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ABSTRACT

Signaling pathway analysis is so important to study the causes of diseases and

the treatment of drugs. Finding the lurking pathway from ligand to signature is a

significant issue in studying the mechanism of how the cell response to the stimulation

signal. However, recent literature based pathway analysis methods can only tell

about highly differentially expressed pathways related to the experiment data, which

may tell nothing about our interested specific ligand and signature.

In this paper, we designed an approach to successfully detect the most reliable

pathways for specific ligand and signature by solving multi-objective optimization

problem on the bridge connecting two signaling pathways where the ligand and sig-

nature locate. The pathway bridge consisted of enriched looping patterns refined

the complicated entire protein interactions network with 39031 links, which made

the approach time-saving. The approach was further applied to study the mod-

ulator mechanism of the signal molecule, receptor, intermediate transfer proteins,

transcription factor, and signature.

With preliminary studied pathways, we then employed Ordinary Differential

Equations(ODE) to modeling and dynamic analysis the signaling transduction. The

biological reactions were represented in terms of differential equations, and the solu-

tions to the group of equations were further be optimized to fit the RPPA experiment

data. In order to find the potential signaling paths in specific disease and discovery

the best therapy, coefficient variation analysis, system robustness study and system

outcomes changes to perturbations were also utilized.

Our approach successfully predicted the lurking pathway for the signal molecule

ii



TGFβ1 and the nova protein OCIAD2 in cancer microenviroment: TGFβ1 −

TGFβR1 − SMAD2/3 − SMAD4/AR − OCIAD2, and this result was verified

by literature. Better than recent pathway analysis tool, our predicted pathway also

took care of significant but relatively less regulated proteins in the transduction pro-

cess. And by modeling the CCL2 pathway in MTB infected cells, JNK, cMY C and

PLC showed as the most significant modules. Hence, the drug treatments inhibit-

ing JNK, cMY C and PLC would effectively obstruct the increasing of MMPs and

further prevent the Mtb infections.
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NOMENCLATURE

pbMOO Pathway Bridge Based Multi-objective Optimization

MC Motifs Cluster

TF Transcription Factor

RPPA Reverse Phase Protein Array

HPRD Human Protein Reference Database

TGFB1 Transforming Growth Factor Beta 1

OCIAD2 Ovarian Carcinoma Immunoreactive Antigen-Like Protein

Domain Containing 2

Mtb Tuberculosis

MMP Matrix Metalloproteinase

MCP Monocyte Chemotactic protein 1

CCL2 Chemokin Ligand 2
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1. INTRODUCTION

Tumor microenvironment has been largely studied as a dynamic system to de-

fine the behaviors of cancer. This system is orchestrated by cytokines, growth fac-

tors, inflammatory cells, cancer cells, stroma as well as the extracellular matrix [1].

Tumor-associated fibroblasts (TAFs) are major elements of tumor stroma and have

been shown to play an important role in tumor growth and progression. Epithelial-

to-mesenchymal transition (EMT) is a major source of TAFs. In tissue fibrosis it

is well-established that epithelial cells contribute to the accumulation of fibroblasts

by undergoing EMT in response to stimuli from the microenvironment [2]. TGFβ

remains among the key factors responsible for the recruitment of Tumor Aassociated

Fibroblasts (TAFs) and induction of EMT. TAFs, meanwhile, strongly contribute to

the production and activation of TGFβ in the activated stroma and thereby generate

the autocrine feed-forward loop that is characteristic for persisting fibroblasts activ-

ities [3]. However, the exact regulation between TGFβ signals and TAFs in tumor

microenvironment is yet to be completely understood.

OCIAD2 was originally immunoscreened from ascites of a patient with ovarian

cancer and found to be an immunoreactive antigen [4]. However, the function of

OCIAD2 protein, involved pathways and molecular mechanisms has never been re-

ported. Based on data mining and our preliminary data, we hypothesize that hu-

man OCIAD2 represent a potential tumor suppressor gene in some tumor types and

its dysregulation involved in TGFβ regulated signaling in tumor microenvironment

with following reasons: 1) High-throughput profiling data and public database anal-

yses showed that OCIAD2 is frequently methylated and/or downregulated in some

kinds of cancers [5], [6], and [7], 2) GEO database revealed that the expressions
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of OCIAD2 are induced by TGFβ signal in pancreatic (GSE23952), lung adeno-

carcinoma (GSE17708) and ovarian cancer cells (GSE6653), 3) Moreover, a compu-

tational analysis with TCGA database revealed that methylation site of OCIAD2

is top-ranked in ovarian Metastasis-Associated Fibroblasts (MAFs) signature [8].

These evidences indicated a potential biological milieu of OCIAD2. We hereby spec-

ulate that down-regulated OCIAD2 expression in tumor microenvironment facilitates

deregulated TGFβ signaling. As a consequence of these changes, tumor cells escape

immunesurveillance and exaggerate tumor progression and metastatic spread.

To predict molecular network of OCIAD2 in TGFβ regulated tumor microenvi-

ronment, a nova pathway analysis with bioinformatics approaches have been devel-

oped. Current signal analysis methods typically have three steps: build literature

based preliminary signaling pathways model; generate gene expression experimental

data; detect the shortest path as the specific signal and verify biological meaning.

Pathways consist of highest differentially expressed genes and reported interactions

would be shown as the results in this kind of pathway study. However, not all the

targets or receptors of ligands are with top expression changes, i.e., TGFβ regulates

numerous other growth factors positively and negatively, some of which are not the

most obviously changed ones but still response to the stimulation of TGFβ. More-

over, new genes with seldom previous studies, such as OCIAD2, is hardly included

in any pathways because the lack of known interactions with other proteins. To

study the mechanism of OCIAD2 changes induced by TGFβ stimulation in cancer

cell lines, a novel approach to inferring the signaling paths based on the pathway

bridges between TGFβ and target gene OCIAD2 using the Multi-objective Opti-

mization Approach, named pbMOO, was developed. Pathway Bridge was defined

as a subset of protein interactions network that was consisted by clustering loop
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motifs with extremely high frequency occurring in cancer related processes than by

chance. All four-vertex motifs, among which the triangle and rectangle were shown

with significantly higher occurring than randomized ones, were detected from a net-

work generated from HPRD database with 12794 proteins and 39031 interactions.

Rather than traversing the entire protein interaction network with enormous nodes

and edges, all the loop motifs were clustered as a Pathway Bridge between TGFβ

signaling pathway and cancer signaling pathway. Relatively, the time saving ap-

proach returned to highly reliable protein paths only by searching connecting nodes

on the bridge. Moreover, motifs on the bridge were concentrated on cancer related

processes, which guaranteed the nodes chosen for the path are specified for cancer

microenvironment. Then, the cost of a protein path was defined by gathering up the

cost of each edge, which is the p-value sum of two interacted protein nodes. Accord-

ing to the property of p-value, the path cost is the probability of obtaining a path

whose cost is no more than the one that was actually observed so that the less cost,

the more reliable the path is.

Applied pbMOO approach and treated the most tightly correlated genes with

OCIAD2 as its potential interacts ones on Transcriptional Regulatory Element Database

[9] with 177 transcription factors of homo sapiens, androgen receptor (AR) was dis-

covered as the most credible transcription factor of OCIAD2. Applied the approach

on GSE42357 and GDS3634 expression data from NCBI, the paths with the low-

est cost were picked out as the responsible possible molecular mechanisms between

TGFβ and OCIAD2 in hepatocellular carcinoma (HCC) samples, and prostate can-

cer cell lines. Verified the biological meaning of the low-cost paths and finally the

signal TGFβ1- TGFβR1- SMAD2/3- SMAD4- AR- OCIAD2 was discovered and

explained TGFβs stimulation on OCIAD2 expression in cancer.
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2. METHODS

In order to see how the signature gene be enrolled in the ligand stimulation sig-

nal, a pathway bridge based multi-objective optimization approach (pbMOO) was

designed and summarized as Figure 2.1. Three kinds of data were chosen as the

initial input data: protein interactions Figure 2.1A from HPRD [10] were applied for

building the entire protein-protein interactions (PPI) network; signaling pathways

Figure 2.1B from both KEGG [11] and IPA [12] were selected as the background

pathway library based on which the pathway bridges were constructed; groups of mi-

croarray data Figure 2.1C were used for solving multi-objective optimization problem

and presenting the correlation among genes. Calculated by FANMOD [13], loop mo-

tifs Figure 2.1A1, higher frequency occurring sub network of entire PPI network,

were shown enriched in cancer and related pathways. Searching on the pathway

bridge Figure 2.1B2, which was defined as a set of loop motif clusters Figure 2.1A2

connecting ligand and signature genes, a multi-objective optimization problem was

solved by finding the pathways with the lowest path cost that was assigned by gene

expression p-value. When multiple experimental gene expression data were used, the

cost of each path was then defined as the summation of average p-value of connected

genes in the optimization problem. Then the modular study Figure 2.1C1 was ap-

plied on the calculated results of the optimization problem and completed signals,

which began with ligand and its receptor, passing through transduction proteins and

targeting on transcription factor and finally the signature, were output as the most

reliable predicted pathways Figure 2.1C2 explaining how the ligand changes affected

the signature.
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2.1 Cell Lines and Drug Treatment

Hep-3B and Du-145 were obtained from American Type Culture Collection. All

cell lines were cultured in DMEM with 10% fetal bovine serum (FBS) and antibiotics.

TGFβ1 (R&D Systems, Minneapolis, MN) were applied at concentrations of 5ng/ml.

TGFβR inhibitor LY2109761 were purchased from Selleck Chemicals LLC (Houston,

TX), using at 2M. For the drug treatment, human liver and prostate cancer cell

lines, Hep-3B and Du-145, were treated with 5ng/ml TGFβ1, 2M LY2109761 and

combination for 24 hours in serum free media, and OCIAD2 mRNA levels were

determined by quantitative real-time RT-PCR analysis.

2.2 RNA Extraction and Quantitative Real-time PCR

Total RNAs were isolated from tumor cells using TRIZOL reagent (Life Tech-

nologies, USA) following the manufacturers recommendations. RNA concentration

and purity were determined by measuring absorbance at 260 and 280 nm with a Nan-

oDropTM 1000 Spectrophotometer (Thermo Scientific, USA). cDNA synthesis was

performed with Superscript III reverse transcriptase kit (Life Technologies, USA).

Quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR)

was performed using an Applied Biosystems 7300 Sequence detection system (Ap-

plied Biosystems, Life Technologies, USA). The primer set of OCIAD2 are described

below: 5’-TGCGAGAATGTCAGGAAGAA-3’ and 5’-AAATCCCAAGAGACCAGCAA-

3’.

2.3 Motif Detection of Protein-Protein Interaction Network

”Network Motifs” [14] are interconnected patterns (sub graphs) with significantly

higher occurring in complicated networks than in randomized ones. Loop-structural

motifs have been proofed to be enriched in a protein-protein interaction (PPI) net-
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work generated from PPI database, i.e. HPRD. As a literature-collected public

database, HPRD has 12794 proteins and 39031 pairs of interactions for 9605 of

them. The sufficient data capacity helps a lot on unclear reciprocities prediction.

In this paper, outstanding tool Fast Network Motif Detection (FANMOD) [13]

was applied to census four-vertex sub graphs in undirected PPI network by using the

Randomized Enumeration (RAND-ESU) algorithm.

Motifs detections result from PPI network were shown as Figure 2.2. Motifs ID

lied in column one and adjacency matrix presented in the second column; Frequency

was the probability of each motif in original PPI network and Mean-Freq was of the

motif occurred in random networks; the standard deviation from the mean frequency

was listed in the fifth column; Z-score meant the value of the difference of two

frequencies divided by the standard deviation; and p-value was the difference of

motif number between random networks and original one then divided by the total

number of random networks. For instant, ID 8598 in Figure 2.2 had relative higher

occurring frequency in random networks than the original one, thus its Z-Score was

negative and p-Value was large, indicated that the chain-looked structure was really

normal among the entire PPI network; on the contrary, ID 31710 was more special in

the original network structure than random showing that the combination of triangle

and square sub network was enriched among PPI network. Similarly, motifs ID 4382,

recurring much more often than random chosen sub network, are with negative Z-

Score and large p-Value; ID 13278, ID 4958 and ID 27030 motif structures are also

enriched from randomized network and obtain positive Z-Score and relative smaller

p-Value. The outcome suggests loop-structural motifs, i.e. shapes like triangle,

spoon and square, are special patterns with high occurrences in protein interactions

network.
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Figure 2.2: Four-vetex Motif Detections of FANMOD Outputs

20 signaling pathways derived from KEGG [11] were analyzed for motifs distribu-
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tion. Results in Figure 2.3 induced that proteins on looping motifs are mainly from

cancer and correlated signal pathways, in other word, motifs with loop structure are

enriched in 14 type of carcinomatosis and related signaling pathways, such as cell

cycle signaling pathway, immune system signaling pathways and etc.

Figure 2.3: Looping Motifs Enriched in Cancer-related Signaling Pathways

2.4 Motifs Clustering and Enrichment in Cancer Related Signaling Pathways

Loop-shaped motifs with no more than four vertex have the only two specific

possibilities —triangle and square. Motifs Cluster (MC) is defined as converged

cyclic motifs that sharing at least one protein. The common protein is called Center

Point (CP), which is the identifier for distinguishing different motifs clusters. The

toy model shows in Figure 2.4.
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Figure 2.4: Loop-shaped Motifs And Motifs Cluster Toy Model

Since looping motifs were proofed that occurring much more often in cancer and

related signaling pathways, they can be treated as a bridge to link up cancer and its

kinship pathways, which would provide a characteristic group of candidate protein

interactions for future unclear links forecast.

Let P1 be a chosen cancer signaling pathway, and P2 be a cancer-related signaling

pathway. {MCP1P2
1 ,MCP1P2

2 , . . . ,MCP1P2
n } are the total n motif clusters between P1

and P2, thus |MCP1P2| = n by virtue of the number of identifiers |CP P1P2 | = n, where

| · | denotes the number of elements in a set. In order to evaluate the enrichment of

MCs lying between P1 and P2, p-value was introduced as the probability of obtaining

a larger number of MCs for a pair of randomly chosen protein sets, keeping the same

sizes with P1 and P2 and the capacity of intersection, than for P1 and P2.

p = prob{n′ > n | n′ = |MCS1S2 |, n = |MCP1P2|} (2.1)

where S1 and S2 are random proteins sets picked out from entire proteins of

HPRD database with the same size as P1 and P2, i.e |S1| = |P1| and |S2| = |P2|,

10



and satisfy |S1

⋂
S2| = |P1

⋂
P2|. Repeating the sampling for 1000 times, a random

distribution f for the 1000 numbers of MCs can be generated. The complementary

set of cumulative probability density function F (|MCP1P2| interprets the chances

that a stochastic pair of protein sets has quantity of MCs being the bridges between

them rather than the two chosen pathways, which is indeed motif clusters’ p-value.

p = F ′(|MCP1P2|) = 1− F (|MCP1P2 |) (2.2)

MCs connecting P1 and P2 are enriched if the p-value is tiny, indicating that the

bridging MCs linking up two protein sets are the main substructure of cancer sig-

naling path P1 and cancer enrolled signaling path P2. Comparing with searching the

enormous and complex integrated PPI network, the enriched MCs bridge efficiently

limits and specilized the traversing range for forecasting uncertain protein paths,

which increases the calculation speed thoroughly.

MCs’ p-value for combinations of different types and subtypes of carcinomatosis

and involved signaling pathways were calculated and exampled in Figure 2.5. MCs

bridges that have p-value less than 0.01 were chosen to be the candidate subnetwork,

from which ill-defined protein pathways would be selected.

2.5 Ill-defined Protein Pathways Prediction

If changing condition of a protein A results in the upregulated or downregulated

protein B, while A and B have neither direct interaction with each other nor indi-

rect upstream and downstream relationship on any authentic signaling pathway, the

underlying protein pathways for them could be detected on those MCs enriched path-

way bridges. An optimization model, which is described as following, was employed

11



Figure 2.5: P-value Calculation Examples

to acquire high-confidence potential protein pathways.

f(x) = arg min
~x∈{MC

P1P2
1 ,MC

P1P2
2 ,...,MC

P1P2
n }

N∑
i=1

xi ·DESi + λ
N∑
i=1

xi

12



s.t.



2 ≤
N∑
i=1

xi ≤ 7,

i = 1, 2, . . . , N,

λ ∈ |<|.

(2.3)

where N is the total number of proteins pertaining to MCs bridge for the selected

pair P1 and P2. ~x = {x1, x2, . . . , xN} is protein path vector implying which element

was contributed to the path—if protein i was taken count into the lurking protein

path, then xi = 1, otherwise xi = 0. Differential expression score (DES) was defined

by each gene’s p-value from student t-test for gene expression experiment data in

two conditions. The larger p-value, the larger DES, the less reliable the data. Thus,

minimizing the first part of the object function
∑N

i=1 xi · DESi could ensure the

maximization of the reliability of the predicted protein paths. The length of protein

pathway, i.e.
∑N

i=1 xi, is an integer in the range of [2, 7], which was decided by the

fact that MCs were composed of looping structures up to 4 vertex. At this point, the

latter part of the object function took the responsibility of controlling the length of

analyzed protein pathway with the aid of distinct settings of nonegative parameter

λ. Large λ made for limited proteins and short connections, and optimization result

was free to rope in proteins when λ = 0.

2.6 Interacted Pairs Inference for Protein without PPI

For those proteins have no canonical protein interaction supported, gene expres-

sion data conduced to providing indistinct mutual effects and pointing out candidate

proteins with which the separated proteins were closely bound up by the correlation

between pairs of genes.

13



2.7 Multiple Micro-array Data Based Differential Expression Score

As the matter of fact that the p-value of experimental gene expression data may

vary a lot by different experiment designs and operators, a good inferred protein

path is the one who gets rid of the destabilizing factors. Thus, multiple micro-array

data sets were employed here for error deduction.

14



3. RESULTS

3.1 Dysregulation of OCIAD2 in Different Cancers and Its Induction by TGFβ in

HCC and PC Cells

To determine the OCIAD2 expression, different available microarray studies were

analyzed by the Oncomine database and GEO gene microarray data analysis tools.

A significant down-regulation of OCIAD2 mRNA expression was found in liver can-

cer and gastric stroma carcinoma tissues. (P ¡ .001 in both cases) (Fig 3.1; Left)

based on Oncomine database analyses. With a GEO database, OCIAD2 expression

in metastatic prostate tissues, but not in primary tumor tissues, is clearly lower

than normal prostate gland. (P = 0.009) (Fig 3.1; Right; GSE6919). Frequently

down-regulated OCIAD2 expressions are also observed in CLL and malignant pleural

mesothelioma [5] and [6]. In glioblastoma, OCIAD2 expression is being silenced via

DNA methylation mechanism [7]. With the suggestion of the fact that OCIAD2 sub-

stantially unregulated in TGFβ1 treated pancreatic (GDS4106), lung (GSE17708)

and ovarian (GSE6653) cancer cells, weve tested the possibility of OCIAD2 expres-

sion inducted by TGFβ in HCC and PC cells. Human HCC and PC cell lines,

Hep-3B and Du-145, were treated with 5ng/ml TGFβ1, 2M LY2109761 and combi-

nation for 24 hr in serum free media, and OCIAD2 mRNA levels were determined by

quantitative real-time RT-PCR analysis. OCIAD2 mRNA has increased 2.5 and 4.6

fold in Hep-3B and Du-145 cells by TGFβ1 treatment respectively. This induction

was totally suppressed by TGFβ1 receptor inhibitor LY2109761 (Fig 3.1B).

15



Figure 3.1: Expression of OCIAD2 and its induction by TGFβ
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3.2 Potential Protein Pathway Prediction

Remarkable gene array profiles from GEO database indicated the expression of

OCIAD2 in several kinds of cancer, i.e., GDS3634 showed that OCIAD2 obviously

unregulated in prostate cancer cell line transfected with 20nM miRNA Presursor

Molecules miR-205. MiR-205 is selectively down-regulated in metastasic breast and

prostate cancer and suppresses metastatic spread of a human breast cancer xenograft

in nude mice. In addition to its function in the regulation of EMT, the loss of miR-205

in prostate cancer also reduced some tumor suppressor genes’ expression.

Mesenchymal stem cells (MSC), like other bone marrow-resident cells, have the

capacity to differentiate into fibroblasts-like cells that have been variably referred to

as: myofibroblasts, tumor-associated fibroblasts (TAF), fibrocytes or pericytes within

the tumor microenvironment [15]. Therefore, pbMOO approach was applied on both

prostate cancer cell line GDS3634 and liver cancer associated mesenchymal stem

cells GSE42357 gene expression data to study the possible molecular path involved

in OCIAD2 by TGFβ stimulation.

3.2.1 Pathways in Prostate Cancer

Based on experimental data GDS3634, miR-205 expression effect on prostate

cancer cell line, from NCBI public database browser, p-value of 8 samples Student

T-test Micro-array data was applied as the link cost for predicted paths. Searched

on the pathway bridge that has been enriched through prostate cancer pathways,

the top 10 out of 88 forecasted paths were picked for further biological meaning

verification (Table3.1). One reasonable forecast shown in Figure 3.2 was miR205-

PRKCE- CNA13- CDH1- PTPN14- OCIAD2. High correlated genes with OCIAD2

were distinguished as dashed lines (red for positive correlation and green for negative
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correlation). PRKCE, as one of the six target genes of miR205, was marked as the

green box. Among the pathway bridge that consisted of protein nodes (dashed

circles) and proteins interactions (green lines), a shortest protein path with least

DES cost was emphasized by red lines.

Suggested by the significant association between TGFβ1 and CDH1, pbMOO

Approach was employed again aiming at finding out how TGFβ affects OCIAD2

across CDH1 in prostate cancer. Interestingly, ”TGFβ1 influenced CDH1 across

SMADs” was observed after filtering the predicted protein paths and verified by

[16].

3.2.2 Pathways in Liver Cancer

By the analysis of GSE42357 gene expression data, genes like C5, AG7, SDC2,

FHL2, and etc., have been suggested to be the candidates of OCIAD2 by their tight

correlations with it. Significantly, those candidate genes all play important roles in

cancer related processes, for instant, C5 takes the responsibility in inflammatory and

cell killing processes [17] and FHL2 acts as both tumor-promoter or tumor-suppressor

depending on different types of cancer [18]. The calculated results of the approach

were paths with credibility cost, i.e. TGFβ1- TGFβR1- CLU- C7- C5- OCIAD2 (cost

0.233181). This pathway was fully explained by the fact CLU is a novel modulator of

TGFβ1 signaling pathway by regulating Smad2/3 proteins [19] and the well-known

protein interactions CLU- C7 and C7- C5.

3.3 Modular Mechanism Exploration

If a signaling transmission process, from extracellular through cytoplasm to nu-

cleus, results in upregulation or downregulation of genes in the cell, then transcription

0The less Cost, the more credible the pathway is.
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Table 3.1: Possible Protein Paths from miR205 to OCIAD2 in Prostate Cancer

No. Cost1

1 PTPN14 CDH1 G-113 PRKCE 0.152141
2 PTPN14 TJP1 GRIN1 PRKCE 0.165309
3 PTPN14 YWHAG TIAM1 PRKCE 0.182662
4 PTPN14 YWHAG SRC PRKCE 0.403788
5 PTPN14 JUP SRC PRKCE 0.505998
6 TAL2 MAPK3 PRKCE 0.513332
7 CAPN2 NFKBIA CUL1 E2F1 0.513761
8 PKP3 DSC2 JUP SRC PRKCE 0.571772
9 CAPN2 NMT1 LYN PLCG1 GRIN1 PRKCE 0.581042
10 CAPN2 NFKBIA SRC PRKCE 0.671004
11 PPP2R1B RELA COMMD1 CUL1 E2F1 0.680008
12 MYD88 IRAK2 HRAS GRIN1 PRKCE 0.755849
13 PPP2R1B RELA HDAC3 CCND1 NPDC1 E2F1 0.761167
14 CAPN2 CDK5R1 CHN1 0.775821
15 PPP2R1B SET KLF5 PRKCD YWHAG MDM4 E2F1 0.786134
16 PPP2R1B PPP2CA CCNG1 CDK5 CABLES1 CC-11 E2F1 0.80783
17 PPP2R1B RELA PARP1 E2F1 0.817619
18 MYD88 IL1RAP RAC1 CHN1 0.833815
19 MYD88 IL1RAP RAC1 TIAM1 PRKCE 0.871396
20 PPP2R1B SET SGOL1 XRCC6 CC-11 E2F1 0.903496
21 PPP2R1B RELA HDAC3 NRIP1 VDR CDK7 E2F1 0.92203
22 PTPN14 CDH1 IQGAP1 MAPK1 PRKCE 0.937152
23 MYD88 IRAK1 PRKCI SRC PRKCE 0.949189
24 PTPN14 CDH1 IRS1 MAPK1 PRKCE 0.980665
25 PPP2R1B RELA MYC GSK3B E2F1 0.997489
26 TAL2 MAPK3 MYC RBL1 E2F5 1.011626
27 CAPN2 NMT1 LYN MAPK3 PRKCE 1.026447
28 PPP2R1B HDAC1 PHB E2F1 1.030947
29 TAL2 TCF3 CREBBP E2F1 1.047172
30 PPP2R1B RELA HDAC3 PPARG NCOA6 E2F1 1.048389
...

...
...

...
...

...
...

...
...
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factor (TF) usually plays the downstream role in this signaling flow. Since OCIAD2

differentially expressed in prostate cancer cell line, liver cancer associated mesenchy-

mal stem cells, and especially in TGFβ treated Panc-1 pancreatic adenocarcinoma

cell line, the question how is OCIAD2 activated by TGFβ signaling was solved by

studying the probable transcription factor of OCIAD2 acting the downstream of

TGFβ signal.

Browsed Transcriptional Regulatory Element Database [9] with 30981 genes, 177

transcription factors of homo sapiens were picked out as background human tran-

scription factors library. The algorithm to find the possible transcription factors of

OCIAD2 in TGFβ treated signaling was divided into three main steps: first, pbMOO

approach was employed to calculate the costs of all the shortest paths between TGFβ

and human transcription factors; then the ones with the least costs and high correla-

tions with OCIAD2 in gene expression data were filtered out and selected as candi-

date transcription factors for OCIAD2; finally, biological TGFβ induced OCIAD2s

differential expression mechanism was concluded with literature verification.

3.3.1 Speculation of Human TF Enrolled in TGFβ Signal

As a fresh gene with rare reported property, the discovery of transcription factor

in TGFβ1 signal is the main issue in OICAD2 study. Among those 177 human

transcription factors, the ones with the least pathway cost, which was defined by

the sum of gene expression experimental pvalues of proteins on the pathway, are

the most credible TFs for OCIAD2. The start point of the pathway was chosen as

TGFβ1, and the end point was OCIAD2. All the pathway costs for those passing

through TFs were calculated by applying pbMOO approach and top of them were

listed in the following table3.2.
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Table 3.2: OCIAD2’s Transcription Factors Detection in TGFβ Signal

No. Cost
1 TGFB1 ITGAV ITGB1 ITGA3 FHL2 AR OCIAD2 0.022027
2 TGFB1 ITGAV ITGB1 FHL2 AR OCIAD2 0.024967
3 TGFB1 THBS1 PDGFB PDGFRB STAT4A OCIAD2 0.029893
4 TGFB1 THBS1 SPARC PLAT MAPK3 CAV1 AR OCIAD2 0.033335
5 TGFB1 VTN FGF2 CASP1 AR OCIAD2 0.035584
6 TGFB1 VTN SERPINE1 KRT18 RAF1 AR OCIAD2 0.036216
7 TGFB1 ACVRL1 XIAP TRAF6 CAV1 AR OCIAD2 0.047305
8 TGFB1 THBS1 LRP5 SMAD9 OCIAD2 0.062151
9 TGFB1 DCN EGFR AR OCIAD2 0.063297
10 TGFB1 TGFBR1 CAV1 AR TRIM24 RXRA PPARG OCIAD2 0.078664
11 TGFB1 TGFBR1 CAV1 AR PNRC1 RARG OCIAD2 0.081610
12 TGFB1 TGFBR1 CAV1 AR TRIM24 RXRA PPARG OCIAD2 0.081804
13 TGFB1 TGFBR1 CAV1 AR FHL2 WT1 OCIAD2 0.082158
14 TGFB1 TGFBR1 SMAD7 PIAS1 AR OCIAD2 0.083669
15 TGFB1 TGFBR1 SMAD7 PIAS1 MSX1 OCIAD2 0.08367
16 TGFB1 TGFBR1 SMAD7 HEYL SMAD9 OCIAD2 0.083735
17 TGFB1 TGFBR1 PIK3R1 PDGFRB STAT5A OCIAD2 0.083851
18 TGFB1 TGFBR1 PIK3R1 IL2RB STAT5A OCIAD2 0.083851
19 TGFB1 TGFBR1 CAV1 AR OCIAD2 0.086596
20 TGFB1 TGFBR1 CAV1 MAPK3 STAT5A OCIAD2 0.087053
21 TGFB1 TGFBR1 CAV1 AR HIF1A OCIAD2 0.08864
22 TGFB1 TGFBR1 SMAD7 OCIAD2 0.089536
23 TGFB1 TGFBR1 SMAD6 OCIAD2 0.089536
24 TGFB1 TGFBR1 CTNNB1 AR OCIAD2 0.09008
25 TGFB1 TGFBR1 CAV1 AR NCOA1 FOS USF2 OCIAD2 0.090869
26 TGFB1 TGFBR1 CAV1 AR NCOA1 FOS OCIAD2 0.093771
27 TGFB1 TGFBR1 CTNNB1 HIF1A OCIAD2 0.095064
28 TGFB1 TGFBR1 CTNNB1 MITF FOS OCIAD2 0.099917
29 TGFB1 TGFBR1 PAK1 CASP1 AR OCIAD2 0.10004
30 TGFB1 TGFBR1 CAV1 AR FOXO1 PPARG OCIAD2 0.106862
...

...
...

...
...

...
...

...
...

...
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3.3.2 Feasible TF of OCIAD2 in Cancer Cell Line

In this part, verification of the observation that AR might be the transcription

factor of OCIAD2 in TGFβ1 sigal, and SMAD group might enrolled this process,

was made in the light of gene expression data from both HCC and Prostate Cancer

cell lines.

Due to the fact that GSE42357 was gene expression comparison data between

liver cancer associated mesenchymal stem cells (LC8-MSC) and normal ones (LN8-

MSC) from the same patient, genes like OCIAD2 had only two experimental values

one for condition LC8-MSC and one for control LN8-MSC. The sample space was too

tiny for Pearson Correlation calculation. For better result, the distribution of the fold

change of each gene was plotted as the following Figure 3.3, and evidently, AR, which

had ten pairs of experiment data in the range [1.09315, 1.74845], highly differentially

expressed in HCC microenvironment. The fold change value of OCIAD2 in the

same array data is -0.377255, which implied that AR must have negative effect on

OCIAD2, in the other word, it should be the inhibitor of OCIAD2. Not like the top

obviously expressed genes with fold changes close to 3.0, the SMAD group showed the

relative lower differentially expression- most of them had slight positive changes less

than 0.1. However, SMAD4 with fold change 0.06034, SMAD2 0.4908 and SMAD3

0.02102 still survived as pathway proteins in pbMOO predictions, which were ignored

by other pathway analysis methods.

Analyzing the results (top 30 were detailed in Supplementary Table 1.3), two

interesting facts were observed: AR was shown with the highest frequency as the

transcription factor of OCIAD2 in 17 pathways out of the top 50, while STAT5A

was the second recurrent one that was the transcription factor of 10 pathways; AR

appeared 34 times, and SMAD group proteins appeared 16 times in the top 50
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pathways with lowest cost, in which other transcription factors had less occurrences.

The observation insinuated AR was the most reliable transcription factor of TGFβ1

signal induced OCIAD2, and SMAD group proteins had the closest relationships

with this signaling process.

In DU145 prostate cancer cell line with restored miR-205 expression, unfortu-

nately no data mapping with AR was found. However, this 8 samples experimental

data was still powerful to analysis how SMADs enrolled in OCIAD2 expression. As

the figure showed, SMAD4 had the largest expression value as well as the highest

negative correlation -0.696476 with differential expressed OCIAD2 among SMADs,

followed by SMAD2 with correlation value -0.595238 and SMAD6 -0.571429.

Figure 3.3: Transcription Factor Detection for OCIAD2

3.3.3 Mechanism of TGFβ Induced OCIAD2’s Expression

Analyzed the observations comprehensively on modular study and referred to

related literature, the signaling pathway from TGFβ1 targeting to OCIAD2 was

concluded as the Figure 3.4: the signaling transmits from TGFβ1- TGFβR1- AR-
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OCIAD2 in liver cancer mesenchymal stem cell, then differentiates into Tumor-

Associated-Fibroblasts (TAFs) in tumor stroma. As the only known mammalian

coSMAD, SMAD4 transfered signaling from cytoplasm to in TGFB signal. AR, the

symbol of androgen receptor, mainly functioned as a DNA-binding transcription fac-

tor that regulates target gene expression from cytoplasm into nucleus. Specifically,

the path TGFB1- TGFBR1- SMAD2/3- SMAD4 was reported in [20] and [21], and

TGFB1s influence on OCIAD2 through AR was also proved in [22].
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Figure 3.4: TGFβ Induced OCIAD2s Expression Mechanism
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4. MTB INDUCED CCL2 PATHWAY ODE MODEL DYNAMIC ANALYSIS

4.1 Background Introduction

4.1.1 Motivation and Experiments Design

Infection with Mycobacterium tuberculosis leads to recognition of the bacte-

ria/bacterial components by the macrophage surface receptors causing activation

of signaling cascades leading to pro-inflammatory response elicited by innate and

adaptive immunity. Pathogen recognition leads to activation of MAP kinases like

ERK1/2, JNK and p38 (Howard Yim 2011 PNAS) further terminating in activation

of transcription factors for e.g. NFkB and AP-1 that regulate expression of critical

cytokines like TNF-a, IL-6. IL-1b etc.

In order to understand the effect of mycobacterial tuberculosis induced signaling

in monocytes, we challenged THP-1 cells with sonicated Mtb antigen as follows:

a )THP-1 monocyte cells challenged with Mtb for 0, 5, 10, 15, 30, 60 and 90

minutes;

b) THP-1 cells+ Mtb incubated with PAR-1 inhibitor (SCH79797) for 0, 5, 10,

15, 30, 60 and 90 minutes;

c) THP-1 cells+Mtb incubated with exogenous MCP-1 for 0, 5, 10, 15, 30, 60

and 90 minutes.

In this thesis, we mainly focused on Mtb stimulated cells responses to exogenous

MCP-1 treatment comparing with Mtb alone treated cells.
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4.1.2 Experimental Result Observations

4.1.2.1 Cells Challenged with Mycobacterial Antigen Alone

Macrophages when exposed to Mtb activates various surface receptors to induce

expression of pro-inflammatory responses e.g. production of cytokines. Mtb stimula-

tion of the THP-1 cells lead to increased protein expression (40% more than control)

of EF4E, MEK1, NFKB, P38, P70SK, PDCD4, S6235 and S6240 as indicated in Ta-

ble 1. It was interesting to note that the increased expression of these proteins was

sustained with additional treatments like MCP-1 and PAR-1 addition (highlighted

in yellow in Figure 4.1). We also observed increased expression of cMYC and Cave-

olin protein in cells treated with Mtb alone. cMYC has been reported to regulate

anti-mycobacterial responses via induction of TNF-a and IL-6. Mycobacteria induce

Myc expression via activation of ERK1/2 and JNK1/2 and myc also increases NF-kb

pathway [23].
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Figure 4.1: Gene Expression in Different Groups of Cell Lines

Gene expression analysis shows that Mtb challenge led to increase in immune cell
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trafficking and inflammatory response. The genes were involved in pathways central

to tuberculosis pathogensis and host immune response including IL-6, IL-10 pathway,

TNF receptor signaling pathway, pathways involved in pattern receptor recognition

of bacteria and viruses and pathways involved in communication between innate and

adaptive immune cells and acute phase response signaling.

Using the Ingenuity pathway analysis (IPA) of the gene array we observed that

the Mtb challenge modulated various downstream genes that were involved in cell

migration and chemotaxis of immune cells. Gene profile also indicated decrease in

cell death and increase in cell survival. In addition to the downstream functional

analysis, IPA based on array expression data predicted activation of various up-

stream regulators like ERK1/2, IRF3, JUN, JNK, MAP2K 1/2, NFkB, p38 MAPK

and various Toll like receptors (TLR 2, 3,4, 9,8,7). Many of the predicted upstream

regulators of the differentially expressed genes were also present on the protein ar-

ray. Out of the predicted upstream regulators, RPPA data confirmed Mtb induced

enhanced activity of MAP2K 1 (MEK1), Nfkb and p38 MAPK (labeled as blue ar-

rows in Figure 4.2). Previous literature showed that CXCL10, MCP-1, IL-15 can

differentiate active TB patients for infected but not sick individuals. CXCL10 and

MCP-1 upregulated in our experiment.
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Figure 4.2: Proteins in RPPA List Analyzed by IPA

We observed that proteins activated by the Mtb antigen as obtained by RPPA

analysis: MAP2K 1 (MEK1), Nfkb and p38 MAPK, leads to the regulation down-

stream genes that were a part of top 5 networks from array IPA analysis: 1) cellular

movement and system development, 2) hematological development and inflammation

3) antimicrobial response. These proteins regulate signaling cascades like: TREM1

signaling, IL-6 signaling, Acute phase response signaling, IL-8, IL-17 and apoptosis

signaling.

Hence our RPPA data depict that early MTB stimulation of monocytes/macropahges

leads to p38 MAPK, NFkB and MAP2K activation. Microarray data supports this
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observation and shows that activation of these upstream elements likely via pattern

recognition receptors (like TLRs) will lead to induction of various acute phase re-

sponse molecules for e.g. IL1b, TNF, IL6, MCP-1/CCL-2 etc. It has been reported

that pro-inflammatory signals and other stimuli can lead to expression of matrix

metalloproteinases from macrophages in tuberculosis. TNFa has been shown to in-

fluence elevated levels of MMP-1 [24]. TLR8 was found to be up-regulated after Mtb

stimulation in the array results. TLR8 polymorphism has been associated with TB

and this gene has been reported to be up-regulated in the acute phase of the disease

[25].

4.1.2.2 Influence of PAR-1 Inhibitor on Mtb Challenged Monocytes

PAR-1 is a receptor for thrombin, plasmin, MMP-1 etc. Many studies in can-

cer biology have shown that MMP-1 can cleave PAR-1, activating it, leading to

downstream signaling influencing MMP-1 levels. Study by [26] showed that MMP-1

via PAR-1 influences levels of MMP-1, MCP-1 and MMP-9. Studies so far have

reported that MMP-1 acts via PAR-1 by activating signaling pathways like Rho-

GTPase, MAPK signaling [27] with molecules like p38, MEK1/2 and Akt [28] in

various cell types leading to diverse functions including cellular proliferation [29] and

invasion. While PAR-1 blockage by its inhibitor is expected to decrease the levels of

MMP-1, MMP-9 and CCL2 [30], the signaling pathways implicated in this process

are still not known in macrophages stimulated by tuberculosis. Upon receptor ac-

tivation by MMP-1, PAR-1 inhibitor has been shown to reduce the activity of p38,

MEK1/2 and Akt. In our RPPA data where the cells were simulated by PAR-1

inhibitor, we observed activation of MAP2K1 (MEK1), NFkB, p38 MAPK (Figure

4.1). We still confirmed the effect of PAR-1 inhibitor at the gene expression level by

microarray analysis and found downregulation of MMP-1, CCL2, CCR2 (receptor for
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CCL2), MMP-9 and TIMP3 (Figure 4.4). It is possible that Mtb stimulation leads

to activation of the above mentioned signaling molecules e.g. due to TNFa, IL-1b

etc. Based on the predicted upstream regulators by Ingenuity analysis of the array

data, it is possible that signaling molecules other than p38, MEK1/2 or NfkB may

influence MMP-1 levels via PAR-1 activation like Akt, JNK or ERK, as reported

in other PAR-1 studies (Figure 4.4). From our RPPA data, we gathered that phos-

phorylated AKT, JNK or ERK protein levels did not change across the time point

by PAR-1 treatment, which could potentially be due to PAR-1 inhibition leading to

reduced MMP-1 and MMP-9 gene expression. In order to determine the effect of

MMP-1 induced activation of PAR-1 signaling, we would need to perform further

experiments (experiments underway). Based on gene expression profile of genes In-

gentuity analysis also predicted inhibition of Akt, Ca+, JUN, ERK 1/2 and JNK.

The next step will be to explore these molecules for PAR-1 inhibition.
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Figure 4.4: Possible Signaling Molecules via PAR-1 influence MMP-1 by IPA

We found GSK3 protein to be activated in the cells with PAR-1 inhibitor. The

activity of GSK3 gets inhibited by phosphorylation at the N-terminal serine residues

[31]. It has been reported that mycobacterium inhibits GSK3 activity leading to
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IL-10 production. IL-10 is anti-inflammatory cytokine and suppresses IFN-g and

HLA-DR expression. Mycobacterium uses IL-10 as an evasion mechanism from host

immunity [32]. This study reported that live BCG was able to inhibit GSK3 lead-

ing to IL-10 upreguation. We observed that GSK3 phosphorylation, and in-turn

inhibition was high in cells stimulated by Mtb and treated with PAR-1 inhibitor.

GSK3 phosphorylation was observed in cells challenged with Mtb alone as well,

however, to a lesser extent. It will be interesting to further explore the role of MMP-

1, PAR-1 signaling of IL-10. GSK3 inhibition could also just a non-specific side

effect of SCH79797. As mentioned in the previos section, Mtb led to up-regulation

of TLR8 gene. Treatment with PAR-1 inhibitor led to its downregulation. TLR8

is located in the endosomal/lysosomal compartment of cells and lead to signaling

of pro-inflammatory cytokines and IFN. Since the up-regulation of TLR8 has been

associated with TB active disease, its reduced expression by PAR-1inhibition could

have important therapeutic implications. Also, IL-15 was found to be up-regulated

in cells treated with PAR-1. IL-15 has been found to be elevated in healthy con-

trol individuals compared to TB patients [33]. Functional analysis of downstream

genes in microarray with PAR-1 treated cells showed that mainly down-regulation of

various biological functions has occurred, for e.g. Recruitment of monocytes (down-

regulation of CCL13, CCL2, CCR2), reduced accumulation of macrophages (down-

regulation of CBS, CCL13, S100A9, CCL2, CCr2, IL1RN, VEGFA, SPP1 etc). IPA

analysis showed that PAR-1 inhibitor addition to stimulated cells leads to increased

biological functions like increased quantity of interferon, increased cell death and

atrophy.
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Figure 4.5: Stimulated Cells Responses to PAR-1 Inhibitor Addition by IPA

4.1.2.3 Influence of Exogenous MCP-1 on Mtb Challenged Monocytes

We found that addition of exogenous MCP-1 led to change in levels of around 25

proteins (40% more than expression than control in Mtb challenged monocytes. As

mentioned earlier, TLRs recognize bacterial ligands and induce immune response by

host cells. TLRs like TLR-1, 2, 3, 4 and 9 in macrophages induce pro-inflammatory

mediators like MCP-1. Induction of MCP-1 in human monocytes by M. tuberculosis

36



requires NF-kB, ERK, and p38 MAPK signaling. Inflammatory mediators like TNF-

1, IL-1B can also lead to induction of mcp-1 [34].

MCP-1 is a chemokine involved in trafficking of leukocytes to the site of inflam-

mation and also induces cytokine expression from monocytes (Martina Werle, 2002).

MCP-1 also induces expression of matrix metalloproteinases like MMP-1, MMP-9

[30] and MMP-2 [35] and [36] in various cells. Matrix metalloproteinases (MMPs)

degrade extracellular matrix and have been implicated in TB chronic pathology. Tis-

sue destruction associated with chronic TB may lead to spread of the mycobacterium

and disease progression. Polymorphisms in MCP-1 genes causes increased expression

of MCP-1 and associated with increase in MMP-1 levels, these factors may increase

susceptibility to develop TB [37]. MCP-1 increases MMP-1 levels in Mtb stimulated

cells of monocyte lineage [37] and [30]. In patients with active TB, a polymorphism

in the promoter of MCP-1 leads to elevated expression levels of this protein [38].

From the RPPA data we observed that addition of MCP-1 to the Mtb stimulated

cells led to activation of additional molecules like total AKT protein, JNK2, ERBB2,

PRKCA/PRKCD and other translation machinery related protein (EEF2, EIF4E,

RPS6KB1) etc. Activation of JNK2, AKT, P38, MEK1 by MCP-1 may lead to

increased expression of MMP-1 and MMP-9 as decipcted in Figure 4.1. MCP-1/CCL-

2 has been reported to play a role in autophagy. MCP-1 via PI3K/AKT dependent

signaling up-regulate surviving and leads to inhibition of autophagy in cancer cells

[39]. Autophagy is also critical in TB since it has been reported to be involved in

killing intracellular mycobacterium and regulating other pro-inflammatory cytokines

[40]. As depicted in Figure 4.6, exogenous MCP-1 added to stimulated cells may

further enahance mycobacterium survical by inhibition of autophagy. However, no

experimental evidence supports that so far. From our RPPA data we observe that
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exogenous MCP-1 addition leads to increased levels of AKT, P70Sk (RPS6KB1).

Figure 4.6: CCL2 Pathway in Mtb Simulated Cell

4.2 ODE Model for CCL2 Pathway

In order to dynamic study how MCP1/CCL2 signaling works in Mtb stimulated

cells, we built the Ordinary Differential Equations (ODE) model for CCL2 pathway.
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With the 10 proteins that available in RPPA data list, PLC, MEK, PI3K, ERK,

JNK, P38, AKT, mTOR, cMYC and P7OS6K were chosen as the components of the

CCL2 pathway ODE model.

4.2.1 ODE According to the Law of Mass Action

Assuming all the components are uniformly distributed and can access to each

other with equal probability, applying the Law of Mass Action, Equation 1 describes

the changes on the concentration of complex A due to binding (with rate a0) to the

complex pB and dissociation (with rate d0) from complex pA, i.e. A+pB
a0⇀↽
d0
pA+B.

dA

dt
= −a0 ∗ [A][pB] + d0 ∗ [pA] (4.1)

Similarly, the whole pathway model for CCL2 pathway model for Mtb stimulated

cells were presented by the following ordinary differential equations.

dCCL2Input
dt

= d1 ∗ [pCCL2Input] (4.2)

In this model, reactions ”CCL2-CCR2-G Proteins” were treated as a whole and

named CCL2Input, which had no up stream protein. Therefore, the only change of

the quantity of CCL2Input was the decomposition with rate d1.

dPLC

dt
= −k1 ∗ [pCCL2Input][PLC] + d2 ∗ [pPLC] (4.3)

The quantity change of PLC came from the association of pCCL2Input and PLC

with rate k1, and the dephosphorylation of pPLC with rate d2.

dMEK

dt
= −k2 ∗ [pCCL2Input][MEK] + d3 ∗ [pMEK] (4.4)
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The quantity change of MEK came from the association of pCCL2Input and MEK

with rate k2, and the dephosphorylation of pMEK with rate d3.

dPI3K

dt
= −k3 ∗ [pCCL2Input][PI3K] + d4 ∗ [pPI3K] (4.5)

The quantity change of PI3K came from the association of pCCL2Input and PI3K

with rate k3, and the dephosphorylation of pPI3K with rate d4.

dERK

dt
= −k4 ∗ [pPLC][ERK]− k5 ∗ [pMEK][ERK] + d5 ∗ [pERK] (4.6)

The quantity change of PI3K came from the association of pPLC and ERK with

rate k4, the association of pMEK and ERK with rate k5, and the dephosphorylation

of pERK with rate d5.

dJNK

dt
= −k6 ∗ [pPLC][JNK]− k7 ∗ [pMEK][JNK] + d6 ∗ [pJNK] (4.7)

The quantity change of JNK came from the association of pPLC and JNK with

rate k6, the association of pMEK and JNK with rate k7, and the dephosphorylation

of pJNK with rate d6.

dP38

dt
= −k8 ∗ [pMEK][P38] + d7 ∗ [pP38] (4.8)

The quantity change of P38K came from the association of pMEK and P38 with

rate k8, and the dephosphorylation of pP38 with rate d7.
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dcMY C

dt
= −k9 ∗ [pERK][cMY C] + d8 ∗ [pcMY C] (4.9)

The quantity change of cMY C came from the association of pERK and cMY C with

rate k9, and the dephosphorylation of pcMY C with rate d8.

dAKT

dt
= −k10 ∗ [pPI3K][AKT ] + d10 ∗ [pAKT ] (4.10)

The quantity change of AKT came from the association of pPI3K and AKT with

rate k10, and the dephosphorylation of AKT with rate d9.

dmTOR

dt
= −k11 ∗ [pPI3K][mTOR] + d10 ∗ [pmTOR] (4.11)

The quantity change of mTOR came from the association of pPI3K and mTOR

with rate k11, and the dephosphorylation of pmTOR with rate d10.

dP70S6K

dt
= −k12 ∗ [pmTOR][P70S6K] + d11 ∗ [pP70S6K] (4.12)

The quantity change of AKT came from the association of pPI3K and AKT with

rate k12, and the dephosphorylation of AKT with rate d11.

dMMPs

dt
= −k13∗[pcMY C][MMPs]−k14∗[pJNK][MMPs]−k15∗[pAKT ][MMPs]

(4.13)

The system output was defined as the quantity change of MMPs (the MMP family

including MMP − 1 and MMP − 9), which came from the associations of pcMY C

and MMPs with rate k13, pJNK and MMPs with rate k14, and pAKT and MMPs

with rate k15.

41



4.2.2 Parameters Initialization

There were 10 RPPA available proteins in the system model, 11 dephosphoryla-

tion parameters and 15 association parameters in total. RPPA experimental data

were normalized by dividing the original values at time zero. At time zero, all the

proteins value were equal to RPPAN0 = RPPA0

RPPA0
= 1. Hence, the initial values of all

the proteins in the system model were set to be 1. The system input, CCL2Input,

was also set as 1, in order to find the group of parameters when all the proteins

initialized on the same level.

RPPANi
=
RPPAi
RPPA0

, i = {0, 3, 10, 15, 30, 60, 90}min (4.14)

4.2.3 Solutions Optimization and Fitness

The system mean square error(MSE) was defined as the second moment of the

differences between the estimated values and experimental data.

MSE =
1

nt

n∑
i=1

t∑
j=1

(R̂ij −Rij)
2 (4.15)

Where n was the total number of proteins enrolled in the system pathway model,

and t was the number of RPPA experiment time points, in our case n = 10 and t = 7.

Then, an optimization process was employed to finding the group of parameters best

fitting the experiment data, in the other word, the system parameters with the

minimum MSE (MMSE) value, and the objective function was defined as:

MMSE = argminMSE = argmin
1

nt

n∑
i=1

t∑
j=1

(R̂ij −Rij)
2 (4.16)

Solving the group of differential equations by genetic algorithm (GA) with 200
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generations on Matlab, the optimized estimation values for the proteins in the model

comparing with the normalized experimental RPPA data were shown as the following

Figure 4.9. The fitness of the optimization process with 200 generations for CCL2

pathway model was presented as Figure 4.10. And the best estimated system had

the minimum MSE MMSE = 0.008425.

Figure 4.9 showed that the estimations of PLC, PI3K, P38, MTOR, MEK, JNK

and AKT were fitting the experimental data well. The other 3 out of 10 total pro-

teins, i.e, cMYC, ERK and P70S6K did not match the experiment values exactly.

The reason was those three proteins all had sharp changes in the first few minutes

that they increased/decreased rapidly in the first 5 minutes and suddenly reversed

their direction in the next few minutes. This made the total system MSE focused

optimization hard to track their rapid changes. The genetic algorithm performed

better in tracking relative long term tendency and global optimization for groups of

parameters than those specific 5-min reversing points. Eventually, 7 out of 10 esti-

mations fitting the experimental data guaranteed the reliability of the ODE pathway

model.
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Figure 4.9: ODE Solutions vs. Experimental Data
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Figure 4.10: CCL2 Pathway ODE Model Parameters Fitness

4.3 Sensitivity Analysis of CCL2 Signaling Pathway

Sensitivity analysis can tell how the model output changing with the input or

structures variation. Hence, it can further identify the significant and redundant

parts of the model structure.

The sensitivity was defined as the ration of system output change rate and pa-

rameter change rate.

S =
∆Output

Output
/

∆Parameter

Parameter
(4.17)

The parameter sensitivity quantitatively told the significance of the related signal

transmission. A sensitive parameter represented a main signaling path that affecting
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the system output much.

In CCL2 pathway model, a 100 parameter change rate was employed in testing

the parameter sensitivity and the results were listed as Figure 4.11. Increased each

parameter in turn by 100 times, the changes of the system output were plotted as

the blue columns. Comparing to the other parameters changing the system output

with nearly 0% and regardless of parameters (k13, k14, k15) without RPPA data and

directly assigned to system output, (k6, k9, k10) and (d6, d8, d9) were proved to be the

most sensitive parameters for the CCL2 pathway, and obviously represented the top

important links and nODE in the pathway ODE model. That meant the associations

of pPLC − JNK, pERK − cMY C, and pPI3k − AKT , the dephosphorylation of

pJNK, pcMY C and pAKT were the most important processes of the CCL2 signaling

in Mtb stimulated cell.

Figure 4.11: Output Changes When Parameter Increased 100 Times
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To further determine the identification of the parameters, the coefficient of vari-

ation (CV), defined as the ratio of standard deviation to the mean, i.e., Cv = σ
µ
,

was employed the 26 system parameters. When a given parameter with coefficient

of variation grater than 1, the parameter was unidentifiable, and vice versa. From

Figure 4.12, the coefficients of variation were all less than 1. Hence, the parameters

of ODE model for CCL2 pathway were all identifiable.

Figure 4.12: Coefficient of Variation Analysis of Parameters

4.4 Model Robustness Analysis

To investigate the robustness of the model, the most sensitive parameters (k6, k9, k10)

and (d6, d8, d9) were selected to test the system responses to parameter variations,

while other parameters were fixed.

Figure 4.13 described the changes of system output related to 100.1, 102, 105, 1010, 10100

fold variations of the key parameters. The results showed that the system slightly

adjusted its outcomes as the responses to dephosphorylation parameters change in
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the range [100.1, 102] and association parameters change in the range [100.1, 105],and

then kept stable as the parameters continuously increasing. Thus, the CCL2 path-

way ODE model was comparably robust with relatively large ranges of parameter

variations.

Figure 4.13: System Model Robustness Analysis
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4.5 System Perturbation and Drug Treatment Prediction

To study the system responses to over expression or inhibition of the proteins, the

perturbation process by increasing/decreasing initial value of each protein slightly

was employed, and the system outcome changes were represented as Figure 4.14.

When increased JNK by 1%, the system gave the strongest response than to other

proteins and relatively increased output by 0.002%, which was followed by cMYC

with 0.00014% and PLC with 0.00013% system output changes. Hence, JNK, cMYC

and PLC were the most significant modules in the CCL2 pathway ODE model that

affecting the system outcome much. The discoveries also suggested that the drug

treatment targeting on JNK, cMYC and PLC could be the most effective therapy

for preventing Mtb infections.

Figure 4.14: System Outcome Changes by Perturbation
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5. SUMMARY

In this study, a bioinformatics approach was developed to demonstrate that a

novel and function unknown protein, Ovarian Carcinoma Immunoreactive Antigen-

like protein 2 (OCIAD2), is probably regulated by TGFβ and AR signals in the

tumor EMT process. OCIAD2 is an immunoreactive antigen and its functions and

involved pathways, molecular mechanisms have never been reported. Current pop-

ular signaling analysis tools like IPA [12] are focusing on the highest differentially

expressed genes with sufficient literature supported, but have nothing to do with

novel signatures such as OCIAD2. Moreover, as the comprehensive analysis of wide-

field database, the output pathways of those tools can hardly be specific for an

interesting stimulation or disease. By predicting the modular signaling mechanism

from the given ligand to the pointed signature, the pbMOO approach successfully

answered the question how the observed signature gene OCIAD2 got involved in

ligand TGFβ stimulation signal, overcoming the insufficiency of previous reports of

new gene OCIAD2 and detailing the predicted pathways into the tumor microenvi-

ronment.

Loss of cell adhesions or polarity is widely associated with CDH1 (E-cadherin).

This process, referred to as EMT, enhances motility and invasiveness of many cell

types and is often considered as a prerequisite for tumor infiltration and migration.

TGFβ mediated induction of EMT processes is associated with specific stages of

morphogenesis and during tumorigenesis by activating downstream signaling path-

ways in both Smad-dependent and -independent mechanisms. The up-regulation of

OCIAD2 expression by TGFβ stimulation, and downregulated OCIAD2 expression

in metastatic prostate tissues, made us to postulate that OCIAD2 played roles in
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TGFβ promoted tumor cell migration, invasion and mobility. Indeed, OCIAD2 has

been enrolled in TGFβ signal across CDH1 by pbMOO Approach in prostate cancer

cells which potently testified our postulation that OCIAD2 could act as a downstream

effector of TGFβ signals. In our predicted path, SMAD4 had the largest expression

value as well as the highest negative correlation -0.696476 with differential expressed

OCIAD2 among SMADs families. Previous study reported that Smad3/4 cooper-

ated with Snail1 acted as co-repressors of CDH1 in the EMT process [41]. Since

there lack protein interaction information related with OCIAD2, future biological

assay need to investigate potential relationships between CDH1 and OCIAD2 in tu-

mor EMT. In addition, smad signaling is required to maintain epigenetic silencing of

some key EMT related proteins in breast cancer progression [42]. Because OCIAD2

frequently methylated in some kinds of cancers [5], [6] and [7], we speculate that ac-

tivated TGFβ-Smad signaling provides an epigenetic memory to maintain silencing

of OCIAD2 in EMT as well. Thus, disruption of TGFβ-Smad4-OCIAD2 signaling

may be a useful therapeutic strategy to target tumor progression.

With pbMOO approach, a new pathway TGFβ1- TGFβR1- AR- OCIAD2 in liver

cancer mesenchymal stem cell was predicted, which will differentiate into Tumor-

Associated-Fibroblasts (TAFs), one of the major components of tumor stroma. Stromal-

epithelial crosstalk regulates all phases of cancer metastasis. In prostate cancer,

Androgen signaling is central to stromal-epithelial cross-talk in tumor progression.

Tissue-based studies of human prostate cancer have shown that stromal AR expres-

sion and transcriptional activity downstream of the AR are lower in stromal cells de-

rived from carcinomas. Androgen Receptor (AR) may promote hepato-carcinogenesis

or suppress HCC metastasis. These opposite roles of AR also occur in prostate can-

cer [43]. The potential mechanisms for the AR dual roles are possibly caused by
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the differential AR signals in different cellular types: having an oncogenic role in

stroma and epithelial cells, but a suppressive role in basal intermediate epithelial

cells. As DU-145 is an AR-independent cell lacking of AR protein expression, the

predicted path from AR to OCIAD2 in prostate cancer can’t be guaranteed. Further

biological experiments are still needed to explore the existence of pathway TGFβ-

Smad4-OCIAD2 signaling in AR-dependent cell models as well.

The signal from TGFβ, via the AR, play a critical role in the deregulation of

TGFβ signaling in prostate and/or liver tumorigenesis and that TGFβ effectors

(Smads 3 and 4) serve as negative regulators of AR-mediated transcription in cancer

cells has been established by several investigations [44]. With pbMOO approach,

poMOO, a functional unknown protein, OCIAD2, was also enrolled into a signal

pathway TGFβ1- TGFβR1- SMAD2/3- SMAD4- AR- OCIAD2 in tumor and ad-

jacent microenvironment. Currently, clinical studies using anti-androgens had dis-

appointing results, with few beneficial effects on patients, or even worse survival.

Understanding the molecular mechanisms of AR in tumor microenvironment will

undoubtedly further improve the results obtained with antitumor therapeutic strate-

gies.

By dynamic analyzing the CCL2 pathways in MTB infected cell lines within

ODE model, model parameter sensitivity analysis revealed that the associations of

pPKC − JNK, pERK − cMY C, and pPI3k − AKT , and the dephosphorylation

of pJNK, pcMY C and pAKT played key roles in the CCL2 signaling of Mtb stim-

ulated cell, which strongly supported our suggested pathways in Figure 4.6 that

MCP1/CCL2 enhanced MMPs via ERK, JNK, and AKT signaling pathways. Fur-

ther more, the system dynamic responses to the perturbation of each protein showed

that JNK, cMYC and PLC were the most significant modules that dominated the
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concentration of MMPs as the system outcome much more than others. Hence, drug

therapies targeting on the inhibitions of JNK, cMYC and PLC could be the most

effective treatment for frustrating the MMPs increasing in MCP-1/CCL2 induced

Mtb cells and further preventing Mtb infections.
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