatic pathways. Dendritic spine loss has been shown to occur in 

both human epilepsy and animal models of epilepsy (Muller et al 1993, Isokawa 1998, 

Isokawa and Levesque 1991, Multani et al 1994). Interestingly, both our report of 

decreased GABA currents, but also our decrease in IH following hypoxia-induced 

seizures can be explained by increased calcineurin expression/activity. One thing to note 

is that IH is functionally decreased after kainate-induced status epilepticus in adult rats 

but is increased after hyperthermia-induced seizures in immature rat pups, suggesting a 

possible age-dependence and/or conditional response. It is unknown whether this up-

regulation of calcineurin expression and or activity persists beyond 24 hours, thus 

promoting persistent changes in inhibition.  

We hypothesized that calcineurin expression and/or activity would increase 

persistently in the hypoxia-induced seizures group as compared to age-matched control 

littermates. However, we found that calcineurin expression did not increase beyond 24 

hours post hypoxia-induced seizures. Furthermore, calcineurin activity did not increase, 

as measured by specific dephosphorylation of THR 34 of DARPP-32. Although this 

does not support our hypothesis, it does open up the possibility of other key players 

previously not reported in this model of epilepsy.  

By further exploring DARPP-32 regulation via Serine 97 (SER97) 
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phosphorylation, we found that the possibility of  a protein kinase A (PKA)/casein 

kinase II (CKII) dependent phosphorylation of SER97 existed at 24 hours to 48 hours 

post hypoxia-induced seizures. Since, it was shown that SER97 phosphorylation 

increases protein kinase A-dependent phosphorylation of THR34, our finding of 

increased phosphor-THR34 at the 24 and 48 hour time point coincided with that of 

phosphor-SER97 and suggests that the increase in THR34 phosphorylation, and hence 

increased inhibition of protein phosphatase-1 (PP1), may not be due to an increase in 

protein kinase A activity (or decrease in calcineurin) but rather through an alternative 

pathway that may involve Interleukin-1 (IL-1), receptor activation and casein kinase II 

regulation of the SER97 site of DARPP-32. Although, it is unclear what is mediating the 

increase in THR34 phosphorylation, the functional consequence of increased phosphor-

THR34 DARPP-32 is increased inhibition of PP1 which regulates various receptors and 

channels such as voltage-gated Ca2+ and NMDA. 

Although increased calcineurin activity was reported in our neonatal model of 

hypoxia-induced seizures it was not done so by measuring phosphorylation changes on 

THR34 of DARPP-32 as used by Poolos and others, but rather by enzymatic assay (Jung 

et al 2010, Sanchez et al 2005). Furthermore, the increased activity of calcineurin was 

interpreted as direct (or DARPP-32 independent) dephosphorylation of β2/3 of GABAA 

receptors as reported previously and not by a DARPP-32 dependent regulation of PP1, 

which is known to be an important regulator of numerous ion channels that affect 

excitation and inhibition, possibly causing an imbalance when regulation becomes 

dysregulated following an insult such as hypoxia-induced seizures. Furthermore, we 
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have data to suggest that IL-1β, the major endogenous ligand of the IL-1 receptor, 

increases at 24 hours remaining so for several days following hypoxia-induced seizures 

compared to age-matched control animals. This is significant because we show that, 

when IL-1β is applied to hippocampal slices from control animals, both spontaneous 

IPSC frequency and amplitude decrease. Although speculative, combined with the data 

presented here, suggest that, increased IL-1 receptor activation by key players such as 

IL-1β could cause a decrease in inhibition as measured by sIPSCs in area CA1 of the 

hippocampus causing an imbalance of excitation and inhibition. Also, since this occurs 

over a period of days, this abnormal signaling, through several different pathways, 

including the IL-1 receptor and casein kinase II pathways, could contribute to the 

development of spontaneous seizures and epilepsy in the neonatal hypoxia model. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Introduction	
  

An imbalance between excitation and inhibition has long been thought to 

underlie epilepsy. Previously, our laboratory and the laboratory of Frances Jensen 

reported an acute decrease in both the amplitudes and frequency of mIPSCs  and sIPSCs   

in CA1 pyramidal neurons recorded  in slices prepared immediately following perinatal 

hypoxia-induced seizures in vivo (Sanchez et al 2005). Decreases of GABergic 

inhibitory neurotransmission (IPSCs) could be due to several different mechanisms 

including: (1) Changes in the release of GABA from presynaptic stores (2) The 

composition/expression of the GABAA receptor and (3). The state of the GABAA 

receptor modulation through various post-translational processes, especially calcineurin, 

a highly conserved Ca2+ and calmodulin-dependent serine/threonine phosphatase, which 

has been shown to be acutely up-regulated following neonatal hypoxia-induced seizures 

(Sanchez et al 2005). Persistently decreased GABAergic inhibition could promote the 

development of epilepsy, epileptogenesis.  

In this study, we tested several hypotheses. One, does the acute (P10) decrease in 

GABA mediated inhibitory currents, IPSCs, persist? We hypothesized based on several 

lines of evidence, including the fact that rats exposed to hypoxia-induced seizures 

exhibit chronic increases in excitability in area CA1 of the hippocampus which is the 

final hippocampal region in a 3 circuit pathway that begins in the entorhinal cortex, that 

there would be a persistent increase in GABAergic inhibition. Two, are there persistent 
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changes to the composition/expression of the GABAA receptor? We hypothesized that 

there would be persistent decreases in the overall expression and or composition of  the 

GABAA receptor, based  primarily on our report of acutely decreased IPSC amplitudes, 

which could be due to changes in composition or expression of GABAA receptor 

subunits (mechanism 2 above). Three, are there persistent changes in calcineurin 

expression/activity following neonatal hypoxia-induced seizures? We hypothesized that 

there would be a persistent increase in calcineurin expression and or activity following 

neonatal hypoxia-induced seizures. This last hypothesis was based mainly on the 

observation that when calcineurin is blocked with FK-506 acutely (P10) sIPSC 

frequency and amplitudes increase providing yet another mechanism by which 

GABAergic inhibition maybe down regulated (mechanism 3 above). 
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Hypotheses 

Hypothesis 1 

In the current study, we hypothesized that there would be persistent changes in 

GABAA mediated inhibition in the hippocampus. We studied specifically, the fast phasic 

inhibition provided by synaptically-located GABAA receptors, those containing 2 αs 2βs 

and a γ subunit(s), and not δ subunit containing extra-synaptic GABAA receptors 

responsible for tonic inhibition. Although it is possible that tonic GABA currents are 

compromised and contribute to increased excitability of area CA1 pyramidal neurons 

following hypoxia-induced seizures, tonic GABAA receptor currents do not contribute 

to the decrease in IPSCs studied in chapter 2. The data supported our hypothesis, 

revealing a persistent decrease in GABAA mediated currents, IPSCs, which are regulated 

by both pre- and post-synaptic mechanisms. We found decreases in: action-potential 

dependent, sIPSC frequency and amplitudes that persisted at 3–5 days after hypoxia. 

This finding could be due to several different possible mechanisms. The decrease in 

sIPSC frequency could be due to differences in firing rates of presynaptic interneurons 

and the sIPSC amplitudes could be due to changes in the state of modulation by post-

translation processes, especially calcineurin activity/expression that has been shown to 

be pathologically increased following hypoxia-induced seizures (and modulates both  

sIPSC frequency but also sIPSC amplitude) (Sanchez et al 2005). The fact that there is 

no change in the mIPSC frequency but only a change in sIPSC frequency supports the 

hypothesis that during P13-P15 there are significantly less action-potential firing of 

interneurons and release of GABA. 
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Changes in sIPSC amplitude could be due to presynaptic changes in the amount 

of GABA released, the efficacy of GABA at the GABAA receptor, and possibly changes 

in either composition or expression of GABAA receptors. We found that action-potential 

independent mIPSCs were decreased in amplitude, but not frequency. 3-5 days post- 

hypoxia, mIPSC amplitudes were decreased and comparable to the decrease in sIPSC 

amplitudes. This supports the hypothesis that there are post- synaptic changes to the 

GABAA receptor, perhaps either by expression and/or composition of the GABAA 

receptor itself. We continued to look at this decrease in GABA mediated inhibition out 

to 7 days post-hypoxia-induced seizures and we found a recovery of action-potential 

independent frequency and amplitude, as well as action-potential dependent amplitudes. 

Interestingly, since mIPSC frequency recovered but not sIPSC frequency, only the 

action-potential driven IPSC frequency changed persistently out to 7 days post-hypoxia-

induced seizures and possibly longer. Combined with the recovery of both sIPSC and 

mIPSC amplitudes, this indicated that several days following neonatal hypoxia-induced 

seizures, basal synaptic inhibition of CA1 pyramidal neurons is decreased despite no 

apparent long-lasting changes in the probability of spontaneous GABA release, 

indicating that the persistent decrease in sIPSC frequency is most likely due to decreased 

spontaneous firing of interneurons that provide synaptic inhibition to CA1 pyramidal 

neurons. Still, since we do find changes in sIPSC and mIPSC amplitudes 3-5 days post 

hypoxia there could be changes in the composition/expression of the GABAA receptor 

itself which provided us with further rationale to analyze this possibility. For hypothesis 

2 we used a combination of techniques. 
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Hypothesis 2 

We utilized two methodological approaches in order to explore the possibility 

that there were changes in the composition and or expression of GABAA receptors 

following neonatal hypoxia-induced seizures. We looked both at the functionality of the 

GABAA receptor by electrophysiology and by measuring total protein of various 

GABAA receptor subunits that are known to be synaptically located in area CA1 of the 

hippocampus. Altered GABAA receptor subunit expression and pharmacological 

sensitivity have been reported in neonatal as well as adult rodent models of seizures and 

human epileptic hippocampi (Zhang et al 2007, Schwarzer et al 1997, Bouilleret et al 

2000, Raol et al 2006, Loup et al 2000). For example, research studies of both humans 

with temporal lobe epilepsy (TLE) and in rodent models of TLE found reduced 

expression of GABA receptor α1 subunits and increased expression of GABAA receptor 

α4 subunits in the dentate gyrus of epileptic individuals (Brooks-Kayal et al 1998 and 

1999). In the adult rat model of pilocarpine-induced status epilepticus these subunit 

alterations are associated with diminished benzodiazepine sensitivity (Gibbs et al 1997; 

Brooks-Kayal et al 1998). When similar studies were performed at an earlier 

developmental time point (postnatal day 10), rat pups that experienced pilocarpine-

induced SE had significantly increased GABAA receptor α1 expression in dentate gyrus 

and enhanced benzodiazepine sensitivity (Zhang et al 2004). However, it was not known 

if there are changes in expression of GABAA receptor subunits following neonatal 

hypoxia-induced seizures.  

Since GABAA channels sensitive to diazepam require an α , β and a γ to function 



66 

 

 

correctly, any hypoxia-associated change in the prolongation of the decay time of GABA 

currents following diazepam application would suggest a change in the GABAA receptor 

subunit composition. We found no statistical difference in diazepam sensitivity between 

control and hypoxia groups at 3-5 days post-hypoxia. Furthermore, by Western blot, we 

found no significant changes in the expression of α1, α2, β2/3, and γ2 subunits of the 

GABAA receptor at numerous time points. The combined electrophysiological and 

Western blot data strongly suggest that no significant changes in the post-synaptic 

composition of the GABAA receptor during P13-P15. Other mechanisms of decreased 

GABAergic inhibition following neonatal hypoxia-induced seizures likely exist, such as 

post-translational modification of the GABAA receptor.  

Hypothesis 3 

In the neonatal hypoxia-induced seizure model, calcineurin was shown to have 

increased activity and blocking calcineurin with FK-506 increased sIPSC frequency and 

sIPSC amplitudes reversing the losses associated hypoxia-induced seizures at P10 

(Sanchez et al 2005). Furthermore, blocking calcineurin activity with FK-506 prevented 

hypoxia-induced seizures at P10. Persistent changes in calcineurin expression/activity 

have not been reported. Persistently increased expression/activity of calcineurin 

following hypoxia-induced seizures could persistently decrease GABAergic inhibition. 

Calcineurin expression/activity is known to modulate both IPSC frequency and 

amplitude, possibly by dephosphorylating the β2/3 subunit of the GABAA receptor and 

causing internalization of the receptor complex thereby decreasing the frequency and 

amplitudes of GABA mediated IPSCs. To explore the possibility of a persistent increase 



67 

 

 

in calcineurin activity/expression we used Western blot analysis of calcineurin 

expression and THR34 phosphorylation status of DARPP-32. DARPP-32 is specifically 

dephosphorylated on THR34 by calcineurin and has been used as a measure of 

calcineurin activity (Jung et al 2010). Since there were no apparent changes in GABAA 

subunit composition 3-5 days following hypoxia, we hypothesized that the GABAA 

receptors were being post-translationally modified by increased calcineurin 

activity/expression. As previously reported, we found that calcineurin expression was 

increased up to 24 hours following hypoxia (Sanchez et al 2005). However, we report 

that there were no significant changes in expression beyond the initial 24 hours (P10-

P11) and as far out as 6 days (P16) following hypoxia-induced seizures.   

Since, expression isn’t the only way calcineurin can increase its enzymatic 

activity, we measured THR34 phosphorylation of DARPP-32 which is a specific 

substrate for calcineurin. Increases in calcineurin activity should be measurable as a 

decrease in the ratio of phosphoTHR34 DARPP-32 to total DARPP-32. If our hypothesis 

was correct we should have found decreased phosphoTHR34 DARPP-32 to total 

DARPP-32. However, our Western blot analysis demonstrated that THR34 

phosphorylation was mildly increased (~ 150% control) following hypoxia-induced 

seizures, raising the question of whether protein kinase A or some other unknown 

mechanism may overcompensate for any calcineurin specific activity. Since THR34 is a 

direct and specific substrate of phosphorylation by protein kinase A, it is possible that 

protein kinase A activity expression may have increased. This may very well be the case, 

but a relatively recent paper reported that protein kinase A activity among other enzymes 
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were acutely increased but recovered by 12 hours following neonatal hypoxia-induced 

seizures (Rakhade et al 2008). We then asked, “Could there be another pathway involved 

in THR34 phosphorylation status?” 

Alternative Pathways 

DARPP-32 is regulated by numerous phosphatases and kinases that specifically 

and directly act at various phosphorylation sites and some of these sites can interact and 

affect the phosphorylation of others. Specifically, residue SER97 is directly 

phosphorylated by casein kinase II (Girault et al 1989). Furthermore, when residue 

SER97 is phosphorylated, phosphorylation of THR34 by protein kinase A increases 

several fold (Girault et al 1989). So it is possible that THR34 phosphorylation can be 

increased, independent of changes of both protein kinase A and calcineurin. We next 

explored the question of whether SER97 may also have increased in phosphorylation. 

We found that SER97 phosphorylation status was also increased following 

neonatal hypoxia-induced seizures (~ 160%).  Together with the calcineurin Western 

blot data, it is unlikely that our hypothesis of post-translational modification of the 

GABAA receptor by calcineurin exists beyond the initial 24 hours following hypoxia-

induced seizures (P10-P11). These findings question the validity of using THR34 

phosphorylation status of DARPP-32 as a measure of calcineurin activity as previously 

reported (Jung et al 2010). 

 However, it’s important to note that since the phosphorylation status of a 

number of residues and the enzymatic pathways that are involved in the regulation of 

DARPP-32 are highly characterized it permits us to explore alternate pathways that may 
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be compromised as a consequence of neonatal hypoxia induced seizures.  Although we 

do not know yet which particular enzymatic pathways are being activated to increase the 

phosphorylation of THR34 and SER97, the physiological consequence of this is that the 

phosphorylation of THR34 of DARPP-32 increases inhibition of  protein phosphatase 1 

(PP1) (Svenningsson et al 2004). PP1 interacts with numerous receptors and channels in 

the brain where it is expressed in neurons. PP1 is highly abundant in neurons, and 

following NMDA receptor activation, it is recruited to the receptor and associates with it 

by binding to specific targeting partners. There, it decreases NMDA receptor activity 

and synaptic strength by reducing the receptors open probability (Wang et al 1994). 

Furthermore, postsynaptic GABAA receptor currents in neostriatal medium spiny 

neurons are decreased in a D1 dopamine receptor/PKA/DARPP-32/PP1 signaling 

cascade targeting the phosphorylation of GABAA receptor β1subunits (Flores-Hernandez 

et al 2000). It is not known whether PP1 function is decreased following hypoxia-

induced seizures but our Western blot data of THR34 raises the possibility of decreased 

inhibition of PP1 via DARPP-32. Furthermore, whether NMDA receptor function maybe 

increased via decreased PP1 activity following hypoxia-induced seizures is yet to be 

determined. The implications of increased NMDA activity following neonatal hypoxia-

induced seizures include increased excitability and increased calcium signaling, both of 

which contribute to increased acute as well as persistent hyperexcitability of the 

hippocampal network and possibly epileptogenesis, in susceptible individuals. 

We identified SER97 as a specific and direct substrate of casein kinase II, raising 

the possibility of this pathway being involved. Casein kinase II is known to be activated 
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as a consequence of inflammation (Gaestel et al 2009). It is unknown whether casein 

kinase II is up-regulated following hypoxia-induced seizures but our Western blot data 

of SER97 suggests this as a possibility. Casein kinase II has also been shown to regulate 

NMDA receptor function (Lieberman and Mody 1999, Kimura and Matsuki 2008). 

Although casein kinase II is not u-pregulated in the kainite model of epilepsy (Wyneken 

et al 2001) an increase in either casein kinase II protein expression or casein kinase II 

enzymatic activity may increase following hypoxia-induced seizures since as discussed 

earlier each model of epilepsy have unique characteristics that depend on the age and 

area of the brain involved as two examples. 

Casein kinase II plays a key role in regulating interleukin-1, or IL-1, 

biosynthesis. Interestingly, our laboratory has found increases in the endogenous ligand 

of the IL-1 receptor, IL-1β, following perinatal hypoxia-induced seizures. Furthermore, 

by applying IL-1β to the bath and recording IPSCs from hippocampal slices in area CA1 

by whole-cell voltage clamp, an increase in both amplitude and frequency of IPSCs 

occurs, providing an alternative mechanism for decreased IPSC frequency and 

amplitudes following hypoxia-induced seizures. Much work must be done to further 

characterize the pathways that lead to increased phosphorylation of THR34 and SER97, 

as well as the downstream sequence of events that occur as a response to 

phosphorylation of THR34 and SER97.  It is important to note that the phosphatase for 

SER97 is unknown and may also be involved. The hypothetical pathways of DARPP-32 

regulation following neonatal hypoxia induced seizures are summarized in figure 13. 

Finally, by 7 days following hypoxia only sIPSC frequency remained decreased, 
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and this strongly suggests when combined with the rest of our data, that only the 

presynaptic firing of interneurons remained suppressed. Interestingly, our laboratory 

reported decreased IH in CA1 pyramidal neurons (Zhang et al 2006).  Since IH is known 

to regulate the intrinsic firing rate of spontaneously active interneurons (Maccaferri and 

McBain 1996) we measured IH in interneurons of area CA1 of the hippocampus in 

studies done outside the scope of this dissertation. We found that, of the cells recorded, 

only 85 percent expressed IH. Furthermore, of the cells recorded we found no change in 

IH.  

We still have much work to determine whether or not there are specific 

subpopulations of interneurons affected by hypoxia-induced seizures that respond by 

decreased firing. This experimental question is confounded by the fact that numerous 

different subtypes of interneurons exist in the hippocampus (See Introduction Chapter).  
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Figure 13: Hypothetical Model of DARPP-32 Regulation. Hypothetical model of 
DARPP-32 regulation following hypoxia-induced seizures. Green and yellow arrows: 
activation of an enzyme or in the case of SER97 to protein kinase A phosphorylation 
increase in activity of protein kinase A phosphorylation of THR34. Red line with blunt 
end: inhibition of Protein phosphatase 1. 

 

 

 

 

 



73 

 

 

	
  	
  Conclusions and Future Directions 

We have characterized altered inhibition after neonatal hypoxia as a likely pro-

epileptogenic consequence and have begun to elucidate underlying mechanisms. Future 

directions of our laboratory include: determining the functional consequences of THR34 

phosphorylation of DARPP-32 in the rat model of neonatal hypoxia-induced seizures 

and determining how action potential-dependent GABAergic inhibition is altered 

following hypoxia-induced seizures and whether this decrease persists beyond 7 days 

following hypoxia, and determining how from 0 –5 days following hypoxia GABA 

mediated IPSC amplitudes decrease. Even though our data seem to suggest that the 

decrease in GABA IPSC amplitudes are not due to changes in the GABAA receptor 

expression/composition and that calcineurin expression/activity does not persist beyond 

the initial 24 hours post-hypoxia-induced seizures it is possible that internalization of the 

GABAA receptor is still occurring through another enzymatic pathway (perhaps CK2 or 

PP1 for example). 

 The next, and  simplest, experiment is to use an assay for surface expression of 

GABAA receptors. This can be accomplished by using biotin to label proteins that are 

located on the extracellular side of the cell membrane and then pulling down these 

proteins with, for example, Avidin UltraLink Resin by Thermoscientific. The samples 

can then be used for Western blot analysis, thereby allowing us to quantify changes to 

the GABAA receptor surface expression. Since we only measured changes out to 7 days 

following hypoxia and sIPSC frequency alone remained decreased it is possible and 

probable that this remains decreased. If sIPSC frequency remains decreased persistently 
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especially into adulthood it could provide novel pharmacotherapy.  

For example, drugs that are known to increase the firing rate of interneurons, i.e. 

through interacting with HCN channels and effecting IH, could provide an alternative 

pharmacological therapy. Interestingly, we recently reported that that the anticonvulsant 

drugs Lamotrigine and Gabapentin increased the excitability of presumed inhibitory s.o. 

non-pyramidal neurons via enhancement of IH, and that this effect was associated with 

increased spontaneous synaptic inhibition of CA1 pyramidal neurons, possibly 

identifying an additional anti-convulsant mechanism that was previously unknown  

(Peng et al 2010, 2011).  

Much work must be done to begin to understand the mechanisms underlying 

decreased GABAergic inhibition following perinatal hypoxia-inducing seizures. We 

have just discovered that persistently decreased GABAergic inhibition may be a 

proepileptogenic mechanism  providing us with further rationale to explore this area in 

this animal model of acquired epilepsy. 
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APPENDIX A 

Appendix A: Illustration of Miniature Postsynaptic Currents (mIPSCs) 

A.

 
 
B. 

 
 

Appendix A: A. Miniature Inhibitory Post Synaptic Currents. A basic set of events 
occur that result in miniature inhibitory post synaptic currents that are mediated by 
GABA and synaptically located GABAA receptors. 1) Tetrodotoxin blocks action 
potential firing of interneurons and allows 2) only random fusion of GABA containing 
vesicles releasing significantly less GABA into the synapse where 3) less GABAA 
receptors are activated post-synaptically leading to 4) miniature inhibitory post-synaptic 
currents called mIPSCs. B.  example whole-cell voltage clamp trace of mIPSCs recorded 
from hippocampal area CA1 pyramidal neurons. 
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APPENDIX B 

Appendix B: Illustration of Spontaneous Postsynaptic Currents (sIPSCs) 

A. 

 
B.

 
 
Appendix B: A. Spontaneous Inhibitory Post Synaptic Currents. 1) Action potential 
firing of interneurons occur in the absence of TTX and allows 2)greater release of 
GABA by calcium dependent mechanisms where 3) greater activation of GABAA 
receptors occur post-synaptically leading to 4)spontaneous inhibitory post-synaptic 
currents called sIPSCs. B. Example whole-cell voltage clamp trace of sIPSCs. 




