
TECHNIQUES OF HIGH PERFORMANCE RESERVOIR SIMULATION FOR

UNCONVENTIONAL CHALLENGES

A Dissertation

by

YUHE WANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, John Killough
Committee Members, Akhil Datta-Gupta
 Michael King
 Yalchin Efendiev
Head of Department, Dan Hill

December 2013

Major Subject: Petroleum Engineering

Copyright 2013 Yuhe Wang

 ii

ABSTRACT

The quest to improve the performance of reservoir simulators has been evolving

with the newly encountered challenges of modeling more complex recovery mechanisms

and related phenomena. Reservoir subsidence, fracturing and fault reactivation etc.

require coupled flow and poroelastic simulation. These features, in turn, bring a heavy

burden on linear solvers. The booming unconventional plays such as shale/tight oil in

North America demand reservoir simulation techniques to handle more physics (or more

hypotheses). This dissertation deals with three aspects in improving the performance of

reservoir simulation toward these unconventional challenges.

 Compositional simulation is often required for many reservoir studies with

complex recovery mechanisms such as gas inject. But, it is time consuming and its

parallelization often suffers sever load imbalance problems. In the first section, a novel

approach based on domain over-decomposition is investigated and implemented to

improve the parallel performance of compositional simulation. For a realistic reservoir

case, it is shown the speedup is improved from 29.27 to 62.38 on 64 processors using

this technique.

Another critical part that determines the performance of a reservoir simulator is

the linear solver. In the second section, a new type of linear solver based the

combinatorial multilevel method (CML) is introduced and investigated for several

reservoir simulation applications. The results show CML has better scalability and

performance empirically and is well-suited for coupled poroelastic problems. These

 iii

results also suggest that CML might be a promising way of precondition for flow

simulation with and without coupled poroelastic calculations.

In order to handle unconventional petroleum fluid properties for tight oil, the

third section incorporates a simulator with extended vapor-liquid equilibrium

calculations to consider the capillarity effect caused by the dynamic nanopore properties.

The enhanced simulator can correctly capture the pressure dependent impact of the

nanopore on rock and fluid properties. It is shown inclusion of these enhanced physics in

simulation will lead to significant improvements in field operation decision-making and

greatly enhance the reliability of recovery predictions.

 iv

DEDICATION

To my family

 v

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance and help

from several individuals who in one way or another contributed and extended their

valuable assistance in the preparation and completion of this study. In this humble

acknowledgement, I would like to express my gratitude and appreciation to all of them.

 First and foremost, I would like to convey my utmost gratitude to my advisor, Dr.

Killough for this sincerity, inspiration and encouragement that I will remember forever.

Being this student is one of my most fortunate things I have ever had in my life. What I

have learned from Dr. Killough helps shape my career and will continuously put positive

influence on my future.

 I am heartily grateful to Dr. Eduardo Gildin, who was my advisor in the early

stage of my PhD study. It was him who introduced me to the area of reservoir simulation.

 I am thankful to Dr. King, Dr. Datta-Gupta and Dr. Efendiev for serving as my

committee and valuable comments and suggestions that helped shaped the dissertation.

 I would like to thank Landmark/Halliburton for the internship opportunities,

especially for my mentors, Qinghua Wang and Graham Fleming.

 I would like to thank my colleagues of Killough group and all my dear friends. It

is you guys who made my life in College Station enjoyable.

 Finally, my special thank goes to Sammi and Vanguard Orient (Beijing)

Technology Company for the support and encouragement during my four years’ stay at

Texas A&M University.

 vi

TABLE OF CONTENTS

 Page

ABSTRACT ... ii	

DEDICATION .. iv	

ACKNOWLEDGEMENTS ... v	

TABLE OF CONTENTS .. vi	

LIST OF FIGURES ... ix

LIST OF TABLES .. xi	

CHAPTER I INTRODUCTION AND STUDY SCOPES ... 1	

 1.1 Introduction .. 1	

 1.2 Study Scopes and Outlines ... 4	

CHAPTER II LOAD BALANCING OF PARALLEL COMPOSITIONAL

SIMULATION USING RESERVOIR MODEL OVER-DECOMPOSITION

METHOD ... 8	

 2.1 Introduction .. 9	

 2.2 Background .. 14	

2.2.1 A Commercial Comprehensive Reservoir Simulator 14	

2.2.2 Charm++ and Processor Virtualization ... 15	

2.2.3 Adaptive MPI .. 17	

2.2.4 Native Load Balancing in AMPI and Charm++ .. 19	

 2.3 Adaptation of Reservoir Simulator to AMPI ... 19	

2.3.1 Equation of State Parallelization ... 20	

2.3.2 Domain Over-Decomposition ... 24	

2.3.3 Variable Privatization .. 26	

2.3.3.1 Manual Change .. 27	

2.3.3.2 Source-to-source Transformation ... 27	

2.3.3.3 Automatic Global Variables Swapping .. 28	

2.3.3.4 Privatization Based on Thread Local Storage (TLS) 28	

 2.3.4 Dynamic Load Balancer .. 30	

 2.4 Example .. 32	

2.4.1 Reservoir Model .. 32	

 vii

2.4.2 Performance of MPI .. 36	

2.4.3 Performance of Processor Virtualization .. 42	

2.4.4 Performance of Dynamic Load Balancing .. 44	

 2.5 Conclusions .. 46	

CHAPTER III SOLVER PRECONDITIONING USING THE COMBINATORIAL

MULTILEVEL METHOD .. 49	

 3.1 Introduction .. 50	

 3.2 Solution Technique – Multistage Preconditioning ... 55	

 3.3 The Combinatorial Multilevel Method .. 57	

 3.4 Case Experiments ... 65	

3.4.1 Incompressible oil-water System .. 66	

3.4.2 Black-oil System .. 73	

3.4.3 Displacement Computation in Coupled Flow and Geomechanics 79	

 3.5 Conclusions .. 82	

CHAPTER IV COMPOSITIONAL MODELING OF TIGHT OIL USING

DYNAMIC NANOPORE PROPERTIES ... 84	

 4.1 Introduction .. 85	

 4.2 Assumptions ... 88	

 4.3 Approach .. 89	

4.3.1 Capillarity Effect on Vapor-Liquid Equilibrium (VLE) 89	

4.3.1.1 Extended VLE Flash Calculation ... 90	

4.3.1.1.1 Stability test using Gibbs free energy approach 90	

4.3.1.1.2 VLE two-phase split calculation ... 92	

4.3.1.2 Evaluation of Capillary Pressure for Tight Porous Media 93	

4.3.2 Dynamic Compaction of Nanopores ... 95	

 4.4 Results .. 96	

4.4.1 Confined Phase Behavior .. 96	

4.4.2 Reservoir Simulation ... 101	

4.4.2.1 1D Core Size Model ... 102	

4.4.2.2 Horizontal Well Model with Multiple Hydraulic Fractures 104	

 4.5 Conclusions .. 109	

CHAPTER V SUMMARY AND RECOMMENDATIONS .. 110	

REFERENCES ... 115	

APPENDIX I .. 128	

 viii

APPENDIX II .. 134	

 ix

LIST OF FIGURES

 Page

Figure 1.1 10 million cell multi-reservoir compositional model 2	

Figure 1.2 A reservoir model with couple flow and poroelastices
 (Schlumberger) ... 3	

Figure 1.3 US domestic crude oil production by source, 1990-2040
 (MMbbl/day) (EIA 2013) ... 4	

Figure 2.1 Programmer view vs. real implementation of over-decomposed
 objects ... 16	

Figure 2.2 MPI “processes” are implemented as virtual processes
 (user-level threads) in AMPI (adapted from Huang et al. (2006)) 18	

Figure 2.3 Domain over-decomposition (On the left, the domain is
 over-decomposed into smaller subdomains. The same grid
 fill pattern denotes the same physical processor (adapted
 from AMPI manual)) .. 25	

Figure 2.4 Migration of VP (adapted from AMPI manual) .. 25	

Figure 2.5 Subdomain from over-decomposition might fit in cache
 (adapted from AMPI manual) .. 26	

Figure 2.6 3D Reservoir model (axes unit in ft) ... 34	

Figure 2.7 Upper: Gas saturation at 7300 days; Lower: Load map at
 7300 days .. 37	

Figure 2.8 Load map recorded at various time snapshots ... 40	

Figure 2.9 Column plots of load at various time snapshots .. 41	

Figure 2.10 Column plots of load for different number of virtual processors 44	

Figure 2.11 a: Time column plot without load balancer; b: Time column plot
 with RefineLB; c: Time column plot with GreedyLB 48	

Figure 3.1 Sparse matrix plot of the first example .. 58	

 x

Figure 3.2 Relative residual reduction of the first example .. 59	

Figure 3.3 Sparse matrix plot of the second example ... 60	

Figure 3.4 Relative residual reduction of the second example 60	

Figure 3.5 Relative residual reduction for the incompressible oil-water system 68	

Figure 3.6 Normalized time vs. matrix size .. 69	

Figure 3.7 Grid complexity ... 71	

Figure 3.8 Operator complexity .. 71	

Figure 3.9 Computational complexity ... 72	

Figure 3.11 Relative residual reduction for the black oil system 75	

Figure 3.12 Sparse matrix plot for the unstructured example ... 77	

Figure 3.12 3D (upper) and 2D (lower) view of the depleted gas reservoir
 for CO2 sequestration (From Ferronato et al. 2010) 80	

Figure 3.13 Sparse matrix plot of displacement matrix .. 81	

Figure 3.14 Relative residual reduction for the displacement example 81	

Figure 4.1 Bubble point pressure lines of Bakken oil using Young-Laplace
 equation .. 99	

Figure 4.2 Cumulative oil production and pressure depletion of 1D model 103	

Figure 4.3 Producing GOR and pressure depletion of 1D model 104	

Figure 4.4 Top view of a horizontal well model with four hydraulic fractures
 (scale in feet) ... 106	

Figure 4.5 Cumulative oil production and pressure depletion of horizontal
 well model .. 107	

Figure 4.6 Producing GOR and pressure depletion of horizontal well model 108	

 xi

LIST OF TABLES

 Page

Table 2.1 Fluid types in the flash calculation .. 21	

Table 2.2 Pseudo Fortran MPI code for flash calculation ... 22	

Table 2.3 Pseudo Fortran code that may cause deadlock .. 23	

Table 2.4 Pseudo Fortran code to fix deadlock ... 23	

Table 2.5 Number of variables to privatize ... 27	

Table 2.6 Properties of Components ... 35	

Table 2.7 Percent of time spent in each portion of sequential execution
 of the test case ... 35	

Table 2.8 Imbalance and high-to-low load ratio at selected days 39	

Table 2.9 Execution time of equation of state on 64 processors 43	

Table 2.10 Load balancing overhead .. 45	

Table 2.11 Speedup improvements for 64 processors ... 45	

Table 3.1 Number of CG iterations of the first example ... 58	

Table 3.2 Number of CG iterations of the second example .. 60	

Table 3.3 Two-level CML algorithm .. 62	

Table 3.4 V-cycle CML algorithm .. 63	

Table 3.5 Decompose-Graph algorithm .. 65	

Table 3.6 Number of Iterations for incompressible oil-water system 67	

Table 3.7 Iteration costs for the incompressible oil-water system 72	

Table 3.8 Number of iterations and costs for the black oil system 75	

Table 3.9 Number of iterations and costs for the unstructured example 78	

 xii

Table 3.10 Number of iterations and costs for the displacement example 82	

Table 4.1 Pore radius, permeability and capillary pressure .. 95	

Table 4.2 Rock compaction table of Bakken .. 96	

Table 4.3 Bakken oil composition data ... 97	

Table 4.4 Bakken oil binary interaction table ... 98	

Table 4.5 Bubble point pressure of Bakken oil at 240 °F ... 100	

Table 4.6 Confined fluid properties of Bakken oil at 240 °F and 1500 psia 101	

	

	

 1

CHAPTER I

INTRODUCTION AND STUDY SCOPES

1.1 Introduction

Reservoir simulation is a technique to mimic or infers the behavior of fluid flow,

such as oil, gas and water, in a petroleum reservoir through the use of mathematical

model numerically. It has been a proven technology to be routinely used in petroleum

asset management. Reservoir simulator was born as an efficient tool for reservoir

engineers to better understand and mange assets. However, like any numerical

simulation approach, reservoir simulation is inherently complex and computational

intensive and easily becomes inefficient if more grids, complex recovery mechanisms,

and/or complex geometry are necessary to accurately describe the complex phenomena

occurring in the subsurface. For example, shown in Figure 1.1 is a multi-reservoir

compositional model with about 10 million cells. The simulation of this model could

take considerable amount of time, which can prolong the project time significantly. The

quest to improve the performance of reservoir simulators has been evolving with the

newly encountered challenges of modeling more complex recovery mechanisms and

related phenomena. Reservoir subsidence, fracturing and fault reactivation etc. require

coupled flow and poroelastic simulation. Shown in Figure 1.2 is an example of reservoir

model with coupled flow and poroelastics. These features, in turn, bring a heavy burden

on linear solvers. The booming of unconventional plays such as shale/tight oil has

greatly changed the energy outlook of North America. Shown in Figure 1.3 is the 2013

 2

EIA forecast of US domestic crude oil production by source. To economically develop

such unconventional plays require technology advances. On of such need is to the

demand of reservoir simulation techniques to handle more physics (or more hypotheses).

Figure 1.1 10 million cell multi-reservoir compositional model

 3

Figure 1.2 A reservoir model with couple flow and poroelastices (Schlumberger)

 4

Figure 1.3 US domestic crude oil production by source, 1990-2040 (MMbbl/day)
(EIA 2013)

1.2 Study Scopes and Outlines

This dissertation deals with three aspects in efforts to improve the reservoir simulation

technique toward these challenges. The three aspects are: 1) load balancing of parallel

compositional simulation; 2) solver preconditioning using combinatorial multilevel

method; and 3) compositional modeling of tight oil considering dynamic nanopore

properties.

Compositional simulation is often required for many reservoir studies. As

mentioned above, it is time consuming and the cost grows dramatically with an increase

in the number of components. Because of this, reservoir studies requiring compositional

simulation often become a bottleneck in the engineering process. With the advances in

0

2

4

6

8

1990 2000 2020 2030 2040

History 2011 Projections

Tight oil

Other lower 48 onshore

Lower 48 offshore

Alaska

2010
0

2

4

6

8

1990 2000 2020 2030 2040

History 2011 Projections

Tight oil

Other lower 48 onshore

Lower 48 offshore

Alaska

2010

 5

high performance computing, execution of compositional simulation in parallel seems to

be the apparently feasible way to tackle its computational demand. Although running

reservoir simulation in parallel sounds extremely attractive, developing an efficient

parallel reservoir simulator is far more challenging than developing the underlying serial

reservoir simulator. For decades there have remained many open problems associated

with high performance computing and reservoir simulation.

Among the various challenges of efficiency and scalability of parallel

compositional simulation, load imbalance is a major obstacle that has not been fully

addressed and solved. In Chapter II, a novel approach is investigated and implemented to

improve the performance of parallel compositional simulation which often suffers severe

dynamic load imbalance problems. This new approach is based on domain over-

decomposition. It over-decomposes the reservoir model to assign each processor a

bundle of subdomains. Processors treat these bundles of subdomains as virtual processes

that can be dynamically migrated across processors in the run-time system. This

technique is shown to be capable of achieving better overlap between computation and

communication and cache efficiency. For a realist simulation problem, it is shown that

domain over-decomposition together with a load balancer can improve speedup from

29.27 to 62.38 on 64 physical processors.

The linear solver is another very critical component that determine the robustness

and efficiency of a reservoir simulator. For large-scale black-oil simulation, the solution

of the resulting linear system usually consumes up to 90% of the total execution time.

For problem with coupled reservoir displacement or poroelastics, the burden on linear

 6

solver is even higher. In Chapter III, a new type of linear solver based the combinatorial

multilevel method (CML) is introduced and investigated for several reservoir simulation

applications. CML is applied as the preconditioner in IMPES, fully implicit and

sequential implicit formulations for flow simulation, and also applied in coupled flow

and poroelastic simulation for both pressure and poroelastic preconditioning. CML is

compared with commonly used ILU(0) and two Algebraic MultiGrid (AMG)

preconditioners, namely Ruge Stüben AMG and AggreGation based MultiGrid

(AGMG). The results show CML has better scalability and performance empirically and

is well-suited for coupled poroelastic problems. These results also suggest that CML

might be a promising way of preconditioning for flow simulation with and without

coupled poroelastic calculations.

The recent advances in massive hydraulic fracturing techniques have enabled the

oil industry to economically extract hydrocarbon from ultra-tight, unconventional

resources, such as shale gas, liquid rich shale and tight oil. In spite of the great

commercial success, there still remain many open questions encountered in field

practices, such as the abnormal production behavior observed (long lasting low GOR

even the pressure around the wellbore is believed to be below bubble point pressure) in

Bakken oil. One probably hypothesis of this abnormal behavior is the fluid properties in

the confined nanopore space deviate from the corresponding bulk measurements in

which zero vapor-liquid interface curvature is assumed. A typical shale/tight oil

reservoir such as the Bakken has a matrix pore size at the nanoscale. At such small

scales the confined hydrocarbon phase behavior deviates from bulk measurements due to

 7

the effect of capillary pressure. In addition, compaction of the pore space can bring

about order of magnitude changes for tight oil formation properties during pressure

depletion further exacerbating these deviations. Without considering these facts, a

conventional reservoir simulator will likely not be able to explain the inconsistent

produced GOR observed in the field compared to simulated results. The effect of these

inaccuracies on ultimate recovery estimation can be devastating to the underlying

economics. In Chapter IV, an improved reservoir simulator is developed which can

rigorously model the dynamic confinement effect, such as suppression of bubble point

pressure, increase of formation volume factor, reduction of oil viscosity and

enhancement of critical gas saturation as well as their interaction with pore space

compaction. The enhanced simulator can correctly capture the pressure-dependent

impact of the nanopore structure on rock and fluid properties. As a result, the problem of

inconsistent GOR is resolved and the history matching process is greatly facilitated. It is

shown that inclusion of these enhanced physics in the simulation will lead to significant

improvements in field operation decision-making and greatly enhance the reliability of

recovery predictions.

 8

CHAPTER II

LOAD BALANCING OF PARALLEL COMPOSITIONAL SIMULATION

USING RESERVOIR MODEL OVER-DECOMPOSITION METHOD*

The quest for efficient and scalable parallel reservoir simulators has been

evolving with the advancement of high performance computing architectures. Among

the various challenges of efficiency and scalability, load imbalance is a major obstacle

that has not been fully addressed and solved. The reasons that cause load imbalance in

parallel reservoir simulation are both static and dynamic. Robust graph partitioning

algorithms are capable of handling static load imbalance by decomposing the underlying

reservoir geometry to distribute a roughly equal load to each processor. However, these

loads determined by a static load balancer seldom remain unchanged as the simulation

proceeds in time. This so-called dynamic imbalance can be further exacerbated in

parallel compositional simulations. The flash calculations for equations of state in

complex compositional simulations not only can consume over half of the total

execution time but also are difficult to balance merely by a static load balancer. The

computational cost of flash calculations in each grid block heavily depends on the

dynamic data such as pressure, temperature, and hydrocarbon composition. Thus, any

static assignment of grid blocks may lead to dynamic load imbalance in unpredictable

* Reproduced with permission from “A New Approach to Load Balance for Parallel
Compositional Simulation Based on Reservoir Model Over-decomposition” by Wang,
Y. and Killough, J. 2013. Paper SPE 163585 presented at the SPE Reservoir Simulation
Symposium, The Woodlands, TX, USA, 18-20 Feb. Copyright 2013 by Society of
Petroleum Engineers.

 9

manners. A dynamic load balancer can often provide solutions for this difficulty.

However, traditional techniques are inflexible and tedious to implement in legacy

reservoir simulators. In this paper, we present a new approach to address dynamic load

imbalance in parallel compositional simulation. It over-decomposes the reservoir model

to assign each processor a bundle of subdomains. Processors treat these bundles of

subdomains as virtual processes or user-level migratable threads which can be

dynamically migrated across processors in the run-time system. This technique is shown

to be capable of achieving better overlap between computation and communication for

cache efficiency. We employ this approach in a legacy reservoir simulator and

demonstrate reduction in the execution time of parallel compositional simulations while

requiring minimal changes to the source code. Finally, it is shown that domain over-

decomposition together with a load balancer can improve speedup from 29.27 to 62.38

on 64 physical processors for a realistic simulation problem.

2.1 Introduction

High performance computing including parallel computing plays a vital role in

many areas of engineering, such as defense, energy and financial engineering.

Nowadays, these devices are being widely used by domain application engineers and

scientists to solve a variety of commercially and scientifically interesting

computationally intensive problems. Many of the techniques utilized are associated with

solving the discretized partial differential equations that describe the underlying physics.

Reservoir simulation, which mimics or infers the behavior of fluid flow in a petroleum

reservoir system through the use of mathematical models, is one of the methods that are

 10

widely used in petroleum upstream development and production. Reservoir simulator

was born as an efficient tool for reservoir engineers to better understand and manage

assets. However, like any numerical simulation tool, reservoir simulation is inherently

computationally intensive and easily becomes inefficient if larger and larger grids or

more components are necessary to describe accurately the complex phenomena

occurring in the subsurface of the earth. Therefore, execution of reservoir simulation on

parallel computers seems be the apparently feasible way to tackle the computational

demand of reservoir simulation. Although running reservoir simulation in parallel

sounds extremely attractive, developing an efficient parallel reservoir simulator is far

more challenging than developing the underlying serial reservoir simulator. For decades

there have remained many open problems associated with high performance computing

and reservoir simulation.

The quest for efficient and scalable parallel reservoir simulators has been

evolving with the advancement of high performance computing architectures. The

mainframes of decades ago quickly gave way to workstations, clusters, and finally PCs

as technology advanced and costs were dramatically reduced. Each of these evolutionary

steps led to significant changes in reservoir simulators. The era of serial reservoir

simulation was replaced by vectorized and finally parallelized simulation. An elusive

goal of reservoir simulation has been the ability to efficiently utilize massively parallel

processing.

In the past the majority of effort has been spent on developing robust parallel

linear solvers (Killough and Wheeler 1987; Cao et al. 2005; Fung and Dogru 2007). As

 11

Graphic Processing Units (GPUs) have become more and more popular in the oil

industry (Foltinek et al. 2009; Appleyard et al. 2011; Klie et al. 2011; Liu et al. 2012;

Bayat and Killough, 2013), it is expected that the reservoir simulation community will

soon have a GPU accelerated linear solver commercially implemented for reservoir

simulation.

Massively parallel linear solver development has by no means been completed;

however, little effort has been spent on investigating another important aspect of high

performance simulation - load balancing. Load imbalance has become a major obstacle

for parallel performance. The reasons that cause load imbalance in parallel reservoir

simulation are both static and dynamic. Robust graph partitioning algorithms are capable

of handling static load imbalance by decomposing the underlying reservoir geometry to

distribute roughly equal load to each processor. This approach works well to distribute

the load for parallel linear solver. Metis from the University of Minnesota is one of most

popular tool for graph partitioning (Karypis and Kumar 1999) and has been applied in

parallel linear solver packages and parallel reservoir simulation both commercially and

academically (Shuttleworth et al. 2009; Zhang et al. 2001). In fully implicit black oil

simulation, where the linear solver can often take over 90% of the total execution time,

graph partitioning often can cure the load imbalance problem. However, this is not the

case for compositional reservoir simulation. In fully compositional simulation using

IMPES formulation, the time spent on equation of state computations can be more than

70% of the total computational time. It is noted that in fully implicit compositional

simulation, the linear solver would dominate the computation. However, IMPES

 12

formulation is still often used for large-scale fully compositional model. Thus, in this

paper, we consider the fully compositional simulation using IMPES formulation.

Although the underlying grid is divided equally (roughly) to each processor, the loads

determined by a static load balancer such as Metis seldom remain unchanged for the

equation of state computations. The changing of load as simulation running - the so-

called dynamic load imbalance - is difficult to balance merely by a static load balancer.

The reason is that each of the underlying grid blocks has an independent phase behavior

calculation. The computational cost of the associated flash calculations in each grid

block heavily depends on the dynamic data such as pressure, temperature, and fluid

composition. It is well known that flash calculations can vary tremendously with time in

each grid block. The cost can become very high when phase changes happen in a grid

block or when the fluid mixture is near the critical point. Since the conditions that cause

expensive flash calculations are difficult to predict a priori, any static assignment of grid

blocks may lead to dynamic load imbalance in unpredictable manners. Removing this

load imbalance in compositional reservoir simulation remains mostly an open problem.

A dynamic load balancer is clearly needed to alleviate this difficulty. Admitted, dynamic

load imbalance is very complex with sources from multiple parts. Besides the flash

calculations mentioned above, well opening/shutting and associated hydraulics, property

calculations and Jacobian construction, the linear solver in the Adaptive Implicit

formulation and reporting may also bring some degree of dynamic load imbalance.

Sherman (1992) proposed a dynamic load-balancing scheme for parallel

compositional simulation based on the Linda coordination language. However, this

 13

parallel programming model is not widely used as opposed to MPI (Massage Passing

Interface). Killough and Anguille et al. (1995) developed an improved load-sharing and

receiver-initiated dynamic load balancing algorithm for parallel compositional

simulation and reported substantial improvement. Little or no research has been reported

over the past decade in this area. In essence, to optimize the parallel performance by

communicating information from one processor to another relies on message passing.

The overhead, or the time involved in message passing creates extra elapsed time which

is added to the total computational time. Thus, in principle, all load-balancing schemes

can be treated as a compromise between the reduction of load imbalance and

minimization of the overhead. However, this improvement is likely to degrade with

more processors since this mechanism requires a significant amount of data exchange

between processors. As a model is scaled to more processors, this overhead may offset

any potential gain by a load-balancing scheme. Moreover, implementing dynamic load

balancing requires intimate knowledge of the underlying reservoir simulator source

code. It can be quite tricky and cumbersome to determine which variables must be

exchanged between processors for legacy comprehensive reservoir simulators.

In this paper, we present a novel approach to address the dynamic load imbalance

issue in parallel compositional simulation. This new methodology over-decomposes the

underlying reservoir model into mini-subdomains. Based on the Charm++ infrastructure,

a bundle of mini-subdomains are assigned to the available physical processors.

Processors treat these bundles of mini-subdomains as virtual processes or user-level

migratable threads, which can be dynamically migrated across processors in the runtime

 14

system. To our best knowledge, this is the first adaptation of domain over-decomposition

or processor virtualization to reservoir simulation.

Our approach can seamlessly handle static and dynamic load imbalance in a

uniform fashion. Further more, this new approach requires minimal changes to the

original MPI based reservoir simulator. The main contribution of this paper is to

demonstrate that domain over-decomposition implemented as virtual processes can be

applied to improve parallel performance of MPI based compositional reservoir

simulations that suffer from load imbalance issues. The rest of the paper is organized as

follows. We first present the legacy comprehensive reservoir simulator used in this study

and the main features of Charm++ and AMPI. Next, we describe the parallelization of

equation of state calculation using MPI and how we adapted it to exploit processor

virtualization followed by results from our experiments. Conclusions and outlooks are

provided at last.

2.2 Background

2.2.1 A Commercial Comprehensive Reservoir Simulator

A commercial comprehensive reservoir simulator (simulator hereafter) written by

Fortran 90 and C is applied as the test bed in this study (Dean and Lo, 1988). Based on

fully implicit and IMPES formulations, the simulator is capable of performing black oil,

limited compositional and fully compositional simulation for single and dual porosity

reservoirs. It utilizes 3D radial and corner point grid system and supports multiple levels

of local grid refinements. Wellbore parameters are treated implicitly during the

simulation process and wells can be connected into surface networks. Geomechanics is

 15

also supported. Stress, strains, and displacements can be calculated throughout the

simulation in a fully coupled fashion with flow calculations. The linearized equation

system is solved by iterative solvers with preconditioning and acceleration options. In a

word, this is a comprehensive reservoir simulator with production quality. The hope is to

demonstrate that the technique introduced below is applicable to real-strength reservoir

simulators.

2.2.2 Charm++ and Processor Virtualization

Charm++ (Kale et al. 2008) is an objective-oriented parallel programming library

for C++/C/Fortran. It aims to improve productivity in parallel code development and

enhance parallel scalability. Charm++ is message-driven. It does not block the

processors while waiting for messages to be received. Based on migratable objects,

Charm++ uses the idea of processor virtualization. In this framework, the programmer

decomposes a domain into N subdomains to execute on P processors. In ideal case, we

should have N >> P. In the programmer’s point of view, it is seen that the program is

running using N subdomains. The Charm++ runtime system maps those subdomains or

more specifically Charm++ objects to the P available processors. Figure 2.1 provides a

schematic illustration of the basic idea of processor virtualization. The ratio of N over P

is the so called processor virtualization ratio. The mapping is dynamic and the

subdomains can migrate across processors during program running. This unique

capability is utilized by the underlying intelligent Charm++ runtime system, which

provides potential for better overlap between computation and communication as well as

cache utilization.

 16

The combination of a natural encapsulation mechanism and an intelligent

runtime system has made Charm++ suitable for parallel code development over a range

of computing architectures, from personal computers to large-scale parallel clusters,

from multicore CPUs to massively-parallel GPUs. In addition, it has been applied to

scale real-world applications to thousands of processors on several scientific and

engineering fields, such as quantum chemistry (Bohm et al. 2008), computational

cosmology (Jetley et al. 2008), rocket simulation (Jiao et al. 2005) and weather

forecasting (Rodrigues et al. 2010, 2010).

Figure 2.1 Programmer view vs. real implementation of over-decomposed objects

!
!
!

User%level(Threads((

Processor'0'

!!
!
!

User%level(Threads(

Processor'1'

Obj A

Obj'C'

Obj'B'

Obj'D'

Obj'A'

Obj'B'
Obj'D'

Obj'C'
Obj'E'

Programmer’s'View'

Physical'Hardware''

 17

2.2.3 Adaptive MPI

Adaptive MPI (AMPI) is an implementation of the MPI standard on top of

Charm++ (Huang et al. 2003, 2006; Zheng et al. 2006). As abovementioned, the

developer only sees the virtual processors while the mapping of virtual processors to

physical processors is handled by the Charm++ runtime system. It is illustrated in

Figure 2.2 that in AMPI the original MPI processes from a programmer’s perspective

are embedded in a Charm++ object as user-level threads. These user-level threads are

not only migratable between physical processors but also have very short context switch

times. In the context of AMPI, the N MPI tasks in a MPI code are referred as Virtual

Processors (VPs). A VP is assigned as a user level thread and a bundle of VPs share one

physical processor. Without any programming effort, the overlap between computation

and communication is automatically achieved by having more VPs than real physical

processors. When one VP is blocked from communication, the Charm++ scheduler picks

up the next VP to execute. More specifically, when some VPs of a physical processor are

waiting for messages to be received, other VPs can continue their execution in this

particular physical processor. As a result, performance can be improved without any

source code change. Since smaller subdomains may fit into cache if the over-

decomposition is enough, better cache utilization is expected in this situation. Therefore,

it is natural to see legacy MPI code will benefit substantially from AMPI and this

potentially significant benefit comes with few catches and without major modifications

of the original MPI code.

 18

However, to utilize AMPI in practice, one must pay attention to global and static

variables. Those variables are problematic for a multi-threaded programming model such

as OpenMP and AMPI. In MPI, since only one thread exists in the allocated process’s

address space, global and static variables are safe. But, if a single instance of a global or

static variable is shared by more than one thread in the single address space, incorrect

results are likely to be generated. In other words, VPs residing on a particular physical

processor will access the same copy of global and static variables. If those variables are

to be read and updated, conflicts will occur and correct results cannot be guaranteed.

Thus, one has to privatize global and static variables. There are a few approaches for this

privatization, which will be discussed in following sections.

Figure 2.2 MPI “processes” are implemented as virtual processes (user-level

threads) in AMPI (adapted from Huang et al. (2006))

Real Physical Processors

MPI “processes” as
virtual processes

Processor 0 Processor 1

 19

2.2.4 Native Load Balancing in AMPI and Charm++

Charm++ provides a native and powerful infrastructure for load balancing.

Charm++ is based on the idea that load behaviors from the recent past provide sound

predication for loads in the near future. By actually measuring the load information at

runtime, it migrates VPs from heavily loaded processors to lightly loaded processors.

Thus, Charm++ use a measurement based load balancing technique. Several different

load balancing policies have been made available by Zheng (2005). In addition, a new

load balancer can be written simply by using the Charm++ API. A particular load

balancer is selected in the command line at execution time.

The specific statement to invoke a load balancer in AMPI is MPI_Migrate().

When MPI_Migrate() is called, VPs may migrate between processors, if it is determined

that such migration will improve parallel performance. Obviously, the frequency of

calling MPI_Migrate() is determined by the compromise between the overhead and

performance degradation caused by load imbalance.

2.3 Adaptation of Reservoir Simulator to AMPI

Generally speaking, adapting an MPI program to AMPI is a simple process. But

as explained in the previous section, one must pay attention to the global and static

variables. Since the original simulator is serial, the first required step is to parallelize a

portion or all of the simulator using MPI. In this section, we present the parallelization of

a portion of the equation of state of simulator, possible ways of global and static

variables privatization, and different load balancing schemes.

 20

2.3.1 Equation of State Parallelization

To serve as a proof of concept study, in this paper we only parallelize the

equation of state computations which can take more than 70% of the total execution time.

The idea of parallelization of this portion of the compositional simulator is rather

straightforward. Since the flash calculations for each grid block are independent from

other grid blocks, no subdomain boundary data exchange is needed. Basically, at the

equation of state subroutine, we do the follow four steps:

1. Divide the key input and output arrays according to the domain decomposition

setup. We use 2-D domain decomposition, i.e. the reservoir is divided in X and Y

directions while keeping the Z direction undivided. This domain decomposition

setting is reasonable since in general the Z direction extent is far less than the X

and Y directions.

2. Let the master processor distribute necessary information to the slave processors.

3. Each processor performs equation of state computations independently.

4. Let the master processor gather computed information from the slave processors.

Once the master has finish gathering, all processors then exit the equation of state

subroutine.

Although it seems to be an easy parallelization according to the above four steps,

it is not the case for a comprehensive reservoir simulator. The equation of state and other

involved code in this parallelization is about 20K lines. Moreover, the grid blocks are

reordered inside flash calculation according to their fluid types. Table 2.1 lists the eight

fluid types. Thus, we could not expect a big DO loop over all grid blocks, which can be

 21

parallelized easily as shown in Table 2.2. N is the total number of grid blocks that are to

be flashed. numproc is the number of requested processors. So, N_local is the number of

grid blocks that are assigned to each available processor. Note that, to shorten the

presentation, it is assumed that N can be divided by numproc exactly. A and A_local

represent the arrays which are to be updated by flash calculations. A_local is allocated to

each available processor to store information computed. A is the global array to collect

information from each available processor. To be concise yet complete, we omit the

actually arguments of MPI and subroutine calls. As abovementioned, since the grid

blocks are reordered according to fluid types, we construct and parallelize a derived type

on top of the actual equation of state routine to govern the data structure in the flash

calculations. In the derived type, pointers are set up to trace the grid blocks to be updated

in each subdomain. In this setting, we do not need to worry about the grid reordering

inside of the flash calculation.

Table 2.1 Fluid types in the flash calculation

Fluid Type Meaning
1 Two phase jacobian constant (won’t be updated)
2 Two phase jacobian will be updated
3 One phase checked by negative flash
4 One phase checked by stability test calculation
5 One phase not tested (was single-phase last call and do not

have two phase neighbor)
6 Aquifer cells
7 Zero PV cells (for well calculation, new well and inactive)
8 One phase cells (converged from stability test)

 22

Table 2.2 Pseudo Fortran MPI code for flash calculation

N_local = N/numproc
! Broadcast variables and arrays to slave processors
CALL MPI_BCAST()
DO i = 1,N_local
 A_local(i) = flash()
ENDDO
IF (myid == Master) THEN
! put A_local computed by master to global A
 A = A_local
 DO i = 1,numproc-1
 CALL MPI_RECV()
! put A_local computed by slaves to global A
 A = A_local
 ENDDO
ELSEIF (myid /= 0) THEN
 CALL MPI_SEND()
ENDIF

Since we only parallelize a portion of the simulator, we let the master processor

perform the rest of the simulation. Special care must be paid to places where GOTO

statements are used such as when the newton iteration is not converged and time step

reduction is performed. Otherwise, a deadlock condition will be likely occurring. Table

2.3 lists a situation in which a deadlock might happen. No deadlock will happen if label

1000 is inside the IF_Master structure. However, when label 1000 is outside of

IF_Master and slave processors need to perform computation after this label, deadlock

will happen if trigger is true. This is because only the master processor gets the signal to

go to label 1000 while other slave processors are hanging there. If this situation happens,

the program will be waiting with slave processors at label 1000 and the program will

 23

stall. Since there is no OMP Flush like function in MPI to flush all the processes to have

the same view of a variable, to fix this issue we should broadcast the triggers to all the

processors and let all processors go to label 1000 explicitly. A quick fix for Table 2.3 is

provided in Table 2.4.

Table 2.3 Pseudo Fortran code that may cause deadlock

IF_Master : IF (myid == Master) THEN
 Perform computation
 IF (trigger == .TURE.) THEN
 GOTO 1000
 ENDIF
ENDIF IF_Master

Table 2.4 Pseudo Fortran code to fix deadlock

IF_Master : IF (myid == Master) THEN
Perform computation

ENDIF IF_Master
CALL MPI_BCAST(trigger)
IF (trigger == .TURE.) THEN
 GOTO 1000
ENDIF

It is readily seen that the slowest processor determines the time spent in equation

of state. If one or few processors contain grid blocks that have phase changes or are at

critical condition, those busy processors will dominate the computation time while other

processors are idle. It is difficult to predict which processor will be busy. One may argue

that a processor that has wells will be busy; but such processors will not always be the

busiest due to the processes occurring around the moving injectant-displacement front.

 24

This front movement is generally unknown a priori (since predicting where the front

will go and how long it will take is what the simulator is designed for). One may also

argue that we can estimate where the fluid will go roughly from the permeability field,

but decomposing a real world reservoir according to the permeability will complicate the

coding to an even greater extent. Moreover, even we could assign more processors to

high permeability channels; this will not help since we still do not know when the front

arrives at a certain place a priori. The only feasible and unified approach for this issue is

to use finer grained computation and migrate those fine-grained units when necessary in

a smart run-time system, which Charm++ can provide.

2.3.2 Domain Over-Decomposition

As explained in the previous section, processor virtualization is required to

enhance parallel performance of an existing MPI code. It is not redundant to emphasize

again that one can just decompose the domain as if as many as processors that are

required are available. In other words, the MPI code does not need to be changed at all in

this aspect. For example, as shown in Figure 2.3, one just decomposes the domain as if

there are 16 processors. But in fact, these are 16 VPs that are to be mapped to the 4

physical processors. In Figure 2.3, the thick lines divide the physical processors while

the thin lines separate the VPs. In this example, the processor virtualization ratio is 4.

One should also appreciate that such over-decomposition may enhance cache utilization.

As shown in Figure 2.5, subdomain 3 might fit in cache while subdomain 0 might not.

Note that over-decomposition is applicable if and only if the results are independent of

 25

the number of MPI tasks and one should be beware of the increase in memory usage due

to over-decomposition.

Figure 2.3 Domain over-decomposition (On the left, the domain is over-decomposed

into smaller subdomains. The same grid fill pattern denotes the same physical

processor (adapted from AMPI manual))

Figure 2.4 Migration of VP (adapted from AMPI manual)

 26

Figure 2.5 Subdomain from over-decomposition might fit in cache (adapted from

AMPI manual)

2.3.3 Variable Privatization

As illustrated in Figure 2.3, 2.4 VPs share one physical processor. We have

discussed that such a scenario will cause problems if global and static variables are used.

Thus, these variables have to be privatized. It is noted that, in Fortran, module variables,

saved subroutine variables, and common blocks belong to this category. Fortunately,

since we only execute the equation of state in parallel, the number of variables to be

privatized is not significant. Table 2.5 lists the number of global, static variables and

common blocks. Currently, there are 4 approaches to privatize global and static variables

with different mechanisms and applicability:

 27

Table 2.5 Number of variables to privatize

Globals Static Commons
124 4 0

2.3.3.1 Manual Change

The thought behind manual change is to pass the information those global

variables carry as subroutine arguments, since subroutine arguments are passed on a

stack which are not shared across threads. We could gather global variables together in a

single derived type in Fortran 90. This derived type is allocated by each thread

dynamically. We then set up a pointer to this derived type. The pointer is passed across

the subroutine as an argument. This mechanism will make sure each thread owns a

private copy of the global variables. Static variables can be handled in the same way. As

the name suggests, this privatization requires manual changes of all of these variables,

which can be very tedious and bug-prone if the number of global variables is significant.

Thus, it is clearly not a good approach for a large legacy reservoir simulator.

2.3.3.2 Source-to-source Transformation

There is a way to do the manual change automatically. A tool called Photran by

Zheng et al. (2011) is available to transform the source code to change global and static

variables in objects and then pass the objects across subroutines. Photran works by

constructing abstract syntax trees of the program. However, at the time of preparation of

this paper, Photran is only in beta phase. In our limited experiments, this tool works well

for simple example code but is tends to be unstable or even crash for large code.

 28

Moreover, the readability of the transformed code by Photran decreases to some extent.

Therefore, it is not recommended to apply Photran until a stable version is released.

2.3.3.3 Automatic Global Variables Swapping

AMPI provides a build-in compilation flag that can automatically privatize

global variables on systems that support Executable and Linkable Format (ELF). ELF is

now a standard for objective files in Unix-like systems. It works as it maintains a Global

Offset Table (GOT) for global variables and switches GOT contents at thread context

switching. It is very straightforward to apply this approach. All one need to do is to add

the flag –swapglobals at compilation and link time, which will enforce that each VP has

its own view of a certain global variable. It works for C/C++/Fortran and x86 and

x86_64 platforms. However, the drawback is that it does not handle static variables and

has a context switch overhead that grows with the number of global variables. For static

variables, we could replace saved local variables with a module, which transforms static

variables to global variables. Since in this study the number of global and static variables

is not high, in this paper we apply this approach.

2.3.3.4 Privatization Based on Thread Local Storage (TLS)

It is easy to appreciate that when the number of global and static variables is

significant, which is often the case for a comprehensive parallel reservoir simulator, the

overhead caused at context switch by –swapglobals may become excessive. Thus,

clearly automatic global variables swapping is not the silver bullet for a comprehensive

parallel reservoir simulator. Rodrigues et al. (2010) developed a better privatization

strategy based on TLS (Thread Local Storage). TLS is designed for thread safety. This

 29

approach works by allocating one instance of the variable per thread. To utilize TLS to

privatize global and static variables, one just need to add C directive “__thread” before

all global and static variables. This simple modification will make these variables have

thread local storage duration, which means a unique instance of a particular global or

static variable is created for each thread that uses it and is destroyed when the thread

terminates in a multi-threaded environment. Privatization based on TLS not only has no

context switch overhead but also can handle both global and static variables. However,

unfortunately, only C/C++ compilers have implemented TLS at this time and there is no

such directive in Fortran. As a workaround for Fortran program, one can write a

GFortran patch file to modify GFortran to adopt the TLS method for global and static

variables privatization. How to modify GFortran compiler is certainly beyond the scope

of this paper. At the time when this paper was prepared, a patch file for GCC 4.5 is being

developed for our future study based on (Rodrigues et al. 2010; Rodrigues 2012). This

approach is recommended if one want to apply AMPI to a comprehensive parallel

reservoir simulator written in Fortran.

In summary, although we apply automatic global variable swapping for variable

privatization, the TLS based privatization might be the only applicable strategy for a

comprehensive parallel reservoir simulator at this time. Even if one has to have a

modified GFortran for Fortran MPI code, this obstacle is not significant to surmount if

one can adsorb or find expertise on compiler writing. One must keep in mind that global

variable swapping and TLS are not supported by all platforms. For example, Blue

Gene/P and Mac OS X support neither of them and Cray/XT only supports TLS. In fact,

 30

only the first two methods are applicable for all platforms. Therefore, when a stable

Photran is debuted, the adaptation of MPI code to AMPI might become truly trouble-free.

2.3.4 Dynamic Load Balancer

As stated previously, Charm++ and AMPI can migrate VPs across processors to

balance load. As illustrated in Figure 2.4, when Processor 0 becomes overloaded while

Processor 1 is under loaded, VP 5 will be migrated to Processor 1 if a load balancer is

invoked. To utilize the dynamic load balancing strategy of AMPI, one only need to

insert MPI_Migrate() calls at a certain frequency and setup the dynamic load balancer at

compilation and runtime in the command line. In the reservoir simulator we can call

MPI_Migrate() every nt time steps as follows:

IF (mod(time_step, nt) == 0) CALL MPI_Migrate()

We adapt the methodology of Rodrigues et al. (2010) to quantify imbalance by how

much the load in the most loaded processor is above the average load. An imbalance

threshold can also be set to trigger migrations.

Charm++ provides several dynamic load balancers that consider computational

and/or communication load. The selection of a specific load balancer depends on the

application itself. If an application only has computational load and no communication

traffic, a balancer that only takes computational load into account will be enough.

Otherwise, a balancer based both on computational and communication loads must be

chosen.

Since inter-subdomain data exchange is not necessary for equation of state

computations, we may choose dynamic load balancers that only handle computational

 31

load. Two balancers are selected in this study: GreedyLB and RefineLB. GreedyLB uses

a greedy algorithm to assign the heaviest object to the least loaded processor till a

balance is reached. RefineLB not only moves objects from overloaded processors to

under loaded ones but also limits the number of objects migrated. In general, RefineLB

is useful when only a few VPs migrations are sufficient to reach balance.

Although the case application in this paper does not need ghost cells along

subdomain boundaries to exchange data, it is worth mentioning the dynamic load

balancers that also take communication traffic into consideration. This kind of balancer

is required for a general parallel reservoir simulator. The following discussion will also

serve as a reference for our future study. The build-in balancers in this perspective are

GreedyCommLB, RefineCommLB, RecBisectBfLB and MetisLB. GreedyCommLB

extends GreedyLB to take the communication graph into account. RefineCommLB

applies the same idea as RefineLB but takes communication into account.

RecBisectBfLB recursively partition the communication graph until the number of

partitions is equal to the number of processors. However, RecBisecBfLB does not

explicitly guarantee that communication traffic is minimized. MetisLB uses Metis to

partition the communication graph. The selection of these balancers is application

dependent and heuristic. A systematic comparison between these balancers is

recommended to understand their behavior for a particular application. It is noted that

none of these balancers explicitly consider the spatial relationship between VPs. Thus,

neighboring VPs might be distributed to different processors or even far away nodes in

runtime. This is clearly not an optimal scenario since there might be communication

 32

between neighboring VPs. Thus, a balancer that considering the spatial relationship

between VPs is preferred. Rodrigues et al. (2010) developed a new balancer based on

Hilbert curve to consider such situations.

2.4 Example

In this section, we provide a case study for applying the domain over-

decomposition and dynamic load balancing techniques for parallel equation of states

computation of compositional simulation. We begin with describing the compositional

reservoir model used in this case study and showing results of MPI execution on 64

physical processors. Next, we study the effects of domain over-decomposition and load

balancing on this case model. We first show the results of domain over-decomposition

without load balancing by simply varying the processor virtualization ratio. We then

bring the effect of load balancing by dynamically migrating VPs during simulation

execution.

All the simulations are performed on an IBM iDataplex cluster with Intel 8-way

Nehalem and 12-way Westmere processors. All the cores are at 2.8 GHz and nodes are

connected via 4X QDR infiniband. The development tools used are Intel Fortran and C

compilers and Open MPI.

2.4.1 Reservoir Model

As depicted in Figure 2.6, a 3D reservoir model using a corner point grid is used

as the test case. It contains 15 vertical layers and each layer has 256×256 grid blocks.

Thus, it has totally 983040 grid blocks. This reservoir has about areal dimension of

about 3760 acres and 150 ft thickness. 14 gas injectors and 14 producers are perforated

 33

throughout all of the layers. Porosity is generated by sequential Gaussian simulation and

permeability is obtained by correlation. This reservoir model contains 12 components

except water. The properties of these components are provided in Table 2.6. In Table

2.6, MW, TC, PC, W, ZC, VPARM are molecular weight, critical temperature, critical

pressure, Pitzer accentric factor, critical Z-factor, and volumetric shift parameter,

respectively. A 20-year production/injection period is simulated for this model.

The IMPES formulation is applied in this case. The key parameters used to

control the equation of state convergence are residual norm of flash calculations,

maximum residual of constant K-flash, and change in K-values for stability calculations,

which are set to be 1.0e-6, 1.0e-6, and 1.0e-8, respectively. The jacobian is set to be

recalculated only at selected grid blocks and K-value is set such that starting values

cannot be borrowed from neighbor grid blocks. The timing summary for this reservoir

model in sequential execution is listed in Table 2.7. We can see that, for this case, the

equation of state calculations consumes almost 80% of the total computational time. It is

this part of computation that we parallelize in this study.

 34

Figure 2.6 3D Reservoir model (axes unit in ft)

 35

Table 2.6 Properties of Components

Component MW TC
(Rankine)

PC (psi) W ZC VPARM

CO2 44.010 547.650 1071.30 0.2250 0.2750 0.02700
C1 16.040 343.040 667.800 0.0130 0.2900 -0.11800
C2 30.070 549.760 707.800 0.0986 0.2850 -0.10700
C3 44.100 665.680 616.300 0.1524 0.2770 -0.08477
C4 58.120 765.320 550.700 0.2010 0.2740 -0.06858
C5 72.150 845.370 488.600 0.2539 0.2690 -0.04103

C6+ 94.200 975.920 458.680 0.2695 0.2663 -0.00076
C8+ 116.00 1087.87 408.080 0.3328 0.2589 0.05973
C11+ 169.50 1223.01 305.180 0.4856 0.2546 0.08719
C15+ 232.60 1353.35 248.530 0.6436 0.2691 0.09684
C20+ 328.00 1458.35 227.270 0.7926 0.3165 -0.06104
C30+ 628.00 1670.24 168.570 1.0536 0.3676 -0.13829

Table 2.7 Percent of time spent in each portion
of sequential execution of the test case

Portion of simulator Percent of time spent

Linear Solver 14%
Equation of State 79%
Coefficient Setup 6%

Others 1%

 36

2.4.2 Performance of MPI

As has been discussed in previous sections, MPI implementation of a parallel

equation of state is very likely to suffer dynamic load imbalance issues. Subdomains

with phase changes or at critical conditions will dominate the execution time. To test the

performance of an ordinary MPI implement with static decomposition, we run the case

reservoir model using 64 physical processors. The model is divided into 64 subdomains

using 2D domain decomposition, i.e. 8×8 decomposition. Depicted in the left picture of

Figure 2.7 is the gas saturation distribution of the top layer at 7300 days. The small

squares that are separated by dash lines correspond to the decomposed subdomains. The

saturation map is believed to be a strong indicator for processor load in the equation of

state calculations. Shown in the right picture of Figure 2.7 is the gray-scale-coded load

map at 7300 days for the 8×8 set of physical processors. The load scale has a range from

0 to 1. The darker the color is the higher the load is for a particular processor. Indeed,

there is a clear correlation between the saturation map and load map.

 37

Figure 2.7 Upper: Gas saturation at 7300 days; Lower: Load map at 7300 days

 38

In addition, the load distribution of physical processors does not remain

unchanged as simulation running. We explicitly show the load map at 30, 365, 1825,

3650, 5475 and 7300 days in Figure 2.8. To better quantitatively understand the load

imbalance, we also provide the column plots at these time snapshots in Figure 2.9. Note

that, the loads are normalized to the highest processor at each snapshot. Initially, at 30

days, the dark processors correspond to the subdomains that contain wells. Other

processors are roughly equally loaded. This is easy to be understood since at 30 days

most of the states changes happen near the wells. The load maps become complex at

later time snapshots. Although the load maps do seem to be similar at 1825, 3650, 5475

and 7300 days, the imbalances and high-to-low load ratios are different. The imbalance

is quantified by how much the load in most loaded processor is above the average load.

The imbalances and high-to-low load ratios at these snapshots are listed in Table 2.8. It

should be noted that, since a star topology is applied such that the master processor

scatters data to and gathers results from all of the slave processors, the master processor

will have significantly more message send and receives. For this reason, the load results

are chosen to only reflect the actual equation of state computations. It can be seen from

Table 2.8 that imbalance and high-to-low load ratio tends to increase with time.

 39

Table 2.8 Imbalance and high-to-low load ratio at selected days

Time (days) Imbalance High-to-low load ratio
30 46% 2.08
365 36% 2.21
1825 48% 3.42
3600 52% 4.45
5475 53% 4.98
7300 55% 5.60

 40

Figure 2.8 Load map recorded at various time snapshots

 41

Figure 2.9 Column plots of load at various time snapshots

 42

2.4.3 Performance of Processor Virtualization

We first evaluate the effect of domain over-decomposition or processor

virtualization on the case model. To perform this comparison we simply vary the number

of VPs using a fixed number of physical processors, i.e. 64 processors in this case. It is

expected that overhead due to handling extra user-level threads and communications will

be brought in by increasing the processor virtualization ratio. However, there may still

be benefits due to the implicit overlap of computation and communication and better

cache utilization. For example, in this case model, when the master user-level thread

blocks a receiving message, other VPs can still execute on the same physical processor;

while in ordinary MPI execution, this physical processor will be held for receiving.

We compare the execution timings of equation of state of the case model at 7300

days with 64, 256, 1024, 2048, 4096 virtual processors, respectively. We consider the

elapsed time during actual equation of state computation. As it can been seen in Table

2.9, the execution time is reduced by 19.78% with 256 VPs, 23.23% with 1024 VPs,

24.48% with 2048 VPs, and 16.27% with 4096 VPs. It seems that there is an optimal

number of VPs. The use of more VPs does not improve the performance further. To

understand this behavior, we provide the column plot of the actual time of equation of

state computation using different VPs in Figure 2.10. As we can see from Figure 2.10,

the load imbalance pattern remains unchanged for different processor virtualization

ratios. The reduction in computational time is believed to be the result of better cache

utilization since the subdomain size becomes much smaller if high processor

virtualization ratio is applied. There are a number of steps in the stability test and flash

 43

calculations. Each step may require reading previous results. In the over-decomposed

setting, the results and data of an entire subdomain during the whole process may fit into

the cache. But, in a conventional domain decomposition setting, those data may have to

be stored in faraway memory which will cause latency. The reduction of time in data

scattering and gathering is the result of overlap of computation and communication

when the master VP performs sending and receiving of messages. Thus, the observed

effects of processor virtualization are the combination of results from better cache

utilization and overlap of computation and communication. However, the performance

improvement is limited by the server load imbalance in equation of state computations.

Table 2.9 Execution time of equation of state on 64 processors

Virtualization configuration Execution Time (s)
No virtualization 1960.5905

256 VPs 1572.3643
1024 VPs 1505.1414
2048 VPs 1480.5817
4096 VPs 1641.8273

 44

Figure 2.10 Column plots of load for different number of virtual processors

2.4.4 Performance of Dynamic Load Balancing

As revealed in last section, merely domain over-decomposition can only improve

the performance to some extent (24.48% in this case). A dynamic load balance scheme

must be applied for better performance enhancement. Fortunately, load balancing

becomes much easier in the virtualized implementation of MPI, since the over-

decomposed VPs are ready to be migrated to mitigate load imbalance. Thanks to the

particular feature of equation of state, there is only computation involved and no

communication needed between VPs. As a result, a dynamic load balancer that only

handles computation should be enough for this kind of application. For this reason, we

choose GreedyLB and RefineLB to balance the load during parallel equation of state

computation. Listed in Figure 2.11 are the timing results of each processor before and

after implementation of the abovementioned load balancers. The reference timing

without load balancer is shown in Figure 2.11a. Clearly, only a few of processors

dominate the execution time, while

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	
 3	
 5	
 7	
 9	
 11	
 13	
 15	
 17	
 19	
 21	
 23	
 25	
 27	
 29	
 31	
 33	
 35	
 37	
 39	
 41	
 43	
 45	
 47	
 49	
 51	
 53	
 55	
 57	
 59	
 61	
 63	

Re
la
%v

e	

%m

e	

Processors	

No	
 VP	

256	
 VPs	

1024	
 VPs	

2048	
 VPs	

4096	
 VPs	

 45

Table 2.10 Load balancing overhead

Load balancer Overhead (s)
GreedyLB 40.85
RefineLB 4.21

Table 2.11 Speedup improvements for 64 processors

Configuration Speedup
MPI 29.27

2048 VPs 38.73
2048 VPs + GreedyLB 62.38

others are idle. The results of GreedyLB and RefineLB are provided in Figure 2.11b and

Figure 2.11c, respectively. Apparently, the performances of GreedyLB and RefineLB

are distinct. GreedyLB balances the load very well. Indeed, by design GreedyLB

algorithm always grabs the heaviest unassigned VPs and assigns it to the currently least

loaded physical processor until a balance is reached. In contrast, as shown in Figure

2.11c, RefineLB only balances the load to some extent and the imbalance trend seems to

be unchanged, since the RefineLB algorithm tries to minimize the number of VPs to be

migrated. RefineLB is only useful when only a small number of VP migrations is

enough to reach balance. Nevertheless, GreedyLB is an 𝑂 𝑁𝑙𝑜𝑔𝑁 algorithm, which

implies that it is more expensive than RefineLB. This is confirmed by measuring the

overhead cost of the load balancing scheme and VP migrations. It can be seen from

 46

Table 2.10 that GreedyLB is about 10 times more expensive than RefineLB in this

example case.

However, these overheads become negligible when comparing with the total

execution time. This is attributed to the smart runtime system and overlap of VP

migrations and computations, which help to hide migration overhead. To finalize our

experiments, we provide the speedup improvement after applying the new technique

introduced in this paper. It can be seen from Table 2.11 that the speedup using 64

physical processors is improved from 29.27 to 62.38.

2.5 Conclusions

In this paper, it is shown that load imbalance is the key performance limiter for

parallel compositional simulation when using the IMPES formuation for reservoir

simulation. This kind of load imbalance is often dynamic and highly unpredictable.

Thus, a dynamic load balancing scheme must be implemented to improve parallel

performance. However, adaptation of dynamic load balancers to an established legacy

reservoir simulator can be challenging and requires a substantial amount of development

time. This paper provides a promising shortcut to mitigate load imbalance yet with high

efficiency. Built upon Charm++ and AMPI, this approach over-decomposes the

underlying reservoir model into small chunks. A bundle of these chunks is then mapped

to each physical processor as virtual processes or user-level threads. Based on this

unique idea, we develop a new parallel equation of state computation capability on a

legacy commercial comprehensive reservoir simulator. It is shown that domain over-

decomposition and GreedyLB load balancer in together help to improve the speedup

 47

from 29.27 to 62.38 on 64 physical processors. This is because, by design, domain over-

decomposition not only brings overlapping between communication and computation

and better cache utilization, but also provides a natural framework for dynamic load

balancing.

It should be noted that it is due to the particular feature of equation of state

computation that GreedyLB provides excellent performance. Generally, inter-subdomain

data exchange is not needed in this application. Thus, a balancer without considering

communication is enough. If the abovementioned approach is applied to general

reservoir simulations, clearly, other balancers should be implemented to considering

inter-subdomain communication. A full adaption to a comprehensive reservoir simulator

should be straightforward if an MPI version is in hand. The key in a successful

implementation is the correct treatment of global and static variables.

This technique is only adapted to the parallel equation of state in a reservoir

simulator. The impact on the linear solver should also be investigated before full

implementation. Based on limited experiments, it appears that domain over-

decomposition can improve Jacobi, Gauss-Seidel and CG iterative solvers’ parallel

performances by 10%-20%. However, further research needs to be performed for more

complex parallel preconditioners and linear solvers.

 48

Figure 2.11 a: Time column plot without load balancer; b: Time column plot with
RefineLB; c: Time column plot with GreedyLB

 49

CHAPTER III

SOLVER PRECONDITIONING USING THE COMBINATORIAL

MULTILEVEL METHOD*

The purpose of this chapter is to present the first preliminary study of the

recently introduced Combinatorial Multilevel (CML) method for solver preconditioning

in large-scale reservoir simulation with coupled geomechanics. The CML method is a

variant of the popular Algebraic Multigrid (AMG) method yet with essential differences.

The basic idea of this new approach is to construct a hierarchy of matrices by viewing

the underlying matrix as a graph and by using the discrete geometry of the graph (Koutis

2007; Koutis et al 2009). In this way, the CML method combines the merits of both

geometric and algebraic multigrid methods. The resulting hybrid approach not only

provides a simpler and faster set-up phase compared to AMG, but the method can be

proved to exhibit strong convergence guarantees for arbitrary symmetric diagonally-

dominant matrices. In addition, the underlying theoretical soundness of the CML method

contrasts to the heuristic AMG approach, which often can show slow convergence for

difficult problems.

 This new approach is investigated for both pressure and displacement preconditioners

in the multi-stage preconditioning technique. We present results based on several known

benchmark problems and provide a comparison of performance and complexity with the

widespread preconditioning schemes used in large-scale reservoir simulation. An

adaptation of CML for unsymmetric matrices is shown to exhibit excellent convergence

properties for realistic cases.

* Reproduced with permission from “Solver Preconditioning Using the Combinatorial
Multilevel Method” by Wang, Y. and Killough, J. 2013. Paper SPE 163589 presented at
the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 18-20 Feb.
Copyright 2013 by Society of Petroleum Engineers.

 50

3.1 Introduction

Reservoir simulation, which mimics or infers the behavior of fluid flow in a

petroleum reservoir system through the use of mathematical models, is a practice that is

widely used in petroleum upstream development and production. Reservoir simulation

was born as an efficient tool for reservoir engineers to better understand and manage

assets. However, like any numerical simulation tool, reservoir simulation is inherently

computational intensive and easily becomes inefficient if more grids, coupled physics,

and/or complex geometry are necessary to accurately describe the complex phenomena

occurring in the subsurface. Mathematically speaking, reservoir simulation solves a

system of discretized partial differential equations (PDEs) which describe the underlying

physics. Due to stability constraints, an implicit formulation is required at least for the

pressure system. Details about the numerical analysis for choosing an implicit

formulation (or more specifically, the backward Euler method) can be found in the

classic literature of Aziz and Settari (1979). However, as a recent exception, Piault and

Ding (1993) attempted a fully explicit scheme in a reservoir simulation on a massively

parallel computer and showed acceptable results. They adopted the Dufort and Frankel

scheme (Dufort and Frankel 1953) which is unconditionally stable but numerically

inconsistent. This scheme is of order of 22 xt ΔΔ accuracy, which clearly implies the

truncation error can be significant if tΔ does not approach 0 faster than xΔ . In essence,

implicit formulation is the only unconditionally stable and consistent scheme and is

adopted by all commercial reservoir simulators. As a result, a linear solver is inevitable

for reservoir simulation due to this implicit formulation.

 51

There are four main streams of formulations applied in reservoir simulation:

IMPES, fully-implicit, AIM, sequential implicit. Of these, fully-implicit is the most

robust formulation but the resulting coupled system matrix is numerically challenging

and computationally expensive. In the fully-implicit formulation, pressure,

saturation/mass, and/or temperature are to be solved simultaneously. The generated

system matrix is highly non-symmetric and not positive definite, which brings great

challenges for applying robust and efficient preconditioners and liner solvers. This

situation is further exacerbated for large-scale models with highly heterogeneous

coefficients and unstructured gridding. Since, generally speaking, in black-oil simulation

the solution of linear system (bAx =) usually consumes up to 90% of the total

execution time, linear solver performance enhancement means significant reservoir

simulator speedup.

Many problems in petroleum extraction require understanding of fluid flow and

its interaction with formation displacements. Fluid extraction and/or injection in

deformable a reservoir formation modifies the in-situ stress field which may cause

surface subsidence, fault activation, wellbore instability, thermal fracturing, etc. in

geomechanically weak formations. To understand these problems one needs to perform

coupled flow and displacement simulation. Generally, there are three approaches to

couple flow simulation with poroelastic calculation: explicitly coupling, iterative

coupling and fully-implicit coupling (Gai et al. 2003; Dean et al. 2006, Lu et al. 2007).

In the explicit coupling scheme displacements are solved at selected time-steps. In

iterative coupling flow and displacement are solved sequentially and then iteratively

 52

coupled at each time step. For fully-implicit coupling, flow and displacements are solved

simultaneously through a full system matrix that contains flow and displacement

contributions. Fully-implicit coupling is the most stable approach of these and can have

second-order convergence for nonlinear iterations. However, the resulting coupled

matrix becomes even more challenging to be solved efficiently compared with the fully-

implicit flow simulation without rock deformation.

The quest for robust and efficient linear solvers in the fully-implicit formulation

and fully-coupled flow and displacement is one of the main themes focused on by

simulator developers in the petroleum industry. Matrix scaling and reordering and

variants of the ILU method remain the state-of-the-art of most reservoir simulators.

However, the convergence rate is not independent of problem size and can be slow for

difficult matrices. Inspired by the different characteristics of pressure and saturation

parts of the full system matrix, two-stage preconditioning method was developed as a

‘divide-and-conquer’ using the CPR (Constraint Pressure Residual) approach of Wallis

(1983, 1985). Cao et al. (2005) extended CPR to a general multi-stage preconditioning

framework for fully implicit flow simulation. Under this framework, the full matrix

system is decomposed into different sub-blocks to deal effectively with the specific

algebraic characteristic of each subset of equations. For instance, the pressure part is

mainly elliptical and nearly symmetric while the saturation part is mainly hyperbolic and

non-symmetric. As the result, it may be more efficient to customize a preconditioning

method for different sub-blocks. The nearly symmetric pressure sub-block is usually

diagonal dominant with positive diagonal and non-positive off-diagonal entries. Thus, it

 53

is generally positive (semi-) definite. This algebraic character enables us to apply the

popular AMG approach for pressure preconditioning. Since the first application of the

multigrid method in reservoir simulation by Behie and Forsyth (1983), AMG has

become a very attractive option for the pressure solution. A number of implementations

have been reported with promising performance. Generally, the convergence rate is

independent of matrix size and scales linearly with matrix size. Stüben et al. (2007)

developed efficient AMG implementations for fully-implicit and sequential implicit

formulations. Klie et al. (2007) designed deflation AMG preconditioners for highly ill-

conditioned reservoir simulation problems. The elliptic displacement sub-block resulted

from coupled flow and geomechanics modeling is symmetric positive (semi-) definite,

which makes multigrid applicable. White and Borja (2011) applied AMG as sub-

preconditioner for fully coupled flow and geomechanics. Alpak and Wheeler (2012)

implemented a supercoarsening multigrid solver for poroelasticity in 3D coupled flow

and geomechanical modeling.

However, AMG is based on heuristics, especially for the classic Ruge-Stüben

AMG (Ruge and Stüben 1987). Although it often exhibits impressive performance in

practice, it does not offer guarantees on the speed of convergence especially for

challenging matrices. In this chapter, a recently developed Combinatorial Multilevel

(CML) method (Koutis et al. 2007) is introduced to reservoir simulation problems. CML

has provable convergence properties and sound theoretical machinery. It not only offers

convergence guarantees for SDD (Symmetric Diagonally Dominant) matrices with

 54

arbitrary weights, but also has lower grid, operator and computational complexities

comparing with other variants of AMG methods.

To our best knowledge, this is the first implementation of CML in reservoir

simulation with coupled geomechanics. The contribution of this paper is that it adapts

CML into the multistage preconditioning solution technique and provides performance

comparisons with other popular preconditioners using challenging benchmarks. The

paper is organized as follows. First, we briefly describe the multistage precondition

framework and discuss the applicability of CML in this framework. Second, we present

the CML algorithm. Third, we show comparisons using several case experiments.

Finally, the conclusions and outlook are provided.

For the example cases CML results are compared with ILU(0) and two popular

variants of AMG, Ruge-Stüben AMG and aggregation-based AMG (Notay 2010, 2012;

Napov and Notay 2012). We use a Matlab/C implementation of CML (Koutis et al. 2009)

in a comprehensive reservoir simulator. To compare with aggregation-based AMG, we

choose the AGMG package (v3.2) (Notay 2012). For Ruge-Stüben AMG (RS_AMG

hereafter), we use an implementation that is available as part of the PyAMG package

(Bell et al. 2011). For all of the cases, the convergence criterion is set to

60.1 −<− bAxb . All of the experiments were performed on a 64-bit Mac OS X 10.7

system with a 2.3 GHz dual-core Intel Core i5 processor and 8 GB DDR3 memory.

 55

3.2 Solution Technique – Multistage Preconditioning

The multistage preconditioning framework was introduced to fully-implicit

reservoir simulation by Cao et al. (2005). To keep the presentation concise, we describe

the key algorithmic steps of two-stage preconditioning. The extension to multistage is

straightforward. To solve the following linear system

bAx =

where A is the coupled system matrix that contains pressure and saturation sub-blocks,

we perform the following steps:

1. Map total residual to the constraint decoupled pressure residual, Pr . Several

possible mappings are available for this stage, for example, an IMPES-like

decoupling or a simple algebraic decoupling.

2. Solve the decoupled pressure system using a linear solver of selection to obtain

PPP rAx 1~−= . This is the first-stage preconditioning.

3. Update the total residual updatedr using newly computed pressure Px ,

Pupdated AWxrr −= .W is a mapping matrix to map to the total solution vector.

4. Solve the fully coupled system using a selected linear solver to obtain

Pupdated WxrMx += −1 .

The 4 steps are repeated until convergence or stopping criterion is reached. Note

that, in step 2, a preconditioned linear solver is applied to solve the decoupled pressure

system. 1−M in step 4 acts as the second stage preconditioner. As a result, a nested

iteration is formed such that a pressure sub-block is solved at the inter iteration while

Px

 56

1−M acts as a global smoother at the outer iteration. In practice, ILU, Gauss-Sediel, or

block SOR is often an effective choice of 1−M . But these traditional preconditioners

might not work well with the pressure sub-block that is mainly elliptic and cannot scale

with the matrix size. Stüben et al. (2007) discussed the algebraic properties of the

decoupled pressure sub-block and concluded that AMG is a favorable choice of

preconditioner.

It is natural to appreciate that the multistage preconditioning methodology can

also be applied to coupled flow and geomechanics simulation. We provide here a

solution strategy that merges IMPES and fully coupled flow and poroelastic calculations.

Indeed, the coupling between flow and poroelastic calculations is through pressure only.

In this strategy, pressure and poroelastic calculations are coupled via GCR acceleration

(Eisenstat et al. 1983). To solve

bAx =

where A is now the full system containing pressure and displacement sub-blocks, we

perform the following steps:

1. Map total residual to the constraint-decoupled pressure residual, Pr .

2. Solve the decoupled pressure system using a linear solver of choice to obtain

PPP rAx 1~−= . This is the first stage preconditioning.

3. Update displacement residual Dr using newly computed pressure solution Px .

4. Solve the displacement system using a selected linear solver to obtain DDD rAx 1~−= .

This is the second stage preconditioning.

 57

5. Map the constraint solution to the total estimate of pressure vector.

6. Update increment residual vector.

7. Make the increment residual vector orthogonal to previous increment direction.

8. Calculate step size.

9. Update solution and residual vectors.

The 9 steps are repeated until convergence or stopping criterion is reached. Using

this approach a nested iteration is formed. There are two inner iterations for pressure and

displacement. The outer iteration couples flow and displacement using GCR. AMG has

been implemented as a sub-preconditioner for the mainly elliptic pressure sub-block and

elliptic displacement sub-block. In the abovementioned places where AMG has been

implemented, we now replace the solver with CML. The algebraic characteristics of both

the pressure and displacement matrices should favor CML solution. In the following

section, we will briefly describe the CML method.

3.3 The Combinatorial Multilevel Method

Before describing the algorithm of CML, we first show two examples in which

aggregation based and classical AMG have convergence troubles. The first matrix comes

from a maximum flow in network problem (Livne 2012). The resulting matrix is highly

ill-conditioned with condition number about 1019. Its sparse matrix plot is provided in

Figure 3.1. Note that all the sparse matrix plots in the paper are generated using the

CSPY tool of CSparse package (Davis 2006). Zero entries are white. Entries with tiny

absolute value are light orange and entries with large magnitude are black. In the

midrange, it ranges from light green to deep blue.

 58

Figure 3.1 Sparse matrix plot of the first example

Table 3.1 Number of CG iterations of the first example

Method Iterations
CML 28
AGMG N/A
RS_AMG N/A
ILU(0) 2726

The iteration counts of the CG accelerator are listed in Table 3.1. The relative

residual reduction is plotted in Figure 3.2. N/A denotes AGMG and RS_AMG do not

converge in 10000 iterations. Clearly, it can be seen that CML can readily solve this

problem as opposed to AGMG and RS_AMG. The reason for this is that unlike AGMG

and RS_AMG, CML is not limited by indefinite matrices.

 59

Figure 3.2 Relative residual reduction of the first example

The second example is extracted from a matrix of a reservoir simulation

application (Beckner et al. 2006; Diyankov et al. 2007). The original matrix is highly

unsymmetric and describes a coupled system with more than one unknown per

gridblock. We convert the matrix to a symmetric matrix by extracting a connected graph

of the original matrix. The resultant matrix is SPD. Its sparse plot is provided in Figure

3.3. As listed in Table 3.2 and plotted in Figure 3.4, for this SPD matrix, CML shows

the fastest convergence while AGMG exhibits convergence difficulties.

1.0E-­‐07	

1.0E-­‐06	

1.0E-­‐05	

1.0E-­‐04	

1.0E-­‐03	

1.0E-­‐02	

1.0E-­‐01	

1.0E+00	

1.0E+01	

1.0E+02	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	
 200	

Re
la
%v

e	

re
si
du

al
	

Number	
 of	
 itera%ons	

CML	
 AGMG	
 RS_AMG	
 ILU(0)	

 60

Figure 3.3 Sparse matrix plot of the second example

Table 3.2 Number of CG iterations of the second example

Method Iterations
CML 18
AGMG 634
RS_AMG 97
ILU(0) 1187

Figure 3.4 Relative residual reduction of the second example

1.0E-­‐07	

1.0E-­‐06	

1.0E-­‐05	

1.0E-­‐04	

1.0E-­‐03	

1.0E-­‐02	

1.0E-­‐01	

1.0E+00	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	
 200	

Re
la
%v

e	

re
si
du

al
	

Number	
 of	
 itera%ons	

CML	
 AGMG	
 RS_AMG	
 ILU(0)	

 61

The above excellent performance of CML can be attributed to its provable

convergence properties and sound theoretical machinery for SDD matrices. In this

section, we describe the underlying principles of CML. As its name suggested, CML is

inspired by the popular multigrid algorithems, yet with two significantly different

distinguishing features. CML features a uniquely different coarsening strategy that is

faster than various AMG approaches and is easier to implement. The second feature is

that CML is a truly black-box solver while AMG has several algorithmic input options

that may be crucial for convergence, especially for the classic AMG (for instance, the

strength parameter). Note that aggregation-based AMG has a much better black-box

feature than classic AMG. Although in practice the time spent in the set-up phase is

generally negligible compared to the iteration phase, such timing can reflect the

efficiency of the hierarchy construction and can also suggest an easy implementation.

We focus on describing the two-level approach. Extension to multilevel is

straightforward. To keep the presentation concise, we simplify the algebra and only

present the key ingredients of CML. Algorithmic details with proofs can be found in

Koutis (2007) and Koutis et al. (2009).

To provide a quick sense of CML and how it is related to the multigrid approach,

Table 3.3 lists the two-level CML algorithm to solve bAx = , where A is a laplacian

matrix. It should be noted that any SDD matrix could be converted to laplacian with

lightweight transformation (Gremban 1996). When there are positive off-diagonal

entries, we generally can merge the positive off-diagonal entries to the diagonal. For

 62

reservoir simulation, the decoupled pressure matrix sometime has positive off-diagonal

entries though the number of rows having positive off-diagonal entries is small

comparing with the matrix dimension. It can be seen that this algorithm resembles the

simple form of the two-level method. In practice, we need to implement this algorithm

by call it recursively. Provided in Table 3.4 is the popular V-cycle multilevel approach.

At this point, we haven’t described how CML construct the hierarchy of coarse matrices.

It is the constructed hierarchy of matrices with the associated restriction matrices that

distinguishes CML with other variants of AMG.

Table 3.3 Two-level CML algorithm

Two-level CML
Input: laplacian A , vectorb , current solution kx mn× restriction matrixR
Output: Updated solution 1+kx

1. // Jacobi pre-smoothing
xpresmoothed
k = I −D−1A() xk +D−1b ;

2. // Restriction
rk = b− Axpresmoothed

k ;

rcoarse
k = RTrk ;

3. // Solve using coarse level
ARRA T

coarse = ;

xcoarse = Acoarse
−1 rcoarse

k ;
4. // Correction
xk+1 = xpresmoothed

k + Rxcoarse ;
5. // Jacobi smoothing
xpostsmoothed
k+1 = I −D−1A() xk+1 + b

 63

Table 3.4 V-cycle CML algorithm

V-cycle CML
Procedure CML(level, Ah, xh, bh)
if level = coarsest then
 solve coarsest directly
else

1. //Jacobi smoothing
xpresmoothed
k = I −D−1A() xk +D−1b

2. // Restriction
rk = b− Axpresmoothed

k

rcoarse
k = RTrk

3. call CML(level-1,AH,vH,fH)

4. // Correction

 x
k+1 = xpresmoothed

k + Rxcoarse ;
 5. // Jacobi smoothing

xpostsmoothed
k+1 = I −D−1A() xk+1 + b

endif
endprocedure

Before providing the key ingredient of the construction of restriction matrix, let’s

first introduce a few definitions. It should be noted, CML is developed based on the

laplacian matrix and each laplacian is associated with a corresponding graph. We build

the restriction matrix by exploring the geometric properties of the underlying graph. This

is reason why CML is said to bring geometric information into the algebraic operations.

The following description of the construction of the restriction is based on (Koutis et al.

2011). For a laplacian matrix A, its corresponding graph is denoted as G. The total

weight incident to node v in G is defined as

 64

tw v() = w u,v()
u∈N v()
∑

We then define the weighted degree of a node v in G as

wd v() =
tw v()

maxu∈N v()w u,v()

The degree of a node v in G is the number of neighbor nodes that are adjacent to v. w(u,v)

is the weight connecting u and v in G. The average weighted degree of G is

awd G() = 1
n() wd v()

v∈V
∑

We can decompose the graph into disjoint cluster Vi using the Decompose-Graph

algorithm provided in Table 3.5. The first step is to mark nodes v in G if

wd v() >α ⋅awd A() . α is a constant and set to be larger than 4. We group the marked nodes

to form a set called W. The nodes inside W are then relabeled as w. Apparently, W ⊆V .

In the second step, we remove some of the edges for each v ∈V by only keeping the

incident edge with the largest weight. As a result, we get a set F. In the third step, we

search the nodes w in set W whose total incident weight is smaller than twA w() awd A() .

In the forth step, we remove the edges in F that are contributed by w found in Step 3. At

the last step, we then construct disjoint clusters Vi from F.

 65

Table 3.5 Decompose-Graph algorithm

Algorithm: Decompose-Graph
Input: Graph A = (V, E, w)
Output: Disjoint Clusters Vi

1. Find a set of nodes, W, such that
wd v() >α ⋅awd A()
α is a constant and >4

2. Construct F ⊂ A by keeping the incident edge with the largest weight for each
node v ∈V

3. Find nodes w ∈W such that the total weight incident to node w is smaller than
twA w() awd A()

4. In F, remove the edges contributed by w found in Step 3
5. Construct disjoint clusters Vi from F

 Using the Decompose-Graph algorithm, we can partition a graph G with n

vertices into m disjoint clusters Vi (). The restriction matrix R, which is of size

mn× , is constructed as 1, =jiR if vertex i is in cluster j and 0, =jiR if vertex i is not in

cluster j.

In principle, the basic idea of this new approach is to construct a hierarchy of

matrices by viewing the underlying matrix as a graph and using the discrete geometry of

the graph. In this way, the CML method combines the merits of both geometric and

algebraic multigrid methods, which provide strong convergence guarantees for SDD

matrices.

3.4 Case Experiments

As it can be seen from the previous section, the core of the CML method is built

for SDD matrices with general weights. In other words, theoretically, it only guarantees

i =1,,m

 66

convergence for this class of matrices. In practice, we extend CML to also handle the

nearly symmetric pressure sub-block matrix that is derived from black-oil simulation. In

the case experiments, we first test on an incompressible system using the SPE 10th

comparative project model (Christie and Blunt 2001) whose resulting pressure sub-block

matrices are SDD and not indefinite. For this case, we provide the comparison of

performance and complexity of CML, AGMG, RS_AMG and ILU(0). Next, based also

on the SPE 10th comparative project model, we perform an experiment using a black-oil

system that generates a nearly-symmetric pressure sub-block matrix. In addition, we also

provide tests on a series of matrices from unstructured gridding (Beckner et al. 2006;

Diyankov et al. 2007). Finally, we test the performance of these methods on a finite

element displacement sub-block matrix using a test instance from the University of

Florida sparse matrix collection (Davis 1994). Since the time spent in the set-up phases

of these preconditioners are negligible comparing to the iteration phases, the number of

iterations of a chosen accelerator is a strong indicator of the performance of the respect

preconditioner. We also introduce a notation of iteration cost by multiplying iteration

counts by computational complexity to quantify the effective work consumed by each

preconditioner.

3.4.1 Incompressible Oil-water System

We build a 5-spot SPE 10 problem by defining one water injector at the center

and four producers at the four corners. The compressibility of oil, water and rock is

neglected to make an incompressible system. Note that the four preconditioners are

written using different programming languages with unknown code optimization levels.

 67

We thus choose not to compare the elapsed time. Since the number of iterations taken to

converge is strongly correlated to the time, we use the number of iterations as a more fair

comparison criterion. Listed in Table 3.6 are the number of iterations taken by CML,

AGMA, RS_AMG, and ILU(0). CG is used as the accelerator. Obviously, the three

variants of AMG outperform ILU(0) by orders of magnitude. More importantly, CML is

clearly the winner over AGMG and RS_AMG. The relative residual reductions of the

full SPE 10 model (85 layers) are plotted in Figure 3.6. It can be seen from Figure 3.6

that, the relative residual of CML decreases linearly in log scale while AGMG and

RS_AMG deviate from log linear reduction to some extent. It is worth mentioning that

there are a few algorithm knobs that can affect the performance of RS_AMG

dramatically, such as the method used to determine the strength of connection between

unknowns of the underlying matrix. A careless choice may even destroy the convergence

of RS_AMG.

Table 3.6 Number of Iterations for incompressible oil-water system

Method Number of Iterations
CML 28

AGMG 43
RS_AMG 59

ILU(0) 2726

 68

Figure 3.5 Relative residual reduction for the incompressible oil-water system

As abovementioned, aggregation-based and classic AMG can scale linearly with

matrix size. To compare the scalability of CML, AGMG and RS_AMG, we perform

experiments by adding the layers of the SPE 10 model. To test how these methods scale

with matrix size, we record elapsed time of each method and compare the normalized

time that is taken to be the time taken by the multi-layer model divided by the time taken

by a single layer model for each method respectively. The comparison results are shown

in Figure 3.6. Since ILU(0) scales badly with matrix size, the plots in Figure 3.6 are cut

to better shown the differences among CML, AGMG and RS_AMG. It can be seen from

Figure 3.6 that CML scales linearly as matrix size. Moreover, some supper linear

scalability is exhibited, as the normalized time of 85 layers is 81.83. Neither AGMG nor

RS_AMG shows strict linear scalability. In addition, for AGMG and RS_AMG the

deviation from linear scalability seems to be enlarged when passing layer 35 (transition

1.0E-­‐07	

1.0E-­‐06	

1.0E-­‐05	

1.0E-­‐04	

1.0E-­‐03	

1.0E-­‐02	

1.0E-­‐01	

1.0E+00	

1.0E+01	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	
 200	

Re

la
%v

e	

re
si
du

al
	

Number	
 of	
 itera%ons	
 	

CML	
 AGMG	
 RS_AMG	
 ILU(0)	

 69

from non-fluvial Tarbert formation to channelized Upper Ness formation). This is

believed to be attributable to the significant weight change of the underlying matrix

graph. In contrast, thanks to the proved ability to handle general weights, CML is shown

to be insensitive to this change.

Figure 3.6 Normalized time vs. matrix size

To make the comparison complete, complexities of these methods should be

analyzed. Although these variants of multilevel preconditioners significantly enhance the

convergence rate, they require extra cost in each iteration compared to ILU(0). We first

provide the grid complexity and operator complexity of the three multilevel methods

(Figure 3.7, Figure 3.8). Grid complexity is defined as the total number of grid points of

1	

51	

101	

151	

201	

251	

301	

351	

401	

451	

13200	
 213200	
 413200	
 613200	
 813200	
 1013200	
 1213200	

N
or
m
al
iz
ed

	
 T
im

e	

Matrix	
 Size	

CML	

AGMG	

RS_AMG	

ILU(0)	

Layer	
 35	

 70

all levels divided by the number of original fine grid points. Operator complexity is

similarly defined as the total number of nonzero entries of all levels divided by the

number of nonzero entries of original fine grid. Clearly, smaller grid and operator

complexities are favored. As it can be seen from Figure 3.7 and Figure 3.8, CML

preserves the smallest grid and operator complexities among the three approaches. In

addition, the grid and operator complexities of AGMG and RS_AMG show variations as

matrix dimension increases while the variations are almost flat for CML. RS_AMG has

the worst grid and operator complexities. RS_AMG applies a heuristic approach to

mimic the grid coarsening of geometric multigrid using the connection strengths of

matrix entries, while CML and AGMG use an agglomerative clustering technique. Since

the number of nonzero entries determines the number of floating point operations in

preconditioning, the computational complexity is directly related to grid and operator

complexity.

Figure 3.9 shows the estimated computational complexity of CML, AGMG,

RS_AMG, and ILU(0). Computational complexity is defined as the number of floating

point operations a preconditioner consumes per iteration (normalized by the number of

nonzero entries of the original fine matrix). As expected, ILU(0) has the lowest

 71

Figure 3.7 Grid complexity

Figure 3.8 Operator complexity

1.3	

1.35	

1.4	

1.45	

1.5	

1.55	

1.6	

1.65	

13200	
 213200	
 413200	
 613200	
 813200	
 1013200	
 1213200	

G
rid

	
 c
om

pl
ex
ity

	

Model	
 dimension	

CML	
 AGMG	
 RS_AMG	

1	

1.2	

1.4	

1.6	

1.8	

2	

2.2	

2.4	

2.6	

13200	
 213200	
 413200	
 613200	
 813200	
 1013200	
 1213200	

O
pe

ra
to
r	
 c
op

le
xi
ty
	

Model	
 dimension	

CML	
 AGMG	
 RS_AMG	

 72

Figure 3.9 Computational complexity

Table 3.7 Iteration costs for the incompressible oil-water system

Method Iter cost
CML 123.39
AGMG 252.41
RS_AMG 568.76
ILU(0) 5452.0

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

13200	
 213200	
 413200	
 613200	
 813200	
 1013200	
 1213200	

Co
m
pu

ta
%o

na
l	
 c
om

pl
ex
ity

	

Model	
 dimension	

CML	
 AGMG	
 RS_AMG	
 ILU(0)	

 73

computational complexity among the 4 methods. The computational complexity of CML

is lower than AGMG except when the grid dimension is smaller than about 100,000.

RS_AMG has the most expensive computational complexity. Since the computational

complexity is the extra work per iteration, we introduce the effective iteration counts as

the performance indicator. The iteration costs of the 85-layer model are listed in Table

3.7. It can be seen that, the advantage of CML over AGMG and RS_AMG is further

increased when these factors are taken into account.

3.4.2 Black-oil System

Since the pressure sub-block matrix is generally nearly symmetric, it is more

interesting to test the performance of CML on this class of matrices. We extend the

incompressible system to a black-oil system. Watts (1981) proposed an approach to

build a symmetric approximation of the resulting nearly symmetric pressure matrix. He

then reformulated the solution process by adding an outer iteration such that (to solve

bAx =):

()

end
Axbr

xxx
rAx

while
Axbr

k

kk
S

k

;
;

;
convergednot

1

1

1

+

+

−

−=

Δ+=

=Δ

−=

where SA is the symmetric approximation of A . Results of Watts’ work indicated that 2

or 3 iterations is generally enough for convergence. The original work was attempting to

use the conjugate gradient method as the accelerator for the linear solver. With the

 74

development of non-symmetric accelerators such as GMRES or BICGSTAB a few years

later (Saad and Schultz 1986; Van der Vorst 1992), the requirement for matrix symmetry

was eliminated. We instead build a hierarchy of matrices using SA and use this hierarchy

as a preconditioner for GMRES. The hope is that the slight non-symmetry does not

change much of the spectrum of A . Moreover, we attempt to directly build a

preconditioner using the nearly symmetric with CML. Similarly, we compare the

convergence of CML, AGMG, RS_AMG and ILU(0) using full SPE 10 model. Table

3.8 lists the iteration counts and iteration costs of each method. Figure 3.10 provides the

relative residual reduction history. CML_unsymm denotes that we apply CML directly

to Awhile CML_symm means we apply CML to SA . GMRES(10) is applied as the

accelerator. CML still outperform AGMG, RS_AMG and ILU(0). But surprisingly,

CML_unsymm has the best performance. Its residual tends more to decrease log linearly

than others. The mathematical justification could not be provided at this point. A

hypothesis of CML_unsymm’s excellent performance is that the nearly symmetric is

still (semi-) positive definite and structure pattern of A is symmetric. In addition, support

theory for preconditioning, which is the foundation of CML, might be able to be

extended to more general matrices. Boman and Hendrickson (2003) discussed the

extension of support theory to general matrices and Huang (2012) generalized support

theory for preconditioning to non-symmetric matrices. Understanding of the

performance of CML on nearly symmetric matrices and the development of a multilevel

method based on support theory for slightly non-symmetric matrices clearly requires

further research.

A

A

 75

Table 3.8 Number of iterations and costs for the black oil system

Method Number of iterations Iter cost
CML 18 77.22

AGMG 28 106.40
RS_AMG 42 455.70

ILU(0) 539 1078.0

Figure 3.11 Relative residual reduction for the black oil system

In addition, compared to the incompressible system, the performance of these

non-symmetric preconditioners seems to become better in this black-oil case. This can

be understood by realizing that the underlying matrices become strictly diagonal

dominant due to the effect of compressibility.

To assess the applicability of the solvers in unstructured reservoir simulation, we

perform further experiments using a series of matrices from unstructured reservoir

1.0E-­‐07	

1.0E-­‐06	

1.0E-­‐05	

1.0E-­‐04	

1.0E-­‐03	

1.0E-­‐02	

1.0E-­‐01	

1.0E+00	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	
 200	

Re
la
%v

e	

re
si
du

al
	

Number	
 of	
 itera%on	

CML_unsymm	
 CML_symm	
 AGMG	
 RS_AMG	
 ILU(0)	

 76

models (Beckner et al. 2006; Diyankov et al. 2007). Unfortunately, there is no publicly

available information of these models except the system matrices alone. We can only

infer the underlying information by viewing the matrices. To apply CML, AGMG and

RS_AMG, we extract the nearly symmetric pressure-like matrices since the original

matrices appear to be from coupled systems. Figure 3.11 lists the sparse matrix plots of

the extracted matrices. Clearly, these were derived from unstructured gridding. Table

3.9 shows the performance of the various solvers. It can be seen from Table 3.9 that

CML performs better for larger matrices (SBO-3). For small-sized matrices, it seems

that CML is not as efficient as AGMG and is even worse than ILU(0) for SEO-1, CI-1

and CIT-1. For SBO-4 and CI-1, the iteration counts of CML and AGMG are close. The

reason why CML has worse efficiency than AGMG is that the computational complexity

of CML is about two times higher than AGMG. As we have seen in Figure 3.10, the

computational complexity of AGMG is lower than CML when the matrix dimension is

small and the computational complexity of CML is flat as the matrix dimension

increases. This also implies that CML tends to perform better for large-scale matrices. It

should be noted that for the 6 test instances, CML is applied directly to the slightly

unsymmetric matrices. Hence, these results also suggest that CML is applicable for this

type problem making it a promising alternative method for large-scale flow simulation.

 77

 SBO-1 SBO-3 SBO-4

 SEO-1 CI-1 CIT-1

Figure 3.12 Sparse matrix plot for the unstructured example

 78

Table 3.9 Number of iterations and costs for the unstructured example

Size (unknown#,

nonzero#)

CML AGMG RS_AMG ILU(0)
of
Iter

Iter
cost

of
Iter

Iter
cost

of
Iter

Iter
cost

of
Iter

Iter
cost

SBO-1 (21692, 144986) 14 60.20 24 78.96 48 350.4 81 162

SBO-3 (2165051,1849317) 14 56.20 40 136.9 49 401.3 326 652

SBO-4 (61956, 486010) 28 114.2 25 67.50 68 685.4 175 350

SEO-1 (21498, 185700) 10 28.40 6 9.720 4 35.44 6 12

CI-1 (13500, 88860) 17 65.96 13 16.25 5 52.75 11 22

CIT-1 (4359, 28041) 26 112.1 24 85.44 18 144.7 32 64

 79

3.4.3 Displacement Computation in Coupled Flow and Geomechanics

The underlying matrix for displacement computation is symmetric. Hence, we

can directly apply CML as preconditioner if the displacement matrix is diagonal

dominant. If diagonal dominance cannot be preserved, neither CML nor AMG

guarantees convergence. Since there is no well-documented benchmark problem for

coupled flow and geomechanics, we instead test directly on a benchmark matrix from

the University of Florida sparse matrix collection (Davis 1994). The test case comes

from a coupled flow and geomechanical study of CO2 sequestration in a depleted gas

reservoir (Ferronato et al. 2010).

The 3D view of the depleted gas reservoir and its 2D planar view are shown in

Figure 3.12. The finite element discretization has about 250,000 nodes and more than

1,250,000 elements. A number of local and regional faults exist in this reservoir, which

is shown as solid line the Figure 3.12. The data results from the application of

commercial reservoir simulator for flow simulation while the study the fault activation

and ground deformation is derived from a geomechanical simulation. The resulting

sparse matrix is plotted in Figure 3.13. Note that it has been reordered by the reverse

Cuthill-McKee (RCM) algorithm.

The iteration counts and costs are listed in Table 3.10 and iteration reduction

histories are plotted in Figure 3.14. Obviously, CML is again the winner among the four

approaches. In addition, similar to the incompressible system case, the residual reduction

of CML decreases log linearly. For this case, AGMG exhibits a poor performance and is

even worse than the plain ILU(0).

 80

Figure 3.12 3D (upper) and 2D (lower) view of the depleted gas reservoir for CO2

sequestration (From Ferronato et al. 2010)

 81

Figure 3.13 Sparse matrix plot of displacement matrix

Figure 3.14 Relative residual reduction for the displacement example

1.0E-­‐07	

1.0E-­‐06	

1.0E-­‐05	

1.0E-­‐04	

1.0E-­‐03	

1.0E-­‐02	

1.0E-­‐01	

1.0E+00	

0	
 50	
 100	
 150	
 200	
 250	

Re
la
%v

e	

re
si
du

al
	

Number	
 of	
 itera%ons	

CML	
 AGMG	
 RS_AMG	
 ILU(0)	

 82

Table 3.10 Number of iterations and costs for the displacement example

Method Number of iterations Iter cost
CML 26 78.52

AGMG 243 634.23
RS_AMG 75 318.75

ILU(0) 121 242.00

3.5 Conclusions

In summary, this paper introduces a new multilevel preconditioner, CML, to

reservoir simulation and coupled geomechanics. CML is rooted in support theory and

Steiner preconditioner and is integrated with the popular multilevel approach. The

resulting algorithm has a unique matrix hierarchy building machine that tends to bring

geometry information back into the algebraic operations thus introduces proven strong

convergence guarantees for SDD matrices with general weights.

We implement CML into the multistage preconditioning framework for reservoir

simulation and coupled geomechanics. Specifically, CML is applied for pressure and

poroelastic displacement preconditioning. We perform experiments on a series of

examples and compare the performance of CML with AGMG, RS_AMG, and ILU(0).

From the results, we have the following findings:

1. CML has better scalability than AGMG and RS_AMG. Through the

incompressible system example, we show only CML can scale strictly linearly

using the SPE 10 model.

2. CML has lower grid and operator complexity than AGMG and RS_AMG, which

reveals it has better hierarchy building machinery.

 83

3. Although without theoretical justification yet, it is shown that CML can be

directly applied to nearly symmetric pressure-like matrices. Its performance is

superior to AGMG and RS_AMG for large-scale matrices. Handling nearly

symmetric matrices robustly and efficiently is a prerequisite for pressure

preconditioning in reservoir simulation application. CML is shown to be capable

in this aspect through our experiments.

This preliminary study shows CML is a promising alternative for pressure and

displacement preconditioning in reservoir simulation and coupled geomechanics,

especially for large-scale models. A relative unpleasant aspect of CML is, however, the

theoretical support for nearly symmetric matrices is not available yet. Although the

current algorithm is shown to work with pressure-like matrices in reservoir simulation

and has better performance than AGMG and RS_AMG for large models, we need to

justify or develop new algorithms based on CML. Indeed, one of the purposes of this

paper is to bring attention to this new way of pressure and displacement preconditioning

and to serve as an introduction for further research in this area.

 84

CHAPTER IV

COMPOSITIONAL MODELING OF TIGHT OIL USING DYNAMIC

NANOPORE PROPERTIES*

A typical tight oil reservoir such as the Bakken has matrix pore sizes ranging

from 10 nm to 50 nm. At such small scales the confined hydrocarbon phase behavior

deviates from bulk measurements due to the effect of capillary pressure. In addition,

compaction of pore space can bring about order of magnitude changes for tight oil

formation properties during pressure depletion further exacerbating these deviations.

Without considering these facts a conventional reservoir simulator will likely not be able

to explain the inconsistent produced GOR observed in the field compared to simulated

results. The effect of these inaccuracies on ultimate recovery estimation can be

devastating to the underlying economics.

This chapter presents a compositional tight oil simulator that rigorously models

pressure dependent nanopore-impacted rock and fluid properties, such as suppression of

bubble point pressure, decrease of liquid density, and reduction of oil viscosity as well as

their interactions with pore space compaction. The cubic Peng-Robinson equation of

state is used for phase behavior calculations. Capillary pressure is evaluated by standard

Leverett J-function for porous media. Modifications to the stability test and two-phase

* Reproduced with permission from “Compositional Modeling of Tight Oil Using
Dynamic Nanopore Properties” by Wang, Y., Yan, B., Killough, J. 2013. Paper SPE
166267 presented at the SPE Annual Technical Conference and Exhibition. New
Orleans, LA, USA, 30 Sep - 2 Oct. Copyright 2013 by Society of Petroleum Engineers.

 85

split flash calculation algorithms are provided to consider the capillarity effect on vapor-

liquid equilibrium.

The simulator can capture the pressure-dependent impact of the nanopore

structure on rock and fluid properties. As a result, the problem of inconsistent GOR is

resolved and the history matching process is greatly facilitated. It is shown that inclusion

of these enhanced physics in the simulation will lead to significant improvements in field

operation decision making and greatly enhance the reliability of recovery predictions.

4.1 Introduction

The recent advances in massive hydraulic fracturing techniques have enabled the

oil industry to economically extract hydrocarbon from ultra-tight, unconventional

resources, such as shale gas, liquid rich shale and tight oil. The success in North

America has stimulated the development of unconventional plays worldwide. For

example, a marine shale play in southern China has showed large potential and attracted

great attention (Wei et al. 2012; 2013a, b). However, despite the great success and

potential, the understanding of fluid flow mechanism in shale and properties in confined

pore space is still poor. The flow mechanism in the shale matrix is complicated by

organic and inorganic portions of the matrix with distinct wettabilities. Yan et al. (2013

a, b, c, d) proposed a micro-model to model single-phase gas and two-phase gas-water

flow in shale matrix block by considering different flow mechanisms in organic and

inorganic nanopores and upscaled the single-phase gas flow to well-scale modeling via

the apparent permeability approach. On the other hand, the fluid properties in the

confined nanopore space deviate from the corresponding bulk measurements in which

 86

zero vapor-liquid interface curvature is assumed. This assumption is generally held when

the vapor-liquid equilibrium takes in place in PVT cells. But, when the fluid is confined

into pore spaces of nano-size, the significant interfacial curvature may cause a large

capillary pressure difference between liquid and vapor phases. The effect of capillary

pressure on vapor-liquid equilibrium is not new to the oil industry. A number of

researchers have conducted both experimental and theoretical investigations with general

conclusions that capillarity effect on vapor-liquid equilibrium is negligible for

conventional reservoirs (Leverett 1941; Sigmund et al. 1973, 1982; Shapiro and Stenby

1997; Shaprio et al. 2000). Perhaps due to this reason, essentially all the current

commercial simulators assume no pressure difference between vapor and liquid phases

during flash calculations.

However, ignoring capillarity in vapor-liquid equilibrium might not be a valid

assumption for unconventional reservoirs. A typical tight oil reservoir such as the

Bakken has matrix pore size ranging from 10 nm to 50 nm. At such small scales, the

confined hydrocarbon phase behavior is believed to deviate from bulk measurements due

to the extra capillarity effect. Rock wettability is another factor to consider when dealing

with capillary pressures. Wang et al. (2012) performed a wettability survey of the

Bakken formation and reported that the Bakken formation is oil-wet. A series of studies

of confined fluid properties for a Bakken field shows that for this type of reservoirs, the

bubble point pressure can be suppressed significantly by considering the capillary effect

(Nojabaei et al. 2012; Honarpour et al. 2012; Pang et al. 2012; Du and Chu 2012; Chu et

al. 2012). In addition, compaction of pore space can bring about order of magnitude

 87

changes for tight oil formation properties during pressure depletion further exacerbating

these estimates. In their approaches, confined PVT tables are constructed from a separate

modified flash calculation program and applied as inputs using a commercial reservoir

simulator.

It has been known that the properties of petroleum fluids and reservoir rock are

closely related to the effect of capillary pressure on vapor-liquid equilibrium. However,

on the other hand, a standard and reliable measurement of confined fluid properties in

ultra-tight rocks is still challenging and not available (Du and Chu 2012). In this sense,

the findings and conclusions in this topic are still only supported by theoretical

derivation or hypotheses. As quoted “The only concept assured is that the confined PVT

properties are substantially different from the corresponding bulk properties and such

variations have significant impact on well performance and ultimate recovery in

unconventional reservoirs” (Du and Chu 2012).

Reservoir models containing hydraulic fractured wells are needed to model

production behavior and perform recovery predictions. Such models are complicated by

massive hydraulic fractures. It is natural to realize that this kind of system contains fluid

properties with confined and unconfined effects, which need to be explicitly modeled.

Besides, there is a contradictive effect for the rock compaction. Rock compaction makes

the confinement greater, which will increase driving energy and mobility by decreasing

viscosity. But it also reduces the permeability that will reduce the mobility. These factors

must be considered when conducting reservoir studies for tight reservoirs.

 88

This chapter incorporates the extended vapor-liquid equilibrium calculations into

a fully compositional commercial simulator. The pore space can be dynamically updated

during pressure depletion via rock compaction tables. In this way, a more rigorous

treatment is included to model the combined effects.

4.2 Assumptions

Since we deal with the situation of phase behavior in confined space of nano size,

(10 nm – 50 nm), we need to examine the applicability conventional thermodynamics

formulation in petroleum fluid properties. The conventional formulation is based on a

bulk representation of fluid, or more precisely, homogenous fluid, of which the average

particle density is constant. When the fluids are in confined space, such as nanopores,

the wall fluid interactions will bring significant effects on the fluid structure. The fluid in

confined space may become inhomogeneous, of which the average particle density

varies spatially (Evans, 2009). Based on Firoozabadi (2013), the boundary between

homogenous and inhomogeneous fluid is about 10 nm. For pore size greater than 10 nm,

it is appropriate to assume the fluid is still homogeneous. Since the smallest pore size we

deal with for Bakken reservoir is 10 nm, the development in this chapter is based on the

conventional thermodynamics for hydrocarbon reservoirs.

 It has been mentioned that wettability has great effect on the effect of capillary

pressure on vapor-liquid equilibrium and Bakken reservoir is oil wet. In this study, we

further assume the rock surface is completely oil wet with contact angle being zero.

 89

4.3 Approach

In this section, we provide the model of vapor-liquid equilibrium with capillarity

effect, extended vapor-liquid flash calculation with implementations and evaluation of

capillary pressure for tight oil reservoirs.

4.3.1 Capillarity Effect on Vapor-Liquid Equilibrium (VLE)

The fundamental of capillarity effect on vapor-liquid equilibrium (VLE) is the

separation of two multicomponent phases by a curvature interface. Such effect can be

readily revealed by Eq. 4.1 and Eq. 4.2 (the equality of the chemical potentials in the

liquid and vapor phases). LP and VP are the phase pressures of liquid and vapor phases,

respectively. cP is the capillary pressure between them. iµ is the chemical potential of

component i at the respective temperature, phase pressure and mole fraction. m is the

number of components in the system. Note that temperature is generally not affected by

capillary pressure. Capillary effected VLE presents in the porous petroleum reservoirs,

though it is generally ignored because this effect is negligible for conventional

reservoirs.

c
LV PPP =− (4.1)

() () miyPTxPT VV
i

LL
i ,,2,1 ,,,, …== µµ (4.2)

Eq. 4.1 and Eq. 4.2 provide the full constituting system for capillarity VLE.

Fundamentally, the magnitude of capillary pressure is determined by the geometry of the

capillary system and the wettability of medium surfaces. It should be noted that this

constituting system is established based on continuous bulk vapor and liquid phases,

 90

which are separated by a curvature interface. However, the vapor and liquid phases are

not necessarily continuous in porous rocks, especially for ultra-tight reservoirs, such as

Bakken. Nevertheless, it can be shown that the pressures and compositions in different

isolated vapor or liquid regions are equal when the system is at equilibrium

(Bedrikovetsky 1993). The analysis is based on the assumption that the fluid is

homogenous, which is the same assumption that has been indicated in 4.2.

4.3.1.1 Extended VLE Flash Calculation

The VLE flash calculation implemented in compositional simulators generally

involves a stability test and a two-phase split calculation. The stability test is first

performed to test if a single phase is stable. Only under the circumstance that the single

phase is tested to be unstable, the two-phase split calculation then will be performed.

Michelsen (1982 a, b) provides the algorithm details and implementation practices for

isothermal stability test and the two-phase split calculation. However, the algorithm and

implementation is developed and designed assuming the vapor and liquid phase

pressures are equal, i.e. no capillary pressure. Essentially, the flash calculation in all

current commercial simulators applies this assumption. In the following, the classic

stability test and two-phase split algorithm is extended to consider the capillary pressure

effect.

4.3.1.1.1 Stability test using Gibbs free energy approach

This section shows how the standard stability test based on tangent plane

distance analysis can be extended to consider the capillarity effect. For the original

system to be stable, Eq. 4.3 should hold. ()yfi is the fugacity of the incipient phase and

 91

()zfi is the fugacity of the original system. If the original system is liquid, then the

incipient phase is vapor and vice versa. The detailed derivations to obtain Eq. 4.3 can be

found in Michelsen (1982 b).

() ()[]∑ ≥−
m

i
iii zfyfy 0lnln (4.3)

Since

() () L
iii Pzzzf ϕ= (4.4)

() () V
iii Pyyyf ϕ= (4.5)

where iϕ is the fugacity coefficient.

After substituting Eq. 4.4 and Eq. 4.5 into Eq. 4.3, we then have Eq. 4.6.

()() ()()[]

() () ()[] 0lnlnlnlnlnln

lnln

≥−+−−+=

−

∑

∑

LV
iiii

M

i
i

L
ii

V
ii

M

i
i

PPzzyyy

PzzPyyy

ϕϕ

ϕϕ
 (4.6)

Eq. 4.6 shows that the capillary term (LV PP lnln −) is naturally incorporated into the

stability test. This term is normally ignored for conventional compositional simulation

because of the fact that the capillary pressure between vapor and liquid phases is small.

But, when the pore spaces are confined into nano scale, the capillary pressure should not

be ignored.

In implementation, it is more convenient to let

() L
iii Pzzh lnlnln ++= ϕ (4.7)

This is because that Eq. 4.7 is independent of and can be pre-computed. Let i
k

i yeY −= , y

 92

where () V
iii Phyyk lnlnln +−+= ϕ . Then we have

() 0lnlnln =+−+ V
iii PhyY ϕ (4.8)

Eq. 4.8 is the final form used to test stability. The fugacity coefficient is calculated using

the cubic Peng-Robinson equation of state. Successive substitution and/or the Newton-

Raphson method can be used to solve this nonlinear equation. The details about the

derivations and solution method are provided in Appendix I.

4.3.1.1.2 VLE two-phase split calculation

The VLE two-phase split calculation is based on equality of chemical potentials

or fugacities and mass balance (Eq. 4.9 – 4.12 and Eq. 4.1 – 4.2). F is number of moles

of original system or feed. L and V are the number of moles of liquid and vapor phases,

respectively. ix and iy are the mole fraction of liquid and vapor phases. is the mole

fraction of the feed phase. To solve this set of equations, we need another mass balance

constraint, Eq. 4.12, where Ki is the equilibrium ratio or K-value, defined as in Eq.

4.13. Eq. 4.12 is called Rachford-Rice equation.

VyLxFz iii += (4.9)

1=∑
m

i
ix (4.10)

1=∑
m

i
iy (4.11)

()
()∑

=

=
−+

−m

i i

ii

K
zK

1
0

11
1

α
 (4.12)

zi

 93

VV
i

LL
i

i

i
i P

P
x
yK

ϕ
ϕ

== (4.13)

It can be seen from Eq. 4.13 that the capillarity comes in place in terms of the modified

K-value. Note that conventionally the K-value is evaluated as V
i

L
iiK ϕϕ= by assuming

the liquid and vapor pressures are equal. This set of equations can be solved using

successive substitution and/or the Newton-Raphson method. The details about the

derivations and solution method are provided in Appendix II.

4.3.1.2 Evaluation of Capillary Pressure for Tight Porous Media

The previous two sections provide the extended VLE flash calculation

considering the capillarity effect. To complete the solution process of stability test and

VLE split calculation, we need to evaluate the capillary pressure. Capillary pressure can

be evaluated by the well-known Young-Laplace equation (Eq. 4.14) for a sufficiently

narrow tube. Nojabaei et al. (2012), Du and Chu (2012), Chu et al. (2012), Honarpour et

al. (2012) and Pang et al. (2012) applied this approach to calculate the capillary

pressures.

r
Pc

θσ cos2
= (4.14)

Noted, Nojabaei et al. (2012) points out that, for tight oil rock, the capillary pressure

computed using Young-Laplace equation is much less than actual measurement because

of the very low interfacial tension value calculated by Macleod-Sugden correlation

(Pederson 2007). Firoozabadi (2013) also points out that interfacial tension becomes

function of pore size when the pore is reduced to nano size and the Macleod-Sugden

 94

correlation is not applicable anymore. This finding reveals the importance of having

reliable capillary pressure and /or interfacial tension measurements for shale/tight rocks.

Since the system dealt with is saturated porous rock, it is more reasonably to apply the

Leverett J-function approach (Eq. 4.15), which is based on measured reference capillary

pressures.

() ()
θσ
φ

cos
kSP

SJ c= (4.15)

During the iteration process of stability test and VLE split calculations, capillary

pressure values are looked up using the saturation results of the previous iteration.

Although Eq. 4.15 is derived strictly only for the ideal case, it is commonly

applied to other types of rocks. In this paper, it is assumed that this standard approach

also applies to ultra-tight reservoir rocks. The dependence or scaling factor ()SJ is

supposed to be known for a particular type of rock, which comes from lab measurement.

Unfortunately there are no well-documented capillary pressure measurements for the

Bakken reservoir yet.

In this study, the porosity of the Bakken reservoir is fixed as 0.06. Based on

Kozeny-Carman equation (Kozeny 1927; Carman 1937) and correlations from Nelson

(1994), the corresponding permeabilities and pore radius is provided in Table 4.1. Based

on the capillary pressure data of a similar rock from Crain’s petrophysical handbook, the

corresponding capillary pressures are listed in Table 4.1 also. Note that, the capillary

pressures are obtained from various correlations without any calibration for Bakken

rock. However, these values should be close to real values, at least based on hypothesis.

 95

Table 4.1 Pore radius, permeability and capillary pressure

Pore Raduis (nm) Permeability (md) Capillary Pressure (psi)
50 0.0070 102.20
40 0.0046 127.75
30 0.0027 170.33
20 0.0012 255.50
10 0.0003 511.00

4.3.2 Dynamic Compaction of Nanopores

It is natural to expect that, as the pore space being compacted during pressure

depletion, the impact of pore size on the fluid properties becomes more significant. By

considering pore size reduction due to reservoir depletion, the reservoir is likely to

experience even more reduction in bubble point pressure throughout the life of the

reservoir. Such further reduction in bubble point pressure will keep the fluid in single-

phase oil phase with reduced viscosity and density and compressibility, which will favor

the driving energy and flow capacity. On the other hand, the compaction will reduce the

permeability of the rock, which of course will decrease the mobility. Thus, compaction

has two contradictory effects. And the combined effect will be determined by rigorous

compositional simulation with compaction. Dynamic rock compaction generally can be

incorporated into a reservoir simulator via rock compaction tables. A table look-up

approach is performed to obtain permeability reduction ratios when the pressure is

updated. For the Bakken reservoir in this study, the rock compaction table used is listed

in Table 4.2.

 96

Table 4.2 Rock compaction table of Bakken

Pressure Change (psi) Permeability Reduction Ratio
-5180 0.489
-4450 0.500
-3700 0.511
-2960 0.532
-2220 0.588
-1480 0.675
-740 0.791

0 1.0

4.4 Results

4.4.1 Confined Phase Behavior

This section provides the results of confined phase behavior of Bakken oil. The

compositional data of Bakken oil are listed in Table 4.3 and 4.4 (Nojabaei et al. 2012).

At the reservoir temperature around 240 °F, Bakken oil resides in the black oil region.

Hence, the flash calculation is simplified to the case that the original or feed system is

single-phase oil and the saturation pressure is the bubble point pressure. Figure 4.1

shows the bubble point pressure lines of Bakken oil with capillarity effect at different

pore space sizes, ranging from 10 nm to 50 nm. The bubble point pressures are evaluated

using rigorous stability tests. Capillary pressures are calculated using the Young-Laplace

equation, Eq. 4.14. As mentioned in the previous section, this approach could

underestimate the capillary pressure to a large extent because the inaccurate interfacial

tension. Using this approach, for a 10 nm pore size, the suppression of bubble point

pressure is about 140 psi, which is much lower than suspected initially. For porous rock,

 97

the Leverett J-function approach should be more appropriate to evaluate capillary

pressures than Young-Laplace equation. Besides, this approach provides a way to

calibrate against measurements of particular rock. In the following, the Leverett J-

function approach is applied for all cases. Table 4.5 provides the bubble point pressures

calculated using the Young-Laplace equation and the Leverett J-function. We can see

there are significant differences between the two approaches. It also suggests the

importance of having capillary pressure data of good quality for the Bakken reservoir.

 Table 4.3 Bakken oil composition data

Component Mole
Fraction

Critical
Pressure
(psia)

Critical
Temperature
(°R)

Acentric
Factor

Mole
Weight

Parachor

C1 0.36736 667.80 343.04 0.0130 16.04 74.8
C2 0.14885 707.80 549.76 0.0986 30.07 107.7
C3 0.09334 616.30 665.68 0.1524 44.10 151.9
C4 0.05751 550.70 765.32 0.2010 58.12 189.6

C5-C6 0.06406 461.29 875.48 0.2684 78.30 250.2
C7-C12 0.15854 363.34 1053.25 0.4291 120.56 350.2
C13-C21 0.07330 249.61 1332.10 0.7203 220.72 590.2
C22-C80 0.03704 190.12 1844.49 1.0159 443.518 1216.8

 98

Table 4.4 Bakken oil binary interaction table

 C1 C2 C3 C4 C5-C6 C7-C12 C13-C21 C22-C80

C1 0 0.005 0.0035 0.0035 0.0037 0.0033 0.0033 0.0033
C2 0.0050 0 0.0031 0.0031 0.0031 0.0026 0.0026 0.0026
C3 0.0035 0.0031 0 0 0 0 0 0
C4 0.0035 0.0031 0 0 0 0 0 0

C5-C6 0.0037 0.0031 0 0 0 0 0 0
C7-C12 0.0033 0.0026 0 0 0 0 0 0
C13-C21 0.0033 0.0026 0 0 0 0 0 0
C22-C80 0.0033 0.0026 0 0 0 0 0 0

 99

Figure 4.1 Bubble point pressure lines of Bakken oil using Young-Laplace equation

0

500

1000

1500

2000

2500

3000

3500

80 130 180 230 280 330 380 430

Pr
es

su
re

, p
si

a

Temperature,oF

No Capillary Effect

r = 50 nm

r = 40 nm

r = 30 nm

r = 20 nm

r= 10 nm

 100

Table 4.5: Bubble point pressure of Bakken oil at 240 °F

Pore Radius (nm) Bubble Point Pressure (psi)
Young-Laplace Leverett J-Function

50 2766 psi 2512 psi
40 2761 psi 2450 psi
30 2751 psi 2345 psi
20 2732 psi 2145 psi
10 2641 psi 1588 psi

The physical implication of bubble point pressure suppression is that more light

components remain in the oil phase compared to a system having unsuppressed bubble

point pressure at the same temperature and pressure. Apparently, this in turn reduces the

viscosity and density. Table 4.6 provides the confined viscosity and density at 240 °F

and 1500 psia. The Lorenz-Bray-Clark correlation is used for the viscosity calculation.

Clearly, viscosity and density are reduced as the pore space is confined from 50 nm to 10

nm. The implication is that confinement increases the driving energy and flow capacity

of the tight oil reservoir, which favors the extraction of more liquid. Otherwise, the light

component will easily escape from the oil phase leave the more valuable but heavier

components (C6-C12) underground. To evaluate the effect of confined fluid properties

on production behavior and reservoir recovery, reservoir simulation is conducted using a

fully compositional commercial simulator with extended VLE flash calculation routines.

 101

Table 4.6: Confined fluid properties of Bakken oil at 240 °F and 1500 psia

 Bubble point Pressure (psi) Viscosity (cp) Density (lb/ft3)
No Capillary Effect 2788 0.41 39.17

50 nm 2512 0.363 38.5
40 nm 2450 0.351 38.35
30 nm 2345 0.331 38.04
20 nm 2145 0.29 37.3
10 nm 1588 0.18 34.4

4.4.2 Reservoir Simulation

A fully compositional commercial simulator (Dean and Lo 1988; Tang and Zick

1993; Fleming 2012) is extended to accommodate the extended VLE flash calculation.

The aim is to rigorously model the effect of capillarity influenced VLE on production

behavior and recovery prediction, which also including the effect of dynamic reservoir

compaction. This investigation may be helpful in improving the understanding of

abnormal production behavior observed in the Bakken field, such as long-lasting,

relatively constant producing GOR even when the pressure near well has dropped below

bubble point pressure (measured in lab). The reality is further complicated by multistage

hydraulic fractured wells. Fluid is only confined in the tight matrix while being

unconfined in fractures. The whole system will have different compositional models for

matrix and fractures. Fortunately, the extended VLE flash approach can model the whole

system in a uniform fashion. The capillary pressure for the grid representing fractures

will be very small since the porosities and permeabilities for these grids are much higher

than matrix grids. Thus, the fluid properties in fractures can be maintained unconfined,

while fluid in matrix will be confined.

 102

 4.4.2.1 1D Core Size Model

We first provide an example using a 1D core size model, with 1 grid in the X and

Z direction and 50 grids in the Y direction. The model has dimension of 0.5 ft in the X

and Z direction and 3.28 ft in the Y direction. The model contains no fractures with

homogenous initial permeability (0.002 md) and porosity (0.06). The reservoir

temperature is 240 °F and initial pressure is 6840 psi. A sink is assigned to the first grid.

Bottom-hole pressure is constrained at1500 psi. Initially, production is controlled by oil

flow rate. Three scenarios are modeled: 1) no capillary pressure effect on VLE; 2) with

capillary effect on VLE but without reservoir compaction; 3) with capillary effect on

VLE and reservoir compaction. The production responses are plotted in Figure 4.2 and

Figure 4.3. Figure 4.2 provides the cumulative oil production along with pressure

decline and Figure 4.3 provides the producing GOR along with pressure decline.

Clearly, cumulative oil productions of cases considering the capillarity effected VLE are

higher than the case without considering the capillarity effect. It also reveals that

although reservoir compaction makes the oil phase thinner and bubble point pressure

lower, its cumulative oil production is less than the case considering only the capillarity

effect. This should be attributed to the fact that the reduction of mobility due to

reduction of permeability offsets the increase of mobility due to reduction of viscosity. It

also suggests that reservoir compaction should be considered in every reservoir

simulation study for tight oil. The producing GOR of cases considering capillarity

effects is much lower than the case without capillarity effect. In addition, the dynamic

reservoir compaction further lowers the producing GOR.

 103

Figure 4.2 Cumulative oil production and pressure depletion of 1D model

0

1000

2000

3000

4000

5000

6000

7000

8000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0	
 0.5	
 1	
 1.5	
 2	
 2.5	
 3	
 3.5	
 4	
 4.5	
 5	

Pw
f,p

si
a

C
um

 O
il

Pr
od

uc
tio

n,
 S

TB

Time, Days

Cum Oil Production, STB, No Capillary Effect

Cum Oil Production, STB, With Capillary Effect, No Compaction

Cum Oil Production, STB, With Capillary and Compaction Effect

Pwf, psia, No Capillary Effect

Pwf, psia, with Capillary Effect, No Compaction

Pwf, psia, With Capillary and Compaction Effect

 104

Figure 4.3 Producing GOR and pressure depletion of 1D model

4.4.2.2 Horizontal Well Model with Multiple Hydraulic Fractures

The second case is a horizontal well model with multi-stage hydraulic fractures (Figure

4.4). The 35X67X10 model has extent of 1000 ft in both X and Y direction and 20 ft in

Z direction. Four hydraulic fractures are equally spaced in the Y direction. The

production is initially constrained by oil flow rate and later by bottom hole pressure of

1900 psi. As discussed in previous sections, this model contains fluid with both confined

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

0	
 0.5	
 1	
 1.5	
 2	
 2.5	
 3	
 3.5	
 4	
 4.5	
 5	

Pw
f,p

si
a	

G
O
R,
	
 C
F/
TB

	
 	

Time,	
 Days	

GOR,	
 SCF/STB,	
 No	
 Capillary	
 Effect	

GOR,	
 SCF/STB,	
 With	
 Capillary	
 Effect	

GOR,	
 SCF/STB,	
 With	
 Capillary	
 and	
 CompacWon	
 Effect	

Pwf,	
 psia,	
 No	
 Capillary	
 Effect	

Pwf,	
 psia,	
 With	
 Capillary	
 Effect,	
 No	
 CompacWon	

Pwf,	
 psia,	
 With	
 Capillary	
 and	
 CompacWon	
 Effect	

 105

and unconfined properties. The two fluid systems are modeled in a unified fashion using

distinct capillary pressures. The well production is mainly fed by the hydraulic fractures,

which are in turn fed by the tight matrix. Note that the production and GOR are

calculated at in-situ reservoir conditions when fluid enters the well. Although fluid that

is directly connected to the well is unconfined, the volume of such fluid is very small

comparing with its feed source, which is the confined fluid contained in tight matrix.

Similarly, three scenarios are compared. Results are shown in Figure 4.5 and 4.6. We

can see the case with capillarity effect and no compaction has the highest cumulative oil

production. The case with capillarity and compaction effect is in the middle. The

pressure decline rate of the compaction case is smaller than the other two cases. Note

that for the 1D core size model, the pressure decline rate of compaction is the highest.

This might be because that for a hydraulic fractured well, the production is controlled by

the fractures. The compaction reduced the conductivity of fracture, which makes the

pressure decline smaller than the cases without considering compaction. It is interesting

that there is a step-wise increase and decrease of the producing GOR of the case with

compaction. This might be because that, as the reservoir being compacted, the bubble

point pressure is reducing.

 106

Figure 4.4: Top view of a horizontal well model with four hydraulic fractures (scale

in feet)

 107

 Figure 4.5 Cumulative oil production and pressure depletion of horizontal well

model

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

0.00E+00	

2.00E+06	

4.00E+06	

6.00E+06	

8.00E+06	

1.00E+07	

1.20E+07	

1.40E+07	

0	
 500	
 1000	
 1500	
 2000	
 2500	

Pw
f,	

ps
ia
	

Cu
m
	
 O
il	

Pr
od

uc
%o

n,
	
 S
TB

	

Time,	
 Days	

Cum	
 Oil	
 ProducWon,	
 STB,	
 No	
 Capillary	
 Effect	

Cum	
 Oil	
 ProducWon,	
 STB,	
 With	
 Capillary	
 Effect,	
 No	
 CompacWon	

Cum	
 Oil	
 ProducWon,	
 STB,	
 With	
 Capillary	
 and	
 CompacWon	
 Effect	

Pwf,	
 psia,	
 No	
 Capillary	
 Effect	

Pwf,	
 psia,	
 With	
 Capillary	
 Effect,	
 No	
 CompacWon	

Pwf,	
 psia,	
 With	
 Capillary	
 and	
 CompacWon	
 Effect	

 108

 Figure 4.6 Producing GOR and pressure depletion of horizontal well model

2000	

4000	

6000	

0.00E+00	

1.00E+03	

2.00E+03	

3.00E+03	

4.00E+03	

5.00E+03	

6.00E+03	

7.00E+03	

8.00E+03	

9.00E+03	

0	
 500	
 1000	
 1500	
 2000	

Pw
f,	

ps
ia
	

G
O
R.
	
 C
F/
TB

	

TIME	
 DAYS	

GOR,	
 SCF/STB,	
 No	
 Capillary	
 Effect	

GOR,	
 SCF/STB,	
 With	
 Capillary	
 Effect,	
 No	
 CompacWon	

GOR,	
 SCF/STB,	
 With	
 Capillary	
 and	
 CompacWon	
 Effect	

Pwf,	
 psia,	
 No	
 Capillary	
 Effect	

Pwf,	
 psia,	
 With	
 Capillary	
 Effect,	
 No	
 CompacWon	

Pwf,	
 psia,	
 With	
 Capillary	
 and	
 CompacWon	
 Effect	

 109

4.5 Conclusions

Based on the assumption that the fluid is homogenous for pore size larger than 10

nm, we evaluate the effect of capillarity on VLE using the conventional thermodynamics

for hydrocarbon reservoirs. The capillary pressure effect on the vapor-liquid equilibrium

of reservoir fluids becomes significant when the pore size reduces to the nano scale. For

oil-wet reservoirs, the confinement effect suppresses the bubble point pressure, which in

turn favors the single-phase oil production by increasing the driving energy and

decreasing the viscosity of the fluids. In order to model such confined fluid properties in

reservoir simulation, the VLE flash calculation algorithms need to be extended to

consider capillary pressure difference between vapor and liquid phase. Leverett J-

function should be the approach used to evaluate capillary pressures for tight oil.

However, good quality capillary pressure measurements are needed to calibrate the

scaling factor for a particular tight oil reservoir, such as Bakken. For tight oil reservoirs,

which do not have pressure maintenance strategies, oil production is believed to be quite

sensitive to reservoir compaction during pressure depletion. Thus, rock compaction

should be considered in any reservoir study of tight oil. Rock compaction further reduces

the pore size. As a result, the confinement effect becomes larger. However, compaction

also reduces the permeability. Thus, simulation studies should consider the combined

effect of capillarity and compaction on production.

 110

CHAPTER V

SUMMARY AND RECOMMENDATIONS

In Chapter II, dynamic load imbalance, which is the key performance limiter of

parallel compositional simulation when using the IMPES formulation, is investigated.

Since such imbalance pattern is generally unpredictable, a dynamic load-balancing

scheme is needed to improve the parallel efficiency. The implementation or design of

dynamic load balancing schemes for parallel reservoir simulation can be very

challenging and requires a substantial amount of development time. In this chapter, a

promising shortcut is presented to mitigate the dynamic load imbalance problem.

Inspired by the domain over-decomposition concept, and based on Charm++ and AMPI,

the approach over-decomposed the underlying reservoir model into small chunks and

bundles of these chunks are then mapped to each physical processor as virtual processes.

There are two main attractions of AMPI. First, if we have a parallelized reservoir

simulator using MPI, the adaptation to use AMPI is not cumbersome. But, special care

must be taken to treat the global variables. There is an on-going research in the Charm++

community to improve the approach to handle the issues related to global variables. As

discussed in Chapter II, the methodology of treating global variables for using AMPI

may not have much room to improve. The future effort may be related to the workflow

of easing the process to handle global variables.

 As noted in Chapter II, the GreedyLB is recommend only because we deal with

the parallelization of equation of state. When we deal with a fully paralleled reservoir

 111

simulator, there will be inter-subdomain communications. As a result, other balancers

that consider the inter-subdomain communication overhead should be applied instead.

Fortunately, the Charm++ infrastructure provides a series of balancer for user to pick,

which greatly eases the development effort. However, it should be keep in mind that, the

operation of virtual processor assignment and migration and balancing is very high-level

without explicitly exploring the underlying physics. On one hand, this mechanism could

shorten the development phase, since the design of balancing based on the underlying

physics and implementation could be very complex. However, on the other hand, this

high-level mechanism may overlook some issues, which may bring a significant

overhead.

 One of such issues happens in the linear solver portion of a simulator. The

parallelization of linear solver need exchange boundary cell data between subdomains. If

we over-decompose the domain into many smaller chunks, the massage passing

overhead could kill the performance gained by using over-decomposition. This problem

becomes very important especially for fully implicit simulation, where the linear

solution part often consumes the majority part of time. Further research should be

conducted in this area to investigate the solutions. Based on limited experiments, for the

best cases, it appears that domain over-decomposition can improve Jacobi, Gauss-Seidel

and CG method’s parallel performance by 10-20%.

 Overall, domain over-decomposition is a promising way of improving the

parallel performance of reservoir simulators. If we have a fully parallelized reservoir

simulator using MPI, it is recommended to test the performance using AMPI. As

 112

emphasized, generally speak, the cost of adaption to AMPI is lowers than trying to

design and add a dynamic load balancer inside the simulator.

 In Chapter III, the recently developed CML method is introduced to reservoir

simulation application. The overall performance of CML is promising, especially for the

case to handle the matrix resulting from coupled geomechanics. Keep in mind, there is

no a linear solver that can be optimal for all the cases encountered in reservoir

simulation. The properties of matrices resulting reservoir simulation change with

different models and scenarios. The major draw back of CML is that it is designed and

proved based on symmetric matrices. Its performance is expected to degrade with the

increase of degree of asymmetry. For the coupled geomechanics, the matrix from

poroelastic displacement is symmetric. We have shown CML has much better

performance in this case using a benchmark matrix. If for some cases, CML do not have

better performance than other methods for the flow problem, the recommendation of

choice of solver for coupled poroelastic displacement would be CML.

 In the current implementation of CML, the smoother is Jacobi. Other smoother

may need to be implemented to improve its performance. Further research is needed in

this area.

 In Chapter IV, the conventional VLE formulation is extended to consider the

effect of capillary pressure between gas and oil phases. When the pore size is reduces to

the nano scale, the effect of capillarity on VLE should not be ignored. The extended

VLE formulation is developed based on the conventional Gibbs stability test and two

phase split calculation. It should be emphasized that this work is based on the

 113

assumption that the conventional homogenous thermodynamics, which is the ground for

the conventional VLE formulation, is not violated for the nanopore scale between 10 nm

to 50 nm. As indicated in Chapter IV, 10 nm seems to the limit to use conventional VLE

formulation.

 The approach taken to evaluate the effect of dynamic nanopore on tight oil

recovery is based on fully compositional simulation. Since Bakken oil is apparently in

the black oil region, fully compositional simulation may not be needed in practice. To

perform black oil simulation for Bakken oil, we first need to use a confined PVT table to

consider the effect of capillarity. Second, we need to establish the relation between

confined PVT table and compaction table, since as the pore space changes the

confinement effect changes (in other words, the PVT changes). As a future research

recommendation, it is necessary to perform comparison of the results of fully

compositional simulation and black oil simulation to consider the dynamic nanopore

effects.

 Since Bakken oil is in the black oil region, Chapter IV simplifies the saturation

pressure to be the bubble point pressure. If the fluid is in volatile oil or gas condensate

region (e.g. Eagle Ford liquid rich shale), the saturation pressure will be the dew point

pressure. The same approach can be applied to model the effect of dynamic nano-pore

properties for Eagle Ford liquid rich shale if we ignore the effect of adsorptions.

Adsorption can complicate the analysis in great extent. The adsorption of vapor and

liquid at the shale surface can induce highly structured particle density distributions

close to the surface, which will make the fluid inhomogeneous (Evans 2009). Further

 114

research is needed to investigate the applicable and practical approach to handle this

situation.

 115

REFERENCES

Adaptive MPI Manual. V 1.0. Parallel Programming Laboratory, University of Illinois at

Urbana-Champaign.

Alpak, F.O. and Wheeler, M.F. 2012. A Suppercoarsening Multigrid Method for

Poroelasticity in 3D Coupled Flow and Geomechanics Modeling. Computational

Geoscience 16(4): 953-974.

Anguille, L., Killough, J.E., Li, T.M.C., Toepfer, J.L. 1995. Static and Dynamic Load-

balancing Strategies for Parallel Reservoir Simulation. Paper SPE 29102 presented

at the SPE Symposium on Reservoir Simulation, San Antonio, Texas, USA, 12-15

February.

Appleyard, J.R., Appleyard, J.D., Wakefield, M.A., Desitter, A.L. 2011. Accelerating

Reservoir Simulators Using GPU Technology. Paper SPE 141402 presented at the

SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 21-23

February.

Aziz, K. and Settari, A. 1979. Petroleum Reservoir Simulation. Applied Science

Publishers Ltd, London.

Bayat, M., and Killough, J. 2013. An Experimental Study of GPU Acceleration for

Reservoir Simulation. Paper SPE 163628 presented at the SPE Reservoir Simulation

Symposium, The Woodlands, Texas, USA, 18-20 February.

Beckner, B.L., Usadi, A.K., Ray, M.B., Diyankov, O.V. 2006. Next Generation

Reservoir Simulation Using Russian Linear Solvers. Paper SPE 103578 presented at

 116

the SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow,

Russia, 3-6 October.

Bedrikovetsky, P. 1993. Mathematical Theory of Oil and Gas Recovery: with

Applications to Ex-USSR Oil and Gas Fields. Kluwer Academic Publishers, The

Netherlands.

Behie, G.A. and Forsyth, P.A. 1983. Multigrid Solution of the Pressure Equation in

Reservoir Simulation. SPE J 23(4): 623-632. SPE-10492-PA.

Bell, W.N., Olson, L.N., Schroder, J.B. 2011. PyAMG: Algebraic Multigrid Solvers in

Python v2.0. http://www.pyamg.org.

Bohm, E., Bhatele, A., Kale, L.V., Tuckerman, M.E., Kumar, S., Gunnels, J.A.,

Martyna, G.J. 2008. Fine Grained Parallelization of the CaParrinello ab initio MD

Method on Blue Gene/L. IBM journal of Research and Development: Applications

of Massively Parallel Systems, 52(½): 159-174.

Boman, E.G., Hendrickson, B. 2003. Support Theory for Preconditioning. SIAM J

Matrix Anal Appl, 25(3): 694-717.

Cao, H., Tchelepi, H.A., Wallis, J.R., Yardumian, H. 2005. Parallel Scalable

Unstructured CPR-Type Linear Solver for Reservoir Simulation. Paper SPE 96809

presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas,

9-12 October.

Carman, P.C. 1937. Fluid Flow through Granular Beds. Transaction, Institution of

Chemical Engineers, London, 15: 150–166.

 117

Christie, M.A. and Blunt, M.J. 2001. Tenth SPE Comparative Solution Project: A

Comparison of Upscaling Techniques. Paper SPE 66599 presented at the SPE

Reservoir Simulation Symposium, Houston, Texas, USA, 11-14 February.

Chu, L., Ye, P., Harmawan, I., Du, L., Shepard, L. 2012. Characterizing and simulating

the non-stationariness and non-linearity in unconventional oil reservoirs: Bakken

application. Paper SPE 161137 presented at the SPE Canadian Unconventional

Resources Conference, Calgary, Alberta, Canada, 31 Oct-1 November.

Davis, T.A. 1994. University of Florida Sparse Matrix Collection, ACM Transactions on

Mathematical Software, 38(1): 1-25.

http://www.cise.ufl.edu/research/sparse/matrices

Davis, T.A. 2006. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia.

Dean, R.H., Gai, X., Stone, C.M., Minkoff, S.E. 2003. A Comparison of Techniques for

Coupling Porous Flow and Geomechanics. Paper SPE 79709 presented at the SPE

Reservoir Simulation Symposium, Houston, Texas, USA, 3-5 February.

Dean, R.H. and Lo, L.L. 1988. Simulation of Naturally Fractured Reservoirs. SPE RE

3(2): 633-648.

Diyankov, O.V., Koshelev, S.V., Kotegov, S.S., Krasnogorov, I.V., Kuznetsova, N.N.,

Pravilnikov, V.Y., Beckner, B.L., Maliassov, S.Y., Mishev, I.D., Usadi, A.K. 2007.

Sparsol – Sparse Linear Systems Solver. J Numer Math 0(0): 1-16.

Du, L. and Chu, L. 2012. Understanding Anomalous Phase Behavior in unconventional

oil reservoirs. Paper SPE 161830 presented at the SPE Canadian Unconventional

Resources Conference, Calgary, Alberta, Canada, 31 Oct–1 November.

 118

Dufort, E.C., Frankel, S.P. 1953. Stability Conditions in the Numerical Treatment of

Parabolic Equations. Math Tables and other Aids to Computation, 7(43): 135-152.

Evans, R. 2009 Density Functional Theory for Inhomogeneous Fluid I: Simple Fluids in

Equilibrium. Lectures at 3rd Warsaw School of Statistical Physics, Kazimierz Dolny,

Poland, 27 June-3 July.

Eisenstat, S.C., Elman, H.C., Schultz, M.H. 1983. Vibrational Iterative Methods for

Nonsymmetric Systems of Linear Equations. SIAM J Numer Anal, 20:345-357.

Ferronato, M., Gambolati, G., Janna, C., Teatini, P. 2010. Geomechanical Issues of

Anthropogenic CO2 Sequestration in Exploited Gas Fields. Energy Conversion and

Management, 51(10): 1918-1928.

Firoozabadi, A. 2013. Private Communication

Fleming, G. 2012. Private communication.

Foltinek, D., Eaton, D., Mahovsky, J., Moghaddam, P., McGarry, R. 2009. Industrial-

scale Reverse Time Migration on GPU Hardware. SEG Annual Meeting, Extended

Abstract, 2009-2789.

Fung, L.S.K., Dogru, Ali H. 2007. Parallel Unstructured Solver Methods for Complex

Giant Reservoir Simulation. Paper SPE 106237 presented at the SPE Reservoir

Simulation Symposium, Houston, Texas, USA, 26-28 February.

Gai, X., Dean, R.H., Wheeler, M.F., Liu, R. 2003. Coupled Geomechanical and

Reservoir Modeling on Parallel Computers. Paper SPE 79700 presented at the SPE

Reservoir Simulation Symposium, Houston, Texas, USA, 3-5 February.

 119

Gremban, K. 1996. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally

Dominant Linear Systems. PhD dissertation, Carnegie Mellon University.

Honarpour, M.M., Nagarajan, N.R., Organgi, A., Arastech, F. Yao, Z. 2012.

Characterization of Critical Fluid, Rock, and Rock-fluid Properties-impact on

Reservoir Performance of Liquid-rich Shales. Paper SPE 158042 presented at the

SPE Annual Technical Confference, San Antonio, Texas, USA, 8-10 October.

Huang, C., Zheng, G., Kumar, S., Kale, L.V. 2006. Performance Evaluation of Adaptive

MPI. In Proceedings of ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, New York, New York, USA, 29-31 March.

Huang, C., Lawlor, O., Kale, L.V. 2003. Adaptive MPI. In Proceedings of the 16th

International Workshop on Languages and Compilers for Parallel Computing,

College Station, Texas, USA, 2-4 October.

Huang, Y. 2012. Generalization of Support Theory for Preconditioning. Fifth

International Conference on Information and Computing Science. Liverpool, UK,

24-25 July.

Jetley, P., Gioachin, F., Mendes, C., Kale, L.V., Quinn, T.R. 2008. Massively Parallel

Cosmological Simulations with ChaNGa. In Proceedings of IEEE International

Parallel and Distributed Processing Symposium. Miami, Florida, USA, 14-18 April.

Jiao, X., Zheng, G., Lawlor, G., Alexander, P., Campbell, M., Heath, M., Fiedler, R.

2005. An Integration Framework for Simulations of Solid Rocket Motors. In 41st

AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson, Arizona, USA, 10-

13 July.

 120

Kale, L.V., Bohm, E., Mendes, C.L., Wilmarth, T., Zheng, G. 2008. Programming

Petascale Applications with Charm++ and AMPI. in Petascale Computing:

Algorithms and Applications. Bader, D., Ed. Chapman & Hall/CRC Press, pp. 421-

441.

Karypis, G. and Kumar, V. 1999. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM J Sci Comput, 20(1): 359-392.

Killough, J.E., Wheeler, M.F. 1987. Parallel Iterative Equation Solvers: an Investigation

of Domain Decomposition Algorithms for Reservoir Simulation. Paper SPE 16021

presented at the SPE Symposium on Reservoir Simulation, San Antonio, Texas,

USA, 1-4 February.

Klie, H., Sudan, H., Li, R., Saad, Y. 2011. Exploiting Capabilities of Manycore Platform

in Reservoir Simulation. Paper SPE 141265 presented at the SPE Reservoir

Simulation Symposium, The Woodlands, Texas, USA, 21-23 February.

Klie, H., Wheeler, M.F., Clees, T., Stüben, K. 2007. Deflation AMG Solvers for Highly

Ill-Conditioned Reservoir Simulation Problems. Paper SPE 10582 presented at the

SPE Reservoir Simulation Symposium, Houston, USA, 26-28 February.

Koutis, I. 2007. Combinatorial and Algebraic Tools for Optimal Multilevel Algorithms.

PhD Dissertation, Carnegie Mellon University.

Koutis, I., Miller, G., Tolliver, D. 2009. Combinatorial Preconditioners and Multilevel

Solvers for Problems in Computer Vision and Image Processing. In: Proceeding

ISVC ’09 Proceedings of the 5th International Symposium on Advances in Visual

Computing: Part I, Las Vegas, Nevada, USA, 30 November-2 December.

 121

Koutis, I. CMG Solver. http://www.cs.cmu.edu/~jkoutis/cmg.html

Kozeny, J., 1927. Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad

Wiss Wien, 136(2a): 271-306.

Kuila U., Prasad M., 2011. Surface Area and Pore-size Distribution in Clays and Shales.

Paper SPE 146869 presented at the SPE Annual Technical Conference and

Exhibition, Denver, Colorado, USA, 30 October–2 November.

Leverett, M.C. 1941. Capillary Behavior in Porous Solids. Trans AIME 142(1): 159-172

Liu, H., Yu, S., Chen, Z., Hsieh, B., Shao, L. 2012. Parallel Preconditioners for

Reservoir Simulation on GPU. Paper SPE 152811 presented at the SPE Latin

America and Caribbean Petroleum Engineering Conference, Mexico City, Mexico,

16-18 April.

Liven, O.E. 2012. Lean Algebraic Multigrid MATLAB Software, Release 2.1.1.

http://lamg.googlecode.com

Lu, B., Alshaalan, T.M., Wheeler, M.F. 2007. Iteratively Coupled Reservoir Simulation

for Multiphase Flow. Paper SPE 110114 presented at SPE Annual Technical

Conference and Exhibition, Anaheim, USA, 11-14 November.

Michelsen, L.M. 1982a. The Isothermal Flash Problem. Part I. Stability. Fluid Phase

Equilibria, 9(1): 1-19.

Michelsen, L.M. 1982b. The Isothermal Flash Problem. Part II. Phase-split Calculation.

Fluid Phase Equilibria, 9(1): 21-40.

Nelson, P.H. 1994. Permeability-porosity Relationships in Sedimentary Rocks. The Log

Analyst, 35(3): 38-62

 122

Nojabaei, B., Johns, R.T. and Chu, L. 2012. Effect of Capillary Pressure on Fluid

Density and Phase Behavior in Tight Rocks and Shales. Paper SPE 159258

presented at the SPE Annual Technical Conference and Exhibition, San Antonio,

Texas, USA, 8-10 October.

Notay, Y. 2010. An Aggregation-based Algebraic Multigrid Method. Electron Trans

Numer Anal, 37:123-146.

Napov, A., Notay, Y. 2012. An Algebraic Multigrid Method with Guaranteed

Convergence Rate. SIAM J Sci Comput 34(2): A1079-A1109.

Notay, Y. 2012. Aggregation-based Algebraic Multigrid for Convection-diffusion

Equations. SIAM J Sci Comput 34(4): A2288-A2316.

Notay, Y. AGMG Software and Documentation;

http://homepages.ulb.ac.be/~ynotay/AGMG.

Pang, J., Zuo, J.Y., Zhang, D., Du, L. 2012. Impact of Porous Media on Saturation

Pressure of Gas and Oil in Tight Reservoirs. Paper SPE 161143 presented at the

SPE Canadian Unconventional Resources Conference, Calgary, Alberta, Canada, 31

October-1 November.

Pedersen, K.S. and Christensen, P.L. 2007. Phase Behavior of Petroleum Reservoir

Fluids. CRC Press, Taylor & Francis Group, Boca Raton, FL.

Piault, E., Ding, Y. 1993. A Fully Explicit Scheme in Reservoir Simulation on a

Massively Parallel Computer. Paper SPE 25274 presented at the SPE Symposium

on Reservoir Simulation, New Orleans, Louisiana, USA, 28 February-3 March.

 123

Rodrigues, E.R., Navaux, P.O.A., Paneta, J., Mendes, C.L., Kale, L.V. 2010. Optimizing

an MPI Weather Forecasting Model via Processor Virtualization. In Proceeding

HiPC, Dona Paula, India, 19-22 December.

Rodrigues, E.R., Navaux, P.O.A., Paneta, J., Fazenda, A., Mendes, C.L., Kale, L.V.

2010. A Comparative Analysis of Load Balancing Algorithms Applied to a Weather

Forecast Model. In Proceeding SBAC-PAD ’10 Proceedings of the 2010 22nd

International Symposium on Computer Architecture and High Performance

Computing. Petrópolis, Rio de Janeiro, Brazil, 27-30 October.

Rodrigues, E.R., Navaux, P.O.A., Panetta, J., Mendes, C.L. 2010. A New Technique for

Data Privatization in User-level Threads and Its Use in Parallel Applications. In

ACM 25th Symposium on Applied Computing (SAC), Sierre, Switzerland. 22-26

March.

Rodrigues, E.R. 2012. Thread local storage enabled GFortran. Private Communication.

Ruge, J.W. and Stüben, K. 1987. Algebraic Multigrid (AMG). In Multigrid Methods,

Volume 3 of Frontiers in Applied Mathematics. McCormick, S.F., Ed. SIAM,

Philadelphia, PA, pp. 73-130.

Saad, Y., Schultz, M.H. 1986. GMRES: A Generalized Minimal Residual Algorithm for

Solving Nonsymmetric Linear Systems. SIAM J Sci Stat Comput 7(3): 856-869.

Sigmund, P.M., Dranchuk, P.M., Morrow, N.R., Purvis, R.A., 1973. Retrograde

Condensation in Porous Media. SPE J 13(2): 93-104.

Shapiro, A.A., and Stenby, E.H. 1997. Kelvin Equation for a Non-ideal Multicomponent

Mixture. Fluid Phase Equilibria 134(1-2): 87-101.

 124

Shapiro, A.A., Potsch, K., Kristensen, J.G., Stenby, E.H. 2000. Effect of Low Permeable

Porous Media on Behavior of Gas Condensates. Paper SPE 65182 presented at SPE

European Petroleum Conference, Paris, France, 24-25 October.

Sherman, A.H. 1992. A Hybrid Approach to Parallel Compositions Reservoir

Simulation. Paper OTC 6829 presented at the Offshore Technology Conference,

Houston, Texas, USA, 4-7 May.

Shuttleworth, R., Maliassov, S., Zhou, H. 2009. Partitioners for Parallelizing Reservoir

Simulations. Paper SPE 119130 presented at the SPE Reservoir Simulation

Symposium, The Woodlands, Texas, 2-4 February.

Stüben, K., Clees, T., Klie, H., Lu, B., Wheeler, M.F. 2007. Algebraic Multigrid

Methods (AMG) for the Efficient Solution of Fully Implicit Formulations in

Reservoir Simulation. Paper SPE 105832 presented at the SPE Reservoir Simulation

Symposium, Houston, Texas, USA, 26-28. February.

Tang, D.E. and Zick, A.A. 1993. A New Limited Compositional Reservoir Simulator.

Paper SPE 25255 presented at the SPE Symposium on Reservoir Simulation, New

Orleans, LA, USA, 28 February-3 March.

Van der Vorst, H.A. 1992. Bi-CGSTAB: A Fast and Smoothly Converging Variant of

Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J Sci Stat Comput

13(2): 631–644

Wallis, J.R. 1983. Incomplete Gaussian Elimination as a Preconditioning for

Generalized Conjugate Gradient Acceleration. Paper SPE 12265 presented at the

 125

SPE Reservoir Simulation Symposium, San Francisco, California, USA, 15-18

November.

Wallis, J.R., Kendall, R.P., Little, T.E. 1985. Constrained Residual Acceleration of

Conjugate Residual Methods. Paper SPE 13563 presented at the SPE Reservoir

Simulation Symposium, Dallas, Texas, USA, 10-13 February.

Wang, D., Butler, R., Zhang, J., Seright, R. 2012. Wettability Survey in Bakken Shale

with Surfactant-formulation Imbibition. SPE RE 15(6): 695-705.

Wei, C., Wang, H., Sun, S., Xiao, Y., Zhu, Y., Qin, G. 2012. Potential Investigation of

Shale Gas Reservoirs, Southern China. SPE paper 162828 presented at the SPE

Canadian Unconventional Resources Conference, Calgary, Alberta, Canada, 31

October-1 November.

Wei, C., Qin, G., Guo, W., Yan, B., Killough, J.E., Wang, H., Liu, H. 2013a.

Characterization and Analysis on Petrophysical Parameters of a Marine Shale Gas

Reservoir. Paper SPE 165380 presented at the SPE Western Regional & AAPG

Pacific Section Meeting, Monterey, California, USA, 19-15 April.

Wei, C., Wang, Y., Qin, G., Li, Q., Killough, J.E. 2013b. Experimental and Numerical

Studies on the Micro-fractures and its Significance Toward Production of Shales: a

Case Study. SPE paper 165327 presented at the SPE Eastern Regional Meeting,

Pittsburgh, Pennsylvania, USA, 20-22 August.

White, J.A., Borja, R.I. 2011. Block-preconditioned Newton-Krylov Solvers for Fully

Coupled Flow and Geomechanics. Comput Geosci 15(4): 647-659.

Yan, B., Wang, Y., and Killough, J. 2013a. Beyond Dual-porosity Modeling for the

 126

Simulation of Complex Flow Mechanisms in Shale Reservoirs. Paper SPE 163651

presented at the 2013 SPE Reservoir Simulation Symposium, The Woodlands,

Texas, USA, 18-20 February.

Yan, B., Killough, J., Wang, Y. et al. 2013b. Novel Approaches for the Simulation of

Unconventional Reservoirs. Paper SPE 168786 presented at the Unconventional

Resources Technology Conference, Denver, Colorado, USA, 12-14 August.

Yan, B., Alfi, M., Wang, Y., Killough, J.E. 2013c. A New Approach for the Simulation

of Fluid Flow in Unconventional Reservoirs through Multiple Permeability

Modeling. Paper SPE 166173 presented at the SPE Annual Technical Conference

and Exhibition, New Orleans, Louisiana, USA, 30 September-2 October.

Yan, B. 2013. A Novel Approach for the Simulation of Multiple Flow Mechanisms and

Porosities in Shale Gas Reservoirs. M.S. Thesis, Texas A&M University, College

Station.

Zhang, K., Wu, Y.S., Pruess, K., Elmroth, E. 2001. Parallel Computing Techniques for

Large-scale Reservoir Simulation of Multi-component and Multiphase Fluid Flow.

Paper SPE 66343 presented at the SPE Reservoir Simulation Symposium, Houston,

Texas, USA, 11-14 February.

Zheng, G. 2005. Achieving High Performance on Extremely Large Parallel Machines:

Performance Prediction and Load Balancing. Ph.D. Dissertation, University of

Illinois at Urbana-Champaign.

 127

Zheng, G., Lawlor, G.O.S., Kale, L.V. 2006. Multiple Flows of Control in Migratable

Parallel Programs. In 2006 International Conference on Parallel Processing

Workshops (ICPPW’06). Columbus, Ohio, USA, 14-18 August.

Zheng, G., Negara, S., Mendes, C., Rodrigues, E., Kale, L. 2011. Automatic Handling of

Global Variables for Multi-threaded MPI programs. In Proceeding ICPADS ’11

Proceedings of the 2011 IEEE 17th International Conference on Parallel and

Distributed Systems. Tainan, Taiwan, 7-9 December.

 128

APPENDIX I

STABILITY TEST WITH CAPILLARY PRESSURE EFFECT

 The following derivations are based on Michelsen (1982a).

I.1 Stability Criterion

Given temperature T0 and pressure P0 and M component mixture with component

mole fractions (z1, z2, ..., zm). The Gibbs energy of the mixture is

∑=
M

i
iinG 0

0 µ (I.1.1)

where 0
iµ is the chemical potential of component i in the mixture and in is the number of

moles of component i in the mixture. Now, let’s assume this mixture is divided into two

phases with mole number ε−N and ε , respectively. The amountε of the second phase is

infinitesimal. Let the mole fractions in Phase II be Myyy ,,, 21 … . The change in Gibbs

energy is then

() () 00 GGNGGGGG III −+−=−+=Δ εε (I.1.2)

If we apply Taylor series expansion to IG , discarding second order term inε , we have

() () ∑ ∑−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−=−
M

i

M

i
ii

Ni
i yG
n
GyNGNG 0

0 µεεε (I.1.3)

Then changes in Gibbs free energy is given by

()()∑ −=Δ
M

i
iii yyG 0µµε (I.1.4)

 129

The stability of the original mixture requires that its Gibbs free energy is at the global

minimum. A criterion for stability is that

() ()() 00 ≥−=∑
M

i
iii yyyF µµ (I.1.5)

for all trial compositions y . All minima of ()yF are located in the interior of the

permissible region (∑ =≥
M

i
ii yy 1,0). It is usually convenient to work with fugacity. The

fugacities are given by

() () L
iii Pzzzf φ= (I.1.6)

() () V
iii Pyyyf φ= (I.1.7)

Note that, it is assumed the original phase is liquid and trial phase is vapor. The opposite

setting (original phase is vapor and trial phase is liquid) is equivalent. Since

()ii fRT ln=µ (I.1.8)

We then have

() () () ()[]

()() ()()[]

() () ()[] 0lnlnlnlnlnln

lnln

lnln0

≥−+−−+=

−=

−==

∑

∑

∑

LV
iiii

M

i
i

L
ii

V
ii

M

i
i

M

i
iii

PPzzyyy

PzzPyyy

zfyfy
RT
yFyg

φφ

φφ (I.1.9)

The last term (LV PP lnln −) is normally ignored because of the small capillary pressure

between vapor and liquid. But it is included here to include the effect of high capillary

pressure, which is hypothesized to encounter in confined pore space. Let

 130

() L
iii Pzzh lnlnln ++= φ (I.1.10)

Then we have,

() ()() 0lnlnln ≥+−+=∑ V
iii

M

i
i Phyyyyg φ (I.1.11)

In the above equation, ih is independent of y (z remains unchanged). So, this term can

be pre-computed without iterating. The stationary criterion is

() MikPhyy V
iii ,,2,1 lnlnln …==+−+ φ (I.1.12)

Let i
k

i yeY −= , then

() MiPhyY V
iii ,,2,1 0lnlnln …==+−+ φ (I.1.13)

Since 1=∑
M

i
iy , then

1=∑
M

i
i

k Ye (I.1.14)

As a result,

∑=
M

i
iii YYy (I.1.15)

This equation suggests that iY can be interpreted as mole numbers. Apparently, we can

see that the solutions of the nonlinear equation (Eq. I.1.13) can be used to examine the

stability analysis. For a system of fixed composition iz , the system is stable when 0≥k .

Thus, in terms of Y , this system is stable when∑ ≤
M

i
iY 1 and is unstable when∑ >

M

i
iY 1.

 131

Successive substitution and/or newton’s method can be used to solve the nonlinear

equation (Eq. I.1.13).

I.2 Successive substitution

The updating of Y is simply

()[] MiPyhY V
ii

new
i ,,2,1 lnlnexp …=−−= φ (I.2.1)

I.3 Newton’s method

Although successive substitution is very easy to implement, it is not efficient and

requires significant number of iterations. Thus successive substitution method is not

desired for reservoir simulation, since we need to solve Eq. I.1.13 for each grid block.

To overcome this drawback, we use Newton’s method which only requires substantially

less number of iterations. To use Newton’s method, we first write the residual as

() () MiPhyYyR V
iiii ,,2,1 0lnlnln …==+−+= φ (I.3.1)

Then the updating formulations are as follows

() kkkk RJyy 11 −+ −= (I.3.2)

kk RyJ −=Δ (I.3.3)

The jacobian is given by

MjMi
y
RJ
j

i
ij ,,2,1;,,2,1 …… ==

∂
∂

= (I.3.4)

In matrix format, we have

 132

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Δ

Δ

Δ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

MM

M

MMM

M

M

R

R
R

y

y
y

y
R

y
R

y
R

y
R

y
R

y
R

y
R

y
R

y
R

!!

"

!#!!

"

"

2

1

2

1

21

2

2

2

1

2

1

2

1

1

1

 (I.3.5)

In implementation, we instead use the K-value, iK , or its logarithm as the independent

variable. The formulations using iKln is below. Now R is treated as a function of iKln ,

such as () 0ln =iKR . Similarly, we have

() () ()() ()kkk
i

k
i RJKK 11 lnln −+ −= (I.3.6)

() ()kk RKJ −=Δ ln (I.3.7)

MjMi
K
RJ

j

i
ij ,,2,1;,,2,1

ln
…… ==

∂
∂

= (I.3.8)

In matrix format, we have

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Δ

Δ

Δ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

MM

M

MMM

M

M

R

R
R

K

K
K

K
R

K
R

K
R

K
R

K
R

K
R

K
R

K
R

K
R

!!

"

!#!!

"

"

2

1

2

1

21

2

2

2

1

2

1

2

1

1

1

ln

ln
ln

lnlnln

lnlnln

lnlnln

 (I.3.9)

After applying chain rule, we have

j

j

j

i

j

i

K
y

y
R

K
R

lnln ∂

∂

∂
∂

=
∂
∂ (I.3.10)

Since iii KzY = and i
k

i yeY −= , we then have

 133

i
k

ii Kezy = (I.3.11)

Note that k
iez is independent of iy or iKln . So,

jj
k

j
j

jk
j

j

j
k

j

j

j yKez
K
K

ez
K
Kez

K
y

==
∂

∂
=

∂

∂
=

∂

∂

lnlnln
 (I.3.12)

As a result,

j

i
j

j

j

j

i

j

i

y
Ry

K
y

y
R

K
R

∂
∂

=
∂

∂

∂
∂

=
∂
∂

lnln
 (I.3.13)

and finally in matrix form, we have

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Δ

Δ

Δ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

MM

M

M
M

MM

M
M

M
M

R

R
R

K

K
K

y
Ry

y
Ry

y
Ry

y
Ry

y
Ry

y
Ry

y
Ry

y
Ry

y
Ry

!!

"

!#!!

"

"

2

1

2

1

2
2

1
1

2

2

2
2

1

2
1

1

2

1
2

1

1
1

ln

ln
ln

 (I.3.14)

 It should be noted that although Newton’s method converges fast, global minima

could not be guaranteed. In simulator implementation, we generally first perform a few

iterations of successive substation to a bigger tolerance. Then we use Newton’s method

to converge to the final tolerance.

 134

APPENDIX II

TWO-PHASE SPLIT CALCULATION WITH CAPILLARY PRESSURE

EFFECT

II.1 Governing Equations

 For given F mole of feed (original single-phase phase fluid) with mole fraction of

zi (mi ,,2,1 …=) in a close system, the original phase splits into Lmole liquid with

mole fraction of xi (mi ,,2,1 …=) and V mole vapor with mole fraction of yi (

mi ,,2,1 …=). We have the following energy and mass balances.

f
i

L T,PL, xi() = fiV T,PV , yi() (II.1.1)

Fzi = xiL + yiV (II.1.2)

Besides, we have

∑ =
m

i
ix 1 (II.1.3)

∑ =
m

i
iy 1 (II.1.4)

To solve these equations, we first define V-L equilibrium ratio, K-value as

mi
x
yK
i

i
i ,,2,1 …== (II.1.5)

From Eq. II.1.2, we have

xi =
zi

1+ Ki −1()α
 (II.1.6)

 135

yi =
Kizi

1+ Ki −1()α
 (II.1.7)

Where FV=α .

Substitute Eq. II.1.6 and Eq. II.1.7 into Eq. II.1.3 and Eq. II.1.4, we have

() ()
()∑ −+
−

=
m

i i

ii

K
zKh
11

1
α

α (II.1.8)

Eq. II.1.8 is called the Rachford-Rice equation. Since

miPyf VV
ii

V
i ,,2,1 …== φ (II.1.9)

miPxf LL
ii

L
i ,,2,1 …== φ (II.1.10)

From Eq. II.1.9, Eq. II.1.10 and Eq. II.1.1, we then have

mi
P
P

x
yK VV

i

L

i

i
i ,,2,1

L
i …===
φ
φ (II.1.11)

Note that, normally, the pressure terms in the above equation are canceled out if we

assume the pressures of vapor and liquid are equal.

II.2 Successive Substitution

The successive substitution generally follows the 6 steps

Step 1: Guess initial value of iK . Stability test generally give good estimate of iK

Step 2: Solve the Rachford-Rice using Newton-Raphson method

Step 3: Calculate ix and iy

Step 4: Calculate L
iφ and V

iφ using Peng-Robinson equation of state for instance

Step 5: Update iK

 136

V
i

L
iold

i
new
i f

f
KK =

Step 6: Check convergence

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

m

i
L
i

V
i

f
f

2

1

II.3 Newton’s Method

Let
()

α−
−

=
1

V
i

L
i

i
ff

g , then we instead solve the nonlinear equation () 0, =αii yg . In

matrix format, we have

∂g1
∂y1

∂g1
∂y2

 ∂g1
∂ym−1

∂g1
∂α

∂g2
∂y1

∂g2
∂y2

 ∂g2
∂ym−1

∂g2
∂α

    
∂gm−1
∂y1

∂gm−1
∂y2

 ∂gm−1
∂ym−1

∂gm−1
∂α

∂gm
∂y1

∂gm
∂y2

 ∂gm
∂ym−1

∂gm
∂α

#

$

%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(

Δy1
Δy2


Δym−1
Δα

#

$

%
%
%
%

&

'

(
(
(
(

=

g1
g2

gm−1
gm

#

$

%
%
%
%

&

'

(
(
(
(

 (II.3.1)

The updating is simply

1,,2,1 1 −=Δ+=+ miyyy i
n
i

n
i … (II.3.2)

ym
n+1 =1− yi

n+1

i

m−1

∑ (II.3.3)

miyzx n

n
i

n
in

i ,,2,1
1 1

11
1 …=

−

−
=

+

++
+

α
α (II.3.4)

