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ABSTRACT 

 

Recent climatic change projections have increased scientific and public attention 

on the issues relating to carbon cycling patterns, its controls, and the importance of 

ecosystems in the cycling and sequestration process.  Global carbon studies, however, 

primarily have focused on dry land ecosystems that extend over large areas and have not 

accounted for the relatively small and scattered, though highly carbon rich, ecosystems 

such as mangrove swamps and salt marshes.  Using data from a Spartina alterniflora 

dominated salt marsh in Galveston, Texas this study integrates remote sensing data 

(multispectral and Light Detection and Ranging - lidar) with field measurements for the 

quantification of carbon pools in salt marsh ecosystems.   

Findings in this study show the capability of remote sensing data for the 

characterization of salt marsh terrain and vegetation heights and the estimation of above-

ground biomass quantities.  The best biomass prediction models using lidar heights 

reported considerably low errors, i.e. the percent root square errors (% RSEs) are close 

to 20%, which is the recommended error threshold for remote sensing based forest 

biomass prediction models.  Our findings also demonstrate that lidar as compared to 

spectral data can provide better estimates of above-ground biomass and carbon, even in 

the herbaceous and low-relief context of a salt marsh.   

A clear zonation of terrain, vegetation characteristics and the distribution of 

biomass quantities within the marsh extent was also observed.  Distribution of biomass 

quantities revealed linkages with the elevation.  Variations in soil properties (i.e. carbon 
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and bulk density) in the soil profile were linked to the temporal changes in soil carbon 

accumulations on the marsh surface, relative sea level history and resulting vegetation 

transitions as corroborated by historical aerial images.  In general, the amounts of soil 

carbon stored in recently established Spartina alterniflora intertidal marshes were 

significantly lower than those that have remained in situ for a longer period of time.  

These findings indicate that, even though salt marshes can respond to relative sea level 

rise by migrating landward, their status as a carbon sink varies as a function of both 

space and time.  Thus, in order to predict carbon in a wetland, researchers need to know 

not only the elevation, the relative sea level rise rate, and the accretion rate – but also the 

history of land cover change and vegetation transition.   

Findings of this study contribute to carbon quantification efforts in these 

vulnerable ecosystems.  Further, these findings will also contribute to the increased 

understanding of the capabilities of remote sensing datasets and techniques for the 

quantification of these important carbon stocks. 
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1. INTRODUCTION  

 

Coastal salt marshes provide a wide range of ecosystem services.  One of these 

services is their ability to sequester atmospheric carbon dioxide, through mechanisms of 

high plant biomass production, ongoing sedimentary carbon deposition, and relatively 

low decay rates (Choi et al. 2001).  Recent climatic change projections have increased 

scientific and public attention on the issues relating to carbon cycling patterns, its 

controls, and particularly the status of an ecosystem in the cycling and sequestration 

process.  Global carbon studies, however, primarily have focused on dry land 

ecosystems that extend over large areas and have not accounted for the many small, 

scattered carbon-storing ecosystems such as mangrove swamps and salt marshes (Atjay 

et al. 1979; Olson et al. 1983).  Terrestrial and marine environments are currently 

absorbing about half of the carbon dioxide that is emitted by fossil-fuel combustion 

(Schimel et al. 2001) and act as a substantial sink for atmospheric carbon dioxide.  

Coastal wetlands, including salt marshes, cover less than 1% of the Earth surface (Duarte 

et al. 2005; Nellemann et al. 2009), yet comprise approximately 25% of the global soil 

carbon sink (Chmura et al. 2003).  They are among the most productive ecosystems on 

earth (Castillo et al. 2010) and thus, play an important role in global carbon cycle (Dixon 

1995).  In general, their rates of carbon sequestration are an order of magnitude higher 

than that of comparably-sized rainforests (Bridgham et al. 2006; McLeod et al. 2011; 

Nellemann et al. 2009).  However, findings of previous studies in coastal salt marsh 

environments highlight remarkable variations in their biomass accumulation rates, 
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indicating uncertainties in their carbon sequestration rates, both spatially and temporarily 

(Mcleod et al. 2011; Mendelssohn and Morris 2000; Castillo et al. 2010).   

Productivity of salt marshes is also recognized as a primary indicator of 

ecosystem health (Leibowitz and Brown 1990).  However, over the past decades, a rapid 

decline in their health as well as spatial extents (Bridgham et al. 2006) have created a 

need for better understanding these carbon pools and their roles in the ecosystem 

functioning.  Recent reports by the United Nations Environment Program (Nellemann et 

al. 2009) and the International Union for the Conservation of Nature (Laffoley and 

Grimsditch 2009) have stimulated international interest in the carbon stored in tidal salt 

marshes and other coastal ecosystems.  These reports further highlight threats to the 

sustainability of these ecosystems.   

As intertidal systems, coastal salt marshes are threatened by increasing sea level 

rise resulting from global warming.  Rising sea levels require that marsh soils accrete 

vertically to maintain their position in the tidal frame (DeLaune et al. 1983, 1987; 

Warren and Niering 1993; Morris et al. 2002; Stralberg et al. 2011).  A major factor in 

marsh accretion and migration of marsh vegetation to adjacent land areas is the plant 

vegetative growth (McCaffrey and Thomson 1980; Nyman et al. 2006), which is also 

responsible for atmospheric carbon dioxide sequestration.  However, in many areas, the 

marsh vegetation that is responsible for maintaining their surface elevations through 

vertical accretion may not survive increased flooding periods and submergence will 

result in the loss of formerly productive low marsh (DeLaune et al. 1983; Kirwan and 

Temmerman 2009; Cahoon and Reed 1995).  In some areas local subsidence due to 
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geologic faults activated by anthropogenic activities, including extraction of sub surface 

hydrocarbons (White and Morton 1997) and ground water (Holzer and Galloway 2005) 

have aggravated the submergence and thus the loss of salt marshes.  Further, these 

resource rich environments have increasingly attracted anthropogenic development in 

these coastal environments resulting further loss of marshes (Silliman et al. 2009).  

These changing environments over the past decades therefore, have collectively built up 

increased pressure on these coastal environments and threaten the permanence or 

sustainability of the marsh and the carbon it stores.  Therefore, it is essential to 

determine their sustainability and permanence as carbon sinks.   

Because of the challenge that climate change presents to these environments, 

these wetland ecosystems have received increased research attention, particularly to 

investigate their roles as global carbon sinks. The vast majority of wetland carbon 

estimates however, has provided only site-specific findings based on small-scale field 

experiments and have been dependent on specific methods that were used to quantify 

biomass (Bridgham et al. 2006).  However, the increased heterogeneity and large spatial 

gradients within salt marshes and the remarkable temporal variations in salt marsh 

biomass accumulation rates hinder our ability to draw generalizations based on these 

local scale site-specific findings (Chapin et al. 2006; Davidson and Finlayson 2007).  

Still, several studies have attempted to draw regional generalizations based on site-

specific findings of wetland productivity and biomass (Donato et al. 2011) while some 

other studies provide global to regional scale estimates on salt marsh productivity and 

carbon accumulation rates using meta-analyses of published data and records (Chmura et 
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al. 2003; Bridgham et al. 2006; Komiyama et al. 2008, Sahagian and Melack 1998; 

Kauffman et al. 2011).  However, Bridgham et al. (2006) showed that uncertainty 

around such estimates to be greater than 100%, mainly due to the greater dependency of 

carbon estimates on the methods applied.  This situation therefore demands 

methodological approaches to be used in quantitative assessments of salt marsh 

vegetation characteristics, biomass production and carbon accumulation rates. Further, 

these methods should be applicable at different spatial scales as well as over different 

time periods to enable comparisons across space and time, and also to make accurate 

generalizations over larger spatial and temporal scales.   

On the other hand, field-based techniques are labor and time intensive.  Further, 

the inherent heterogeneity and difficulty for direct access of these coastal salt marshes 

limit the applicability of field estimates for studies at larger spatial and temporal scales.  

The increasing availability of remote sensing data and techniques over the recent past 

provides rapid and non-destructive approaches for quantitative assessment of vegetation 

structural properties, biomass, and thus their carbon dynamics.   

In this context, it is important to understand the capabilities of innovative 

methodological approaches that can integrate field estimates with the remote sensing 

data and techniques to be used in these less accessible and highly heterogeneous and 

dynamic salt marsh environments.  Such approaches, once developed, could be verified 

for their accuracies over different areas and at varying spatial and temporal scales.  

These approaches will then be applicable at regional to global scales and over different 
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time periods, and therefore will be capable of capturing both spatial and temporal 

dynamics of these carbon stocks.   

The buried carbon in the sediments of intertidal wetlands, including salt marshes, 

which is often referred to as “blue carbon,” is also recognized as a significant carbon 

sink.  Previous studies indicated that wetland soils are sequestering nearly 4.8–87.2 Tg C 

per year globally (Chmura et al. 2003; Duarte et al. 2005; McLeod et al. 2011).  Thus, 

for a proper understanding and quantification of carbon in the salt marshes, the patterns 

in the below-ground carbon distribution must also be considered together with the 

above-ground parts for at least two important reasons.  First, a number of studies on 

Spartina spp. indicate that the below-ground biomass and productivity may surpass that 

of the above-ground parts (Roman & Daiber 1984, Schubauer & Hopkinson 1984, 

Groenendijk & Vink-Lievaart 1987, Lana et al. 1991).  Second, the microbial processes 

in the below-ground environment are closely linked to the functioning of the marsh 

vegetation (Howarth 1993; Reddy et al. 1998, Mendelssohn et al. 1981; Lindau & 

DeLaune 1991).   

Within this context, using data from a Spartina alterniflora -dominated salt 

marsh in Galveston Texas, this study evaluates the capabilities of integrating remote 

sensing data (multi-spectra and lidar) with field measurements for the quantification of 

carbon pools in salt marsh ecosystems.  The first part of this dissertation (Chapter 2) 

presents a new methodological approach using lidar and multispectral remote sensing 

data to evaluate their capabilities to provide accurate estimates on salt marsh terrain, 

vegetation height, cover, and above-ground biomass and carbon quantities.  The later 
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part (Chapter 3) focuses on the spatial patterns in distribution of Spartina alterniflora 

vegetation characteristics and above-and below-ground carbon quantities.  Further, the 

linkages between the temporal changes in the spatial distribution of salt marsh 

vegetation observed in remote sensing images and the patterns of changes in sediment 

characteristics along different depths of the soil profile were also evaluated.   

The overall objective of this study was to evaluate the increased capability of 

integrating remote sensing data and techniques with field measurements for quantifying 

salt marsh carbon stocks.  The findings of this study contribute to carbon quantification 

efforts in these vulnerable ecosystems.  Findings of this study will also enhance the 

understanding of the capabilities of remote sensing datasets and techniques for the 

quantification of these important carbon stocks.   
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2. SALT MARSH TERRAIN AND VEGETATION CHARACTERISTICS, AND 

ABOVE-GROUND BIOMASS ESTIMATES: A DATA FUSION APPROACH USING 

LIDAR AND MULTISPECTRAL REMOTE SENSING DATA* 

 

2.1 Overview 

Herbaceous salt marshes are among the most productive ecosystems on earth.  

Unfortunately, quantification of the above-ground portion of biomass using passive 

optical remote sensing is constrained by the complexities of mixed spectral appearance 

in the water-land environment.  Lidar remote sensing, on the other hand has been 

extensively used to estimate forest biomass, and a few studies have reported their use in 

characterizing short or herbaceous plants.  However, no empirical studies have 

demonstrated the combined use of lidar and spectral data to quantify above-ground 

biomass in herbaceous environments, including salt marshes.  Thus, the findings of this 

study will contribute substantially to the understanding of potentials and limitations of 

using lidar and multispectral data for vegetation characterization and biomass estimates 

in salt marshes and other similar herbaceous environments.  This study, evaluated the 

increased capability of a data fusion approach using small footprint discrete return lidar 

and multispectral data to quantify above-ground biomass and thus, carbon stocks in salt 

marshes.  The specific objectives of this study were to: 1) understand the interaction 

                                                 

* Reprinted with permission from “Fusion of lidar and multispectral data to quantify salt marsh carbon 
stocks” by Kulawardhana, R. W., Feagin, R.A and Popescu, S. C., 2013. Remote Sensing of Environment 
(Special Issue on Remote Sensing of Vegetation Structure, Condition, and Function). Copyright 2013 from 
Elsevier. 
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between discrete-return airborne lidar data and marsh vegetation characteristics; 2) 

determine the appropriate grid size/s of lidar-derived datasets for characterizing salt 

marsh terrain and vegetation; 3) investigate the applicability of a number of lidar metrics 

to predict salt marsh vegetation height and above-ground biomass; and 4) to evaluate the 

utility of integrating multispectral imagery with lidar to improve the predictability of the 

regression models for quantifying salt marsh above-ground biomass and carbon.   

Our results showed that lidar derived Digital Terrain Models (DTMs) in a grid 

spacing of 5mx5m, provided the best accuracy in terrain elevation estimates with an 

RMSE of less than 10cm.  Regardless of the metrics used, lidar-measured heights 

underestimated field vegetation heights, which is consistent with the findings of previous 

studies in short or herbaceous vegetation.  The fusion of lidar with multispectral data 

improved model predictions of live, dead, and total biomass quantities.  The 

improvement provided by the fusion over the use of lidar or multispectral data alone was 

marginal.  However, the best biomass prediction models reported considerably low 

errors.  For example, % RSE for the biomass prediction model using lidar-derived 

maximum vegetation height (Lmax) was closer to 20%, which is the recommended error 

threshold for remote sensing based forest biomass prediction models that can be 

repeatedly applicable for estimating forest carbon stock change.  Thus, the findings of 

this study demonstrate that lidar as compared to spectral data can provide better 

estimates of above-ground biomass and carbon, even in the herbaceous and low-relief 

context of a salt marsh.   
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2.2 Introduction 

Recent climate change projections have increased scientific and public attention 

on carbon cycling and the sequestration of carbon by specific ecosystems.  Coastal 

wetlands, including salt marshes, cover less than 1% of the Earth surface (Duarte et al. 

2005; Nellemann et al. 2009), yet comprise approximately 25% of the global soil carbon 

sink (Chmura et al. 2003).  Salt marshes are among the most productive ecosystems on 

earth (Castillo et al. 2010) and play an important role in global carbon cycle (Dixon 

1995).  In general, their rates of carbon sequestration are an order of magnitude higher 

than that of comparably-sized rainforests (Bridgham et al. 2006; McLeod et al. 2011; 

Nellemann et al. 2009).  However, these rates vary considerably, both spatially and 

temporarily.  In their extensive review on salt marsh biomass, Castillo et al. (2010) 

highlight remarkable variations in salt marsh biomass accumulation rates and thus 

suggest studies that can capture this variation.  Moreover, the rapid decline in the extent 

and health of these herbaceous wetland ecosystems (Bridgham et al. 2006) has created a 

need for better understanding of their carbon pools and roles in the ecosystem 

functioning.   

Global-scale carbon studies however, have primarily focused on dry land 

ecosystems that extend over large areas and have not accounted for the many small, 

scattered carbon-storing ecosystems such as salt marshes (Ajtay 1979; Olson et al. 

1983).  Although the estimates of the carbon in salt marshes exist, the uncertainty around 

these estimates remain as high as greater than 100%, mainly due to differences in the 

methods applied (Bridgham et al. 2006) and thus lack comparability across time and 
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space.  Field-based techniques for estimating vegetation height, cover, biomass and 

carbon are labor and time intensive and are not effective at larger scales.  Further, the 

remarkable spatial and temporal variations in salt marsh biomass accumulation rates 

hinder our ability to draw generalizations based on local scale, site-specific findings.  In 

contrast, the increasing availability of remote sensing data and techniques provides rapid 

and non-destructive approaches for quantitative assessment of vegetation structural 

properties, biomass, and thus their carbon dynamics.  More importantly, these 

approaches are applicable at regional to global scales and over different time scales, and 

therefore capable of capturing both spatial and temporal dynamics of these carbon 

stocks.   

Recent developments in laser scanning altimetry (also known as lidar – Light 

Detection and Ranging) have made it an important new data source for the study of 3-D 

structure of surfaces at sub-meter precision (Baltsavias 1999; MacMillan et al. 2003; 

Rango et al. 2000).  Unlike satellite-based remote sensing, lidar missions can be flown at 

almost any time and in most weather conditions providing spatially and temporally 

continuous datasets.  Their laser penetration characteristics present advantages over high 

resolution passive optical remote sensing data, particularly for the vertical 

characterization of vegetation (Lefsky et al. 2002).  Lidar remote sensing has been 

intensively researched in forestry for estimating tree heights and correlations have been 

established between field-measured and lidar-estimated tree heights that explain 64% to 

99% of the variance in tree heights (Straatsma & Middelkoop 2006).  Parameters related 

to forest density, such as stem number (Lefsky et al. 1999; Næsset and Bjerknes 2001), 
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stem diameter (Drake et al. 2002 ; Næsset 2002), timber volume (Nilsson 1996) or basal 

area (Means et al. 1999) have also been predicted (r2=0.42–0.93) using different lidar 

variables.  Further, these lidar-derived variables relating to vegetation structural 

properties have been used extensively in biomass predictions of woody vegetation 

(Boudreau et al. 2008; Lefsky et al. 2005; Popescu et al. 2011), including mangroves 

(Simard et al. 2008).  Lefsky et al. (2002) and Lim et al. (2003) provide reviews on 

airborne laser scanning of forests, while Zolkos et al. (2013) provide a meta-analysis of 

more than 70 papers on remote sensing of terrestrial above-ground biomass estimates 

with specific attention to the use of lidar in forest biomass estimates.   

Compared to the extensive use of lidar in forestry, little progress has been 

reported in their applications in vegetation characterization of relatively short 

herbaceous vegetation.  The limited use of lidar in these environments could be 

attributed to two main reasons.  First, dense vegetation with higher canopy closure limits 

laser penetration to the ground, making estimates of terrain and thus vegetation height 

challenging and less accurate (Chassereau et al. 2011; Hopkinson et al. 2005).  Second, 

relatively short vegetation and low variation in vegetation height and canopy 

characteristics demand data with high accuracy and detailed information content for 

achieving greater levels of relative accuracies in predicting vegetation characteristics 

(Rosso et al. 2006; Wang et al. 2007).  Regardless of these limitations, promising results 

have been reported for estimating terrain as well as vegetation height and cover related 

variables of relatively short plants using lidar.  For example, ground height biases of up 

to 20 cm have been observed for wetland and riparian vegetation cover (Bowen and 
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Waltermire 2002; Töyrä et al. 2003); vegetation height estimates derived using 

waveform lidar data have been shown to agree well with field measurements over 

relatively arid grass and shrub land areas (Ritchie et al. 1996; Weltz et al. 1994); and 

other studies have predicted heights of relatively short vegetation in croplands 

(Davenport et al. 2000), grass- and shrub-dominant river floodplains (Cobby et al. 2001; 

Hopkinson et al. 2005; Hopkinson et al. 2004; Straatsma and Middelkoop 2007), and 

sagebrush-dominant rangelands (Sankey and Bond 2010; Streutker and Glenn 2006).  

However, these studies do not agree on a single laser-derived statistic to predict 

vegetation height or cover.  For example, Davenport et al. (2000) used the standard 

deviation within a local window as the predictor of vegetation height for agricultural 

crops, while Cobby et al. (2001) and Hopkinson et al. (2004) used it for aquatic grass 

and shrubs.  Moreover, regression equations established in these studies varied greatly; 

Cobby et al. (2001) used a log-linear regression, which did not provide satisfactory 

results on the data of Hopkinson et al. (2004); the slope of the regression equation of 

Hopkinson et al. (2004) was three times higher than the one from Davenport et al. 

(2000).  In a different study, Asselman (2002) suggests using the median value of lidar 

height distribution in a specified local window as the predictor of vegetation height for 

herbaceous vegetation.  Hopkinson et al. (2005) followed a different approach to 

investigate a universal lidar canopy height indicator for different vegetation types with 

average heights ranging from less than 1m to 24m.  Their findings showed that a 

measure of the grid-based maximum lidar height (Lmax), although potentially better 

than the standard deviation, varied with laser pulse density and crown morphology.  
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Therefore, they concluded that this measure cannot be applied universally with the same 

expectation of accuracy.  Based on these findings, it is evident that under specific 

environments, different vegetation types demand specific methods.  More importantly in 

salt marsh environments, except for a few studies that have used lidar data to 

characterize terrain variability (Chassereau et al. 2011; Collin et al. 2010; Montane and 

Torres 2006; Schmid et al. 2011; Yang 2005), there is no literature demonstrating the 

use of lidar data for quantifying salt marsh cover, density or biomass.   

On the other hand, satellite remote sensing has been extensively used in wetland 

research.  Ozesmi and Bauer (2002) provide a comprehensive review on satellite remote 

sensing of wetlands.  Based on their review of more than 100 papers, they state that 

coastal tidal marshes are the types of wetlands that have been most frequently studied 

using satellite remote sensing.  The majority of these applications are, however on 

wetland mapping and characterization (Belluco et al. 2006; Islam et al. 2008; 

Kulawardhana et al. 2007; Wang et al. 2007).  Some other studies (Hardisky et al. 1984; 

Jensen et al. 1998) relate information from spectral data to plant biomass.  Similar to 

lidar data, these methods also suffer from several limitations.  First, their signatures are 

highly affected by atmospheric and background conditions.  Second, as the passive 

optical sensors utilize electromagnetic energy that is reflected or absorbed in the 

uppermost canopy layers, they are typically less sensitive to vegetation structure 

(Steininger 2000).  In contrast, lidar data, apart from their ability to directly relate to 

structural characteristics of the vegetation, are not sensitive to vegetation health, 

condition, or plant productivity (Lefsky et al. 2002).  Accordingly, several other studies 



 

14 

 

have applied a data fusion approach by combining lidar and multispectral signatures to 

predict vegetation biomass in forest environments (Nelson et al. 2009; Popescu and 

Wynne 2004).   

Given this background, we hypothesize that a data fusion approach that uses 

these two types of data (lidar and multispectral) will provide an increased capability for 

the prediction of vegetation biomass, particularly in herbaceous environments such as 

salt marshes.  Except for a few studies that have combined lidar and multispectral remote 

sensing for mapping the landscape (Chust et al. 2008) or characterization of salt marsh 

cover (Pavri et al. 2011; Rosso et al. 2006), we are unaware of any empirical assessment 

that evaluated such a data fusion approach for quantifying vegetation height in salt 

marshes.  Further, no empirical study has reported the integration of lidar with 

multispectral data for quantifying biomass of herbaceous vegetation.  This study 

therefore serves as one of the first attempts to evaluate a data fusion approach using lidar 

and multispectral remote sensing data for quantitative assessment of coastal salt marsh 

vegetation structure and biomass.  Further, the findings of this study will contribute 

substantially to the understanding of potentials and limitations of lidar and multispectral 

data for vegetation characterization and biomass estimates in salt marshes and other 

herbaceous environments.   

The primary goal of this study was to evaluate the increased capability of a data 

fusion approach using small footprint discrete return lidar and multispectral data to 

quantify carbon stocks in salt marshes.  We focus on the estimation of above-ground 

biomass because it is related closely to above-ground carbon storage.  Our specific 
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objectives were to: 1) understand the interaction between discrete-return airborne lidar 

data and marsh vegetation characteristics; 2) determine the appropriate grid size/s of 

lidar-derived datasets for characterizing salt marsh terrain and vegetation; 3) investigate 

the applicability of a number of lidar metrics to predict salt marsh vegetation height and 

above-ground biomass; and 4) to evaluate the utility of integrating multispectral imagery 

with lidar to improve the predictability of the regression models for quantifying salt 

marsh above-ground biomass and carbon.   

 

2.3 Methods 

2.3.1 Study area 

Tidal salt marshes along several kilometers of shoreline in West Galveston Bay 

on Galveston Island, Texas, USA were selected for this study (approximately 10km2 

extent).  The study area mainly included the Galveston Island State Park area (Figure 2-

1).  The marshes were dominated by mono-specific stands of Spartina alterniflora, 

commonly known as smooth cord grass.  It is one of the most abundant salt marsh-

dominant species in the intertidal zone along the coast of the northern Gulf of Mexico 

and the Atlantic Coast of North America.   

2.3.2 Data 

2.3.2.1 Lidar data 

Lidar data were acquired in August 2006 by the Sanborn Mapping Company, 

Colorado Springs, Colorado, using a Leica ALS50 Phase II laser mounted on an aircraft 
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flying at 900m height with approximately 50% flight-line overlap.  The ALS50 II is a 

discrete return system that measures up to four laser returns per pulse.  However, pulse 

return numbers were not coded into our dataset.  Average laser point density and 

footprint size were 1.4 points per m2 and 20cm, respectively.  The study area spanned 

three post-processed lidar data tiles.  The dataset was available in LAS format and 

recorded x, y, z and intensity information.  The vendor performed a GPS validation 

survey concurrent to lidar data acquisition and reported absolute accuracies of less than 

100cm and 8cm in horizontal and vertical directions, respectively.  In this study we did 

not attempt to characterize the absolute accuracy of lidar data, but instead the relative 

accuracy between different sample and ground reference points.   
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Figure 2-1.  Map of the study area. Sample locations are displayed on high 

resolution aerial imagery acquired in June 2012, displayed using true (upper left) 

and false (lower right) color composites of red, green, blue and near-infrared bands 
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2.3.2.2 Spectral data 

High resolution (0.5m) digital aerial images were obtained for August 2006 and June 

2012 from the National Agricultural Imagery Program (NAIP).  These images consists 

of four (4) spectral bands in blue (428-492 nm), green (533-587 nm), red (608-662 nm), 

and near-infrared (833-887 nm) regions of the electromagnetic spectrum.  Two datasets 

were required due to the time difference between data acquisitions (lidar, spectral, and 

field data). 

2.3.2.3 Field measurements of vegetation 

Castillo et al. (2010) propose random sampling as an appropriate sampling 

method for extensive and mature salt marsh communities where no clumps can be 

distinguished clearly.  In this study, we employed systematic random sampling to 

incorporate possible vegetation height and biomass variations resulting from 

environmental and elevation gradients across the study area.  Nineteen transects 

extending from water lines to uplands were established randomly across the study area 

(Figure 2-1).  Spacing between transects varied depending on the spatial distribution of 

the Spartina alterniflora over the study area.  However, the average spacing between 

transects were maintained within the range from 50m to 100m.  For the collection of 

vegetation height, cover, and biomass measurements, 3- 7 sample plots of 3mx3m area 

were located along each transect.  To capture both elevation gradient as well as the 

heterogeneity in vegetation height and cover, we located these sample plots 

systematically along transects.  Homogeneous plots were selected to minimize sampling 

bias due to vegetation heterogeneity.  This was important given the scale at which lidar 
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and spectral data were processed and analyzed to correspond with the field 

measurements.  A total of 49 plots were sampled for vegetation height, density, and 

biomass.   

Vegetation heights were measured using two methods.  First, the vegetation 

heights of each 1mx1m grid within 3mx3m plots were visually approximated and 

measured with a measuring staff (using a graduated measuring stick placed 

perpendicular to the ground surface, measuring error up to 1cm).  Second, all plants 

within the central grid of 1mx1m were clipped at the ground surface and heights of 

individual plants were measured in the lab.  These measurements were used to derive 

statistics relating to plot level field vegetation heights and density.  We located the 

sample plots over areas of homogeneous vegetation height and cover conditions and did 

not clip all the plants at 3mx3m grids to make the field work more efficient.  Thus, we 

assumed that the mean vegetation heights of clipped plants of 1mx1m central grid as a 

good representation of the vegetation heights of 3mx3m area around the central grid.  

We verified this using a mean comparison (p=0.05) of visually approximated vegetation 

heights of the two grid sizes.   

Clipped plants were processed and analyzed for vegetation biomass (g dry weight 

per m2) and carbon estimates, separately for live plants and dead plant material.  The 

most frequent plot sizes reported for salt marsh biomass studies range from quadrats of 

0.01 to 0.25m2 (Castillo et al. 2010).  The relatively larger quadrat size (1mx1m) was 

selected in this study to minimize sampling bias and also due to the difficulty of locating 

individual lidar points and spectral signatures precisely on the ground.   
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The central coordinates of sample plots and a total of 42 reference points were 

established using a survey-grade, Global Navigation Satellite System (GNSS) Trimble 

R2 unit; the Real Time Kinematic (RTK) with infill surveying approach was used, with 

all points yielding errors less than 4cm horizontal and vertical.  All sampled locations 

were vertically referenced within NAVD 88 units.  Reference points (RPs) were located 

primarily on salt pans and other open and distinguishable areas just outside the Spartina 

extent, and at road intersections.  At each point x, y, and z coordinates were recorded.  

RPs at road intersections were used to verify locational accuracies of lidar and spectral 

data, while elevation readings for points within the salt marshes were used to evaluate 

elevation accuracies extracted from salt marsh DTMs.   

Field sampling was conducted from June 4 - 8, 2012.  This time of the year was 

selected to match with the seasonal timing of lidar and spectral data acquisitions.  

Spartina alterniflora is perennial, but shows higher biomass accumulation towards the 

end of the growing season (Hardisky et al. 1984).  Castillo et al. (2010) suggest 

recording biomass accumulation at the end of the growing season as a good method to 

enable comparisons among different studies.   

2.3.3 Data processing and analysis 

2.3.3.1 Developing Digital Terrain Models (DTMs) using lidar data 

The first step in the estimation of vegetation heights using lidar data is the 

construction of DTMs to enable calculation of laser height distribution relative to the 

ground surface.  However, the accuracy of the derived DTM is determined by our ability 
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to distinguish between vegetation and ground signals as recorded in lidar data.  Previous 

studies in herbaceous vegetation (Töyrä et al. 2003), as well as in forestry (for example, 

Harding et al. 2001; Magnussen and Boudewyn 1998) largely used first and last returns 

for representing vegetation and ground signals, respectively.  Several studies (Næsset 

1997; Streutker and Glenn 2006) have used only one of these returns and distinguished 

between ground and vegetation signals using different approaches, while some other 

studies have applied filtering approaches on all the pulses using different window sizes 

(Sankey and Bond 2010).  To obtain an accurate representation of the terrain as well as 

of vegetation surfaces, the methods applied have to be determined based on the 

characteristics of vegetation, terrain, as well as the data.  These characteristics include 

vegetation cover, the amount of canopy openings, canopy shape, terrain slope, point 

density of laser pulses, and the reset time of the sensor.  For example, lidar has a known 

sensor limitation for separating returns which are too close in time.  This is governed by 

the reset time of the sensor.  For most systems this is around 8-10 nano seconds and 

translate to a range separation of 1.2 to 1.5m between the recorded returns of the same 

pulse (Popescu 2011).  As a result, when the ground is covered by short vegetation, the 

laser pulse may provide a return from the canopy top and may even penetrate to the 

ground surface to generate a ground echo.  However, depending on the reset time of the 

sensor, the last echo may not record as a separate return.  This sensor design limitation 

may contribute to increased errors in terrain as well as vegetation height estimates, 

particularly if the laser point density is low, and if derived based on first and last returns, 

respectively.  Because of the limitations with one or more of these factors, several other 
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studies have applied different methods in deriving DTMs using lidar data, particularly 

for short vegetation.  For example, Asselman (2002) suggests using a local minimum 

within a specified window as representative of the ground surface under relatively open 

grassland.  

Although the salt marshes are known to have dense vegetation cover, in the 

lower elevations of the Spartina alterniflora marshes (areas closer to the water surfaces) 

where relatively taller plants exist, the ground surface is visible from a vertical 

perspective.  Thus, laser pulses have a greater possibility to penetrate to the ground 

surface.  In contrast, higher elevations of the marshes (the areas away from water 

surfaces) are characterized by relatively shorter plants and have comparatively higher 

amount of dead plant material, which can limit laser penetration to the ground surface.  

However, this dead plant material was primarily located on the ground surface, thus any 

laser pulse that returned after intercepting this material should closely represent the 

terrain itself.  Considering these vegetation and terrain characteristics, in this study we 

assumed that some fraction of the returned pulses was reflected from the ground.  As 

such, the lowest point within a specified window was assumed to have fully penetrated 

the canopy and reached the ground surface, while anything above the minimum was due 

to vegetation.  Thus, we filtered the lowest elevation value of a specified window and 

applied adaptive triangulation interpolation on these local minima for deriving salt marsh 

DTMs at different grid sizes.  To decide the appropriate window size that best captured 

the true ground returns, the accuracies of derived DTMs of different grid sizes (3m, 5m, 
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7m, and 10m) were evaluated by comparing lidar-derived elevations with ground survey 

elevations.  Lidar data were processed using Quick Terrain Modeler (QTM version 7.5).   

Our reference points distributed over the study extent (in salt pans and open 

areas) showed a good match with the derived DTMs and aerial images.  Since our focus 

here is on the salt marsh DTMs, in our accuracy assessment, we used only the points that 

were inside the salt marsh extent (not including the RPs located outside the Spartina 

alterniflora extent).  Further, to evaluate the relative accuracy of lidar data in the vertical 

dimension, we also calculated Root Mean Square Errors (RMSEs) for each interpolated 

DTM using ground elevation readings obtained for the RPs established on salt pans and 

other open areas just outside the Spartina alterniflora extent.   

2.3.3.2 Lidar metrics as predictors of vegetation height and biomass 

After determining the most appropriate grid size, the derived DTM was used as 

the ground reference for calculating vegetation heights using lidar data.  The lidar point 

heights were then topographically detrended by subtracting corresponding heights of the 

interpolated DTM from all laser pulse returns.  This procedure removed the influence of 

topography and resulted in laser pulse heights that were now measured relative to ground 

height; i.e., the same reference plane as the field measured vegetation height data.  We 

assume that there is some interpolation error in the final DTM, commonly less than 

10cm (Hodgson et al. 2003; Töyrä et al. 2003), though this should not bias the vertical 

laser pulse distributions other than by the potential introduction of a few negative height 

values, which we assume to have negligible influence on resulting vegetation heights.   
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A spatial buffer of 3m around the central coordinates of each plot (as recorded in 

survey-grade GNSS readings) was used to extract the corresponding vegetation heights.  

Negative heights were observed in a few plots, but the number of negative heights did 

not exceed two per plot.  Assuming these negative values are due to errors in the DTM 

that are introduced by interpolation and/ or spatial mismatch between lidar and ground 

GNSS readings, we corrected these negative heights to represent ground surface (h=0).  

However, in deriving lidar metrics (listed in Table 2-1), we included these zero-height 

points so as to be characteristic of the data in its entirety.   

Evans et al. (2009) propose a wide range of lidar metrics for vegetation modeling 

while several studies reported using different lidar metrics to characterize vegetation 

heights of short plants.  After a thorough review of empirical studies on lidar use for 

vegetation modeling both in forestry and short and/ or herbaceous vegetation, in this 

study we evaluated a wide range of lidar metrics (Table 2-1) to be related to vegetation 

height and biomass in regression models.  These include both vegetation height metrics 

and laser penetration indices.  However, only the results for the best indices are 

discussed in this dissertation.   

2.3.3.3 Vegetation indices from spectral data 

Over the past decades, vegetation indices (VIs) derived from multispectral bands 

of remotely sensed imagery have been extensively used in vegetation studies.  Among 

them, normalized difference vegetation index – NDVI (Rouse et al. 1973) has been the 

most extensively used VI in remotely sensed estimates of vegetation biophysical 

parameters, including biomass in wetland ecosystems (Hardisky et al. 1986).  However, 
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several other indices were later proposed to incorporate a soil adjustment factor and/or a 

blue band for atmospheric normalization.  In this study, using the 2006 dataset, we 

derived a number of VIs (Table 2-1) to relate them with vegetation biomass 

measurements.  In addition, NDVIs derived for two datasets (2006 & 2012) were used in 

paired t-test (p=0.05) to verify resemblances between two different time periods during 

which we acquired field and remotely sensed data (lidar and spectral).   

2.3.4 Statistical analyses 

Mean errors (RMSEs) of salt marsh DTMs derived using different grid sizes 

were used to evaluate their ability to provide a fit to the true ground surface.  

Correlations between lidar metrics and vegetation height measurements were first 

evaluated using Pearson correlation coefficients (r) and scatter plot matrices.  To 

examine the strength of fit between lidar metrics and vegetation heights, simple linear 

regression analyses were performed using selected lidar metrics as explanatory variables 

in the model.  This selection was based on Pearson r values.   
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Table 2-1.  Summary of plot level lidar metrics and spectral vegetation indices that 

were investigated as the explanatory variables for estimating vegetation height and 

biomass. 

Metric/ index name References 

Vegetation height metrics  

1. Lmin - Minimum of lidar heights* Asselman 2002; Ritchie et al. 1996; 

Weltz et al. 1994 – to estimate terrain 

in grasslands 

2. Lmax – Maximum of lidar heights* Ritchie et al. 1996 - for arid grasslands; 

Rango et al. 2000 - for Coppice dune 

characterization 

3. Lmean– Average of lidar heights* Hopkinson et al. 2004; 2005 – For 

mixed vegetation 

4. Lmode– Mode of lidar heights* Not reported 

5. LSD– Standard deviation of lidar 

heights * 

Davenport et al. 2000; Cobby et al. 

2001 - for crops and grasses 

6. Lvariance– variance of lidar heights* Not reported 

7. Percentiles (L10, L25, L50, L756, 

L80, L90) - 10th, 25th, 50th, 75th, 80th, 

90th percentiles of lidar heights* 

respectively) 

Asselman 2002; Ritchie et al. 1996; 

Weltz et al. 1994 - for grasslands, 

Straatsma and Middelkoop 2007 - for 

river flood plain vegetation 

 

* Detrended lidar heights  
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Table 2-1. continued. 

Metric/ index name References 

Laser penetration indices  

1. LCD-Canopy density (defined as 

percentage  vegetation  returns**) 

                                    

                   
     

Weltz et al. 1994, for rangeland 

vegetation height and canopy cover; 

Straatsma and Middelkoop 2007 - 

for river flood plain vegetation  

2. Number of non-ground (vegetation) 

returns** 

Not reported  

3. Number of total returns** Not reported 

Vegetation Indices  

1. Normalized difference vegetation index – 

NDVI (Rouse et al. 1973) 
       

       
 

Hardisky et al. 1984; 1986 –to 

predict biomass in Delaware salt 

marshes; Jensen et al. 1998 - to 

predict biomass and LAI in S. 

Carolina salt marshes 

2. Soil Adjusted Vegetation Index, SAVI 

(Huete 1988) 

       

         
       

Introduce a weighting factor to red and near-

infrared bands to reduce sensitivity to soil 

brightness variability 

Baptiste and Jensen 2006 – to 

predict mangrove biophysical 

parameters; Jensen et al. 1998 - to 

predict biomass and LAI in Spartina 

salt marshes. 

**Different height bins were evaluated to define ground height as recorded in detrended lidar data.  
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Table 2-1 continued. 

Metric/ index name References 

1. Modified Soil Adjusted Vegetation Index, 

MSAVI (Qi et al. 1994a) 

         ⌈                  ⌉   

 
 

Algebraic solution to an iterative variant of 

SAVI in which the weighting factor is self-

adjusting 

Zhao et al. 2009 – To 

characterize estuarine wetland 

vegetation succession 

2. Atmospherically Resistant Vegetation Index, 

ARVI (Kaufman and TanreÂ 1992) 

          

          
 

Simple linear combination of blue and red 

reflectance to compensate for the increase in 

path radiance with aerosol optical depth 

Zhang et al. 1997 – To predict 

salt marsh biomass in San Pablo 

Bay, California 

3. Atmospheric and Soil Vegetation Index, 

ASVI (Qi et al. 1994b) 

         ⌈                     ⌉   

 
 

Uses a combination of the corrective 

principles behind ARVI and MSAVI 

Jensen et al. 1998 - for salt 

marshes  

4. Green vegetation index, VIGreen (Gitelson 

et al. 2002) 
         

         
 

Jensen et al. 1998 - for salt 

marshes 
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Further, to evaluate combinations of lidar metrics that could better predict the 

vegetation height, multiple regression analyses were performed using all lidar metrics as 

explanatory variables in the model.  The best fit model was selected using Mallow’s Cp 

selection method with Akaike Information Criterion (AIC) as the model fit statistic.  The 

AIC method selects the best fit model by penalizing models with redundant variables 

(Akaike 1981).  This, method also allows the selection of the best fit model while 

minimizing the problem of multi-collinearity.  However, since most of lidar metrics and 

VIs were highly correlated, variance inflation values (VIFs) reported for each 

explanatory variable in the model were also examined and retained only the variables 

with VIFs of less than five (Belsley 1980).   

In order to evaluate the applicability of each method (lidar and spectral) for 

quantifying vegetation biomass, above steps were applied on lidar metrics and VIs 

separately.  In biomass regression models using lidar metrics, in addition to the 

vegetation height indices, laser penetration indices were used as proxies for vegetation 

cover and /or stem density.  Regression relationships between lidar metrics and above-

ground biomass were evaluated, because biomass is related closely to above-ground 

carbon storage.  Relationships between VIs and height measurements were nit evaluated, 

as it was not the focus in this study.  To evaluate the increased capability of a data fusion 

approach, lidar metrics and VIs were then combined as explanatory variables in multiple 

regression models.  Various transformations of the independent variables (i.e., inverse, 

log) were also explored in an attempt to improve regression relationships.  Model results 

were also tested for heteroscedasticity.  Results did not indicate a necessity for 
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transforming the dependent variables. The relationships for different biomass 

components were investigated separately (live, dead, and total biomass).   

To enable comparisons of the accuracy of the models in this study with similar 

studies, RMSE reported for each model were standardized by mean biomass from field 

measurements (i.e. RSE/mean biomass).  We refer this statistic as % RSE, i.e., the 

RMSE expressed as a percent of mean biomass.  Zolkos et al. (2013) discuss the 

advantage of % RSE over RMSE in detail. 

Statistical analyses were performed using SAS Enterprise Guide (version 5.1).   

 

2.4 Results 

2.4.1 Salt marsh DTMs using lidar data 

Accuracies of derived DTMs at different grid sizes are summarized in Table 2-2.  

RMSEs indicate relative accuracies of each DTM while correlation coefficients (r2) 

determine the strength of agreement between ground-measured and lidar-derived 

elevations at different grid sizes.  The effects of vegetation on DTM accuracies can be 

evaluated by comparing these statistics that are associated with RPs that were located on 

salt pans and vegetation points separately.   
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Table 2-2.  Accuracies of lidar derived DTMs. 

Sample points included in the 
analysis  

 DTM grid size (m) 

3 5 7 10 

Sample points (49) located 
within Spartina alterniflora 
extent 

RMSE (m) 0.09 0.10 0.13 0.16 

R2
 0.68 0.73 0.51 0.42 

Sample points + salt pans and 
other open areas outside the 
Spartina alterniflora extent 

RMSE (m) 0.08 0.09 0.14 0.21 

R2
 0.80 0.87 0.77 0.65 

Notes:  Accuracies of salt marsh DTMs were evaluated based on RMSEs calculated using GPS elevations 

of a total of 61 ground points (sample plots + salt pans) located within the salt marsh extent. 
 
 
 

The ability of salt marsh DTMs to predict the surface decreased with increasing 

grid size, with mean errors ranging from 0.09m to 0.16m (Table 2-2).  However, only 

slight fluctuations in r2 values were observed when local minima were interpolated using 

smaller window sizes (3m and 5m). Further, the RMSEs of the salt marsh elevation 

estimates derived using two grid sizes were not significantly different.  As the window 

size increased further, relatively greater fluctuations in both r2 and RMSEs were 

observed.  In addition, predicted elevations were consistently lower when the DTMs of 

larger grid sizes were used (Figure 2-2).  This could be largely due to the effect of 

smoothing.  Defining local minima using larger window sizes was found to remove 

smaller terrain variations that would otherwise increase errors in elevation estimates.  
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This effect was also evident in salt marsh elevation profiles created using DTMs of 

different grid sizes (Figure 2-2). 

In general, the presence of vegetation is reported to degrade the accuracies of 

lidar-derived terrain estimates.  However, in this study, when DTMs were interpolated 

using smaller window sizes (3m and 5m), we did not observe significant (p<0.05) 

differences in mean errors between open and vegetated areas (i.e. salt pans and sample 

plots).  However, when using larger window sizes (7m and 9m), mean errors for open 

areas were significantly (p<0.05) higher as compared to vegetated sample plots (Table 2-

2) and reflected the increasing levels of interpolation errors, particularly across abrupt 

changes in surface heights.  Thus, in order to minimize the effect of interpolation errors 

and considering the low point density of lidar data used in this study, the 5m grid size 

was selected as the most appropriate for deriving salt marsh DTMs.  In our study area, 

Spartina alterniflora appears to be distributed over a narrow elevation range from 0 to 

less than 0.5m. 
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Figure 2-2.  An example cross section of the salt marsh showing elevation differences among DTMs of different grid 

sizes (3m, 5m, 7m, and 10m).  
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2.4.2 Lidar metrics as predictors of vegetation height 

In our study area the mean vegetation height of Spartina alterniflora, as 

measured from the plants clipped within each 1m x 1m plot, was 43.7±6cm.  Visually 

approximated vegetation heights in the field at 1m x 1m and 3m x 3m scales were not 

significantly different from one another (p>0.05).  These visual assessments, however, 

were consistently higher than the averages of clipped plants.  This indicates that our 

visual approximations tend to be biased towards the taller plants inside the canopy, 

which was also reported by Rosso et al. (2006) for Spartina alterniflora in San Francisco 

Bay.  However, visually approximated vegetation heights within the 1m x 1m area were 

highly correlated (r2 = 0.92, p<0.001) with the mean heights of clipped plants.  Thus, the 

vegetation height measurements of clipped plants at 1m x 1m plots could be considered 

as a good representation of the 3m x 3m area, and were related to lidar and spectral data. 

Although the regression relationships between lidar estimates and field 

measurements of vegetation heights were not strong, they were significant (p<0.001) for 

all lidar height metrics.  Lmax provided the best agreement with field height 

measurements and explained 41% of the variance in vegetation heights (RMSE = 

5.85cm).  This was followed by L90 (r2=0.40, RMSE = 5.94cm), and Lmean (r2=0.34, 

RMSE = 6.22cm).  These lidar metrics however, consistently underestimated the 

vegetation heights (Figure 2-3).  Linear regression analysis between Lmax and 

vegetation heights determined the best model as: VHfield (vegetation height) = 

0.79Lmax + 32cm.  This model had the lowest RMSE value at 5.5cm.  None of the laser 

penetration indices reported a significant relationship to vegetation height. 
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Lidar height metrics showed a high degree of multi-collinearity (Figure 2-4), and 

when used in multiple regression analyses, they did not improve the predictability 

considerably.  However, multiple regression analysis returned Lmax, Lmean, and LCD 

(in which the ground level was set to 10cm) as the only significant variables in the 

model.  This model explained 47% of the variance in field measured vegetation heights, 

while Lmax alone explained 41% of the variance (Figure 2-3). 

After evaluating different thresholds and the relative mean errors of the DTMs, 

the height bin of 10cm was selected as the threshold for defining LCD.  The best 

multiple regression model was: VHfield (vegetation height) = 0.56Lmax + 

1.39Lmean+0.20LCD +15.45cm.   
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Figure 2-3.  Correlations between lidar metrics and field vegetation heights.  Solid lines represent the best fit linear 

regressions while dashed lines are the 1:1 correspondence (perfect fit) between field and lidar-derived vegetation 

heights.  



 

37 

 

 

Figure 2-4.  Multi-collinearity among the lidar metrics. Scatter plot matrix is shown 

for the lidar derived variables that are better correlated to field measurements 

(either height or biomass). 
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2.4.3 Lidar metrics as predictors of vegetation biomass 

Mean above-ground biomass for our study area was 882g per m2.  Live and dead 

biomass components accounted for 61% and 39% of the total vegetation biomass, 

respectively.  Similar to the vegetation height estimates, lidar height metrics showed a 

highly significant positive correlation (p<0.001) with live vegetation biomass.  RMSEs 

for these models ranged from 103 to 154 g dry weight per m2, while r2 values were 

within the range of 0.10 to 0.37.  Lmax reported the highest correlation to live biomass, 

however it explained only 37% of the variance in the data (Figure 2-5a).  The % RSE for 

this model was closer to 20%, which is the recommended error threshold for remote 

sensing based forest biomass prediction models that can be repeatedly applicable for 

estimating forest carbon stock change (Zolkos et al. 2013).   

None of the metrics were related to dead biomass.  Accordingly, as compared 

with live biomass, consistently lower r2 values were found for total biomass.  The 

maximum r2 reported for total biomass was 0.13 and was found using the Lmax metric 

(Figure 2-5b).  As in the case of vegetation height estimates, laser penetration indices did 

not relate to any of the biomass components.  Further, multiple regression models did 

not improve predictability for any of the biomass components and this could be largely 

attributed to multi-collinearity among lidar metrics (Figure 2-4).   
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Figure 2-5.  Goodness of fit between lidar metrics (Lmax) and vegetation biomass measurements: a) Live biomass, and 

b) Total biomass. 
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2.4.4 Vegetation indices as predictors of vegetation biomass 

Regression relationships between vegetation indices and live vegetation biomass 

were also significant (p=0.001).  These indices however, explained up to 28% of the 

variance in live biomass measurements (r2 values ranged from 0.14 to 0.28).  NDVI and 

SAVI reported to be the best predictors of live biomass (r2 =0.28).  RMSEs for these 

relationships were similar to that of lidar based live biomass predictions.  As reported in 

previous studies, all vegetation indices were highly correlated (r2 values ranged from 

0.84 to 1) with each other.  Except for VIGreen, the others did not show significant 

correlations to dead or total biomass.  VIGreen explained 14%, 15%, and 24% of the 

variance in live, dead, and total biomass, respectively.   

2.4.5 Fusion of lidar and multispectral data for vegetation biomass predictions 

As expected, the data fusion approach improved regression models for predicting 

both live and dead biomass and thus, better predicted total biomass (Table 2-3).  

However, these improvements were marginal.  For example, the combination of lidar 

and multispectral data explained 47% of variance in live biomass measurements, 

whereas the best models using lidar and spectral data alone explained 37% and 28% of 

variance in live biomass measurements, respectively.  Similarly, VIGreen explained 15% 

and 24% of variances in dead and total biomass data, respectively while the combination 

of lidar metrics improved this only up to 24% and 33%, respectively.   
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Table 2-3. 1Results of multiple regression models for predicting vegetation biomass. 

 

 R2
 RMSE 

(g dry weight/m2) 

% RSE Best fit model 

Live  0.47 86.1 16.0 Live BM = 10.13*Lmax + 638.09*SAVI +179.64 

Dead  0.19 200.89 58.3 Dead BM = 4.43 *LCD + 1197.4*VIGreen + 365.05 

Total  0.33 229.20 25.9 Total BM = 15.51*Lmax + 5.35*LCD + 

1331.7*VIGreen+ 639.13 

Note: All relationships were significant at 99% confidence.
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2.5 Discussion 

This study substantiates similar findings from earlier studies in herbaceous 

environments that used lidar data for quantifying vegetation height.  However, we are 

not aware of any study that attempted using lidar or a data fusion approach using lidar 

and spectral data to predict vegetation biomass in herbaceous environments.  Thus, we 

discuss our findings on biomass relationships in comparison with similar studies from 

forest environments.  However in doing so, we pay attention to the differences in 

vegetation canopy and terrain characteristics between these two contrasting 

environments. 

2.5.1 Accuracies of salt marsh DTMs of different grid sizes 

In this study, we first wanted to decide on the appropriate scale for deriving salt 

marsh DTMs using lidar data.  While deriving DTMs, we also wanted to ensure that the 

lidar returns we used to interpolate DTMs are true ground signals rather than from 

vegetation.  This is important given the salt marsh vegetation structural characteristics.  

The majority of previous studies in both forest and short or herbaceous vegetation have 

selected either the first or the last return as the ground signal.  Considering the 

vegetation characteristics of our study area we applied a different approach, which 

filtered the lowest point within a specified grid size.  Our assumption is that a portion of 

laser pulses penetrate fully through the canopy and return from the ground.  This 

approach has been previously applied in different environments (Schmid et al. 2011; 

Weltz et al. 1994; Streutker and Glen 2006).  Different studies, however, reported that 

the accuracy of the lidar estimated elevation to be largely determined by: 1) vegetation 
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structure such as level of canopy openings, canopy shape, and leaf orientation (Cobby et 

al. 2001; Hodgson and Bresnahan 2004; Hopkinson et al. 2004; Nelson 1997); 2) terrain, 

mainly slope and surface irregularities (Hodgson et al. 2003); and 3) sensor 

characteristics, particularly the laser point density (Straatsma and Middelkoop 2007) and 

minimum range separation between multiple returns.  Considering these factors, we 

wanted to identify the appropriate window size that best captured true ground returns, 

while also maintaining terrain irregularities to give a fair representation of the vegetation 

height variations.   

The errors of lidar derived DTMs increased as we increased the window size and 

reflected the effect of smoothing.  Further, the errors, when evaluated separately for 

points within and outside the vegetation cover, revealed that the bias in DTM elevation 

is attributed to the interpolation errors rather than the presence of vegetation (Table 2-1).  

These errors were more prominent when DTMs were interpolated at larger grid sizes 

(>5m).  However, the results of some previous studies reported increasing DTM errors 

with increasing vegetation cover (Hopkinson et al. 2004; Cobby et al. 2001).  The effect 

of vegetation on deriving ground elevation is largely determined by the combination of 

the three factors discussed above and thus, specific to each environment.  In this region, 

Spartina salt marshes reported to reach maximum production, and thus cover, during late 

summer (Hardisky et al. 1984).  However, even under these conditions, due to relatively 

smaller leaf angles and narrow leaf blades of Spartina plants, we can expect a sufficient 

level of canopy openings to allow ground penetration of laser pulses.  Thus, considering 

terrain as well as vegetation characteristics of the study area, and the low point density 
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of lidar data used in this study, we selected the 5m grid size as the most appropriate for 

deriving salt marsh DTMs for our study area. 

In this study, when using a window size of <5m relatively smaller errors (<10cm) 

in the DTMs were observed.  These findings are similar to the findings of some previous 

studies; Wang et al. (2007) used a similar approach for filtering ground signals in salt 

marshes of the lagoon of Venice, Italy and reported an RMSE of 6.4cm, while it was 

7cm for low gradient salt marsh in South Carolina (Montane and Torres 2006), and 

13cm for San Francisco Bay marshes in California (Rosso et al. 2006).  However, the 

latter study reported that none of the lower points within the vegetation appeared to be 

sufficiently close to the ground, and inferred that new Spartina alterniflora growth was 

too dense for complete penetration of laser pulses.  This may remain true even in our 

study area, particularly for the higher elevations of the Spartina alterniflora marsh where 

relatively dense accumulation of dead plant material was observed.  These dead plant 

materials act as a dense mat and remain close to the ground, thus their contribution to the 

errors in elevation estimates could be small.   

The general concept is that in dense canopies, limited laser penetration to the 

ground affects the accuracies of derived vegetation estimates (Hopkinson et al. 2004; 

Lefsky et al. 2002).  However, as in the previous studies mentioned above, our findings 

reveal that lidar data are capable of accurately estimating salt marsh terrain 

(RMSE<10cm) if appropriate methods are applied by considering data, vegetation, and 

terrain characteristics relevant to the area of interest.   
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2.5.2 Lidar metrics as predictors of vegetation height 

While it was not the scope of this study to characterize vegetation height 

variations across the study area, we attempted to evaluate lidar metrics that better 

capable of predicting vegetation heights at a given spatial scale.  In evaluating this, it is 

important to understand the spatial unit that better explain variation in both terrain and 

vegetation.  Even though the relative accuracies of derived DTMs at 5m and 3m were 

not significantly different, given the low elevation gradient, we favored  5m DTM over 

3m DTM.  However, to account for the vegetation height variation, and also to minimize 

the discrepancy between the coverage of field measurements and lidar and spectral 

information, we analyzed lidar and spectral data at 3m spatial resolution.   

Lidar height metrics consistently underestimated salt marsh vegetation heights 

(Figure 2-3).  The best model that used the three lidar height metrics (Lmax, Lmean, and 

LCD) underestimated vegetation heights by an average of 15cm.  This underestimation 

is approximately 30% of the mean vegetation height.  Underestimation of canopy height 

is reported in many lidar studies in forestry (e.g., Magnussen et al. 1999; Gaveau and 

Hill 2003).  Similar results were reported in previous studies of herbaceous vegetation as 

well. For example, Ritchie et al. (1996) and Weltz et al. (1994) attributed lidar 

underestimation of rangeland vegetation heights to the errors associated with lidar-

derived ground estimates, which they explained using inadequate laser penetration to the 

ground surface.  Struetker and Glenn (2006) explained this using laser returns from 

below the canopy tops of sagebrush vegetation.  Given the salt marsh vegetation 

characteristics in our study area, the lidar underestimation of vegetation heights in this 
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study can largely be explained using increased laser pulse penetration into the foliage.  

Although we assume laser pulses to be returned from the top of the canopy surfaces, 

even the maximum heights of laser pulses may have returned from inside the canopy.  

The vegetation characteristics of Spartina, including less dense vegetation cover, smaller 

leaf angles, and narrow leaf blades may have collectively contributed to the increased 

penetration of laser pulses through the canopy.  Some other studies have indicated lidar 

underestimation of canopy heights as a result of insufficient representation of canopy 

apexes due to low sample point density (Hodgson and Bresnahan 2004; Straasma and 

Middelkoop 2007; Hopkinson et al. 2005), which also can be applicable to our study 

using lidar data of 1.4 points per m2.  Further, some overestimation of ground surfaces 

due to minimal pulse penetration through dense vegetation (Adams and Chandler 2002; 

Hodgson and Bresnahan 2004; Weltz et al. 1994) and sensor limitations in range 

separation, and interpolation errors may also have contributed to the vegetation height 

underestimation.  Mean errors in vegetation height estimates reported in this study 

(RMSEs of less than 7cm) are however comparatively smaller in magnitude as compared 

to the findings from forestry.  Our findings also resemble the findings of some previous 

studies in herbaceous environments.  For example, Davenport et al. (2000) and Cobby et 

al. (2001) reported lidar crop height estimates with accuracies of less than 10cm and 

14cm, respectively.  The increased accuracies in terrain estimates in our study may have 

largely contributed to relatively smaller errors in vegetation height estimates. 

The regression relationships between lidar metrics and vegetation heights, even 

though highly significant (p<0.001), explained only 47% of the variance in vegetation 
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heights.  A few studies in herbaceous vegetation reported stronger relationships (r2 

values ranging from 0.75 to 0.89) between vegetation heights and lidar metrics (Ritchie 

et al. 1996; Davenport et al. 2000; Cobby et al. 2001; Hopkinson et al. 2004).  Except 

for the Ritchie et al. (1996) study, vegetation heights in these studies were of a relatively 

wide range and included comparatively taller plants.  Ritchie et al. (1996) used laser 

profile data, thus their relatively higher information content could have contributed to 

smaller errors and higher r2 values.   

In a study on sagebrush steppe, Struetker and Glenn (2006) used a similar 

approach for extracting terrain and vegetation heights and reported similar findings 

(Pearson correlation coefficient, r = 0.72).  However, they reported different lidar height 

metrics as better predictors of vegetation height and suggested surface roughness, which 

is estimated using standard deviations of detrended lidar heights to be the best predictor 

of vegetation heights.  In contrast, our findings revealed Lmax, which is the maximum of 

lidar-derived vegetation heights as the best predictor of salt marsh vegetation height 

when used alone.  This corresponds with the findings of Hopkinson et al. (2004) that 

reported Lmax as a better canopy height indicator over homogeneous vegetation.  In this 

study, Lmax was followed by the 90th percentile of lidar-derived vegetation heights 

(L90).  In general, salt marsh vegetation heights follow the elevation gradient; vegetation 

height generally increases as elevation decreases.  Consequently, lower elevations within 

the Spartina alterniflora marsh are characterized by relatively taller plants, while in 

higher elevations shorter plants exist.  Under these conditions, the upper end of the lidar-

derived vegetation height distribution (Lmax, L90) was found to better capture this 
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variation in the vegetation height distribution rather than the variation in vegetation 

height within a specified area (in this case within a specified grid).   

2.5.3 Lidar metrics as predictors of vegetation biomass 

A wide collection of lidar metrics have been reported in literature as the 

predictors of forest biomass.  However, no empirical study has reported their 

applicability for biomass predictions in herbaceous environments.  Therefore, we discuss 

our findings in relation to the findings reported in forestry.   

The above-ground biomass quantities of Spartina alterniflora reported to be in 

the range from 100 – 3700 g dry weight per m2 (Castillo et al. 2010). The values 

reported in our study varied within a narrow range from 304 to 1452 g dry weight per 

m2.  However, these values are within the average reported for Spartina alterniflora salt 

marshes over the North Gulf coast of US (Hardisky et al. 1984).  Further, these above-

ground biomass levels are low as compared to those reported in forestry.  Therefore, we 

can infer that in addition to data limitations (i.e. low point density of lidar data, temporal 

mismatch between field and lidar data acquisitions, and scaling issues), the narrow range 

of vegetation biomass levels reported in this study may also have contributed to lowering 

the r2 values in this study.   

Early studies in salt marshes have shown strong relationships between plant 

heights (Hardisky et al. 1984; Hardisky et al. 1986) and vegetation biomass, while some 

others reported biomass relationships to vegetation cover (Castillo et al. 2008).  These 

studies thus developed empirical relationships based on plant height and vegetation 

cover parameters for predicting vegetation biomass.  In this study we observed highly 
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significant (p<0.0001) and very strong relationship (r2 = 0.97, RMSE = 90g dry weight 

per m2, % RSE = 17) between measured plant height and live biomass.  In biomass 

predictions using lidar metrics, we can consider that lidar height metrics and laser 

penetration indices to serve as proxies of vegetation heights and cover, respectively.  

This in turn explains the relatively lower r2 values reported for the relationships of lidar 

metrics to vegetation biomass as compared to that of vegetation height.   

In this study, none of the laser penetration indices were significantly correlated 

(p=0.05) to any of the vegetation cover or biomass measurements.  In Spartina salt 

marshes, stem density can be used as a good indicator of vegetation cover (Castillo et al. 

2008).  In our study area, the average stem density was 356 per m2.  Even though this 

number is not very high as compared to the numbers reported in other salt marshes 

(Castillo et al. 2008; Hardisky et al. 1984), given the low point density of the lidar data 

we used, we can infer that the amount of information recorded in these lidar data are not 

sufficient to make inferences on vegetation cover of these salt marshes.  This mis-match 

partly explains the inability of multiple regression models that combined lidar height and 

laser penetration indices to improve biomass predictions.  As in vegetation height 

predictions, multi-collinearity among lidar metrics also limited the capabilities of 

multiple regression models to improve biomass predictions.   

Regardless of the low r2 values reported for the relationships between lidar-

derived vegetation indices and biomass measurements, the best biomass prediction 

models reported considerably low RMSEs and % RSEs.  Some of the best models 

reported remarkably low errors when standardized using mean biomass levels.  For 
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example, % RSE for the best model using Lmax was 19.1%.  Zolkos et al. (2013) 

recommend an error threshold of <20% RSE for remote sensing based models that can 

be repeatedly applicable for estimating forest carbon stock change.  Hence, we can infer 

that these models provide promising results for estimating salt marsh vegetation biomass 

and thus carbon.  Further, we are not aware of any empirical study that used lidar data to 

predict biomass in herbaceous environments.  Within this background, we believe that 

this study will serve as a turning point to increase research attention within this field, 

particularly to investigate the capabilities of lidar techniques in biomass studies under 

different environments outside forestry.   

2.5.4 Vegetation indices as predictors of vegetation biomass 

Although we investigated a wide collection of vegetation indices, our best model 

explained only 28% of the variance in biomass measurements.  Previous studies of 

similar herbaceous vegetation, but in different environments including rangelands 

(Waller et al. 1981) and agricultural vegetation (Richardson and Everitt 1992), reported 

stronger relationships (r2 ranging from 0.7 to <1) between spectral measurements and 

vegetation biomass.  Similarly, in salt marshes, Hardisky et al. (1984) reported an r2 

value of 0.79 for relationship between Spartina green biomass and NDVI.  However, 

their spectral measurements were obtained using a hand-held radiometer concurrently 

with field biomass measurements.  Further, their regression models were based on 

cumulative measurements over an entire growing season.   

Hardisky et al. (1986) reported that the presence of dead biomass within the 

canopy influences the spectral signatures by decreasing the reflectance in NIR region 
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and thus NDVI, and therefore obtained spectral measurements after removing standing 

dead biomass under the canopy.  Further, standing water within the marsh can also affect 

spectral signatures.  For example, as in other salt marshes, in our study area low 

elevations are characterized by relatively dense clusters of taller plants as compared to 

the shorter and relatively drier plants that are evenly distributed in higher elevations.  

Thus, the greener and relatively moist vegetation in low marshes should provide a strong 

signal in the NIR region as compared to that of high marshes.  However, this NIR signal 

could be largely absorbed even in low marshes particularly due to the presence of water 

underneath the canopy, whereas in high marshes relatively larger amounts of dry 

biomass could be influential.   

We acquired field and remotely sensed data to match with seasonal changes.  

NDVIs between two datasets (2006 and 2012) did not reveal significant changes (p 

=0.05).  However, changes in both vegetation height and cover can be expected during 

different years.   

In summary, remarkably low r2 values between VIs and vegetation biomass 

reported in this study could be attributed to a collection of factors: differences in scales 

of measurements, timing of data acquisitions, sensor properties, presence of dead 

biomass within the canopy, and submerged conditions.  As a result of these limitations, 

VIs derived from spectral signatures are less effective than the lidar height metrics for 

predicting salt marsh vegetation biomass.  However, it will be necessary to investigate 

this concept further using different datasets and studies across other environments.   
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2.5.5 Fusion of lidar and multispectral data for vegetation biomass predictions 

Lidar data are capable of providing direct measurements on the vertical structure 

of vegetation.  Further, if interpolated using appropriate data and methods, they can also 

be predictive of vegetation cover, particularly properties such as stem density (Lefsky et 

al. 1999; Næsset 2002; Næsset and Bjerknes 2001), percent vegetation cover, and/ or 

canopy openings (Nelson 1988; Weltz et al. 1994).  However, they are incapable of 

providing information relating to the vegetation biophysical parameters such as the level 

of photosynthetic activity.  In contrast, VIs derived using spectral signatures, although 

do not providing direct measurements on vegetation structure, are highly sensitive to the 

changes in vegetation condition, particularly to vegetation greenness, photosynthetic 

activity, and leaf moisture content (Prince et al. 2009; Sellers 1985; Tucker 1980), the 

factors that collectively control the amount of biomass available over a given area.  

However, their applicability is largely determined by various other factors including 

environment and background conditions of the vegetation and therefore can limit their 

use, particularly in salt marsh environments.   

In this study we hypothesized that the fusion of lidar with multispectral data 

yields superior results for predicting salt marsh vegetation biomass as compared to each 

method separately.  As expected, the data fusion approach improved regression models 

for predicting both live and dead, and thus total vegetation biomass.  The fusion 

approach reported relatively larger improvement for the prediction of total biomass when 

compared to the use of lidar alone, with r2 values increasing from 0.13 to 0.33.  Thus, 

our results indicate the necessity of integrating multispectral signatures with the lidar 
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data, particularly as a surrogate for the cover type measurements in predicting vegetation 

biomass under short/ herbaceous vegetation with high ground cover.  Similar findings 

have been reported in forestry.  In their meta-analysis of forest biomass using lidar, 

Zolkos et al. (2013) showed that the fusion of metrics from multiple sensors produced 

biomass models with high accuracy.  Their findings further revealed that multi-sensor 

fusion can produce models with accuracy levels similar to or better than those of lidar 

alone.  Although, the improvements in regression models reported in our study are 

marginal, we believe these results are promising.  Even though this has been researched 

intensely in forestry, we are not aware of any empirical study attempted using lidar or a 

data fusion approach to predict salt marsh vegetation biomass.  While acknowledging the 

limitations discussed above, we believe that if the methods we present in this study are 

applied on detailed and high accuracy data (i.e. high point density discrete return and or/ 

waveform lidar data) these relationships will significantly improve.  Further, such 

models will provide increased capability to map and characterize both spatial and 

temporal variations in salt marsh biomass and thus carbon, allowing us to understand the 

specific roles of these important terrestrial carbon sinks in the global carbon cycle.  

These models will also be applicable in different environments where similar vegetation 

characteristics exist.  Given the considerable levels of accuracies (% RSE <20) reported 

in this study, we can infer that the estimates from these models will serve as superior to 

the existing estimates, which are based on generalizations over very large areas and are 

drawn from local scale site-specific findings.  However, considering the spatial scale of 

this study, we believe that it is important to verify their accuracies across different sites 
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and using similar datasets, before implementing them at regional scales. In this study, we 

did not attempt to expand our study area to regional scale, mainly due to time and 

resource limitations.   
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3. THE ROLE OF ELEVATION AND RELATIVE SEA LEVEL HISTORY IN 

DETERMINING CARBON DISTRIBUTION IN SPARTINA ALTERNIFLORA 

DOMINATED SALT MARSHES 

 

3.1 Overview 

Salt marshes are among the most productive ecosystems on earth, and represent a 

substantial carbon sink.  An understanding of the spatial patterns in the distribution of 

both above- and below-ground carbon in these wetland ecosystems is of critical need 

considering their potential in carbon sequestration projects, as well as for conservation 

efforts in the context of a changing climate and a rising sea.  Through the use of 

extensive field sampling and remote sensing data (lidar and aerial images), we sought to 

map and explain how vegetation biomass and soil carbon are related to elevation and 

relative sea level change in a salt marsh in Galveston, Texas.  The specific objectives of 

this study were to: 1) understand the relationships between elevation and the spatial 

patterns in the distribution of Spartina alterniflora vegetation characteristics and above-

and below-ground carbon quantities; and 2) to investigate the possible linkages between 

the temporal changes in the: soil carbon deposition, relative sea level history and 

vegetation transitions.  Our results indicated a clear zonation of terrain and vegetation 

height, cover and the distribution of biomass quantities within the marsh extent. 

Distribution of biomass quantities revealed linkages with the elevation suggesting that 

flood tides may be exporting material from the lower elevations to the higher elevations 

over time.   
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In general for the soil profile, the percent carbon decreased with depth, while the 

bulk density increased.  However, both percent carbon and bulk density showed 

significant and abrupt change in the profile at a depth of ~10-15cm.  This apparent 

transition in the soil characteristics coincided temporally with a transformation of the 

land cover, as driven by a rapid increase in relative sea level around this time at the 

sample locations.  The amounts of soil carbon stored in recently established Spartina 

alterniflora intertidal marshes were significantly lower than those that have remained in 

situ for a longer period of time.  These findings indicate that, even though salt marshes 

can respond to relative sea level rise by migrating landward, their status as a carbon sink 

varies as a function of both space and time.  Thus, in order to predict carbon in a 

wetland, researchers need to know not only the elevation, the relative sea level rise rate, 

and the accretion rate – but also the history of land cover change and vegetation 

transition.   

 

3.2 Introduction 

Coastal salt marshes are among the most productive ecosystems on earth (Mitsch 

and Gosselink 2000) and comprise approximately 25% of the global soil carbon sink 

(Chmura et al. 2003).  These salt marshes can continuously sequester carbon through 

plant production and burial process associated with the sea level rise.  The rates of 

atmospheric carbon sequestration in salt marshes are likely an order of magnitude higher 

than that of terrestrial forests (Bridgham et al. 2006; McLeod et al. 2011; Nellemann et 

al.2009).  However, uncertainties exist in the estimates of global extents of coastal salt 
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marshes, and their rates of carbon sequestration can vary widely both spatially and 

temporally.   

Although some previous studies report that tidal coastal wetlands respond to sea 

level rise by expanding landward (Gardner et al. 1992; Warren and Niering 1993; 

Donnelly and Bertness 2001; Gardner and Porter 2001), accreting vertically (Redfield 

and Rubin 1962; DeLuane 1983; Callaway et al. 1997; Orson et al. 1998), and on some 

coasts by expanding seaward as well (Yang 1999; Shaw and Ceman 1999; Kirwan et al. 

2010), how these changes affect their spatial distributions, carbon sequestration ability, 

and the carbon storage both in above- and below-ground environments still needs to be 

studied.  Further, to understand the specific roles of each salt mash environment in the 

carbon cycling process, it is important to investigate the spatial and temporal variations 

in their patterns of above- and below-ground carbon distributions.   

In general, coastal salt marshes are characterized by mild slope terrains and occur 

over a narrow elevation range spanning mean high water.  A large number of previous 

studies reported elevation as an important factor that determines the spatial distribution 

of salt marsh vegetation communities (McKee and Patrick 1988; Pennings and Callaway 

1992; Brewer et al. 1997; Morris et al. 2002; Mudd et al. 2004).  In general, lower 

elevations where optimum conditions for the salt marsh plant growth available, are 

characterized by relatively taller and high productive vegetation communities.  However, 

the spatial patterns in the distribution of vegetation characteristics and thus the above- 

and below-ground carbon can vary largely depending on different factors specific to 

each local environment.  Thus, better understanding of the spatial patterns in the 
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distribution of salt marsh vegetation, and above- and below-ground carbon particularly 

in relevance to the elevation distribution will enable us to better understand and predict 

the consequences of relative sea level rise on the stability of these coastal salt marshes in 

terms of their spatial extents and as important carbon sinks.   

Even though these wetland ecosystems are recognized to have evolved in 

response to sea level rise (Delaune et al. 1983; Pethick 1981), a rapid change in their 

spatial extent or composition are expected even from a small rise in the relative sea level 

(Warren and Niering 1993, Craft et al. 2009).  For example, assumptions of a static 

landscape inspire predictions that 20-60% of the world’s coastal wetlands will submerge 

in response to sea level rise during this century (Nicholls et al. 2007; Craft et al. 2009).  

Among other coastal wetlands, tidal marshes are recognized to be highly susceptible to 

sea level rise (Kirwan et al. 2010; Fagherazzi 2013), but how this change will affect 

ecosystem carbon storage is almost completely unknown beyond Marsh Equilibrium 

Model (MEM) estimates (Morris et al. 2002, 2012).  The current rate of global sea-level 

rise is reported to be around 0.26 – 0.82 cm per year (IPCC 2013).  While some marshes 

are accreting fast enough to keep up with this rise in sea level, in other places they are 

drowning due to local subsidence (eg, Syvitski et al. 2009, Yeager et al. 2012, Feagin et 

al. 2013).   

Several studies have shown that tidal coastal wetlands respond to sea level rise 

by expanding landward (Gardner et al. 1992; Warren and Niering 1993; Donnelly and 

Bertness 2001; Gardner and Porter 2001) or by accreting vertically (Redfield and Rubin 

1962; DeLuane 1983; Callaway et al. 1997; Orson et al. 1998).  Thus, in coastal salt 
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marshes, over relatively long time periods, significant changes in the above- and below 

ground environments could be expected under the influence of relative sea level rise and 

at relatively higher marsh accretion rates.  These changes in both physical and biotic 

factors will affect the marsh productivity and thus the carbon distributions.  For these 

reasons, coastal wetland soils are studied extensively to estimate the rates of vertical 

accretion resulting from marsh sedimentation (Baumann et al. 1984; Mitsch and 

Gosselink 1984; Stoddart et al. 1989), and organic accumulation (McCaffrey and 

Thomson 1980; Nyman et al. 1993; Callaway et al. 1997; Anisfeld et al. 1999; Turner et 

al. 2004; Chmura and Hung 2004).  Further, several other studies link these findings 

with the rates of sea-level rise (Redfield and Rubin 1962; Orson et al. 1998).  However, 

the temporal variations in their spatial distribution as well as the effects of these 

processes on marsh build up over time and space can vary largely depending on the 

specific conditions that each wetland experience.   

In this study, through the use of extensive field sampling and remote sensing data 

(lidar and aerial images), we sought to map and explain how vegetation biomass and soil 

carbon are related to elevation and relative sea level change using data from a Spartina 

alterniflora dominated salt marsh in Galveston, Texas.  The specific objectives of this 

study were to: 1) understand the relationships between elevation and the spatial patterns 

in the distribution of Spartina alterniflora vegetation characteristics and above-and 

below-ground carbon quantities; and 2) to investigate the possible linkages between the 

temporal changes in the: soil carbon deposition, relative sea level history and vegetation 

transitions.   
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In this paper, we first discuss the spatial variations of vegetation characteristics 

and above- and belowground biomass of Spartina alterniflora over the study area.  In 

doing this, we also evaluate their relationships to the variations in marsh surface 

elevation.  In the later part, we attempt to investigate the effects of relative sea level 

history and resulting vegetation transition on the distribution of soil carbon in the soil 

profile.   

 

3.3 Methods 

3.3.1 Study area 

The study area is composed of tidal salt marshes along several kilometers of 

shoreline (approximately 10km2 extent) on the south side of West Galveston Bay on 

Galveston Island, Texas, USA.  West Galveston Bay is a relatively shallow bay, with its 

deepest portions approximately 3m deep. It connects to the Gulf of Mexico via San Luis 

Pass on the southwestern end, while it connects to central Galveston Bay at the 

northeastern end (Figure 3-1).  However, bathymetric and geographic features (e.g., the 

Texas City Dike and Pelican Island on the east side) prevent propagation of oceanic 

waves from outside West Galveston Bay.  The majority (87%) of the shoreline is natural 

(i.e., not affected by anthropogenic activities such as dredging, dredged material 

disposal, filling for development, etc (Ravens et al. 2009).  The natural shoreline of 

West Galveston Bay mainly consists of salt and brackish water marshes (78%).  The low 

marshes (as influenced by daily tides) in our study area were dominated by Spartina 

alterniflora, commonly known as smooth cord grass.  It is one of the most abundant salt 
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marsh dominant species in the intertidal zone along the coast of the northern Gulf of 

Mexico and the Atlantic Coast of North America.  For example, Spartina alterniflora 

dominated communities are reported to contribute up to 80% of the total carbon 

production of Atlantic and Gulf of Mexico estuarine systems (Turner 1976).   

The Galveston Island is a barrier island. The NRCS (2008) classifies these soils 

as gulf coast saline prairies soils.  These soils are characterized by light-colored sandy 

soils, with very shallow soil surfaces at or only a few feet above sea level and therefore 

show very slow surface drainage.  These soils are formed in quaternary sediments on 

nearly level coastal areas including coastal marshes, tidal flats, and barrier islands. Soils 

are mostly basic.  However, our soil samples did not report the presence of any 

carbonates. 

3.3.2 Data 

3.3.2.1 Vegetation height, cover and biomass measurements 

Field sampling was conducted from June 4 - 8, 2012. In locating sampling points 

across the study area, we employed systematic random sampling. Nineteen transects 

were established randomly in the Spartina alterniflora zone (Figure 2-1), with each 

extending from the water line to the landward extent of the zone (stopping before the 

upper reaches of the low marsh dominated by species such as Salicornia virginica and 

Batis maritima, salt panne species, or the un-vegetated salt panne itself).  Average 

spacing between transects were from 50m to 100m.   
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Figure 3-1.  Map of the study area. Sample locations are displayed on high 

resolution aerial imagery acquired in June 2012. Near-infrared, red and blue bands 

are displayed using red, green and blue, respectively.  
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We assumed that the variation in vegetation height and cover conditions was 

determined by the gradients of elevation and tidal range. Thus, to capture the gradients 

of elevation, tidal range, and the observed heterogeneity in vegetation height and cover, 

sample plots were located systematically on these transects using 1mx1m quadrats.  

These quadrats were located only in mono-specific stands of Spartina alterniflora.  The 

number of sample plots on each transect varied from 3 to 7 depending on the width of 

the Spartina alterniflora zone.   

In the field, following standard methods (Anderson 1986) we first estimated the 

percentage of canopy cover within each plot visually.  All the plants within the quadrats 

were then clipped at the ground surface.  Clipped vegetation was sorted as live plants 

and dead vegetation/litter, placed in pre-labeled plastic bags, and transported to the lab.  

In the lab, plant and stem heights of individual plants were measured.  Numbers of stems 

per quadrat were also recorded.  These measurements were used to derive statistics 

relating to plot level field vegetation heights and density.   

Clipped plants were then processed and analyzed for vegetation biomass (g dry 

weight per m2) and carbon estimates, separately for live plants and dead plant material.  

A total of 15 samples were selected to represent the entire study area and were analyzed  

by combustion/gas chromatography using a Carlo Erba EA-1108 elemental analyzer (CE 

Elantech, Inc., Lakewood, N.J.) to obtain  carbon concentrations in  live and dead plant 

materials.   

During field sampling, the central coordinates of sample plots were also 

established using a survey-grade, Global Navigation Satellite System (GNSS) Trimble 
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R2 unit; the Real Time Kinematic (RTK) with infill surveying approach was used, with 

all points yielding errors less than 4cm horizontal and vertical. All sampled locations 

were vertically referenced within NAVD 88 units.  We also located a total of 42 

reference points (RPs) primarily on salt pannes and other open and distinguishable areas 

just outside the Spartina alterniflora zone, and at road intersections.  At each point x, y, 

and z coordinates were recorded.  These RPs were used to verify location accuracies of 

the aerial images, relative to their location in the field.   

3.3.2.2 Soil sampling 

Soil cores were collected from the center of each quadrat after carefully clipping 

the above-ground material, while not disturbing the soil surface.  The rectangular corer 

(10.16cm x 10.16cm width, 25cm length, with sharpened stainless steel bottom rim for 

cutting through roots) was then inserted into the marsh.  Soil samples were removed 

from the corer using a specialized extruder.  No obvious compaction of the soil samples 

was detected. These samples were then divided into 5 cm thick sections using a sharp 

knife and were placed in labeled plastic bags.  We labeled and retained these sections 

separately to analyze for soil biomass, carbon, nitrogen, and bulk density to evaluate 

their differences spatially as well as across different soil depths. 

To determine soil bulk densities and moisture contents, a known volume of each 

sample was used.  Bulk densities were calculated on the basis of oven-dried weight (at 

650C for 48 hours) and reported in grams per cubic centimeter of dry weight. Separate 

subsamples of approximately 50g of soil were used for the analysis of root biomass.  

Roots were separated using flotation method.  Soil samples were immersed in high 
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density saturated NaCl solution (density = 1.2 g/ml), to allow the roots to float to the top 

of the liquid.  Roots were then separated manually using a tweezers under good light for 

illumination.   

Remaining soils were air-dried and subsamples were gently crushed and passed 

through 2mm sieves to remove large organic and inorganic fragments, then oven dried at 

650C for 48 hours. These subsamples of approximately 5g were ground to a fine 

homogenous powder using a mortar and pestle. The mortar and pestle were cleaned and 

dried thoroughly between samples to avoid cross contamination.  Ground soil samples 

were placed in a muffle furnace (460°C for 8 hours) to determine the loss of organic 

matter on ignition (LOI).  Further, a soil moisture correction was applied on the LOI 

results based on moisture correction factors determined using % moisture loss of the soil 

samples oven dried at 1050C.  A total of 15 soil samples were then selected to analyze 

for percent soil carbon using combustion/gas chromatography elemental analysis.  Prior 

to soil carbon analysis, all the soil samples were tested for the presence of soil 

carbonates and results did not report any carbonates in our soil samples.  Relationship 

between LOI and this analysis revealed a strong linear relationship (%C = 

[LOI*0.3045]+0.3671; Least square regression with r2=0.97; p<0.0001; and RMSE = 

0.17%).  Using this relationship, LOI results were converted to soil carbon percent.  

These soil samples were also analyzed for carbon and nitrogen isotope contents using 

combustion/gas chromatography elemental analysis.   

Subsamples of vegetation (live and dead) and root samples drawn from the same 

quadrats were analyzed similarly using elemental analysis for their percent carbon 
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contents.  The average percent carbon values reported for live and dead vegetation, and 

root biomass were used for the conversion of biomass to carbon.   

3.3.2.3 Remote sensing data 

High resolution (0.5m) digital aerial images for June 2012 were obtained from 

the National Agricultural Imagery Program (NAIP).  These images consists of four (4) 

spectral bands in blue (428-492 nm), green (533-587 nm), red (608-662 nm), and near-

infrared (833-887 nm) regions of the electromagnetic spectrum.  The earliest images for 

the study area available from the NAIP historical data archives were for 1954.  These 

images were available in grey scale only.  When we overlaid the RPs collected during 

ground survey, the horizontal accuracy of the 2012 aerial images was finer than 0.5m.  

The historical images of 1954 were geo-referenced to the 2012 image using ground 

control points that were clearly visible on both images.  A Root Mean Square Error 

(RMSE) of 0.67m was maintained in geo-referencing the two sets of images, using 

ArcGIS (version 10.1) software.   

We also obtained Light Detection and Ranging (lidar) data that was acquired in 

August 2006 by the Sanborn Mapping Company, Colorado Springs, Colorado, through 

the use of a laser mounted on an aircraft flying at 900m height.  Lidar data was used to 

interpolate Digital Terrain Models (DTMs) at 3m spatial scale.  These DTMs were then 

used to understand the patterns of elevation variation over the study area, particularly 

within the Spartina alterniflora extent.  Elevation accuracies of the lidar derived DTMs 

were also evaluated using elevation measurements of the sample points and RPs 

collected during the ground survey.  Surface elevations of the sample locations varied 
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within the range from 20 to 57 cm.  After evaluating the elevation variations over our 

study area (using 3m DTMs), we defined three elevation zones as 1) less than 30cm; 2) 

30-40cm and 3) greater than 40cm.  Sample locations were grouped into these respective 

zones, based on their ground surveyed elevation readings.   

Using the 1954 and 2012 imagery, we visually evaluated transitions in the 

dominant vegetation type over the time period from 1954-2012.  When our quadrat point 

locations were overlaid on to the two sets of images, we observed that the present day 

Spartina alterniflora locations were historically covered by three different land cover 

classes in 1954; 1) Spartina alternlifora dominated low marsh - LM, 2) salt pannes - SP, 

and 3) high marsh - HM.  We then reconciled changes in the apparent aboveground 

vegetation cover at each point with our records of soil carbon and bulk densities, with 

reference to soil depth.  We also evaluated current Spartina alterniflora plant height, 

maximum culm height, percent cover, plant density, and biomass as a function of land 

cover history at each point. 

 

3.4 Results 

3.4.1 Spatial variations of salt marsh vegetation characteristics, and above- and 

below-ground carbon 

The mean plant and culm heights of Spartina alterniflora in our study area were 

43.7±6cm, and 10.7±3.8cm, respectively (Table 3-1).  During field measurements, we 

observed a gradual decrease in mean plant height along the elevation gradient, as 

elevation increased (p=0.008).  The culm height difference between three zones followed 



 

68 

 

the same trend (p<0.0001).  However, the percent vegetation cover increased with 

increasing elevation (p=0.009).  Plant density, in terms of the number of stems per m2, 

generally decreased with increasing elevation, though not strongly due to high variability 

about the mean value (p=0.68).   

Mean aboveground biomass for our study area was 882g dry weight per m2.  Live 

and dead biomass components accounted for 61% and 39% of the total vegetation 

biomass, respectively.  Percent carbon quantities (g carbon per 100g dry weight) of live 

and dead vegetation components were 41.3 and 34.5, respectively.  Live and dead 

biomass quantities showed significant differences among the three elevation zones, 

however each followed an opposing trend along the elevation gradient; live biomass 

quantities decreased as elevation increased, while dead biomass increased.  As a result, 

the total biomass showed a relatively uniform distribution with respect to elevation.  

 Soil carbon and nitrogen concentrations of the top 15cm soil were not strongly 

related to elevation (p=0.22 and 0.88, respectively).  However, the soil C:N ratio showed 

significant differences across the three elevation zones (p=0.01), increasing with 

increasing elevation, similar to the trend in dead biomass accumulation.   
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Table 3-1. Spatial variations of vegetation characteristics and above- and belowground biomass along the elevation 

gradient across Spartina alterniflora extent. 

 

 all samples 

Elevation (cm) 

Pr>ChiSquare <30 30-40 >40 

Plant height mean (cm) 

 

44.7 48 44 43 0.008 

Culm height mean (cm) 

 

10.7 14 12 8 <0.0001 

% Cover 

 

86.8 82 81 93 0.009 

Plant density  

 

356 351 360 344 0.68 

Above-ground C (g/m2) Live 219 251 222 200 0.04 

 

Dead 121 80 88 168 0.0004 

 

Total 340.6 331 310 367 0.18 

Below-ground C  Root C (g/m2) 6.6 7.9 6.5 6.0 0.97 

 

Soil C (g/kg soil) 29 32 26 29 0.22 

 

Soil N (g/kg soil) 25 26 25 25 0.88 

 

Soil C:N 16.2 15.3 16.0 16.8 0.01 

 

δ13CV-PDB (‰)  -18.2 -18.7 -18.1 -18.0 0.03 

 

δ15NAIR (‰)    1.7 1.42 1.78 1.85 0.18 
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3.4.2 Temporal changes: Soil carbon, relative sea level history and vegetation 

transition 

Overall, the percent carbon stored in the soil profile indicated a clear depletion 

along the soil depth; surface soils had the highest soil carbon percentages, while they 

were the lowest in deeper layers.  Soil bulk density showed a similar, but opposing 

pattern (Figures 3-2a & 3-2b).  Soil carbon quantities (gC per kg soil) was more variable 

among deeper portions of the soil profile (p=0.03), whereas the soil bulk density was 

more variable at shallower depths (p=0.01).  When converting via multiplication, the soil 

carbon storage on an aerial basis (gC per m2) did not reveal this pattern of variation 

(figure 3-2c). For soil carbon storage itself, there was an apparent division between 

sampled layers at depths of 0-15 cm versus 15-25 cm (p=0.001).  Considering the 

apparent shift in percent soil carbon below 15 cm and the shift in bulk density at this 

same depth, a change appears to have occurred at the corresponding time in the history 

of the soil’s development through sediment and/ or organic matter accumulation on the 

marsh surface. 

The dominant vegetation zones shifted their spatial locations across the salt 

marsh extent from 1954 to 2012. The majority of Spartina alterniflora dominated low 

marsh areas that we sampled in 2012 were of a different vegetation type in 1954 (Figure 

3-3).  The majority of our sample points, nearly 70% of them, were located on former 

salt pannes and high marshes. These observations suggest changes in relative sea level 

history leading to landward shift of the salt marsh extents over this 58 year period.    
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Figure 3-2.  Soil carbon and bulk density variations across different depths of the soil profile(a, b, & c), and 

hypothetical drawing to show the variation of soil properties at different depths of the soil profile (d). Similar patterns 

reveal non-significant changes. 
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Figure 3-3.  Land cover differences between two time periods.  Sample points are 

overlaid on 2012 NAIP imagery displayed using bands NIR, red and green using 

red, green and blue (top left).  Closer view of the two sample areas to highlight the 

landward shift of Spartina alterniflora low marsh extents and the relative sea level 

rise during the 58 year time period from 1954 to 2012 (a & b). 
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Accordingly, the trend of soil composition across depth, varied in a manner 

related to each of the three historical land cover types (Figure 3-4).  For points that were 

low marshes in 1954 as well as in 2012, the 0-5cm and the 5-10cm depths were nearly 

identical in terms of soil carbon concentration and bulk density.  Carbon concentrations 

decreased more slowly with depth, with a range from 40 to 20 gC/kg soil.  Bulk density 

slightly increased with soil depth, but only up to ~0.25 g/cm3.  Further, the change in 

percent soil carbon was significant (p=0.01) only at the depth of 20cm, and the soil bulk 

density change was not significant at any of the depths (p=0.05).  These bulk density 

values are comparable to previously reported values for coastal salt marsh soils 

(Callaway et al 1997; Feagin et al 2009).   

Sample points from former salt pannes showed a sudden drop in soil carbon 

concentration and increase in bulk density at 5cm (p=0.002, p=0.009, respectively), and 

15cm depths (p<0.001).  The variation in soil carbon from the surface to the depths was 

much greater than the former low marshes as well, from 40 to 10 gC/kg soil.  However, 

the soil carbon concentration  at the top of the surface (0-5cm) did show similarity 

between former salt panne areas and former low marsh areas; points from either of these 

history types showed a higher soil carbon concentration as compared to the former high 

marsh areas at the surface only (an approximately 1% difference in soil carbon 

concentrations ), suggesting that their current elevation position is the determinant in that 

top layer (as compared to the former high marsh locations that were in 2012 among the 

highest elevation points).  Soil parameters in the deeper soil layers (below 5cm soil 

layer) did not show significant differences between the soil cores of former salt panne 
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and former high marsh areas.  As compared with the former low marsh areas, the deepest 

layer of the salt panne was much poorer in percent carbon (about half at the 20-25 cm 

layer), and moderately higher in bulk densities.  Interestingly, the former high marshes 

had their minimum percent carbon value and maximum bulk density at the 15-20 cm 

layer, rather than the 20-25 cm layer, suggesting a possible transition from a former high 

marsh into a salt panne, and then finally into a low marsh at the upper layers.  

Comparatively, sample points historically covered by low marshes reported 

significantly higher percentage of soil carbon as compared to the sample points that were 

converted to low marshes after 1954 (p=0.003), for the top 15cm soil.  Considering the 

entire soil profile, the soil carbon quantities for law marshes, salt pannes, and high 

marshes were 34.5, 27.4, and 23.0 gC per kg soil, respectively.  Further, former low 

marsh areas had the highest absolute quantities of soil carbon (gC per m2) storage at all 

depths. 
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Figure 3-4.  Figure 3-4. Soil carbon and bulk density changes along the soil profile separately for the three sample 

groups defined based on  the historical land cover identified for each of the sample locations; 1) HM - high marsh, 2) SP 

- salt pans, and 3) LM - low marshes. 
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3.5 Discussion 

3.5.1 Spatial variations of salt marsh vegetation characteristics, and above-and 

below-ground carbon 

Spartina alterniflora vegetation height varies along the elevation gradient, as 

shown empirically in the present study and in previous studies (Hardisky et. al. 1984, 

Pennings and Callaway 1992; Castillo et. al. 2008).  Though our site did not exhibit the 

typical short versus tall Spartina alterniflora phenotypic expression that is often seen in 

other studies, we did witness taller plants and culms in lower elevations on the seaward 

edges of the marsh.  Elevation plays a major role in determining the direct influence of 

tidal height and thereby the distribution of soil nutrients, suspended sediment supply, 

and anoxic conditions within the marsh environment (DeLaune et al. 1983a & b; 

Silvestri et al. 2005).  Studies have shown evidence for direct linkages between elevation 

and pore water salinity (Moffett et. al. 2010), which is recognized to be an important 

controlling factor on vegetation distribution.  Present-day elevation likely is the 

predominant factor driving aboveground and belowground plant characteristics and 

biomass. 

The above-ground biomass quantities of Spartina alterniflora reported to be in 

the range from 100 – 3700 g dry weight per m2 (Castillo et al. 2010). The values 

reported in our study area varied within a narrow range from 304 to 1452 g dry weight 

per m2.  However, these values are comparable with the biomass measurements reported 

for this area. For example, Webb and Newling (1985) reported Spartina alterniflora 

biomass quantities ranging from 22 to 936 g dry weight per m2 for the salt marshes in 
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Galveston Bay complex which include our study area. Also, in a different study, 

Hardisky et al. (1984) reported similar values for Spartinal alterniflora salt marshes over 

the North Gulf coast of US.   

 The total biomass carbon (live + dead) was distributed relatively evenly across 

elevation. However, this evenness does not necessarily mean that the process that occurs 

at low and high elevations is the same.  In general, the lower elevations in our study 

were characterized by more robust growth with erect, few stems emerging from clumps, 

while the upper elevations had a short dense layer of overlapping vegetation canopies 

consisting largely of dead leaves and stems from the previous season.  We observed a 

greater amount of dead biomass accumulation at upper elevations.  Thus, while the total 

biomass carbon stock is relatively evenly-distributed across the elevation gradient and 

not statistically differing with respect to elevation, newly emerging plants are 

contributing to live biomass at the lower elevations and then exporting this material to 

the higher elevations.   

Corroborating this hypothesized process, the soil C:N ratio increased with 

increasing elevation.  In general, dead plant matter are characterized by relatively higher 

C:N ratios compared to live matter.  Early studies reported lower decomposition rates in 

the organic matter characterized by high C:N ratios, which are resistant to decay.  This 

lower decomposition rates in turn, could explain the lower percentage of soil carbon at 

the highest elevations, regardless of the increased accumulation of organic matter on the 

marsh surfaces.  The material from lower elevations is exported to and accumulated at 

higher elevations, some of that carbon is then integrated into the soil, and the remainder 
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is exported to even higher elevations on subsequent tides.  Thus, there is a spatial-

averaging of carbon across the landscape, and with respect to elevation, that is driven by 

the tide continually moving dead biomass to higher elevations. 

3.5.2 Temporal changes: soil carbon deposition, relative sea level history and 

vegetation transition 

The primary mode of vegetation transition over the 58 year period (1954-2012) 

was a landward shift of the salt marsh extent.  Much work has been devoted to 

understanding how this zonal migration process is related to relative sea level rise.  As 

the sea level rises at a given point location, the marsh responds through a coupled 

accretion process (Morris et al. 2002), and if there is an accretionary deficit, then the low 

marsh may be lost at a specific point due to inundation(Cahoon et al. 2006; Nyman et. 

al. 2006; Connor et. al. 2001).  Across the landscape, the zones of the marsh appear to 

migrate landward to higher elevations (Feagin et al. 2008).  When barriers prevent this 

migration, the marsh is lost, and findings from around the US have indicated a 

significant loss of coastal salt marshes due to these processes over the last century 

(USFWS 2011, 2013).   

Marsh loss and zonal migration at our study site has been extensive over the last 

century, and is due to an insufficient sediment supply and accretion rate, as compared to 

the relative sea level rise.  Immediate to our study area in the Galveston Island State Park 

Spartina alterniflora low marshes, Feagin et al. (2005) and Feagin et al. (2010) reported 

relative sea level rise rates of 0.65 cm per year and Ravens et. al. (2009) reported 

sediment accumulation rates ranging from 0.14 to 0.36 cm per year.  More generally in 
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this hydrologic basin, White et. al. (2002) reported an average sedimentation rate of 

0.5cm per year, while Yeager et. al. (2007), for a different wetland in the same region 

reported a sedimentation rate of 0.16cm per year.  Processes driving the accretionary 

deficit in this region include lowered sediment supply due to the construction of the 

Texas City Dike, the damming of inflowing rivers, subsidence driven by the fault 

activation as due to water and hydrocarbon extraction, regional autocompaction, and 

eustatic sea level rise (White and Morton 1997).  As a result, White et. al. (1995) reports 

a loss of about 12% salt marshes on the Galveston coast between 1950 and 1989, while 

Glass and Hollingsworth (1999) indicated a loss of 405ha in Galveston Island State Park 

(encompassed by our study area) alone between 1930 and 1994.   

There were two distinct and significantly different layers found in the general 

results of our core profiles: (1) a surface layer to ~15cm depth characterized by higher 

soil carbon concentrations and lower soil bulk densities, and (2) a layer below ~15cm 

with lower soil carbon concentrations and higher soil bulk densities.  Interestingly, 

multiplying an average accretion rate of ~0.25 cm per year at this site (from Ravens. 

2006), by ~58 years (1954-2012), yields ~15 cm of soil depth – a number that coincides 

with this transition depth.  This transition was particularly evident in the bulk density 

and soil carbon (g C per m2) profiles of the former salt panne and high marsh cores at the 

15-20 depth.  However, soil cores of former low marshes did not show this transition in 

soil carbon until the depth of 20-25cm.  Further, in this group, up to 25cm depth mean 

soil bulk density of low marshes did not reveal significant differences at any depth.  

Thus, in our work, there appear to be clear linkages between the relative sea level rise 
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rate, accretion rate, and vegetation transition across the landscape.  Accordingly, the 

shifting vegetation types altered the bulk density of the soil and the quantity of carbon 

that was deposited.   

3.5.3 Hypothesized rules for spatial and temporal carbon deposition in Spartina 

alterniflora marshes 

Summarizing for Spartina alterniflora marshes, we hypothesize that carbon 

distribution should follow these general rules: (1) live biomass carbon decreases with 

elevation, (2) dead biomass carbon increases with elevation, (3) total biomass carbon is 

generally even across elevation, due to the spatial averaging of tidal export/import of 

dead biomass, (4) soil carbon is affected by this spatial averaging process and high C:N 

ratios in the above ground dry plant material limited the incorporation of this carbon into 

the soil due to the slow decay rates, (5) soil carbon decreases with depth, due generally 

to oxidation and the concentration of organic matter and plant roots in the surface of the 

soil profile, (6) soil carbon at depth is linked to land cover history: greatest in low 

marshes, then high marshes, with salt pannes the lowest, (7) soil carbon decreases as the 

accretion deficit increases, due not only to the lack of deposition but also to the 

likelihood that the location was not a Spartina alterniflora low marsh in the past. 
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4. CONCLUSIONS 

 

This study evaluated the capabilities of the integration of remote sensing data 

(lidar and multispectral) and techniques with field measurements for the quantification 

of carbon pools in salt marsh ecosystems using the data from a Spartina alterniflora 

dominated coastal salt marsh in Galveston, Texas, USA. 

The first part of this study (Chapter 2), evaluated the increased capabilities of a 

data fusion approach using lidar and multispectral remote sensing data to provide 

accurate estimates on salt marsh terrain, vegetation height, cover, and above-ground 

biomass and carbon quantities.  Evaluation of the accuracies of salt marsh DTMs derived 

using different approaches and at varying grid sizes indicated that the local minima in a 

grid spacing of 5mx5m, provided the best accuracy in terrain elevation estimates with an 

RMSE of less than 10cm.  Lidar-derived maximum vegetation heights (Lmax) provided 

the best agreement with field height measurements, but explained only 41% of the 

variance in vegetation height measurements (RMSE = 5.85cm).  Regardless of the 

metrics used, lidar-measured heights underestimated the field vegetation height, which is 

consistent with the findings of previous studies in short or herbaceous vegetation.  The 

fusion of lidar with multispectral data improved model predictions of live, dead, and 

total biomass quantities.  The improvement provided by the fusion over the use of lidar 

or multispectral data alone was marginal; the combination explained 47% of the 

variance, whereas the best models using lidar and multispectral data separately explained 

37% and 28% of variances in live biomass measurements, respectively.  However, the 
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best biomass prediction models reported considerably low RMSEs and % root square 

errors (% RSEs).  For example, % RSE for the biomass prediction model using lidar-

derived maximum vegetation height (Lmax) was closer to 20%, which is the 

recommended error threshold for remote sensing based forest biomass prediction models 

that can be repeatedly applicable for estimating forest carbon stock change. Thus, our 

findings demonstrate that lidar as compared to spectral data can provide better estimates 

of above-ground biomass and carbon, even in the herbaceous and low-relief context of a 

salt marsh.   

The second part (Chapter 3) of this study focused on the spatial patterns in the 

distribution of Spartina alterniflora vegetation characteristics and above-and below-

ground carbon quantities.  Further, the linkages between the temporal changes in the: 

soil carbon deposition, relative sea level history and vegetation transitions were 

evaluated.  Our results indicate a clear zonation of terrain, vegetation characteristics and 

the distribution of biomass quantities within the marsh extent.  Distribution of biomass 

quantities revealed linkages with the elevation.  Variations in soil properties (i.e. carbon 

and bulk density) in the soil profile were linked to the temporal changes in soil carbon 

accumulations on the marsh surface, relative sea level history and resulting vegetation 

transitions as corroborated by historical aerial images. In general, the amounts of soil 

carbon stored in recently established Spartina alterniflora intertidal marshes were 

significantly lower than those that have remained in situ for a longer period of time. Our 

findings indicate that, even though salt marshes can respond to relative sea level rise by 

migrating landward, their status as a carbon sink varies as a function of both space and 
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time. Thus, in order to predict carbon in a wetland, researchers need to know not only 

the elevation, the relative sea level rise rate, and the accretion rate – but also the history 

of land cover change and vegetation transition. 
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