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ABSTRACT 

 

The quest to improve the performance of reservoir simulators has been evolving 

with the newly encountered challenges of modeling more complex recovery mechanisms 

and related phenomena. Reservoir subsidence, fracturing and fault reactivation etc. 

require coupled flow and poroelastic simulation. These features, in turn, bring a heavy 

burden on linear solvers. The booming unconventional plays such as shale/tight oil in 

North America demand reservoir simulation techniques to handle more physics (or more 

hypotheses). This dissertation deals with three aspects in improving the performance of 

reservoir simulation toward these unconventional challenges.  

 Compositional simulation is often required for many reservoir studies with 

complex recovery mechanisms such as gas inject. But, it is time consuming and its 

parallelization often suffers sever load imbalance problems. In the first section, a novel 

approach based on domain over-decomposition is investigated and implemented to 

improve the parallel performance of compositional simulation. For a realistic reservoir 

case, it is shown the speedup is improved from 29.27 to 62.38 on 64 processors using 

this technique.   

Another critical part that determines the performance of a reservoir simulator is 

the linear solver. In the second section, a new type of linear solver based the 

combinatorial multilevel method (CML) is introduced and investigated for several 

reservoir simulation applications. The results show CML has better scalability and 

performance empirically and is well-suited for coupled poroelastic problems. These 
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results also suggest that CML might be a promising way of precondition for flow 

simulation with and without coupled poroelastic calculations.   

In order to handle unconventional petroleum fluid properties for tight oil, the 

third section incorporates a simulator with extended vapor-liquid equilibrium 

calculations to consider the capillarity effect caused by the dynamic nanopore properties. 

The enhanced simulator can correctly capture the pressure dependent impact of the 

nanopore on rock and fluid properties. It is shown inclusion of these enhanced physics in 

simulation will lead to significant improvements in field operation decision-making and 

greatly enhance the reliability of recovery predictions.   

 

 

 

 

 

 

 

 

 

 



 

 iv 

DEDICATION 

 

To my family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 v 

ACKNOWLEDGEMENTS 

 

This dissertation would not have been possible without the guidance and help 

from several individuals who in one way or another contributed and extended their 

valuable assistance in the preparation and completion of this study. In this humble 

acknowledgement, I would like to express my gratitude and appreciation to all of them. 

 First and foremost, I would like to convey my utmost gratitude to my advisor, Dr. 

Killough for this sincerity, inspiration and encouragement that I will remember forever. 

Being this student is one of my most fortunate things I have ever had in my life. What I 

have learned from Dr. Killough helps shape my career and will continuously put positive 

influence on my future.  

 I am heartily grateful to Dr. Eduardo Gildin, who was my advisor in the early 

stage of my PhD study. It was him who introduced me to the area of reservoir simulation.  

 I am thankful to Dr. King, Dr. Datta-Gupta and Dr. Efendiev for serving as my 

committee and valuable comments and suggestions that helped shaped the dissertation.  

 I would like to thank Landmark/Halliburton for the internship opportunities, 

especially for my mentors, Qinghua Wang and Graham Fleming.  

 I would like to thank my colleagues of Killough group and all my dear friends. It 

is you guys who made my life in College Station enjoyable.  

 Finally, my special thank goes to Sammi and Vanguard Orient (Beijing) 

Technology Company for the support and encouragement during my four years’ stay at 

Texas A&M University.  



 

 vi 

TABLE OF CONTENTS 

                                                                                                                                       Page 

ABSTRACT ....................................................................................................................... ii	
  

DEDICATION .................................................................................................................. iv	
  

ACKNOWLEDGEMENTS ............................................................................................... v	
  

TABLE OF CONTENTS .................................................................................................. vi	
  

LIST OF FIGURES ........................................................................................................... ix 

LIST OF TABLES ............................................................................................................ xi	
  

CHAPTER I  INTRODUCTION AND STUDY SCOPES ............................................... 1	
  

    1.1 Introduction .............................................................................................................. 1	
  
    1.2 Study Scopes and Outlines ....................................................................................... 4	
  

CHAPTER II  LOAD BALANCING OF PARALLEL COMPOSITIONAL 

SIMULATION USING RESERVOIR MODEL OVER-DECOMPOSITION  

METHOD ........................................................................................................................... 8	
  

    2.1 Introduction .............................................................................................................. 9	
  
    2.2 Background ............................................................................................................ 14	
  

2.2.1 A Commercial Comprehensive Reservoir Simulator ...................................... 14	
  
2.2.2 Charm++ and Processor Virtualization ........................................................... 15	
  
2.2.3 Adaptive MPI .................................................................................................. 17	
  
2.2.4 Native Load Balancing in AMPI and Charm++ .............................................. 19	
  

    2.3 Adaptation of Reservoir Simulator to AMPI ......................................................... 19	
  
2.3.1 Equation of State Parallelization ..................................................................... 20	
  
2.3.2 Domain Over-Decomposition ......................................................................... 24	
  
2.3.3 Variable Privatization ...................................................................................... 26	
  

2.3.3.1 Manual Change ........................................................................................ 27	
  
2.3.3.2 Source-to-source Transformation ............................................................. 27	
  
2.3.3.3 Automatic Global Variables Swapping .................................................... 28	
  
2.3.3.4 Privatization Based on Thread Local Storage (TLS) ............................... 28	
  

        2.3.4 Dynamic Load Balancer .................................................................................. 30	
  
    2.4 Example .................................................................................................................. 32	
  

2.4.1 Reservoir Model .............................................................................................. 32	
  



 

 vii 

2.4.2 Performance of MPI ........................................................................................ 36	
  
2.4.3 Performance of Processor Virtualization ........................................................ 42	
  
2.4.4 Performance of Dynamic Load Balancing ...................................................... 44	
  

    2.5 Conclusions ............................................................................................................ 46	
  

CHAPTER III  SOLVER PRECONDITIONING USING THE COMBINATORIAL 

MULTILEVEL METHOD .............................................................................................. 49	
  

    3.1 Introduction ............................................................................................................ 50	
  
    3.2 Solution Technique – Multistage Preconditioning ................................................. 55	
  
    3.3 The Combinatorial Multilevel Method .................................................................. 57	
  
    3.4 Case Experiments ................................................................................................... 65	
  

3.4.1 Incompressible oil-water System  .................................................................... 66	
  
3.4.2 Black-oil System .............................................................................................. 73	
  
3.4.3 Displacement Computation in Coupled Flow and Geomechanics .................. 79	
  

    3.5 Conclusions ............................................................................................................ 82	
  

CHAPTER IV  COMPOSITIONAL MODELING OF TIGHT OIL USING 

DYNAMIC NANOPORE PROPERTIES ....................................................................... 84	
  

    4.1 Introduction ............................................................................................................ 85	
  
    4.2 Assumptions ........................................................................................................... 88	
  
    4.3 Approach ................................................................................................................ 89	
  

4.3.1 Capillarity Effect on Vapor-Liquid Equilibrium (VLE) ................................. 89	
  
4.3.1.1 Extended VLE Flash Calculation ............................................................. 90	
  

4.3.1.1.1 Stability test using Gibbs free energy approach ................................ 90	
  
4.3.1.1.2 VLE two-phase split calculation ....................................................... 92	
  

4.3.1.2 Evaluation of Capillary Pressure for Tight Porous Media ....................... 93	
  
4.3.2 Dynamic Compaction of Nanopores ............................................................... 95	
  

    4.4 Results .................................................................................................................... 96	
  
4.4.1 Confined Phase Behavior ................................................................................ 96	
  
4.4.2 Reservoir Simulation ..................................................................................... 101	
  

4.4.2.1 1D Core Size Model ............................................................................... 102	
  
4.4.2.2 Horizontal Well Model with Multiple Hydraulic Fractures .................. 104	
  

    4.5 Conclusions .......................................................................................................... 109	
  

CHAPTER V  SUMMARY AND RECOMMENDATIONS ........................................ 110	
  

REFERENCES ............................................................................................................... 115	
  

APPENDIX I .................................................................................................................. 128	
  



 

 viii 

APPENDIX II ................................................................................................................ 134	
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ix 

LIST OF FIGURES 

 Page 

Figure 1.1    10 million cell multi-reservoir compositional model .................................... 2	
  

Figure 1.2    A reservoir model with couple flow and poroelastices 
                    (Schlumberger) ............................................................................................... 3	
  

Figure 1.3    US domestic crude oil production by source, 1990-2040  
                    (MMbbl/day) (EIA 2013) ............................................................................... 4	
  

Figure 2.1    Programmer view vs. real implementation of over-decomposed  
                    objects ........................................................................................................... 16	
  

Figure 2.2    MPI “processes” are implemented as virtual processes  
                    (user-level threads) in AMPI (adapted from Huang et al. (2006)) ............... 18	
  

Figure 2.3    Domain over-decomposition (On the left, the domain is  
                    over-decomposed into smaller subdomains. The same grid  
                    fill pattern denotes the same physical processor (adapted  
                    from AMPI manual)) .................................................................................... 25	
  

Figure 2.4    Migration of VP (adapted from AMPI manual) .......................................... 25	
  

Figure 2.5    Subdomain from over-decomposition might fit in cache  
                    (adapted from AMPI manual) ...................................................................... 26	
  

Figure 2.6    3D Reservoir model (axes unit in ft) ........................................................... 34	
  

Figure 2.7    Upper: Gas saturation at 7300 days; Lower: Load map at  
                    7300 days ...................................................................................................... 37	
  

Figure 2.8    Load map recorded at various time snapshots ............................................. 40	
  

Figure 2.9    Column plots of load at various time snapshots .......................................... 41	
  

Figure 2.10  Column plots of load for different number of virtual processors ................ 44	
  

Figure 2.11  a: Time column plot without load balancer; b: Time column plot  
                    with RefineLB; c: Time column plot with GreedyLB ................................. 48	
  

Figure 3.1    Sparse matrix plot of the first example ........................................................ 58	
  



 

 x 

Figure 3.2    Relative residual reduction of the first example .......................................... 59	
  

Figure 3.3    Sparse matrix plot of the second example ................................................... 60	
  

Figure 3.4    Relative residual reduction of the second example ..................................... 60	
  

Figure 3.5    Relative residual reduction for the incompressible oil-water system .......... 68	
  

Figure 3.6    Normalized time vs. matrix size .................................................................. 69	
  

Figure 3.7    Grid complexity ........................................................................................... 71	
  

Figure 3.8    Operator complexity .................................................................................... 71	
  

Figure 3.9    Computational complexity ........................................................................... 72	
  

Figure 3.11  Relative residual reduction for the black oil system .................................... 75	
  

Figure 3.12  Sparse matrix plot for the unstructured example ......................................... 77	
  

Figure 3.12  3D (upper) and 2D (lower) view of the depleted gas reservoir  
                    for CO2 sequestration (From Ferronato et al. 2010) ..................................... 80	
  

Figure 3.13  Sparse matrix plot of displacement matrix .................................................. 81	
  

Figure 3.14  Relative residual reduction for the displacement example .......................... 81	
  

Figure 4.1    Bubble point pressure lines of Bakken oil using Young-Laplace  
                    equation ........................................................................................................ 99	
  

Figure 4.2    Cumulative oil production and pressure depletion of 1D model ............... 103	
  

Figure 4.3    Producing GOR and pressure depletion of 1D model ............................... 104	
  

Figure 4.4    Top view of a horizontal well model with four hydraulic fractures 
                     (scale in feet) ............................................................................................. 106	
  

Figure 4.5    Cumulative oil production and pressure depletion of horizontal  
                    well model .................................................................................................. 107	
  

Figure 4.6    Producing GOR and pressure depletion of horizontal well model ............ 108	
  

 



 

 xi 

LIST OF TABLES 

 Page 
 
Table 2.1    Fluid types in the flash calculation ................................................................ 21	
  

Table 2.2    Pseudo Fortran MPI code for flash calculation ............................................. 22	
  

Table 2.3    Pseudo Fortran code that may cause deadlock .............................................. 23	
  

Table 2.4    Pseudo Fortran code to fix deadlock ............................................................. 23	
  

Table 2.5    Number of variables to privatize ................................................................... 27	
  

Table 2.6    Properties of Components ............................................................................. 35	
  

Table 2.7    Percent of time spent in each portion of sequential execution 
                   of the test case ............................................................................................... 35	
  

Table 2.8    Imbalance and high-to-low load ratio at selected days ................................. 39	
  

Table 2.9    Execution time of equation of state on 64 processors ................................... 43	
  

Table 2.10  Load balancing overhead .............................................................................. 45	
  

Table 2.11  Speedup improvements for 64 processors ..................................................... 45	
  

Table 3.1    Number of CG iterations of the first example ............................................... 58	
  

Table 3.2    Number of CG iterations of the second example .......................................... 60	
  

Table 3.3    Two-level CML algorithm ............................................................................ 62	
  

Table 3.4    V-cycle CML algorithm ................................................................................ 63	
  

Table 3.5    Decompose-Graph algorithm ........................................................................ 65	
  

Table 3.6    Number of Iterations for incompressible oil-water system ........................... 67	
  

Table 3.7    Iteration costs for the incompressible oil-water system ................................ 72	
  

Table 3.8    Number of iterations and costs for the black oil system ............................... 75	
  

Table 3.9    Number of iterations and costs for the unstructured example ....................... 78	
  



 

 xii 

Table 3.10  Number of iterations and costs for the displacement example ..................... 82	
  

Table 4.1    Pore radius, permeability and capillary pressure .......................................... 95	
  

Table 4.2    Rock compaction table of Bakken ................................................................ 96	
  

Table 4.3    Bakken oil composition data ......................................................................... 97	
  

Table 4.4    Bakken oil binary interaction table ............................................................... 98	
  

Table 4.5    Bubble point pressure of Bakken oil at 240 °F ........................................... 100	
  

Table 4.6    Confined fluid properties of Bakken oil at 240 °F and 1500 psia ............... 101	
  

	
  

	
  

 

 

 

 

 

 

 

 

 

 

 

  



 

 1 

CHAPTER I  

INTRODUCTION AND STUDY SCOPES 

 

1.1 Introduction 

Reservoir simulation is a technique to mimic or infers the behavior of fluid flow, 

such as oil, gas and water, in a petroleum reservoir through the use of mathematical 

model numerically. It has been a proven technology to be routinely used in petroleum 

asset management. Reservoir simulator was born as an efficient tool for reservoir 

engineers to better understand and mange assets. However, like any numerical 

simulation approach, reservoir simulation is inherently complex and computational 

intensive and easily becomes inefficient if more grids, complex recovery mechanisms, 

and/or complex geometry are necessary to accurately describe the complex phenomena 

occurring in the subsurface. For example, shown in Figure 1.1 is a multi-reservoir 

compositional model with about 10 million cells. The simulation of this model could 

take considerable amount of time, which can prolong the project time significantly. The 

quest to improve the performance of reservoir simulators has been evolving with the 

newly encountered challenges of modeling more complex recovery mechanisms and 

related phenomena. Reservoir subsidence, fracturing and fault reactivation etc. require 

coupled flow and poroelastic simulation. Shown in Figure 1.2 is an example of reservoir 

model with coupled flow and poroelastics. These features, in turn, bring a heavy burden 

on linear solvers. The booming of unconventional plays such as shale/tight oil has 

greatly changed the energy outlook of North America. Shown in Figure 1.3 is the 2013 
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EIA forecast of US domestic crude oil production by source. To economically develop 

such unconventional plays require technology advances. On of such need is to the 

demand of reservoir simulation techniques to handle more physics (or more hypotheses).  

 

 

Figure 1.1 10 million cell multi-reservoir compositional model 
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Figure 1.2 A reservoir model with couple flow and poroelastices (Schlumberger) 
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Figure 1.3 US domestic crude oil production by source, 1990-2040 (MMbbl/day) 
(EIA 2013) 

 

1.2 Study Scopes and Outlines 

This dissertation deals with three aspects in efforts to improve the reservoir simulation 

technique toward these challenges. The three aspects are: 1) load balancing of parallel 

compositional simulation; 2) solver preconditioning using combinatorial multilevel 

method; and 3) compositional modeling of tight oil considering dynamic nanopore 

properties.  

Compositional simulation is often required for many reservoir studies. As 

mentioned above, it is time consuming and the cost grows dramatically with an increase 

in the number of components. Because of this, reservoir studies requiring compositional 

simulation often become a bottleneck in the engineering process. With the advances in 
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high performance computing, execution of compositional simulation in parallel seems to 

be the apparently feasible way to tackle its computational demand. Although running 

reservoir simulation in parallel sounds extremely attractive, developing an efficient 

parallel reservoir simulator is far more challenging than developing the underlying serial 

reservoir simulator. For decades there have remained many open problems associated 

with high performance computing and reservoir simulation. 

Among the various challenges of efficiency and scalability of parallel 

compositional simulation, load imbalance is a major obstacle that has not been fully 

addressed and solved. In Chapter II, a novel approach is investigated and implemented to 

improve the performance of parallel compositional simulation which often suffers severe 

dynamic load imbalance problems. This new approach is based on domain over-

decomposition. It over-decomposes the reservoir model to assign each processor a 

bundle of subdomains. Processors treat these bundles of subdomains as virtual processes 

that can be dynamically migrated across processors in the run-time system. This 

technique is shown to be capable of achieving better overlap between computation and 

communication and cache efficiency. For a realist simulation problem, it is shown that 

domain over-decomposition together with a load balancer can improve speedup from 

29.27 to 62.38 on 64 physical processors.  

The linear solver is another very critical component that determine the robustness 

and efficiency of a reservoir simulator. For large-scale black-oil simulation, the solution 

of the resulting linear system usually consumes up to 90% of the total execution time. 

For problem with coupled reservoir displacement or poroelastics, the burden on linear 
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solver is even higher. In Chapter III, a new type of linear solver based the combinatorial 

multilevel method (CML) is introduced and investigated for several reservoir simulation 

applications. CML is applied as the preconditioner in IMPES, fully implicit and 

sequential implicit formulations for flow simulation, and also applied in coupled flow 

and poroelastic simulation for both pressure and poroelastic preconditioning. CML is 

compared with commonly used ILU(0) and two Algebraic MultiGrid (AMG) 

preconditioners, namely Ruge Stüben AMG and AggreGation based MultiGrid 

(AGMG). The results show CML has better scalability and performance empirically and 

is well-suited for coupled poroelastic problems. These results also suggest that CML 

might be a promising way of preconditioning for flow simulation with and without 

coupled poroelastic calculations.     

The recent advances in massive hydraulic fracturing techniques have enabled the 

oil industry to economically extract hydrocarbon from ultra-tight, unconventional 

resources, such as shale gas, liquid rich shale and tight oil. In spite of the great 

commercial success, there still remain many open questions encountered in field 

practices, such as the abnormal production behavior observed (long lasting low GOR 

even the pressure around the wellbore is believed to be below bubble point pressure) in 

Bakken oil. One probably hypothesis of this abnormal behavior is the fluid properties in 

the confined nanopore space deviate from the corresponding bulk measurements in 

which zero vapor-liquid interface curvature is assumed. A typical shale/tight oil 

reservoir such as the Bakken has a matrix pore size at the nanoscale. At such small 

scales the confined hydrocarbon phase behavior deviates from bulk measurements due to 
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the effect of capillary pressure. In addition, compaction of the pore space can bring 

about order of magnitude changes for tight oil formation properties during pressure 

depletion further exacerbating these deviations. Without considering these facts, a 

conventional reservoir simulator will likely not be able to explain the inconsistent 

produced GOR observed in the field compared to simulated results. The effect of these 

inaccuracies on ultimate recovery estimation can be devastating to the underlying 

economics. In Chapter IV, an improved reservoir simulator is developed which can 

rigorously model the dynamic confinement effect, such as suppression of bubble point 

pressure, increase of formation volume factor, reduction of oil viscosity and 

enhancement of critical gas saturation as well as their interaction with pore space 

compaction. The enhanced simulator can correctly capture the pressure-dependent 

impact of the nanopore structure on rock and fluid properties. As a result, the problem of 

inconsistent GOR is resolved and the history matching process is greatly facilitated. It is 

shown that inclusion of these enhanced physics in the simulation will lead to significant 

improvements in field operation decision-making and greatly enhance the reliability of 

recovery predictions.    
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CHAPTER II 

LOAD BALANCING OF PARALLEL COMPOSITIONAL SIMULATION 

USING RESERVOIR MODEL OVER-DECOMPOSITION METHOD* 

 

The quest for efficient and scalable parallel reservoir simulators has been 

evolving with the advancement of high performance computing architectures. Among 

the various challenges of efficiency and scalability, load imbalance is a major obstacle 

that has not been fully addressed and solved. The reasons that cause load imbalance in 

parallel reservoir simulation are both static and dynamic. Robust graph partitioning 

algorithms are capable of handling static load imbalance by decomposing the underlying 

reservoir geometry to distribute a roughly equal load to each processor. However, these 

loads determined by a static load balancer seldom remain unchanged as the simulation 

proceeds in time. This so-called dynamic imbalance can be further exacerbated in 

parallel compositional simulations. The flash calculations for equations of state in 

complex compositional simulations not only can consume over half of the total 

execution time but also are difficult to balance merely by a static load balancer. The 

computational cost of flash calculations in each grid block heavily depends on the 

dynamic data such as pressure, temperature, and hydrocarbon composition. Thus, any 

static assignment of grid blocks may lead to dynamic load imbalance in unpredictable 
                                                

* Reproduced with permission from “A New Approach to Load Balance for Parallel 
Compositional Simulation Based on Reservoir Model Over-decomposition” by Wang, 
Y. and Killough, J. 2013. Paper SPE 163585 presented at the SPE Reservoir Simulation 
Symposium, The Woodlands, TX, USA, 18-20 Feb. Copyright 2013 by Society of 
Petroleum Engineers.  
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manners. A dynamic load balancer can often provide solutions for this difficulty. 

However, traditional techniques are inflexible and tedious to implement in legacy 

reservoir simulators. In this paper, we present a new approach to address dynamic load 

imbalance in parallel compositional simulation. It over-decomposes the reservoir model 

to assign each processor a bundle of subdomains. Processors treat these bundles of 

subdomains as virtual processes or user-level migratable threads which can be 

dynamically migrated across processors in the run-time system. This technique is shown 

to be capable of achieving better overlap between computation and communication for 

cache efficiency. We employ this approach in a legacy reservoir simulator and 

demonstrate reduction in the execution time of parallel compositional simulations while 

requiring minimal changes to the source code. Finally, it is shown that domain over-

decomposition together with a load balancer can improve speedup from 29.27 to 62.38 

on 64 physical processors for a realistic simulation problem.        

2.1 Introduction 

High performance computing including parallel computing plays a vital role in 

many areas of engineering, such as defense, energy and financial engineering. 

Nowadays, these devices are being widely used by domain application engineers and 

scientists to solve a variety of commercially and scientifically interesting 

computationally intensive problems. Many of the techniques utilized are associated with 

solving the discretized partial differential equations that describe the underlying physics. 

Reservoir simulation, which mimics or infers the behavior of fluid flow in a petroleum 

reservoir system through the use of mathematical models, is one of the methods that are 
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widely used in petroleum upstream development and production. Reservoir simulator 

was born as an efficient tool for reservoir engineers to better understand and manage 

assets. However, like any numerical simulation tool, reservoir simulation is inherently 

computationally intensive and easily becomes inefficient if larger and larger grids or 

more components are necessary to describe accurately the complex phenomena 

occurring in the subsurface of the earth. Therefore, execution of reservoir simulation on 

parallel computers seems be the apparently feasible way to tackle the computational 

demand of reservoir simulation. Although running reservoir simulation in parallel 

sounds extremely attractive, developing an efficient parallel reservoir simulator is far 

more challenging than developing the underlying serial reservoir simulator. For decades 

there have remained many open problems associated with high performance computing 

and reservoir simulation. 

The quest for efficient and scalable parallel reservoir simulators has been 

evolving with the advancement of high performance computing architectures. The 

mainframes of decades ago quickly gave way to workstations, clusters, and finally PCs 

as technology advanced and costs were dramatically reduced. Each of these evolutionary 

steps led to significant changes in reservoir simulators. The era of serial reservoir 

simulation was replaced by vectorized and finally parallelized simulation. An elusive 

goal of reservoir simulation has been the ability to efficiently utilize massively parallel 

processing.  

In the past the majority of effort has been spent on developing robust parallel 

linear solvers (Killough and Wheeler 1987; Cao et al. 2005; Fung and Dogru 2007). As 



 

 11 

Graphic Processing Units (GPUs) have become more and more popular in the oil 

industry (Foltinek et al. 2009; Appleyard et al. 2011; Klie et al. 2011; Liu et al. 2012; 

Bayat and Killough, 2013), it is expected that the reservoir simulation community will 

soon have a GPU accelerated linear solver commercially implemented for reservoir 

simulation.  

Massively parallel linear solver development has by no means been completed; 

however, little effort has been spent on investigating another important aspect of high 

performance simulation - load balancing. Load imbalance has become a major obstacle 

for parallel performance. The reasons that cause load imbalance in parallel reservoir 

simulation are both static and dynamic. Robust graph partitioning algorithms are capable 

of handling static load imbalance by decomposing the underlying reservoir geometry to 

distribute roughly equal load to each processor. This approach works well to distribute 

the load for parallel linear solver. Metis from the University of Minnesota is one of most 

popular tool for graph partitioning (Karypis and Kumar 1999) and has been applied in 

parallel linear solver packages and parallel reservoir simulation both commercially and 

academically (Shuttleworth et al. 2009; Zhang et al. 2001). In fully implicit black oil 

simulation, where the linear solver can often take over 90% of the total execution time, 

graph partitioning often can cure the load imbalance problem. However, this is not the 

case for compositional reservoir simulation. In fully compositional simulation using 

IMPES formulation, the time spent on equation of state computations can be more than 

70% of the total computational time. It is noted that in fully implicit compositional 

simulation, the linear solver would dominate the computation. However, IMPES 
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formulation is still often used for large-scale fully compositional model. Thus, in this 

paper, we consider the fully compositional simulation using IMPES formulation. 

Although the underlying grid is divided equally (roughly) to each processor, the loads 

determined by a static load balancer such as Metis seldom remain unchanged for the 

equation of state computations. The changing of load as simulation running - the so-

called dynamic load imbalance - is difficult to balance merely by a static load balancer.  

The reason is that each of the underlying grid blocks has an independent phase behavior 

calculation. The computational cost of the associated flash calculations in each grid 

block heavily depends on the dynamic data such as pressure, temperature, and fluid 

composition. It is well known that flash calculations can vary tremendously with time in 

each grid block. The cost can become very high when phase changes happen in a grid 

block or when the fluid mixture is near the critical point. Since the conditions that cause 

expensive flash calculations are difficult to predict a priori, any static assignment of grid 

blocks may lead to dynamic load imbalance in unpredictable manners. Removing this 

load imbalance in compositional reservoir simulation remains mostly an open problem. 

A dynamic load balancer is clearly needed to alleviate this difficulty. Admitted, dynamic 

load imbalance is very complex with sources from multiple parts. Besides the flash 

calculations mentioned above, well opening/shutting and associated hydraulics, property 

calculations and Jacobian construction, the linear solver in the Adaptive Implicit 

formulation and reporting may also bring some degree of dynamic load imbalance. 

Sherman (1992) proposed a dynamic load-balancing scheme for parallel 

compositional simulation based on the Linda coordination language. However, this 
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parallel programming model is not widely used as opposed to MPI (Massage Passing 

Interface). Killough and Anguille et al. (1995) developed an improved load-sharing and 

receiver-initiated dynamic load balancing algorithm for parallel compositional 

simulation and reported substantial improvement. Little or no research has been reported 

over the past decade in this area. In essence, to optimize the parallel performance by 

communicating information from one processor to another relies on message passing. 

The overhead, or the time involved in message passing creates extra elapsed time which 

is added to the total computational time. Thus, in principle, all load-balancing schemes 

can be treated as a compromise between the reduction of load imbalance and 

minimization of the overhead. However, this improvement is likely to degrade with 

more processors since this mechanism requires a significant amount of data exchange 

between processors. As a model is scaled to more processors, this overhead may offset 

any potential gain by a load-balancing scheme. Moreover, implementing dynamic load 

balancing requires intimate knowledge of the underlying reservoir simulator source 

code. It can be quite tricky and cumbersome to determine which variables must be 

exchanged between processors for legacy comprehensive reservoir simulators. 

In this paper, we present a novel approach to address the dynamic load imbalance 

issue in parallel compositional simulation. This new methodology over-decomposes the 

underlying reservoir model into mini-subdomains. Based on the Charm++ infrastructure, 

a bundle of mini-subdomains are assigned to the available physical processors. 

Processors treat these bundles of mini-subdomains as virtual processes or user-level 

migratable threads, which can be dynamically migrated across processors in the runtime 
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system. To our best knowledge, this is the first adaptation of domain over-decomposition 

or processor virtualization to reservoir simulation.  

Our approach can seamlessly handle static and dynamic load imbalance in a 

uniform fashion. Further more, this new approach requires minimal changes to the 

original MPI based reservoir simulator. The main contribution of this paper is to 

demonstrate that domain over-decomposition implemented as virtual processes can be 

applied to improve parallel performance of MPI based compositional reservoir 

simulations that suffer from load imbalance issues. The rest of the paper is organized as 

follows. We first present the legacy comprehensive reservoir simulator used in this study 

and the main features of Charm++ and AMPI. Next, we describe the parallelization of 

equation of state calculation using MPI and how we adapted it to exploit processor 

virtualization followed by results from our experiments. Conclusions and outlooks are 

provided at last. 

2.2 Background 

2.2.1 A Commercial Comprehensive Reservoir Simulator 

A commercial comprehensive reservoir simulator (simulator hereafter) written by 

Fortran 90 and C is applied as the test bed in this study (Dean and Lo, 1988). Based on 

fully implicit and IMPES formulations, the simulator is capable of performing black oil, 

limited compositional and fully compositional simulation for single and dual porosity 

reservoirs. It utilizes 3D radial and corner point grid system and supports multiple levels 

of local grid refinements. Wellbore parameters are treated implicitly during the 

simulation process and wells can be connected into surface networks. Geomechanics is 



 

 15 

also supported. Stress, strains, and displacements can be calculated throughout the 

simulation in a fully coupled fashion with flow calculations. The linearized equation 

system is solved by iterative solvers with preconditioning and acceleration options. In a 

word, this is a comprehensive reservoir simulator with production quality. The hope is to 

demonstrate that the technique introduced below is applicable to real-strength reservoir 

simulators. 

2.2.2 Charm++ and Processor Virtualization  

Charm++ (Kale et al. 2008) is an objective-oriented parallel programming library 

for C++/C/Fortran. It aims to improve productivity in parallel code development and 

enhance parallel scalability. Charm++ is message-driven. It does not block the 

processors while waiting for messages to be received. Based on migratable objects, 

Charm++ uses the idea of processor virtualization. In this framework, the programmer 

decomposes a domain into N subdomains to execute on P processors. In ideal case, we 

should have N >> P. In the programmer’s point of view, it is seen that the program is 

running using N subdomains. The Charm++ runtime system maps those subdomains or 

more specifically Charm++ objects to the P available processors. Figure 2.1 provides a 

schematic illustration of the basic idea of processor virtualization. The ratio of N over P 

is the so called processor virtualization ratio. The mapping is dynamic and the 

subdomains can migrate across processors during program running. This unique 

capability is utilized by the underlying intelligent Charm++ runtime system, which 

provides potential for better overlap between computation and communication as well as 

cache utilization.  
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The combination of a natural encapsulation mechanism and an intelligent 

runtime system has made Charm++ suitable for parallel code development over a range 

of computing architectures, from personal computers to large-scale parallel clusters, 

from multicore CPUs to massively-parallel GPUs. In addition, it has been applied to 

scale real-world applications to thousands of processors on several scientific and 

engineering fields, such as quantum chemistry (Bohm et al. 2008), computational 

cosmology (Jetley et al. 2008), rocket simulation (Jiao et al. 2005) and weather 

forecasting (Rodrigues et al. 2010, 2010). 

 

  

Figure 2.1 Programmer view vs. real implementation of over-decomposed objects 

!
!
!

User%level(Threads((

Processor'0'

!!
!
!

User%level(Threads(

Processor'1'

Obj A 

Obj'C'

Obj'B'

Obj'D'

Obj'A'

Obj'B'
Obj'D'

Obj'C'
Obj'E'

Programmer’s'View'

Physical'Hardware''



 

 17 

2.2.3 Adaptive MPI  

Adaptive MPI (AMPI) is an implementation of the MPI standard on top of 

Charm++ (Huang et al. 2003, 2006; Zheng et al. 2006). As abovementioned, the 

developer only sees the virtual processors while the mapping of virtual processors to 

physical processors is handled by the Charm++ runtime system. It is illustrated in 

Figure 2.2 that in AMPI the original MPI processes from a programmer’s perspective 

are embedded in a Charm++ object as user-level threads. These user-level threads are 

not only migratable between physical processors but also have very short context switch 

times. In the context of AMPI, the N MPI tasks in a MPI code are referred as Virtual 

Processors (VPs). A VP is assigned as a user level thread and a bundle of VPs share one 

physical processor. Without any programming effort, the overlap between computation 

and communication is automatically achieved by having more VPs than real physical 

processors. When one VP is blocked from communication, the Charm++ scheduler picks 

up the next VP to execute. More specifically, when some VPs of a physical processor are 

waiting for messages to be received, other VPs can continue their execution in this 

particular physical processor. As a result, performance can be improved without any 

source code change. Since smaller subdomains may fit into cache if the over-

decomposition is enough, better cache utilization is expected in this situation. Therefore, 

it is natural to see legacy MPI code will benefit substantially from AMPI and this 

potentially significant benefit comes with few catches and without major modifications 

of the original MPI code. 
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However, to utilize AMPI in practice, one must pay attention to global and static 

variables. Those variables are problematic for a multi-threaded programming model such 

as OpenMP and AMPI. In MPI, since only one thread exists in the allocated process’s 

address space, global and static variables are safe. But, if a single instance of a global or 

static variable is shared by more than one thread in the single address space, incorrect 

results are likely to be generated. In other words, VPs residing on a particular physical 

processor will access the same copy of global and static variables. If those variables are 

to be read and updated, conflicts will occur and correct results cannot be guaranteed. 

Thus, one has to privatize global and static variables. There are a few approaches for this 

privatization, which will be discussed in following sections. 

 

 

Figure 2.2 MPI “processes” are implemented as virtual processes (user-level 

threads) in AMPI (adapted from Huang et al. (2006)) 

Real Physical Processors 

MPI “processes” as 
virtual processes 

Processor 0 Processor 1 
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2.2.4 Native Load Balancing in AMPI and Charm++  

Charm++ provides a native and powerful infrastructure for load balancing. 

Charm++ is based on the idea that load behaviors from the recent past provide sound 

predication for loads in the near future. By actually measuring the load information at 

runtime, it migrates VPs from heavily loaded processors to lightly loaded processors. 

Thus, Charm++ use a measurement based load balancing technique. Several different 

load balancing policies have been made available by Zheng (2005). In addition, a new 

load balancer can be written simply by using the Charm++ API. A particular load 

balancer is selected in the command line at execution time. 

The specific statement to invoke a load balancer in AMPI is MPI_Migrate(). 

When MPI_Migrate() is called, VPs may migrate between processors, if it is determined 

that such migration will improve parallel performance. Obviously, the frequency of 

calling MPI_Migrate() is determined by the compromise between the overhead and 

performance degradation caused by load imbalance. 

2.3 Adaptation of Reservoir Simulator to AMPI  

Generally speaking, adapting an MPI program to AMPI is a simple process. But 

as explained in the previous section, one must pay attention to the global and static 

variables. Since the original simulator is serial, the first required step is to parallelize a 

portion or all of the simulator using MPI. In this section, we present the parallelization of 

a portion of the equation of state of simulator, possible ways of global and static 

variables privatization, and different load balancing schemes.   
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2.3.1 Equation of State Parallelization 

To serve as a proof of concept study, in this paper we only parallelize the 

equation of state computations which can take more than 70% of the total execution time. 

The idea of parallelization of this portion of the compositional simulator is rather 

straightforward. Since the flash calculations for each grid block are independent from 

other grid blocks, no subdomain boundary data exchange is needed. Basically, at the 

equation of state subroutine, we do the follow four steps: 

1. Divide the key input and output arrays according to the domain decomposition 

setup. We use 2-D domain decomposition, i.e. the reservoir is divided in X and Y 

directions while keeping the Z direction undivided. This domain decomposition 

setting is reasonable since in general the Z direction extent is far less than the X 

and Y directions.    

2. Let the master processor distribute necessary information to the slave processors. 

3. Each processor performs equation of state computations independently.  

4. Let the master processor gather computed information from the slave processors. 

Once the master has finish gathering, all processors then exit the equation of state 

subroutine.  

Although it seems to be an easy parallelization according to the above four steps, 

it is not the case for a comprehensive reservoir simulator. The equation of state and other 

involved code in this parallelization is about 20K lines. Moreover, the grid blocks are 

reordered inside flash calculation according to their fluid types. Table 2.1 lists the eight 

fluid types. Thus, we could not expect a big DO loop over all grid blocks, which can be 
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parallelized easily as shown in Table 2.2. N is the total number of grid blocks that are to 

be flashed. numproc is the number of requested processors. So, N_local is the number of 

grid blocks that are assigned to each available processor. Note that, to shorten the 

presentation, it is assumed that N can be divided by numproc exactly. A and A_local 

represent the arrays which are to be updated by flash calculations. A_local is allocated to 

each available processor to store information computed. A is the global array to collect 

information from each available processor. To be concise yet complete, we omit the 

actually arguments of MPI and subroutine calls. As abovementioned, since the grid 

blocks are reordered according to fluid types, we construct and parallelize a derived type 

on top of the actual equation of state routine to govern the data structure in the flash 

calculations. In the derived type, pointers are set up to trace the grid blocks to be updated 

in each subdomain. In this setting, we do not need to worry about the grid reordering 

inside of the flash calculation.  

Table 2.1 Fluid types in the flash calculation 

Fluid Type Meaning 
1 Two phase jacobian constant (won’t be updated) 
2 Two phase jacobian will be updated 
3 One phase checked by negative flash 
4 One phase checked by stability test calculation 
5 One phase not tested (was single-phase last call and do not 

have two phase neighbor)  
6 Aquifer cells 
7 Zero PV cells (for well calculation, new well and inactive)  
8 One phase cells (converged from stability test) 
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Table 2.2 Pseudo Fortran MPI code for flash calculation 

N_local = N/numproc 
! Broadcast variables and arrays to slave processors 
CALL MPI_BCAST() 
DO i = 1,N_local 
    A_local(i) = flash() 
ENDDO 
IF (myid == Master) THEN 
! put A_local computed by master to global A 
    A = A_local 
    DO i = 1,numproc-1 
        CALL MPI_RECV() 
! put A_local computed by slaves to global A 
        A = A_local 
    ENDDO 
ELSEIF (myid /= 0) THEN 
    CALL MPI_SEND() 
ENDIF 

 

Since we only parallelize a portion of the simulator, we let the master processor 

perform the rest of the simulation. Special care must be paid to places where GOTO 

statements are used such as when the newton iteration is not converged and time step 

reduction is performed. Otherwise, a deadlock condition will be likely occurring. Table 

2.3 lists a situation in which a deadlock might happen. No deadlock will happen if label 

1000 is inside the IF_Master structure. However, when label 1000 is outside of 

IF_Master and slave processors need to perform computation after this label, deadlock 

will happen if trigger is true. This is because only the master processor gets the signal to 

go to label 1000 while other slave processors are hanging there. If this situation happens, 

the program will be waiting with slave processors at label 1000 and the program will 
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stall. Since there is no OMP Flush like function in MPI to flush all the processes to have 

the same view of a variable, to fix this issue we should broadcast the triggers to all the 

processors and let all processors go to label 1000 explicitly. A quick fix for Table 2.3 is 

provided in Table 2.4.        

Table 2.3 Pseudo Fortran code that may cause deadlock 

IF_Master : IF (myid == Master) THEN  
    Perform computation 
    IF (trigger == .TURE.) THEN  
        GOTO 1000 
    ENDIF  
ENDIF IF_Master       

 

Table 2.4 Pseudo Fortran code to fix deadlock 

IF_Master : IF (myid == Master) THEN  
Perform computation 

ENDIF IF_Master  
CALL MPI_BCAST(trigger)  
IF (trigger == .TURE.) THEN  
    GOTO 1000 
ENDIF       

              

It is readily seen that the slowest processor determines the time spent in equation 

of state. If one or few processors contain grid blocks that have phase changes or are at 

critical condition, those busy processors will dominate the computation time while other 

processors are idle. It is difficult to predict which processor will be busy. One may argue 

that a processor that has wells will be busy; but such processors will not always be the 

busiest due to the processes occurring around the moving injectant-displacement front. 
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This front movement is generally unknown a priori (since predicting where the front 

will go and how long it will take is what the simulator is designed for). One may also 

argue that we can estimate where the fluid will go roughly from the permeability field, 

but decomposing a real world reservoir according to the permeability will complicate the 

coding to an even greater extent. Moreover, even we could assign more processors to 

high permeability channels; this will not help since we still do not know when the front 

arrives at a certain place a priori. The only feasible and unified approach for this issue is 

to use finer grained computation and migrate those fine-grained units when necessary in 

a smart run-time system, which Charm++ can provide.      

2.3.2 Domain Over-Decomposition  

As explained in the previous section, processor virtualization is required to 

enhance parallel performance of an existing MPI code. It is not redundant to emphasize 

again that one can just decompose the domain as if as many as processors that are 

required are available. In other words, the MPI code does not need to be changed at all in 

this aspect. For example, as shown in Figure 2.3, one just decomposes the domain as if 

there are 16 processors. But in fact, these are 16 VPs that are to be mapped to the 4 

physical processors. In Figure 2.3, the thick lines divide the physical processors while 

the thin lines separate the VPs. In this example, the processor virtualization ratio is 4. 

One should also appreciate that such over-decomposition may enhance cache utilization. 

As shown in Figure 2.5, subdomain 3 might fit in cache while subdomain 0 might not. 

Note that over-decomposition is applicable if and only if the results are independent of  
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the number of MPI tasks and one should be beware of the increase in memory usage due 

to over-decomposition. 

 

 

Figure 2.3 Domain over-decomposition (On the left, the domain is over-decomposed 

into smaller subdomains. The same grid fill pattern denotes the same physical 

processor (adapted from AMPI manual)) 

 

 

Figure 2.4 Migration of VP (adapted from AMPI manual) 
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Figure 2.5 Subdomain from over-decomposition might fit in cache (adapted from 

AMPI manual) 

 

2.3.3 Variable Privatization  

As illustrated in Figure 2.3, 2.4 VPs share one physical processor. We have 

discussed that such a scenario will cause problems if global and static variables are used. 

Thus, these variables have to be privatized. It is noted that, in Fortran, module variables, 

saved subroutine variables, and common blocks belong to this category. Fortunately, 

since we only execute the equation of state in parallel, the number of variables to be 

privatized is not significant. Table 2.5 lists the number of global, static variables and 

common blocks. Currently, there are 4 approaches to privatize global and static variables 

with different mechanisms and applicability: 
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Table 2.5 Number of variables to privatize 

Globals Static Commons 
124 4 0 

 

2.3.3.1 Manual Change  

The thought behind manual change is to pass the information those global 

variables carry as subroutine arguments, since subroutine arguments are passed on a 

stack which are not shared across threads. We could gather global variables together in a 

single derived type in Fortran 90. This derived type is allocated by each thread 

dynamically. We then set up a pointer to this derived type. The pointer is passed across 

the subroutine as an argument. This mechanism will make sure each thread owns a 

private copy of the global variables. Static variables can be handled in the same way. As 

the name suggests, this privatization requires manual changes of all of these variables, 

which can be very tedious and bug-prone if the number of global variables is significant. 

Thus, it is clearly not a good approach for a large legacy reservoir simulator. 

2.3.3.2 Source-to-source Transformation 

There is a way to do the manual change automatically. A tool called Photran by 

Zheng et al. (2011) is available to transform the source code to change global and static 

variables in objects and then pass the objects across subroutines. Photran works by 

constructing abstract syntax trees of the program. However, at the time of preparation of 

this paper, Photran is only in beta phase. In our limited experiments, this tool works well 

for simple example code but is tends to be unstable or even crash for large code. 
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Moreover, the readability of the transformed code by Photran decreases to some extent. 

Therefore, it is not recommended to apply Photran until a stable version is released.  

2.3.3.3 Automatic Global Variables Swapping  

AMPI provides a build-in compilation flag that can automatically privatize 

global variables on systems that support Executable and Linkable Format (ELF). ELF is 

now a standard for objective files in Unix-like systems. It works as it maintains a Global 

Offset Table (GOT) for global variables and switches GOT contents at thread context 

switching. It is very straightforward to apply this approach. All one need to do is to add 

the flag –swapglobals at compilation and link time, which will enforce that each VP has 

its own view of a certain global variable. It works for C/C++/Fortran and x86 and 

x86_64 platforms. However, the drawback is that it does not handle static variables and 

has a context switch overhead that grows with the number of global variables. For static 

variables, we could replace saved local variables with a module, which transforms static 

variables to global variables. Since in this study the number of global and static variables 

is not high, in this paper we apply this approach. 

2.3.3.4 Privatization Based on Thread Local Storage (TLS)  

It is easy to appreciate that when the number of global and static variables is 

significant, which is often the case for a comprehensive parallel reservoir simulator, the 

overhead caused at context switch by –swapglobals may become excessive. Thus, 

clearly automatic global variables swapping is not the silver bullet for a comprehensive 

parallel reservoir simulator. Rodrigues et al. (2010) developed a better privatization 

strategy based on TLS (Thread Local Storage). TLS is designed for thread safety.  This 
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approach works by allocating one instance of the variable per thread. To utilize TLS to 

privatize global and static variables, one just need to add C directive “__thread” before 

all global and static variables. This simple modification will make these variables have 

thread local storage duration, which means a unique instance of a particular global or 

static variable is created for each thread that uses it and is destroyed when the thread 

terminates in a multi-threaded environment. Privatization based on TLS not only has no 

context switch overhead but also can handle both global and static variables. However, 

unfortunately, only C/C++ compilers have implemented TLS at this time and there is no 

such directive in Fortran. As a workaround for Fortran program, one can write a 

GFortran patch file to modify GFortran to adopt the TLS method for global and static 

variables privatization. How to modify GFortran compiler is certainly beyond the scope 

of this paper. At the time when this paper was prepared, a patch file for GCC 4.5 is being 

developed for our future study based on (Rodrigues et al. 2010; Rodrigues 2012). This 

approach is recommended if one want to apply AMPI to a comprehensive parallel 

reservoir simulator written in Fortran.   

In summary, although we apply automatic global variable swapping for variable 

privatization, the TLS based privatization might be the only applicable strategy for a 

comprehensive parallel reservoir simulator at this time. Even if one has to have a 

modified GFortran for Fortran MPI code, this obstacle is not significant to surmount if 

one can adsorb or find expertise on compiler writing. One must keep in mind that global 

variable swapping and TLS are not supported by all platforms. For example, Blue 

Gene/P and Mac OS X support neither of them and Cray/XT only supports TLS. In fact, 
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only the first two methods are applicable for all platforms. Therefore, when a stable 

Photran is debuted, the adaptation of MPI code to AMPI might become truly trouble-free.            

2.3.4 Dynamic Load Balancer  

As stated previously, Charm++ and AMPI can migrate VPs across processors to 

balance load. As illustrated in Figure 2.4, when Processor 0 becomes overloaded while 

Processor 1 is under loaded, VP 5 will be migrated to Processor 1 if a load balancer is 

invoked. To utilize the dynamic load balancing strategy of AMPI, one only need to 

insert MPI_Migrate() calls at a certain frequency and setup the dynamic load balancer at 

compilation and runtime in the command line. In the reservoir simulator we can call 

MPI_Migrate() every nt time steps as follows: 

IF (mod(time_step, nt) == 0) CALL MPI_Migrate() 

We adapt the methodology of Rodrigues et al. (2010) to quantify imbalance by how 

much the load in the most loaded processor is above the average load. An imbalance 

threshold can also be set to trigger migrations.    

Charm++ provides several dynamic load balancers that consider computational 

and/or communication load. The selection of a specific load balancer depends on the 

application itself. If an application only has computational load and no communication 

traffic, a balancer that only takes computational load into account will be enough. 

Otherwise, a balancer based both on computational and communication loads must be 

chosen.      

Since inter-subdomain data exchange is not necessary for equation of state 

computations, we may choose dynamic load balancers that only handle computational 
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load. Two balancers are selected in this study: GreedyLB and RefineLB. GreedyLB uses 

a greedy algorithm to assign the heaviest object to the least loaded processor till a 

balance is reached. RefineLB not only moves objects from overloaded processors to 

under loaded ones but also limits the number of objects migrated. In general, RefineLB 

is useful when only a few VPs migrations are sufficient to reach balance.    

Although the case application in this paper does not need ghost cells along 

subdomain boundaries to exchange data, it is worth mentioning the dynamic load 

balancers that also take communication traffic into consideration. This kind of balancer 

is required for a general parallel reservoir simulator. The following discussion will also 

serve as a reference for our future study. The build-in balancers in this perspective are 

GreedyCommLB, RefineCommLB, RecBisectBfLB and MetisLB. GreedyCommLB 

extends GreedyLB to take the communication graph into account. RefineCommLB 

applies the same idea as RefineLB but takes communication into account. 

RecBisectBfLB recursively partition the communication graph until the number of 

partitions is equal to the number of processors. However, RecBisecBfLB does not 

explicitly guarantee that communication traffic is minimized. MetisLB uses Metis to 

partition the communication graph. The selection of these balancers is application 

dependent and heuristic. A systematic comparison between these balancers is 

recommended to understand their behavior for a particular application. It is noted that 

none of these balancers explicitly consider the spatial relationship between VPs. Thus, 

neighboring VPs might be distributed to different processors or even far away nodes in 

runtime. This is clearly not an optimal scenario since there might be communication 
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between neighboring VPs. Thus, a balancer that considering the spatial relationship 

between VPs is preferred. Rodrigues et al. (2010) developed a new balancer based on 

Hilbert curve to consider such situations.  

2.4 Example 

In this section, we provide a case study for applying the domain over-

decomposition and dynamic load balancing techniques for parallel equation of states 

computation of compositional simulation. We begin with describing the compositional 

reservoir model used in this case study and showing results of MPI execution on 64 

physical processors. Next, we study the effects of domain over-decomposition and load 

balancing on this case model. We first show the results of domain over-decomposition 

without load balancing by simply varying the processor virtualization ratio. We then 

bring the effect of load balancing by dynamically migrating VPs during simulation 

execution.  

All the simulations are performed on an IBM iDataplex cluster with Intel 8-way 

Nehalem and 12-way Westmere processors. All the cores are at 2.8 GHz and nodes are 

connected via 4X QDR infiniband. The development tools used are Intel Fortran and C 

compilers and Open MPI. 

2.4.1 Reservoir Model 

As depicted in Figure 2.6, a 3D reservoir model using a corner point grid is used 

as the test case. It contains 15 vertical layers and each layer has 256×256 grid blocks. 

Thus, it has totally 983040 grid blocks. This reservoir has about areal dimension of 

about 3760 acres and 150 ft thickness. 14 gas injectors and 14 producers are perforated 
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throughout all of the layers. Porosity is generated by sequential Gaussian simulation and 

permeability is obtained by correlation. This reservoir model contains 12 components 

except water. The properties of these components are provided in Table 2.6. In Table 

2.6, MW, TC, PC, W, ZC, VPARM are molecular weight, critical temperature, critical 

pressure, Pitzer accentric factor, critical Z-factor, and volumetric shift parameter, 

respectively. A 20-year production/injection period is simulated for this model. 

The IMPES formulation is applied in this case. The key parameters used to 

control the equation of state convergence are residual norm of flash calculations, 

maximum residual of constant K-flash, and change in K-values for stability calculations, 

which are set to be 1.0e-6, 1.0e-6, and 1.0e-8, respectively. The jacobian is set to be 

recalculated only at selected grid blocks and K-value is set such that starting values 

cannot be borrowed from neighbor grid blocks. The timing summary for this reservoir 

model in sequential execution is listed in Table 2.7. We can see that, for this case, the 

equation of state calculations consumes almost 80% of the total computational time. It is 

this part of computation that we parallelize in this study.    
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Figure 2.6 3D Reservoir model (axes unit in ft) 
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Table 2.6 Properties of Components  

Component MW TC 
(Rankine) 

PC (psi) W ZC VPARM 

CO2 44.010 547.650 1071.30 0.2250 0.2750  0.02700 
C1 16.040 343.040 667.800 0.0130 0.2900 -0.11800 
C2 30.070 549.760 707.800 0.0986 0.2850 -0.10700 
C3 44.100 665.680 616.300 0.1524 0.2770 -0.08477 
C4 58.120 765.320 550.700 0.2010 0.2740 -0.06858 
C5 72.150 845.370 488.600 0.2539 0.2690 -0.04103 

C6+ 94.200 975.920 458.680 0.2695 0.2663 -0.00076 
C8+ 116.00 1087.87 408.080 0.3328 0.2589   0.05973 
C11+ 169.50 1223.01 305.180 0.4856 0.2546   0.08719 
C15+ 232.60 1353.35 248.530 0.6436 0.2691   0.09684 
C20+ 328.00 1458.35 227.270 0.7926 0.3165  -0.06104 
C30+ 628.00 1670.24 168.570 1.0536 0.3676  -0.13829 

 

Table 2.7 Percent of time spent in each portion  
of sequential execution of the test case 

 
Portion of simulator Percent of time spent 

Linear Solver 14% 
Equation of State 79% 
Coefficient Setup 6% 

Others 1% 
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2.4.2 Performance of MPI  

As has been discussed in previous sections, MPI implementation of a parallel 

equation of state is very likely to suffer dynamic load imbalance issues. Subdomains 

with phase changes or at critical conditions will dominate the execution time. To test the 

performance of an ordinary MPI implement with static decomposition, we run the case 

reservoir model using 64 physical processors. The model is divided into 64 subdomains 

using 2D domain decomposition, i.e. 8×8 decomposition. Depicted in the left picture of 

Figure 2.7 is the gas saturation distribution of the top layer at 7300 days. The small 

squares that are separated by dash lines correspond to the decomposed subdomains. The 

saturation map is believed to be a strong indicator for processor load in the equation of 

state calculations. Shown in the right picture of Figure 2.7 is the gray-scale-coded load 

map at 7300 days for the 8×8 set of physical processors. The load scale has a range from 

0 to 1. The darker the color is the higher the load is for a particular processor. Indeed, 

there is a clear correlation between the saturation map and load map. 
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Figure 2.7 Upper: Gas saturation at 7300 days; Lower: Load map at 7300 days 
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In addition, the load distribution of physical processors does not remain 

unchanged as simulation running. We explicitly show the load map at 30, 365, 1825, 

3650, 5475 and 7300 days in Figure 2.8. To better quantitatively understand the load 

imbalance, we also provide the column plots at these time snapshots in Figure 2.9. Note 

that, the loads are normalized to the highest processor at each snapshot. Initially, at 30 

days, the dark processors correspond to the subdomains that contain wells. Other 

processors are roughly equally loaded. This is easy to be understood since at 30 days 

most of the states changes happen near the wells. The load maps become complex at 

later time snapshots. Although the load maps do seem to be similar at 1825, 3650, 5475 

and 7300 days, the imbalances and high-to-low load ratios are different. The imbalance 

is quantified by how much the load in most loaded processor is above the average load. 

The imbalances and high-to-low load ratios at these snapshots are listed in Table 2.8. It 

should be noted that, since a star topology is applied such that the master processor 

scatters data to and gathers results from all of the slave processors, the master processor 

will have significantly more message send and receives. For this reason, the load results 

are chosen to only reflect the actual equation of state computations. It can be seen from 

Table 2.8 that imbalance and high-to-low load ratio tends to increase with time. 
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Table 2.8 Imbalance and high-to-low load ratio at selected days 

Time (days) Imbalance High-to-low load ratio 
30 46% 2.08 
365 36% 2.21 
1825 48% 3.42 
3600 52% 4.45 
5475 53% 4.98 
7300 55% 5.60 
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Figure 2.8 Load map recorded at various time snapshots 
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Figure 2.9 Column plots of load at various time snapshots 
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2.4.3 Performance of Processor Virtualization  

We first evaluate the effect of domain over-decomposition or processor 

virtualization on the case model. To perform this comparison we simply vary the number 

of VPs using a fixed number of physical processors, i.e. 64 processors in this case. It is 

expected that overhead due to handling extra user-level threads and communications will 

be brought in by increasing the processor virtualization ratio. However, there may still 

be benefits due to the implicit overlap of computation and communication and better 

cache utilization. For example, in this case model, when the master user-level thread 

blocks a receiving message, other VPs can still execute on the same physical processor; 

while in ordinary MPI execution, this physical processor will be held for receiving. 

We compare the execution timings of equation of state of the case model at 7300 

days with 64, 256, 1024, 2048, 4096 virtual processors, respectively. We consider the 

elapsed time during actual equation of state computation. As it can been seen in Table 

2.9, the execution time is reduced by 19.78% with 256 VPs, 23.23% with 1024 VPs, 

24.48% with 2048 VPs, and 16.27% with 4096 VPs. It seems that there is an optimal 

number of VPs. The use of more VPs does not improve the performance further. To 

understand this behavior, we provide the column plot of the actual time of equation of 

state computation using different VPs in Figure 2.10. As we can see from Figure 2.10, 

the load imbalance pattern remains unchanged for different processor virtualization 

ratios. The reduction in computational time is believed to be the result of better cache 

utilization since the subdomain size becomes much smaller if high processor 

virtualization ratio is applied. There are a number of steps in the stability test and flash 
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calculations. Each step may require reading previous results. In the over-decomposed 

setting, the results and data of an entire subdomain during the whole process may fit into 

the cache. But, in a conventional domain decomposition setting, those data may have to 

be stored in faraway memory which will cause latency. The reduction of time in data 

scattering and gathering is the result of overlap of computation and communication 

when the master VP performs sending and receiving of messages. Thus, the observed 

effects of processor virtualization are the combination of results from better cache 

utilization and overlap of computation and communication. However, the performance 

improvement is limited by the server load imbalance in equation of state computations. 

Table 2.9 Execution time of equation of state on 64 processors 

Virtualization configuration Execution Time (s) 
No virtualization 1960.5905 

256 VPs 1572.3643 
1024 VPs 1505.1414 
2048 VPs 1480.5817 
4096 VPs 1641.8273 
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Figure 2.10 Column plots of load for different number of virtual processors 

 

2.4.4 Performance of Dynamic Load Balancing 

As revealed in last section, merely domain over-decomposition can only improve 

the performance to some extent (24.48% in this case). A dynamic load balance scheme 

must be applied for better performance enhancement. Fortunately, load balancing 

becomes much easier in the virtualized implementation of MPI, since the over-

decomposed VPs are ready to be migrated to mitigate load imbalance. Thanks to the 

particular feature of equation of state, there is only computation involved and no 

communication needed between VPs. As a result, a dynamic load balancer that only 

handles computation should be enough for this kind of application. For this reason, we 

choose GreedyLB and RefineLB to balance the load during parallel equation of state 

computation. Listed in Figure 2.11 are the timing results of each processor before and 

after implementation of the abovementioned load balancers. The reference timing 

without load balancer is shown in Figure 2.11a. Clearly, only a few of processors 

dominate the execution time, while  
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Table 2.10 Load balancing overhead 

Load balancer Overhead (s) 
GreedyLB 40.85 
RefineLB 4.21 

 

Table 2.11 Speedup improvements for 64 processors 

Configuration Speedup 
MPI 29.27 

2048 VPs 38.73 
2048 VPs + GreedyLB 62.38 

   

 

others are idle. The results of GreedyLB and RefineLB are provided in Figure 2.11b and 

Figure 2.11c, respectively. Apparently, the performances of GreedyLB and RefineLB 

are distinct. GreedyLB balances the load very well. Indeed, by design GreedyLB 

algorithm always grabs the heaviest unassigned VPs and assigns it to the currently least 

loaded physical processor until a balance is reached. In contrast, as shown in Figure 

2.11c, RefineLB only balances the load to some extent and the imbalance trend seems to 

be unchanged, since the RefineLB algorithm tries to minimize the number of VPs to be 

migrated. RefineLB is only useful when only a small number of VP migrations is 

enough to reach balance. Nevertheless, GreedyLB is an 𝑂 𝑁𝑙𝑜𝑔𝑁  algorithm, which 

implies that it is more expensive than RefineLB. This is confirmed by measuring the 

overhead cost of the load balancing scheme and VP migrations. It can be seen from 
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Table 2.10 that GreedyLB is about 10 times more expensive than RefineLB in this 

example case. 

However, these overheads become negligible when comparing with the total 

execution time. This is attributed to the smart runtime system and overlap of VP 

migrations and computations, which help to hide migration overhead. To finalize our 

experiments, we provide the speedup improvement after applying the new technique 

introduced in this paper. It can be seen from Table 2.11 that the speedup using 64 

physical processors is improved from 29.27 to 62.38. 

2.5 Conclusions  

In this paper, it is shown that load imbalance is the key performance limiter for 

parallel compositional simulation when using the IMPES formuation for reservoir 

simulation. This kind of load imbalance is often dynamic and highly unpredictable. 

Thus, a dynamic load balancing scheme must be implemented to improve parallel 

performance. However, adaptation of dynamic load balancers to an established legacy 

reservoir simulator can be challenging and requires a substantial amount of development 

time. This paper provides a promising shortcut to mitigate load imbalance yet with high 

efficiency. Built upon Charm++ and AMPI, this approach over-decomposes the 

underlying reservoir model into small chunks. A bundle of these chunks is then mapped 

to each physical processor as virtual processes or user-level threads. Based on this 

unique idea, we develop a new parallel equation of state computation capability on a 

legacy commercial comprehensive reservoir simulator. It is shown that domain over-

decomposition and GreedyLB load balancer in together help to improve the speedup 
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from 29.27 to 62.38 on 64 physical processors. This is because, by design, domain over-

decomposition not only brings overlapping between communication and computation 

and better cache utilization, but also provides a natural framework for dynamic load 

balancing. 

It should be noted that it is due to the particular feature of equation of state 

computation that GreedyLB provides excellent performance. Generally, inter-subdomain 

data exchange is not needed in this application. Thus, a balancer without considering 

communication is enough. If the abovementioned approach is applied to general 

reservoir simulations, clearly, other balancers should be implemented to considering 

inter-subdomain communication. A full adaption to a comprehensive reservoir simulator 

should be straightforward if an MPI version is in hand. The key in a successful 

implementation is the correct treatment of global and static variables. 

This technique is only adapted to the parallel equation of state in a reservoir 

simulator. The impact on the linear solver should also be investigated before full 

implementation. Based on limited experiments, it appears that domain over-

decomposition can improve Jacobi, Gauss-Seidel and CG iterative solvers’ parallel 

performances by 10%-20%. However, further research needs to be performed for more 

complex parallel preconditioners and linear solvers. 
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Figure 2.11 a: Time column plot without load balancer; b: Time column plot with 
RefineLB; c: Time column plot with GreedyLB 
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CHAPTER III 

SOLVER PRECONDITIONING USING THE COMBINATORIAL 

MULTILEVEL METHOD* 

 

The purpose of this chapter is to present the first preliminary study of the 

recently introduced Combinatorial Multilevel (CML) method for solver preconditioning 

in large-scale reservoir simulation with coupled geomechanics. The CML method is a 

variant of the popular Algebraic Multigrid (AMG) method yet with essential differences. 

The basic idea of this new approach is to construct a hierarchy of matrices by viewing 

the underlying matrix as a graph and by using the discrete geometry of the graph (Koutis 

2007; Koutis et al 2009). In this way, the CML method combines the merits of both 

geometric and algebraic multigrid methods. The resulting hybrid approach not only 

provides a simpler and faster set-up phase compared to AMG, but the method can be 

proved to exhibit strong convergence guarantees for arbitrary symmetric diagonally-

dominant matrices. In addition, the underlying theoretical soundness of the CML method 

contrasts to the heuristic AMG approach, which often can show slow convergence for 

difficult problems.  

    This new approach is investigated for both pressure and displacement preconditioners 

in the multi-stage preconditioning technique. We present results based on several known 

benchmark problems and provide a comparison of performance and complexity with the 

widespread preconditioning schemes used in large-scale reservoir simulation. An 

adaptation of CML for unsymmetric matrices is shown to exhibit excellent convergence 

properties for realistic cases.     

                                                

* Reproduced with permission from “Solver Preconditioning Using the Combinatorial 
Multilevel Method” by Wang, Y. and Killough, J. 2013. Paper SPE 163589 presented at 
the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 18-20 Feb. 
Copyright 2013 by Society of Petroleum Engineers. 
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3.1 Introduction  

Reservoir simulation, which mimics or infers the behavior of fluid flow in a 

petroleum reservoir system through the use of mathematical models, is a practice that is 

widely used in petroleum upstream development and production. Reservoir simulation 

was born as an efficient tool for reservoir engineers to better understand and manage 

assets. However, like any numerical simulation tool, reservoir simulation is inherently 

computational intensive and easily becomes inefficient if more grids, coupled physics, 

and/or complex geometry are necessary to accurately describe the complex phenomena 

occurring in the subsurface. Mathematically speaking, reservoir simulation solves a 

system of discretized partial differential equations (PDEs) which describe the underlying 

physics. Due to stability constraints, an implicit formulation is required at least for the 

pressure system. Details about the numerical analysis for choosing an implicit 

formulation (or more specifically, the backward Euler method) can be found in the 

classic literature of Aziz and Settari (1979). However, as a recent exception, Piault and 

Ding (1993) attempted a fully explicit scheme in a reservoir simulation on a massively 

parallel computer and showed acceptable results. They adopted the Dufort and Frankel 

scheme (Dufort and Frankel 1953) which is unconditionally stable but numerically 

inconsistent. This scheme is of order of 22 xt ΔΔ accuracy, which clearly implies the 

truncation error can be significant if tΔ does not approach 0 faster than xΔ . In essence, 

implicit formulation is the only unconditionally stable and consistent scheme and is 

adopted by all commercial reservoir simulators. As a result, a linear solver is inevitable 

for reservoir simulation due to this implicit formulation.   
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There are four main streams of formulations applied in reservoir simulation: 

IMPES, fully-implicit, AIM, sequential implicit. Of these, fully-implicit is the most 

robust formulation but the resulting coupled system matrix is numerically challenging 

and computationally expensive. In the fully-implicit formulation, pressure, 

saturation/mass, and/or temperature are to be solved simultaneously. The generated 

system matrix is highly non-symmetric and not positive definite, which brings great 

challenges for applying robust and efficient preconditioners and liner solvers. This 

situation is further exacerbated for large-scale models with highly heterogeneous 

coefficients and unstructured gridding. Since, generally speaking, in black-oil simulation 

the solution of linear system ( bAx = ) usually consumes up to 90% of the total 

execution time, linear solver performance enhancement means significant reservoir 

simulator speedup.  

Many problems in petroleum extraction require understanding of fluid flow and 

its interaction with formation displacements. Fluid extraction and/or injection in 

deformable a reservoir formation modifies the in-situ stress field which may cause 

surface subsidence, fault activation, wellbore instability, thermal fracturing, etc. in 

geomechanically weak formations. To understand these problems one needs to perform 

coupled flow and displacement simulation. Generally, there are three approaches to 

couple flow simulation with poroelastic calculation: explicitly coupling, iterative 

coupling and fully-implicit coupling (Gai et al. 2003; Dean et al. 2006, Lu et al. 2007). 

In the explicit coupling scheme displacements are solved at selected time-steps. In 

iterative coupling flow and displacement are solved sequentially and then iteratively 
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coupled at each time step. For fully-implicit coupling, flow and displacements are solved 

simultaneously through a full system matrix that contains flow and displacement 

contributions. Fully-implicit coupling is the most stable approach of these and can have 

second-order convergence for nonlinear iterations. However, the resulting coupled 

matrix becomes even more challenging to be solved efficiently compared with the fully-

implicit flow simulation without rock deformation.        

The quest for robust and efficient linear solvers in the fully-implicit formulation 

and fully-coupled flow and displacement is one of the main themes focused on by 

simulator developers in the petroleum industry. Matrix scaling and reordering and 

variants of the ILU method remain the state-of-the-art of most reservoir simulators. 

However, the convergence rate is not independent of problem size and can be slow for 

difficult matrices. Inspired by the different characteristics of pressure and saturation 

parts of the full system matrix, two-stage preconditioning method was developed as a 

‘divide-and-conquer’ using the CPR (Constraint Pressure Residual) approach of Wallis 

(1983, 1985). Cao et al. (2005) extended CPR to a general multi-stage preconditioning 

framework for fully implicit flow simulation. Under this framework, the full matrix 

system is decomposed into different sub-blocks to deal effectively with the specific 

algebraic characteristic of each subset of equations. For instance, the pressure part is 

mainly elliptical and nearly symmetric while the saturation part is mainly hyperbolic and 

non-symmetric. As the result, it may be more efficient to customize a preconditioning 

method for different sub-blocks. The nearly symmetric pressure sub-block is usually 

diagonal dominant with positive diagonal and non-positive off-diagonal entries. Thus, it 
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is generally positive (semi-) definite. This algebraic character enables us to apply the 

popular AMG approach for pressure preconditioning. Since the first application of the 

multigrid method in reservoir simulation by Behie and Forsyth (1983), AMG has 

become a very attractive option for the pressure solution. A number of implementations 

have been reported with promising performance. Generally, the convergence rate is 

independent of matrix size and scales linearly with matrix size. Stüben et al. (2007) 

developed efficient AMG implementations for fully-implicit and sequential implicit 

formulations. Klie et al. (2007) designed deflation AMG preconditioners for highly ill-

conditioned reservoir simulation problems. The elliptic displacement sub-block resulted 

from coupled flow and geomechanics modeling is symmetric positive (semi-) definite, 

which makes multigrid applicable. White and Borja (2011) applied AMG as sub-

preconditioner for fully coupled flow and geomechanics. Alpak and Wheeler (2012) 

implemented a supercoarsening multigrid solver for poroelasticity in 3D coupled flow 

and geomechanical modeling.              

However, AMG is based on heuristics, especially for the classic Ruge-Stüben 

AMG (Ruge and Stüben 1987). Although it often exhibits impressive performance in 

practice, it does not offer guarantees on the speed of convergence especially for 

challenging matrices. In this chapter, a recently developed Combinatorial Multilevel 

(CML) method (Koutis et al. 2007) is introduced to reservoir simulation problems. CML 

has provable convergence properties and sound theoretical machinery. It not only offers 

convergence guarantees for SDD (Symmetric Diagonally Dominant) matrices with 
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arbitrary weights, but also has lower grid, operator and computational complexities 

comparing with other variants of AMG methods.  

To our best knowledge, this is the first implementation of CML in reservoir 

simulation with coupled geomechanics. The contribution of this paper is that it adapts 

CML into the multistage preconditioning solution technique and provides performance 

comparisons with other popular preconditioners using challenging benchmarks. The 

paper is organized as follows. First, we briefly describe the multistage precondition 

framework and discuss the applicability of CML in this framework. Second, we present 

the CML algorithm. Third, we show comparisons using several case experiments. 

Finally, the conclusions and outlook are provided.  

For the example cases CML results are compared with ILU(0) and two popular 

variants of AMG, Ruge-Stüben AMG and aggregation-based AMG (Notay 2010, 2012; 

Napov and Notay 2012). We use a Matlab/C implementation of CML (Koutis et al. 2009) 

in a comprehensive reservoir simulator. To compare with aggregation-based AMG, we 

choose the AGMG package (v3.2) (Notay 2012). For Ruge-Stüben AMG (RS_AMG 

hereafter), we use an implementation that is available as part of the PyAMG package 

(Bell et al. 2011). For all of the cases, the convergence criterion is set to 

60.1 −<− bAxb . All of the experiments were performed on a 64-bit Mac OS X 10.7 

system with a 2.3 GHz dual-core Intel Core i5 processor and 8 GB DDR3 memory.               
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3.2 Solution Technique – Multistage Preconditioning 

The multistage preconditioning framework was introduced to fully-implicit 

reservoir simulation by Cao et al. (2005). To keep the presentation concise, we describe 

the key algorithmic steps of two-stage preconditioning. The extension to multistage is 

straightforward. To solve the following linear system  

bAx =  

where A is the coupled system matrix that contains pressure and saturation sub-blocks, 

we perform the following steps: 

1. Map total residual to the constraint decoupled pressure residual, Pr .  Several 

possible mappings are available for this stage, for example, an IMPES-like 

decoupling or a simple algebraic decoupling. 

2. Solve the decoupled pressure system using a linear solver of selection to obtain

PPP rAx 1~−= . This is the first-stage preconditioning. 

3. Update the total residual updatedr using newly computed pressure Px , 

Pupdated AWxrr −= .W is a mapping matrix to map  to the total solution vector.   

4. Solve the fully coupled system using a selected linear solver to obtain

Pupdated WxrMx += −1 .  

The 4 steps are repeated until convergence or stopping criterion is reached. Note 

that, in step 2, a preconditioned linear solver is applied to solve the decoupled pressure 

system. 1−M in step 4 acts as the second stage preconditioner. As a result, a nested 

iteration is formed such that a pressure sub-block is solved at the inter iteration while 

Px
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1−M acts as a global smoother at the outer iteration. In practice, ILU, Gauss-Sediel, or 

block SOR is often an effective choice of 1−M . But these traditional preconditioners 

might not work well with the pressure sub-block that is mainly elliptic and cannot scale 

with the matrix size. Stüben et al. (2007) discussed the algebraic properties of the 

decoupled pressure sub-block and concluded that AMG is a favorable choice of 

preconditioner.      

It is natural to appreciate that the multistage preconditioning methodology can 

also be applied to coupled flow and geomechanics simulation. We provide here a 

solution strategy that merges IMPES and fully coupled flow and poroelastic calculations. 

Indeed, the coupling between flow and poroelastic calculations is through pressure only. 

In this strategy, pressure and poroelastic calculations are coupled via GCR acceleration 

(Eisenstat et al. 1983).  To solve 

bAx =  

where A is now the full system containing pressure and displacement sub-blocks, we 

perform the following steps:  

1. Map total residual to the constraint-decoupled pressure residual, Pr . 

2. Solve the decoupled pressure system using a linear solver of choice to obtain 

PPP rAx 1~−= . This is the first stage preconditioning.  

3. Update displacement residual Dr using newly computed pressure solution Px . 

4. Solve the displacement system using a selected linear solver to obtain DDD rAx 1~−= . 

This is the second stage preconditioning.  
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5. Map the constraint solution to the total estimate of pressure vector. 

6. Update increment residual vector. 

7. Make the increment residual vector orthogonal to previous increment direction. 

8. Calculate step size. 

9. Update solution and residual vectors. 

The 9 steps are repeated until convergence or stopping criterion is reached. Using 

this approach a nested iteration is formed. There are two inner iterations for pressure and 

displacement. The outer iteration couples flow and displacement using GCR. AMG has 

been implemented as a sub-preconditioner for the mainly elliptic pressure sub-block and 

elliptic displacement sub-block. In the abovementioned places where AMG has been 

implemented, we now replace the solver with CML. The algebraic characteristics of both 

the pressure and displacement matrices should favor CML solution. In the following 

section, we will briefly describe the CML method.  

3.3 The Combinatorial Multilevel Method 

Before describing the algorithm of CML, we first show two examples in which 

aggregation based and classical AMG have convergence troubles. The first matrix comes 

from a maximum flow in network problem (Livne 2012). The resulting matrix is highly 

ill-conditioned with condition number about 1019. Its sparse matrix plot is provided in 

Figure 3.1. Note that all the sparse matrix plots in the paper are generated using the 

CSPY tool of CSparse package (Davis 2006). Zero entries are white. Entries with tiny 

absolute value are light orange and entries with large magnitude are black. In the 

midrange, it ranges from light green to deep blue.    
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Figure 3.1 Sparse matrix plot of the first example 

Table 3.1 Number of CG iterations of the first example 

Method Iterations 
CML 28 
AGMG   N/A 
RS_AMG   N/A 
ILU(0)    2726 

 

The iteration counts of the CG accelerator are listed in Table 3.1. The relative 

residual reduction is plotted in Figure 3.2. N/A denotes AGMG and RS_AMG do not 

converge in 10000 iterations. Clearly, it can be seen that CML can readily solve this 

problem as opposed to AGMG and RS_AMG. The reason for this is that unlike AGMG 

and RS_AMG, CML is not limited by indefinite matrices.  

 



 

 59 

 

Figure 3.2 Relative residual reduction of the first example 

 

The second example is extracted from a matrix of a reservoir simulation 

application (Beckner et al. 2006; Diyankov et al. 2007). The original matrix is highly 

unsymmetric and describes a coupled system with more than one unknown per 

gridblock. We convert the matrix to a symmetric matrix by extracting a connected graph 

of the original matrix. The resultant matrix is SPD. Its sparse plot is provided in Figure 

3.3. As listed in Table 3.2 and plotted in Figure 3.4, for this SPD matrix, CML shows 

the fastest convergence while AGMG exhibits convergence difficulties.     
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Figure 3.3 Sparse matrix plot of the second example 

Table 3.2 Number of CG iterations of the second example 

Method Iterations 
CML 18 
AGMG 634 
RS_AMG 97 
ILU(0) 1187 

 

Figure 3.4 Relative residual reduction of the second example 
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The above excellent performance of CML can be attributed to its provable 

convergence properties and sound theoretical machinery for SDD matrices. In this 

section, we describe the underlying principles of CML. As its name suggested, CML is 

inspired by the popular multigrid algorithems, yet with two significantly different 

distinguishing features. CML features a uniquely different coarsening strategy that is 

faster than various AMG approaches and is easier to implement. The second feature is 

that CML is a truly black-box solver while AMG has several algorithmic input options 

that may be crucial for convergence, especially for the classic AMG (for instance, the 

strength parameter). Note that aggregation-based AMG has a much better black-box 

feature than classic AMG. Although in practice the time spent in the set-up phase is 

generally negligible compared to the iteration phase, such timing can reflect the 

efficiency of the hierarchy construction and can also suggest an easy implementation. 

We focus on describing the two-level approach. Extension to multilevel is 

straightforward. To keep the presentation concise, we simplify the algebra and only 

present the key ingredients of CML. Algorithmic details with proofs can be found in 

Koutis (2007) and Koutis et al. (2009).      

To provide a quick sense of CML and how it is related to the multigrid approach, 

Table 3.3 lists the two-level CML algorithm to solve bAx = , where A is a laplacian 

matrix. It should be noted that any SDD matrix could be converted to laplacian with 

lightweight transformation (Gremban 1996). When there are positive off-diagonal 

entries, we generally can merge the positive off-diagonal entries to the diagonal. For 
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reservoir simulation, the decoupled pressure matrix sometime has positive off-diagonal 

entries though the number of rows having positive off-diagonal entries is small 

comparing with the matrix dimension. It can be seen that this algorithm resembles the 

simple form of the two-level method. In practice, we need to implement this algorithm 

by call it recursively. Provided in Table 3.4 is the popular V-cycle multilevel approach. 

At this point, we haven’t described how CML construct the hierarchy of coarse matrices. 

It is the constructed hierarchy of matrices with the associated restriction matrices that 

distinguishes CML with other variants of AMG.  

Table 3.3 Two-level CML algorithm 

Two-level CML 
Input: laplacian A , vectorb , current solution kx mn× restriction matrixR  
Output: Updated solution 1+kx  
 
1. // Jacobi pre-smoothing  
xpresmoothed
k = I −D−1A( ) xk +D−1b ; 

2. // Restriction  
rk = b− Axpresmoothed

k ; 

rcoarse
k = RTrk ; 

3. // Solve using coarse level 
ARRA T

coarse = ; 

xcoarse = Acoarse
−1 rcoarse

k ; 
4. // Correction  
xk+1 = xpresmoothed

k + Rxcoarse ; 
5. // Jacobi smoothing 
xpostsmoothed
k+1 = I −D−1A( ) xk+1 + b  
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Table 3.4 V-cycle CML algorithm 

V-cycle CML 
Procedure CML(level, Ah, xh, bh) 
if level = coarsest then 
    solve coarsest directly 
else 

1. //Jacobi smoothing 
xpresmoothed
k = I −D−1A( ) xk +D−1b  

2. // Restriction 
rk = b− Axpresmoothed

k  

rcoarse
k = RTrk  

3. call CML(level-1,AH,vH,fH) 

4. // Correction 

   x
k+1 = xpresmoothed

k + Rxcoarse ; 
    5. // Jacobi smoothing 

xpostsmoothed
k+1 = I −D−1A( ) xk+1 + b  

endif 
endprocedure 

 

 

Before providing the key ingredient of the construction of restriction matrix, let’s 

first introduce a few definitions. It should be noted, CML is developed based on the 

laplacian matrix and each laplacian is associated with a corresponding graph. We build 

the restriction matrix by exploring the geometric properties of the underlying graph. This 

is reason why CML is said to bring geometric information into the algebraic operations. 

The following description of the construction of the restriction is based on (Koutis et al. 

2011). For a laplacian matrix A, its corresponding graph is denoted as G. The total 

weight incident to node v in G is defined as  
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tw v( ) = w u,v( )
u∈N v( )
∑  

We then define the weighted degree of a node v in G as 

wd v( ) =
tw v( )

maxu∈N v( )w u,v( )
 

The degree of a node v in G is the number of neighbor nodes that are adjacent to v. w(u,v) 

is the weight connecting u and v in G. The average weighted degree of G is  

awd G( ) = 1
n( ) wd v( )

v∈V
∑  

We can decompose the graph into disjoint cluster Vi using the Decompose-Graph 

algorithm provided in Table 3.5. The first step is to mark nodes v in G if 

wd v( ) >α ⋅awd A( ) . α is a constant and set to be larger than 4. We group the marked nodes 

to form a set called W. The nodes inside W are then relabeled as w. Apparently, W ⊆V . 

In the second step, we remove some of the edges for each v ∈V  by only keeping the 

incident edge with the largest weight. As a result, we get a set F.  In the third step, we 

search the nodes w in set W whose total incident weight is smaller than twA w( ) awd A( ) . 

In the forth step, we remove the edges in F that are contributed by w found in Step 3. At 

the last step, we then construct disjoint clusters Vi from F.  
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Table 3.5 Decompose-Graph algorithm 

Algorithm: Decompose-Graph 
Input: Graph A = (V, E, w) 
Output: Disjoint Clusters Vi 

1. Find a set of nodes, W, such that  
wd v( ) >α ⋅awd A( )  
α is a constant and >4 

2. Construct F ⊂ A by keeping the incident edge with the largest weight for each 
node v ∈V  

3. Find nodes w ∈W such that the total weight incident to node w is smaller than 
twA w( ) awd A( )  

4. In F, remove the edges contributed by w found in Step 3 
5. Construct disjoint clusters Vi from F  

 
 

 Using the Decompose-Graph algorithm, we can partition a graph G with n 

vertices into m disjoint clusters Vi ( ). The restriction matrix R, which is of size

mn× , is constructed as 1, =jiR if vertex i is in cluster j and 0, =jiR if vertex i is not in 

cluster j.  

In principle, the basic idea of this new approach is to construct a hierarchy of 

matrices by viewing the underlying matrix as a graph and using the discrete geometry of 

the graph. In this way, the CML method combines the merits of both geometric and 

algebraic multigrid methods, which provide strong convergence guarantees for SDD 

matrices.             

3.4 Case Experiments 

As it can be seen from the previous section, the core of the CML method is built 

for SDD matrices with general weights. In other words, theoretically, it only guarantees 

i =1,,m
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convergence for this class of matrices. In practice, we extend CML to also handle the 

nearly symmetric pressure sub-block matrix that is derived from black-oil simulation. In 

the case experiments, we first test on an incompressible system using the SPE 10th 

comparative project model (Christie and Blunt 2001) whose resulting pressure sub-block 

matrices are SDD and not indefinite. For this case, we provide the comparison of 

performance and complexity of CML, AGMG, RS_AMG and ILU(0). Next, based also 

on the SPE 10th comparative project model, we perform an experiment using a black-oil 

system that generates a nearly-symmetric pressure sub-block matrix. In addition, we also 

provide tests on a series of matrices from unstructured gridding (Beckner et al. 2006; 

Diyankov et al. 2007). Finally, we test the performance of these methods on a finite 

element displacement sub-block matrix using a test instance from the University of 

Florida sparse matrix collection (Davis 1994). Since the time spent in the set-up phases 

of these preconditioners are negligible comparing to the iteration phases, the number of 

iterations of a chosen accelerator is a strong indicator of the performance of the respect 

preconditioner. We also introduce a notation of iteration cost by multiplying iteration 

counts by computational complexity to quantify the effective work consumed by each 

preconditioner.        

3.4.1 Incompressible Oil-water System 

We build a 5-spot SPE 10 problem by defining one water injector at the center 

and four producers at the four corners. The compressibility of oil, water and rock is 

neglected to make an incompressible system. Note that the four preconditioners are 

written using different programming languages with unknown code optimization levels. 



 

 67 

We thus choose not to compare the elapsed time. Since the number of iterations taken to 

converge is strongly correlated to the time, we use the number of iterations as a more fair 

comparison criterion. Listed in Table 3.6 are the number of iterations taken by CML, 

AGMA, RS_AMG, and ILU(0). CG is used as the accelerator. Obviously, the three 

variants of AMG outperform ILU(0) by orders of magnitude. More importantly, CML is 

clearly the winner over AGMG and RS_AMG. The relative residual reductions of the 

full SPE 10 model (85 layers) are plotted in Figure 3.6. It can be seen from Figure 3.6 

that, the relative residual of CML decreases linearly in log scale while AGMG and 

RS_AMG deviate from log linear reduction to some extent. It is worth mentioning that 

there are a few algorithm knobs that can affect the performance of RS_AMG 

dramatically, such as the method used to determine the strength of connection between 

unknowns of the underlying matrix. A careless choice may even destroy the convergence 

of RS_AMG.     

Table 3.6 Number of Iterations for incompressible oil-water system 

Method Number of Iterations 
CML 28 

AGMG 43 
RS_AMG 59 

ILU(0) 2726 
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Figure 3.5 Relative residual reduction for the incompressible oil-water system 

 

As abovementioned, aggregation-based and classic AMG can scale linearly with 

matrix size. To compare the scalability of CML, AGMG and RS_AMG, we perform 

experiments by adding the layers of the SPE 10 model. To test how these methods scale 

with matrix size, we record elapsed time of each method and compare the normalized 

time that is taken to be the time taken by the multi-layer model divided by the time taken 

by a single layer model for each method respectively. The comparison results are shown 

in Figure 3.6. Since ILU(0) scales badly with matrix size, the plots in Figure 3.6 are cut 

to better shown the differences among CML, AGMG and RS_AMG. It can be seen from 

Figure 3.6 that CML scales linearly as matrix size. Moreover, some supper linear 

scalability is exhibited, as the normalized time of 85 layers is 81.83. Neither AGMG nor 

RS_AMG shows strict linear scalability. In addition, for AGMG and RS_AMG the 

deviation from linear scalability seems to be enlarged when passing layer 35 (transition 
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from non-fluvial Tarbert formation to channelized Upper Ness formation). This is 

believed to be attributable to the significant weight change of the underlying matrix 

graph. In contrast, thanks to the proved ability to handle general weights, CML is shown 

to be insensitive to this change.  

 

Figure 3.6 Normalized time vs. matrix size 

 

To make the comparison complete, complexities of these methods should be 

analyzed. Although these variants of multilevel preconditioners significantly enhance the 

convergence rate, they require extra cost in each iteration compared to ILU(0). We first 

provide the grid complexity and operator complexity of the three multilevel methods 

(Figure 3.7, Figure 3.8). Grid complexity is defined as the total number of grid points of 
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all levels divided by the number of original fine grid points. Operator complexity is 

similarly defined as the total number of nonzero entries of all levels divided by the 

number of nonzero entries of original fine grid. Clearly, smaller grid and operator 

complexities are favored. As it can be seen from Figure 3.7 and Figure 3.8, CML 

preserves the smallest grid and operator complexities among the three approaches. In 

addition, the grid and operator complexities of AGMG and RS_AMG show variations as 

matrix dimension increases while the variations are almost flat for CML. RS_AMG has 

the worst grid and operator complexities. RS_AMG applies a heuristic approach to 

mimic the grid coarsening of geometric multigrid using the connection strengths of 

matrix entries, while CML and AGMG use an agglomerative clustering technique. Since 

the number of nonzero entries determines the number of floating point operations in 

preconditioning, the computational complexity is directly related to grid and operator 

complexity.      

Figure 3.9 shows the estimated computational complexity of CML, AGMG, 

RS_AMG, and ILU(0). Computational complexity is defined as the number of floating 

point operations a preconditioner consumes per iteration (normalized by the number of 

nonzero entries of the original fine matrix).  As expected, ILU(0) has the lowest  
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Figure 3.7 Grid complexity 

 

 

Figure 3.8 Operator complexity 
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Figure 3.9 Computational complexity 

Table 3.7 Iteration costs for the incompressible oil-water system 

Method Iter cost 
CML 123.39 
AGMG 252.41 
RS_AMG 568.76 
ILU(0)     5452.0 

 

 

 

 

 

 

 

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

11	
  

13200	
   213200	
   413200	
   613200	
   813200	
   1013200	
   1213200	
  

Co
m
pu

ta
%o

na
l	
  c
om

pl
ex
ity

	
  

Model	
  dimension	
  

CML	
   AGMG	
   RS_AMG	
   ILU(0)	
  



 

 73 

computational complexity among the 4 methods. The computational complexity of CML 

is lower than AGMG except when the grid dimension is smaller than about 100,000. 

RS_AMG has the most expensive computational complexity. Since the computational 

complexity is the extra work per iteration, we introduce the effective iteration counts as 

the performance indicator. The iteration costs of the 85-layer model are listed in Table 

3.7. It can be seen that, the advantage of CML over AGMG and RS_AMG is further 

increased when these factors are taken into account.       

3.4.2 Black-oil System 

Since the pressure sub-block matrix is generally nearly symmetric, it is more 

interesting to test the performance of CML on this class of matrices. We extend the 

incompressible system to a black-oil system. Watts (1981) proposed an approach to 

build a symmetric approximation of the resulting nearly symmetric pressure matrix. He 

then reformulated the solution process by adding an outer iteration such that (to solve

bAx = ):  

( )

end
Axbr

xxx
rAx

while
Axbr

k

kk
S

k

;    
;    

;    
convergednot  

1

1

1

+

+

−

−=
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where SA is the symmetric approximation of A . Results of Watts’ work indicated that 2 

or 3 iterations is generally enough for convergence. The original work was attempting to 

use the conjugate gradient method as the accelerator for the linear solver. With the 
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development of non-symmetric accelerators such as GMRES or BICGSTAB a few years 

later (Saad and Schultz 1986; Van der Vorst 1992), the requirement for matrix symmetry 

was eliminated. We instead build a hierarchy of matrices using SA and use this hierarchy 

as a preconditioner for GMRES. The hope is that the slight non-symmetry does not 

change much of the spectrum of A . Moreover, we attempt to directly build a 

preconditioner using the nearly symmetric with CML. Similarly, we compare the 

convergence of CML, AGMG, RS_AMG and ILU(0) using full SPE 10 model. Table 

3.8 lists the iteration counts and iteration costs of each method. Figure 3.10 provides the 

relative residual reduction history. CML_unsymm denotes that we apply CML directly 

to Awhile CML_symm means we apply CML to SA . GMRES(10) is applied as the 

accelerator. CML still outperform AGMG, RS_AMG and ILU(0). But surprisingly, 

CML_unsymm has the best performance. Its residual tends more to decrease log linearly 

than others. The mathematical justification could not be provided at this point. A 

hypothesis of CML_unsymm’s excellent performance is that the nearly symmetric is 

still (semi-) positive definite and structure pattern of A is symmetric. In addition, support 

theory for preconditioning, which is the foundation of CML, might be able to be 

extended to more general matrices. Boman and Hendrickson (2003) discussed the 

extension of support theory to general matrices and Huang (2012) generalized support 

theory for preconditioning to non-symmetric matrices. Understanding of the 

performance of CML on nearly symmetric matrices and the development of a multilevel 

method based on support theory for slightly non-symmetric matrices clearly requires 

further research.  

A

A
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Table 3.8 Number of iterations and costs for the black oil system 

Method Number of iterations Iter cost 
CML 18 77.22 

AGMG 28 106.40 
RS_AMG 42 455.70 

ILU(0) 539 1078.0 
 

 

Figure 3.11 Relative residual reduction for the black oil system 

 

In addition, compared to the incompressible system, the performance of these 

non-symmetric preconditioners seems to become better in this black-oil case. This can 

be understood by realizing that the underlying matrices become strictly diagonal 

dominant due to the effect of compressibility.     

To assess the applicability of the solvers in unstructured reservoir simulation, we 

perform further experiments using a series of matrices from unstructured reservoir 
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models (Beckner et al. 2006; Diyankov et al. 2007). Unfortunately, there is no publicly 

available information of these models except the system matrices alone. We can only 

infer the underlying information by viewing the matrices. To apply CML, AGMG and 

RS_AMG, we extract the nearly symmetric pressure-like matrices since the original 

matrices appear to be from coupled systems. Figure 3.11 lists the sparse matrix plots of 

the extracted matrices. Clearly, these were derived from unstructured gridding. Table 

3.9 shows the performance of the various solvers. It can be seen from Table 3.9 that 

CML performs better for larger matrices (SBO-3). For small-sized matrices, it seems 

that CML is not as efficient as AGMG and is even worse than ILU(0) for SEO-1, CI-1 

and CIT-1. For SBO-4 and CI-1, the iteration counts of CML and AGMG are close. The 

reason why CML has worse efficiency than AGMG is that the computational complexity 

of CML is about two times higher than AGMG. As we have seen in Figure 3.10, the 

computational complexity of AGMG is lower than CML when the matrix dimension is 

small and the computational complexity of CML is flat as the matrix dimension 

increases. This also implies that CML tends to perform better for large-scale matrices. It 

should be noted that for the 6 test instances, CML is applied directly to the slightly 

unsymmetric matrices. Hence, these results also suggest that CML is applicable for this 

type problem making it a promising alternative method for large-scale flow simulation.           
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             SBO-1                         SBO-3                                            SBO-4  

             SEO-1                                   CI-1                                                   CIT-1 

Figure 3.12 Sparse matrix plot for the unstructured example 
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Table 3.9 Number of iterations and costs for the unstructured example 

 
Size (unknown#, 

nonzero#) 

CML AGMG RS_AMG ILU(0) 
# of 
Iter 

Iter 
cost 

# of 
Iter 

Iter 
cost 

# of 
Iter 

Iter 
cost 

# of 
Iter 

Iter 
cost 

SBO-1   (21692, 144986) 14 60.20 24 78.96 48 350.4 81 162 

SBO-3 (2165051,1849317) 14 56.20 40 136.9 49 401.3 326 652 

SBO-4   (61956, 486010) 28 114.2   25 67.50 68 685.4 175 350 

SEO-1   (21498, 185700) 10 28.40 6 9.720 4 35.44 6 12 

CI-1   (13500, 88860) 17 65.96 13 16.25 5 52.75 11 22 

CIT-1    (4359, 28041) 26 112.1 24 85.44 18 144.7 32 64 
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3.4.3 Displacement Computation in Coupled Flow and Geomechanics  

The underlying matrix for displacement computation is symmetric. Hence, we 

can directly apply CML as preconditioner if the displacement matrix is diagonal 

dominant. If diagonal dominance cannot be preserved, neither CML nor AMG 

guarantees convergence. Since there is no well-documented benchmark problem for 

coupled flow and geomechanics, we instead test directly on a benchmark matrix from 

the University of Florida sparse matrix collection (Davis 1994). The test case comes 

from a coupled flow and geomechanical study of CO2 sequestration in a depleted gas 

reservoir (Ferronato et al. 2010).         

The 3D view of the depleted gas reservoir and its 2D planar view are shown in 

Figure 3.12. The finite element discretization has about 250,000 nodes and more than 

1,250,000 elements. A number of local and regional faults exist in this reservoir, which 

is shown as solid line the Figure 3.12. The data results from the application of 

commercial reservoir simulator for flow simulation while the study the fault activation 

and ground deformation is derived from a geomechanical simulation. The resulting 

sparse matrix is plotted in Figure 3.13. Note that it has been reordered by the reverse 

Cuthill-McKee (RCM) algorithm.      

The iteration counts and costs are listed in Table 3.10 and iteration reduction 

histories are plotted in Figure 3.14. Obviously, CML is again the winner among the four 

approaches. In addition, similar to the incompressible system case, the residual reduction 

of CML decreases log linearly. For this case, AGMG exhibits a poor performance and is 

even worse than the plain ILU(0).   
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Figure 3.12 3D (upper) and 2D (lower) view of the depleted gas reservoir for CO2 

sequestration (From Ferronato et al. 2010) 
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Figure 3.13 Sparse matrix plot of displacement matrix 

 

 

Figure 3.14 Relative residual reduction for the displacement example 
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Table 3.10 Number of iterations and costs for the displacement example 

Method Number of iterations Iter cost 
CML 26 78.52 

AGMG 243 634.23 
RS_AMG 75 318.75 

ILU(0) 121 242.00 
 

3.5 Conclusions  

In summary, this paper introduces a new multilevel preconditioner, CML, to 

reservoir simulation and coupled geomechanics. CML is rooted in support theory and 

Steiner preconditioner and is integrated with the popular multilevel approach. The 

resulting algorithm has a unique matrix hierarchy building machine that tends to bring 

geometry information back into the algebraic operations thus introduces proven strong 

convergence guarantees for SDD matrices with general weights.  

We implement CML into the multistage preconditioning framework for reservoir 

simulation and coupled geomechanics. Specifically, CML is applied for pressure and 

poroelastic displacement preconditioning. We perform experiments on a series of 

examples and compare the performance of CML with AGMG, RS_AMG, and ILU(0). 

From the results, we have the following findings:  

1. CML has better scalability than AGMG and RS_AMG. Through the 

incompressible system example, we show only CML can scale strictly linearly 

using the SPE 10 model.  

2. CML has lower grid and operator complexity than AGMG and RS_AMG, which 

reveals it has better hierarchy building machinery.  
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3. Although without theoretical justification yet, it is shown that CML can be 

directly applied to nearly symmetric pressure-like matrices. Its performance is 

superior to AGMG and RS_AMG for large-scale matrices. Handling nearly 

symmetric matrices robustly and efficiently is a prerequisite for pressure 

preconditioning in reservoir simulation application. CML is shown to be capable 

in this aspect through our experiments. 

This preliminary study shows CML is a promising alternative for pressure and 

displacement preconditioning in reservoir simulation and coupled geomechanics, 

especially for large-scale models. A relative unpleasant aspect of CML is, however, the 

theoretical support for nearly symmetric matrices is not available yet. Although the 

current algorithm is shown to work with pressure-like matrices in reservoir simulation 

and has better performance than AGMG and RS_AMG for large models, we need to 

justify or develop new algorithms based on CML. Indeed, one of the purposes of this 

paper is to bring attention to this new way of pressure and displacement preconditioning 

and to serve as an introduction for further research in this area.        
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CHAPTER IV 

COMPOSITIONAL MODELING OF TIGHT OIL USING DYNAMIC 

NANOPORE PROPERTIES* 

 

A typical tight oil reservoir such as the Bakken has matrix pore sizes ranging 

from 10 nm to 50 nm. At such small scales the confined hydrocarbon phase behavior 

deviates from bulk measurements due to the effect of capillary pressure. In addition, 

compaction of pore space can bring about order of magnitude changes for tight oil 

formation properties during pressure depletion further exacerbating these deviations. 

Without considering these facts a conventional reservoir simulator will likely not be able 

to explain the inconsistent produced GOR observed in the field compared to simulated 

results. The effect of these inaccuracies on ultimate recovery estimation can be 

devastating to the underlying economics.  

This chapter presents a compositional tight oil simulator that rigorously models 

pressure dependent nanopore-impacted rock and fluid properties, such as suppression of 

bubble point pressure, decrease of liquid density, and reduction of oil viscosity as well as 

their interactions with pore space compaction. The cubic Peng-Robinson equation of 

state is used for phase behavior calculations. Capillary pressure is evaluated by standard 

Leverett J-function for porous media. Modifications to the stability test and two-phase 

                                                

* Reproduced with permission from “Compositional Modeling of Tight Oil Using 
Dynamic Nanopore Properties” by Wang, Y., Yan, B., Killough, J. 2013. Paper SPE 
166267 presented at the SPE Annual Technical Conference and Exhibition. New 
Orleans, LA, USA, 30 Sep - 2 Oct. Copyright 2013 by Society of Petroleum Engineers. 
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split flash calculation algorithms are provided to consider the capillarity effect on vapor-

liquid equilibrium.  

The simulator can capture the pressure-dependent impact of the nanopore 

structure on rock and fluid properties. As a result, the problem of inconsistent GOR is 

resolved and the history matching process is greatly facilitated. It is shown that inclusion 

of these enhanced physics in the simulation will lead to significant improvements in field 

operation decision making and greatly enhance the reliability of recovery predictions. 

4.1 Introduction  

The recent advances in massive hydraulic fracturing techniques have enabled the 

oil industry to economically extract hydrocarbon from ultra-tight, unconventional 

resources, such as shale gas, liquid rich shale and tight oil. The success in North 

America has stimulated the development of unconventional plays worldwide. For 

example, a marine shale play in southern China has showed large potential and attracted 

great attention (Wei et al. 2012; 2013a, b). However, despite the great success and 

potential, the understanding of fluid flow mechanism in shale and properties in confined 

pore space is still poor. The flow mechanism in the shale matrix is complicated by 

organic and inorganic portions of the matrix with distinct wettabilities. Yan et al. (2013 

a, b, c, d) proposed a micro-model to model single-phase gas and two-phase gas-water 

flow in shale matrix block by considering different flow mechanisms in organic and 

inorganic nanopores and upscaled the single-phase gas flow to well-scale modeling via 

the apparent permeability approach. On the other hand, the fluid properties in the 

confined nanopore space deviate from the corresponding bulk measurements in which 
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zero vapor-liquid interface curvature is assumed. This assumption is generally held when 

the vapor-liquid equilibrium takes in place in PVT cells. But, when the fluid is confined 

into pore spaces of nano-size, the significant interfacial curvature may cause a large 

capillary pressure difference between liquid and vapor phases. The effect of capillary 

pressure on vapor-liquid equilibrium is not new to the oil industry. A number of 

researchers have conducted both experimental and theoretical investigations with general 

conclusions that capillarity effect on vapor-liquid equilibrium is negligible for 

conventional reservoirs (Leverett 1941; Sigmund et al. 1973, 1982; Shapiro and Stenby 

1997; Shaprio et al. 2000). Perhaps due to this reason, essentially all the current 

commercial simulators assume no pressure difference between vapor and liquid phases 

during flash calculations. 

However, ignoring capillarity in vapor-liquid equilibrium might not be a valid 

assumption for unconventional reservoirs. A typical tight oil reservoir such as the 

Bakken has matrix pore size ranging from 10 nm to 50 nm. At such small scales, the 

confined hydrocarbon phase behavior is believed to deviate from bulk measurements due 

to the extra capillarity effect. Rock wettability is another factor to consider when dealing 

with capillary pressures. Wang et al. (2012) performed a wettability survey of the 

Bakken formation and reported that the Bakken formation is oil-wet. A series of studies 

of confined fluid properties for a Bakken field shows that for this type of reservoirs, the 

bubble point pressure can be suppressed significantly by considering the capillary effect 

(Nojabaei et al. 2012; Honarpour et al. 2012; Pang et al. 2012; Du and Chu 2012; Chu et 

al. 2012). In addition, compaction of pore space can bring about order of magnitude 
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changes for tight oil formation properties during pressure depletion further exacerbating 

these estimates. In their approaches, confined PVT tables are constructed from a separate 

modified flash calculation program and applied as inputs using a commercial reservoir 

simulator.  

It has been known that the properties of petroleum fluids and reservoir rock are 

closely related to the effect of capillary pressure on vapor-liquid equilibrium. However, 

on the other hand, a standard and reliable measurement of confined fluid properties in 

ultra-tight rocks is still challenging and not available (Du and Chu 2012). In this sense, 

the findings and conclusions in this topic are still only supported by theoretical 

derivation or hypotheses. As quoted “The only concept assured is that the confined PVT 

properties are substantially different from the corresponding bulk properties and such 

variations have significant impact on well performance and ultimate recovery in 

unconventional reservoirs” (Du and Chu 2012).  

Reservoir models containing hydraulic fractured wells are needed to model 

production behavior and perform recovery predictions. Such models are complicated by 

massive hydraulic fractures. It is natural to realize that this kind of system contains fluid 

properties with confined and unconfined effects, which need to be explicitly modeled. 

Besides, there is a contradictive effect for the rock compaction. Rock compaction makes 

the confinement greater, which will increase driving energy and mobility by decreasing 

viscosity. But it also reduces the permeability that will reduce the mobility. These factors 

must be considered when conducting reservoir studies for tight reservoirs.  
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This chapter incorporates the extended vapor-liquid equilibrium calculations into 

a fully compositional commercial simulator. The pore space can be dynamically updated 

during pressure depletion via rock compaction tables. In this way, a more rigorous 

treatment is included to model the combined effects.  

4.2 Assumptions  

Since we deal with the situation of phase behavior in confined space of nano size, 

(10 nm – 50 nm), we need to examine the applicability conventional thermodynamics 

formulation in petroleum fluid properties.  The conventional formulation is based on a 

bulk representation of fluid, or more precisely, homogenous fluid, of which the average 

particle density is constant. When the fluids are in confined space, such as nanopores, 

the wall fluid interactions will bring significant effects on the fluid structure. The fluid in 

confined space may become inhomogeneous, of which the average particle density 

varies spatially (Evans, 2009). Based on Firoozabadi (2013), the boundary between 

homogenous and inhomogeneous fluid is about 10 nm. For pore size greater than 10 nm, 

it is appropriate to assume the fluid is still homogeneous. Since the smallest pore size we 

deal with for Bakken reservoir is 10 nm, the development in this chapter is based on the 

conventional thermodynamics for hydrocarbon reservoirs.  

 It has been mentioned that wettability has great effect on the effect of capillary 

pressure on vapor-liquid equilibrium and Bakken reservoir is oil wet. In this study, we 

further assume the rock surface is completely oil wet with contact angle being zero.            
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4.3 Approach  

In this section, we provide the model of vapor-liquid equilibrium with capillarity 

effect, extended vapor-liquid flash calculation with implementations and evaluation of 

capillary pressure for tight oil reservoirs.   

4.3.1 Capillarity Effect on Vapor-Liquid Equilibrium (VLE) 

The fundamental of capillarity effect on vapor-liquid equilibrium (VLE) is the 

separation of two multicomponent phases by a curvature interface. Such effect can be 

readily revealed by Eq. 4.1 and Eq. 4.2 (the equality of the chemical potentials in the 

liquid and vapor phases). LP and VP are the phase pressures of liquid and vapor phases, 

respectively. cP is the capillary pressure between them. iµ is the chemical potential of 

component i  at the respective temperature, phase pressure and mole fraction. m is the 

number of components in the system. Note that temperature is generally not affected by 

capillary pressure. Capillary effected VLE presents in the porous petroleum reservoirs, 

though it is generally ignored because this effect is negligible for conventional 

reservoirs.     

c
LV PPP =−                                                                                                                  (4.1) 

( ) ( ) miyPTxPT VV
i

LL
i ,,2,1   ,,,, …== µµ                                                                      (4.2) 

Eq. 4.1 and Eq. 4.2 provide the full constituting system for capillarity VLE. 

Fundamentally, the magnitude of capillary pressure is determined by the geometry of the 

capillary system and the wettability of medium surfaces. It should be noted that this 

constituting system is established based on continuous bulk vapor and liquid phases, 
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which are separated by a curvature interface. However, the vapor and liquid phases are 

not necessarily continuous in porous rocks, especially for ultra-tight reservoirs, such as 

Bakken. Nevertheless, it can be shown that the pressures and compositions in different 

isolated vapor or liquid regions are equal when the system is at equilibrium 

(Bedrikovetsky 1993). The analysis is based on the assumption that the fluid is 

homogenous, which is the same assumption that has been indicated in 4.2.  

4.3.1.1 Extended VLE Flash Calculation 

The VLE flash calculation implemented in compositional simulators generally 

involves a stability test and a two-phase split calculation. The stability test is first 

performed to test if a single phase is stable. Only under the circumstance that the single 

phase is tested to be unstable, the two-phase split calculation then will be performed. 

Michelsen (1982 a, b) provides the algorithm details and implementation practices for 

isothermal stability test and the two-phase split calculation. However, the algorithm and 

implementation is developed and designed assuming the vapor and liquid phase 

pressures are equal, i.e. no capillary pressure. Essentially, the flash calculation in all 

current commercial simulators applies this assumption. In the following, the classic 

stability test and two-phase split algorithm is extended to consider the capillary pressure 

effect.  

4.3.1.1.1 Stability test using Gibbs free energy approach 

This section shows how the standard stability test based on tangent plane 

distance analysis can be extended to consider the capillarity effect. For the original 

system to be stable, Eq. 4.3 should hold. ( )yfi is the fugacity of the incipient phase and 
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( )zfi  is the fugacity of the original system. If the original system is liquid, then the 

incipient phase is vapor and vice versa. The detailed derivations to obtain Eq. 4.3 can be 

found in Michelsen (1982 b).  

( ) ( )[ ]∑ ≥−
m

i
iii zfyfy 0lnln                                                                                           (4.3)         

Since 

( ) ( ) L
iii Pzzzf ϕ=                                                                                                           (4.4) 

( ) ( ) V
iii Pyyyf ϕ=                                                                                                          (4.5) 

where iϕ is the fugacity coefficient.  

After substituting Eq. 4.4 and Eq. 4.5 into Eq. 4.3, we then have Eq. 4.6.  

 
( )( ) ( )( )[ ]

( ) ( ) ( )[ ] 0lnlnlnlnlnln
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ii

V
ii
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i
i

PPzzyyy

PzzPyyy

ϕϕ

ϕϕ
                                      (4.6) 

Eq. 4.6 shows that the capillary term ( LV PP lnln − ) is naturally incorporated into the 

stability test. This term is normally ignored for conventional compositional simulation 

because of the fact that the capillary pressure between vapor and liquid phases is small. 

But, when the pore spaces are confined into nano scale, the capillary pressure should not 

be ignored.  

In implementation, it is more convenient to let  

( ) L
iii Pzzh lnlnln ++= ϕ                                                                                             (4.7) 

This is because that Eq. 4.7 is independent of and can be pre-computed. Let i
k

i yeY −= , y
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where ( ) V
iii Phyyk lnlnln +−+= ϕ . Then we have 

( )  0lnlnln =+−+ V
iii PhyY ϕ                                                                                      (4.8)    

Eq. 4.8 is the final form used to test stability. The fugacity coefficient is calculated using 

the cubic Peng-Robinson equation of state. Successive substitution and/or the Newton-

Raphson method can be used to solve this nonlinear equation. The details about the 

derivations and solution method are provided in Appendix I.  

4.3.1.1.2 VLE two-phase split calculation  

The VLE two-phase split calculation is based on equality of chemical potentials 

or fugacities and mass balance (Eq. 4.9 – 4.12 and Eq. 4.1 – 4.2). F is number of moles 

of original system or feed. L and V are the number of moles of liquid and vapor phases, 

respectively. ix and iy are the mole fraction of liquid and vapor phases. is the mole 

fraction of the feed phase. To solve this set of equations, we need another mass balance 

constraint, Eq. 4.12, where Ki  is the equilibrium ratio or K-value, defined as in Eq. 

4.13.  Eq. 4.12 is called Rachford-Rice equation.   

VyLxFz iii +=                                                                                                              (4.9)                                     

1=∑
m

i
ix                                                                                                                    (4.10)        

1=∑
m

i
iy                                                                                                                       (4.11) 

( )
( )∑

=

=
−+

−m

i i

ii

K
zK

1
0

11
1

α
                                                                                                     (4.12)                                                                                                            

zi
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VV
i

LL
i

i

i
i P

P
x
yK

ϕ
ϕ

==                                                                                                          (4.13) 

It can be seen from Eq. 4.13 that the capillarity comes in place in terms of the modified 

K-value. Note that conventionally the K-value is evaluated as V
i

L
iiK ϕϕ=  by assuming 

the liquid and vapor pressures are equal. This set of equations can be solved using 

successive substitution and/or the Newton-Raphson method. The details about the 

derivations and solution method are provided in Appendix II.  

4.3.1.2 Evaluation of Capillary Pressure for Tight Porous Media 

The previous two sections provide the extended VLE flash calculation 

considering the capillarity effect. To complete the solution process of stability test and 

VLE split calculation, we need to evaluate the capillary pressure. Capillary pressure can 

be evaluated by the well-known Young-Laplace equation (Eq. 4.14) for a sufficiently 

narrow tube. Nojabaei et al. (2012), Du and Chu (2012), Chu et al. (2012), Honarpour et 

al. (2012) and Pang et al. (2012) applied this approach to calculate the capillary 

pressures.  

r
Pc

θσ cos2
=                                                                                                              (4.14) 

Noted, Nojabaei et al. (2012) points out that, for tight oil rock, the capillary pressure 

computed using Young-Laplace equation is much less than actual measurement because 

of the very low interfacial tension value calculated by Macleod-Sugden correlation 

(Pederson 2007). Firoozabadi (2013) also points out that interfacial tension becomes 

function of pore size when the pore is reduced to nano size and the Macleod-Sugden 
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correlation is not applicable anymore. This finding reveals the importance of having 

reliable capillary pressure and /or interfacial tension measurements for shale/tight rocks. 

Since the system dealt with is saturated porous rock, it is more reasonably to apply the 

Leverett J-function approach (Eq. 4.15), which is based on measured reference capillary 

pressures.  

( ) ( )
θσ
φ

cos
kSP

SJ c=                                                                                                       (4.15) 

During the iteration process of stability test and VLE split calculations, capillary 

pressure values are looked up using the saturation results of the previous iteration.   

Although Eq. 4.15 is derived strictly only for the ideal case, it is commonly 

applied to other types of rocks. In this paper, it is assumed that this standard approach 

also applies to ultra-tight reservoir rocks. The dependence or scaling factor ( )SJ  is 

supposed to be known for a particular type of rock, which comes from lab measurement. 

Unfortunately there are no well-documented capillary pressure measurements for the 

Bakken reservoir yet.  

In this study, the porosity of the Bakken reservoir is fixed as 0.06. Based on 

Kozeny-Carman equation (Kozeny 1927; Carman 1937) and correlations from Nelson 

(1994), the corresponding permeabilities and pore radius is provided in Table 4.1. Based 

on the capillary pressure data of a similar rock from Crain’s petrophysical handbook, the 

corresponding capillary pressures are listed in Table 4.1 also. Note that, the capillary 

pressures are obtained from various correlations without any calibration for Bakken 

rock. However, these values should be close to real values, at least based on hypothesis.        
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Table 4.1 Pore radius, permeability and capillary pressure 

Pore Raduis (nm) Permeability (md) Capillary Pressure (psi) 
50 0.0070 102.20 
40 0.0046 127.75 
30 0.0027 170.33 
20 0.0012 255.50 
10 0.0003 511.00 

 

4.3.2 Dynamic Compaction of Nanopores 

It is natural to expect that, as the pore space being compacted during pressure 

depletion, the impact of pore size on the fluid properties becomes more significant. By 

considering pore size reduction due to reservoir depletion, the reservoir is likely to 

experience even more reduction in bubble point pressure throughout the life of the 

reservoir. Such further reduction in bubble point pressure will keep the fluid in single-

phase oil phase with reduced viscosity and density and compressibility, which will favor 

the driving energy and flow capacity. On the other hand, the compaction will reduce the 

permeability of the rock, which of course will decrease the mobility. Thus, compaction 

has two contradictory effects. And the combined effect will be determined by rigorous 

compositional simulation with compaction. Dynamic rock compaction generally can be 

incorporated into a reservoir simulator via rock compaction tables. A table look-up 

approach is performed to obtain permeability reduction ratios when the pressure is 

updated. For the Bakken reservoir in this study, the rock compaction table used is listed 

in Table 4.2. 
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Table 4.2 Rock compaction table of Bakken 

Pressure Change (psi) Permeability Reduction Ratio 
-5180 0.489 
-4450 0.500 
-3700 0.511 
-2960 0.532 
-2220 0.588 
-1480 0.675 
-740 0.791 

0 1.0 
 

4.4 Results  

4.4.1 Confined Phase Behavior  

This section provides the results of confined phase behavior of Bakken oil. The 

compositional data of Bakken oil are listed in Table 4.3 and 4.4 (Nojabaei et al. 2012). 

At the reservoir temperature around 240 °F, Bakken oil resides in the black oil region. 

Hence, the flash calculation is simplified to the case that the original or feed system is 

single-phase oil and the saturation pressure is the bubble point pressure. Figure 4.1 

shows the bubble point pressure lines of Bakken oil with capillarity effect at different 

pore space sizes, ranging from 10 nm to 50 nm. The bubble point pressures are evaluated 

using rigorous stability tests. Capillary pressures are calculated using the Young-Laplace 

equation, Eq. 4.14. As mentioned in the previous section, this approach could 

underestimate the capillary pressure to a large extent because the inaccurate interfacial 

tension. Using this approach, for a 10 nm pore size, the suppression of bubble point 

pressure is about 140 psi, which is much lower than suspected initially. For porous rock, 
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the Leverett J-function approach should be more appropriate to evaluate capillary 

pressures than Young-Laplace equation. Besides, this approach provides a way to 

calibrate against measurements of particular rock. In the following, the Leverett J-

function approach is applied for all cases. Table 4.5 provides the bubble point pressures 

calculated using the Young-Laplace equation and the Leverett J-function. We can see 

there are significant differences between the two approaches. It also suggests the 

importance of having capillary pressure data of good quality for the Bakken reservoir. 

   Table 4.3 Bakken oil composition data 

Component Mole 
Fraction 

Critical 
Pressure 
(psia) 

Critical 
Temperature 
(°R) 

Acentric 
Factor 

Mole 
Weight 

Parachor 

C1 0.36736 667.80 343.04 0.0130 16.04 74.8 
C2 0.14885 707.80 549.76 0.0986 30.07 107.7 
C3 0.09334 616.30 665.68 0.1524 44.10 151.9 
C4 0.05751 550.70 765.32 0.2010 58.12 189.6 

C5-C6 0.06406 461.29 875.48 0.2684 78.30 250.2 
C7-C12 0.15854 363.34 1053.25 0.4291 120.56 350.2 
C13-C21 0.07330 249.61 1332.10 0.7203 220.72 590.2 
C22-C80 0.03704 190.12 1844.49 1.0159 443.518 1216.8 
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Table 4.4 Bakken oil binary interaction table 

 C1 C2 C3 C4 C5-C6 C7-C12 C13-C21 C22-C80 

C1 0 0.005 0.0035 0.0035 0.0037 0.0033 0.0033 0.0033 
C2 0.0050 0 0.0031 0.0031 0.0031 0.0026 0.0026 0.0026 
C3 0.0035 0.0031 0 0 0 0 0 0 
C4 0.0035 0.0031 0 0 0 0 0 0 

C5-C6 0.0037 0.0031 0 0 0 0 0 0 
C7-C12 0.0033 0.0026 0 0 0 0 0 0 
C13-C21 0.0033 0.0026 0 0 0 0 0 0 
C22-C80 0.0033 0.0026 0 0 0 0 0 0 
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Figure 4.1 Bubble point pressure lines of Bakken oil using Young-Laplace equation 
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Table 4.5: Bubble point pressure of Bakken oil at 240 °F 

Pore Radius (nm) Bubble Point Pressure (psi) 
Young-Laplace Leverett J-Function 

50  2766 psi 2512 psi 
40  2761 psi 2450 psi 
30  2751 psi 2345 psi 
20  2732 psi 2145 psi 
10  2641 psi 1588 psi 

 
 

The physical implication of bubble point pressure suppression is that more light 

components remain in the oil phase compared to a system having unsuppressed bubble 

point pressure at the same temperature and pressure. Apparently, this in turn reduces the 

viscosity and density. Table 4.6 provides the confined viscosity and density at 240 °F 

and 1500 psia. The Lorenz-Bray-Clark correlation is used for the viscosity calculation. 

Clearly, viscosity and density are reduced as the pore space is confined from 50 nm to 10 

nm. The implication is that confinement increases the driving energy and flow capacity 

of the tight oil reservoir, which favors the extraction of more liquid. Otherwise, the light 

component will easily escape from the oil phase leave the more valuable but heavier 

components (C6-C12) underground. To evaluate the effect of confined fluid properties 

on production behavior and reservoir recovery, reservoir simulation is conducted using a 

fully compositional commercial simulator with extended VLE flash calculation routines.    
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Table 4.6: Confined fluid properties of Bakken oil at 240 °F and 1500 psia 

 Bubble point Pressure (psi) Viscosity (cp) Density (lb/ft3) 
No Capillary Effect 2788 0.41 39.17 

50 nm 2512 0.363 38.5 
40 nm 2450 0.351 38.35 
30 nm 2345 0.331 38.04 
20 nm 2145 0.29 37.3 
10 nm 1588 0.18 34.4 

 

4.4.2 Reservoir Simulation  

A fully compositional commercial simulator (Dean and Lo 1988; Tang and Zick 

1993; Fleming 2012) is extended to accommodate the extended VLE flash calculation. 

The aim is to rigorously model the effect of capillarity influenced VLE on production 

behavior and recovery prediction, which also including the effect of dynamic reservoir 

compaction. This investigation may be helpful in improving the understanding of 

abnormal production behavior observed in the Bakken field, such as long-lasting, 

relatively constant producing GOR even when the pressure near well has dropped below 

bubble point pressure (measured in lab). The reality is further complicated by multistage 

hydraulic fractured wells. Fluid is only confined in the tight matrix while being 

unconfined in fractures. The whole system will have different compositional models for 

matrix and fractures. Fortunately, the extended VLE flash approach can model the whole 

system in a uniform fashion. The capillary pressure for the grid representing fractures 

will be very small since the porosities and permeabilities for these grids are much higher 

than matrix grids. Thus, the fluid properties in fractures can be maintained unconfined, 

while fluid in matrix will be confined.   
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 4.4.2.1 1D Core Size Model  

We first provide an example using a 1D core size model, with 1 grid in the X and 

Z direction and 50 grids in the Y direction. The model has dimension of 0.5 ft in the X 

and Z direction and 3.28 ft in the Y direction. The model contains no fractures with 

homogenous initial permeability (0.002 md) and porosity (0.06). The reservoir 

temperature is 240 °F and initial pressure is 6840 psi. A sink is assigned to the first grid. 

Bottom-hole pressure is constrained at1500 psi. Initially, production is controlled by oil 

flow rate. Three scenarios are modeled: 1) no capillary pressure effect on VLE; 2) with 

capillary effect on VLE but without reservoir compaction; 3) with capillary effect on 

VLE and reservoir compaction. The production responses are plotted in Figure 4.2 and 

Figure 4.3. Figure 4.2 provides the cumulative oil production along with pressure 

decline and Figure 4.3 provides the producing GOR along with pressure decline. 

Clearly, cumulative oil productions of cases considering the capillarity effected VLE are 

higher than the case without considering the capillarity effect. It also reveals that 

although reservoir compaction makes the oil phase thinner and bubble point pressure 

lower, its cumulative oil production is less than the case considering only the capillarity 

effect. This should be attributed to the fact that the reduction of mobility due to 

reduction of permeability offsets the increase of mobility due to reduction of viscosity. It 

also suggests that reservoir compaction should be considered in every reservoir 

simulation study for tight oil. The producing GOR of cases considering capillarity 

effects is much lower than the case without capillarity effect. In addition, the dynamic 

reservoir compaction further lowers the producing GOR.   
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Figure 4.2 Cumulative oil production and pressure depletion of 1D model 
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Figure 4.3 Producing GOR and pressure depletion of 1D model 
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and unconfined properties. The two fluid systems are modeled in a unified fashion using 

distinct capillary pressures. The well production is mainly fed by the hydraulic fractures, 

which are in turn fed by the tight matrix. Note that the production and GOR are 

calculated at in-situ reservoir conditions when fluid enters the well. Although fluid that 

is directly connected to the well is unconfined, the volume of such fluid is very small 

comparing with its feed source, which is the confined fluid contained in tight matrix. 

Similarly, three scenarios are compared. Results are shown in Figure 4.5 and 4.6. We 

can see the case with capillarity effect and no compaction has the highest cumulative oil 

production. The case with capillarity and compaction effect is in the middle. The 

pressure decline rate of the compaction case is smaller than the other two cases. Note 

that for the 1D core size model, the pressure decline rate of compaction is the highest. 

This might be because that for a hydraulic fractured well, the production is controlled by 

the fractures. The compaction reduced the conductivity of fracture, which makes the 

pressure decline smaller than the cases without considering compaction. It is interesting 

that there is a step-wise increase and decrease of the producing GOR of the case with 

compaction. This might be because that, as the reservoir being compacted, the bubble 

point pressure is reducing.  
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Figure 4.4: Top view of a horizontal well model with four hydraulic fractures (scale 

in feet) 
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 Figure 4.5 Cumulative oil production and pressure depletion of horizontal well 

model 

 

 

  

  

 

 

 

 

0	
  

1000	
  

2000	
  

3000	
  

4000	
  

5000	
  

6000	
  

7000	
  

0.00E+00	
  

2.00E+06	
  

4.00E+06	
  

6.00E+06	
  

8.00E+06	
  

1.00E+07	
  

1.20E+07	
  

1.40E+07	
  

0	
   500	
   1000	
   1500	
   2000	
   2500	
  

Pw
f,	
  
ps
ia
	
  

Cu
m
	
  O
il	
  
Pr
od

uc
%o

n,
	
  S
TB

	
  

Time,	
  Days	
  

Cum	
  Oil	
  ProducWon,	
  STB,	
  No	
  Capillary	
  Effect	
  

Cum	
  Oil	
  ProducWon,	
  STB,	
  With	
  Capillary	
  Effect,	
  No	
  CompacWon	
  

Cum	
  Oil	
  ProducWon,	
  STB,	
  With	
  Capillary	
  and	
  CompacWon	
  Effect	
  

Pwf,	
  psia,	
  No	
  Capillary	
  Effect	
  

Pwf,	
  psia,	
  With	
  Capillary	
  Effect,	
  No	
  CompacWon	
  

Pwf,	
  psia,	
  With	
  Capillary	
  and	
  CompacWon	
  Effect	
  



 

 108 

 

 Figure 4.6 Producing GOR and pressure depletion of horizontal well model 

 

 

 

 

 

 

 

 

2000	
  

4000	
  

6000	
  

0.00E+00	
  
1.00E+03	
  
2.00E+03	
  
3.00E+03	
  
4.00E+03	
  
5.00E+03	
  
6.00E+03	
  
7.00E+03	
  
8.00E+03	
  
9.00E+03	
  

0	
   500	
   1000	
   1500	
   2000	
  

Pw
f,	
  
ps
ia
	
  

G
O
R.
	
  C
F/
TB

	
  

TIME	
  DAYS	
  

GOR,	
  SCF/STB,	
  No	
  Capillary	
  Effect	
  

GOR,	
  SCF/STB,	
  With	
  Capillary	
  Effect,	
  No	
  CompacWon	
  

GOR,	
  SCF/STB,	
  With	
  Capillary	
  and	
  CompacWon	
  Effect	
  

Pwf,	
  psia,	
  No	
  Capillary	
  Effect	
  

Pwf,	
  psia,	
  With	
  Capillary	
  Effect,	
  No	
  CompacWon	
  

Pwf,	
  psia,	
  With	
  Capillary	
  and	
  CompacWon	
  Effect	
  



 

 109 

4.5 Conclusions 

Based on the assumption that the fluid is homogenous for pore size larger than 10 

nm, we evaluate the effect of capillarity on VLE using the conventional thermodynamics 

for hydrocarbon reservoirs. The capillary pressure effect on the vapor-liquid equilibrium 

of reservoir fluids becomes significant when the pore size reduces to the nano scale. For 

oil-wet reservoirs, the confinement effect suppresses the bubble point pressure, which in 

turn favors the single-phase oil production by increasing the driving energy and 

decreasing the viscosity of the fluids. In order to model such confined fluid properties in 

reservoir simulation, the VLE flash calculation algorithms need to be extended to 

consider capillary pressure difference between vapor and liquid phase. Leverett J-

function should be the approach used to evaluate capillary pressures for tight oil. 

However, good quality capillary pressure measurements are needed to calibrate the 

scaling factor for a particular tight oil reservoir, such as Bakken. For tight oil reservoirs, 

which do not have pressure maintenance strategies, oil production is believed to be quite 

sensitive to reservoir compaction during pressure depletion. Thus, rock compaction 

should be considered in any reservoir study of tight oil. Rock compaction further reduces 

the pore size. As a result, the confinement effect becomes larger. However, compaction 

also reduces the permeability. Thus, simulation studies should consider the combined 

effect of capillarity and compaction on production.        
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CHAPTER V 

SUMMARY AND RECOMMENDATIONS 

 

In Chapter II, dynamic load imbalance, which is the key performance limiter of 

parallel compositional simulation when using the IMPES formulation, is investigated.  

Since such imbalance pattern is generally unpredictable, a dynamic load-balancing 

scheme is needed to improve the parallel efficiency. The implementation or design of 

dynamic load balancing schemes for parallel reservoir simulation can be very 

challenging and requires a substantial amount of development time. In this chapter, a 

promising shortcut is presented to mitigate the dynamic load imbalance problem. 

Inspired by the domain over-decomposition concept, and based on Charm++ and AMPI, 

the approach over-decomposed the underlying reservoir model into small chunks and 

bundles of these chunks are then mapped to each physical processor as virtual processes.  

There are two main attractions of AMPI. First, if we have a parallelized reservoir 

simulator using MPI, the adaptation to use AMPI is not cumbersome. But, special care 

must be taken to treat the global variables. There is an on-going research in the Charm++ 

community to improve the approach to handle the issues related to global variables. As 

discussed in Chapter II, the methodology of treating global variables for using AMPI 

may not have much room to improve. The future effort may be related to the workflow 

of easing the process to handle global variables.  

 As noted in Chapter II, the GreedyLB is recommend only because we deal with 

the parallelization of equation of state. When we deal with a fully paralleled reservoir 



 

 111 

simulator, there will be inter-subdomain communications. As a result, other balancers 

that consider the inter-subdomain communication overhead should be applied instead. 

Fortunately, the Charm++ infrastructure provides a series of balancer for user to pick, 

which greatly eases the development effort. However, it should be keep in mind that, the 

operation of virtual processor assignment and migration and balancing is very high-level 

without explicitly exploring the underlying physics. On one hand, this mechanism could 

shorten the development phase, since the design of balancing based on the underlying 

physics and implementation could be very complex. However, on the other hand, this 

high-level mechanism may overlook some issues, which may bring a significant 

overhead.  

 One of such issues happens in the linear solver portion of a simulator. The 

parallelization of linear solver need exchange boundary cell data between subdomains. If 

we over-decompose the domain into many smaller chunks, the massage passing 

overhead could kill the performance gained by using over-decomposition. This problem 

becomes very important especially for fully implicit simulation, where the linear 

solution part often consumes the majority part of time. Further research should be 

conducted in this area to investigate the solutions. Based on limited experiments, for the 

best cases, it appears that domain over-decomposition can improve Jacobi, Gauss-Seidel 

and CG method’s parallel performance by 10-20%.  

 Overall, domain over-decomposition is a promising way of improving the 

parallel performance of reservoir simulators. If we have a fully parallelized reservoir 

simulator using MPI, it is recommended to test the performance using AMPI. As 
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emphasized, generally speak, the cost of adaption to AMPI is lowers than trying to 

design and add a dynamic load balancer inside the simulator.  

 In Chapter III, the recently developed CML method is introduced to reservoir 

simulation application. The overall performance of CML is promising, especially for the 

case to handle the matrix resulting from coupled geomechanics. Keep in mind, there is 

no a linear solver that can be optimal for all the cases encountered in reservoir 

simulation. The properties of matrices resulting reservoir simulation change with 

different models and scenarios. The major draw back of CML is that it is designed and 

proved based on symmetric matrices. Its performance is expected to degrade with the 

increase of degree of asymmetry. For the coupled geomechanics, the matrix from 

poroelastic displacement is symmetric. We have shown CML has much better 

performance in this case using a benchmark matrix. If for some cases, CML do not have 

better performance than other methods for the flow problem, the recommendation of 

choice of solver for coupled poroelastic displacement would be CML.  

 In the current implementation of CML, the smoother is Jacobi. Other smoother 

may need to be implemented to improve its performance. Further research is needed in 

this area.  

 In Chapter IV, the conventional VLE formulation is extended to consider the 

effect of capillary pressure between gas and oil phases. When the pore size is reduces to 

the nano scale, the effect of capillarity on VLE should not be ignored. The extended 

VLE formulation is developed based on the conventional Gibbs stability test and two 

phase split calculation. It should be emphasized that this work is based on the 
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assumption that the conventional homogenous thermodynamics, which is the ground for 

the conventional VLE formulation, is not violated for the nanopore scale between 10 nm 

to 50 nm. As indicated in Chapter IV, 10 nm seems to the limit to use conventional VLE 

formulation.     

 The approach taken to evaluate the effect of dynamic nanopore on tight oil 

recovery is based on fully compositional simulation. Since Bakken oil is apparently in 

the black oil region, fully compositional simulation may not be needed in practice. To 

perform black oil simulation for Bakken oil, we first need to use a confined PVT table to 

consider the effect of capillarity. Second, we need to establish the relation between 

confined PVT table and compaction table, since as the pore space changes the 

confinement effect changes (in other words, the PVT changes). As a future research 

recommendation, it is necessary to perform comparison of the results of fully 

compositional simulation and black oil simulation to consider the dynamic nanopore 

effects.   

 Since Bakken oil is in the black oil region, Chapter IV simplifies the saturation 

pressure to be the bubble point pressure. If the fluid is in volatile oil or gas condensate 

region (e.g. Eagle Ford liquid rich shale), the saturation pressure will be the dew point 

pressure. The same approach can be applied to model the effect of dynamic nano-pore 

properties for Eagle Ford liquid rich shale if we ignore the effect of adsorptions. 

Adsorption can complicate the analysis in great extent. The adsorption of vapor and 

liquid at the shale surface can induce highly structured particle density distributions 

close to the surface, which will make the fluid inhomogeneous (Evans 2009).  Further 
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research is needed to investigate the applicable and practical approach to handle this 

situation.   
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APPENDIX I 

STABILITY TEST WITH CAPILLARY PRESSURE EFFECT 

  

 The following derivations are based on Michelsen (1982a).  

I.1 Stability Criterion 

Given temperature T0 and pressure P0 and M component mixture with component 

mole fractions (z1, z2, ..., zm). The Gibbs energy of the mixture is  

∑=
M

i
iinG 0

0 µ                                                                                                                 (I.1.1) 

where 0
iµ is the chemical potential of component i in the mixture and in is the number of 

moles of component i in the mixture. Now, let’s assume this mixture is divided into two 

phases with mole number ε−N and ε , respectively. The amountε of the second phase is 

infinitesimal. Let the mole fractions in Phase II be Myyy ,,, 21 … . The change in Gibbs 

energy is then 
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If we apply Taylor series expansion to IG , discarding second order term inε , we have  

( ) ( ) ∑ ∑−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−=−
M

i

M

i
ii

Ni
i yG
n
GyNGNG 0

0 µεεε                                                     (I.1.3) 

Then changes in Gibbs free energy is given by 

( )( )∑ −=Δ
M

i
iii yyG 0µµε                                                                                              (I.1.4) 
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The stability of the original mixture requires that its Gibbs free energy is at the global 

minimum. A criterion for stability is that 

( ) ( )( ) 00 ≥−=∑
M

i
iii yyyF µµ                                                                                         (I.1.5) 

for all trial compositions y . All minima of ( )yF are located in the interior of the 

permissible region ( ∑ =≥
M

i
ii yy 1,0 ). It is usually convenient to work with fugacity. The 

fugacities are given by 

( ) ( ) L
iii Pzzzf φ=                                                                                                           (I.1.6) 

( ) ( ) V
iii Pyyyf φ=                                                                                                          (I.1.7) 

Note that, it is assumed the original phase is liquid and trial phase is vapor. The opposite 

setting (original phase is vapor and trial phase is liquid) is equivalent. Since 

( )ii fRT ln=µ                                                                                                               (I.1.8) 

We then have 

( ) ( ) ( ) ( )[ ]

( )( ) ( )( )[ ]

( ) ( ) ( )[ ] 0lnlnlnlnlnln

lnln

lnln0

≥−+−−+=

−=

−==

∑

∑

∑

LV
iiii

M

i
i

L
ii

V
ii

M

i
i

M

i
iii

PPzzyyy

PzzPyyy

zfyfy
RT
yFyg

φφ

φφ                                  (I.1.9) 

The last term ( LV PP lnln − ) is normally ignored because of the small capillary pressure 

between vapor and liquid. But it is included here to include the effect of high capillary 

pressure, which is hypothesized to encounter in confined pore space.  Let  
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( ) L
iii Pzzh lnlnln ++= φ                                                                                            (I.1.10) 

Then we have, 

( ) ( )( ) 0lnlnln ≥+−+=∑ V
iii

M

i
i Phyyyyg φ                                                              (I.1.11) 

In the above equation, ih is independent of y ( z remains unchanged). So, this term can 

be pre-computed without iterating. The stationary criterion is 

( ) MikPhyy V
iii ,,2,1    lnlnln …==+−+ φ                                                             (I.1.12) 

Let i
k

i yeY −= , then 

( ) MiPhyY V
iii ,,2,1    0lnlnln …==+−+ φ                                                             (I.1.13) 

Since 1=∑
M

i
iy , then 

1=∑
M

i
i

k Ye                                                                                                                   (I.1.14) 

As a result,  

∑=
M

i
iii YYy                                                                                                               (I.1.15) 

This equation suggests that iY can be interpreted as mole numbers. Apparently, we can 

see that the solutions of the nonlinear equation (Eq. I.1.13) can be used to examine the 

stability analysis. For a system of fixed composition iz , the system is stable when 0≥k . 

Thus, in terms of Y , this system is stable when∑ ≤
M

i
iY 1 and is unstable when∑ >

M

i
iY 1.  
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Successive substitution and/or newton’s method can be used to solve the nonlinear 

equation (Eq. I.1.13).  

I.2 Successive substitution 

The updating of Y is simply 

( )[ ] MiPyhY V
ii

new
i ,,2,1         lnlnexp …=−−= φ                                                        (I.2.1) 

I.3 Newton’s method 

Although successive substitution is very easy to implement, it is not efficient and 

requires significant number of iterations. Thus successive substitution method is not 

desired for reservoir simulation, since we need to solve Eq. I.1.13 for each grid block. 

To overcome this drawback, we use Newton’s method which only requires substantially 

less number of iterations. To use Newton’s method, we first write the residual as   

( ) ( ) MiPhyYyR V
iiii ,,2,1        0lnlnln …==+−+= φ                                              (I.3.1) 

Then the updating formulations are as follows 

( ) kkkk RJyy 11 −+ −=                                                                                                      (I.3.2) 

kk RyJ −=Δ                                                                                                                  (I.3.3) 

The jacobian is given by 

MjMi
y
RJ
j

i
ij ,,2,1;,,2,1         …… ==

∂
∂

=                                                                   (I.3.4) 

In matrix format, we have 
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                                                                 (I.3.5) 

In implementation, we instead use the K-value, iK , or its logarithm as the independent 

variable. The formulations using iKln is below. Now R is treated as a function of iKln , 

such as ( ) 0ln =iKR . Similarly, we have 

( ) ( ) ( )( ) ( )kkk
i

k
i RJKK 11 lnln −+ −=                                                                                     (I.3.6) 

( ) ( )kk RKJ −=Δ ln                                                                                                          (I.3.7) 

MjMi
K
RJ

j

i
ij ,,2,1;,,2,1         

ln
…… ==

∂
∂

=                                                              (I.3.8) 

In matrix format, we have 
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                                               (I.3.9) 

After applying chain rule, we have 

j

j

j

i

j

i

K
y

y
R

K
R

lnln ∂

∂

∂
∂

=
∂
∂                                                                                                 (I.3.10) 

Since iii KzY =  and i
k

i yeY −= , we then have 
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i
k

ii Kezy =                                                                                                                  (I.3.11) 

Note that k
iez is independent of iy or iKln . So, 

jj
k

j
j

jk
j

j

j
k

j

j

j yKez
K
K

ez
K
Kez

K
y

==
∂

∂
=

∂

∂
=

∂

∂

lnlnln
                                                       (I.3.12) 

As a result, 
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∂
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=
∂

∂
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lnln
                                                                                  (I.3.13) 

and finally in matrix form, we have 
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                                           (I.3.14) 

 It should be noted that although Newton’s method converges fast, global minima 

could not be guaranteed. In simulator implementation, we generally first perform a few 

iterations of successive substation to a bigger tolerance. Then we use Newton’s method 

to converge to the final tolerance.    
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APPENDIX II 

TWO-PHASE SPLIT CALCULATION WITH CAPILLARY PRESSURE  

EFFECT  

 

II.1 Governing Equations 

 For given F mole of feed (original single-phase phase fluid) with mole fraction of 

zi  ( mi ,,2,1 …= ) in a close system, the original phase splits into Lmole liquid with 

mole fraction of xi  ( mi ,,2,1 …= ) and V mole vapor with mole fraction of yi  ( 

mi ,,2,1 …= ). We have the following energy and mass balances.  

f
i

L T,PL, xi( ) = fiV T,PV , yi( )                                                                                       (II.1.1) 

Fzi = xiL + yiV                                                                                                             (II.1.2) 

Besides, we have  

∑ =
m

i
ix 1                                                                                                                      (II.1.3) 

∑ =
m

i
iy 1                                                                                                                      (II.1.4) 

To solve these equations, we first define V-L equilibrium ratio, K-value as  

mi
x
yK
i

i
i ,,2,1    …==                                                                                                 (II.1.5) 

From Eq. II.1.2, we have 

xi =
zi

1+ Ki −1( )α
                                                                                                         (II.1.6) 
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yi =
Kizi

1+ Ki −1( )α
                                                                                                         (II.1.7) 

Where FV=α . 

Substitute Eq. II.1.6 and Eq. II.1.7 into Eq. II.1.3 and Eq. II.1.4, we have   

( ) ( )
( )∑ −+
−

=
m

i i

ii

K
zKh
11

1
α

α                                                                                               (II.1.8) 

Eq. II.1.8 is called the Rachford-Rice equation. Since  

miPyf VV
ii

V
i ,,2,1         …== φ                                                                                    (II.1.9) 

miPxf LL
ii

L
i ,,2,1         …== φ                                                                                (II.1.10) 

From Eq. II.1.9, Eq. II.1.10 and Eq. II.1.1, we then have 

mi
P
P

x
yK VV

i

L

i

i
i ,,2,1        

L
i …===
φ
φ                                                                            (II.1.11) 

Note that, normally, the pressure terms in the above equation are canceled out if we 

assume the pressures of vapor and liquid are equal.   

II.2 Successive Substitution 

The successive substitution generally follows the 6 steps 

Step 1: Guess initial value of iK . Stability test generally give good estimate of iK  

Step 2: Solve the Rachford-Rice using Newton-Raphson method 

Step 3: Calculate ix  and iy  

Step 4: Calculate L
iφ  and V

iφ using Peng-Robinson equation of state for instance  

Step 5: Update iK  
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V
i

L
iold

i
new
i f

f
KK =  

Step 6: Check convergence 

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

m

i
L
i

V
i

f
f

2

1  

II.3 Newton’s Method 

Let 
( )

α−
−

=
1

V
i

L
i

i
ff

g , then we instead solve the nonlinear equation ( ) 0, =αii yg . In 

matrix format, we have 
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(

                                      (II.3.1) 

The updating is simply  

1,,2,1        1 −=Δ+=+ miyyy i
n
i

n
i …                                                                 (II.3.2) 

ym
n+1 =1− yi

n+1

i

m−1

∑                                                                                                           (II.3.3) 

miyzx n

n
i

n
in

i ,,2,1        
1 1

11
1 …=

−

−
=

+

++
+

α
α                                                                           (II.3.4) 

 




